A short course on Erdős problems in discrete plane: Part I

Alex losevich

March 2020

What is this video about?

- This video is the first part of a short course on combinatorial geometry of the finite plane over integer modulo a prime.

What is this video about?

- This video is the first part of a short course on combinatorial geometry of the finite plane over integer modulo a prime.
- We begin by explaining the basic notions of geometry in this setting and compare it with the concepts from the Euclidean plane.

What is this video about?

- This video is the first part of a short course on combinatorial geometry of the finite plane over integer modulo a prime.
- We begin by explaining the basic notions of geometry in this setting and compare it with the concepts from the Euclidean plane.
- In the process, we are going to explore quite a few ideas from areas like abstract algebra, linear algebra, and Fourier analysis.

What is this video about?

- This video is the first part of a short course on combinatorial geometry of the finite plane over integer modulo a prime.
- We begin by explaining the basic notions of geometry in this setting and compare it with the concepts from the Euclidean plane.
- In the process, we are going to explore quite a few ideas from areas like abstract algebra, linear algebra, and Fourier analysis.
- We shall introduce these from a completely elementary standpoint, requiring only a solid knowledge of precalculus, and mostly much less.

What are Erdős problems in geometry?

- Erdős problems in geometry typically involve counting elementary geometric objects satisfying some natural constraints.

What are Erdős problems in geometry?

- Erdős problems in geometry typically involve counting elementary geometric objects satisfying some natural constraints.
- A typical example that we are going to address in the second part of this mini-course is the following.

What are Erdős problems in geometry?

- Erdős problems in geometry typically involve counting elementary geometric objects satisfying some natural constraints.
- A typical example that we are going to address in the second part of this mini-course is the following.
- Let P be a collection of n points and \mathcal{L} be a collections of m lines in the plane.

What are Erdős problems in geometry?

- Erdős problems in geometry typically involve counting elementary geometric objects satisfying some natural constraints.
- A typical example that we are going to address in the second part of this mini-course is the following.
- Let P be a collection of n points and \mathcal{L} be a collections of m lines in the plane.
- What is the largest possible number of incidences. defined as the number of elements in the set

$$
\{(p, I) \in P \times \mathcal{L}: p \in I\}
$$

as a function of n and m ?

Incidence theory

- Define $I(P, \mathcal{L})$ denote the number of elements in

$$
\{(p, I) \in P \times \mathcal{L}: p \in I\}
$$

Incidence theory

- Define $I(P, \mathcal{L})$ denote the number of elements in

$$
\{(p, I) \in P \times \mathcal{L}: p \in I\}
$$

- Since the set we are counting is contained in

$$
P \times \mathcal{L}=\{(p, l) \in P \times \mathcal{L}\}
$$

we see that $I(P, \mathcal{L}) \leq n m$.

Incidence theory

- Define $I(P, \mathcal{L})$ denote the number of elements in

$$
\{(p, I) \in P \times \mathcal{L}: p \in I\} .
$$

- Since the set we are counting is contained in

$$
P \times \mathcal{L}=\{(p, l) \in P \times \mathcal{L}\}
$$

we see that $l(P, \mathcal{L}) \leq n m$.

- But is this estimate realistic? Is it really possible to have every point be on every line and every line pass through every point?

Simple example

Figure: 6 lines, 9 points, 18 incidences

Simple example

Figure: 6 lines, 9 points, 18 incidences

- In one of lectures of this mini-course we are going to prove the celebrated Szemeredi-Trotter incidence theorem, which says that

$$
I(P, \mathcal{L}) \leq C\left(n+m+(n m)^{\frac{2}{3}}\right)
$$

where recall that n is the number of points in P and m is the number of lines in \mathcal{L}.

Prime numbers

- A positive integer is called prime if its only divisors are 1 and itself.

Prime numbers

- A positive integer is called prime if its only divisors are 1 and itself.
- For example, 2 is a prime because its only divisors are 1 and 2 .

Prime numbers

- A positive integer is called prime if its only divisors are 1 and itself.
- For example, 2 is a prime because its only divisors are 1 and 2 .
- Similarly, 3, 5 and 7 are primes.

Prime numbers

- A positive integer is called prime if its only divisors are 1 and itself.
- For example, 2 is a prime because its only divisors are 1 and 2 .
- Similarly, 3, 5 and 7 are primes.
- On the other hand, 8 is not a prime because it is divisible by 4 , so 8 has divisors other than 1 and itself.

