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What is this video about?

This video is the first part of a short course on combinatorial
geometry of the finite plane over integer modulo a prime.

We begin by explaining the basic notions of geometry in this setting
and compare it with the concepts from the Euclidean plane.

In the process, we are going to explore quite a few ideas from areas
like abstract algebra, linear algebra, and Fourier analysis.

We shall introduce these from a completely elementary standpoint,
requiring only a solid knowledge of precalculus, and mostly much less.
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What is this video about?

This video is the first part of a short course on combinatorial
geometry of the finite plane over integer modulo a prime.

We begin by explaining the basic notions of geometry in this setting
and compare it with the concepts from the Euclidean plane.

In the process, we are going to explore quite a few ideas from areas
like abstract algebra, linear algebra, and Fourier analysis.

We shall introduce these from a completely elementary standpoint,
requiring only a solid knowledge of precalculus, and mostly much less.

Alex Iosevich (University of Rochester ) A short course on Erdős problems in discrete plane: Part I March 2020 2 / 30



What are Erdős problems in geometry?

Erdős problems in geometry typically involve counting elementary
geometric objects satisfying some natural constraints.

A typical example that we are going to address in the second part of
this mini-course is the following.

Let P be a collection of n points and L be a collections of m lines in
the plane.

What is the largest possible number of incidences. defined as the
number of elements in the set

{(p, l) ∈ P × L : p ∈ l}

as a function of n and m?
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Incidence theory

Define I (P,L) denote the number of elements in

{(p, l) ∈ P × L : p ∈ l}.

Since the set we are counting is contained in

P × L = {(p, l) ∈ P × L},

we see that I (P,L) ≤ nm.

But is this estimate realistic? Is it really possible to have every point
be on every line and every line pass through every point?
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Simple example

Figure: 6 lines, 9 points, 18 incidences

In one of lectures of this mini-course we are going to prove the
celebrated Szemeredi-Trotter incidence theorem, which says that

I (P,L) ≤ C (n + m + (nm)
2
3 ),

where recall that n is the number of points in P and m is the number
of lines in L.
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Prime numbers

A positive integer is called prime if its only divisors are 1 and itself.

For example, 2 is a prime because its only divisors are 1 and 2.

Similarly, 3, 5 and 7 are primes.

On the other hand, 8 is not a prime because it is divisible by 4, so 8
has divisors other than 1 and itself.

A question to be explored in a later video is, how many prime numbers
are there between 2 and x , where x is a large positive integer?

The Prime Number Theorem says that there are ≈ x
log(x) prime

numbers in this range and this investigation leads to many problems
that lie at the heart of modern mathematics.
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Remainders

Let’s begin by playing the following game. Given an integer, we are
going to divide it by 2 and compute the remainder.

The remainder is either 0 or 1.

Similarly, for each integer, consider the remainder obtained after
dividing each integer by 5. This time around the possible remainders
are 0, 1, 2, 3, 4.

We can play this game with respect to any integer, but we are going
to focus on prime numbers for reasons that will become more clear a
bit later.
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Remainders

Let’s begin by playing the following game. Given an integer, we are
going to divide it by 2 and compute the remainder.

The remainder is either 0 or 1.

Similarly, for each integer, consider the remainder obtained after
dividing each integer by 5. This time around the possible remainders
are 0, 1, 2, 3, 4.

We can play this game with respect to any integer, but we are going
to focus on prime numbers for reasons that will become more clear a
bit later.

Alex Iosevich (University of Rochester ) A short course on Erdős problems in discrete plane: Part I March 2020 7 / 30
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Integers modulo a prime

We now take all the integers, not necessarily positive, and divide them
in accordance with the remainder one obtains after dividing each of
these integers by a given prime number p.

As we have discussed above, the possible remainders are

{0, 1, 2, . . . , p − 1}

and we call this the set of remainders modulo a prime p.

We define addition on this set of remainders as follows. We add a
pair of remainders as we would normally and consider its remainder
after dividing by p.
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Integers modulo a prime-addition and multiplication

For example, let p = 5. Then the set of remainders is {0, 1, 2, 3, 4}.

Then, for instance,

1 + 2 = 3, 2 + 4 = 1, 3 + 4 = 2.

This is because 2 + 4 = 6 and its remainder after dividing by 5 is 1.
And so on!

We define multiplication on the set of remainders in a similar fashion.
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Some more definitions

We say that integers a and b are congruent modulo p, and write
a ≡ b mod p, if there exists an integer k such that

a− b = kp.

We say that r is the canonical remainder of a after division by p if

a ≡ r mod p and 0 ≤ r ≤ p − 1.
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Multiplicative inverses modulo a prime

Let p be an odd prime and consider the set of canonical remainders
modulo p:

{0, 1, 2, . . . , p − 1}.

Let us start with the case p = 3 and note that

1 · 1 = 1, 2 · 2 = 1.

