Basic skills II: summation by parts, dyadic blocks and infinite sums

Alex losevich

April 2020

From finite to infinite

- In the previous lecture, we considered geometric series and obtained the basic formula

$$
A^{k}+A^{k+1}+\cdots+A^{n}=\frac{A^{n+1}-A^{k}}{A-1} ; \text { if } A \neq 1
$$

From finite to infinite

- In the previous lecture, we considered geometric series and obtained the basic formula

$$
A^{k}+A^{k+1}+\cdots+A^{n}=\frac{A^{n+1}-A^{k}}{A-1} ; \text { if } A \neq 1
$$

- We begin this lecture by considering an infinite sum

$$
\sum_{k=1}^{\infty} A^{k}
$$

From finite to infinite

- In the previous lecture, we considered geometric series and obtained the basic formula

$$
A^{k}+A^{k+1}+\cdots+A^{n}=\frac{A^{n+1}-A^{k}}{A-1} ; \text { if } A \neq 1
$$

- We begin this lecture by considering an infinite sum

$$
\sum_{k=1}^{\infty} A^{k}
$$

- The first step is to understand what it means to sum an infinite number of terms.

Infinite series

- Given a sequence of real number $a_{1}, a_{2}, \ldots, a_{n}, \ldots$, define

$$
S_{N}=\sum_{k=1}^{N} a_{k} .
$$

Infinite series

- Given a sequence of real number $a_{1}, a_{2}, \ldots, a_{n}, \ldots$, define

$$
S_{N}=\sum_{k=1}^{N} a_{k}
$$

- We say that

$$
\sum_{k=1}^{\infty} a_{k} \text { converges }
$$

Infinite series

- Given a sequence of real number $a_{1}, a_{2}, \ldots, a_{n}, \ldots$, define

$$
S_{N}=\sum_{k=1}^{N} a_{k}
$$

- We say that

$$
\sum_{k=1}^{\infty} a_{k} \text { converges }
$$

$$
\text { if } \lim _{N \rightarrow \infty} S_{N} \text { exists. }
$$

What is a limit?

- The definition we just gave begs the question. What does $\lim _{N \rightarrow \infty} S_{N}$ mean?

What is a limit?

- The definition we just gave begs the question. What does $\lim _{N \rightarrow \infty} S_{N}$ mean?
- We say that

$$
\lim _{N \rightarrow \infty} S_{N}=L
$$

What is a limit?

- The definition we just gave begs the question. What does $\lim _{N \rightarrow \infty} S_{N}$ mean?
- We say that

$$
\lim _{N \rightarrow \infty} S_{N}=L
$$

- if given $\epsilon>0$ there exists $M>0$ such that

$$
\left|S_{N}-L\right|<\epsilon \text { whenever } N \geq M
$$

Examples of limits

- The definition of a limit we just gave applies to any sequence S_{N} of real numbers- it need not come from a sum.

Examples of limits

- The definition of a limit we just gave applies to any sequence S_{N} of real numbers- it need not come from a sum.
- Suppose that

$$
S_{N}=\frac{N+1}{N}=1+\frac{1}{N}
$$

Examples of limits

- The definition of a limit we just gave applies to any sequence S_{N} of real numbers- it need not come from a sum.
- Suppose that

$$
S_{N}=\frac{N+1}{N}=1+\frac{1}{N}
$$

- When N gets larger and larger, $\frac{1}{N}$ gets smaller and smaller, so we might guess that

$$
\lim _{N \rightarrow \infty} 1+\frac{1}{N}=1
$$

Examples of limits (continued)

- To make this idea precise, we must show that given $\epsilon>0$ there exists $M>0$ such that

$$
\left|1+\frac{1}{N}-1\right|<\epsilon \text { whenever } N \geq M
$$

Examples of limits (continued)

- To make this idea precise, we must show that given $\epsilon>0$ there exists $M>0$ such that

$$
\left|1+\frac{1}{N}-1\right|<\epsilon \text { whenever } N \geq M
$$

- In other words, we must show that given $\epsilon>0$ there exists $M>0$ such that

$$
\frac{1}{N}<\epsilon
$$

Examples of limits (continued)

- To make this idea precise, we must show that given $\epsilon>0$ there exists $M>0$ such that

$$
\left|1+\frac{1}{N}-1\right|<\epsilon \text { whenever } N \geq M
$$

- In other words, we must show that given $\epsilon>0$ there exists $M>0$ such that

$$
\frac{1}{N}<\epsilon
$$

- It is not difficult to see that choosing $M>\frac{1}{\epsilon}$ does the job.