Prime numbers

- A positive integer is called prime if its only divisors are 1 and itself.
- For example, 2 is a prime because its only divisors are 1 and 2 .
- Similarly, 3, 5 and 7 are primes.
- On the other hand, 8 is not a prime because it is divisible by 4 , so 8 has divisors other than 1 and itself.
- A question to be explored in a later video is, how many prime numbers are there between 2 and x, where x is a large positive integer?

Prime numbers

- A positive integer is called prime if its only divisors are 1 and itself.
- For example, 2 is a prime because its only divisors are 1 and 2 .
- Similarly, 3, 5 and 7 are primes.
- On the other hand, 8 is not a prime because it is divisible by 4 , so 8 has divisors other than 1 and itself.
- A question to be explored in a later video is, how many prime numbers are there between 2 and x, where x is a large positive integer?
- The Prime Number Theorem says that there are $\approx \frac{x}{\log (x)}$ prime numbers in this range and this investigation leads to many problems that lie at the heart of modern mathematics.

Remainders

- Let's begin by playing the following game. Given an integer, we are going to divide it by 2 and compute the remainder.

Remainders

- Let's begin by playing the following game. Given an integer, we are going to divide it by 2 and compute the remainder.
- The remainder is either 0 or 1 .

Remainders

- Let's begin by playing the following game. Given an integer, we are going to divide it by 2 and compute the remainder.
- The remainder is either 0 or 1 .
- Similarly, for each integer, consider the remainder obtained after dividing each integer by 5 . This time around the possible remainders are $0,1,2,3,4$.

Remainders

- Let's begin by playing the following game. Given an integer, we are going to divide it by 2 and compute the remainder.
- The remainder is either 0 or 1 .
- Similarly, for each integer, consider the remainder obtained after dividing each integer by 5 . This time around the possible remainders are $0,1,2,3,4$.
- We can play this game with respect to any integer, but we are going to focus on prime numbers for reasons that will become more clear a bit later.

Integers modulo a prime

- We now take all the integers, not necessarily positive, and divide them in accordance with the remainder one obtains after dividing each of these integers by a given prime number p.

Integers modulo a prime

- We now take all the integers, not necessarily positive, and divide them in accordance with the remainder one obtains after dividing each of these integers by a given prime number p.
- As we have discussed above, the possible remainders are

$$
\{0,1,2, \ldots, p-1\}
$$

and we call this the set of remainders modulo a prime p.

Integers modulo a prime

- We now take all the integers, not necessarily positive, and divide them in accordance with the remainder one obtains after dividing each of these integers by a given prime number p.
- As we have discussed above, the possible remainders are

$$
\{0,1,2, \ldots, p-1\}
$$

and we call this the set of remainders modulo a prime p.

- We define addition on this set of remainders as follows. We add a pair of remainders as we would normally and consider its remainder after dividing by p.

Integers modulo a prime-addition and multiplication

- For example, let $p=5$. Then the set of remainders is $\{0,1,2,3,4\}$.

Integers modulo a prime-addition and multiplication

- For example, let $p=5$. Then the set of remainders is $\{0,1,2,3,4\}$.
- Then, for instance,

$$
1+2=3,2+4=1,3+4=2
$$

Integers modulo a prime-addition and multiplication

- For example, let $p=5$. Then the set of remainders is $\{0,1,2,3,4\}$.
- Then, for instance,

$$
1+2=3,2+4=1,3+4=2
$$

- This is because $2+4=6$ and its remainder after dividing by 5 is 1 . And so on!

Integers modulo a prime-addition and multiplication

- For example, let $p=5$. Then the set of remainders is $\{0,1,2,3,4\}$.
- Then, for instance,

$$
1+2=3,2+4=1,3+4=2
$$

- This is because $2+4=6$ and its remainder after dividing by 5 is 1 . And so on!
- We define multiplication on the set of remainders in a similar fashion.

Some more definitions

- We say that integers a and b are congruent modulo p, and write $a \equiv b \bmod p$, if there exists an integer k such that

$$
a-b=k p
$$

Some more definitions

- We say that integers a and b are congruent modulo p, and write $a \equiv b \bmod p$, if there exists an integer k such that

$$
a-b=k p
$$

- We say that r is the canonical remainder of a after division by p if

$$
a \equiv r \quad \bmod p \text { and } 0 \leq r \leq p-1
$$

Multiplicative inverses modulo a prime

- Let p be an odd prime and consider the set of canonical remainders modulo p :

$$
\{0,1,2, \ldots, p-1\}
$$

Multiplicative inverses modulo a prime

- Let p be an odd prime and consider the set of canonical remainders modulo p :

$$
\{0,1,2, \ldots, p-1\}
$$

- Let us start with the case $p=3$ and note that

$$
1 \cdot 1=1,2 \cdot 2=1
$$

Multiplicative inverses modulo a prime

- Let p be an odd prime and consider the set of canonical remainders modulo p :

$$
\{0,1,2, \ldots, p-1\}
$$

- Let us start with the case $p=3$ and note that

$$
1 \cdot 1=1,2 \cdot 2=1
$$

- It follows that every non-zero element in the set of canonical remainders modulo 3 is its own multiplicative inverse.

