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Anatomy of a polygon

A polygon is a bounded region in the plane whose boundary consists
of edges.

Two edges meet at a vertex.

The interior of the polygon is called its face.
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Nice polygons

Definition

We’ll say a polygon is nice if any of its vertices is adjacent to exactly two
edges.

NICE MEAN NICE

From here on, all polygons will be nice.
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Cutting polygons into triangles

Take a polygon... ...and cut it into triangles.
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Rules for cutting polygons into triangles

1 The faces of any two triangles must not overlap.

BAD GOOD

2 No vertex can lie along an edge except at one of the endpoints.

BAD GOOD
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Counting vertices, edges, and faces (example 1)

Let’s cut a polygon into triangles in a few different ways.

V E F

4 5 2

V − E + F = 1

V E F

5 8 4

V − E + F = 1

V E F

13 28 16

V − E + F = 1
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Counting vertices, edges, and faces (example 2)

Let’s look at a more complicated polygon.

V E F

19 38 20

V − E + F = 1
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Is V − E + F always 1?

So far, it looks like V − E + F is just equal to 1.

What if our polygon is the union of two disconnected polygons?

V E F

7 8 3

V − E + F = 2

V − E + F is affected by the number of components.
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What about polygons with holes?

V E F

8 16 8

V − E + F = 0

V E F

12 27 14

V − E + F = −1

V − E + F seems to be affected by the number of holes a polygon has.
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A conjecture

It seems that V − E + F goes up by one whenever we add a
component, and goes down by one whenever we punch a hole.

Conjecture

V − E + F is equal to the number of components of a polygon, minus the
total number of holes.

We will look for another way of quantifying “the number of
components minus the number of holes.”

Let’s look at angles.
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Interior and exterior angles

At each vertex, the interior angle is the angle between the two
adjacent edges as measured from one edge to the next along the face
of the polygon. (Polygon must be nice.)

At each vertex, the exterior angle defined to be π − interior angle.
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Transverse Line Theorem

Theorem

Given a transversal intersecting two parallel lines, the alternate exterior
angles are congruent.

Requires a notion of “parallel.”
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Sum of exterior angles of a triangle

Recall, the sum of interior angles of a triangle is π. Why?

Better to look at the sum of exterior angles.

The sum of exterior angles of a triangle is 2π.

Recall interior angle = π − exterior angle. So,∑
interior angles = 3π −

∑
exterior angles = π.
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How to sum the exterior angles of a nice polygon

Start on an edge. Walk so that the face of the polygon is to your left.

Sum the angles you turn at each vertex. A counterclockwise turn
counts positive and a clockwise turn counts negative.

If there is more than one boundary curve, do this for each and sum
the result.

∑
ext. angle = 2π

∑
ext. angle = 4π

∑
ext. angle = 0

Emmett Wyman (ewyman@math.northwestern.edu) Gauss-Bonnet May 2020 14 / 38



How to sum the exterior angles of a nice polygon

Start on an edge. Walk so that the face of the polygon is to your left.

Sum the angles you turn at each vertex. A counterclockwise turn
counts positive and a clockwise turn counts negative.

If there is more than one boundary curve, do this for each and sum
the result.

∑
ext. angle = 2π

∑
ext. angle = 4π

∑
ext. angle = 0

Emmett Wyman (ewyman@math.northwestern.edu) Gauss-Bonnet May 2020 14 / 38



How to sum the exterior angles of a nice polygon

Start on an edge. Walk so that the face of the polygon is to your left.

Sum the angles you turn at each vertex. A counterclockwise turn
counts positive and a clockwise turn counts negative.

If there is more than one boundary curve, do this for each and sum
the result.

∑
ext. angle = 2π

∑
ext. angle = 4π

∑
ext. angle = 0

Emmett Wyman (ewyman@math.northwestern.edu) Gauss-Bonnet May 2020 14 / 38



How to sum the exterior angles of a nice polygon

Start on an edge. Walk so that the face of the polygon is to your left.

Sum the angles you turn at each vertex. A counterclockwise turn
counts positive and a clockwise turn counts negative.

If there is more than one boundary curve, do this for each and sum
the result.

∑
ext. angle = 2π

∑
ext. angle = 4π

∑
ext. angle = 0

Emmett Wyman (ewyman@math.northwestern.edu) Gauss-Bonnet May 2020 14 / 38



How to sum the exterior angles of a nice polygon

Start on an edge. Walk so that the face of the polygon is to your left.