Examples of limits-a harder example

- Let us consider a more complicated example. Suppose that

$$
S_{N}=\frac{N^{2}}{N^{2}+N+1}
$$

Examples of limits-a harder example

- Let us consider a more complicated example. Suppose that

$$
S_{N}=\frac{N^{2}}{N^{2}+N+1}
$$

- and we ask, what is

$$
\lim _{N \rightarrow \infty} S_{N} ?
$$

Examples of limits-a harder example

- Let us consider a more complicated example. Suppose that

$$
S_{N}=\frac{N^{2}}{N^{2}+N+1}
$$

- and we ask, what is

$$
\lim _{N \rightarrow \infty} S_{N} ?
$$

- We start by observing that

$$
\frac{N^{2}}{N^{2}+N+1}=\frac{N^{2}+N+1}{N^{2}+N+1}-\frac{N+1}{N^{2}+N+1} .
$$

A harder example continued

$$
=1-\frac{N+1}{N^{2}+N+1} .
$$

A harder example continued

$$
=1-\frac{N+1}{N^{2}+N+1} .
$$

- Since N^{2} grows much faster than N, we might guess that the limit is 1. To prove it, we must show that given $\epsilon>0$ there exists M such that

$$
\left|\frac{N+1}{N^{2}+N+1}\right|<\epsilon \text { whenever } N \geq M
$$

A harder example continued

$$
=1-\frac{N+1}{N^{2}+N+1} .
$$

- Since N^{2} grows much faster than N, we might guess that the limit is 1. To prove it, we must show that given $\epsilon>0$ there exists M such that

$$
\left|\frac{N+1}{N^{2}+N+1}\right|<\epsilon \text { whenever } N \geq M
$$

- Observe that $N^{2}+N+1>N^{2}+N$, so

$$
\left|\frac{N+1}{N^{2}+N+1}\right| \leq \frac{N+1}{N^{2}+N}=\frac{1}{N}
$$

An even harder example

- It follows that taking $M>\frac{1}{\epsilon}$ does the job once again.

An even harder example

- It follows that taking $M>\frac{1}{\epsilon}$ does the job once again.
- We now consider a more complicated example that we shall need later in the lecture. Let

$$
S_{N}=\frac{N}{2^{N}}
$$

An even harder example

- It follows that taking $M>\frac{1}{\epsilon}$ does the job once again.
- We now consider a more complicated example that we shall need later in the lecture. Let

$$
S_{N}=\frac{N}{2^{N}}
$$

- We probably have an intuition that 2^{N} grows much faster than N, so the limit should be 0 , but how do we prove this rigorously?

Subsets of a set of size N

- Consider the set of N objects $\left\{O_{1}, O_{2}, \ldots, O_{N}\right\}$ and consider all possible subsets of this set.

Subsets of a set of size N

- Consider the set of N objects $\left\{O_{1}, O_{2}, \ldots, O_{N}\right\}$ and consider all possible subsets of this set.
- For example, there is only one subset of size N, namely the original set itself.

Subsets of a set of size N

- Consider the set of N objects $\left\{O_{1}, O_{2}, \ldots, O_{N}\right\}$ and consider all possible subsets of this set.
- For example, there is only one subset of size N, namely the original set itself.
- There are N subsets of size 1 , namely the sets $\left\{O_{1}\right\},\left\{O_{2}\right\}, \ldots,\left\{O_{N}\right\}$.

Subsets of a set of size N

- Consider the set of N objects $\left\{O_{1}, O_{2}, \ldots, O_{N}\right\}$ and consider all possible subsets of this set.
- For example, there is only one subset of size N, namely the original set itself.
- There are N subsets of size 1 , namely the sets $\left\{O_{1}\right\},\left\{O_{2}\right\}, \ldots,\left\{O_{N}\right\}$.
- How many subsets of size 2 are there? Well, there are N choices for the first element of the set and $N-1$ choices for the second. The order of the elements does not matter, so the number of choices is

$$
\frac{N(N-1)}{2}
$$

Subsets of a set of size N (continued)

- It is clear that the number of subsets of size two is strictly smaller than the total number of subsets. And how many of those are there?

