Polygons, Curved Spaces, and the Gauss-Bonnet Theorem

Part 1: Polygons in the plane and the sphere

Emmett Wyman

Northwestern University

May 2020

• A polygon is a bounded region in the plane whose boundary consists of edges.

- A polygon is a bounded region in the plane whose boundary consists of edges.
- Two edges meet at a vertex.

- A polygon is a bounded region in the plane whose boundary consists of edges.
- Two edges meet at a vertex.
- The interior of the polygon is called its face.

- A polygon is a bounded region in the plane whose boundary consists of edges.
- Two edges meet at a vertex.
- The interior of the polygon is called its face.

We'll say a polygon is *nice* if any of its vertices is adjacent to exactly two edges.

We'll say a polygon is *nice* if any of its vertices is adjacent to exactly two edges.

We'll say a polygon is *nice* if any of its vertices is adjacent to exactly two edges.

We'll say a polygon is *nice* if any of its vertices is adjacent to exactly two edges.

From here on, all polygons will be nice.

Cutting polygons into triangles

3 ×

Cutting polygons into triangles

Take a polygon...

Cutting polygons into triangles

Take a polygon...

...and cut it into triangles.

Rules for cutting polygons into triangles

Rules for cutting polygons into triangles

The faces of any two triangles must not overlap.

Rules for cutting polygons into triangles

The faces of any two triangles must not overlap.

O No vertex can lie along an edge except at one of the endpoints.

Let's cut a polygon into triangles in a few different ways.

★ Ξ → < Ξ

Let's look at a more complicated polygon.

Let's look at a more complicated polygon.

V	E	F
19	38	20

Let's look at a more complicated polygon.

V	E	F			
19	38	20			
V - E + F = 1					

• So far, it looks like V - E + F is just equal to 1.

Image: Image:

< ∃ >

- So far, it looks like V E + F is just equal to 1.
- What if our polygon is the union of two disconnected polygons?

- So far, it looks like V E + F is just equal to 1.
- What if our polygon is the union of two disconnected polygons?

- So far, it looks like V E + F is just equal to 1.
- What if our polygon is the union of two disconnected polygons?

V	Ε	F
7	8	3

- So far, it looks like V E + F is just equal to 1.
- What if our polygon is the union of two disconnected polygons?

V	Ε	F	
7	8	3	
/ _	E +	F =	2

- So far, it looks like V E + F is just equal to 1.
- What if our polygon is the union of two disconnected polygons?

• V - E + F is affected by the number of components.

What about polygons with holes?

What about polygons with holes?

Image: Image:

- ∢ ∃ ▶

3 ×

 V
 E
 F

 12
 27
 14

.∃ >

イロト イヨト イヨト イヨト

V - E + F seems to be affected by the number of holes a polygon has.

<ロト </p>

A conjecture

Emmett Wyman (ewyman@math.northwester

▲□▶ ▲圖▶ ▲圖▶ ▲

Conjecture

V - E + F is equal to the number of components of a polygon, minus the total number of holes.

Conjecture

V - E + F is equal to the number of components of a polygon, minus the total number of holes.

• We will look for another way of quantifying "the number of components minus the number of holes."

Conjecture

V - E + F is equal to the number of components of a polygon, minus the total number of holes.

- We will look for another way of quantifying "the number of components minus the number of holes."
- Let's look at angles.

• At each vertex, the *interior angle* is the angle between the two adjacent edges as measured from one edge to the next along the face of the polygon. (Polygon must be nice.)

• At each vertex, the *interior angle* is the angle between the two adjacent edges as measured from one edge to the next along the face of the polygon. (Polygon must be nice.)

- At each vertex, the *interior angle* is the angle between the two adjacent edges as measured from one edge to the next along the face of the polygon. (Polygon must be nice.)
- At each vertex, the *exterior angle* defined to be π interior angle.

- At each vertex, the *interior angle* is the angle between the two adjacent edges as measured from one edge to the next along the face of the polygon. (Polygon must be nice.)
- At each vertex, the *exterior angle* defined to be π interior angle.

Emmett Wyman (ewyman@math.northwester

Theorem

Given a transversal intersecting two parallel lines, the alternate exterior angles are congruent.

Theorem

Given a transversal intersecting two parallel lines, the alternate exterior angles are congruent.

Theorem

Given a transversal intersecting two parallel lines, the alternate exterior angles are congruent.

• Requires a notion of "parallel."

• Recall, the sum of interior angles of a triangle is π . Why?

- Recall, the sum of interior angles of a triangle is π . Why?
- Better to look at the sum of exterior angles.

- Recall, the sum of interior angles of a triangle is π . Why?
- Better to look at the sum of exterior angles.

- Recall, the sum of interior angles of a triangle is π . Why?
- Better to look at the sum of exterior angles.

