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1. Introduction. Let S be a smooth hypersurface in R™", let do denote
Lebesgue measure on S, and let y denote a smooth cutoff function in R**!. Let §,
denote the dilation 8;h(x, Xnt1) = th(¢7!x, 1 1x,41). We consider the convolu-
tion operators

Mtf(X, xn+l) =f* 5t('l’da')(xv xn+1)

and their associated maximal operator

-//lf(X, Xntl) = f‘;llg Mtf(X, Xnt1)- (1)

It is not obvious that such convolutions are well defined for f in L? spaces since S
has measure zero in R**!. Nevertheless, a priori L? estimates are possible when S
has suitable curvature properties. A basic problem is thus to determine the optimal
range of indices p such that

S| Logesy < Cpll fllLo(rrer)s )

where f is initially taken to be in the class of rapidly decreasing functions.
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The study of such a maximal operator over dilations of a fixed hypersurface
S < R™*! has its beginnings in the spherical maximal theorem of E. M. Stein
[St2]. Stein showed that when S = S, the unit n-dimensional sphere, the in-
equality (2) holds for p > (n+ 1)/n, n > 1. The 2-dimensional version of this
result (n = 1) was proved by Bourgain [B]. The key feature of the spherical
maximal operator is the nonvanishing Gaussian curvature of the sphere. Indeed,
one obtains the same L” bounds if the sphere is replaced by a piece of any
hypersurface in R*! with everywhere nonvanishing Gaussian curvature [Gr].
More generally, one can treat the case where the surfaces vary in the presence of
nonvanishing rotational curvature; see, e.g., [St3, p. 494].

A fundamental unsolved problem is to characterize the L? boundedness prop-
erties of the maximal operator associated to hypersurfaces where the Gaussian
curvature is allowed to vanish. Of course, the maximal operator will not be
bounded on any L?, p < oo, if a part of the hypersurface in question lies in a
hyperplane not containing the origin, and even if the curvature is allowed to
vanish to infinite order at just one point where the tangent plane doesn’t pass
through the origin; see, e.g., [St3, p. 512]. On the other hand, if the hypersurface
is of finite type, then C. D. Sogge and E. M. Stein showed that there exists a
po < oo such that inequality (2) holds for p > py [SoSt].

The purpose of this paper is to determine the best possible value for py when
the hypersurface S is the graph of ® + ¢ where ® is a homogeneous function and
¢ is a nonzero constant. In Theorems 1 and 2 below, we show that in most cases,
1/po = max{p: ®(w)~' € L#(S™ 1)} (at least when the maximum is at most 1 /2).
We note that some related cases of this problem have been handled. For example,
under the assumption that @ is convex, and that the determinant of the Hessian
of @ vanishes only at isolated points, sharp L? bounds for the maximal operator
have been obtained by Cowling and Mauceri [CM2]. Some sharp estimates
have recently been obtained by Nagel, Seeger, and Wainger (see [NSW] which
includes the case p < 2). The case when @ is a homogeneous polynomial on R2
where the gradient is nonvanishing away from the origin is obtained in [I3].

Our approach will follow the original square-function estimates of Stein used
in the spherical case, and in so doing, we obtain sharp estimates for the Fourier
transform of measures carried on the graphs of homogeneous functions. The
basic ideas of the paper are as follows. We begin by showing in Theorem 2
below that if ./ is bounded on L?(R™*!) with S as above, then p > m/n and
®(w) " € LY/?(S™') are necessary conditions.

Conversely, we assume that ®(w) ™' € L?(S™1), 0 < p < min{n/m,1/2}, and
we consider measures given by weighting S with powers of |®|. More precisely, let

dﬁa()’) yn+1) = I(D(y)la(l//da)(ya yn+l)‘

Given an additional finite type assumption on the level set £ = {x: ®(x) = 1}, we
will prove that |B,(&, &u41)| < C|(&, Enst)| " Y/P7* for some & > 0 if & > (1/2) — p.
We obtain the decay |(¢, €n+1)|"(1/ 2 merely from the curvature of ® in the radial
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direction together with the assumptions that ®' € L?(S*!) and a > (1/2) — p.
To obtain the crucial stronger decay of |(¢, é,,+1)|_(1/ 2)_“, we need the finite type
hypothesis on the level set X, and in fact this stronger decay estimate can fail if part
of X lies in a hyperplane (see Example 10 below). Once this has been established, a
theorem of Cowling and Mauceri [CM2] or Sogge and Stein [SoSt] uses square-
function techniques to establish the L? boundedness of

a/laf(x,xn+1)=sulg /s S(x = ty, Xnt1 — tYns1) B (Y, Yut1)| (3)
t>

when 1/2 > « > (1/2) — p. A simple application of Hélder’s inequality, together
with the local integrability of |®(y)|*”, shows that .#( = .# is bounded on L? for

p>1/p.
1.1. Maximal averages

THEOREM 1. Let S = {(x, Xn41) : Xn41 = ®(X) + c} and let Mf(x) be defined as
in (1) above. Suppose that ® € C*°(R"\{0}) is homogeneous of degree m > n, and
that there is 0 < p < min{n/m, 1/2} such that

O(w) e LP(5™) (4)

and T = {x: ®(x) = 1} is of finite type with polynomial bounds, i.e.,

>

2<|pI<!

2 o0

-M
2 I b
- el ™, x| > 1 (5)

Jor some M >0, £ > 2, and where B = (B, ...,B,_,) is a multi-index, and (yy, ...,
Yn—1) is a coordinate system orthogonal to V®(x) at x. Then (2) holds for p > 1/p,
where f is initially taken to be in the class of rapidly decreasing functions.

Remark. The finite type condition (5) has the following implication for
graphing functions. If V®(x) # 0, the implicit function theorem implies that we
can find a normalized coordinate system (yi,...,y,) at x such that V®(x) is
parallel to the vector (0,0,...,1), and a smooth function ¥(yy,...,y,—1) such
that for a sufficiently small radius R,

Z('\B(X,R) = {x+ (J’I, ‘e ~,J’n)3 Yn= ‘P(yl,- . ';yn—l)}a
and
FLL

P R > clx|™,
oy" -+ oyt

¥(y)

251!

for |(y1, .. .,yn_1)| < R.
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Note that the finite-type condition (5) is satisfied with £ = M if ® is a poly-
nomial of degree M. In the converse direction, if (2) holds for a given p, where S
is the graph of @ + ¢, ® is homogeneous of degree m, and ¢ # 0, then the follow-
ing theorem shows that we must have both p > m/n and ®(w)™' € LV/?(S™1).
As a simple example, note that when ®(x) is the monomial Xyt .- xM™  then
O(w) ' e L*(S™1) if and only if p < 1/max{m,...,m,}, and thus (2) holds if and
only if p > max{my, ..., m,}.

THEOREM 2. Let S be a smooth hypersurface, y a smooth cutoff function, and
let Mf(x,%n11) be defined as in (1) above. Suppose H# is a hyperplane not passing
through the origin and set

d(x, xn41) = distance ((x, Xp11), ).

If M is bounded on L?(R™') for some p > 1, then d(x, Xn41) V7 is locally integra-
ble on S. In particular, if S = {(x, Xn+1): Xns1 = ®(x) + ¢}, where ® is homogeneous
of degree m and c # 0, and if M is bounded on LP(R™1) for some p > 1, then
p > m/n and ®(w)" e L'7(s"1).

Proof. The general case is easily reduced to the case where
S = {(%, xnt1): Xns1 = @(x) + c},
®(0) =0,
c#0,
H = {(x,%n+1): Xnt1 = c}.
Then d(x, Xn1) = |®(x)| for (x,Xn11) € S, and it remains to show that |®(x)|~!/?
is locally integrable on R". Clearly, |{y € R"™"': ®(y) = 0}[ vanishes, since other-

wise f is identically infinite for any f > O that is infinite on the hyperplane
{Xn+1 = 0}. So let

o(t) = / |©(y)| "7 ay,
{yeB:|®(y)|>1t}

where B denotes the unit ball in R, and suppose, in order to contradict (2), that ¢
is unbounded on (0, 1). Then we can find (¢) increasing on (0, 1) such that

1 1
/ v(©) (di/1) =2 / y(2)" (dt/t) < oo,

0 0

1 ©)
NGO
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Define f(x,xy+1) = |x,,+1|_1/”y(|x,,+1|)¢(x, Xnt1), Where ¥ is as above. Then
f € L? for p > 1 by (6). On the other hand, if t = x,11/c, then for (x, x,;1) near the
origin, we have

M. f (%, Xn11) = /R S =1y, Xng1 = 1(Q(y) + )Y (3, D(y) + €) dy
= [ @O MO0~ 1, ~1 W (3, 00) + €) dy
> /|<I>(y)|_1/py(t|(1>(y)|) dy (provided supp ¥ large enough)
B

> t—l/py(ﬂ) / |(I)(y)|‘1/”dy (since y is increasing)
{yeB:|®(y)|>1}

=72 (2)o(t) = xnrr/c| ™ y(|Xns1/cl?) (| Xns1/c]).-

Thus S (X, Xn41) = [Xns1/¢l ™ Pp(Pxns1/cl)@(|Xns1/c|) for (x, %a11) near the ori-
gin, and so ||.#f| Lr(sn-1y= 00 by (6), contradicting (2).