Subsets of a set of size N (continued)

- It is clear that the number of subsets of size two is strictly smaller than the total number of subsets. And how many of those are there?
- Every subset can be encoded as a string of 1's and 0's. For example $\left\{O_{1}, O_{5}, O_{7}\right\}$ can be encoded by the string

$100010100 \ldots 0$.

Subsets of a set of size N (continued)

- It is clear that the number of subsets of size two is strictly smaller than the total number of subsets. And how many of those are there?
- Every subset can be encoded as a string of 1 's and 0 's. For example $\left\{O_{1}, O_{5}, O_{7}\right\}$ can be encoded by the string

$$
100010100 \ldots 0
$$

- We put a 1 in the k 'th slot if O_{k} is contained in the subset, and 0 otherwise.

Subsets of a set of size N (continued)

- It is clear that the number of subsets of size two is strictly smaller than the total number of subsets. And how many of those are there?
- Every subset can be encoded as a string of 1 's and 0 's. For example $\left\{O_{1}, O_{5}, O_{7}\right\}$ can be encoded by the string

$$
100010100 \ldots 0
$$

- We put a 1 in the k 'th slot if O_{k} is contained in the subset, and 0 otherwise.
- It follows that the total number of subsets is equal to a number of strings of 1 's and 0 " s of length N. The number of such strings is 2^{N} since we have two choices for each slot.

Subsets of a set of size N (concluded)

- We just saw that the number of subsets of size 2 is equal to $\frac{N(N-1)}{2}$, and the total number of subsets is 2^{N}, from which we conclude that

$$
\frac{N(N-1)}{2}<2^{N}
$$

Subsets of a set of size N (concluded)

- We just saw that the number of subsets of size 2 is equal to $\frac{N(N-1)}{2}$, and the total number of subsets is 2^{N}, from which we conclude that

$$
\frac{N(N-1)}{2}<2^{N}
$$

- It follows that

$$
\frac{N}{2^{N}} \leq \frac{N}{\frac{N(N-1)}{2}}=\frac{2}{N-1}
$$

Back to $\lim _{N \rightarrow \infty} \frac{N}{2^{N}}$

- We must show that given $\epsilon>0$, there exists $M>0$ such that

$$
\frac{N}{2^{N}}<\epsilon \text { whenever } N \geq M
$$

Back to $\lim _{N \rightarrow \infty} \frac{N}{2^{N}}$

- We must show that given $\epsilon>0$, there exists $M>0$ such that

$$
\frac{N}{2^{N}}<\epsilon \text { whenever } N \geq M
$$

- Choose $M>\frac{2}{\epsilon}+1$. Then

$$
\frac{N}{2^{N}}<\frac{2}{N-1}<\epsilon
$$

Back to $\lim _{N \rightarrow \infty} \frac{N}{2^{N}}$

- We must show that given $\epsilon>0$, there exists $M>0$ such that

$$
\frac{N}{2^{N}}<\epsilon \text { whenever } N \geq M
$$

- Choose $M>\frac{2}{\epsilon}+1$. Then

$$
\frac{N}{2^{N}}<\frac{2}{N-1}<\epsilon
$$

- Enough of limits for now and back to sums!

Infinite geometric series

- Let's take a look at

$$
\sum_{k=1}^{\infty} A^{k}
$$

Infinite geometric series

- Let's take a look at

$$
\sum_{k=1}^{\infty} A^{k}
$$

- As we discussed before, in order to show that this sum converges, we must show that

$$
\lim _{N \rightarrow \infty} \sum_{k=1}^{N} A^{k} \text { exists. }
$$

Infinite geometric series

- Let's take a look at

$$
\sum_{k=1}^{\infty} A^{k}
$$

- As we discussed before, in order to show that this sum converges, we must show that

$$
\lim _{N \rightarrow \infty} \sum_{k=1}^{N} A^{k} \text { exists. }
$$

- We have

$$
\lim _{N \rightarrow \infty} \sum_{k=1}^{N} A^{k}=\lim _{N \rightarrow \infty} \frac{A^{N+1}-A}{A-1}=\lim _{N \rightarrow \infty} \frac{A^{N+1}}{A-1}-\frac{A}{A-1}
$$

Infinite geometric series (continued)

$$
=\frac{A}{1-A}+\frac{1}{A-1} \lim _{N \rightarrow \infty} A^{N} .
$$

Infinite geometric series (continued)

$$
=\frac{A}{1-A}+\frac{1}{A-1} \lim _{N \rightarrow \infty} A^{N} .
$$

- If $|A|<1$,

$$
\lim _{N \rightarrow \infty} A^{N}=0
$$

by a slight modification of the arguments we went over.

