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Let

Mf(x)=sup |f* 3,y do)(x)|

t>6

denote the maximal operator associated with surface measure do on a smooth
surface S. We prove that if S is convex and has finite order contact with its tangent
lines, then .# is bounded on L?(R"), p>2, if and only if d(x, #)~'e L}#(S) for
all tangent planes # not passing through the origin. Let

M f(x)=sup | f* 0y do)(x)]|

t>0

be the maximal operator associated with a nonisotropic dilation &, of surface
measure do. We prove that .4’ often behaves far better than .# due to a rotational
curvature in the time parameter 1. € 1997 Academic Press
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1. INTRODUCTION

Let S be a smooth hypersurface in R”, let do denote Lebesgue measure
on S, and let  denote a : smooth cutoff function in R”. Let 6, denote the
usual dilation given by (5,/1(5)=1;(t«f). We consider first the convolution
operators

M, f(x)=f* 6,y do)(x),
and their associated maximal operators

Af(x)=sup | M, f(x)|. (1)
>0

In [St2], Stein showed that when S=8"-"! the unit (n — 1)-dimensiona]
sphere, then

N | 1rin, < Co 1l omen, (2)

holds for p > n/(n — 1), >3, where fis initially taken to be in the class of
rapidly decreasing functions. The two-dimensional version of this result

hypersurface in R” with everywhere non-vanishing Gaussian curvature (see
[Gr]). More generally, one can treat the case where the surfaces vary in
the presence of non-vanishing rotational curvature—see e.g. [St3, p. 494 7.

Gaussian curvature is allowed to vanish, ie., determining the best possible
value of p, such that (2) holds for all P>Ppo (such a p, < o exists for
finite type surfaces S by [SoSt]). In [IoSal 1, we showed that a necessary
condition for (2) to hold is that

dix, #)Te LYr(s), (3)
where J# is any hyperplane not passing through the origin, and d(x, #)
denotes the distance from v on Sto #. For p>2, we know of no coun-
terexample to the converse.

Conjecture 1. For S smooth and P> 2, condition (3) s necessary and
sufficient for the maximal inequality (2).

We remark that for | < p <2, condition (3) is not sufficient, even for
convex surfaces. Indeed. if S in R* is given as the graph of - =x>"4 12 the
maximal operator is bounded on L” if and only if p > 4m/(2m + 1 ), while
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condition (3) holds if and only if p > 4m/(2m + 2). See Proposition 5.1 in
[NaSeWa] and the discussion there. We will not pursue the case p<2 in
this paper. We also mention here an old open conjecture, which in the case
y=11is due to E. M. Stein.

Conjecture 2. Suppose S is smooth and |6(¢)| < C(1 +]&))77, 0<y< L.
Then the maximal inequality (2) holds for p > 1/y.

1.1. Convex Finite-Type Surface

The first main result of this paper (see Theorem 6 below) is that
Conjecture 1 holds if S 1s a smooth convex hypersurface in R", n>3, of
finite-type in the sense of Bruna et al. [BrNaWal], ie., every tangent line
makes finite order contact with S. As we will see below, this also establishes
Conjecture 2 for such surfaces.

Earlier results in this direction include [Iol. Io2], where the conjecture
was proved for plane curves, and [IoSal], where the conjecture was
proved when the surface S is the graph of a homogeneous function @ with
finite-type level set T={® =1} (in the weaker sense that every tangent
hyperplane makes finite order contact with Z). In [ NaSeWa], Nagel et al.
proved that the maximal inequality (2) holds for smooth convex finite-type
hypersurfaces satisfying conditions involving the integrability and scaling
properties of the non-isotropic balls related to the distance from the hyper-
surface to its tangent hyperplanes, namely d(x, #°) in (3). More precisely,
they define non-isotropic balls #(x,J) on S as the set of y €S such that
d(y, #,) <6 where #, is the tangent plane to S at x. Their sufficient
condition for the maximal inequality (2) is then as follows: Suppose there
exist € >0 and y > 1 such that for all 6 >0,

’

[/ r

|
\Js

1/e
|B(x, d)|¢ da(x)\/ < Co.
/

Then the maximal inequality (2) holds for p > 2(1 + 1/e). We also mention
the closely related result in [ BrNaWa] that decay of the Fourier transform
of surface-carried measure is controlled by the volume of the nonisotropic
balls,

Wdo(2)<C sup |2(x 12", 4)

X € supp ¥

One of the two main tools we use in dealing with convex hypersurfaces
of finite type is a result due to Schulz [Sc], which says that after perhaps
rotating the coordinates, any smooth convex finite-type function @ can be
written in the form @(x) = Q(x)+ R(x), where Q is a convex mixed homo-
geneous polynomial (ie., there exist even integers (a,, .., a,_;) such that
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Qs x,, .., sV-1x,_|)=50(x), s>0) that vanishes only at the origin,
and R(x) is a remainder term in the sense that it tends to zero under the
non-isotropic dilation of Q. The (n— 1)-tuple (a,, ..., a,_,) is referred to as
the multi-type of @ at 0. In practice, this means that the discussion of the
maximal operator associated to convex hypersurfaces reduces to the local
analysis of the principal term Q(x), and in the range p>2 the maximal
operator turns out to be bounded on L” for p > 1/((1/a,)+ --- +(1/a,_,)).
A calculation, using the homogeneity and positivity of Q, shows that this
corresponds precisely to the integrability condition (3).

The second main tool used in proving maximal theorems when p >2 is
the square function technique of Sogge and Stein [ SoSt] (see also Cowling
and Mauceri [ CoMal]). Essentially, this says that if the Fourier transform
of a compactly supported distribution 7 has decay of order —1—g¢, ie.,

[#OISCA+[EN127e  e>0, (5)

then the maximal convolution operator .#, corresponding to the dilates of
7 is bounded on L. A modified proof (see the proof of Theorem 15 below)
shows that the epsilon in (5) can be replaced by a log factor, or more
generally by

[BOISCU+IDT2 e,y and Y p(2") <.  (6)

n=0

(One consequence of this is the existence of .# whose interval of
boundedness is closed. See the subsection on examples below, where the
condition on y is also shown to be sharp.)

Alternatively, we can use Sogge’s theorem on one non-vanishing principal
curvature [So2]. This says that if a surface S has everywhere at least one
non-vanishing principal curvature, then the corresponding maximal
operator ./ is bounded on L?(R") for p>2,n>2 (thus establishing an
instance of Conjecture 2). For our purposes, it is essential to know that the
operator norm on L?(R") is bounded by C, ,d(0, S)"?, where d(0, S)
denotes the distance from S to the origin.