In the case where ®@ is homogeneous of degree m, we take # = {x,1 = c} and
compute that

Jooray= ([ rrmear)( [ jowreao).

The finiteness of the integrals implies both p > m/n and ®(w) " € LV/P(s"1),

Remark 1. In the case where ¢ =0 above, ie., S = {(x, Xn+1): Xpt1 = ®(x)}
and @ is homogeneous of degree m, we can often do better, namely show that .#
is bounded on L?(R"!) for p > (n+ 1)/n. For example, this holds if, in addi-
tion, S has nonvanishing Gaussian curvature away from the origin. To see this,
simply apply the proof of Theorem 3 in [I3], but with ¢ = 0. See also Chapter 6
of [Sol] where this type of argument using Fourier integral operators originates.

Remark 2. The index (n+1)/n in the previous remark is sharp. More gen-
erally, if S is a smooth hypersurface such that the projection onto the sphere S”
has positive measure, then .# cannot be bounded on L?(R"*!) for p < (n+ 1)/n.
To see this, simply use the example f(x) = |(x, Xn+1)| " (log(1/](x, Xns1)])) " -
Y(x, Xn+1) as on p. 472 of [St3]. Then f € L™*+U/"(R™1) but .f is easily seen to
be infinite on a set of positive measure.

Remark 3. On the other hand, if the projection of S onto the sphere S” has
measure zero, and S is of finite type, then .# is bounded on L?(R"*!) for p > 1.
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In this case, ./ is essentially a supremum of averages over a fixed submanifold of
finite type, and Theorem 1 on p. 476 of [St3] applies.

There is also a more general version of our maximal theorem which is essen-
tially a perturbation of Theorem 1.

THEOREM 3. Let S = {(X, Xn+1): Xny1 = @(x) + c}. Let Mf(x) be defined as in
(1) above. Suppose that ®(tx) = T'(t)®(x) for all t > 0, where
) =r'0)=---=T™Y0) =0 with r™(0) > 0 for some m > n,

I'” is nonvanishing away from zero, (7

and that there is 0 < p < min{n/m, 1/2} such that both (4) and (5) hold. Then (2)
holds for p > 1/p, where f is initially taken to be in the class of rapidly decreasing
Sunctions.

1.2. Oscillatory integrals. Our main tool in proving Theorem 1 is part (B) of
the following estimates for weighted oscillatory integrals. These estimates are
motivated by the following simple observations. Let ® be a smooth function
homogeneous of degree m > n. Then,

/ 10l gy — ¢, / / " OO gy oy
R» n—1 0
o0
= c,,/ (/ e~ t/™=1(1/m) dt) |®(w)| ™™ da>
s—1\Jo

a1/mr(%) [ 10" do, (8)

where T'(s) = [° e™'t*"1 dt is the usual Gamma function. Formally, we can carry
out this calculation for the oscillatory integral of the first kind f 22 dx. If,
as above, we go into polar coordinates and make a change of variables sending
r — r(A®(0)) "™ we see that

o0
/ M) gy = 3 me, / / e 1@ (w) ™™ dr dw
n-1 0

o0
= i"me, ( / ei’mr”"ldr) ( / O(w) ™™ dw)
0 Ssn—1

= Ame, e¥i/m (1 /m)T(n/m) < / (D(w)—n/m dw), )
Sn-1
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for m > n. This suggests that the optimal decay for the Fourier transform of a
smooth measure carried by the graph of a homogeneous function will hold if and
only if @1 ¢ L"/m (S™1) (that this is indeed the case is in Corollary 5 below).

THEOREM 4. Suppose that ® € C*°(R"\{0}) is homogeneous of degree m > n,
and that 0 < p < min{n/m,1/2}. Let

Fu(,4) = / €0 €430 () [y () dix,

where  is as above and n/m < a + (n/m) < 1.
(A) If 0 <o+ p < 1/2 and ®(w)™" € LP(S""), then

|Fu(&,2)] < C(|Al+|€]) @+, (10)

If, however,0 < p < n/mand 0 < a + p < 1/2, then the weaker assumption (I>(a))"1 €
weak L?(S"!) implies (10). Conversely, suppose ® > 0 almost everywhere, (10)
holds with £ =0, 0 < a + (n/m) < 1, and that \ is smooth and radially decreasing.
Then ®(w)~" € weak L2(S™1) if p > 0, while ®(w) ™" € LY™(S"1) if p = n/m.

(B) Ifa+p > 1/2 > a, and in addition T = {x: ®(x) = 1} is of finite type with
polynomial bounds, i.e., (5) holds, then there exists an ¢ > 0 such that

|Fa(&, )| < C(lA+]gl) =/, (11)

Remark 1. In the converse assertion in (A) of Theorem 4, the restriction
@ > 0 almost everywhere is not essential. In fact, if |{w e $"': ®(w) = 0}| =0
and

&4 = / 0 250 (@(x)) | D(x) [ (x) dx

satisfies (10) in place of F,, then the same conclusions hold for ®. Moreover, if
o =0 and F, satisfies (10) in place of F,, then we must have |{® = 0}| = 0 (see
Subsection 2.1 below).

Remark 2. 1In the case o + (n/m) < 1/2 (the proof of Theorem 1 requires only
the remaining case), (A) of Theorem 4 has a particularly simple proof using only
the fact that the Fourier transform of a nondegenerate plane curve has decay
C|£|"1/2. Indeed, begin by letting Q = {w € $"!: |®(w)| > 1/4} and writing

Fa(f,ﬂ.) — /ei(x~§+l®(x))|(p(x)|a¢(x) dx

= / +/ = an_l\ﬂ + Fag.
x/|x|eS*1\Q x/|x|eQ
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Now if we take absolute values inside the first integral, we see immediately that

e <c 0)" do
{wesS™1:|D(w)|<1/4}

< CA{w e ™1 |0(w)| 7! > 4}
< Cim*P,

since ®(w)~' € weak L# (S "~1). To handle the second integral, let ¢ be supported
in the annulus .o/ = {x € R": 1/2 < |x| < 2} so that

00
Y oe@x) =1, |x<L
k=0
Setting
FREN = [ ey (o dx,
T x/|x|eQ
we obtain

) 0
Fan(f, /1) = z Fogc(fs ,1) = Z 2—kn2-kma}";'-:’)k (Z—ké, 2_,‘"%)’
k=0 k=0

+ 2knkma g8 (27kg, 27kmp)
2m > J|0(w)| 2k < A D(w)]

=I+1I,

where

&2,

/ 10 272700 o )y (27K | () | dx
x/|x|eQ

<\/‘
Q

<cC / (1 4+ 27 10(w)) 2|0 () * doo,
Q

/ ei{r(Z"‘w (&)= (27 Ad(w))} ® (r) W( 2—kr) pretn=1 g |® ( w) |at do
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since the curve (r,r™) is nondegenerate for r € (1/2,2). Thus we have

<c /Q ( ¥ 2-k"2-km) 1®()[* doo

2m > 7|0(w)|
<C /Q (D))~ 0()|* deo

< CAmow/m) |®(w)| ™™ dw
{weS™1:|®(w)|>1/4}

A
= Ao w/m) / % {/mM-1{w e S* 1 t < |®(w)| " < A} dt
0

A
< cprectm [*2 gomaic(1 4 o de < o,
0

since |®| ™' € weak L?(S™!) (in the case p = n/m, simply use the hypothesis |®|™" €
L*(S™ 1)) and

I <c / S 2k ok 0(w) ) T 0() ) do
Q im < |0(w)|

SC;L—I/Z/ Z (2Imy1/2=a=0/m) | (o) [*~(/2) gy
Q \ 2km <3 d(w)]

< Cl_“_("/m)/ |q)(w)‘—"/m do,
{weS™1:|®(w)|>1/4}

(since o + (n/m) < 1/2) which is dominated by CA~*"” just as in the estimate for I.

This completes the proof since if || = C4, then integration by parts yields rapid
decay (see Proposition 1, p. 331 in [St3]).