Infinite geometric series (continued)

$$
=\frac{A}{1-A}+\frac{1}{A-1} \lim _{N \rightarrow \infty} A^{N} .
$$

- If $|A|<1$,

$$
\lim _{N \rightarrow \infty} A^{N}=0
$$

by a slight modification of the arguments we went over.

- If $|A|>1,\left|A^{N}\right|=|A|^{N}$ is arbitrarily large as N grows, so

$$
\lim _{N \rightarrow \infty} A^{N} \text { does not exist. }
$$

The case $A=1$

- If $A=1$,

$$
S_{N}=\sum_{k=1}^{N} 1=N \text { so the limit does not exist. }
$$

The case $A=1$

- If $A=1$,

$$
S_{N}=\sum_{k=1}^{N} 1=N \text { so the limit does not exist. }
$$

- If $A=-1$,

$$
S_{N}=\sum_{k=1}^{N}(-1)^{k}=-1 \text { if } N \text { is odd, and } 0 \text { otherwise. }
$$

The case $A=1$

- If $A=1$,

$$
S_{N}=\sum_{k=1}^{N} 1=N \text { so the limit does not exist. }
$$

- If $A=-1$,

$$
S_{N}=\sum_{k=1}^{N}(-1)^{k}=-1 \text { if } N \text { is odd, and } 0 \text { otherwise. }
$$

- The limit as $N \rightarrow \infty$ of S_{N} does not exist, but proving this requires some care.

The case $A=-1$

- Let $A=-1$ and suppose that there exists L such that

$$
\lim _{N \rightarrow \infty} S_{N}=L
$$

The case $A=-1$

- Let $A=-1$ and suppose that there exists L such that

$$
\lim _{N \rightarrow \infty} S_{N}=L
$$

- Let $\epsilon=\frac{1}{2}$. Then no matter how large N is, either

$$
\left|S_{N}-L\right| \text { or }\left|S_{N+1}-L\right| \text { is larger than } \frac{1}{2} \text { since }\left|S_{N}-S_{N+1}\right|=1
$$

The case $A=-1$

- Let $A=-1$ and suppose that there exists L such that

$$
\lim _{N \rightarrow \infty} S_{N}=L
$$

- Let $\epsilon=\frac{1}{2}$. Then no matter how large N is, either

$$
\left|S_{N}-L\right| \text { or }\left|S_{N+1}-L\right| \text { is larger than } \frac{1}{2} \text { since }\left|S_{N}-S_{N+1}\right|=1
$$

- because

$$
1=\left|S_{N}-S_{N+1}\right|=\left|S_{N}-L+L-S_{N+1}\right| \leq\left|S_{N}-L\right|+\left|L-S_{N+1}\right|
$$

Infinite geometric series: conclusions

- In summary, we have shown that

$$
\sum_{k=1}^{\infty} A^{k} \text { converges if and only if }|A|<1
$$

Infinite geometric series: conclusions

- In summary, we have shown that

$$
\sum_{k=1}^{\infty} A^{k} \text { converges if and only if }|A|<1
$$

- Moreover, we have shown that if $|A|<1$,

$$
\sum_{k=1}^{\infty} A^{k}=\lim _{N \rightarrow \infty} \frac{A^{N}}{A-1}-\frac{A}{A-1}=\frac{A}{1-A}
$$

Close friends and relatives of the geometric series

- In Part I of this lecture, we considered

$$
\sum_{k=1}^{N} k A^{k} \text { and } \sum_{k=1}^{N} k^{2} A^{k}
$$

Close friends and relatives of the geometric series

- In Part I of this lecture, we considered

$$
\sum_{k=1}^{N} k A^{k} \text { and } \sum_{k=1}^{N} k^{2} A^{k}
$$

- We shall now consider these sums as $N \rightarrow \infty$ and we shall do all the calculations from scratch.

