FUGLEDE CONJECTURE FOR LATTICES

ALEX IOSEVICH

ABSTRACT. The purpose of this expository article is to prove that the statement that a set in Euclidean space tiles by a lattice is equivalent to the statement that the dual lattice is a spectrum for the L^2 space of this set. This result is originally due to Bent Fuglede.

In 1974 Fuglede ([Fug74]) proved that the statement that a domain $D \subset \mathbb{R}^d$ is tiled by a lattice A is equivalent to the statement that $\{e^{2\pi i b}\}_{b\in B}$, B the dual lattice of A, is an orthogonal basis for $L^2(D)$. The purpose of this note is to give an almost completely elementary proof of this result.

Tiling. We say that A tiles a domain $D \subset \mathbb{R}^d$ if

(1)
$$\sum_{A} \chi_D(x+a) \equiv 1$$

for almost every $x \in \mathbb{R}^d$.

Dual Lattice. We say that A is a lattice if there exists an invertible d by d matrix M such that $A = M\mathbb{Z}^2$. We say that B is a dual lattice of the lattice A, if

(2)
$$B = \{b : a \cdot b \in \mathbb{Z} \ \forall \ a \in A\}.$$

In other words, $B = (M^t)^{-1} \mathbb{Z}^2$.

The statement that $\{e^{2\pi i b}\}_{b\in B}$ is an orthogonal basis for $L^2(D)$ means that

(3)
$$||f||_{L^2(D)}^2 = \sum_B |\widehat{f\chi_D}(b)|^2.$$

Since the exponentials are dense, (0.3) is equivalent to the statement that

(4)
$$\sum_{B} |\widehat{\chi_{D}}(\xi+b)|^{2} = |D|^{2}$$

for almost every $\xi \in \mathbb{R}^d$.

Theorem. Let D be a domain in \mathbb{R}^d . Suppose that A is a lattice and B is the dual lattice. Then (1) holds for almost every $x \in \mathbb{R}^d$ if and only if (3) holds for almost every $\xi \in \mathbb{R}^d$.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

Research supported in part by the NSF grant DMS00-87339

PROOF OF THEOREM

Let f(x) equal to the expression in (1). Let $F(\xi)$ equal to the expression in (4).

Part I: (1) **implies** (4). Suppose that (1) holds. The function $F(\xi)$ is periodic with respect to B. Let Q_B denote the fundamental domain of B, i.e the image under M of $[0,1]^d$, where $B = M\mathbb{Z}^d$. It is clear that B tiles Q_B , and it is an elementary fact from Fourier analysis that $\{e^{2\pi i a}\}_{a \in A}$ is an orthogonal exponential basis for $L^2(Q_B)$, where A is the dual lattice of B. Thus $F \in L^2(Q_B)$. Let's compute the Fourier coefficients of F. We have, for each $a \in A$,

(5)
$$\hat{F}(a) = |Q_B|^{-1} \int_{Q_B} e^{-2\pi i \xi \cdot a} \sum_B |\widehat{\chi_D}(\xi+b)|^2 d\xi$$

(6)
$$= |Q_B|^{-1} \sum_B \int_{Q_B+b} e^{-2\pi i \xi \cdot a} |\widehat{\chi_D}(\xi)|^2 d\xi$$

(7)
$$= |Q_B|^{-1} \int_{\mathbb{R}^d} e^{-2\pi i \xi \cdot a} |\widehat{\chi_D}(\xi)|^2 d\xi$$

(8)
$$= \frac{|D \cap D + a|}{|Q_B|}$$

Since A tiles D, the expression in (8) is 0 if $a \neq (0, ..., 0)$. If a = (0, ..., 0), we get

(9)
$$\frac{|D|}{|Q_B|}.$$

In order to analyze (9) we compute the Fourier coefficients of f. This function is periodic with respect to A and lives in $L^2(Q_A)$, where Q_A is the fundamental domain of A. Observe that it follows immediately from the definition of Q_A and Q_B that

(10)
$$|Q_A||Q_B| = 1.$$

Let's compute the Fourier coefficients of f. Let $b \in B$. Then

(11)
$$\hat{f}(b) = |Q_A|^{-1} \int_{Q_A} e^{-2\pi i x \cdot b} \sum_A \chi_D(x+a) dx$$

(12)
$$= \frac{\widehat{\chi}_D(b)}{|Q_A|}$$

Since, by assumption, f(x) = 1, for almost every x, it follows that

(13) $\hat{f}(b) = 1$ if b = (0, ..., 0), and 0 otherwise.

Plugging (13) in (12) we see that

$$(14) |D| = |Q_A|.$$

In view of (10), (14) implies that (9) equals $|D|^2$. Thus we have shown that if $a = (0, \ldots, 0)$,

$$(15) \qquad \qquad \hat{F}(a) = |D|^2,$$

and 0 otherwise. It follows that

(16)
$$F(\xi) = \left|D\right|^2$$

for almost every ξ , i.e (1) implies (4).

Part II: (4) **implies** (1). Since $F(\xi) = 1$ and $\hat{f}(b) = |Q_A|^{-1} \hat{\chi}_D(b)$, we see that

$$(17)\qquad\qquad\qquad \hat{f}(b)=0$$

if $b \neq (0, ..., 0)$. If b = (0, ..., 0), we get

(18)
$$\hat{f}(0,\ldots,0) = \frac{|D|}{|Q_A|}.$$

On the other hand, by (9) and (4),

(19)
$$\hat{F}(0,\ldots,0) = \frac{|D|}{|Q_B|} = |D|^2,$$

which implies that

(20)
$$|D| = |Q_B|^{-1} = |Q_A|$$

Plugging (20) into (18) proves that

(21)
$$\hat{f}(0,\ldots,0) = 1.$$

In conjunction with (17) this implies that

$$(22) f(x) = 1$$

for almost every x, i.e (4) implies (1).

The proof of Theorem is complete.