Basic skills: geometric series and summation by parts

Alex losevich

March 2020

Who is this lecture for?

- This lecture is the first from my "Basic Skills" series.

Who is this lecture for?

- This lecture is the first from my "Basic Skills" series.
- The idea is to go over a series concepts and techniques that undergraduate mathematics majors repeatedly encounter.

Who is this lecture for?

- This lecture is the first from my "Basic Skills" series.
- The idea is to go over a series concepts and techniques that undergraduate mathematics majors repeatedly encounter.
- Statistics, physics, computer science, chemistry and engineering majors may find these lectures helpful as well.

Who is this lecture for?

- This lecture is the first from my "Basic Skills" series.
- The idea is to go over a series concepts and techniques that undergraduate mathematics majors repeatedly encounter.
- Statistics, physics, computer science, chemistry and engineering majors may find these lectures helpful as well.
- Most of these lectures will be accessible to advanced high school students.

A bit more motivation

- Calculus is not a prerequisite for watching this lecture. However, the ideas we will go over will be quite helpful when you take calculus.

A bit more motivation

- Calculus is not a prerequisite for watching this lecture. However, the ideas we will go over will be quite helpful when you take calculus.
- If you have already taken calculus, you know to calculate integrals like

$$
\int_{a}^{b} x \cdot 2^{x} d x
$$

A bit more motivation

- Calculus is not a prerequisite for watching this lecture. However, the ideas we will go over will be quite helpful when you take calculus.
- If you have already taken calculus, you know to calculate integrals like

$$
\int_{a}^{b} x \cdot 2^{x} d x
$$

- Since calculus is often taught as a collection of mechanical tricks, many calculus students are not exposed to the analogous sum

$$
\sum_{k=a}^{b} k \cdot 2^{k}
$$

and this is the type of an issue we are going to address in the lecture.

Geometric series

- One of the most important objects in mathematics is a geometric series. This is a series of the form

Geometric series

- One of the most important objects in mathematics is a geometric series. This is a series of the form

$$
1+A+A^{2}+\cdots+A^{n}
$$

Geometric series

- One of the most important objects in mathematics is a geometric series. This is a series of the form

$$
1+A+A^{2}+\cdots+A^{n}
$$

- where A is a real number $\neq 0,1$, and n is a positive integer.

Geometric series

- One of the most important objects in mathematics is a geometric series. This is a series of the form

$$
1+A+A^{2}+\cdots+A^{n}
$$

- where A is a real number $\neq 0,1$, and n is a positive integer.
- The geometric series need not start at 1 , so

Geometric series

- One of the most important objects in mathematics is a geometric series. This is a series of the form

$$
1+A+A^{2}+\cdots+A^{n}
$$

- where A is a real number $\neq 0,1$, and n is a positive integer.
- The geometric series need not start at 1 , so

$$
A^{k}+A^{k+1}+\cdots+A^{n}
$$

is also a geometric series, where k is a positive integer $<n$.

Geometric series-simple diagrams from wikipedia

Geometric series-simple diagrams from wikipedia

Summing the geometric series

- Using the summation notation, the geometric series can be written as

Summing the geometric series

- Using the summation notation, the geometric series can be written as

$$
\sum_{j=k}^{n} A^{j}
$$

Summing the geometric series

- Using the summation notation, the geometric series can be written as

$$
\sum_{j=k}^{n} A^{j}
$$

- How do we evaluate this series? First, let

$$
\square=A^{k}+A^{k+1}+\cdots+A^{n}
$$

Summing the geometric series

- Using the summation notation, the geometric series can be written as

$$
\sum_{j=k}^{n} A^{j}
$$

- How do we evaluate this series? First, let

$$
\square=A^{k}+A^{k+1}+\cdots+A^{n}
$$

- Then

$$
A \cdot \square=A^{k+1}+A^{k+2}+\cdots+A^{n}+A^{n+1}
$$

Summing the geometric series (continued)

- Subtracting \square from $A \cdot \square$, we see that

$$
A \cdot \square-\square=A^{n+1}-A^{k},
$$

Summing the geometric series (continued)

- Subtracting \square from $A \cdot \square$, we see that

$$
A \cdot \square-\square=A^{n+1}-A^{k}
$$

- This implies that

$$
\square=\frac{A^{n+1}-A^{k}}{A-1}
$$

Summing the geometric series (continued)