We now comment briefly on how these ideas tie together in proving the
equivalence of (2) and (3) for smooth convex finite-type surfaces. First, a
partition of unity argument reduces matters to the case where we can write
the surface as the graph of a convex function @ to which the Schulz decom-
position applies: @ = Q0+ R. We then decompose the surface S in dyadic
shells away from the origin, using the non-isotropic dilation associated
with the multi-type (a,, .., a,_,) of ®. We then rescale and blow up the
kth dyadic shell to the unit annulus. This has the effect of multiplying the
integral by 27%”~ ", and more crucially, of translating this piece of the
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surface by ¢,2“" in the vertical direction, where 1/m=(1/(n—1))(1/a,
+ --- +1/a,_,). Now the Euler homogeneity relations, together with the
finite type hypothesis, imply that there is at least one non-vanishing principal
curvature everywhere on this blown up surface. At this point we can either
apply directly Sogge’s theorem with the operator bound C, ,(c,2%™)"7,
and sum the estimates C2""/P =K"= when p>m/(n—1)=1/((1/a,)
+ .-+ +(l/a,_,)), or we can use the Schulz lemma once more, along with
(4), to show that the Fourier transform of surface-carried measure decays
like |&] =Y =€ for some €>0, and apply the square function theorem of
Sogge and Stein [SoSt].

1.2. Maximal Operators with More General Dilation Groups

We now recall a generalization of the maximal operator . given by
Greenleaf in [ Gr]. Given an n-tuple (8,,.., 8,) of nonnegative real numbers,
consider .#' defined by '

M f(x) = sup |M, f(x)], (7)

>0

where the convolution operator M is given by
M f(x) = f* (Y do)(x),

but where J;, now denotes the nonisotropic dilation given by ﬂ(é)=
h(t#1¢,,.., t%¢&,). In the case B, =f,= - =p,, #' reduces to the familiar
operator .#. While all of the maximal inequalities for .# extend with little
change in the proof to .#', we will see below that .#' often behaves much
better due to a “rotational curvature” in the time parameter ¢.

We note that the proof of Theorem 2 in [IoSal] shows that a necessary
condition for

1A f 1 Loy < Cp 1SN ogmem ‘ (8)

to hold is that (3) holds for any hyperplane s# not passing through the origin,
and its normal does not change direction under the action of the dilations
0,. For example, in the case f,=f,=.-- =8,_, #f,, the hyperplanes
under question would be the horizontal planes (perpendicular to &,) and the
vertical planes (perpendicular to vectors with vanishing nth component).
The next result of this paper (see Theorem 7 below) is that in the case
By=p=--- =p,_, #B,, condition (3) over all horizontal hyperplanes 5#
is sufficient for the nonisotropic maximal function inequality (8) when the
surface S is given as the graph of a mixed homogeneous function (without
any positivity assumption) with finite-type level set X (in the weaker sense
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of Sogge and Stein, i.e., every tangent plane (of dimension n —2) has finite
order contact with X).

More generally and significantly, our main theorem here (see Theorem 9
below) shows that this result persists for certain parametric surfaces of
codimension 1 and 2 with homogeneity relative to a more general dilation
group. See Example 2 below for an illustration where .4’ behaves much
better than..#, and also the example at the end of the paper which exhibits
a surface of codimension 1 to which the theorem applies, yet the decay of
the Fourier transform of surface-carried measure is much worse than might
be expected.

These results rely on the phenomenon that the uniform L> decay in (6)
can be weakened to an average L” decay,

2 12
[ e al” <casicn =, o)
in order to obtain L* boundedness of .4 on L*, where .#", is the obvious
analogue of ./, relative to the dilations ¢ (see Theorem 8 below). Note
that when the f, are not all equal, and ¢ does not point in a coordinate
direction, then the projection of the vector (t#'¢ ..., t#%¢,) onto the unit
sphere traces out a non-constant path, thereby avoiding the worst normals
to the surface S most of the time.

An immediate consequence of this phenomenon is that for the surface
S, given as the graph of -=1+x+e """ the corresponding maximal
operator /s 1s bounded on L? for x <1 (when B, # f8,, of course), while
A is not bounded on L” for any a>0 and p < cc. See Example 1 below.
The point here is that this surface essentially rotates while being dilated by
J,, giving rise to a type of degenerate rotational curvature in time ¢ that
results in an average decay of —1, and accounts for the vastly improved
mapping properties of .#' over .#. Note that this is quite distinct from
the notion of rotational curvature (in space) as in [St3]. Indeed, in our
translation invariant case, non-vanishing rotational curvature (in space) is
equivalent to non-vanishing Gaussian curvature of the surface S.

We remark that there is no local smoothing phenomenon for p > 2 in the
setting of average L* decay. Indeed, the Fourier transform of the surface-
carried measure on S, has an average L* decay of order %, in fact, (9) holds
with y(|&]) = (log(1/|&])) ~ "%, yet an argument involving the Besicovitch set
shows that .#;_fails to be bounded on L7 for a > p. Perhaps more striking
is that the plane S, (=14 x) has average L* decay 1, yet ./’s_fails to be
bounded on L”(R?) for all p < oz. This follows from the two-dimensional
version: if S is a non-vertical line segment in the plane (that does not pass
through the origin if it is horizontal), then .#’5 fails to be bounded on
L?(R*) for all p < . Since the average L* decay of S is 3, this contrasts
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with Bourgain’s circular maximal theorem. See Example 4 below for these
results.

We now comment briefly on the ideas used, beginning with a review of
the methods in [IoSal]. In [IoSal], we considered measures df, given by
weighting S with powers of |®|;

dB.(y)=|D(3")* (¥ do)(y).

Given an additional finite type assumption on the level set 2= {x: &(x) =1},
we proved that |5, (¢)] < C [¢] =)< for some € >0 if x> L — p. The decay
|€] =12 was obtained merely from the curvature of & in the radial direction
together with (3), which in this case reduces to & ~'eL”(S"2), and
a>1—p. To obtain the crucial stronger decay of |&] =V ~¢ we used
the finite-type hypothesis on the level set . With this established, a theorem
of Sogge and Stein ([SoSt]; see also Cowling and Mauceri [CoMa2]),
involving square function techniques, was used to establish the L? boun-
dedness of

M, f(x)=sup

t>0

J S =0 x, = t,) dB.0) (10)

when §>a>1—p. A simple application of Hélder’s inequality, together
with the local integrability of |@(y')| =, then showed that #,=.# is
bounded on L? for p > 1/p.

In the case of surfaces that are graphs of functions of mixed homogeneity,
and more generally of parametric surfaces given by (mixed) homogeneous
functions, the crucial decay estimate |§,(¢)| < C |&] ~V»)~¢ is problematic.
Indeed, if S is a k-dimensional surface (k=n—1 or n—2) given parametri-
cally by

S={(D(X)s0r D, _1(x), D(X) + ¢o) € R": x € R},

where the &; (respectively, @) are homogeneous of degree m; (respectively,
m), then

B.(&)= j j " I ) e o) = 1) iy | 9%(0) dio,
Sk-11 Yo

The integral in square brackets is essentially the Fourier transform of the
curve G =(r",.,r"-1,r") in R" If the exponents m,,.,m,_,,m are
distinct, then the curve is nondegenerate, and the best possible bound for
such a curve is essentially C |&,| =", far short of that required when n > 3.