Close friends and relatives of the geometric series

- In Part I of this lecture, we considered

$$
\sum_{k=1}^{N} k A^{k} \text { and } \sum_{k=1}^{N} k^{2} A^{k}
$$

- We shall now consider these sums as $N \rightarrow \infty$ and we shall do all the calculations from scratch.
- Our first observation is that there is no point considering the case $|A| \geq 1$ because they will diverge just as in the case of the regular geometric series.

$\sum_{k=1}^{\infty} k A^{k}$

- Using the fact that

$$
\sum_{j=1}^{k} 1=k
$$

$\sum_{k=1}^{\infty} k A^{k}$

- Using the fact that

$$
\sum_{j=1}^{k} 1=k
$$

- we write

$$
\sum_{k=1}^{N} k A^{k}=\sum_{k=1}^{N} \sum_{j=1}^{k} A^{k}=\sum_{j=1}^{N} \sum_{k=j}^{N} A^{k}
$$

$\sum_{k=1}^{\infty} k A^{k}$

- Using the fact that

$$
\sum_{j=1}^{k} 1=k
$$

- we write

$$
\begin{aligned}
& \sum_{k=1}^{N} k A^{k}=\sum_{k=1}^{N} \sum_{j=1}^{k} A^{k}=\sum_{j=1}^{N} \sum_{k=j}^{N} A^{k} \\
= & \sum_{j=1}^{N} \frac{A^{N+1}-A^{j}}{A-1}=\frac{N A^{N+1}}{A-1}-\frac{1}{A-1} \sum_{j=1}^{N} A^{j}
\end{aligned}
$$

$\sum_{k=1}^{\infty} k A^{k}$: taking limits

$$
=\frac{N A^{N+1}}{A-1}-\frac{\left(A^{N+1}-A\right)}{(A-1)^{2}} .
$$

$\sum_{k=1}^{\infty} k A^{k}$: taking limits

$$
=\frac{N A^{N+1}}{A-1}-\frac{\left(A^{N+1}-A\right)}{(A-1)^{2}}
$$

- We must now compute

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{N A^{N+1}}{A-1} & -\lim _{N \rightarrow \infty} \frac{A^{N+1}}{(A-1)^{2}}+\frac{A}{(A-1)^{2}} \\
& =I+I I+I I I .
\end{aligned}
$$

$\sum_{k=1}^{\infty} k A^{k}$: taking limits

$$
=\frac{N A^{N+1}}{A-1}-\frac{\left(A^{N+1}-A\right)}{(A-1)^{2}}
$$

- We must now compute

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{N A^{N+1}}{A-1} & -\lim _{N \rightarrow \infty} \frac{A^{N+1}}{(A-1)^{2}}+\frac{A}{(A-1)^{2}} \\
& =I+I I+I I I .
\end{aligned}
$$

- We have already seen that $I I=0$ since $|A|<1$. There is nothing to be done with III, so matters have been reduced to considering I.

$\lim _{N \rightarrow \infty} N A^{N}$

- We have already seen that

$$
\lim _{N \rightarrow \infty} N A^{N}=0 \text { when } A=\frac{1}{2} .
$$

$\lim _{N \rightarrow \infty} N A^{N}$

- We have already seen that

$$
\lim _{N \rightarrow \infty} N A^{N}=0 \text { when } A=\frac{1}{2} .
$$

- Note that we may assume that A is positive since

$$
\left|N A^{N}\right|=N|A|^{N} .
$$

$\lim _{N \rightarrow \infty} N A^{N}$

- We have already seen that

$$
\lim _{N \rightarrow \infty} N A^{N}=0 \text { when } A=\frac{1}{2}
$$

- Note that we may assume that A is positive since

$$
\left|N A^{N}\right|=N|A|^{N}
$$

- There are many ways to compute the limit under consideration, but we shall do it by modifying the argument for the case $A=\frac{1}{2}$.

$\lim _{N \rightarrow \infty} N A^{N}$ continued

- We start by observing that if $0<A<1$,

$$
A^{N}=2^{N \log _{2}(A)}=2^{-N \log _{2}\left(A^{-1}\right)},
$$

where $\log _{2}\left(A^{-1}\right)>0$.

$\lim _{N \rightarrow \infty} N A^{N}$ continued

- We start by observing that if $0<A<1$,

$$
A^{N}=2^{N \log _{2}(A)}=2^{-N \log _{2}\left(A^{-1}\right)},
$$

where $\log _{2}\left(A^{-1}\right)>0$.

