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Who is this lecture for?

This lecture is the first from my ”Basic Skills” series.

The idea is to go over a series concepts and techniques that
undergraduate mathematics majors repeatedly encounter.

Statistics, physics, computer science, chemistry and engineering
majors may find these lectures helpful as well.

Most of these lectures will be accessible to advanced high school
students.
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A bit more motivation

Calculus is not a prerequisite for watching this lecture. However, the
ideas we will go over will be quite helpful when you take calculus.

If you have already taken calculus, you know to calculate integrals like∫ b

a
x · 2xdx .

Since calculus is often taught as a collection of mechanical tricks,
many calculus students are not exposed to the analogous sum

b∑
k=a

k · 2k ,

and this is the type of an issue we are going to address in the lecture.
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Geometric series

One of the most important objects in mathematics is a geometric
series. This is a series of the form

1 + A + A2 + · · ·+ An,

where A is a real number 6= 0, 1, and n is a positive integer.

The geometric series need not start at 1, so

Ak + Ak+1 + · · ·+ An

is also a geometric series, where k is a positive integer < n.
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Geometric series-simple diagrams from wikipedia
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Summing the geometric series

Using the summation notation, the geometric series can be written as

n∑
j=k

Aj .

How do we evaluate this series? First, let

� = Ak + Ak+1 + · · ·+ An.

Then
A ·� = Ak+1 + Ak+2 + · · ·+ An + An+1.
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Summing the geometric series (continued)

Subtracting � from A ·�, we see that

A ·�−� = An+1 − Ak ,

This implies that

� =
An+1 − Ak

A− 1
.

Here is a simple example to give ourselves a sanity check. According
to our formula,

1 + 2 + · · ·+ 24 = 25 − 1 = 31,

which is, indeed, true!
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Why did the � idea work?

When something works in mathematics, we are sometimes tempted
not to question our good fortune and move on.

However, themes tend to recur, so it is useful to understand what
happened.

The key observation behind what we did is that multiplying a
geometric series Ak + Ak+1 + · · ·+ An by A

yields another geometric series

Ak+1 + Ak+2 + · · ·+ An + An+1

which differs from the original geometric series in only two entries.
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A need not be positive

It is important to keep in mind that our formula works for any real
number 6= 1.

For example, if A = −1, our formula says that

Ak + Ak+1 + · · ·+ An =
(−1)n+1 − (−1)k

−2
.

This quantity is equal to 0 if k and n + 1 are both odd or both even.

If n + 1 is even and k is odd, we get 1.

Finally, if n + 1 is odd and k is even, we get −1.
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Spicing up the geometric series

Suppose that instead of geometric series above, we consider the
following fancier sum

1 · A + 2 · A2 + 3 · A3 + · · ·+ n · An,

where, as before, A is a non-zero real number.

In summation notation, this sum takes the form

n∑
k=1

k · Ak .
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Just how spicy is it?

Suppose that we just keep shaking our heads and refuse to accept the
fact that the series above is not a geometric series?

To perpetuate our delusion, we write

A + A2 + · · ·+ An,

but then we notice that this does not add up to what we need since
A2 needs to be multiplied by two, not one, and so on.

But we persist and try to correct by adding

A2 + A3 + · · ·+ An.
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Just how spicy is it? (continued)

The correction term we added helped a bit. We now have one factor
of A, which is correct, and two factors of A2, which is again correct,
but we only have two factors of A3 and we need three, and so on.

But we are persistent, so we add

A3 + A4 + · · ·+ An.

We are starting to see what is going on. While our series is not
geometric, we can express it as a sum of a bunch of geometric series.

Let us fully write out the case n = 3.
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Just how spicy is it? (continued some more)

In the case n = 3 we have

A + 2 · A2 + 3 · A3.

This expression equals �1 + �2 + �3, where

�1 = A + A2 + A3,

�2 = A2 + A3,

and
�3 = A3.
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Cutting through the spice

In general, let
4 = A + 2 · A2 + · · ·+ n · An.

Then
4 = �1 + �2 + · · ·+ �n,

where
�k = Ak + · · ·+ An.

It is a very good time to recall that we have shown above that

�k =
An+1 − Ak

A− 1
.
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Cutting through the spice (continued)

We must now sum up all the �ks. How do we do that?

Looking at the expression for �k we see that we must sum up

An+1 − A1

A− 1
+

An+1 − A2

A− 1
+ · · ·+ An+1 − An

A− 1
=

=
nAn+1

A− 1
− 1

A− 1
(A + A2 + · · ·+ An)

=
nAn+1

A− 1
− (An+1 − A)

(A− 1)2
.
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Cutting through the spice (finale)

Note that we used the formula for �k repeatedly above.

In order to keep good habits, let’s compute through an example.
According to our formula, taking A = 2 and n = 3,

2 + 2 · 22 + 3 · 23 = 3 · 16− (16− 2) = 48− 14 = 34,

which is true.

In order to built up these skills further, we need to go back and redo
all these calculations using the summation notation.
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Diving into the summation notation

Let us compute
n∑

j=k

Aj .

Following the prescription from above, we consider

A ·
n∑

j=k

Aj =
n∑

j=k

Aj+1.

We want to subtract
∑n

j=k A
j from

A ·
n∑

j=k

Aj =
n∑

j=k

Aj+1.
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Changing the index of summation

The technical problem we are facing is that in considering the
expression

n∑
j=k

Aj+1 −
n∑

j=k

Aj ,

we see that the summands are of a slightly different form!

We can fix the problem as follows. Let m = j + 1. Then since j
ranges from k to n, m ranges from k + 1 to n + 1.