In fact, the decay of the entire integral in J,(¢) can be essentially no
better than this for certain parametric surfaces. See the example at the end
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of the paper for a hypersurface given parametrically as the graph of homo-
geneous functions, for which .#' is bounded on L2 yet the decay of the
Fourier transform of surface-carried measure is worse than —3. See
also Example 2 below for a simpler codimension 2 surface, for which .4’
is bounded on L? yet . fails to be bounded on L™ (m large). We

nevertheless conjecture that the decay of f, is at least —1 in the case of a
surface of codimension 1 given as the graph of a mixed homogeneous func-
tion. Note that for homogeneous @, the phase is (X2 ol )+
&,®(w) r™, which is the Fourier transform of a nondegenerate curve in R?,
hence with decay C |&,| ™2

On the other hand, it is the case that an average L decay of order
—1—€ holds for f)’:, namely (see Theorem 23 and also (61) below)

2 12
{L Iﬂ:([ﬁ‘é',fp"§n+x)|2dt} <C+[En="2ms (1)

provided 8, # B,. Essentially, this holds because the dilations in ¢ prevent
the dual variable from becoming stationary in bad directions. This allows
us to invoke a universal Van der Corput estimate (Theorem 17 below) of
the type

‘ mo 2ni \'7?
ip(s _ igir,
.( € ‘ )W(S) dS kgl e : <¢"(rk)> l//(rk)

<q<2
k_

=1

POER R SRPUPRIEINS o |¢'(r,~>r’),
=1

i=1

where {r,}7_, and {s,}7_, are the real zeroes of ¢’ and ¢" respectively
in [7,,7,] which contains the support of ¥, and ¢ satisfies the crucial
condition

"I or [s—rl <18l

k=1,.,m

An additonal tool needed is an extension to finite-type functions of the
reverse Holder inequality of Ricci and Stein for small negative powers of
polynomials (see Proposition 22 below). Once we have (11), it remains to
prove the analogue of the theorem of Sogge and Stein in [SoSt] with the
hypothesis of uniform decay replaced by an average L* decay. This is
accomplished with the aid of a Littlewood—-Paley decomposition in Theorem 15
below.



54 IOSEVICH AND SAWYER

A different average L* decay estimate (of order —(n — 1)/2) is introduced
independently by Marletta and Ricci in [ MaRi] to obtain certain 2-parameter
maximal theorems for surfaces passing through the origin.

1.3. Statement of Main Theorems

We begin with a characterization of the L” bounds for maximal averaging
operators associated to convex finite-type hypersurfaces for p>2,n>3.

THEOREM 3. Let @ be a smooth convex function, let S be the graph of ®,
suppose S is of finite type in the sense that every tangent line has finite order
contact with S, and let Mf be defined as in (1) above. If p > 2, then estimate
(2) holds if (3) holds for all hyperplanes # .

Conversely, if the estimate (2) holds, then (3) holds for all hyperplanes #
that do not pass through the origin.

In order to illuminate the role played by homogeneity in this theorem,
we recall the following result due to Schulz [Sc].

DErFINITION 4. We say that a smooth function Q: R"~! - R is mixed
homogeneous of degree (a,, a..., a,_,), a;>0, if Q(s"x,..., s"-1x,_,)
=s50(x), s>0.

LEMMA 5. Let @ be a smooth convex function such that &(0,..,0)=0
and V®(0,..., 0) =(0,..., 0). Suppose that @ has no tangents of infinite order
at the origin. Then, after perhaps applying a rotation, we can write

D(x) = Q(x) + R(x),

where Q(x) is a convex mixed homogeneous polynomial of degree (ay,..., a,_,),
Q(x)#0 for x#0, and R(x) is a remainder term in the sense that

i R(s'xy,..., sYon-1x, )
s—0 N

=0.

The (n—1)-tuple (ay,..., a,_,) is referred to as the multi-type of @ at the
origin. More generally, given a convex surface S with no tangents of infinite
order, we define the multi-type of S at the point x € S to be the (n — 1)-tuple
obtained from the lemma after translating and rotating coordinates so that
@&(x)=0 and V&(x)=0.

The next theorem is a local result that establishes a bridge between
condition (3) and the maximal inequality (2).

THEOREM 6. Let @ be a smooth convex function of finite type, let S be
the graph of ®, and let Mf be defined as in (1) above. Let (a,,..,a,_,) be
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the multi-type of S at a point x € S where the tangent plane # does not pass
through the origin, and suppose that  has sufficiently small support near x.
If p>2, then estimate (2) holds if and only if

1
Vay) +(Vaz) + -+ (Ya,_1)

which in turn holds if and only if (3) holds for the hyperplane # tangent to
S at x.

Remark 1. In order to obtain Theorem 3 from Theorem 6, simply cover
the support of the given cutoff function ¢ with small neighbourhoods in which
Theorem 6 applies, and use a partition of unity along with the “worst case”
multi-types (a,,..., a,_,) that arise.

Remark 2. We will also see below that the decay of the Fourier trans-
form of surface-carried measures y do for such surfaces satisfies

¥ do() <C(1+1¢) 7,

where y=inf,_s((1/a;)+ (1/as) + --- +(1/a,_,)), and (a,,..,a,_,) is the
multi-type of S at x. Thus Theorem 3 verifies, for smooth convex surfaces
of finite type, Conjecture 2 which states that decay of order —y implies
boundedness of the maximal operator for p>1/y.

Here is our theorem for the non-isotropic maximal operator .4’ on mixed
homogeneous surfaces. Our main theorem, an extension to parametric
surfaces of codimension 1 or 2, will be given below (Theorem 9).

THEOREM 7. Suppose ®(x) is mixed homogeneous of degree (ay,..., a,_ ),
with a;> 1, namely

B Vax, . ey, )=,B(x), Ai>0, xeR"L

Set 1/m=(1/(n—1))((1/ay) + --- +(l/a,_,)). Suppose further that

. =11
B(w)~'eL/(S""?).  0<p<min {" ,-},
m 2

and 3 = {x: ®(x)=1} is of finite type with polynomial bounds, namely,

)

2z </

£l

ay*

D(x)| = clx| M, (12)

for some M>=0,{>2 and where o= (a,,..,,_,) is a multi-index, and
(P15 ¥Yu_2) Is a coordinate svstem orthogonal to V®(x) at x. Let 4M' be
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defined as in (7) above with S given as the graph of ® + ¢y, and with 0 <,
=f,=---=p,_,<pB,. Then M' is bounded on LP(R"), ie., (8) holds, for
p>1/p. Moreover, the constant C, in (8) is at most C(1+ |co|)"/? (in the
case B, =0, our proof yields an additional factor log(1+ |cy|)).

Conversely, if (8) holds for a given p and ¢y #0, then p>m/(n—1) and
B(w) e LVr(S"2).

Note that the notion of finite type used here for X2 is considerably weaker
than that used for S in Theorem 3 (the current notion involves finite order
contact for tangent planes as opposed to tangent lines).

Our point of departure in dealing with .#’ is the following extension of
the square function theorem of Sogge and Stein [ SoSt] ( se;e\also [CoMa2]).

Let ! be as above and set /& = (P&, 1%+&,) so that &.h(&) = h(5&).