Multiplicative inverses modulo a prime (continued)

- Now consider the case $p=5$. We have

$$
1 \cdot 1=1,2 \cdot 3=1,3 \cdot 2=1,4 \cdot 4=1
$$

Multiplicative inverses modulo a prime (continued)

- Now consider the case $p=5$. We have

$$
1 \cdot 1=1,2 \cdot 3=1,3 \cdot 2=1,4 \cdot 4=1
$$

- Once again, every non-zero element has an inverse, but this time, not every element is its own inverse.

Multiplicative inverses modulo a prime (continued)

- Now consider the case $p=5$. We have

$$
1 \cdot 1=1,2 \cdot 3=1,3 \cdot 2=1,4 \cdot 4=1
$$

- Once again, every non-zero element has an inverse, but this time, not every element is its own inverse.
- We are going to prove that as long as p is a prime, every non-zero element of the set of remainders has a multiplicative inverse.

Multiplicative inverses modulo a prime (continued)

- Now consider the case $p=5$. We have

$$
1 \cdot 1=1,2 \cdot 3=1,3 \cdot 2=1,4 \cdot 4=1
$$

- Once again, every non-zero element has an inverse, but this time, not every element is its own inverse.
- We are going to prove that as long as p is a prime, every non-zero element of the set of remainders has a multiplicative inverse.
- To this end, take a non-zero element a of the set of canonical remainders modulo a prime p and consider

$$
a, 2 a, \ldots(p-1) a
$$

Multiplicative inverses modulo a prime (continued)

- Observe that none of the numbers $a, 2 a, \ldots,(p-1) a$ are 0 modulo p because p is prime.

Multiplicative inverses modulo a prime (continued)

- Observe that none of the numbers $a, 2 a, \ldots,(p-1)$ a are 0 modulo p because p is prime.
- Indeed, suppose that $1 \leq k \leq p-1$, and the remainder of $k a$ after the division by p is 0 .

Multiplicative inverses modulo a prime (continued)

- Observe that none of the numbers $a, 2 a, \ldots,(p-1)$ a are 0 modulo p because p is prime.
- Indeed, suppose that $1 \leq k \leq p-1$, and the remainder of k a after the division by p is 0 .
- Then $k a=m p$ for some integer m, but this is impossible because p is prime!

Multiplicative inverses modulo a prime (continued)

- Observe that none of the numbers $a, 2 a, \ldots,(p-1)$ a are 0 modulo p because p is prime.
- Indeed, suppose that $1 \leq k \leq p-1$, and the remainder of k a after the division by p is 0 .
- Then $k a=m p$ for some integer m, but this is impossible because p is prime!
- Our next observation is that the remainders of $a, 2 a, \ldots,(p-1) a$ after division by p are all distinct.

Multiplicative inverses modulo a prime (continued)

- Observe that none of the numbers $a, 2 a, \ldots,(p-1)$ a are 0 modulo p because p is prime.
- Indeed, suppose that $1 \leq k \leq p-1$, and the remainder of k a after the division by p is 0 .
- Then $k a=m p$ for some integer m, but this is impossible because p is prime!
- Our next observation is that the remainders of $a, 2 a, \ldots,(p-1) a$ after division by p are all distinct.
- Indeed, if $k a \equiv k^{\prime} a \bmod p$ with $1 \leq k, k^{\prime} \leq p-1$, then $\left(k-k^{\prime}\right) a$ is a multiple of p, which is, once again impossible since p is prime.

Multiplicative inverses modulo a prime (continued)

- What did we just prove? We took a non-zero element a of the set of remainder modulo a prime p and considered the set

$$
a, 2 a, \ldots(p-1) a,
$$

Multiplicative inverses modulo a prime (continued)

- What did we just prove? We took a non-zero element a of the set of remainder modulo a prime p and considered the set

$$
a, 2 a, \ldots(p-1) a,
$$

- and determined that these $p-1$ elements are distinct and non-zero.

Multiplicative inverses modulo a prime (continued)

- What did we just prove? We took a non-zero element a of the set of remainder modulo a prime p and considered the set

$$
a, 2 a, \ldots(p-1) a,
$$

- and determined that these $p-1$ elements are distinct and non-zero.
- This implies that exactly one of them must equal to 1 !