- Subtracting \square from $A \cdot \square$, we see that

$$
A \cdot \square-\square=A^{n+1}-A^{k}
$$

- This implies that

$$
\square=\frac{A^{n+1}-A^{k}}{A-1}
$$

- Here is a simple example to give ourselves a sanity check. According to our formula,

Summing the geometric series (continued)

- Subtracting \square from $A \cdot \square$, we see that

$$
A \cdot \square-\square=A^{n+1}-A^{k}
$$

- This implies that

$$
\square=\frac{A^{n+1}-A^{k}}{A-1}
$$

- Here is a simple example to give ourselves a sanity check. According to our formula,

$$
1+2+\cdots+2^{4}=2^{5}-1=31
$$

which is, indeed, true!

Why did the \square idea work?

- When something works in mathematics, we are sometimes tempted not to question our good fortune and move on.

Why did the \square idea work?

- When something works in mathematics, we are sometimes tempted not to question our good fortune and move on.
- However, themes tend to recur, so it is useful to understand what happened.

Why did the \square idea work?

- When something works in mathematics, we are sometimes tempted not to question our good fortune and move on.
- However, themes tend to recur, so it is useful to understand what happened.
- The key observation behind what we did is that multiplying a geometric series $A^{k}+A^{k+1}+\cdots+A^{n}$ by A

Why did the \square idea work?

- When something works in mathematics, we are sometimes tempted not to question our good fortune and move on.
- However, themes tend to recur, so it is useful to understand what happened.
- The key observation behind what we did is that multiplying a geometric series $A^{k}+A^{k+1}+\cdots+A^{n}$ by A
- yields another geometric series

$$
A^{k+1}+A^{k+2}+\cdots+A^{n}+A^{n+1}
$$

which differs from the original geometric series in only two entries.

A need not be positive

- It is important to keep in mind that our formula works for any real number $\neq 1$.

A need not be positive

- It is important to keep in mind that our formula works for any real number $\neq 1$.
- For example, if $A=-1$, our formula says that

$$
A^{k}+A^{k+1}+\cdots+A^{n}=\frac{(-1)^{n+1}-(-1)^{k}}{-2}
$$

A need not be positive

- It is important to keep in mind that our formula works for any real number $\neq 1$.
- For example, if $A=-1$, our formula says that

$$
A^{k}+A^{k+1}+\cdots+A^{n}=\frac{(-1)^{n+1}-(-1)^{k}}{-2}
$$

- This quantity is equal to 0 if k and $n+1$ are both odd or both even.

A need not be positive

- It is important to keep in mind that our formula works for any real number $\neq 1$.
- For example, if $A=-1$, our formula says that

$$
A^{k}+A^{k+1}+\cdots+A^{n}=\frac{(-1)^{n+1}-(-1)^{k}}{-2}
$$

- This quantity is equal to 0 if k and $n+1$ are both odd or both even.
- If $n+1$ is even and k is odd, we get 1 .

A need not be positive

- It is important to keep in mind that our formula works for any real number $\neq 1$.
- For example, if $A=-1$, our formula says that

$$
A^{k}+A^{k+1}+\cdots+A^{n}=\frac{(-1)^{n+1}-(-1)^{k}}{-2}
$$

- This quantity is equal to 0 if k and $n+1$ are both odd or both even.
- If $n+1$ is even and k is odd, we get 1 .
- Finally, if $n+1$ is odd and k is even, we get -1 .

Spicing up the geometric series

- Suppose that instead of geometric series above, we consider the following fancier sum

Spicing up the geometric series

- Suppose that instead of geometric series above, we consider the following fancier sum

$$
1 \cdot A+2 \cdot A^{2}+3 \cdot A^{3}+\cdots+n \cdot A^{n},
$$

Spicing up the geometric series

- Suppose that instead of geometric series above, we consider the following fancier sum

$$
1 \cdot A+2 \cdot A^{2}+3 \cdot A^{3}+\cdots+n \cdot A^{n}
$$

- where, as before, A is a non-zero real number.