- Recall, the sum of interior angles of a triangle is π . Why?
- Better to look at the sum of exterior angles.

• The sum of exterior angles of a triangle is 2π .

- Recall, the sum of interior angles of a triangle is π . Why?
- Better to look at the sum of exterior angles.

- The sum of exterior angles of a triangle is 2π .
- Recall interior angle = π exterior angle. So,

$$\sum$$
 interior angles $= 3\pi - \sum$ exterior angles $= \pi.$

• Start on an edge. Walk so that the face of the polygon is to your left.

- Start on an edge. Walk so that the face of the polygon is to your left.
- Sum the angles you turn at each vertex. A counterclockwise turn counts positive and a clockwise turn counts negative.

- Start on an edge. Walk so that the face of the polygon is to your left.
- Sum the angles you turn at each vertex. A counterclockwise turn counts positive and a clockwise turn counts negative.
- If there is more than one boundary curve, do this for each and sum the result.

- Start on an edge. Walk so that the face of the polygon is to your left.
- Sum the angles you turn at each vertex. A counterclockwise turn counts positive and a clockwise turn counts negative.
- If there is more than one boundary curve, do this for each and sum the result.

$$\sum$$
 ext. angle = 2π

- Start on an edge. Walk so that the face of the polygon is to your left.
- Sum the angles you turn at each vertex. A counterclockwise turn counts positive and a clockwise turn counts negative.
- If there is more than one boundary curve, do this for each and sum the result.

- Start on an edge. Walk so that the face of the polygon is to your left.
- Sum the angles you turn at each vertex. A counterclockwise turn counts positive and a clockwise turn counts negative.
- If there is more than one boundary curve, do this for each and sum the result.

What does the sum of exterior angles tell us?

• For each 'outward' boundary, we add 2π to the sum of exterior angles.

What does the sum of exterior angles tell us?

- For each 'outward' boundary, we add 2π to the sum of exterior angles.
- For each 'inward' boundary, we subtract 2π from the sum of exterior angles.

- For each 'outward' boundary, we add 2π to the sum of exterior angles.
- For each 'inward' boundary, we subtract 2π from the sum of exterior angles.
- We have one component for each 'outward' boundary, and one hole for each 'inward' boundary.

- For each 'outward' boundary, we add 2π to the sum of exterior angles.
- For each 'inward' boundary, we subtract 2π from the sum of exterior angles.
- We have one component for each 'outward' boundary, and one hole for each 'inward' boundary.

Conjecture

\sum exterior angles = 2π (number of components – number of holes)
Conjecture

V - E + F = number of components – number of holes.

Conjecture

V - E + F = number of components – number of holes.

Conjecture

$$\sum$$
 exterior angles = 2π (number of components – number of holes)

∃ ▶ ∢

Conjecture

V - E + F = number of components – number of holes.

Conjecture

$$\sum$$
 exterior angles = 2π (number of components – number of holes)

Both of these conjectures are a bit above our paygrade. Instead, let's try...

Conjecture

V - E + F = number of components – number of holes.

Conjecture

$$\sum$$
 exterior angles = 2π (number of components – number of holes)

Both of these conjectures are a bit above our paygrade. Instead, let's try...

Theorem

$$\sum$$
 exterior angles = $2\pi(V - E + F)$.

• Cut our nice polygon into triangles.

- Cut our nice polygon into triangles.
- We have V vertices, E edges, and F faces.

- Cut our nice polygon into triangles.
- We have V vertices, E edges, and F faces.
- *E_b* will denote the number of edges on the boundary.

- Cut our nice polygon into triangles.
- We have V vertices, E edges, and F faces.
- *E_b* will denote the number of edges on the boundary.
- V_b will denote the number of vertices on the boundary.

- Cut our nice polygon into triangles.
- We have V vertices, E edges, and F faces.
- *E_b* will denote the number of edges on the boundary.
- *V_b* will denote the number of vertices on the boundary.
- *E_i* will denote the number of edges in the interior.

- Cut our nice polygon into triangles.
- We have V vertices, E edges, and F faces.
- *E_b* will denote the number of edges on the boundary.
- V_b will denote the number of vertices on the boundary.
- *E_i* will denote the number of edges in the interior.
- *V_i* will denote the number of vertices in the interior.

• Try to write the sum of interior angles in terms of *V*, *E*, and *F*.

- Try to write the sum of interior angles in terms of *V*, *E*, and *F*.
- \sum int. angles = $\pi F 2\pi V_i$.

- Try to write the sum of interior angles in terms of *V*, *E*, and *F*.
- \sum int. angles = $\pi F 2\pi V_i$.
- $V_i = V V_b$.

- Try to write the sum of interior angles in terms of *V*, *E*, and *F*.
- \sum int. angles = $\pi F 2\pi V_i$.
- $V_i = V V_b$.
- $V_b = E_b$ (because the polygon is nice).