Multiplicative inverses modulo a prime (continued)

- What did we just prove? We took a non-zero element a of the set of remainder modulo a prime p and considered the set

$$
a, 2 a, \ldots(p-1) a,
$$

- and determined that these $p-1$ elements are distinct and non-zero.
- This implies that exactly one of them must equal to 1 !
- Thus we have shown that every non-zero element of the set of remainders modulo a prime p has a multiplicative inverse.

Finite plane

- Denote the set of remainder modulo p by \mathbb{Z}_{p}.

Finite plane

- Denote the set of remainder modulo p by \mathbb{Z}_{p}.
- The finite plane over \mathbb{Z}_{p}, denoted by \mathbb{Z}_{p}^{2}, is the set of vectors

$$
\left\{\left(x_{1}, x_{2}\right): x_{j} \in \mathbb{Z}_{p}\right\}
$$

Finite plane

- Denote the set of remainder modulo p by \mathbb{Z}_{p}.
- The finite plane over \mathbb{Z}_{p}, denoted by \mathbb{Z}_{p}^{2}, is the set of vectors

$$
\left\{\left(x_{1}, x_{2}\right): x_{j} \in \mathbb{Z}_{p}\right\}
$$

- Note that if $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are both in \mathbb{Z}_{p}^{2}, then

$$
x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{Z}_{p}^{2}
$$

Finite plane

- Denote the set of remainder modulo p by \mathbb{Z}_{p}.
- The finite plane over \mathbb{Z}_{p}, denoted by \mathbb{Z}_{p}^{2}, is the set of vectors

$$
\left\{\left(x_{1}, x_{2}\right): x_{j} \in \mathbb{Z}_{p}\right\}
$$

- Note that if $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are both in \mathbb{Z}_{p}^{2}, then

$$
x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{Z}_{p}^{2}
$$

- Also observe that if $x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{p}^{2}$ and $\alpha \in \mathbb{Z}_{p}$ (to be referred to as a scalar), then

$$
\alpha x=\left(\alpha x_{1}, \alpha x_{2}\right) \in \mathbb{Z}_{p}^{2}
$$

Finite plane-example

Figure: The grid \mathbb{Z}_{5}^{2}.

Finite plane: lines

- What is a line in a finite plane?

Finite plane: lines

- What is a line in a finite plane?
- Let $x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{p}^{2}$ and let $v=\left(v_{1}, v_{2}\right) \in \mathbb{Z}_{p}^{2} \backslash(0,0)$.

Finite plane: lines

- What is a line in a finite plane?
- Let $x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{p}^{2}$ and let $v=\left(v_{1}, v_{2}\right) \in \mathbb{Z}_{p}^{2} \backslash(0,0)$.
- Define the line

$$
L_{x, v}=\left\{x+t v: t \in \mathbb{Z}_{p}\right\}
$$

where x shall be referred to as the starting point and v the direction vector.

Finite plane: lines

- What is a line in a finite plane?
- Let $x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{p}^{2}$ and let $v=\left(v_{1}, v_{2}\right) \in \mathbb{Z}_{p}^{2} \backslash(0,0)$.
- Define the line

$$
L_{x, v}=\left\{x+t v: t \in \mathbb{Z}_{p}\right\}
$$

where x shall be referred to as the starting point and v the direction vector.

- The number of points on $L_{x, v}$, denoted by $\left|L_{x, v}\right|$, is equal to p.

Finite plane: lines

- What is a line in a finite plane?
- Let $x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{p}^{2}$ and let $v=\left(v_{1}, v_{2}\right) \in \mathbb{Z}_{p}^{2} \backslash(0,0)$.
- Define the line

$$
L_{x, v}=\left\{x+t v: t \in \mathbb{Z}_{p}\right\}
$$

where x shall be referred to as the starting point and v the direction vector.

- The number of points on $L_{x, v}$, denoted by $\left|L_{x, v}\right|$, is equal to p.
- It is reasonable to ask whether the basic properties of lines and points we learned in high school geometry are still valid in this setting.

Lines: example

Figure: A line in \mathbb{Z}_{7}^{2} with $x=(0,1)$ and $v=(1,2)$.

How many lines are there?

- Each line is determined by the starting point x and the direction v.

How many lines are there?

- Each line is determined by the starting point x and the direction v.
- However, it turns out that if v^{\prime} is a constant (non-zero) multiple of v, then

$$
L_{x, v}=L_{x, v^{\prime}}
$$

How many lines are there?