THEOREM 8. Suppose t is a distribution supported in a ball B of radius
C, with |1(&)| < C, and max{|x|: x e supp 1} < C,. Suppose moreover that

2 1/2
{[Cwsoral”<carim==n

2 . 12
{[Twasora <co+ia i,

where y is bounded and nonincreasing on [0, oc)., and 3 _, y(2") < . For

n=0

t>0, define (&) =1%(5,&) as above with §,=0 for i=1,2,.., n, and set

M f(x)=sup | f*,(x)].

t>0

Then

"'/”,tf”LZSC‘\/CICZ ”f”LZ fOI‘ all fey
(in the case some f;=0, our proof yields an additional factor log(C,/C,)).

The summability condition on y is sharp (see Example 3 below). When
we apply this theorem later in the paper, the constant C, will capture the
distance from the origin of the support of z.

Theorem 7 on mixed homogeneous surfaces can be strengthened in two
ways. First, the mixed homogeneities can be replaced by a more general
group of dilations. Second, and more importantly, the surface S can have
codimension 1 or 2 and be given parametrically with certain restrictions. In
order to state the more general theorem concerning .#’, we first introduce
some notation.
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Let P be a real kxk matrix with trace k, and define the group of
associated dilations {7,},., by T,x=e"""x for xeR* See [dG] and
[Ri]. We say that a function @ is P-homogeneous of degree m if &(T,x) =
r"®(x). In the special case P is the diagonal matrix with entries m/a, ..., m/a,,
where (1/m) = (1/k)3%_, (1/a;), so that T, x = (A™“x,,..., A"%x,) and &(T,x)

= A"P(x), we say th’:tltp is mixed homogeneous of degree (a,,..., a;). Let
S be a smooth k-dimensional surface in R” given parametrically by
S={(D)(xX)yy P, 1(x), B(x) + o) €R™: xe R¥}. (13)
Set
R(x) = (D(X),rr, P, _1(X))

for x e R*. Let o denote a smooth compactly supported measure on S, and
define /' as above.

THEOREM 9. Suppose a k-dimensional surface S,k=n—1 or n—2 (but
k=2), is given parametrically as in (13) where &(x) is P-homogeneous of
degree m, and ®,(x) is P-homogeneous of degree m; #m. Suppose further
that

(i) There is 0 < p <min{k/m, }} such that
P(w) " te LP(S* ).
(ii) The image of
Y ={x:P(x)=1}

under the map R is of finite type with polynomial bounds.
(iii) For each ve S" 3,

az n—1
: oz
rank [5.\75-\}' { 2 Vk(pk(v)Hlsi.jsk ?

k=1
whenever
n—1
V,\'{ Z vk¢k(x)}=0‘
k=1
Let /' be defined as in (7) above with 0<f,=F,=---=f,_,<pB,.

Then ' is bounded on L?(R"), ie., (8) holds, for p>1/p. Moreover, the
constant C, in (8) is at most C,(1+ lco)V? (in the case B, =0, our proof
vields an additional factor log(1 + |c,})).
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Note that the sufficiency half of Theorem 7 is included in Theorem 9 as
the special case when k=n—1 and Z(x)=x is the identity map.

Remark 3. Condition (iii) is used only to obtain a uniform decay
16(&', ) < C ¢~ for & in the cone ¥={(&',&,)eR": |&,|<c[&'|} for ¢
small. This can be replaced with the hypothesis that there is € > O such
that [6(', &) <C €|~V ~¢ for ¢e%. Note that the only meaningful
choices of dimension k for the surface S in Theorem 9 are k=n—1 or
k=n—2, since otherwise decay of order —i— € cannot be guaranteed in
the cone %. Thus the philosophy of the hypotheses in Theorem 9 can be
summarized as follows. We assume via (iii) that the decay of the Fourier
transform of the surface-carried measure in the near horizontal directions
is good enough for L* boundedness of .4’ (even .#). Hypotheses (i) and
(i1) guarantee that, on average, the decay in the near vertical directions will
be good enough for L? boundedness of .#’ (cf. (10)) when a+ p>1
Indeed, (i) gives decay —3 while (ii) yields the extra —e. Thus (i) is an
essentially sharp hypothesis, while (iii) is not.

We give a codimension 2 example to illustrate Theorem 9 in the follow-
ing subsection (see Example 2), and a codimension | example at the end of
the paper. Both examples exhibit better behaviour for .#’ than is shown by
the usual maximal operator 4.

1.4. ExampLEs. (1) Consider the smooth surface S, given as the graph
of z=1+x+e """ We claimed above that the maximal operator .#' is
bounded on L? for x <1, while .# is not bounded on any L” space for
a>0 and p < coc. Indeed, taking # to be the hyperplane z=1+ x in (3)
shows that .# is not bounded on any L’ space, p < cc, since

1 1 o1
j J' (e‘"”-:)‘””d.‘Cdy=J 1PN gy = o, p<ao, a>0.
0’0 0

On the other hand, one directly computes that the Fourier transform of a
smooth compactly supported product measure ¢ on S, is rapidly decreas-
ing for |&] = C | 4], so (9) automatically holds, and otherwise satisfies

l6(S, M)l = do

J ei{,\'é, +r& Al = x e M)

J’ ei{ﬁ\'i;?&e'i"l—’} do-z(y)l

J ei{.vg'l + Ax} dO'l(,\')

SC+ &+ D)~ (In(2 + A1)~V
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In this case also the average L? decay condition (9) holds:

2 2
f |6(tA¢,, 17E,, t”%)lzdts(ln(ZH))‘z’“f (1+|the +hA) 2 dt
1 1

C(1+]A) "1 (In(2 + |A})) %,

provided B, #f8,. Hence .#' is bounded on L? for a<1 by Theorem 8
above. In Example 4 below, we will turn to the negative L? mapping
results for the operators ./’ .

(2) To illustrate Theorem 9 in the codlmenswn 2 case, consider the
two-dimensional surface S in R* given parametrically by

(D,(x), D(x), P3(X), B(x) + o) = (X}, Xa, X7 —X3, X717 + X3 + o)

for x=(x,, x,) € R? and m large. Note that the component functions are
homogeneous in the usual sense of degrees 1, 1, 2, and 2m respectlvely
We first verify condition (iii) of Theorem 9. For V= (v, v;, v3) eS? the

Hessian of 7- 2(x) =v,x, + v,X, + v3(x3 —x3) is
. 2v, 0
2o B0y —
Dv 5?(.\)—-[ 0 sz],

while the gradient is

Vf'-%(x)=<vl+2v3xl>

vy —2V3X, )
Thus
=7 < vyl +val +1vs)
< C(|Vi- Z(x)| + [va])

< C(|V7- R(x)| +/det D*7- R(x)),

which easily yields (iii). We remark that this argument actually yields the
stronger inequality

1< C(|V{7- R(x) + €D(x)} | +/det D*{7- R(x) + €D(x)} +€),

which shows that the oscillatory integral | e™7 #)*€®™ iy (x) dx decays
like A~! for € sufficiently small. (This illustrates the way in which (ii1)
enters into the proof of Theorem 9.) It remains only to verify (i) and (ii).
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Now @ is positive on S! so that (i) is trivial. The image of 2 = {®(x) =1}
under £ is the parametric curve

(cos'™ @, sin'/™ §, cos>™ § — sin>™ ),

which is of finite type. Thus Theorem 9 applies to yield that the maximal
operator .#' for this surface S is bounded on L*(R*), while for ¢, #0, the
usual maximal operator .# is not bounded on L™(R*) by (3) with J# the
hyperplane x, = c,. Note that in this case, the Fourier transform of surface-
carried measure decays no better than |¢| '/ in the direction e,.