- It follows that showing that

$$
\lim _{N \rightarrow \infty} N A^{N}=0
$$

amounts to showing that if $0<A<1$,

$\lim _{N \rightarrow \infty} N A^{N}$ continued

- We start by observing that if $0<A<1$,

$$
A^{N}=2^{N \log _{2}(A)}=2^{-N \log _{2}\left(A^{-1}\right)}
$$

where $\log _{2}\left(A^{-1}\right)>0$.

- It follows that showing that

$$
\lim _{N \rightarrow \infty} N A^{N}=0
$$

amounts to showing that if $0<A<1$,

$$
\lim _{N \rightarrow \infty} \frac{N}{2^{N \log _{2}\left(A^{-1}\right)}}=0
$$

$\lim _{N \rightarrow \infty} N A^{N}$: reduction to counting

- We must modify the method we used to study

$$
\lim _{N \rightarrow \infty} \frac{N}{2^{N}}
$$

$\lim _{N \rightarrow \infty} N A^{N}:$ reduction to counting

- We must modify the method we used to study

$$
\lim _{N \rightarrow \infty} \frac{N}{2^{N}}
$$

- Using the fact

$$
2^{N}>\frac{N(N-1)}{2}
$$

may not be enough because this implies that

$\lim _{N \rightarrow \infty} N A^{N}$: reduction to counting

- We must modify the method we used to study

$$
\lim _{N \rightarrow \infty} \frac{N}{2^{N}}
$$

- Using the fact

$$
2^{N}>\frac{N(N-1)}{2}
$$

may not be enough because this implies that

$$
2^{N \log _{2}\left(A^{-1}\right)}>\left(\frac{N(N-1)}{2}\right)^{\log _{2}\left(A^{-1}\right)}
$$

$\lim _{N \rightarrow \infty} N A^{N}$: more counting

- and

$$
\left(\frac{N(N-1)}{2}\right)^{\log _{2}\left(A^{-1}\right)} \leq N \text { if } \log _{2}\left(A^{-1}\right) \leq \frac{1}{2}
$$

$\lim _{N \rightarrow \infty} N A^{N}$: more counting

- and

$$
\left(\frac{N(N-1)}{2}\right)^{\log _{2}\left(A^{-1}\right)} \leq N \text { if } \log _{2}\left(A^{-1}\right) \leq \frac{1}{2}
$$

- In order to find the way out of this predicament, recall that we concluded that

$$
\frac{N(N-1)}{2}<2^{N}
$$

because the number of subset of size two is smaller than the total number of subsets of a set consisting of N elements.

$\lim _{N \rightarrow \infty} N A^{N}$: more counting

- and

$$
\left(\frac{N(N-1)}{2}\right)^{\log _{2}\left(A^{-1}\right)} \leq N \text { if } \log _{2}\left(A^{-1}\right) \leq \frac{1}{2}
$$

- In order to find the way out of this predicament, recall that we concluded that

$$
\frac{N(N-1)}{2}<2^{N}
$$

because the number of subset of size two is smaller than the total number of subsets of a set consisting of N elements.

- But the number of subset of size K is smaller than the total number of subsets of a set consisting of N elements for any $K \leq N$!

$\lim _{N \rightarrow \infty} N A^{N}$: even more counting

- We conclude that

$$
\frac{N!}{(N-K)!K!} \leq 2^{N} \text { for } 1 \leq K \leq N
$$

$\lim _{N \rightarrow \infty} N A^{N}$: even more counting

- We conclude that

$$
\frac{N!}{(N-K)!K!} \leq 2^{N} \text { for } 1 \leq K \leq N
$$

- Observe that

$$
\frac{N!}{(N-K)!K!}=\frac{N}{K} \cdot \frac{N-1}{K-1} \ldots \frac{N-(K-1)}{1} \geq \frac{N^{K}}{K^{K}}
$$

$\lim _{N \rightarrow \infty} N A^{N}$: even more counting

- We conclude that

$$
\frac{N!}{(N-K)!K!} \leq 2^{N} \text { for } 1 \leq K \leq N
$$

- Observe that

$$
\frac{N!}{(N-K)!K!}=\frac{N}{K} \cdot \frac{N-1}{K-1} \ldots \frac{N-(K-1)}{1} \geq \frac{N^{K}}{K^{K}}
$$