Spicing up the geometric series

- Suppose that instead of geometric series above, we consider the following fancier sum

$$
1 \cdot A+2 \cdot A^{2}+3 \cdot A^{3}+\cdots+n \cdot A^{n}
$$

- where, as before, A is a non-zero real number.
- In summation notation, this sum takes the form

Spicing up the geometric series

- Suppose that instead of geometric series above, we consider the following fancier sum

$$
1 \cdot A+2 \cdot A^{2}+3 \cdot A^{3}+\cdots+n \cdot A^{n}
$$

- where, as before, A is a non-zero real number.
- In summation notation, this sum takes the form

$$
\sum_{k=1}^{n} k \cdot A^{k}
$$

Just how spicy is it?

- Suppose that we just keep shaking our heads and refuse to accept the fact that the series above is not a geometric series?

Just how spicy is it?

- Suppose that we just keep shaking our heads and refuse to accept the fact that the series above is not a geometric series?
- To perpetuate our delusion, we write

$$
A+A^{2}+\cdots+A^{n}
$$

Just how spicy is it?

- Suppose that we just keep shaking our heads and refuse to accept the fact that the series above is not a geometric series?
- To perpetuate our delusion, we write

$$
A+A^{2}+\cdots+A^{n}
$$

- but then we notice that this does not add up to what we need since A^{2} needs to be multiplied by two, not one, and so on.

Just how spicy is it?

- Suppose that we just keep shaking our heads and refuse to accept the fact that the series above is not a geometric series?
- To perpetuate our delusion, we write

$$
A+A^{2}+\cdots+A^{n}
$$

- but then we notice that this does not add up to what we need since A^{2} needs to be multiplied by two, not one, and so on.
- But we persist and try to correct by adding

$$
A^{2}+A^{3}+\cdots+A^{n}
$$

Just how spicy is it? (continued)

- The correction term we added helped a bit. We now have one factor of A, which is correct, and two factors of A^{2}, which is again correct, but we only have two factors of A^{3} and we need three, and so on.

Just how spicy is it? (continued)

- The correction term we added helped a bit. We now have one factor of A, which is correct, and two factors of A^{2}, which is again correct, but we only have two factors of A^{3} and we need three, and so on.
- But we are persistent, so we add

$$
A^{3}+A^{4}+\cdots+A^{n}
$$

Just how spicy is it? (continued)

- The correction term we added helped a bit. We now have one factor of A, which is correct, and two factors of A^{2}, which is again correct, but we only have two factors of A^{3} and we need three, and so on.
- But we are persistent, so we add

$$
A^{3}+A^{4}+\cdots+A^{n}
$$

- We are starting to see what is going on. While our series is not geometric, we can express it as a sum of a bunch of geometric series.

Just how spicy is it? (continued)

- The correction term we added helped a bit. We now have one factor of A, which is correct, and two factors of A^{2}, which is again correct, but we only have two factors of A^{3} and we need three, and so on.
- But we are persistent, so we add

$$
A^{3}+A^{4}+\cdots+A^{n} .
$$

- We are starting to see what is going on. While our series is not geometric, we can express it as a sum of a bunch of geometric series.
- Let us fully write out the case $n=3$.

Just how spicy is it? (continued some more)

- In the case $n=3$ we have

$$
A+2 \cdot A^{2}+3 \cdot A^{3}
$$

Just how spicy is it? (continued some more)

- In the case $n=3$ we have

$$
A+2 \cdot A^{2}+3 \cdot A^{3}
$$

- This expression equals $\square_{1}+\square_{2}+\square_{3}$, where

Just how spicy is it? (continued some more)

- In the case $n=3$ we have

$$
A+2 \cdot A^{2}+3 \cdot A^{3}
$$

- This expression equals $\square_{1}+\square_{2}+\square_{3}$, where

$$
\square_{1}=A+A^{2}+A^{3}
$$

Just how spicy is it? (continued some more)

- In the case $n=3$ we have

$$
A+2 \cdot A^{2}+3 \cdot A^{3}
$$

- This expression equals $\square_{1}+\square_{2}+\square_{3}$, where

$$
\square_{1}=A+A^{2}+A^{3}
$$

$$
\square_{2}=A^{2}+A^{3},
$$

Just how spicy is it? (continued some more)