(3) We now give an example to illustrate the sharpness of the
summability condition on y in Theorem 8, which will also yield an example
of a maximal operator whose interval of boundedness is closed. For the
smooth surface S given as the graph of z=1+x+e P17 0<a<]l, we
claim that .# is bounded on L” if and only if p > 2, and moreover that ./
is not bounded on L? if x > 1. Indeed, one computes that the Fourier trans-
form of a smooth compactly supported product measure ¢ on S is rapidly
decreasing for |&| > C |4], and otherwise satisfies

i{xE) + pEy+ M1+ x2+ e~ D17y dal

l6(c, M)l =

J e
fei{.V€|+LY:} do(x)

SC(1+A) Y (In(2+4)) "~

Thus (6) holds if x <1, and so .# is bounded on L*. On the other hand,
the necessary condition (3), with # the horizontal hyperplane z = 1, shows
that .# is not bounded on L? for p <2 and any x>0, since

el Pl —a
( (x*+e W) "Vrdxdy
0 -0

1 ( petlDin=2
= {J (t2+1)“””dt}e‘”"‘”2””' “dy
0

0

1
zf VP gy =0, for p<2,a>0,
0

and that .# is not bounded on L? for x> 1, since for p=2 the above
integral is essentially

1 el =2 l
f U (12+1)_]/2dt}d1}z[ |y|*dy=o, for ax=1
o (Yo

4 o
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(4) We now return to the surfaces S, in Example 1 and use the
Besicovitch set to demonstrate that .#’ is not bounded on L?(R?) for
a > p (here we consider the case f, =8, = 20, B3=1). In order to first show
this for the plane S, (z=1+x), we consider the maximal operator .#’
associated to a line segment S in the plane,

M f(x,x,)= sup f Sl +5,x,+t(c+5)) ds, ceR.

1<r<2

Note that for ¢=0, .4’ is the familiar Kakeya maximal function which
is well known to be unbounded on all L?(R?), p<oc, by use of the
Besicovitch set (see e.g. 3.3 on p. 455 of [St3]). When ¢ #0, .#% is a trans-
late of the Kakeya maximal function, but for future purposes we modify
the argument as follows. Following the presentation in Chapter X of [St3],
there is, for each €>0, a set E, that is a union of 2V rectangles R, ..., R.v
each having side lengths 1 and 27" We also need their “reaches” R;
obtained by translating R; two units in the negative direction, along the
longer side of R;. (We choose to work with reaches below E., rather than
above as in [St3], for convenience in using .#’.) Fixing ¢>0 for the
moment, we consider the modified reaches R obtained by translating the
reach R directly down a distance t;c where ¢; is the slope of the rectangle
R We have the following three properties:

(1) |E.]<e
(1) The Rj are pairwise disjoint, so that IU}Z l]éj[ =1
(iil) Msxe(x)>1for xe Y22 R,

Property (i) is Theorem 1(i) on p. 435 of [ St3], and (ii) follows immediately
from the corresponding assertion for the Rj, which is Theorem 1(ii) on
p- 435 of [St3]. Property (iii} follows from the fact that xe Iéj implies
(x1, X2+ t;0) eRj which in turn implies

(xy+s,x,+;(c+s))eR, cE,

for a set of se[0, 3] having measure at least 1. If now .4 is weak typé
bounded for some p < <c, then

R <|{ M'sye(x)21}|<C|E,|=Ce

for all € >0, a contradiction.

Turning now to the surfaces S, with x < o, we extend the sets construc-
ted above, with ¢=1, to three-dimensional sets by considering them in
the x,, x; plane, and crossing them with the interval [ —31, 4] in the x,
direction. More precisely, let
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E¥X={(x;, %, %3): (), X3) €E;, =3 X, <
Rx={(x), X2, x3): (xy, x;)eR;, —3<x;<
etc. We now have the following four properties:
(i) |EX| <e
(i1) The Iéj“ are pairwise disjoint, so that |Uf:1 R}"l =1.
(i) N=(l/e)log(1/e).
(iv)  Ms e (x) > cr(elog(1/e) for xe UiZ, R}

Properties (i) and (ii) are obvious from the above. Property (iii) follows
from the formula displayed on p. 440 of [St3], and (iv) uses (iii) in the
following way. If x = (x,, X, X3) € R}, then -

(148 X +ux3+ (1 +s+e ™M) eRFcEX

for a set of se [0, 3] having measure 1, and essentially the set of u satisfy-
ing e~ "*< 2~ since the R* are 1 x 1 x2~" rectangles. Thus for xe Ry,

= {(s, u): (x; 45, x3+u, x5+ 1,(1 +s+e ™)) e R¥}|
= {ure M2
|

=|{u: lul| <N~}

€ 1/
=a (log(l/e)> ‘

If now 5 is weak type p, we have

2N P € 1/x
* Wy | ——

/9, ’ {‘/ SHEZ € <10g(1/e)> }

€ lja —p
<c[o (i) | 1=

= Ce' P (log(1/€))?"™*

M s 1 £x(X)

R

1= <

for all € >0, which impiies a<p.

In the next three sections, we prove Theorem 6 concerning ./ for convex
surfaces, and in the following four sections we prove Theorem 7 concerning
' for surfaces of mixed homogeneity, and give the modifications needed
for the proof of Theorem 9 on parametric surfaces of codimension 1 and 2.
As all of our proofs in the next three sections involve representing a surface
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as a graph, it will be convenient to work in R”*! rather than in R” for
these sections.

2. CONVEX SURFACES

Our main theorem on convex surfaces, Theorem 3, follows from Theorem 6
as indicated in Remark 1. Theorem 6 in turn will follow from the Schulz
lemma and the next result, which provides a local link between conditions
(2) and (3).

THEOREM 10. Let @ be a smooth function with the following properties.
Suppose that after perhaps applying a rotation, &(x) = Q(x) + R(x), where
Q is mixed homogeneous of degree (a,,..., a,) with (1/a,)+ --- +(1/a,) <1,
Q(x)#0 for x#0, and

1 1/
lim R(sV"1x,,..., s"%x,)
s—0 S

=0. (14)

Let M, f(x, x,, ) and Mf(x, x, , ) be as in (1) above where S is the surface
given as the graph of ®(x) + c,, with Y of sufficiently small support. Suppose
that (1/a,) +(1jay)) + --- +(1/a,) < 1. Then

1
(Va)+ - +(1/a,)’

1-AZf Lrgns1, < Cp Il fl Lomre1ys for p> (15)

where f e S(R"*1), the class of rapidly decreasing functions.

Remark 4. The proof will show that the hypothesis Q(x)#0 for x #0
can be replaced with the weaker hypothesis VQ(x) # 0 for x # 0. Of course,
in our application, Lemma 5 supplies the former.