It follows that every non-zero element in the set of canonical
remainders modulo 3 is its own multiplicative inverse.
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Multiplicative inverses modulo a prime (continued)

Now consider the case p = 5. We have

1 · 1 = 1, 2 · 3 = 1, 3 · 2 = 1, 4 · 4 = 1.

Once again, every non-zero element has an inverse, but this time, not
every element is its own inverse.

We are going to prove that as long as p is a prime, every non-zero
element of the set of remainders has a multiplicative inverse.

To this end, take a non-zero element a of the set of canonical
remainders modulo a prime p and consider

a, 2a, . . . (p − 1)a.
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Multiplicative inverses modulo a prime (continued)

Observe that none of the numbers a, 2a, . . . , (p − 1)a are 0 modulo p
because p is prime.

Indeed, suppose that 1 ≤ k ≤ p − 1, and the remainder of ka after
the division by p is 0.

Then ka = mp for some integer m, but this is impossible because p is
prime!

Our next observation is that the remainders of a, 2a, . . . , (p − 1)a
after division by p are all distinct.

Indeed, if ka ≡ k ′a mod p with 1 ≤ k , k ′ ≤ p − 1, then (k − k ′)a is a
multiple of p, which is, once again impossible since p is prime.
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Multiplicative inverses modulo a prime (continued)

What did we just prove? We took a non-zero element a of the set of
remainder modulo a prime p and considered the set

a, 2a, . . . (p − 1)a,

and determined that these p − 1 elements are distinct and non-zero.

This implies that exactly one of them must equal to 1!

Thus we have shown that every non-zero element of the set of
remainders modulo a prime p has a multiplicative inverse.
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Finite plane

Denote the set of remainder modulo p by Zp.

The finite plane over Zp, denoted by Z2
p, is the set of vectors

{(x1, x2) : xj ∈ Zp}.

Note that if x = (x1, x2) and y = (y1, y2) are both in Z2
p, then

x + y = (x1 + y1, x2 + y2) ∈ Z2
p.

Also observe that if x = (x1, x2) ∈ Z2
p and α ∈ Zp (to be referred to

as a scalar), then
αx = (αx1, αx2) ∈ Z2

p.
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Finite plane-example

Figure: The grid Z2
5.

Alex Iosevich (University of Rochester ) A short course on Erdős problems in discrete plane: Part I March 2020 16 / 30



Finite plane: lines

What is a line in a finite plane?

Let x = (x1, x2) ∈ Z2
p and let v = (v1, v2) ∈ Z2

p\(0, 0).

Define the line
Lx ,v = {x + tv : t ∈ Zp},

where x shall be referred to as the starting point and v the
direction vector.

The number of points on Lx ,v , denoted by |Lx ,v |, is equal to p.

It is reasonable to ask whether the basic properties of lines and points
we learned in high school geometry are still valid in this setting.
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Lines: example

Figure: A line in Z2
7 with x = (0, 1) and v = (1, 2).
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How many lines are there?

Each line is determined by the starting point x and the direction v .

However, it turns out that if v ′ is a constant (non-zero) multiple of v ,
then

Lx ,v = Lx ,v ′ .

Indeed, suppose that v ′ = av , where a 6= 0. Then

Lx ,v ′ = Lx ,av = {x + tav : t ∈ Zp}.

As t runs though Zp, at runs through every element of Zp exactly
once, just like in the proof above of the fact that every non-zero
element of Zp has a multiplicative inverse.
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How many lines are there? (continued)

We now observe that if we replace the starting point x by any other
point y on the same line, then

Lx ,v = Ly ,v .

Indeed, if y is on the same line, y = x + av for some non-zero a. Then

Ly ,v = {x + av + tv : t ∈ Zp} = {x + (a + t)v : t ∈ Zp}.

As before, as t runs through Zp, a + t runs through all the elements
of Zp exactly once.
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How many lines are there? (continued)

We now observe that if we replace the starting point x by any other
point y on the same line, then

Lx ,v = Ly ,v .

Indeed, if y is on the same line, y = x + av for some non-zero a. Then

Ly ,v = {x + av + tv : t ∈ Zp} = {x + (a + t)v : t ∈ Zp}.

As before, as t runs through Zp, a + t runs through all the elements
of Zp exactly once.

Alex Iosevich (University of Rochester ) A short course on Erdős problems in discrete plane: Part I March 2020 20 / 30



How many lines are there? (conclusion)

We are now ready to count the total number of lines.

We have just seen that Lx ,v and Lx ′,v ′ constitute the same line if and
only if v ′ is a non-zero multiple of v and the difference between x and
x ′ is a multiple of v .

In other words, every v has (p − 1) equivalent directions (multiples of
v) and given a v , every x has q equivalent starting points on the
same line.

It follows that the total number of different lines is equal to

# starting points×# directions

(p − 1) · p
=

p2 · (p2 − 1)

p · (p − 1)
= p(p + 1).
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Intersection of lines

In the Euclidean plane, two lines are either parallel, or they intersect
at exactly one point. What about lines in Z2

p?

We have already seen that whether v = v ′, or v ′ = av , a 6= 0, the line
is the same.