- In the case $n=3$ we have

$$
A+2 \cdot A^{2}+3 \cdot A^{3}
$$

- This expression equals $\square_{1}+\square_{2}+\square_{3}$, where

$$
\square_{1}=A+A^{2}+A^{3}
$$

$$
\square_{2}=A^{2}+A^{3},
$$

- and

$$
\square_{3}=A^{3}
$$

Cutting through the spice

- In general, let

$$
\triangle=A+2 \cdot A^{2}+\cdots+n \cdot A^{n}
$$

Cutting through the spice

- In general, let

$$
\triangle=A+2 \cdot A^{2}+\cdots+n \cdot A^{n}
$$

- Then

$$
\triangle=\square_{1}+\square_{2}+\cdots+\square_{n}
$$

Cutting through the spice

- In general, let

$$
\triangle=A+2 \cdot A^{2}+\cdots+n \cdot A^{n}
$$

- Then

$$
\triangle=\square_{1}+\square_{2}+\cdots+\square_{n}
$$

- where

$$
\square_{k}=A^{k}+\cdots+A^{n}
$$

Cutting through the spice

- In general, let

$$
\triangle=A+2 \cdot A^{2}+\cdots+n \cdot A^{n}
$$

- Then

$$
\triangle=\square_{1}+\square_{2}+\cdots+\square_{n}
$$

- where

$$
\square_{k}=A^{k}+\cdots+A^{n}
$$

- It is a very good time to recall that we have shown above that

$$
\square_{k}=\frac{A^{n+1}-A^{k}}{A-1}
$$

Cutting through the spice (continued)

- We must now sum up all the \square_{k} s. How do we do that?

Cutting through the spice (continued)

- We must now sum up all the \square_{k} s. How do we do that?
- Looking at the expression for \square_{k} we see that we must sum up

Cutting through the spice (continued)

- We must now sum up all the \square_{k} s. How do we do that?
- Looking at the expression for \square_{k} we see that we must sum up

$$
\frac{A^{n+1}-A^{1}}{A-1}+\frac{A^{n+1}-A^{2}}{A-1}+\cdots+\frac{A^{n+1}-A^{n}}{A-1}=
$$

Cutting through the spice (continued)

- We must now sum up all the \square_{k} s. How do we do that?
- Looking at the expression for \square_{k} we see that we must sum up

$$
\begin{gathered}
\frac{A^{n+1}-A^{1}}{A-1}+\frac{A^{n+1}-A^{2}}{A-1}+\cdots+\frac{A^{n+1}-A^{n}}{A-1}= \\
=\frac{n A^{n+1}}{A-1}-\frac{1}{A-1}\left(A+A^{2}+\cdots+A^{n}\right)
\end{gathered}
$$

Cutting through the spice (continued)

- We must now sum up all the \square_{k} s. How do we do that?
- Looking at the expression for \square_{k} we see that we must sum up

$$
\frac{A^{n+1}-A^{1}}{A-1}+\frac{A^{n+1}-A^{2}}{A-1}+\cdots+\frac{A^{n+1}-A^{n}}{A-1}=
$$

$$
=\frac{n A^{n+1}}{A-1}-\frac{1}{A-1}\left(A+A^{2}+\cdots+A^{n}\right)
$$

$$
=\frac{n A^{n+1}}{A-1}-\frac{\left(A^{n+1}-A\right)}{(A-1)^{2}}
$$

Cutting through the spice (finale)

- Note that we used the formula for \square_{k} repeatedly above.

Cutting through the spice (finale)

- Note that we used the formula for \square_{k} repeatedly above.
- In order to keep good habits, let's compute through an example. According to our formula, taking $A=2$ and $n=3$,

Cutting through the spice (finale)

- Note that we used the formula for \square_{k} repeatedly above.
- In order to keep good habits, let's compute through an example. According to our formula, taking $A=2$ and $n=3$,

$$
2+2 \cdot 2^{2}+3 \cdot 2^{3}=3 \cdot 16-(16-2)=48-14=34
$$

which is true.

Cutting through the spice (finale)

- Note that we used the formula for \square_{k} repeatedly above.
- In order to keep good habits, let's compute through an example. According to our formula, taking $A=2$ and $n=3$,

$$
2+2 \cdot 2^{2}+3 \cdot 2^{3}=3 \cdot 16-(16-2)=48-14=34
$$

which is true.

- In order to built up these skills further, we need to go back and redo all these calculations using the summation notation.