By Theorem 2 of [IoSal] this result is sharp since it is easily computed
that

'_1_+ +al=inf{p:f|Q(x)|-ﬂ Y(x)dx < OO},

a, n

which shows that (3) holds if and only if p > 1/((1/a;) + --- +(1/a,)), since
if ¢ has sufficiently small support, then

(100017 yx) dx= € [ 1@ (x) dx, 7> 0.
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Indeed, for xe S"~!, and T,x = (s'*x,,..., s"/*x,,), we have

DT, x)=0(T,x)+ R(T;x)=s [ Q(x) +§@] ~sQ(x),

for small s by (14) and the fact that min, g.-1 Q(x) >0.

Our proof of Theorem 10 will use the following result due to Sogge
[So2].

THEOREM 11. Let S be a smooth hypersurface in R",n>=2, having the
property that, at each x € S, at least one principal curvature is non-zero. With
M as in (1) above, then M is bounded on LP(R") for p> 2.

We will actually need to know the more precise conclusion,
IS | o ry < Cpd(0, $)2 | £l Lo (16)

where d(0, S) =max{|x|: xe S}. This is easily seen by tracing through the
initial steps in Sogge’s proof as follows. Let @ be a defining function for the
surface S, ie, S={x:P(x)=0} and V@ #0 on S. Then the averaging
operator M, f(x), as in (1) above, can be written, with a small abuse of
notation, as

Af(x )= [ 8o(@(t(x+ ) Wlt(x + 1)) f(y) dy

R

1 x ,
=.2_;J ,,J' tnezr¢(t(x+y))ll/(t(x+y))f(y) dr dy

= ¥ o] [T e g+ ) fi) dedy

j=—

= Z A; f(x, 1),
j=—x
where ¥ _ f(27/t)=1 for t#0. (Here J, denotes the Dirac delta
function.) If we apply d/dt to A; f(x, t), then we bring down the factor
itf(x+ y)-V®(t(x + y)) into the integrand. Since 7x2/ and |x+y|<
Cd(0, S) (in the range re[1,2]), we see that (d/ dt) A; f(x, t) looks like
27d(0, S) times A; f(x, t). If one uses this observation in inequality (3) of
[So2], one obtains that

Y A f(x, 1)

Jj=0

sup
>0

< C,d(0, )7 1 f |l Lo

LP(R"™)
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Now sup, .o |37 _, 4, f(x,1)] is controlled by a skewed maximal func-
tion of the type in (31) below, and thus is weak type 1,1 with constant
Cd(0, S), hence bounded on L?(R") with norm C, ,d(0, S)"” by inter-
polation. Altogether this establishes (16).

Another proof of Theorems 3 and 6 uses the following result due to Sogge
and Stein (see [ SoSt] and also [ CoMal]). A more general result is proved

in Theorem 15 below.

THEOREM 12. Let ¢ be a compactly supported distribution on R". Suppose
that for some € >0 we have

|d(reo)l, IVe(re)l < C(1 +7)~ =€ weS""!, r>0.
Let 8, /(2) = f(12) and ¢*f =sup, -, 16,6 * f1. Then
lo*f1.<Clfl.,  feSRY.

Using Theorem 12, Theorem 6 follows from Holder’s inequality (see
[IoSal] and the proof below), and the following oscillatory estimate.

THEOREM 13. Let @ be a smooth convex function whose graph is of finite
type in the sense that it has finite-order contact with every tangent line.
Suppose further that @ has the decomposition given in Theorem 10. Let

FA(& 4) = [ €840 ()] Y(x) d,

where \ is a smooth cutoff function supported in a neighborhood of the
origin, with sufficiently small support. Then there exists an € >0 such that

|ELE D), IVFLE ) < C(1+ &) + |A) ==,

if a>(1/2)=(l/a,) = -+ = (l/a,).

The next theorem summarizes what decay can be obtained with our
methods without explicitly assuming convexity of the surface.

THEOREM 14. Let @ be a smooth function with the following properties.
Suppose that after perhaps applving a rotation, ®(x) = Q(x)+ R(x), where
Q is mixed homogeneous of degree (a, ..., a,) with (1/a,)+ --- +(1/a,) <1,
O(x) #0 for x#0, and R satisfies (14), ie.,

lim R(sYx, ..., sYnx )
s—=0 N

=0.



66 I0SEVICH AND SAWYER

Let u denote the number of distinct a;’s. Suppose that
[ 10000177 yix) dx < o5,
where 0<p<1/(u+1) and p<(l/a,)+ --- +(1/a,). Let
F(Z, )= [ €550 y(x)

Then if ' has sufficiently small support,
F(& )< CI+ e +14D) 7"

Remark 5. The hypothesis Q(x)#0 for x#0 in Theorem 14 can be
dropped if we assume R(x)=0.

Remark 6. The motivation for the integrability assumption of Theorem 14
is the following. Consider S €2 dx, where Q is homogeneous of degree
m =2, where without loss of generality 0 >0, and B denotes the unit ball.
In polar coordinates we get

1 1 1
J f ei"’"'Q““’r'""d(odl'=J J +J f =I+IL
0 Jgn- 0 Jpowr<1t Yo o>y

Now
n<c l{w O(w) <%}| <imr j 0*(w) do < Ci~,

if {sn-1 Q(@) ™7 dw < oc. After a change of variables sending r — r(AQ(w)) ™ Vm
we get

(AQraptm
|II|=1)~‘"""’ L e ! drj Q") dew

{AQ(w)>1}

< C/«.—n/’mj Q—n/m(w) d(l),

{20(w) > 1}

since an easy integration by parts argument shows that

N o
J e~ dr < oo,
0
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independent of N. But this last expression can be rewritten as
i (AQ(@))? =™ Q(e)~* deo
{AQ(w)>1}

<A Qw) " dw< CLP,

sn-1

if {gn-1 Q(w)™* dw < 00. Thus we have shown that ||, 9" dx| < Ci~,
provided that [g,-1 Q(w)™* dw < oc. The same calculation works if Q is
mixed homogeneous.

The next two sections of this paper consist of various refinements of the
idea in the remark above, and its application to the more complicated
phase function {x, &) + A(Q(x)+ R(x)), where R is the remainder described
in the statement of Theorem 14. Theorems 10 and 13 are proved in the next
section, and Theorem 14 is proved in the following section.

3. MAXIMAL THEOREMS ON CONVEX SURFACES
OF FINITE TYPE

The purpose of this section is to prove Theorem 10, and we begin with
a proof using Sogge’s Theorem 11. We then prove Theorem 13 and use it
to give another proof of Theorem 10 via the square function techniques in
Theorem 12.