- Try to write the sum of interior angles in terms of *V*, *E*, and *F*.
- \sum int. angles = $\pi F 2\pi V_i$.
- $V_i = V V_b$.
- $V_b = E_b$ (because the polygon is nice).

Lemma

$$\frac{E_b}{E_b} = 2E - 3F.$$

- Try to write the sum of interior angles in terms of *V*, *E*, and *F*.
- \sum int. angles = $\pi F 2\pi V_i$.
- $V_i = V V_b$.
- $V_b = E_b$ (because the polygon is nice).

Lemma

- $E_b = 2E 3F$.
- \sum int. angles = $\pi F 2\pi V_i$

• = • • =

- Try to write the sum of interior angles in terms of *V*, *E*, and *F*.
- \sum int. angles = $\pi F 2\pi V_i$.
- $V_i = V V_b$.
- $V_b = E_b$ (because the polygon is nice).

Lemma

$$E_b = 2E - 3F.$$

•
$$\sum$$
 int. angles = $\pi F - 2\pi (V - V_b)$

- Try to write the sum of interior angles in terms of *V*, *E*, and *F*.
- \sum int. angles = $\pi F 2\pi V_i$.
- $V_i = V V_b$.
- $V_b = E_b$ (because the polygon is nice).

Lemma

$$E_b = 2E - 3F.$$

•
$$\sum$$
 int. angles = $\pi F - 2\pi (V - E_b)$

- Try to write the sum of interior angles in terms of *V*, *E*, and *F*.
- \sum int. angles = $\pi F 2\pi V_i$.
- $V_i = V V_b$.
- $V_b = E_b$ (because the polygon is nice).

Lemma

$$\frac{E_b}{E_b} = 2E - 3F.$$

Image: Image:

• \sum int. angles = $\pi F - 2\pi (V - 2E + 3F)$

A B A A B A

- Try to write the sum of interior angles in terms of *V*, *E*, and *F*.
- \sum int. angles = $\pi F 2\pi V_i$.
- $V_i = V V_b$.
- $V_b = E_b$ (because the polygon is nice).

Lemma

 $\frac{E_b}{E_b} = 2E - 3F.$

Image: Image:

- \sum int. angles = $\pi F 2\pi (V 2E + 3F)$
- $\sum \text{ int. angles} = \pi (-2V + 4E 5F).$

A B F A B F

• Why is $E_b = 2E - 3F$?

-

• • • • • • • • • • • •

• Why is $E_b = 2E - 3F$?

э

• Why is $E_b = 2E - 3F$?

• If we 'explode' the polygon into its separate triangles and duplicate the exterior edges, we get 2*E* edges.

• Why is $E_b = 2E - 3F$?

- If we 'explode' the polygon into its separate triangles and duplicate the exterior edges, we get 2*E* edges.
- If we remove the triangles along their 3*F* edges, we are left with only the edges on the boundary.

• Why is $E_b = 2E - 3F$?

- If we 'explode' the polygon into its separate triangles and duplicate the exterior edges, we get 2*E* edges.
- If we remove the triangles along their 3*F* edges, we are left with only the edges on the boundary.

$$\frac{E_b}{E_b} = 2E - 3F.$$

• Recall,

$$\sum$$
 ext. angles = $\pi E_b - \sum$ int. angles.

• Recall,

$$\sum$$
 ext. angles = $\pi E_b - \sum$ int. angles.

• Know
$$E_b = 2E - 3F$$
.

• Recall,

$$\sum$$
 ext. angles = $\pi E_b - \sum$ int. angles.

• Know
$$E_b = 2E - 3F$$
.

• Know \sum int. angles $= \pi(-2V + 4E - 5F)$.

• Recall,

$$\sum$$
 ext. angles = $\pi E_b - \sum$ int. angles.

• Know
$$E_b = 2E - 3F$$
.
• Know \sum int. angles $= \pi(-2V + 4E - 5F)$.
• So,

 $\sum_{v=1}^{v} \text{ext. angles}$ $= \pi (2E - 3F) - \pi (-2V + 4E - 5F)$

• Recall,

$$\sum$$
 ext. angles = $\pi E_b - \sum$ int. angles.

• Know
$$E_b = 2E - 3F$$
.
• Know \sum int. angles $= \pi(-2V + 4E - 5F)$.
• So,

$$\sum_{v=1}^{v} \text{ext. angles} = \pi (2E - 3F) - \pi (-2V + 4E - 5F)$$
$$= \pi (2E - 3F + 2V - 4E + 5F)$$

• Recall,

$$\sum$$
 ext. angles = $\pi E_b - \sum$ int. angles.