Diving into the summation notation

- Let us compute

$$
\sum_{j=k}^{n} A^{j}
$$

Diving into the summation notation

- Let us compute

$$
\sum_{j=k}^{n} A^{j}
$$

- Following the prescription from above, we consider

$$
A \cdot \sum_{j=k}^{n} A^{j}=\sum_{j=k}^{n} A^{j+1}
$$

Diving into the summation notation

- Let us compute

$$
\sum_{j=k}^{n} A^{j}
$$

- Following the prescription from above, we consider

$$
A \cdot \sum_{j=k}^{n} A^{j}=\sum_{j=k}^{n} A^{j+1}
$$

- We want to subtract $\sum_{j=k}^{n} A^{j}$ from

$$
A \cdot \sum_{j=k}^{n} A^{j}=\sum_{j=k}^{n} A^{j+1}
$$

Changing the index of summation

- The technical problem we are facing is that in considering the expression

$$
\sum_{j=k}^{n} A^{j+1}-\sum_{j=k}^{n} A^{j}
$$

Changing the index of summation

- The technical problem we are facing is that in considering the expression

$$
\sum_{j=k}^{n} A^{j+1}-\sum_{j=k}^{n} A^{j}
$$

- we see that the summands are of a slightly different form!

Changing the index of summation

- The technical problem we are facing is that in considering the expression

$$
\sum_{j=k}^{n} A^{j+1}-\sum_{j=k}^{n} A^{j}
$$

- we see that the summands are of a slightly different form!
- We can fix the problem as follows. Let $m=j+1$. Then since j ranges from k to n, m ranges from $k+1$ to $n+1$.

Changing the index of summation

- The technical problem we are facing is that in considering the expression

$$
\sum_{j=k}^{n} A^{j+1}-\sum_{j=k}^{n} A^{j}
$$

- we see that the summands are of a slightly different form!
- We can fix the problem as follows. Let $m=j+1$. Then since j ranges from k to n, m ranges from $k+1$ to $n+1$.
- It follows that

$$
\sum_{j=k}^{n} A^{j+1}=\sum_{m=k+1}^{n+1} A^{m}
$$

"Dummy" variable

- It is very important to internalize the fact that the letter m is a "dummy variable". Once you execute the sum, nobody is going to know whether you used the letter m or any other letter in the English alphabet or the Tibetan alphabet for that matter!

"Dummy" variable

- It is very important to internalize the fact that the letter m is a "dummy variable". Once you execute the sum, nobody is going to know whether you used the letter m or any other letter in the English alphabet or the Tibetan alphabet for that matter!
- In particular,

$$
\sum_{m=k+1}^{n+1} A^{m}=\sum_{j=k+1}^{n+1} A^{j}
$$

"Dummy" variable

- It is very important to internalize the fact that the letter m is a "dummy variable". Once you execute the sum, nobody is going to know whether you used the letter m or any other letter in the English alphabet or the Tibetan alphabet for that matter!
- In particular,

$$
\sum_{m=k+1}^{n+1} A^{m}=\sum_{j=k+1}^{n+1} A^{j}
$$

- It follows that

$$
A \cdot \sum_{j=k}^{n} A^{j}-\sum_{j=k}^{n} A^{j}=\sum_{j=k+1}^{n+1} A^{j}-\sum_{j=k}^{n} A^{j}
$$

Double summation

- We can now see that most of the terms are going to cancel, leaving us with

$$
A^{n+1}-A^{k}
$$

as before.

Double summation

- We can now see that most of the terms are going to cancel, leaving us with

$$
A^{n+1}-A^{k}
$$

as before.

- Putting everything together, we see that

$$
(A-1) \sum_{j=k}^{n} A^{j}=A^{n+1}-A^{k}
$$

Double summation

- We can now see that most of the terms are going to cancel, leaving us with

$$
A^{n+1}-A^{k}
$$

as before.

- Putting everything together, we see that

$$
(A-1) \sum_{j=k}^{n} A^{j}=A^{n+1}-A^{k}
$$

- and we conclude that

$$
\sum_{j=k}^{n} A^{j}=\frac{A^{n+1}-A^{k}}{A-1}
$$

as before.