The case o = 0 in (A) of Theorem 4 implies the following characterization of
the decay of the Fourier transform of measures carried by the graphs of homo-
geneous functions.

COROLLARY 5. Suppose ® = 0, y is smooth and radially decreasing and that
0 < (n/m) < 1/2. Then

‘/ Oy (x) dx) < CAHE) ™"
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if and only if ®(w)™" € L"/™(S™1). Now suppose m >n and 0 < p < min{n/m,
1/2}. Then

| [ ésommny i < coamien

if and only if ®(w) ™" € weak L (S™1).

In Example 10 at the end of the next section, we show that (11) can fail for all
@ >0 if part of X lies in a hyperplane. In order to prove the perturbation
result, Theorem 3, we need part (B) of the above estimates to hold when
@(tx) = T'(t)®(x) for all t > 0, where I satisfies (7). This is the content of the
next theorem.

THEOREM 6.  Suppose that ®(tx) = I'(t)®(x) for all t > 0 where T satisfies (7),
and that there is p satisfying 0 < p < min{n/m,1/2} such that both (4) and (5)
hold. Then for supp ¥ sufficiently small, there exists an £ > 0 such that (11) holds.

We will also need the following result due to Cowling and Mauceri [CM2].
Alternatively, Theorem 4 could easily be strengthened so that the analogous
result of Sogge and Stein [SoSt] could be used instead.

THEOREM 7. Let ¢ be a compactly supported distribution on R". Sﬁppose that
for some & > 0 we have

16(x)] < CA+x)" WD~ xeR", x#0. (12)
Let 5,4(¢) = (t€) and ¢f (x) = sup,. ¢ |0:¢ * £(x)|. Then
811, < Cliflly, e (RM. (13)

We can now prove Theorems 1 and 3.

Proof of Theorems 1 and 3. Hélder’s inequality shows that
1 / e 1
g1 < D) (100 ay) < Corttalr D
where ./, is as in (3), provided a(r'/r) < p, ie., r > (¢ + p)/p, since
o
Jroorswma = [ (["rmiyoa) oo o <co
s=1\Jo

for g < p, g < n/m. By Theorems 4(B) and 7, .#, is bounded on L2 if o + p>1/2.
Now fix p>1/p>2 and set r =p/2. Then (1/2) — p < p(r — 1) and thus we
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can choose « in ((1/2) — p, p(r — 1)), which yields both «+p > 1/2 and r >
(x+ p)/p. Then

( / l./tfl”)l/p < Cyy ( / (Mo|f |’)2>l/p < CC,, ( / | f|”>l/p.

To prove Theorem 3, we decompose the maximal operator /4 as #; + .4,
where the measure y;do used in the definition of .#; has support so small that
the conclusions of Theorem 6 hold. The proof in the previous paragraph shows
that .#; is bounded on L? for p > 1/p. For .#,, we can proceed in two ways.
First, since there is at least one nonvanishing principal curvature on the support
of the measure y,do, a result of C. D. Sogge [So2] shows that .#> is bounded on
L? for p > 2. Alternatively, with some additional work, we could obtain Theo-
rem 6 without any restriction on the support of ¥, and then the previous proof
applies.

1.3. Mixed homogeneous surfaces. In the case n =2, we can obtain more
precise information about the weighted oscillatory integrals described above,
and moreover, we can treat both oscillatory integrals and maximal functions
when @ satisfies a more general notion of homogeneity. We say that ®: R? — R
is mixed homogeneous of degree (ay, az) if ®(¢'/4xy, t/%x,) = t ®(x1, x,) for all
t > 0. Note that the degree (a;1,a;) is not always uniquely determined. In the
case @ is homogeneous of degree m in the usual sense, we always choose the
mixed homogeneity to be (m,m). This choice maximizes the decay estimates
below. Let Zp = {x: ®(x) = 0}, and Zye = {x: H®(x) = 0}, where H® denotes
the determinant of the Hessian matrix of ®. We prove the following estimates.
The case when @ is homogeneous in the usual sense is in [I3].

THEOREM 8. Let S = {(x,x3) € R}: x3 = ®(x) + c}, where ® is mixed homo-
geneous of degree (ay, az), ay > a; > 2. Suppose Zo N Zyo = {(0,0)} and that V@
vanishes only at (0,0).

(A) If =20, (1/a)+(1/ax)+a<1 and F,(&2) = [0 |@(x)| -
Y(x) dx, then

|Fu(€,2)| < C(|¢]+|af)~Va=(V/a)= (14)

for a < (1/2) — (1/ay).

(B) If (1/a1) + (1/az) < 1/2 and Mf(x) is defined as in (1) above, then (2)
holds for p > 1/((1/a1) + (1/az)), where f is initially taken to be in the class of
rapidly decreasing functions. :

Note that (B) follows from (A) in the same way that Theorem 1 follows from
Theorem 4.

Remark. The parameter a cannot exceed (1/2) — (1/a;). Indeed, this is easy
to see if ®(x) = x{' + x3?, since the variables almost separate.
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It would be of interest to extend Theorem 8 to higher dimensions with the
analogous notion of mixed homogeneity. However, the techniques used here rely
on detailed asymptotics for the Fourier transform of the measure carried by X,
and for n > 3, Z is no longer a curve, and these asymptotics are not available. In
fact, in both of our main theorems, namely 1 and 8, the key to using the square-
function techniques is to obtain decay estimates beyond 1/2. This in turn
requires some sort of curvature in at least two different directions, and thus we
must obtain precise asymptotics in at least one of these. However, precise
asymptotics are only available through the Van der Corput Lemma for curves
of the form (t,tf). In Theorem 1, this occurs in the radial direction, since
the homogeneity assumption leads to the curve (r,7™) (see (18) below), while in
Theorem 8, this occurs in the tangential direction, since the level set X is a finite
type curve (see (56) below).

Finally, we note that in the case when ® is homogeneous, Zg N Zyo = {(0,0)}
is equivalent to the property that V® vanishes only at (0,0) by the Euler homo-
geneity relations. However, this no longer holds in the mixed homogeneous case,
for example when ®(x1, x;) = (x; — x3) (x; — 2x3).

2. Oscillatory estimates. The purpose of this section is to prove Theorems 4
and 6. We have

Fu(&,2) = / 610y, () D ()| di,

where ¥ is a smooth compactly supported radial function. In fact, for the purpose
of obtaining decay estimates, it suffices to assume that y is supported in the
annulus & = {x e R": 1/2 < |x| < 2}. Indeed, if for some 0 <y < a + (n/m) we
have the estimate

[F(S, )| < CJAI7, (15)

whenever ¢ is supported in the annulus </, then we automatically have the same
decay estimate for y supported in the unit ball. To see this, let ¢ be supported in o/
so that

o0
Yoo@n=1 <L
k=0

Setting

FEED) = [ & 000 0hy 000 dx,
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we obtain

Fu(¢,2) = i FfE Q) = i 2 knp=kmafk (p=kg, 27km)),
k=0 k=0

where the F¥(£, 1) = [ ¢=4) o (x)y(27¥x)|®(x)|* dx uniformly satisfy the esti-
mate (15). Thus

Fu(&,2) = ( oo+ > )2—""2—’“"“15,,’,c (27*g,270m)) = 1 4 11,

2kmzp  2lmc)
where

1| < Z 9—kno—kma -~ < Ci—a—(n/m),

2km >
since the F¥ are bounded, and

i< Y 2kakecem) T < ca,

2km <)

since the FF¥ satisfy (15) and since y < o + (n/m).
In polar coordinates,

Fa(é,l) =/_1/ei(r(o-f—lr"'@(w))'/,(r)’)nd+n—l|®(w)|a dr dOO,

- [ + [ = FH (&) + 7 (5,2)
S™1n{w: ®(w) >0} S 1n{w: ®(w) <0}

We claim that both F; (£, 1) and F, (&, A) satisfy the decay estimate (10). However,
as the proofs are virtually identical, we consider only F;}(£,4), and for con-
venience, we simply assume ® >0 so that F,(¢, 1) = F;F(, 4). After making a
change of variables sending r — r(Ad)(w))"l/ ™ we get that F,(&, 1) is

—a—(n/m) » —(n/m) ilr 1/my Pm
a=om [ o) { / exp(( (@, )/ (10(@)'") >>
X Py (pa M) ™) dr} do

= a7 /s O(0) " Gu(1D(0), (@, &/ (10(w)) ™) dw,  (16)
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where
Ga(A,B) — / l(Br—rm)rm“‘l"n"l.//(Al/m) d}', (17)

and ¥ is a smooth function supported in (1/2,2).
2.1. Radial curvature estimates. We have the following estimates for G,(4, B).