Suppose that Lx ,v and Lx ′,v intersect. Then

x + av = x ′ + bv for some a, b ∈ Zp.

This means that x ′ = x + av − bv = x + (a− b)v , so x ′ ∈ Lx ,v .
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Intersection of lines (continued)

The same argument goes through if we consider the intersection of
Lx ,v and Lx ′,av , where a 6= 0.

Thus we see that Lx ,v and Lx ′,av , a 6= 0, intersect if and only if
x ′ ∈ Lx ,v . If x ′ ∈ Lx ,v , then Lx ,v and Lx ′,av are the same line.

We will now look at the case where there does not exist a 6= 0 such
that v ′ = av .

We shall see that for any starting points x and x ′, the intersection of
Lx ,v and Lx ′,v ′ consists of exactly one point.
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Intersection of lines (continued)

To see that Lx ,v and Lx ′,v ′ intersect at exactly one point if v is not a
multiple of v ′, we consider the equation

x + tv = x ′ + t ′v ′.

More precisely, we must find t ∈ Zp and t ′ ∈ Zp such that

x − x ′ = t ′v ′ − tv ,

where x and x ′ are fixed vectors in Z2
p and v and v ′ are fixed vectors

in Z2
p\{(0, 0)} that are not multiples of one another.
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Intersection of lines (continued)

To see that Lx ,v and Lx ′,v ′ intersect at exactly one point if v is not a
multiple of v ′, we consider the equation

x + tv = x ′ + t ′v ′.

More precisely, we must find t ∈ Zp and t ′ ∈ Zp such that

x − x ′ = t ′v ′ − tv ,

where x and x ′ are fixed vectors in Z2
p and v and v ′ are fixed vectors

in Z2
p\{(0, 0)} that are not multiples of one another.

Alex Iosevich (University of Rochester ) A short course on Erdős problems in discrete plane: Part I March 2020 24 / 30
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Intersection of lines (continued)

Note that x − x ′ is an arbitrary vector in Z2
p in this setup.

Also note that we must show that t, t ′ above are unique because we
are trying to prove that there is exactly one point of intersection!

As a result, we have reduced matters to the following question. Is it
true that if v , v ′ are non-zero vectors in Z2

p that are not multiples of
another another, and w is an arbitrary vector in Z2

p, then there exist
unique scalars a, a′ such that

w = av + a′v ′?

If the answer is yes, we recover the answer to the question above by
taking w = x − x ′, t ′ = a, and t = −a.
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Bases of Z2
p

In the process of resolving the question we just raised, we introduce
the following notion.

We say that vectors v and v ′ form a basis of Z2
p if every vector w in

Z2
p can be expressed in exactly one way in the form

av + a′v ′,

where a, a′ are scalars.

We claim that v , v ′ form a basis of Z2
p if and only if v and v ′ are

non-zero vectors that are not multiples of one another.
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Bases of Z2
p (continued)

We are trying to solve the equation

av + a′v ′ = w ,

where v , v ′ and w are given.

Rewriting this as a matrix equation, we get(
v1 v ′1
v2 v ′2

)
·
(
a
a′

)
=

(
w1

w2

)
.

We can check by a direct calculation that if v1v
′
2 − v2v

′
1 6= 0, then
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Bases of Z2
p (continued)

(
v1 v ′1
v2 v ′2

)
· 1

v1v ′2 − v2v ′1

(
v ′2 −v ′1
−v2 v1

)
=

(
1 0
0 1

)
,

and

1

v1v ′2 − v2v ′1

(
v ′2 −v ′1
−v2 v1

)
·
(
v1 v ′1
v2 v ′2

)
· =

(
1 0
0 1

)
.

We shall refer to 1
v1v ′

2−v2v ′
1

(
v ′2 −v ′1
−v2 v1

)
as the inverse matrix of(

v1 v ′1
v2 v ′2

)
.
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)
as the inverse matrix of(

v1 v ′1
v2 v ′2

)
.
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Bases of Z2
p (continued)
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Bases of Z2
p (continued)

We are now ready to resolve the question that we posed. We are
trying to solve the equation

av + a′v ′ = w ,

where v , v ′ and w are given. Rewriting this as a matrix equation, we
get (

v1 v ′1
v2 v ′2

)
·
(
a
a′

)
=

(
w1

w2

)
.

Multiplying both sides by the inverse matrix, we obtain(
a
a′

)
=

1

v1v ′2 − v2v ′1

(
v ′2 −v ′1
−v2 v1

)
·
(
w1

w2

)
.
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Bases of Z2
p (back to lines)

We just saw that we can solve for the coefficients of a and a′ and the
question is thus resolved.

Recall that this allows us to conclude that if v and v ′ are direction
vectors that are not multiples of one another, then the lines Lx ,v and
Lx ′,v ′ intersect at exactly one point.

We now have a reasonably good understanding of what the discrete
plane Z2

p is, what lines in this plane look like and how they intersect.

This puts us in a good position to dive into deeper waters, which we
are going to do in the second video of this series.
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