• Know
$$E_b = 2E - 3F$$
.
• Know \sum int. angles $= \pi(-2V + 4E - 5F)$.
• So,

$$\sum_{v=1}^{1} \text{ext. angles} = \pi(2E - 3F) - \pi(-2V + 4E - 5F)$$
$$= \pi(2E - 3F + 2V - 4E + 5F)$$
$$= \pi(2V - 2E + 2F)$$

• Recall,

$$\sum$$
 ext. angles = $\pi E_b - \sum$ int. angles.

• Know
$$E_b = 2E - 3F$$
.
• Know \sum int. angles $= \pi(-2V + 4E - 5F)$.
• So,

$$\sum_{i=1}^{i} \text{ext. angles} = \pi(2E - 3F) - \pi(-2V + 4E - 5F)$$

= $\pi(2E - 3F + 2V - 4E + 5F)$
= $\pi(2V - 2E + 2F)$
= $2\pi(V - E + F)$.

The Euler Characteristic

Definition

Let P be a nice polygon that has been cut into triangles so that in the end we see F triangles, E edges, and V vertices. Then

$$V - E + F$$

is called the *Euler characteristic* of *P*, and is denoted $\chi(P)$.
Definition

Let P be a nice polygon that has been cut into triangles so that in the end we see F triangles, E edges, and V vertices. Then

$$V - E + F$$

is called the *Euler characteristic* of *P*, and is denoted $\chi(P)$.

Theorem

The sum of exterior angles of a nice polygon P is equal to $2\pi\chi(P)$.

Definition

Let P be a nice polygon that has been cut into triangles so that in the end we see F triangles, E edges, and V vertices. Then

$$V - E + F$$

is called the *Euler characteristic* of *P*, and is denoted $\chi(P)$.

Theorem

The sum of exterior angles of a nice polygon P is equal to $2\pi\chi(P)$.

Corollary

The Euler characteristic of a nice polygon does not depend on how we cut it into triangles.

Spherical geometry Hyperbolic geometry

Spherical geometry

Hyperbolic geometry

Other geometries

- ∢ ∃ ▶

• *S* will denote the (surface of the) unit sphere.

- S will denote the (surface of the) unit sphere.
- We need to be able to talk about polygons.

- S will denote the (surface of the) unit sphere.
- We need to be able to talk about polygons.
 - Need a notion of 'straight line.'

- S will denote the (surface of the) unit sphere.
- We need to be able to talk about polygons.
 - Need a notion of 'straight line.'
 - Need a notion of angle.

- S will denote the (surface of the) unit sphere.
- We need to be able to talk about polygons.
 - Need a notion of 'straight line.'
 - Need a notion of angle.
 - Need a notion of area.

• The shortest length path between any two points on S is along an arc of a great circle.

• The shortest length path between any two points on S is along an arc of a great circle.

• The shortest length path between any two points on S is along an arc of a great circle.

• Great circles will be our 'lines' and arcs of great circles will be our 'line segments.'

Triangles and polygons on the sphere

Our definitions transfer from the plane to the sphere.

Definition

A *polygon* on S is a region in S whose boundary consists of circular arcs (which we still call edges).

Definition

A *polygon* on S is a region in S whose boundary consists of circular arcs (which we still call edges).

Definition

A triangle on S is a region in S whose boundary consists of three edges.

Definition

A *polygon* on S is a region in S whose boundary consists of circular arcs (which we still call edges).

Definition

A triangle on S is a region in S whose boundary consists of three edges.

• A vertex of a polygon is where two edges meet.

Definition

A *polygon* on S is a region in S whose boundary consists of circular arcs (which we still call edges).

Definition

A triangle on S is a region in S whose boundary consists of three edges.

- A vertex of a polygon is where two edges meet.
- The face of a polygon is its interior.

Definition

A *polygon* on S is a region in S whose boundary consists of circular arcs (which we still call edges).

Definition

A triangle on S is a region in S whose boundary consists of three edges.

- A vertex of a polygon is where two edges meet.
- The face of a polygon is its interior.
- A polygon is 'nice' if each of its vertices is adjacent to exactly two edges.

• We can cut a nice polygon *P* on the sphere into triangles just as we did before:

- We can cut a nice polygon *P* on the sphere into triangles just as we did before:
 - The faces of two different triangles do not overlap.

- We can cut a nice polygon *P* on the sphere into triangles just as we did before:
 - The faces of two different triangles do not overlap.
 - 2 Any vertex which lies along an edge must lie at one of its endpoints.

- We can cut a nice polygon *P* on the sphere into triangles just as we did before:
 - The faces of two different triangles do not overlap.
 - 2 Any vertex which lies along an edge must lie at one of its endpoints.
- Count V vertices, E edges, and F faces.

- We can cut a nice polygon *P* on the sphere into triangles just as we did before:
 - The faces of two different triangles do not overlap.
 - 2 Any vertex which lies along an edge must lie at one of its endpoints.
- Count V vertices, E edges, and F faces.
- We still define $\chi(P) = V E + F$.