LeMMA 9. Suppose 1/m < a+ (n/m) < 1, and let G,(A, B) be as in (17) with
supp ¥ < (1/2,2). Then for c sufficiently large,
(i) |Gu(4, B)| < CuA*+n/m),
(i) |Ga(4, B)| < CoA*/m=1" for B < ¢~14m=D/m op B > cgm=1)/m
(ili) Go(d, B) = eionB™ ™ B(m/(m—l))(a+(n/m)—(1/2)).,,(@%‘ﬁ”_‘”) + 0(A%+n/m)~1),
for 1 < c71Am-1/m < B < cAm-V/m
(iv) |Gx(4, B)| < Cpd*+/m) (1 + 4)72, (18)
Remarks.  These estimates are essentially in [RS, Lemma 2.2 on p. 369], [St1,
p. 339-341], [Ho, p. 317] or [GS, Chapter VII]. We have ¢, = (m — 1)m=™/(m-1),
Finally, only estimate (iv) is needed for the proof of (A) of Theorem 4. Of course

(iv) follows immediately from the three previous inequalities, but can also be
obtained directly by noting that

G.(4, B) = A*+®/m) / exp(i(BAY/™t — A£™))e™ 1y (1) dt
has decay C,A4*+("/m) (1 + A)‘I/ ? since the curve (t,t™) has nonvanishing curvature

on (1/2,2).

Proof. Inequality (18)(i) is obvious upon taking absolute values inside the inte-
gral in (17) To rove (18)(ii), let ¢(r) = Br — r™. The critical point is given by
= (B/ m) . When B > cA('”‘l)/ ™ for sufﬁcxently large c, we have ¢/(r) > B/2

on the support of the integrand, and since ¢"(r) = —m(m — 1)r~2, we thus have

|G.(4, B)| =

/ei¢(r)rma+n—1l/l(rA—l/m) dr

— "/dir (ei¢(r)) ;J/l(_rjrma+n—l‘//(rA-—l/m) dr

< [1@/an/g @)y ea=imy
Al/m )
< C/ {B—2rm—2rma+n—l + B~ lymetn-2 + B—lrma+n~1A—l/m} dr
0

< CA*/mM=1" since B! < cA™-1 and ma+n—1> 0.
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In the case B < ¢ 1A D/™ |§'(r)| = cA™V/™ on the support of the integrand,
and using the above integration by parts argument, we obtain

Al/m

lGu(AaB)l < C/c {(A(m-l)/m)—2rm—2rmzx+n—1 + (A(m—l)/M)—lrma+n—-2} dr
0

cAl/m
+ C/ (A(m—l)/m)—-lrma+n—1A—1/m dr
. 0

< CA*/m-1" gince ma+n—1>0.

We now turn to (18)(iii). We have

Ga(A, B) = /ei¢(r)rm+"_1|//(r/Al/"‘) dr

7 1/m
= /(I/Z)ro /(3/2) ’ /CA eW(r)rmoH-n—l‘l/( ) d
0 a2 J62m Al/m

=1L+ 1+ Is.

As in the previous calculation, using ¢'(r) > B/2, ¢"(r) ~ r™2 and ro ~ B/,
we obtain

(1/2)ro .
| = /0 %(ew‘('))u Jig (F))rm =Yy (r/ AV™) dr

N

W/2m
/(; et¢(r)(d/dr){(1/i¢l(r))rma+n—1l//(r/A1/m)} dr

|{et¢(r)(1/l¢ (r))rma+n—-1w(r/Al/m)}|(1/2

< C/(l/z)ro{B—Zrm—Zrma+n—l + B—lrma+n—2 + B—Irma-l-n—lA—l/m} dr
0
+ CB—lrgwt+n—l

< C(B——2r6n—-2+ma+n + B—l'{)naz+n—-1 + B—lrgla+nA——l/m) < CAot+(n/m)—1, (19)

since A ~ B™/(m-1),
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Using a normalization argument together with the Van der Corput Lemma as
on p. 339-341 of [St3], we can obtain the asymptotic estimate

(m/(m—1))(o+(n/m)—(1/2))
_ el¢(’o)
m

For the sake of completeness, we review the details. Using the change of variable
r =ro(y + 1) and the change of phase ¢(r) — ¢(ro) = r'®(y), we obtain

¥ () +0M=H0m=Y. (20)

1/2
1= [ exp 160 + OO oy + DIy (55 0+ D)rody

) 172
= e'¢<'°>r:;'“+"/ p €00 (y + 1)™ Ly ((ro/ AV (y + 1)) dy.

By Proposition 3, p. 334, and the remarks in 1.3.4, p. 337, of [St3], we obtain using
®(0) = @'(0) =0, ®"(0) = —m(m — 1) and |®"| < C (which uses the fact that
ro & Al/m =),

12 ir"®(y) mo+n—1 o
L, 0 7 (64 1) dy

= R90107 (0)V2ry ™2y (10 +0(5™)

= —m_(:nl_—l) -’"zz//( yE /m) +0(rg™).

Combining the above two equalities yields (20) since ry = (B/ m)l/ m=1) > cql/m,
Finally we come to I. Since |¢'(r)| ~ r™! ~ A™=1D/™ on the support of the
integrand, we compute that

cAl/m
sl =| [ @01/ et
(3/2)r0

cAl/m
(3/2)r

cAl/m
[ RO/ 0y dr (01 )y

(3/2)ro

cAY/m
< C/ {(rm—Z/rZ(m—l))rmat+n—l + (l/rm-—l)rmu-l—n—Z} dr
(3/2)ro

+ 290 (1/ig' ("))"mﬁn_1 } ‘ 3/

< CAxHn/m)—1 (21)
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Inequalities (19), (20), and (21) yield (18)(iii), and since (iv) is an immediate con-
sequence of (i)—(iii), this completes the proof of Lemma 9.

Proof of (A) of Theorem 4. The case a+ (n/m) < 1/2 has already been
proved in Remark 2 following the statement of Theorem 4. We next turn to the
case where a + p < a + (n/m), and by the argument at the beginning of this sec-
tion, it suffices to prove the estimate when ¥ is supported in the annulus /. We
decompose the expression in (16) into two pieces:

Ao (n/m) / Gu(A, B)®(w) ™™ dw = / + /
{D(w)<1/4} J{®w)=1/4}

=1+1I, (22)

where A = 1®(w) and B = o - £/(AD(w))"/™. Let |{®~! > 1}| denote the Lebesgue
measure of the set where ®~! > A. Using ®! € weak L*? (S™1) and estimate (18)(i)
or (iv), we see that

1| < / 270 (@ (w))* T M O(0) ™ do < ATH{OT! > A < AP, (23)
To estimate II in the case a + (n/m) < 1/2, we have by (18)(iv)
[II| < / A7) | ()| ™™ do < CA~((/m)+e)

provided ®~! € L"/™(§"1), which is the desired estimate in the case p = n/m. In
the case 0 < p < n/m, the hypothesis ®~! € weak L?(S"!) yields

A
|| < / A7) Ol ()| ™ do = CAT* /™ / (n/m)tm=1{t < ®! < 2}| dt
0

< cpev/m /0 A(n/m)t@'/m)-lcu +8)7Pdt < CA™@HP),
On the other hand, if « + (n/m) > 1/2, we have by (18)(iv)
1] < / A7) C(AD(w))* M= () ™™ doy
— / (@)™ do. (24)

In the case a + p = 1/2, this yields the desired estimate provided ®~! e L2(S"!).
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In the case a + p < 1/2, the weaker hypothesis ®~! € weak L?(S"!) yields

A
11| < Ca12 / ((1/2) — @) VD=51{01 > )| de
0

A
<ci'”? / ((1/2) = )tD=1C(1 1) Pdr < CA~H),
0

These estimates prove (A) of Theorem 4, since we may assume that €] < CA.
Otherwise, Proposition 1, p. 331 in [St3] shows that F,(¢, ) has rapid decay in ¢
since |Vo{A 7 x- & —®(x)}| = ¢ > 0if |¢] = C|A| for C large enough.