- Each line is determined by the starting point x and the direction v.
- However, it turns out that if v^{\prime} is a constant (non-zero) multiple of v, then

$$
L_{x, v}=L_{x, v^{\prime}}
$$

- Indeed, suppose that $v^{\prime}=a v$, where $a \neq 0$. Then

$$
L_{x, v^{\prime}}=L_{x, a v}=\left\{x+\operatorname{tav}: t \in \mathbb{Z}_{p}\right\}
$$

How many lines are there?

- Each line is determined by the starting point x and the direction v.
- However, it turns out that if v^{\prime} is a constant (non-zero) multiple of v, then

$$
L_{x, v}=L_{x, v^{\prime}}
$$

- Indeed, suppose that $v^{\prime}=a v$, where $a \neq 0$. Then

$$
L_{x, v^{\prime}}=L_{x, a v}=\left\{x+\operatorname{tav}: t \in \mathbb{Z}_{p}\right\}
$$

- As t runs though \mathbb{Z}_{p}, at runs through every element of \mathbb{Z}_{p} exactly once, just like in the proof above of the fact that every non-zero element of \mathbb{Z}_{p} has a multiplicative inverse.

How many lines are there? (continued)

- We now observe that if we replace the starting point x by any other point y on the same line, then

$$
L_{x, v}=L_{y, v}
$$

How many lines are there? (continued)

- We now observe that if we replace the starting point x by any other point y on the same line, then

$$
L_{x, v}=L_{y, v}
$$

- Indeed, if y is on the same line, $y=x+a v$ for some non-zero a. Then

$$
L_{y, v}=\left\{x+a v+t v: t \in \mathbb{Z}_{p}\right\}=\left\{x+(a+t) v: t \in \mathbb{Z}_{p}\right\}
$$

How many lines are there? (continued)

- We now observe that if we replace the starting point x by any other point y on the same line, then

$$
L_{x, v}=L_{y, v}
$$

- Indeed, if y is on the same line, $y=x+a v$ for some non-zero a. Then

$$
L_{y, v}=\left\{x+a v+t v: t \in \mathbb{Z}_{p}\right\}=\left\{x+(a+t) v: t \in \mathbb{Z}_{p}\right\} .
$$

- As before, as t runs through $\mathbb{Z}_{p}, a+t$ runs through all the elements of \mathbb{Z}_{p} exactly once.

How many lines are there? (conclusion)

- We are now ready to count the total number of lines.

How many lines are there? (conclusion)

- We are now ready to count the total number of lines.
- We have just seen that $L_{x, v}$ and $L_{x^{\prime}, v^{\prime}}$ constitute the same line if and only if v^{\prime} is a non-zero multiple of v and the difference between x and x^{\prime} is a multiple of v.

How many lines are there? (conclusion)

- We are now ready to count the total number of lines.
- We have just seen that $L_{x, v}$ and $L_{x^{\prime}, v^{\prime}}$ constitute the same line if and only if v^{\prime} is a non-zero multiple of v and the difference between x and x^{\prime} is a multiple of v.
- In other words, every v has $(p-1)$ equivalent directions (multiples of v) and given a v, every x has q equivalent starting points on the same line.

How many lines are there? (conclusion)

- We are now ready to count the total number of lines.
- We have just seen that $L_{x, v}$ and $L_{x^{\prime}, v^{\prime}}$ constitute the same line if and only if v^{\prime} is a non-zero multiple of v and the difference between x and x^{\prime} is a multiple of v.
- In other words, every v has $(p-1)$ equivalent directions (multiples of v) and given a v, every x has q equivalent starting points on the same line.
- It follows that the total number of different lines is equal to

$$
\frac{\# \text { starting points } \times \# \text { directions }}{(p-1) \cdot p}=\frac{p^{2} \cdot\left(p^{2}-1\right)}{p \cdot(p-1)}=p(p+1)
$$

Intersection of lines

- In the Euclidean plane, two lines are either parallel, or they intersect at exactly one point. What about lines in \mathbb{Z}_{p}^{2} ?

Intersection of lines

- In the Euclidean plane, two lines are either parallel, or they intersect at exactly one point. What about lines in \mathbb{Z}_{p}^{2} ?
- We have already seen that whether $v=v^{\prime}$, or $v^{\prime}=a v, a \neq 0$, the line is the same.