- We can cut a nice polygon *P* on the sphere into triangles just as we did before:
 - The faces of two different triangles do not overlap.
 - 2 Any vertex which lies along an edge must lie at one of its endpoints.
- Count V vertices, E edges, and F faces.
- We still define $\chi(P) = V E + F$.
- Is $\chi(P)$ still equal to $2\pi \sum \text{ext.}$ angles?

• V = 3, E = 3, F = 1.

V = 3, E = 3, F = 1.
V - E + F = 1.

- V = 3, E = 3, F = 1.
- V E + F = 1.
- \sum ext. angles $= \frac{3\pi}{2} \neq 2\pi$.

- V = 3, E = 3, F = 1.
- V E + F = 1.
- \sum ext. angles $=\frac{3\pi}{2} \neq 2\pi$.
- Off by $\pi/2$.

- V = 3, E = 3, F = 1.
- V E + F = 1.
- \sum ext. angles $= \frac{3\pi}{2} \neq 2\pi$.
- Off by $\pi/2$.

- V = 3, E = 3, F = 1.
- V E + F = 1.
- \sum ext. angles $= \frac{3\pi}{2} \neq 2\pi$.
- Off by $\pi/2$.

• V = 6, E = 12, F = 8.

- V = 3, E = 3, F = 1.
- V E + F = 1.
- \sum ext. angles $= \frac{3\pi}{2} \neq 2\pi$.
- Off by $\pi/2$.

- V = 6, E = 12, F = 8.
- V E + F = 2.
Example: Euler characteristic on the sphere

- V = 3, E = 3, F = 1.
- V E + F = 1.
- \sum ext. angles $=\frac{3\pi}{2} \neq 2\pi$.
- Off by $\pi/2$.

• V = 6, E = 12, F = 8.

•
$$V - E + F = 2$$

•
$$\sum$$
 ext. angles = 0 \neq 4 π .

Example: Euler characteristic on the sphere

- V = 3, E = 3, F = 1.
- V E + F = 1.
- \sum ext. angles $= \frac{3\pi}{2} \neq 2\pi$.
- Off by $\pi/2$.

- V = 6, E = 12, F = 8.
- V E + F = 2.
- \sum ext. angles = 0 \neq 4 π .
- Off by 4π .

()

The angle defect of a polygon

Definition

$$\mathsf{defect}(\mathsf{P}) = 2\pi\chi(\mathsf{P}) - \sum \mathsf{ext.}$$
 angles.

The angle defect of a polygon

Definition

$$\mathsf{defect}(P) = 2\pi\chi(P) - \sum \mathsf{ext.}$$
 angles.

The angle defect of a polygon

Definition

The angle defect of a polygon P is denoted defect(P) and is given by

defect
$$(P)=2\pi\chi(P)-\sum$$
ext. angles.

• Let *P* be one of the squares.

The angle defect of a polygon P is denoted defect(P) and is given by

defect
$$(P) = 2\pi\chi(P) - \sum$$
 ext. angles.

• Let *P* be one of the squares.

•
$$\chi(P) = 1.$$

defect
$$(P) = 2\pi\chi(P) - \sum$$
 ext. angles.

- Let *P* be one of the squares.
- $\chi(P) = 1.$
- Each interior angle is a third of a full turn, so $2\pi/3$.

defect
$$(P) = 2\pi \chi(P) - \sum$$
 ext. angles.

- Let P be one of the squares.
- $\chi(P) = 1.$
- Each interior angle is a third of a full turn, so $2\pi/3$.
- Each exterior angle is $\pi/3$.

defect
$$(P) = 2\pi \chi(P) - \sum$$
 ext. angles.

- Let P be one of the squares.
- $\chi(P) = 1.$
- Each interior angle is a third of a full turn, so $2\pi/3$.
- Each exterior angle is $\pi/3$.

$$\mathsf{defect}(P) = 2\pi - \frac{4\pi}{3} = \frac{2\pi}{3}$$

Let P be a polygon which is cut into triangles $\Delta_1, \ldots, \Delta_F$ (following the rules). Then,

$$\operatorname{defect}(P) = \sum_{i=1}^{F} \operatorname{defect}(\Delta_i).$$

Let P be a polygon which is cut into triangles $\Delta_1, \ldots, \Delta_F$ (following the rules). Then,

$$\operatorname{defect}(P) = \sum_{i=1}^{F} \operatorname{defect}(\Delta_i).$$

• Recall: int. angle = π – ext. angle.

Let P be a polygon which is cut into triangles $\Delta_1, \ldots, \Delta_F$ (following the rules). Then,

$$\operatorname{defect}(P) = \sum_{i=1}^{F} \operatorname{defect}(\Delta_i).$$

- Recall: int. angle = π ext. angle.
- For a triangle, \sum int. angles = $3\pi \sum$ ext. angle.