So far we have handled the cases a+ (n/m) <1/2 and a+ p < a+ (n/m).
Thus the only case of (A) of the theorem not handled is the case o+ p=
a+ (n/m) = 1/2, to which we now turn. Neither the scaling argument in the sec-
ond remark following Theorem 4, nor the scaling argument at the beginning of
this section apply here, so we must consider

o i {w, &)
Rig 2 =i0m [ o) (“%T?T)d

where Gy(A4,B) = [e/Br=")pmen=1y,(z/ AUm) dr, and ¢ is supported in [0,1].
Now

|G1/2)—(n/m) (4, B)| =

A2 / exp (i(BAl/ "r — Ar’”)) rm=2/2y(v) dr

<C,

since r™~2)/2 is essentially the square root of the curvature of the curve (r,r™).
Here we have used the result that decay of order 1/2 occurs when the Fourier
transform of the curve is weighted by the square root of the curvature (see, e.g.,
[BNW]). Thus we have

IF(I/Z)—(n/m)(f, A)I < )»—1/2/ (D(w)—n/mde
{wesS™1:10(w) <1}

< CA—]/Z,

since @' € LMm(sm 1),
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For the converse, we note that using the change of variable t = ir"®(w), we
get

nn&nh{/JWMwMMWx

/ / ")y (r)rmtn—ld(w)* dr da)‘

n-1J0

> g /m) / Im{ / ety ((t/AD(w))/m) g+ (n/m-1 dt}(l)(w)_"/'” do
sn-1 0

> Ao (v/m / cx®(w) ™™ do. (25)
{weS1:i®(w)>Cy}
Indeed,

a
/ (sin t)t“+(”/ m=1ds — (1 — cos a) geHn/m—1
0

n ¢ _ o+(n/m)—-2
+(1 o m)/o (1 —cos )t at=>0

for all a > 0 when 0 < « + (n/m) < 1. Since y is radially decreasing, an integration
by parts shows that

o0
/ (sin )+ 1y ((£/1D(w)) /™) dt > 0.
0
Finally, since [;°(sin £)#*+(®*/m~1 4t > 0, we also have
o0
/ (sin £)E /M =1y((¢/AD(0)) /™) dt > ¢4 > O
0

for A®(w) = C,. Thus

Iﬂ&m>&”/ cade>
{oes™1:(1/2C;1A<0(w) " <C; 1A}

=Ci1™"

{% Cli<ol< c;u}l,

and combined with (10) for & =0, this yields |{(1/2)C;'A < ® ' < C;'A}| <
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CA™, which implies ®~' € weak L?(S"!). Moreover, if p =n/m, then directly
from (25) and (10) we have

/ O(w) "™ dw < C,,
{weS"1:4®0(w) > Cy}

for all 4 > 0, which yields ®~! e L*/™(§m-1),

Now we establish the last assertion in the remark following Theorem 4. Sup-
pose that @ > 0 and [{® = 0}| > 0. Then

o0
Fo(0, 4) = / / OO ()1 g = / + / + /
sm=1.J0 {®=0} {A0(w) >y} {0<id(w) <y}

00
= (/ Y (r)rm1 dr)|{d>=0}|+/ +/ :
0 {A®(w) >y} {0<id(w) <y}

But

00
/ / e @y ()" dr dew
{40(w) >} Jo

/{wao) - {/0 e ((mzw))l/m) i1y } (AD(e)) ™/ d(é

<crm<am( [Tuor ir) o =0},

provided y is large enough, and then

[o¢]
/ / e’“""‘l’(“’)l//(r)r”‘1 dr dw
{0<1®(w)<y} JO

tends to 0 as 4 — oo. This shows that |Fo(0,4)| > (1/2)(f5° y(r)r" dr)|{® = 0}|
for A sufficiently large, contradicting (10). A similar argument works for Fj.

< CH{0 < A0(w) <7}

Proof of (B) of Theorem 4. This time we decompose the expression in (16)
into three pieces:

Aeln/m / Gu(A4, B)®(w) ™™ dow = / + / + /
{®(w) <71} {1 <®(w) <am} {®(w) > 17}

=I+II+11I, (26)
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where ¢ > 0 will be fixed later. We will prove the following estimates for a + p >
172> a:

1] < 4=+,

11| < A~ (/D-meloatp=(1/2))

\111| < A~W2-2UmM) = for some &(I,m, M) > 0.

As before we may assume that || < CA, since otherwise Proposition 1, p. 331 in
[St3] shows that F,(&, A) has rapid decay in £. The estimate for term I is the same
as for I in the proof of part (A) above. The estimate for term II is similar to that
above, requiring only the integrability hypothesis (4) on ®~!, which controls the
strength of the degeneracy of the curvature of @ in the radial direction. On the
other hand, the estimate for III requires the finite type hypothesis (5) on the level
set X. We first consider the easier case of I1.
To handle term II, we use estimate (18)(iv) to obtain

I <C )._“_(”/'”)C(J.(D(a)))“+("/m)_(1/2)(1)(w)“"/'" do
{0—1 >Ams}

-,

—cte [ @@
{Q—l >lmz}

[o¢]
— o2 / (1/2) =) VD=1 {@~1 > 1} | dt
Aml
+CA7Y2 / (Ame\ /D=2 gg
(@1 >m)

<cil2 / % D=0+ )=1 gy 1 07 UDH/D-2)ma ) pme
A

me

— ¢~ (W/2)-melatp—(1/2)

=Cci W27 (27)

since « + p > 1/2 and & < 1/2. It remains only to prove the estimate for I1I.

2.2. Angular curvature estimates. In order to estimate III using the afore-
mentioned finite type condition, we must transfer the integration over the sphere
to the level set X via the change of variables u = w/(D(w)l/ ™. We need the fol-
lowing facts:
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(@) ul = D)/,

(b) Cilp|™ <|V®(k)| < Cofu™", and |V2O(u)| < Clu™>;

(©) do(u)/|VO()| = B(w) ™™ dew, where do denotes the Lebesgue

measure on X. (28)

The assertion (a) is obvious, (b) follows from the Euler homogeneity relations, and
(c) follows from the observation that m(do(u)/dw) = [ul*'sec 6, where 0 is the
angle between V®(u) and u together with u- VO(u) = m®(u) = m. Changing
variables, we see that

I = j~o(/m) G, A@(w),% O™ doy
{@@) <1} A/m(gp)H/m
= et | (™ L) do Vo). o)
{®(0)=1, |u| <2} A

Note that the condition ¢~ 4™=1/m < B < c4(m=1)/m i (18)(iii) can be rewritten

! (p(@) ) < ©¢

m/(m—1)
S Wy S GO

which transforms under our change of variable into

- - m— H- é - —
AU < S < e,

Let
To={ueR": @) =1, |y <} (30)

Set R = cA™*™1 where ¢ > 0 is a small constant to be determined (so that (32)

below holds). Let { 4} = Z, be a maximal collection of points where pairwise dis-

tances apart are at least R. Then (J; B(u;, R) covers X, where B(w;, R) denotes the

ball centered at y; of radius R. Let {p;j(1)}. denote a partition of unity subordinate
J

to {B(uj,R)}j. Then

e m K do ()
III = 2 / A ("/m)Ga(ﬂ. m ”__é) () — 31
77 JZAB(,R) I AL/m pik) [VO(u)| G

minus the portion of the integral living outside X,. However, this latter portion is
dominated by the estimates for term II above. We shall need the following facts:

(@) |VO(u) - VO(u)| < 15|V@(k)|, pe B(w,R),

NS
(b) Tm 7w

—my(m—1)/m (32)
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provided that the aforementioned constant ¢ is small enough, and || < C|4]. As
observed earlier, we can assume the latter since otherwise an integration by parts
argument shows that F,(¢, 1) has rapid decay (Proposition 1, p. 331 in [St3]).

To prove (32)(a) above, note that

[VO(1) — VO(w)| < sup |V2O(w)|R < CAm Do)
B(u;,R)

=cCi™* < 155 00 |V (1]

by estimate (28)(b). To prove (32)(b), note that

p-& B¢

b L8 g < g1/ sm=1) < o pmyom-1

= ll/m

since |u| < cA® for u € B(y;, R).
Let’s fix a j for the moment. We wish to distinguish two separate cases. The
first is where

— — 6 —my\ (m— m
| Y < S < el (33)

and we will say that j € o/ in this case. Note that because of (32)(b), we actually
have

— -m — é — m—1)/m .
(Al jl/m\c<:u| myem=/m - for pe B, R), j€ o,

which means that by (18)(iii) we have

o — do ()
A (n/m (ﬂ. m __é)
/zmg(ﬂ,.,m W i )2 9]

= ja(n/m) exp (icm(ﬂ -/ m)m/(m——l))
B(ﬂj:R)

do(p)
[VO(u)|

(# . é)(m/(m—l))(w+("/m)—(1/2))

W P()

. . Ly, do(n)
oli* (n/m)/ C(A my (a+(n/m)-1)

=IV+V, jed.
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For those j for which (33) fails, we say j e %, and by (32)(b) again we have for
je A,

u-é

—my (m—1)/m b-& —my (m—1)/m
T > < or < @l

Il{l/m
ue B(/‘j,R)’ jG '93,

which means that by (18)(ii) we have

e do(p)
e (n/m)G (/I )
/}:nB(u,,R) W™ /11/"' PiH) ()] IV(D(ﬂ)l

— - - do(u)
<J (n/m)/ CAlu[™) e+ m=0 , (y GOW)

=V, je&.