- Letting $\log _{2}\left(A^{-1}\right)=\beta$, we conclude that

$$
2^{N \beta} \geq \frac{N^{K \beta}}{K^{K \beta}}
$$

$\lim _{N \rightarrow \infty} N A^{N}$: almost there

- Since $\beta=\log _{2}\left(A^{-1}\right) \leq \frac{1}{2}$, we may choose K such that

$$
3 \leq K \beta \leq 4 .
$$

$\lim _{N \rightarrow \infty} N A^{N}$: almost there

- Since $\beta=\log _{2}\left(A^{-1}\right) \leq \frac{1}{2}$, we may choose K such that

$$
3 \leq K \beta \leq 4
$$

- Then

$$
\frac{N^{K \beta}}{K^{K \beta}} \geq \frac{N^{3}}{K^{4}},
$$

$\lim _{N \rightarrow \infty} N A^{N}$: almost there

- Since $\beta=\log _{2}\left(A^{-1}\right) \leq \frac{1}{2}$, we may choose K such that

$$
3 \leq K \beta \leq 4
$$

- Then

$$
\frac{N^{K \beta}}{K^{K \beta}} \geq \frac{N^{3}}{K^{4}}
$$

- and this quantity is

$$
\geq N^{2} \text { if } N \geq K^{4}
$$

$\lim _{N \rightarrow \infty} N A^{N}$: conclusion

- We have just shown that if N is sufficiently large,

$$
2^{N \log _{2}\left(A^{-1}\right)} \geq N^{2} .
$$

$\lim _{N \rightarrow \infty} N A^{N}$: conclusion

- We have just shown that if N is sufficiently large,

$$
2^{N \log _{2}\left(A^{-1}\right)} \geq N^{2} .
$$

- It follows that

$$
N A^{N}=\frac{N}{2^{N \log _{2}\left(A^{-1}\right)}} \leq \frac{1}{N}
$$

$\lim _{N \rightarrow \infty} N A^{N}$: conclusion

- We have just shown that if N is sufficiently large,

$$
2^{N \log _{2}\left(A^{-1}\right)} \geq N^{2}
$$

- It follows that

$$
N A^{N}=\frac{N}{2^{N \log _{2}\left(A^{-1}\right)}} \leq \frac{1}{N}
$$

- and we conclude in the same way as before that

$$
\lim _{N \rightarrow \infty} N A^{N}=0
$$

Back to $\sum_{k=1}^{\infty} k A^{k}$

- We showed above that

$$
\sum_{k=1}^{\infty} k A^{k}=\lim _{N \rightarrow \infty} \frac{N A^{N+1}}{A-1}-\lim _{N \rightarrow \infty} \frac{A^{N+1}}{(A-1)^{2}}+\frac{A}{(A-1)^{2}}
$$

Back to $\sum_{k=1}^{\infty} k A^{k}$

- We showed above that

$$
\sum_{k=1}^{\infty} k A^{k}=\lim _{N \rightarrow \infty} \frac{N A^{N+1}}{A-1}-\lim _{N \rightarrow \infty} \frac{A^{N+1}}{(A-1)^{2}}+\frac{A}{(A-1)^{2}}
$$

- We can now conclude that the right hand side is equal to

$$
\frac{A}{(A-1)^{2}} .
$$

An example

- In the case $A=\frac{1}{2}$, we see that

$$
\sum_{k=1}^{\infty} \frac{k}{2^{k}}=2
$$

An example

- In the case $A=\frac{1}{2}$, we see that

$$
\sum_{k=1}^{\infty} \frac{k}{2^{k}}=2
$$

- In one of the subsequent lectures, we are going to show that this sum represents the "expected" number of flips of a fair coin needed to produce heads. Even without knowing much about probability, one might guess that the answer is 2 since the probability of getting heads on the first flip is equal to $\frac{1}{2}$.