Let P be a polygon which is cut into triangles $\Delta_1, \ldots, \Delta_F$ (following the rules). Then,

$$\operatorname{defect}(P) = \sum_{i=1}^{F} \operatorname{defect}(\Delta_i).$$

- Recall: int. angle = π ext. angle.
- For a triangle, \sum int. angles = $3\pi \sum$ ext. angle.
- defect(Δ) = $2\pi \sum$ ext. angles = \sum int. angles $-\pi$.

Let P be a polygon which is cut into triangles $\Delta_1, \ldots, \Delta_F$ (following the rules). Then,

$$\operatorname{defect}(P) = \sum_{i=1}^{F} \operatorname{defect}(\Delta_i).$$

• Recall: int. angle =
$$\pi$$
 – ext. angle.

- For a triangle, \sum int. angles = $3\pi \sum$ ext. angle.
- defect(Δ) = $2\pi \sum$ ext. angles = \sum int. angles $-\pi$.

$$\sum_{i=1}^{F} ext{defect}(\Delta_i) = \sum_{i=1}^{F} \sum_{i=1}^{F} ext{int. angles of } \Delta_i - \pi F$$

$$\sum_{i=1}^{F} \sum \text{int. angles of } \Delta_i$$

э.

$$\sum_{i=1}^{F} \sum_{i=1}^{F} \text{ int. angles of } \Delta_i$$
$$= \sum_{i=1}^{F} \text{ int. angles of } P + 2\pi V_i$$

э.

$$\sum_{i=1}^{F} \sum_{i=1}^{F} \text{ int. angles of } \Delta_i$$

= $\sum_{i=1}^{F} \text{ int. angles of } P + 2\pi V_i$
= $\sum_{i=1}^{F} \text{ int. angles of } P + 2\pi (V - V_b)$

Image: A matrix

$$\sum_{i=1}^{F} \sum \text{ int. angles of } \Delta_i$$

= $\sum \text{ int. angles of } P + 2\pi V_i$
= $\sum \text{ int. angles of } P + 2\pi (V - V_b)$
= $\sum \text{ int. angles of } P + 2\pi (V - E_b)$

Image: A matrix

э.

$$\sum_{i=1}^{F} \sum_{i=1}^{F} \text{ int. angles of } \Delta_i$$

= $\sum_{i=1}^{F} \text{ int. angles of } P + 2\pi V_i$
= $\sum_{i=1}^{F} \text{ int. angles of } P + 2\pi (V - V_b)$
= $\sum_{i=1}^{F} \text{ int. angles of } P + 2\pi (V - E_b)$
= $\sum_{i=1}^{F} \text{ int. angles of } P + 2\pi (V - 2E + 3F).$

Image: A matrix

э.

$$\sum_{b} \text{ int. angles of } P$$
$$= \pi E_b - \sum_{b} \text{ ext. angles of } P$$

$$\sum_{b} \text{ int. angles of } P$$
$$= \pi E_b - \sum_{b} \text{ ext. angles of } P$$
$$= \pi (2E - 3F) - \sum_{b} \text{ ext. angles of } P.$$

• But,

$$\sum_{b} \text{ int. angles of } P$$
$$= \pi E_b - \sum_{b} \text{ ext. angles of } P$$
$$= \pi (2E - 3F) - \sum_{b} \text{ ext. angles of } P.$$

• So,

$$\sum \text{ int. angles of } P$$

= $\pi E_b - \sum \text{ ext. angles of } P$
= $\pi (2E - 3F) - \sum \text{ ext. angles of } P.$

• So,

$$\sum_{i=1}^{F} \sum_{i=1}^{F} \text{ int. angles of } \Delta_i$$

$$=\sum$$
 int. angles of $P+2\pi(V-2E+3F)$

But,

$$\sum_{b} \text{ int. angles of } P$$
$$= \pi E_b - \sum_{b} \text{ ext. angles of } P$$
$$= \pi (2E - 3F) - \sum_{b} \text{ ext. angles of } P.$$

• So,

$$\begin{split} &\sum_{i=1}^{F} \sum_{i=1} \text{ int. angles of } \Delta_i \\ &= \sum_{i=1} \text{ int. angles of } P + 2\pi (V - 2E + 3F) \\ &= \pi (2V - 2E + 3F) - \sum_{i=1}^{F} \text{ ext. angles of } P. \end{split}$$

→ ∃ →

$$\sum_{i=1}^{F} \mathsf{defect}(\Delta_i) = \sum_{i=1}^{F} \sum \mathsf{int.} \text{ angles of } \Delta_i - \pi F$$

< □ > < ---->

$$\sum_{i=1}^{F} \operatorname{defect}(\Delta_i) = \sum_{i=1}^{F} \sum \text{ int. angles of } \Delta_i - \pi F$$
$$= \left(\pi (2V - 2E + 3F) - \sum \operatorname{ext. angles of } P \right) - \pi F$$