Intersection of lines

- In the Euclidean plane, two lines are either parallel, or they intersect at exactly one point. What about lines in \mathbb{Z}_{p}^{2} ?
- We have already seen that whether $v=v^{\prime}$, or $v^{\prime}=a v, a \neq 0$, the line is the same.
- Suppose that $L_{x, v}$ and $L_{x^{\prime}, v}$ intersect. Then

$$
x+a v=x^{\prime}+b v \text { for some } a, b \in \mathbb{Z}_{p}
$$

Intersection of lines

- In the Euclidean plane, two lines are either parallel, or they intersect at exactly one point. What about lines in \mathbb{Z}_{p}^{2} ?
- We have already seen that whether $v=v^{\prime}$, or $v^{\prime}=a v, a \neq 0$, the line is the same.
- Suppose that $L_{x, v}$ and $L_{x^{\prime}, v}$ intersect. Then

$$
x+a v=x^{\prime}+b v \text { for some } a, b \in \mathbb{Z}_{p}
$$

- This means that $x^{\prime}=x+a v-b v=x+(a-b) v$, so $x^{\prime} \in L_{x, v}$.

Intersection of lines (continued)

- The same argument goes through if we consider the intersection of $L_{x, v}$ and $L_{x^{\prime}, a v}$, where $a \neq 0$.

Intersection of lines (continued)

- The same argument goes through if we consider the intersection of $L_{x, v}$ and $L_{x^{\prime}, a v}$, where $a \neq 0$.
- Thus we see that $L_{x, v}$ and $L_{x^{\prime}, a v}, a \neq 0$, intersect if and only if $x^{\prime} \in L_{x, v}$. If $x^{\prime} \in L_{x, v}$, then $L_{x, v}$ and $L_{x^{\prime}, a v}$ are the same line.

Intersection of lines (continued)

- The same argument goes through if we consider the intersection of $L_{x, v}$ and $L_{x^{\prime}, a v}$, where $a \neq 0$.
- Thus we see that $L_{x, v}$ and $L_{x^{\prime}, a v}, a \neq 0$, intersect if and only if $x^{\prime} \in L_{x, v}$. If $x^{\prime} \in L_{x, v}$, then $L_{x, v}$ and $L_{x^{\prime}, a v}$ are the same line.
- We will now look at the case where there does not exist $a \neq 0$ such that $v^{\prime}=a v$.

We shall see that for any starting points x and x^{\prime}, the intersection of $L_{x, v}$ and $L_{x^{\prime}, v^{\prime}}$ consists of exactly one point.

Intersection of lines (continued)

- To see that $L_{x, v}$ and $L_{x^{\prime}, v^{\prime}}$ intersect at exactly one point if v is not a multiple of v^{\prime}, we consider the equation

$$
x+t v=x^{\prime}+t^{\prime} v^{\prime}
$$

Intersection of lines (continued)

- To see that $L_{x, v}$ and $L_{x^{\prime}, v^{\prime}}$ intersect at exactly one point if v is not a multiple of v^{\prime}, we consider the equation

$$
x+t v=x^{\prime}+t^{\prime} v^{\prime}
$$

- More precisely, we must find $t \in \mathbb{Z}_{p}$ and $t^{\prime} \in \mathbb{Z}_{p}$ such that

$$
x-x^{\prime}=t^{\prime} v^{\prime}-t v
$$

Intersection of lines (continued)

- To see that $L_{x, v}$ and $L_{x^{\prime}, v^{\prime}}$ intersect at exactly one point if v is not a multiple of v^{\prime}, we consider the equation

$$
x+t v=x^{\prime}+t^{\prime} v^{\prime}
$$

- More precisely, we must find $t \in \mathbb{Z}_{p}$ and $t^{\prime} \in \mathbb{Z}_{p}$ such that

$$
x-x^{\prime}=t^{\prime} v^{\prime}-t v
$$

- where x and x^{\prime} are fixed vectors in \mathbb{Z}_{p}^{2} and v and v^{\prime} are fixed vectors in $\mathbb{Z}_{p}^{2} \backslash\{(0,0)\}$ that are not multiples of one another.

Intersection of lines (continued)

- Note that $x-x^{\prime}$ is an arbitrary vector in \mathbb{Z}_{p}^{2} in this setup.

Intersection of lines (continued)

- Note that $x-x^{\prime}$ is an arbitrary vector in \mathbb{Z}_{p}^{2} in this setup.
- Also note that we must show that t, t^{\prime} above are unique because we are trying to prove that there is exactly one point of intersection!