Double summation (continued)

- We now go ahead and redo the calculation for

$$
\triangle=A+2 \cdot A^{2}+\cdots+n \cdot A^{n}=\sum_{k=1}^{n} k \cdot A^{k}
$$

Double summation (continued)

- We now go ahead and redo the calculation for

$$
\triangle=A+2 \cdot A^{2}+\cdots+n \cdot A^{n}=\sum_{k=1}^{n} k \cdot A^{k}
$$

- As we saw before,

$$
\triangle=\square_{1}+\cdots+\square_{n}
$$

Double summation (continued)

- We now go ahead and redo the calculation for

$$
\triangle=A+2 \cdot A^{2}+\cdots+n \cdot A^{n}=\sum_{k=1}^{n} k \cdot A^{k}
$$

- As we saw before,

$$
\triangle=\square_{1}+\cdots+\square_{n}
$$

- where

$$
\square_{k}=\sum_{j=k}^{n} A^{j}
$$

Double summation (continued)

- To put it another way,

$$
\triangle=\sum_{k=1}^{n} \sum_{j=k}^{n} A^{j}
$$

a double sum.

Double summation (continued)

- To put it another way,

$$
\triangle=\sum_{k=1}^{n} \sum_{j=k}^{n} A^{j}
$$

a double sum.

- But we have a formula for the inner sum, so

$$
\triangle=\sum_{k=1}^{n} \frac{A^{n+1}-A^{k}}{A-1}
$$

Double summation (continued)

- To put it another way,

$$
\triangle=\sum_{k=1}^{n} \sum_{j=k}^{n} A^{j}
$$

a double sum.

- But we have a formula for the inner sum, so

$$
\begin{aligned}
& \triangle=\sum_{k=1}^{n} \frac{A^{n+1}-A^{k}}{A-1} \\
= & \frac{n A^{n+1}}{A-1}-\frac{1}{A-1} \sum_{k=1}^{n} A^{k}
\end{aligned}
$$

Deeper waters

$$
\frac{n A^{n+1}}{A-1}-\frac{\left(A^{n+1}-A\right)}{(A-1)^{2}}
$$

same as before.

Deeper waters

$$
\frac{n A^{n+1}}{A-1}-\frac{\left(A^{n+1}-A\right)}{(A-1)^{2}}
$$

same as before.

- But what about

$$
\sum_{k=1}^{n} k^{2} A^{k} ?
$$

Deeper waters

$$
\frac{n A^{n+1}}{A-1}-\frac{\left(A^{n+1}-A\right)}{(A-1)^{2}}
$$

same as before.

- But what about

$$
\sum_{k=1}^{n} k^{2} A^{k} ?
$$

- This is where the fundamental idea behind summation by parts comes into play.

Telescoping series

- The key is to observe that

$$
k^{2}=\sum_{j=1}^{k} j^{2}-(j-1)^{2}=\sum_{j=1}^{k} 2 j-1 .
$$

Telescoping series

- The key is to observe that

$$
k^{2}=\sum_{j=1}^{k} j^{2}-(j-1)^{2}=\sum_{j=1}^{k} 2 j-1
$$

- This is a special case of a general simple formula

$$
\begin{gathered}
\sum_{j=1}^{k} a_{j}-a_{j-1}=\left(a_{1}-a_{0}\right)+\left(a_{2}-a_{1}\right)+\cdots+\left(a_{k}-a_{k-1}\right) \\
=a_{k}-a_{0}
\end{gathered}
$$