Sum the angles you turn at each vertex. A counterclockwise turn
counts positive and a clockwise turn counts negative.

If there is more than one boundary curve, do this for each and sum
the result.

∑
ext. angle = 2π

∑
ext. angle = 4π

∑
ext. angle = 0

Emmett Wyman (ewyman@math.northwestern.edu) Gauss-Bonnet May 2020 14 / 38



How to sum the exterior angles of a nice polygon

Start on an edge. Walk so that the face of the polygon is to your left.

Sum the angles you turn at each vertex. A counterclockwise turn
counts positive and a clockwise turn counts negative.

If there is more than one boundary curve, do this for each and sum
the result.

∑
ext. angle = 2π

∑
ext. angle = 4π

∑
ext. angle = 0

Emmett Wyman (ewyman@math.northwestern.edu) Gauss-Bonnet May 2020 14 / 38



How to sum the exterior angles of a nice polygon

Start on an edge. Walk so that the face of the polygon is to your left.

Sum the angles you turn at each vertex. A counterclockwise turn
counts positive and a clockwise turn counts negative.

If there is more than one boundary curve, do this for each and sum
the result.

∑
ext. angle = 2π

∑
ext. angle = 4π

∑
ext. angle = 0

Emmett Wyman (ewyman@math.northwestern.edu) Gauss-Bonnet May 2020 14 / 38



What does the sum of exterior angles tell us?

For each ‘outward’ boundary, we add 2π to the sum of exterior angles.

For each ‘inward’ boundary, we subtract 2π from the sum of exterior
angles.

We have one component for each ‘outward’ boundary, and one hole
for each ‘inward’ boundary.

Conjecture

∑
exterior angles = 2π(number of components− number of holes)
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Two conjectures

We have two conjectures now.

Conjecture

V − E + F = number of components− number of holes.

Conjecture

∑
exterior angles = 2π(number of components− number of holes)

Both of these conjectures are a bit above our paygrade. Instead, let’s try...

Theorem ∑
exterior angles = 2π(V − E + F ).
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How are we going to prove this?

Cut our nice polygon into triangles.

We have V vertices, E edges, and F faces.

Eb will denote the number of edges on the
boundary.

Vb will denote the number of vertices on the
boundary.

Ei will denote the number of edges in the
interior.

Vi will denote the number of vertices in the
interior.
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How are we going to prove this?

Try to write the sum of interior angles in terms
of V , E , and F .∑

int. angles = πF − 2πVi .

Vi = V − Vb.

Vb = Eb (because the polygon is nice).

Lemma

Eb = 2E − 3F .

∑
int. angles = πF − 2π∑
int. angles = π(−2V + 4E − 5F ).
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Prove our Lemma

Why is Eb = 2E − 3F?

If we ‘explode’ the polygon into its separate triangles and duplicate
the exterior edges, we get 2E edges.

If we remove the triangles along their 3F edges, we are left with only
the edges on the boundary.

Eb = 2E − 3F .
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Finish the proof!

Recall,∑
ext. angles = πEb −

∑
int. angles.

Know Eb = 2E − 3F .

Know
∑

int. angles = π(−2V + 4E − 5F ).

So, ∑
ext. angles

= π(2E − 3F )− π(−2V + 4E − 5F )

= π(2E − 3F + 2V − 4E + 5F )

= π(2V − 2E + 2F )

= 2π(V − E + F ).
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The Euler Characteristic

Definition

Let P be a nice polygon that has been cut into triangles so that in the end
we see F triangles, E edges, and V vertices. Then

V − E + F

is called the Euler characteristic of P, and is denoted χ(P).

Theorem

The sum of exterior angles of a nice polygon P is equal to 2πχ(P).

Corollary

The Euler characteristic of a nice polygon does not depend on how we cut
it into triangles.
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Down the rabbit hole

Planar geometry is nice, but why stop there?

Spherical geometry Hyperbolic geometry Other geometries
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Spherical geometry

S will denote the (surface of the) unit sphere.

We need to be able to talk about polygons.

Need a notion of ‘straight line.’
Need a notion of angle.
Need a notion of area.
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Distance on the sphere

The shortest length path between any two points on S is along an arc
of a great circle.

Great circles will be our ‘lines’ and arcs of great circles will be our
‘line segments.’
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Triangles and polygons on the sphere

Our definitions transfer from the plane to the sphere.

Definition

A polygon on S is a region in S whose boundary consists of circular arcs
(which we still call edges).

Definition

A triangle on S is a region in S whose boundary consists of three edges.