< □ > < ---->

$$\sum_{i=1}^{F} \operatorname{defect}(\Delta_i) = \sum_{i=1}^{F} \sum \text{ int. angles of } \Delta_i - \pi F$$
$$= \left(\pi (2V - 2E + 3F) - \sum \operatorname{ext. angles of } P \right) - \pi F$$
$$= 2\pi (V - E + 2F) - \sum \operatorname{ext. angles of } P$$

< □ > < ---->

$$\sum_{i=1}^{F} \operatorname{defect}(\Delta_{i}) = \sum_{i=1}^{F} \sum \operatorname{int. angles of } \Delta_{i} - \pi F$$
$$= \left(\pi (2V - 2E + 3F) - \sum \operatorname{ext. angles of } P\right) - \pi F$$
$$= 2\pi (V - E + 2F) - \sum \operatorname{ext. angles of } P$$
$$= 2\pi \chi(P) - \sum \operatorname{ext. angles of } P$$

< □ > < ---->

$$\sum_{i=1}^{F} \operatorname{defect}(\Delta_{i}) = \sum_{i=1}^{F} \sum \operatorname{int. angles of } \Delta_{i} - \pi F$$
$$= \left(\pi (2V - 2E + 3F) - \sum \operatorname{ext. angles of } P\right) - \pi F$$
$$= 2\pi (V - E + 2F) - \sum \operatorname{ext. angles of } P$$
$$= 2\pi \chi(P) - \sum \operatorname{ext. angles of } P$$
$$= \operatorname{defect}(P).$$

< □ > < ---->

$$\operatorname{defect}(P) = \sum_{i=1}^{F} \operatorname{defect}(\Delta_i).$$

∃ ▶ ∢

$$\operatorname{defect}(P) = \sum_{i=1}^{F} \operatorname{defect}(\Delta_i).$$

• What other quantity behaves like this?

$$\operatorname{defect}(P) = \sum_{i=1}^{F} \operatorname{defect}(\Delta_i).$$

• What other quantity behaves like this?

$$\operatorname{area}(P) = \sum_{i=1}^{F} \operatorname{area}(\Delta_i).$$

$$\operatorname{defect}(P) = \sum_{i=1}^{F} \operatorname{defect}(\Delta_i).$$

• What other quantity behaves like this?

$$\operatorname{area}(P) = \sum_{i=1}^{F} \operatorname{area}(\Delta_i).$$

• Since defect and area follow the same rules, perhaps we can compare them.

A Special Limit

メロト メロト メヨト メ
• Take a triangle Δ in the sphere.

< A

- Take a triangle Δ in the sphere.
- Shrink it down to a point $\Delta \rightarrow p$.

- Take a triangle Δ in the sphere.
- Shrink it down to a point $\Delta \rightarrow p$.
- Look at the limit

$$\lim_{\Delta o p} rac{\mathsf{defect}(\Delta)}{\mathsf{area}(\Delta)}.$$

- Take a triangle Δ in the sphere.
- Shrink it down to a point $\Delta \rightarrow p$.
- Look at the limit

$$\lim_{\Delta \to \rho} \frac{\mathsf{defect}(\Delta)}{\mathsf{area}(\Delta)}.$$

• You must trust me that...

- Take a triangle Δ in the sphere.
- Shrink it down to a point $\Delta \rightarrow p$.
- Look at the limit

$$\lim_{\Delta \to \rho} \frac{\operatorname{defect}(\Delta)}{\operatorname{area}(\Delta)}.$$

- You must trust me that...
 - this limit always exists,

- Take a triangle Δ in the sphere.
- Shrink it down to a point $\Delta \rightarrow p$.
- Look at the limit

$$\lim_{\Delta \to \rho} \frac{\mathsf{defect}(\Delta)}{\mathsf{area}(\Delta)}.$$

- You must trust me that...
 - this limit always exists,
 - this limit is independent of how we shrink the triangle to a point.

- Take a triangle Δ in the sphere.
- Shrink it down to a point $\Delta \rightarrow p$.
- Look at the limit

$$\lim_{\Delta \to p} \frac{\mathsf{defect}(\Delta)}{\mathsf{area}(\Delta)}.$$

- You must trust me that...
 - this limit always exists,
 - this limit is independent of how we shrink the triangle to a point.
- Because the sphere is so symmetric, this limit will be the same for all points *p*. Let's call this limit *K*.

- Take a triangle Δ in the sphere.
- Shrink it down to a point $\Delta \rightarrow p$.
- Look at the limit

$$\lim_{\Delta \to p} \frac{\operatorname{defect}(\Delta)}{\operatorname{area}(\Delta)}.$$

- You must trust me that...
 - this limit always exists,
 - this limit is independent of how we shrink the triangle to a point.
- Because the sphere is so symmetric, this limit will be the same for all points *p*. Let's call this limit *K*.
- Remark: This is kind of like taking a derivative.