Intersection of lines (continued)

- Note that $x-x^{\prime}$ is an arbitrary vector in \mathbb{Z}_{p}^{2} in this setup.
- Also note that we must show that t, t^{\prime} above are unique because we are trying to prove that there is exactly one point of intersection!
- As a result, we have reduced matters to the following question. Is it true that if v, v^{\prime} are non-zero vectors in \mathbb{Z}_{p}^{2} that are not multiples of another another, and w is an arbitrary vector in \mathbb{Z}_{p}^{2}, then there exist unique scalars a, a^{\prime} such that

$$
w=a v+a^{\prime} v^{\prime} ?
$$

Intersection of lines (continued)

- Note that $x-x^{\prime}$ is an arbitrary vector in \mathbb{Z}_{p}^{2} in this setup.
- Also note that we must show that t, t^{\prime} above are unique because we are trying to prove that there is exactly one point of intersection!
- As a result, we have reduced matters to the following question. Is it true that if v, v^{\prime} are non-zero vectors in \mathbb{Z}_{p}^{2} that are not multiples of another another, and w is an arbitrary vector in \mathbb{Z}_{p}^{2}, then there exist unique scalars a, a^{\prime} such that

$$
w=a v+a^{\prime} v^{\prime} ?
$$

- If the answer is yes, we recover the answer to the question above by taking $w=x-x^{\prime}, t^{\prime}=a$, and $t=-a$.

Bases of \mathbb{Z}_{p}^{2}

- In the process of resolving the question we just raised, we introduce the following notion.

Bases of \mathbb{Z}_{p}^{2}

- In the process of resolving the question we just raised, we introduce the following notion.
- We say that vectors v and v^{\prime} form a basis of \mathbb{Z}_{p}^{2} if every vector w in \mathbb{Z}_{p}^{2} can be expressed in exactly one way in the form

$$
a v+a^{\prime} v^{\prime}
$$

where a, a^{\prime} are scalars.

Bases of \mathbb{Z}_{p}^{2}

- In the process of resolving the question we just raised, we introduce the following notion.
- We say that vectors v and v^{\prime} form a basis of \mathbb{Z}_{p}^{2} if every vector w in \mathbb{Z}_{p}^{2} can be expressed in exactly one way in the form

$$
a v+a^{\prime} v^{\prime}
$$

where a, a^{\prime} are scalars.

- We claim that v, v^{\prime} form a basis of \mathbb{Z}_{p}^{2} if and only if v and v^{\prime} are non-zero vectors that are not multiples of one another.

Bases of \mathbb{Z}_{p}^{2} (continued)

- We are trying to solve the equation

$$
a v+a^{\prime} v^{\prime}=w
$$

where v, v^{\prime} and w are given.

Bases of \mathbb{Z}_{p}^{2} (continued)

- We are trying to solve the equation

$$
a v+a^{\prime} v^{\prime}=w
$$

where v, v^{\prime} and w are given.

- Rewriting this as a matrix equation, we get

$$
\left(\begin{array}{ll}
v_{1} & v_{1}^{\prime} \\
v_{2} & v_{2}^{\prime}
\end{array}\right) \cdot\binom{a}{a^{\prime}}=\binom{w_{1}}{w_{2}} .
$$

Bases of \mathbb{Z}_{p}^{2} (continued)

- We are trying to solve the equation

$$
a v+a^{\prime} v^{\prime}=w
$$

where v, v^{\prime} and w are given.

- Rewriting this as a matrix equation, we get

$$
\left(\begin{array}{ll}
v_{1} & v_{1}^{\prime} \\
v_{2} & v_{2}^{\prime}
\end{array}\right) \cdot\binom{a}{a^{\prime}}=\binom{w_{1}}{w_{2}} .
$$

- We can check by a direct calculation that if $v_{1} v_{2}^{\prime}-v_{2} v_{1}^{\prime} \neq 0$, then

Bases of \mathbb{Z}_{p}^{2} (continued)

$$
\left(\begin{array}{ll}
v_{1} & v_{1}^{\prime} \\
v_{2} & v_{2}^{\prime}
\end{array}\right) \cdot \frac{1}{v_{1} v_{2}^{\prime}-v_{2} v_{1}^{\prime}}\left(\begin{array}{cc}
v_{2}^{\prime} & -v_{1}^{\prime} \\
-v_{2} & v_{1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

and

Bases of \mathbb{Z}_{p}^{2} (continued)

$$
\left(\begin{array}{ll}
v_{1} & v_{1}^{\prime} \\
v_{2} & v_{2}^{\prime}
\end{array}\right) \cdot \frac{1}{v_{1} v_{2}^{\prime}-v_{2} v_{1}^{\prime}}\left(\begin{array}{cc}
v_{2}^{\prime} & -v_{1}^{\prime} \\
-v_{2} & v_{1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
\frac{1}{v_{1} v_{2}^{\prime}-v_{2} v_{1}^{\prime}}\left(\begin{array}{cc}
v_{2}^{\prime} & -v_{1}^{\prime} \\
-v_{2} & v_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
v_{1} & v_{1}^{\prime} \\
v_{2} & v_{2}^{\prime}
\end{array}\right) \cdot=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Bases of \mathbb{Z}_{p}^{2} (continued)