Proof of Theorem 10. We begin by decomposing the surface S in dyadic
shells according to the nonisotropic dilations associated with the multi-type
(ay,-., a,). For this we write

oC

Y(x)= Vulx)= Z lllo(zk/alxl,"‘, z}c/a,,xn)
=0 k=0

k=

where Y. (x) =yo(25x,,..., 2¥4x,) and ¥, is a smooth cutoff function
supported in the annulus {x: 1< |x|<2}. We define

'/”kf(xy xn+l) =Sup IMff(xa xn+l)] =Sup [f* 61(¢k dO')(X, xn+l)|-

>0 >0

Let 7,g(x) = g(2"x,,.., 2™ /x,, 2™*x, 1) and set 279 oy = (2"Kay |
2m/any . Then we have
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k
T—kMtrkf(x’xn+l)

= [ ST x =1y, 27k, = HB(P) + o)) Yl ) dy
= [ flx =2y, x, 0 = 2™ B(y) + 27 ¢0)) Yo7 y) dy

=274 [ flx =1y, X, = (2B 700 ) + 27 c0)) Yol ¥)

and using
2mk¢(2—mk/a Oy) - 2ka(2 —mk/a Oy) + zmkR(z —mk/a Oy)
= Q(y) + 2n1kR(2—nrk(a ",V)s

we can write t_,M*t, f(x,x,,,) as
27 Jf(x — 13, X1 = HQ() + 27 R(27" % y) + 27%¢y)) Yol ) dy.

At this point we use the fact that our assumptions imply that the Hessian
matrix of Q has rank >1 on the support of ¥,. To see this, note that by
the Euler homogeneity relations, ie., differentiating Q(s"*'x,,..., s"%x,) =
sQ(x) with respect to s, we obtain

090 x00 % 00
a, Ox, a, 0x,

O(x)

a, Ox

n L]

Differentiating Q(s'“1x,,..., s

0
s”“/-—Q— (sYx,,..., s

Ox;

“x,) =sQ(x) with respect to x; we obtain

1/a aQ

nx") =87

Let Q, denote the mixed partial derivative with respect to x; and x;.
Setting u=s'~"%) in the previous identity, differentiating with respect to
u, and then setting u=1, we get

ax,
al(aj“])

a;x, a
ax(a;—1)

. N Xn .92
an(v\)‘{" sz(ﬁ)"‘ : +an(;j__1) an(-\)—a.\‘j (x).

Consequently, if the rank of the Hessian matrix of Q is 0 at any point away
from the origin, the gradient must vanish at the same point, and so then
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also must Q, contradicting our assumption. Of course, these equations
imply

10(x)I < CIx| IVO(x)I < Cx|* [V2Q(x)],
and hence the quantitative estimate

max|Q, ;(x)| = ¢>0, X €Supp Yo. (17)
ij

Now by (14), 2"*R(2~"/** . x) tends to 0 as k — oc, and we claim that
this persists for second order derivatives also:

5

lim [2"kR(2 =Mk o x) = 0. (18)

k— o a.\',» axj
To see this, choose N> 1+max{a,,..,a,}, and use Taylor’s formula to
write

PD(x) = Py(x) + Ry(x) = Q(x) + P(x) + Ry(x),

where Py+ Ry is the usual decomposition into a Taylor polynomial of
degree N and a remainder term, and where P consists of the finitely many
monomials in P, that are not in Q. Thus R= P+ Ry, and so if G,(x)=x"
is a monomial in P, then

. _ / . <" , _
0=1lim s 'G (sV“x, ..., s7x,) = lim s'Tk=1 Cx/awD =1y

s—0 s—0

which yields 37 _, («,/a;) > 1. It now follows immediately that

Iim &
s—=0 5xi 5_\‘j

(571G, (sVx ... sV x,) }

= lim {S—l *‘“""*’”/"i’a,.ocj[(s”"lx,)’1
s—0

. (Sl/"ixi)"i‘l e (.S'”“ij)“/"l cee (s”""x,,)“"]}

: s 7 — - -
= lim s'Sk=1 /) ’a,»otj[-\’f‘ “-.\‘:" Lox% 1 ...xZn] =0,
s—0 J

since Y7 _, (a,/a;) > 1. Thus we have

5

[zmkp(z—(m/a)kc _\.)] = O

lim
k- 0x; 0X;
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Finally, using the integral form of the remainder for Ry(x), it is easy to see
that |(8%/0x,0x;) Ry(x)] < Cy [x|V ™!, and so

2

him 15x o

J

{s7'Ry(s"1x, ..., sV%X,,)}

< lim S—l +(l/ra,-)+(l/aj)(sl/max{a| ..... a,} )N—l =0’

s—=0

by the definition of N. This finishes the proof of (18).

It follows that the surface given as the graph of O(y) +2mKR(2™™/% o y)
+2™¢, has at least one nonvanishing principal curvature on the support
of o, uniformly from below and above in k (by (17) and (18)), provided
k is large enough. Alternatively, this can be achieved by taking the support
of ¥, and hence also Y, small enough. Thus we can apply the form of
Sogge’s theorem given in (16) to obtain that 7 _,.#,t,, and hence also %,
is bounded on L”(R") with norm at most C,2 ~*"2*"7. Using Minkowski’s
inequality, we can sum these estimates and conclude that .# is bounded on
L?(R"), for p>m/n=1/((1/a;)+ --- +(1/a,)) as required. This completes
the proof of Theorem 10, and so also the proofs of Theorems 3 and 6 via
Sogge’s theorem.

We now turn to the alternate proof of Theorems 3 and 6 that doesn’t
involve Sogge’s theorem. We begin with the proof of our decay estimate for
the Fourier transform .of a weighted surface-carried measure.

Proof of Theorem 13. Using &(x) = Q(x) + R(x), we have

Fa(é, /:)=fei{x~¢'+i,(Q1x)+R(x))}(Q(x)+R(x))a !ﬁ(X) dx.
Let

F(& 3)= [ el 420w RO(0(x) + R(x))* Yl dx,  (19)

where ¥, (x) =yo(25x,,..., 2¢*x,) and ¥, is a smooth cutoff function
supported in the annulus {x: 1<|x| <2} and satisfying

2 lpo(zk/alxl 2ty 2k/anx") =1
k=0
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Let 7,x=(2%%x,,.., 2%x,). After making a change of variables sending
x = T_px, we get for (19)

2 = (kjay) = -+ —(kja,)) -—kafei(<t_,(v,£>+2""}.Q(x)(l +25(R(t_x)/Q(x)))}
‘ R(t_gx)\1°
x[Q(x) <1 +2k—(Q—(x—")—))} Yolx) dx. (20)

We must estimate 3 °_, F%(¢, A). In the argument that follows, we shall be
forced to take k sufficiently large, and so will only be able to estimate
owm F k(&, 1), where N, is a large positive integer. Equivalently, we can
estimate the full sum if ¥ has sufficiently small support. We break up the
sum as follows:

o
Y = Y + )Y =I+IL
k=N, {42k} {a>2k)

To estimate I we use the fact that the integral in (20) is bounded since
Q(x)=c¢>0 for x esupp ¥,, and 2*R(zr_, x) is bounded by (14). It follows
that I is dominated by

C Z 2—(k/u])~— —(k/a,,)z—-k:x< Cp—(Vap— - =(lay) ==

A2k

Suppose we could show that there i1s € >0 such that

J i CE i & =2 KAQUNIL + 2K (R(_)/Q@x 1)}

R(T_,x)
O(x)

for any 0 <a < 1. Then II is dominated by

x{Q(x) (1 +2% )T([/o(x)dx <C(2~k)~-2=< (21)