It follows that
n∑

j=k

Aj+1 =
n+1∑

m=k+1

Am.
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”Dummy” variable

It is very important to internalize the fact that the letter m is a
”dummy variable”. Once you execute the sum, nobody is going to
know whether you used the letter m or any other letter in the English
alphabet or the Tibetan alphabet for that matter!

In particular,
n+1∑

m=k+1

Am =
n+1∑

j=k+1

Aj .

It follows that

A ·
n∑

j=k

Aj −
n∑

j=k

Aj =
n+1∑

j=k+1

Aj −
n∑

j=k

Aj .
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Double summation

We can now see that most of the terms are going to cancel, leaving
us with

An+1 − Ak ,

as before.

Putting everything together, we see that

(A− 1)
n∑

j=k

Aj = An+1 − Ak ,

and we conclude that
n∑

j=k

Aj =
An+1 − Ak

A− 1
,

as before.
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Double summation (continued)

We now go ahead and redo the calculation for

4 = A + 2 · A2 + · · ·+ n · An =
n∑

k=1

k · Ak .

As we saw before,
4 = �1 + · · ·+ �n,

where

�k =
n∑

j=k

Aj .

Alex Iosevich (iosevich@gmail.com ) Summation by parts March 2020 21 / 35



Double summation (continued)

We now go ahead and redo the calculation for

4 = A + 2 · A2 + · · ·+ n · An =
n∑

k=1

k · Ak .

As we saw before,
4 = �1 + · · ·+ �n,

where

�k =
n∑

j=k

Aj .

Alex Iosevich (iosevich@gmail.com ) Summation by parts March 2020 21 / 35



Double summation (continued)

We now go ahead and redo the calculation for

4 = A + 2 · A2 + · · ·+ n · An =
n∑

k=1

k · Ak .

As we saw before,
4 = �1 + · · ·+ �n,

where

�k =
n∑

j=k

Aj .

Alex Iosevich (iosevich@gmail.com ) Summation by parts March 2020 21 / 35



Double summation (continued)

To put it another way,

4 =
n∑

k=1

n∑
j=k

Aj ,

a double sum.

But we have a formula for the inner sum, so

4 =
n∑

k=1

An+1 − Ak

A− 1

=
nAn+1

A− 1
− 1

A− 1

n∑
k=1

Ak
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Deeper waters

nAn+1

A− 1
− (An+1 − A)

(A− 1)2
,

same as before.

But what about
n∑

k=1

k2Ak?

This is where the fundamental idea behind summation by parts comes
into play.
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Telescoping series

The key is to observe that

k2 =
k∑

j=1

j2 − (j − 1)2 =
k∑

j=1

2j − 1.

This is a special case of a general simple formula

k∑
j=1

aj − aj−1 = (a1 − a0) + (a2 − a1) + · · ·+ (ak − ak−1)

= ak − a0.
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Telescope
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∑n
k=1 k

2Ak

It follows that
n∑

k=1

k2Ak =
n∑

k=1

Ak
k∑

j=1

2j − 1

=
n∑

k=1

k∑
j=1

(2j − 1)Ak

n∑
j=1

(2j − 1)
n∑

k=j

Ak
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Reduction

=
n∑

j=1

(2j − 1)
An+1 − Aj

A− 1

=
2An+1

A− 1

n∑
j=1

j − 2

A− 1

k∑
j=1

jAj

− An+1

A− 1

k∑
j=1

1 +
1

A− 1

k∑
j=1

Aj = I + II + III + IV .
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Reduction completed

We can handle the first sum if can sum consecutive integers.

The second sum is fine because we already know how to sum

k∑
j=1

jAj .

The third sum is straightforward and the fourth sum is geometric
series. So matters have been reduced to computing

k∑
j=1

j .
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Sum of consecutive integers

We have a similar movie before, so we write

Apple =
k∑

j=1

j =
k∑

j=1

j∑
m=1

1 =
k∑

m=1

k∑
j=m

1

=
k∑

m=1

(k −m + 1) =
k∑

m=1

(k + 1)−
k∑

m=1

m

= k(k + 1)− Apple.

It follows that

Apple =
k(k + 1)

2
.
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Higher powers

Let us now formulate a strategy for computing

n∑
k=1

kaAk , a > 2.

Following our prescription, we rewrite this sum in the form

n∑
k=1


k∑

j=1

ja − (j − 1)a

Ak ,

and the question that immediately arises is how to expand the
expression

ja − (j − 1)a?
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(Slightly) advanced ”FOIL” method

In order to make sense of this expression, we need to figure out how
to expand expressions of the form

(x + y)a,

where a is a positive integer.

We have
(x + y)a = (x + y) · (x + y) · · · · · (x + y).

Multiplying out this expression amounts to selecting either x or y
from each set of parentheses and multiplying them together.
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Let’s count!

It follows that this expression is equal to

C (a, 0)xa + C (a, 1)xa−1y1 + C (a, 2)xa−2y2 + · · ·+ C (a, a)ya,

where C (a, j) is the number of ways of choosing j objects out of a
possibilities.

You may already know that

C (a, j) =
a!

j!(a− j)!
,

where
k! = 1 · 2 · · · · · k.
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Pascal’s triangle
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Conclusion

Putting everything together, we see that

(j − 1)a =
a∑

m=0

(−1)mja−mC (a,m)

= ja +
a∑

m=1

(−1)mja−mC (a,m),

which allows us to explicitly express

ja − (j − 1)a

as a polynomial in j of degree a− 1.
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Conclusion (continued)

The reduction we just described allows us to express

n∑
k=1

kaAk

in terms of
n∑

k=1

kbAk , with b < a,

and
n∑

k=1

kb, also with b < a.
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