$$
\left(\begin{array}{ll}
v_{1} & v_{1}^{\prime} \\
v_{2} & v_{2}^{\prime}
\end{array}\right) \cdot \frac{1}{v_{1} v_{2}^{\prime}-v_{2} v_{1}^{\prime}}\left(\begin{array}{cc}
v_{2}^{\prime} & -v_{1}^{\prime} \\
-v_{2} & v_{1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

and

$$
\frac{1}{v_{1} v_{2}^{\prime}-v_{2} v_{1}^{\prime}}\left(\begin{array}{cc}
v_{2}^{\prime} & -v_{1}^{\prime} \\
-v_{2} & v_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
v_{1} & v_{1}^{\prime} \\
v_{2} & v_{2}^{\prime}
\end{array}\right) \cdot=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

- We shall refer to $\frac{1}{v_{1} v_{2}^{\prime}-v_{2} v_{1}^{\prime}}\left(\begin{array}{cc}v_{2}^{\prime} & -v_{1}^{\prime} \\ -v_{2} & v_{1}\end{array}\right)$ as the inverse matrix of $\left(\begin{array}{ll}v_{1} & v_{1}^{\prime} \\ v_{2} & v_{2}^{\prime}\end{array}\right)$.

Bases of \mathbb{Z}_{p}^{2} (continued)

- We are now ready to resolve the question that we posed. We are trying to solve the equation

$$
a v+a^{\prime} v^{\prime}=w,
$$

where v, v^{\prime} and w are given. Rewriting this as a matrix equation, we get

$$
\left(\begin{array}{ll}
v_{1} & v_{1}^{\prime} \\
v_{2} & v_{2}^{\prime}
\end{array}\right) \cdot\binom{a}{a^{\prime}}=\binom{w_{1}}{w_{2}} .
$$

Bases of \mathbb{Z}_{p}^{2} (continued)

- We are now ready to resolve the question that we posed. We are trying to solve the equation

$$
a v+a^{\prime} v^{\prime}=w,
$$

where v, v^{\prime} and w are given. Rewriting this as a matrix equation, we get

$$
\left(\begin{array}{ll}
v_{1} & v_{1}^{\prime} \\
v_{2} & v_{2}^{\prime}
\end{array}\right) \cdot\binom{a}{a^{\prime}}=\binom{w_{1}}{w_{2}} .
$$

- Multiplying both sides by the inverse matrix, we obtain

$$
\binom{a}{a^{\prime}}=\frac{1}{v_{1} v_{2}^{\prime}-v_{2} v_{1}^{\prime}}\left(\begin{array}{cc}
v_{2}^{\prime} & -v_{1}^{\prime} \\
-v_{2} & v_{1}
\end{array}\right) \cdot\binom{w_{1}}{w_{2}} .
$$

Bases of \mathbb{Z}_{p}^{2} (back to lines)

- We just saw that we can solve for the coefficients of a and a^{\prime} and the question is thus resolved.

Bases of \mathbb{Z}_{p}^{2} (back to lines)

- We just saw that we can solve for the coefficients of a and a^{\prime} and the question is thus resolved.
- Recall that this allows us to conclude that if v and v^{\prime} are direction vectors that are not multiples of one another, then the lines $L_{x, v}$ and $L_{x^{\prime}, v^{\prime}}$ intersect at exactly one point.

Bases of \mathbb{Z}_{p}^{2} (back to lines)

- We just saw that we can solve for the coefficients of a and a^{\prime} and the question is thus resolved.
- Recall that this allows us to conclude that if v and v^{\prime} are direction vectors that are not multiples of one another, then the lines $L_{x, v}$ and $L_{x^{\prime}, \nu^{\prime}}$ intersect at exactly one point.
- We now have a reasonably good understanding of what the discrete plane \mathbb{Z}_{p}^{2} is, what lines in this plane look like and how they intersect.

Bases of \mathbb{Z}_{p}^{2} (back to lines)

- We just saw that we can solve for the coefficients of a and a^{\prime} and the question is thus resolved.
- Recall that this allows us to conclude that if v and v^{\prime} are direction vectors that are not multiples of one another, then the lines $L_{x, v}$ and $L_{x^{\prime}, v^{\prime}}$ intersect at exactly one point.
- We now have a reasonably good understanding of what the discrete plane \mathbb{Z}_{p}^{2} is, what lines in this plane look like and how they intersect.
- This puts us in a good position to dive into deeper waters, which we are going to do in the second video of this series.