Telescope

$\sum_{k=1}^{n} k^{2} A^{k}$

- It follows that

$$
\sum_{k=1}^{n} k^{2} A^{k}=\sum_{k=1}^{n} A^{k} \sum_{j=1}^{k} 2 j-1
$$

$\sum_{k=1}^{n} k^{2} A^{k}$

- It follows that

$$
\sum_{k=1}^{n} k^{2} A^{k}=\sum_{k=1}^{n} A^{k} \sum_{j=1}^{k} 2 j-1
$$

$$
=\sum_{k=1}^{n} \sum_{j=1}^{k}(2 j-1) A^{k}
$$

$\sum_{k=1}^{n} k^{2} A^{k}$

- It follows that

$$
\sum_{k=1}^{n} k^{2} A^{k}=\sum_{k=1}^{n} A^{k} \sum_{j=1}^{k} 2 j-1
$$

$$
=\sum_{k=1}^{n} \sum_{j=1}^{k}(2 j-1) A^{k}
$$

$$
\sum_{j=1}^{n}(2 j-1) \sum_{k=j}^{n} A^{k}
$$

Reduction

$$
=\sum_{j=1}^{n}(2 j-1) \frac{A^{n+1}-A^{j}}{A-1}
$$

Reduction

$$
=\sum_{j=1}^{n}(2 j-1) \frac{A^{n+1}-A^{j}}{A-1}
$$

$$
=\frac{2 A^{n+1}}{A-1} \sum_{j=1}^{n} j-\frac{2}{A-1} \sum_{j=1}^{k} j A^{j}
$$

Reduction

$$
=\sum_{j=1}^{n}(2 j-1) \frac{A^{n+1}-A^{j}}{A-1}
$$

$$
=\frac{2 A^{n+1}}{A-1} \sum_{j=1}^{n} j-\frac{2}{A-1} \sum_{j=1}^{k} j A^{j}
$$

$$
-\frac{A^{n+1}}{A-1} \sum_{j=1}^{k} 1+\frac{1}{A-1} \sum_{j=1}^{k} A^{j}=I+I I+I I I+I V .
$$

Reduction completed

- We can handle the first sum if can sum consecutive integers.

Reduction completed

- We can handle the first sum if can sum consecutive integers.
- The second sum is fine because we already know how to sum

$$
\sum_{j=1}^{k} j A^{j}
$$

Reduction completed

- We can handle the first sum if can sum consecutive integers.
- The second sum is fine because we already know how to sum

$$
\sum_{j=1}^{k} j A^{j}
$$

- The third sum is straightforward and the fourth sum is geometric series. So matters have been reduced to computing

Reduction completed

- We can handle the first sum if can sum consecutive integers.
- The second sum is fine because we already know how to sum

$$
\sum_{j=1}^{k} j A^{j}
$$

- The third sum is straightforward and the fourth sum is geometric series. So matters have been reduced to computing

$$
\sum_{j=1}^{k} j
$$

Sum of consecutive integers

- We have a similar movie before, so we write

$$
\text { Apple }=\sum_{j=1}^{k} j=\sum_{j=1}^{k} \sum_{m=1}^{j} 1=\sum_{m=1}^{k} \sum_{j=m}^{k} 1
$$

Sum of consecutive integers

- We have a similar movie before, so we write

$$
\begin{aligned}
& \text { Apple }=\sum_{j=1}^{k} j=\sum_{j=1}^{k} \sum_{m=1}^{j} 1=\sum_{m=1}^{k} \sum_{j=m}^{k} 1 \\
= & \sum_{m=1}^{k}(k-m+1)=\sum_{m=1}^{k}(k+1)-\sum_{m=1}^{k} m
\end{aligned}
$$

Sum of consecutive integers

- We have a similar movie before, so we write

$$
\begin{gathered}
\text { Apple }=\sum_{j=1}^{k} j=\sum_{j=1}^{k} \sum_{m=1}^{j} 1=\sum_{m=1}^{k} \sum_{j=m}^{k} 1 \\
=\sum_{m=1}^{k}(k-m+1)=\sum_{m=1}^{k}(k+1)-\sum_{m=1}^{k} m \\
=k(k+1)-\text { Apple } .
\end{gathered}
$$

Sum of consecutive integers

- We have a similar movie before, so we write

$$
\begin{gathered}
\text { Apple }=\sum_{j=1}^{k} j=\sum_{j=1}^{k} \sum_{m=1}^{j} 1=\sum_{m=1}^{k} \sum_{j=m}^{k} 1 \\
=\sum_{m=1}^{k}(k-m+1)=\sum_{m=1}^{k}(k+1)-\sum_{m=1}^{k} m \\
=k(k+1)-\text { Apple } .
\end{gathered}
$$