Thus from (31), we can dominate |II1| by

Y+ 3w

jed jed VB

We turn now to estimating IV; for j € o¢. The estimate (32)(a) above and the
implicit function theorem imply that we can find a normalized coordinate system
{y1,...,ya} at g such that V@(y) is parallel to the vector (0,0,...,1) and a
smooth function ¥(y1, ..., yn—1) such that,

XN B(y;,R) = {,uj + V) v =Y01,- .. s Yn—1)}s (34)
and where

F1L

S — cA™M 35
aylﬁl - ayfn 1 ( )

Y(y)| =

2<BI<!

by the finite type assumption (see Remark 1.1).
We observe that Y™ (1) satisfies (35) with [ replaced by Im/(m — 1). Hence,
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by a theorem of Stein (see [Stl, p. 317]), we see that

/ exp| icm (”—é )m/(m_l)
X A B(w,R) AL/m

(e (m/(m—1))(a+(n/m>—(1/2>>p. )
At/m T Ve(p)|

|€] . m/(m—1)
exp| ic —— 17t
/;n B(u;,R) P " </11/m )

eM &M én ! m/(m=1)
(l affine term + A (m> Y(y )) (37)

(36)

V(1) p; () do ()

. (/=) (o n/m)~(1/2)
y (”_5> (38)

).l/m

is dominated by

H m/(m—1)] ~(m=1)/Im &[22 (m/ (m—1))(o+(n/m)—(1/2))
C (;11—/”‘- i ) (ll o ) 2% + smaller terms

(m/(m—1))(a+(n/m)—(1/2))—(1/1)
) , (39)

eM’ |é|
< CA <m~

for some M’ > 0. We must now estimate the number of balls B(y;, R). However,
this number is bounded above by

Vol (%)

— eg(m—1)n — g(m—1)n
Vol (ball) (o) Vol (Z;) = CA /z B do(u)

_ _ do(u)
< CAEm=1)n jo(m 1)/
3, [VO(u)|

< Cptm ) / D(w) "™ deo < CA™, (40)
{o(@)! <1™)
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for some N > 0. Combining this estimate with (39), we see that

S Iy < camectim
jed

2N (41)

18]\ =)k /m)~(1/2) (1)
()

for some N’ > 0. We now choose [ large enough so that (1/1) <a+p — (1/2) <
a+ (n/m) — (1/2). We then choose ¢ > 0 so that eN’ < ((m — 1)/m)(1/]). If we
now use the fact that |£| < C|4|, we see that

S ) < 4,
jesd

for some & > 0.
In order to complete the proof, we must estimate > jewua V;- However, we
have

—a- ~ -1)_do(w)
Y, = j—o—(n/m) / C(A| ™y /m=D)
je%ﬂ ! UB(k;,R) | |V (u)|

< cametm) / (A0 (e)) ML) goy  (42)
(" 0(w) > 1}

if ¢ is chosen to be small enough. Thus,

V; < came(v/m) / O(w) ™™ dw>

jeduB {7 <2}

AS"I
<ci==om [T omac v e, @)
0
if e<1/m. Hence } ;. , 4V < CA~/D=¢ for some ¢ >0, and the proof is

complete.

Proof of Theorem 6. Again we assume that ® > 0 for convenience. This time
we have

Fu(¢,2) = / B £y, () @(x)* dx,
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where  is a smooth radial function with small compact support. In polar co-
ordinates,

Fy(¢,4) = / / (@A@Y, (1) T (r) "L (w)* dr do.

By the finite type assumption (7) on I', we can write I'(r) = r™g(r), where g is
smooth and g(0) # 0. After making the change of variables r — r(A®(w))™/™ we
get

Fy(£,4) = l—a—(n/m)/ q)(w)—n/m l
su—-l m

. w-& m r
» { [ ex ( (r_m(w))l/m o g(—m (w)),/m)))

% rma+n—1g (W) l//(rl_l/m(l)(w)—l/m) dr}dw

— ja—(n/m) ® —"/'”Ga JY0) _(_w,_é)__ d
/. o ,g( @ G ) e

where G,4(A4,B) = [exp(i(Br —r™g(r/AY/™)))rm+n=1g(r/AY/™) Y (r) AX™) dr.
This time the phase function ¢(r) = Br — r™g(r/ AY/™) satisfies

¢(r)=B- ’m_l{"’g (Alr/m) + (Alr/m) g (Alr/m) }

and so using g(0) # 0, together with a sufficiently small support for , we have
that the critical point ro ~ B/~ as before, and then we can obtain the estimates
(18) for G, 4 in place of G,. The proof is similar to that for G, but more technical,
and we omit the details. The proof of Theorem 6 now proceeds as in the proof of
(B) of Theorem 4.

The following example shows that the finite type hypothesis (5) on X is needed
in part (B) of Theorem 4.

Example 10. Let n=2, ¢ = (4,0), a =(1/2) — (2/m) + ¢ (where ¢ > 0) and
set ®(w) = ps(cos™ B), w = (cos 0,sin ), where ps is a smooth function satisfying
ps(t) =1/2 for 0 <t < 1/2, and ps(t) =t for (1/2) + 6 < t < 1. We claim that

I/ei(/lcb(x)-é-X)q)(x)“dx ~ A2, (44)



130 IOSEVICH AND SAWYER

To see this, we write

/ U0~ 0 ) iy

1
=/ / ei(lr"‘@(w)—r).wl)rma+ld)(w)a dr dow
stJo

D(w)
=1 / / exp|i| At — Acosle) t1/m) ) 2+ @/m=1 gy @(w) ™ dt do,
mJsi Jo O(w)!/m

and consider separately integration over the three regions

R={6:cos™ 0 > 1+6},
S={6:] <cos" 6 < i+},
T = {0:cos™ 0 < 1}.

Now

cos™ § \/m
/ vow == / / M=t /M= (605 0)72 dt daw
R RJo

- / ! ei}.(t—t‘/"‘)taz+(2/m)—1

/ (cos 6) 2 dt dw
0 {w:cos™ 0> ((1/2)+0) vt}

-1/2
~ ei).(to—t;/"')tg‘*'@/m)”'l ( ,11 <1 - l) t(()l/ '”)‘2) ! = CA~ /2
m m

where ty is the critical point of t — t — t'/™ i.e., to = m™™ ™1, Here we have used
standard stationary phase as in [Sol]. Also,

/lg/ (cos 6)~2
S {w: (1/2) <cos™ 6<(1/2)+6}

ps(cos™ 6)
x/ ’ exp| il t——ﬁ—siTtl/"' *H@m=1 gy
0 (ps(cos™ 6)) /™

(cos 6) 24712 dw < C8A712.

dw

< C/
{@: (1/2) Scosm 0<(1/2)+6}
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Finally,

1/2
/ ’ = / (1 /2)—2/m / / eu(t—(zt)lf"'cos 0) pr+(2/m)~1 gy deo
T {w:cos™ 6<1/2} 0

_ | qt/m / 12 gttt (2/m)~1 / it meos0 g, L o
0 {w:cos™ 6<1/2}

1/2
/ / eilttaz+(2/m)—1{eil(Zt)l/"‘(l(zt)l/m)—l/z} dt
0

Q

1/2
— 12 / / eu(z+(2t)1/'")ta+(2/m)—(1/2m)-1 dt
0

A
<ci\2 max{C/
0

Choosing 0 sufficiently small now yields (44).

-m

tu+(2/m)—(1/2m)—1 dt, Cl_l} — C}._3/2.

3. Three dimensions. The purpose of this section is to prove (A) of Theorem
8. Let Zg = {x: ®(x) = 0}. Let H®(x) denote the determinant of the Hessian
matrix of @, and let Zpe = {x: HP(x) = 0}. We begin by obtaining some tech-
nical information about the structure of Z¢ and Zye.

LemMA 11.  Let ® be mixed homogeneous of degree (a1, az). Then, either Zy =
{(0,0)}, or Zo = Z}, where Z}; = {x: x{' = C;x3*}.