• Take a polygon P in the sphere.

Image: A matrix

< ≣ >

- Take a polygon P in the sphere.
- Cut it up into many small triangles $\Delta_1, \ldots, \Delta_F$.

- Take a polygon P in the sphere.
- Cut it up into many small triangles $\Delta_1,\ldots,\Delta_{\textit{F}}.$

Write

$$\operatorname{defect}(P) = \sum_{i=1}^{F} \operatorname{defect}(\Delta_i)$$

3 ×

- Take a polygon P in the sphere.
- Cut it up into many small triangles $\Delta_1, \ldots, \Delta_F$.

Write

$$egin{aligned} \mathsf{defect}(P) &= \sum_{i=1}^{F} \mathsf{defect}(\Delta_i) \ &= \sum_{i=1}^{F} rac{\mathsf{defect}(\Delta_i)}{\mathsf{area}(\Delta_i)} \,\mathsf{area}(\Delta_i) \end{aligned}$$

- < A

→ ∃ →

- Take a polygon P in the sphere.
- Cut it up into many small triangles $\Delta_1, \ldots, \Delta_F$.

Write

$$egin{aligned} \mathsf{defect}(P) &= \sum_{i=1}^{F} \mathsf{defect}(\Delta_i) \ &= \sum_{i=1}^{F} rac{\mathsf{defect}(\Delta_i)}{\mathsf{area}(\Delta_i)} \, \mathsf{area}(\Delta_i) \ &pprox \sum_{i=1}^{F} K \, \mathsf{area}(\Delta_i) \end{aligned}$$

3 ×

- Take a polygon P in the sphere.
- Cut it up into many small triangles $\Delta_1, \ldots, \Delta_F$.

Write

$$\begin{split} \mathsf{defect}(P) &= \sum_{i=1}^{F} \mathsf{defect}(\Delta_i) \\ &= \sum_{i=1}^{F} \frac{\mathsf{defect}(\Delta_i)}{\mathsf{area}(\Delta_i)} \, \mathsf{area}(\Delta_i) \\ &\approx \sum_{i=1}^{F} K \, \mathsf{area}(\Delta_i) = K \, \mathsf{area}(P). \end{split}$$

< ∃ ►

- Take a polygon P in the sphere.
- Cut it up into many small triangles $\Delta_1, \ldots, \Delta_F$.

Write

$$\begin{split} \mathsf{defect}(P) &= \sum_{i=1}^{F} \mathsf{defect}(\Delta_i) \\ &= \sum_{i=1}^{F} \frac{\mathsf{defect}(\Delta_i)}{\mathsf{area}(\Delta_i)} \, \mathsf{area}(\Delta_i) \\ &\approx \sum_{i=1}^{F} K \, \mathsf{area}(\Delta_i) = K \, \mathsf{area}(P) \end{split}$$

• This approximation gets better the smaller the triangles we use.

٠

- Take a polygon P in the sphere.
- Cut it up into many small triangles $\Delta_1, \ldots, \Delta_F$.

Write

$$egin{aligned} \mathsf{defect}(P) &= \sum_{i=1}^{F} \mathsf{defect}(\Delta_i) \ &= \sum_{i=1}^{F} rac{\mathsf{defect}(\Delta_i)}{\mathsf{area}(\Delta_i)} \, \mathsf{area}(\Delta_i) \ &pprox \sum_{i=1}^{F} K \, \mathsf{area}(\Delta_i) = K \, \mathsf{area}(P) \end{aligned}$$

• This approximation gets better the smaller the triangles we use.

$$defect(P) = K area(P).$$

٠

- < A

.∃ >

Recall:

• defect(
$$\Delta$$
) = $3\frac{\pi}{2} - \pi = \frac{\pi}{2}$.

Recall:

• defect(
$$\Delta$$
) = $3\frac{\pi}{2} - \pi = \frac{\pi}{2}$.

• area
$$(\Delta) = \frac{4\pi}{8} = \frac{\pi}{2}$$
.

Recall:

- defect(Δ) = $3\frac{\pi}{2} \pi = \frac{\pi}{2}$.
- area $(\Delta) = \frac{4\pi}{8} = \frac{\pi}{2}$.
- Hence, defect(Δ) = K area(Δ) is solved by K = 1.

We have just shown:

We have just shown:

Theorem

For a polygon P on the sphere, defect(P) = area(P).

± >

・ロト ・聞 ト ・ ヨト ・ ヨト

• The hyperbolic plane and other bizarre geometries.

- The hyperbolic plane and other bizarre geometries.
- The Gauss-Bonnet Theorem for polygons.

- The hyperbolic plane and other bizarre geometries.
- The Gauss-Bonnet Theorem for polygons.