A vertex of a polygon is where two edges meet.

The face of a polygon is its interior.

A polygon is ‘nice’ if each of its vertices is adjacent to exactly two
edges.
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The Euler characteristic of a polygon in the sphere

We can cut a nice polygon P on the sphere into triangles just as we
did before:

1 The faces of two different triangles do not overlap.
2 Any vertex which lies along an edge must lie at one of its endpoints.

Count V vertices, E edges, and F faces.

We still define χ(P) = V − E + F .

Is χ(P) still equal to 2π
∑

ext. angles?
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Example: Euler characteristic on the sphere

V = 3,E = 3,F = 1.

V − E + F = 1.∑
ext. angles = 3π

2 6= 2π.

Off by π/2.

V = 6, E = 12, F = 8.

V − E + F = 2.∑
ext. angles = 0 6= 4π.

Off by 4π.
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The angle defect of a polygon

Definition

The angle defect of a polygon P is denoted defect(P) and is given by

defect(P) = 2πχ(P)−
∑

ext. angles.

Let P be one of the squares.

χ(P) = 1.

Each interior angle is a third of a full
turn, so 2π/3.

Each exterior angle is π/3.

defect(P) = 2π − 4π

3
=

2π

3
.
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A fact about angle defects

Lemma

Let P be a polygon which is cut into triangles ∆1, . . . ,∆F (following the
rules). Then,

defect(P) =
F∑
i=1

defect(∆i ).

Recall: int. angle = π − ext. angle.

For a triangle,
∑

int. angles = 3π −
∑

ext. angle.

defect(∆) = 2π −
∑

ext. angles =
∑

int. angles− π.

F∑
i=1

defect(∆i ) =
F∑
i=1

∑
int. angles of ∆i − πF
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Proof of lemma

Recall,

F∑
i=1

∑
int. angles of ∆i

=
∑

int. angles of P + 2πVi

=
∑

int. angles of P + 2π(V − Vb)

=
∑

int. angles of P + 2π(V − Eb)

=
∑

int. angles of P + 2π(V − 2E + 3F ).
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Proof of lemma (continued)

But,

∑
int. angles of P

= πEb −
∑

ext. angles of P

= π(2E − 3F )−
∑

ext. angles of P.

So,

F∑
i=1

∑
int. angles of ∆i

=
∑

int. angles of P + 2π(V − 2E + 3F )

= π(2V − 2E + 3F )−
∑

ext. angles of P.
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Proof of lemma (conclusion)

F∑
i=1

defect(∆i ) =
F∑
i=1

∑
int. angles of ∆i − πF

=
(
π(2V − 2E + 3F )−

∑
ext. angles of P

)
− πF

= 2π(V − E + 2F )−
∑

ext. angles of P

= 2πχ(P)−
∑

ext. angles of P

= defect(P).
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Defect and area

To recap, we just showed that if we cut a polygon P into triangles
∆1, . . . ,∆F , we have

defect(P) =
F∑
i=1

defect(∆i ).

What other quantity behaves like this?

area(P) =
F∑
i=1

area(∆i ).

Since defect and area follow the same rules, perhaps we can compare
them.
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A Special Limit

Take a triangle ∆ in the sphere.

Shrink it down to a point ∆→ p.

Look at the limit

lim
∆→p

defect(∆)

area(∆)
.

You must trust me that...

this limit always exists,
this limit is independent of how we shrink the triangle to a point.

Because the sphere is so symmetric, this limit will be the same for all
points p. Let’s call this limit K .

Remark: This is kind of like taking a derivative.
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K and Polygons

Take a polygon P in the sphere.

Cut it up into many small triangles ∆1, . . . ,∆F .

Write

defect(P) =
F∑
i=1

defect(∆i )

=
F∑
i=1

defect(∆i )

area(∆i )
area(∆i )

≈
F∑
i=1

K area(∆i ) = K area(P).

This approximation gets better the smaller the triangles we use.

defect(P) = K area(P).
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What is K?

Now we can solve for K . We just need one example.

Recall:

defect(∆) = 3π
2 − π = π

2 .

area(∆) = 4π
8 = π

2 .

Hence, defect(∆) = K area(∆)
is solved by K = 1.
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Angle Defect and Area on the Sphere

We have just shown:

Theorem

For a polygon P on the sphere, defect(P) = area(P).
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Next time:

The hyperbolic plane and other bizarre geometries.

The Gauss-Bonnet Theorem for polygons.
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