- It follows that

$$
\text { Apple }=\frac{k(k+1)}{2} .
$$

Higher powers

- Let us now formulate a strategy for computing

$$
\sum_{k=1}^{n} k^{a} A^{k}, a>2
$$

Higher powers

- Let us now formulate a strategy for computing

$$
\sum_{k=1}^{n} k^{a} A^{k}, a>2
$$

- Following our prescription, we rewrite this sum in the form

$$
\sum_{k=1}^{n}\left\{\sum_{j=1}^{k} j^{a}-(j-1)^{a}\right\} A^{k}
$$

Higher powers

- Let us now formulate a strategy for computing

$$
\sum_{k=1}^{n} k^{a} A^{k}, a>2
$$

- Following our prescription, we rewrite this sum in the form

$$
\sum_{k=1}^{n}\left\{\sum_{j=1}^{k} j^{a}-(j-1)^{a}\right\} A^{k}
$$

- and the question that immediately arises is how to expand the expression

$$
j^{a}-(j-1)^{a} ?
$$

(Slightly) advanced "FOIL" method

- In order to make sense of this expression, we need to figure out how to expand expressions of the form

$$
(x+y)^{a}
$$

where a is a positive integer.

(Slightly) advanced "FOIL" method

- In order to make sense of this expression, we need to figure out how to expand expressions of the form

$$
(x+y)^{a}
$$

where a is a positive integer.

- We have

$$
(x+y)^{a}=(x+y) \cdot(x+y) \cdots \cdot(x+y) .
$$

(Slightly) advanced "FOIL" method

- In order to make sense of this expression, we need to figure out how to expand expressions of the form

$$
(x+y)^{a}
$$

where a is a positive integer.

- We have

$$
(x+y)^{a}=(x+y) \cdot(x+y) \cdots \cdot(x+y) .
$$

- Multiplying out this expression amounts to selecting either x or y from each set of parentheses and multiplying them together.

Let's count!

- It follows that this expression is equal to

$$
C(a, 0) x^{a}+C(a, 1) x^{a-1} y^{1}+C(a, 2) x^{a-2} y^{2}+\cdots+C(a, a) y^{a}
$$

Let's count!

- It follows that this expression is equal to

$$
C(a, 0) x^{a}+C(a, 1) x^{a-1} y^{1}+C(a, 2) x^{a-2} y^{2}+\cdots+C(a, a) y^{a}
$$

- where $C(a, j)$ is the number of ways of choosing j objects out of a possibilities.

Let's count!

- It follows that this expression is equal to

$$
C(a, 0) x^{a}+C(a, 1) x^{a-1} y^{1}+C(a, 2) x^{a-2} y^{2}+\cdots+C(a, a) y^{a}
$$

- where $C(a, j)$ is the number of ways of choosing j objects out of a possibilities.
- You may already know that

$$
C(a, j)=\frac{a!}{j!(a-j)!},
$$

where

$$
k!=1 \cdot 2 \cdots \cdots k
$$

Pascal's triangle

Conclusion

- Putting everything together, we see that

$$
(j-1)^{a}=\sum_{m=0}^{a}(-1)^{m} j^{a-m} C(a, m)
$$

Conclusion

- Putting everything together, we see that

$$
\begin{aligned}
& (j-1)^{a}=\sum_{m=0}^{a}(-1)^{m} j^{a-m} C(a, m) \\
& =j^{a}+\sum_{m=1}^{a}(-1)^{m} j^{a-m} C(a, m)
\end{aligned}
$$

Conclusion

- Putting everything together, we see that

$$
\begin{aligned}
& (j-1)^{a}=\sum_{m=0}^{a}(-1)^{m} j^{a-m} C(a, m) \\
& =j^{a}+\sum_{m=1}^{a}(-1)^{m} j^{a-m} C(a, m)
\end{aligned}
$$

- which allows us to explicitly express

$$
j^{a}-(j-1)^{a}
$$

as a polynomial in j of degree $a-1$.

Conclusion (continued)

- The reduction we just described allows us to express

$$
\sum_{k=1}^{n} k^{a} A^{k}
$$

Conclusion (continued)

- The reduction we just described allows us to express

$$
\sum_{k=1}^{n} k^{a} A^{k}
$$

- in terms of

$$
\sum_{k=1}^{n} k^{b} A^{k}, \text { with } b<a
$$

Conclusion (continued)

- The reduction we just described allows us to express

$$
\sum_{k=1}^{n} k^{a} A^{k}
$$

- in terms of

$$
\sum_{k=1}^{n} k^{b} A^{k}, \text { with } b<a
$$

- and

$$
\sum_{k=1}^{n} k^{b}, \text { also with } b<a
$$