LeMMA 12. Let ® be mixed homogeneous of degree (a1, a;). Then, H® is mixed
homogeneous of degree (b1,b,), where

by — az(a1 —2) + ay(az — 2) by — ax(a1 — 2) + a1(az — 2)
1= y 2 = .

a a

(45)

The proofs of Lemmas 11 and 12 follow from elementary calculations. If
Zyo = {(0,0)}, the proof of Theorem 8 follows from the scaling estimates given
in the following subsection. On the other hand, if Zgye # {(0,0)}, Lemmas 11
and 12 1mp]y that under the assumptlons of Theorem 8, Zq> = U V; and
Zyo =UY =1V, where ¥ = {x: x{' _sz 2}, and V) = {x: x{' -_sz"z} (note
that by /b2 = a1/ay), where A; # Bjr, Vj, j'. Note that N and N’ are finite since
® is a polynomial. In other words, the zero sets of ® and H® both consist
of “parabolas” of the same degree, which only intersect at the origin. In this
case we construct thin “parabolic sectors” S;, such that each sector contains
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exactly one Z’jr,q,, and S; N Zgp = {(0,0)} for each j. More precisely, each sector is
bounded by two “parabolas” given by the equations x{' = Dxp®, k=1,2,
where the Dy’s are chosen to satisfy the conditions stated above. This case is
treated in the following subsection.

3.1. Scaling and nondegenerate curvature estimates. We begin by treating the
case where H® vanishes only at the origin, and in this case, our methods extend
to arbitrary dimension. We say that ®(x;,...,x,) is mixed homogeneous of
degree (ay,...,ay) if

‘D(tl/alxly ey tl/anxn) = tm(xl’ e ’x")'

LEMMA 13, Let S = {(x, Xn41) € R™!: x,,1 = ®(x)}, where ® is mixed homo-
geneous of degree (ai,...,ay). Suppose that |H®| is elliptic in the sense that H®

does not vanish away from the origin. Let —(1/a;) — - — (1/a,) < a < (n/2) —
(1/a1) — - -+ — (1/an). Then with F,(&, 1) = [ &> ¢+ |®(x)|*y(x) dx, we have
IFa(&, A)] < C(LHE 2]y a0~ (46)

In order to prove Lemma 13, we shall need the following well-known sta-
tionary phase result (see, e.g., [Sol]).

LeMMA 14.  Let S be a smooth hypersurface in R" with nonvanishing Gaussian
curvature and du a C3° measure on S. Then

|du(&)] < const.(1+ |¢])~"V72, (47)

Moreover, suppose that I" = R"\0 is the cone consisting of all & which are normal to
some point x € S belonging to a fixed relatively compact neighborhood A" of supp dp.
Then

(5%) QO =01 +[E)™  WN, if £4T,

du(e) =Y e Cae),  if ¢eT,

where the finite sum is taken over all x; € & having ¢ as the normal and

’(5%) aa,-o:)’ < Co(1 + [g) @1/ 48)

Proof of Lemma 13. Let

Foc,()(é,l) - /ei(x~€+A<D(X))I(I)(x\)}l’al//0(x) dx, (49)
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where Y, is a smooth cutoff function supported in the annulus {x: (1/2) < |x| < 4}
and satisfying

o0
D W@y, .., 2K, = 1.
k=0

We can express Fy(&, 4) in the form

Z 2-C(ifa)— - _(j/an)Z‘“jF;{O(Z‘j/al E,..., 270w, 279%), (50)
J

where
E(E) = [ e 00 0 gy 2, 2,) d

satisfies the same estimates (see below) as F, uniformly in j. For convenience we
work only with F,o from here on. We should note that we can assume that
I¢] < C|Al, since if |4] < c|¢| for a sufficiently small ¢, F,(&, 1) has rapid decay in 1€].

Lemma 14 tells us that |F,o(&, )| < C(1 + |4|)™2. Hence, the sum in (50) is
dominated by

C|/1|_n/2 Z (2—1')_"/22—(1'/641)—"~—(J'/an)2—aj+C Z 2-(i/a)=-=(j/an) p—aj (51)

27913121 2793 <1
< C/w—(l/al)—~~~—(1/an)~<1, (52)
since the series converge if —(1/a1) —--- — (1/a,) <o < (n/2) — (1/a;) —---—

(1/ay). This completes the proof.

We can now dispose of the contribution to F,(&, 1) arising away from the zero
set of H®. Recall that Zg = U}LI{ and Zye = }1’1!7, where V; = {x: x{* =
Aixy™}, and V! = {x: x{> = Bjx,"}, where 4; # By, Vj, j', and that we con-
structed thin “parabolic sectors” §;, such that each sector contains exactly one
Zye, and S;nZg = {(0,0)} for each j. Let E = R*\(y;8;). Clearly, Zye N
E = {(0,0)}. Lemma 13 with n=2 can be used to get the desired estimates
for F, localized to E. In the proof of Lemma 13 the cutoff function Y, was
chosen to have support in the annulus where 1 < |x| < 2. In order to adapt the
proof of Lemma 13 to the current situation, we must chose ¥, supported in
En{x:(1/2) <|x| <4}, and ¢y =1 in En{x: (5/4) < |x| < (7/4)}. A crucial
observation is that E is invariant under a change of variables sending (x x;) —
(2fx1,2"(“‘/"2)x2). Hence for the proof of Theorem 8, it suffices to estimate F,
localized to the S;’s, to which we now turn.
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3.2. Curvature vanishing beyond the origin. Fix an index j for the remainder
of the proof. Let ¥ be a smooth cutoff function such that the support of ¥ is
contained in the unit ball, and let x be the characteristic function of the sector ;.
We consider

Re) = [ e om0 (o) dx. (53)

We note that it suffices to consider a region where || < C|A|, since if |¢| > C|4| for
a sufficiently large C, a familiar integration by parts argument shows that we get a
rapid decay in £&.

We shall use a weighted polar coordinate system; see, e.g, [FR]. We need the
following observation.

LemMa 15. Consider a change of coordinates given by x;=rwi, x;=
ra/%g, . Xy =134, where o = (1,...,wy) is the usual set of coordinates
on the unit sphere. Suppose that a; > a;Vj. Then, away from the origin, {(r,»)} is
a C! coordinate system. The Jacobian of this change of coordinates is given by
plar/a)+ - +a/a) g()), where 1 < g(w) < Clay, . .. , n).

Using Lemma 15 with n = 2, we rewrite F, in the form

0i+¢
/ / a e—l‘((«n(f&:,r“I/"Zéz)>+r“'Q(w)l)r(an/az)+a1a|¢(w)Ia‘/,(r) do dr, (54)
6;

—&
where o = (cos(6), sin(f)), and w’ = (cos(#/), sin(6/)) is the unique isolated
point on the circle in S; where H® vanishes. If we note that ® does not vanish in
the range of integration above, we can make a change of variables sending

r — r® Y% (w). We then set u = (cos(6)/®"/* (@), sin(0)/®Y%(w)). If we note
that ®(u) = 1, we see that

Fa(f, '1) - // e—i(rp1£1+ra1/azu2§2+zra1)r(al/a2)+a1al/';(r) dO‘([,l) dr, (55)
Z
where
Ly ={w: 0w =1}ns;,
V() = y(@() ),
do = |V®|™ dy,

and dy = |VO(u)|®(w)~/4)~/%) js arc length measure on ;. Since V® # 0 and
® # 0 on §j, do is a smooth measure on X;.
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We first analyze the integral over X;. Since S; contains only one “parabola”
where H® vanishes, the curvature on X; vanishes only at the unique point p/ =
(cos 87 /@Y (), sin §7/®"/% (w/)). Moreover, since ® is a polynomial, repeated
application of the implicit function theorem shows that the curvature cannot
vanish of order exceeding a; — 2. Hence, Z; is a smooth curve of finite type M
where 3 < M < a;. Note that if M = 2, then H® would only vanish at the origin,
a contradiction.

In local coordinates, after perhaps applying a rotation and a translation, we
can write the integral over X; in (55) as

I(r, 61’ 52) — /e—i(tr€1+¢(t)ra1/02fz)p(t) dt’ (56)

where p is a smooth cutoff function supported in [—4,5], > 0 small, ¢(t) =
g(t)t™, and g is a smooth function such that g(0) # 0. Let p, denote a smooth
cutoff function supported in ((6/2),0) U (—(6/2), —9), such that 3, po(2*t) = 1.
Let Ix(¢y, &) = [ e iratd0r/28) o (9ks) d. Each I is defined over a piece of %
where the curvature does not vanish. In order to take advantage of this fact, we
make a change of variables sending t — 27*¢. We get

L(r, &1, &) =27% / e M2 kg2 IR G) 5 () gy

Note that Ii(r, &y, &) ~ 278 Io(r,27%¢;,27MkE,), since g(t27%) — g(0) #0, as
k — 00. Using Lemma 14 we can write

Ik(r, & 62) — Z—keiq"(ﬂ_kc"ral/azz_kM€2)bk(r2_kfl, ra‘/aZZ_kaz),

where b is a symbol of order —1/2, g is homogeneous of degree 1, and the Hessian
matrix of gx has rank 1 everywhere. Note that

qi(r27rEy, r/ap M ey = pa@-2)/@@-2) g, (o-kg, 2-kMg ),
Also note that since the Gauss map is smooth, for k large we have

qu(275¢1,27ME)) = q(27k ey, 27 M),

where q(&;,&;) is the “limiting” phase function given by Lemma 14 correspond-
ing to the curve (z,g(0)t™). It was shown in [I12] that g(27&;,27*M &) = q(¢4, &),
and in fact that

M/(M-1)
q(¢1,6) = cMEll/(M——l)' (57)
2
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More precisely, there exists a uniform constant C > 0 such that

CYq(&1, &) < lae(27%¢1,27"ME,)| < Clg(&4, &) (58)

Similarly, {bx (&1, &;)}; is contained in a bounded subset of symbols of order —1/2,
ie.,

Db, &)| < Cple| VA,
where the Cy are uniform constants.