Estimating infinite sums

- In this part of the lecture, we are going to prove that

$$
\sum_{k=1}^{\infty} \frac{1}{k} \text { diverges, }
$$

while

Estimating infinite sums

- In this part of the lecture, we are going to prove that

$$
\sum_{k=1}^{\infty} \frac{1}{k} \text { diverges, }
$$

while

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}} \text { converges. }
$$

Harmonic series

- As before, we consider

$$
S_{N}=\sum_{k=1}^{N} \frac{1}{k}
$$

Harmonic series

- As before, we consider

$$
S_{N}=\sum_{k=1}^{N} \frac{1}{k}
$$

- To prove that the infinite series does not converge, we must show that

$$
\lim _{N \rightarrow \infty} S_{N} \text { does not exist. }
$$

Harmonic series

- As before, we consider

$$
S_{N}=\sum_{k=1}^{N} \frac{1}{k}
$$

- To prove that the infinite series does not converge, we must show that

$$
\lim _{N \rightarrow \infty} S_{N} \text { does not exist. }
$$

- We are going to show that

$$
S_{2^{m}} \geq \frac{m+2}{2}, \text { which will do the trick. }
$$

Dyadic blocks enter the picture

- We have

$$
\sum_{k=2^{m}+1}^{2^{m+1}} \frac{1}{k} \geq \frac{1}{2^{m+1}} \cdot 2^{m}=\frac{1}{2}
$$

since the number of terms is 2^{m} and every term is $\geq \frac{1}{2^{m+1}}$.

Dyadic blocks enter the picture

- We have

$$
\sum_{k=2^{m}+1}^{2^{m+1}} \frac{1}{k} \geq \frac{1}{2^{m+1}} \cdot 2^{m}=\frac{1}{2}
$$

since the number of terms is 2^{m} and every term is $\geq \frac{1}{2^{m+1}}$.

- It follows that

$$
\begin{aligned}
S_{2^{m}} & =S_{1}+\sum_{j=0}^{m-1} S_{2^{j+1}}-S_{2^{j}} \\
& \geq 1+\frac{m}{2}=\frac{m+2}{2}
\end{aligned}
$$

Harmonic series concluded

- Let us now prove rigorously that the harmonic series diverges. Suppose for the sake of contradiction that the sum converges. Then

$$
\lim _{N \rightarrow \infty} S_{N}=L \text { for some } L<\infty
$$

Harmonic series concluded

- Let us now prove rigorously that the harmonic series diverges. Suppose for the sake of contradiction that the sum converges. Then

$$
\lim _{N \rightarrow \infty} S_{N}=L \text { for some } L<\infty
$$

- Let $\epsilon=1$. Then by definition of a limit, there exists M such that

$$
\left|S_{N}\right| \leq\left|S_{N}-L\right|+L \leq L+1 \text { whenever } N \geq M
$$

Harmonic series concluded

- Let us now prove rigorously that the harmonic series diverges. Suppose for the sake of contradiction that the sum converges. Then

$$
\lim _{N \rightarrow \infty} S_{N}=L \text { for some } L<\infty
$$

- Let $\epsilon=1$. Then by definition of a limit, there exists M such that

$$
\left|S_{N}\right| \leq\left|S_{N}-L\right|+L \leq L+1 \text { whenever } N \geq M
$$

- But this is blatantly untrue since we have shown that

$$
S_{2^{m}} \geq \frac{m+2}{2}
$$

- As before, we consider

$$
S_{2^{m+1}}-S_{2^{m}}=\sum_{k=2^{m}+1}^{2^{m+1}} \frac{1}{k^{2}} \leq \frac{1}{2^{2 m}} \cdot 2^{m}
$$

since every term is $\leq \frac{1}{2^{2 m}}$ and there are 2^{m} terms.

$\sum_{k=1}^{\infty} \frac{1}{k^{2}}$

- As before, we consider

$$
S_{2^{m+1}}-S_{2^{m}}=\sum_{k=2^{m}+1}^{2^{m+1}} \frac{1}{k^{2}} \leq \frac{1}{2^{2 m}} \cdot 2^{m}
$$

since every term is $\leq \frac{1}{2^{2 m}}$ and there are 2^{m} terms.

- It follows that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}} \leq \sum_{m=0}^{\infty} 2^{-m}=2
$$

and we already know that this sum converges.

Some concluding thoughts

- It turns out that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Some concluding thoughts

- It turns out that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

- and this is related to the fact that the probability that two randomly chosen positive integers are relatively prime is

$$
\frac{6}{\pi^{2}}
$$

Some concluding thoughts

- It turns out that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

- and this is related to the fact that the probability that two randomly chosen positive integers are relatively prime is

$$
\frac{6}{\pi^{2}}
$$

- Much beautiful mathematics lies ahead!!