After making a change of variables in (55) sending r — A~/ followed by
setting s = r(@(@-1)/(a2(a1-1)) \what results is

0
Fa(é, /1) = ﬂ_(l/al)*(l/az)_a 2-—k

y / exp (,- (sqk(Z"‘ﬁl, 2-Mkg,) 3~/ (@ar-0) _ s(a:(al-n)/(az—l)))

x s(@2(@1-1))/(@=Dagla1—1)/(a~1) (a1 —az)/ (a1 (a2~1))
x bk(s(ﬂz(al—1))/(111('12-1)) 2-k§l,‘[—1/“l , s(ﬂ:—1)/(a2—1)2—kM§21*1/02) ds.

Note that for k large, |qk(&1,&)| = |€] = |&,| since by Lemma 14, we restrict
attention to those ¢ in the cone of normals to the piece of X; lying in the sup-
port of p(2kt). Let W(s) = sdy—s®@@-)/(@=1) where A; = gi(27%&;,2-Mk¢,).
A~(@D/@@=1) Note that

A~ A = (&, &) A~ @D/ (@@-1)
by (57) and (58). Then W'(sp) =0 if s = CA® V/(@@=20+D)  4ng @' (5) =

Cs@a—3a+2)/(@-1) By the Van der Corput Lemma, we see that the expression
above is bounded by

00
C )~ Wa)-(1/a)—a 9k

by (s(()az(al—l))/(al(az-l)) akg 1t/

x s(()ax—l)/(az-l) 2—kM€21-—1/a2) |A|(1/2)(—(a1a2—3az+2))/(a1a2—2a2+1)

X |AI(az(al—-l)a)/(alaz—2a2+l)lAl(a,—l)/(a1a2—2a2+l)|A'(a1—az)/(al(a1a2—2az+l))_
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We shall now estimate

o0
Z Z”kbk (s(()az(al"l))/(al(az—l)) 2_k51/1_1/a‘ , s‘()al—1)/(42—1)2—kM€2/1—1/a2) .
k=0

Let B = ¢,47/% and note that |B| < |A|. Then

00
Z 2—kbk (s(()az(al—l))/(al(az—l)) 2—k€12~1/a1 , s(()"l—l)/(az“l) 2-—kM€211—1/az>
k=0

_ Z 2_kbk (s(()az(al—l))/(al (a2-1)) 2—k511—1/a1,

,A|(a1—l)/(ﬁ102—242+1),3| >2a1k

s(()al—1)/(a2—1)2—kM£2/1—1/a2)

+ Z 2—kbk (s(()az(“l‘l))/(al(az-l)) 2_kélﬂ._l/a'
|A‘(01‘1)/(¢1¢2—202+1) |B| <201k

s(()al—l)/ (a2—1) 9—kM & 41 /a2>

=I1+1I.

If we use the fact that by is a symbol of order —1/2 and that M > 3, we see that
term [ satisfies

I < Z 2—kC(|A|(al—l)/(anaz—-2a2+1)IBl)—1/22kM/2

|A|(41-1)/(¢1¢2—242+1)|B| > 201k
< C(|A|(a1—1)/(a1a2—2az+l)IBI)(l/al)((M/2)_l)_(1/2)
< ClA|" @D/ (@(@a-2a+1) |B|~ Y/

since M < a;. Using the fact that b is bounded we see that term II satisfies

|II| < Z 21-kc < CIAI—(01‘1)/(01(4102—2az+1))IBI“l/al-

|A|(“l‘1)/(“l“2‘2f'2+1) |B| < 2“1“
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Putting our estimates together, we get
IFy(&,2)] < C/I——(l/al)—(l/az)—a'Al(1/2)(—(a1a2—3az+2))/(a1a2—2az+1)
x| Al(az(al—1)a)/(ala2—2az+l)| Al(a.—l)/(a,a2—2a2+1)

% IA|(a1—a2)/(a1(a1az—2az+1)) IA|—(al—l)/(al(a1a2—2a2+1))|B|—1/a‘1_

Recall that for |¢| > C|A|, with C large enough, integration by parts yields rapid
decay in ¢ for Fy (¢, 4). We now restrict attention to the case c|d| < |¢| < C|A|, with
a fixed small constant ¢, and later we will use a scaling argument to obtain the
general case. Let y = aja; — 2a, + 1. Using the fact that |B| ~ |4|(1~D(@-1)/»
when || & ||, we see that the exponent of |4] above is

_1 aja;—3a+2 " az(al——l) - a;—1 " a—a a;—1 _ (al-—l)(az—l)
2 Y Y Y ary ary ary

=%{<a—%>a2(a1 “Dta - 1},

which is nonpositive when

1 1

o .
\2 ar

Thus |F,(&,4)] < CA™W/@)~W/@)=% when ¢|4| < |¢| < C|4| and « < (1/2) — (1/ay).
In order to complete the proof of the general case, we must extend the argu-
ment above to all |¢] < ¢|A]. We need the following scaling argument. Let

Fa(f, /1) — /e—i(x~€+l(l>(x))|q)(x)|alp(x) dx
as before. Let
Fi(&A) = / e EH0D D) |* p (24 ] 5, g0) W () dx,

where p is defined as before, and |x|(, ,,)= (x34 4 x2%)!/24  After making a
change of variables, we see that

Fj(¢,2) m 272 Ma/my ke p (g ke, o Ha/ml g, g-aky)
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and
Fy(&2) =) FXEA).
k=0

Note that F_ is defined over the piece of the hypersurface where the normals are
contained in a fixed cone away from the coordinate axes. This follows from the
assumption that V® # (0,0) away from (0,0), and the fact that the normal at the
point (x1,x2,®(x1,x2)) is given by (V®,—1). A standard integration by parts
argument shows that for (£, 1) away from a slightly larger cone, i.e., for |¢| < ¢;]4]
or |¢| > c;|A|, F? decays rapidly in (¢, A). Hence, by what we just proved above, we
have

|FO(&,4)| < ¢~ Wa=Wad= gor ¢|3] < €] < ealdl,

< CN|1|'N for any N, otherwise,

where c; and ¢, are uniform constants. We break up the sum as follows:

00
Z 2~—k2—k(a1/a2)2—ka1/aFo(‘)(2—k£1’ 2—k(a1/a2)5272—a1k1)
k=0

— Z 2—ko—k(a /az)z—kalaFg(2—kél, 2—k(a1/az) 62,2“‘"‘).)

[4] = 241%

+ Z 2—k2-—k(a1/a2)2—ka1aFo(‘)(2—kél’ 2—k(a1 /az) 627 2-a1kl)

4] <29tk

=I+1I

The second term I is bounded by C|i|~(/#)~(1/a%)=2 yging only |F?| < C. To
bound the first term we use estimate (59) to obtain

| Fg(z—k &, 9—k(a1/az) 62’2—a1k l)| < C|2—a1k ,1|—(1/“‘)_(1/“2)_“,
for |(27%¢,27H@/@)g,)| & |27*}| and & < (1/2) — (1/az), and
|22 7*ey, 27K/, 2eka) | < cyf2makal ™,

for any N if |(27%¢;,27K@/@)¢,)] is not comparable to [27%}|. Now for fixed ¢
and 4, there are at most finitely many k, say k € &, such that

cll2—a1k,1| < |(2—k61’2—k(a1/az)£2)| < 62|2_a’k/1‘,
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ie.,

cilA] < [k, 24 0-Wamke))| < ¢y,
Thus the first term satisfies

III < Cy Z 2‘k2—k(al/“2)2—ka1alz—alklll—N

4] 2%

+C Z 2—k2-k(a1/az)2—ka1u'2—a1k/1l‘(1/a1)“(1/a2)_°‘
keF: | =2uk

< C|/1|—(1/a‘)_(1/a2)_“,
if we take N > (1/a1) + (1/a;) + a. This completes the proof.
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