C z 2—k((l/a,)+~~-+(1/an))2—k1(2-kl)—(1/2)—5 Sc;h—(l/a,)—u--(l/an)—a,

A>2k

provided a+ (1/a,) + --- +(1/a,) <} + €. Altogether, this shows that

Z F’;(f, ;)l < C).—(I/Z)—s"

k= 7",0

for0<€e =a+(l/a)+ - +(l/a,)—i<e
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Thus the proof of Theorem 13 has been reduced to establishing (21). In
order to prove the estimate (21), we shall need (17) together with a result
in [ BrNaWa]. Indeed, by Theorem B in [BrNaWa] (see (4) above), the
decay of the Fourier transform of the surface-carried measure is controlled
by

sup  |A(x, (&, 2)] 7N,

X € supp ¥

where Z(x, d) is the non-isotropic ball on S given as the set of ye § such
that the distance to the tangent plane #; at x is less than 6. Now Q has
a non-vanishing principal curvature by (17), and using (14) and (18) we
see that O(x)(1 +2%R(r_;x)/Q(x))) also does for k sufficiently large.
But this function is a blowup of the graph of @, and hence satisfies the
hypotheses required to apply the Schulz Lemma 5 at the point x € supp ¥,.
If (b,,.,b,) is the multi-type at the point x, then the nonvanishing
principal curvature implies that one of the b; is a 2. One now easily
computes that

|B(x, d)| < CoMV2 e, X €supp Vo.

This completes the proof of (21), and hence also of the decay estimate for
F.(¢, 7). The estimate for VF,(&, 1) is the same since differentiation only
introduces additional factors of x and Q(x)+ R(x) into the integrand,
thereby possibly increasing «. This completes the proof of Theorem 13.

Proof of Theorem 6. We give here an alternate proof of Theorem 6,
using Theorems 12 and 13 in place of Theorem 11. In order to apply
Holder’s inequality as in [1oSal], we first need to know that @ =7 is locally
integrable whenever p <(1/a;)+ --- +(1/a,). Now it is the case that Q™7
is locally integrable whenever p <(1l/a;)+ --- +(1/a,), since in weighted
polar coordinates,

J‘ O(x)™?dx= ﬂ P pttafa) + @l O y) =P dr deo.

The radial integral is bounded precisely when p<(1/a;)+ --- +(1/a,).
while the angular integral is bounded since Q is nonvanishing away from
the origin. Finally, using (14), we obtain

1 1
j |B(x)| 7 dx<C, p<—+ - +—, (22)
Ix|<e a a

1 n

for sufficiently small € > 0.
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Now define

M £, Xy 1) = S0P [ S5 = 19 %, 0y = 10(0) |O(2)|* () .

1>0

Applying Holder’s inequality as in [IoSal], we get

1/r
Lf| < 10 ([ 1= w ) < ot 10,

provided «(r'/r) < p, i.e., r> (24 p)/p, by (22). By Theorems 13 and 12, ./,
is bounded on L* if «a+p>1. Now fix p>1/p>2 and set r=p/2. Then
3—p<p(r—1) and thus we can choose a in (3 — p, p(r — 1)), which yields
both a+p >4 and r>(a+p)/p. Then

(] wm")“p <c.([ |f|')2>”p <cc.,( W)"P,

forp>1/p>1/((lja,)+ -+ +(1/a,)). This completes our alternate proof of
Theorem 6, and so also of Theorem 3.

4. DECAY OF THE FOURIER TRANSFORM ON SURFACES
OF MIXED HOMOGENEITY

The purpose of this section is to prove Theorem 14. Assume without loss
of generality that Q(w)>0. We also assume that u =n. The general case
requires only an obvious adjustment to the proof below.

Consider the weighted polar coordinate system given by x, =rw,, x,=
i, ... X, =r""w,, where w=(w,...,w,) denotes the standard coor-
dinates on S” ' It is not hard to check (see e.g. [FaRi]) that the Jacobian
of this change of variables is g(c) r'“r ' *@/4) where 1 < g(w) < C. We
write

F(E )= [ el s w30y x) d
X
zj J ei{rwl:l + e rdldng, S+ Ardl dlw)}
gn-1Jp
X WY(r) g(e)r'“ @ =t gr dey

R
=’| -~~drdw+” codr dw
} {fwesS" 1 A0(w)> 1}

Clwe S L iQuor <]

=F (& 2)+Fy. 7).
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Now
[Fy(& M) < CH{o: 10(w) < 1}]

<A 0 M(w)dw< CA?

sn-1
by assumption.
Now we consider the second term F,, where AQ(w) > 1. We have

F(é, )‘) = '”. ei(rwlél + - +rlatng &+ A(rol Q(w) + R(rwy ... rlai/on) o, )))
sn—1

x plaa)+ o +@/aa( o) Y (r) deo dr,

where without loss of generality we are taking y to be radial. Let Y, € C*(R)
be a smooth cutoff function supported in the interval [3,4], such that
T o(2ks)=1. Let

Fk(éy A) =j J' ei(rw,é, + e +r"l/""w,,€n+).(r"1Q(m)+R(ra)l ..... r‘”/"ﬂwn)))
§n-l

x plava) + - +laiay (k) o(w) doo dr
= L"-x Gilr, @, ¢, 2) g(w) do.

We first analyze G,. After making a change of variables sending r — 2 —r,
we get 2—k(1 +(ay/a,) + -+ +(ay/ay)) timeg

X r(a,/a2)+ +(a,/a,,)ll,o(r) dr.

The expression above is the Fourier transform of a smooth measure
supported on the curve

) R(Z"‘ra) 2-—k(a,/an)r(al/a,,)(0 )
l ee
{‘(r) — (r’ r(a,/az)’m’ r(a,/an)’ ra IR n ’

279 Q(w)
and evaluated at (2w, &,,.., 279w, &, 274%10(w)). It is not hard to
check using (14) that, for k sufficiently large, I' is nondegenerate (see

Section 8.2 below) with constants independent of k and w, away from r =0.
Therefore we have the estimate

Gi(r, , & A < C274%2Q(w)| =1, (23)
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where C is independent of k, £, and w. Also, we have the trivial estimate
le(rs @, éa l)l QC, (24)

where C is a uniform constant.
Let N, denote a large positive integer. Since the estimate (23) is only
valid for k sufficiently large, we shall estimate

J Z Gk(ra , é, /1) g(a)) d(l),
sk Th,

which will give us the estimates for F,(&, 1) in a sufficently small neighbor-
hood of the origin. We break up the sum as follows:

o~
Y = Y + Y =1+IL
k=N, {AQ(w)<291%}  {10(w)> 291k}

Using the estimate (24) we see that I is bounded by

C Z 2—k(l+(a,/a2)+~~+("|/”,,))<C(iQ(w))‘(l/al)"~--—“/‘7n{
{AQ(w) < 291k}

Integrating in w, we get

C [ (2Q(e))~Ven= =) g(0) doo = €A~
XJ. 0~ " (w) g(w)(},Q(w))p—(l/a,)_ =8 G

gc;:vj 0~"(w) dw < CA~*, (25)

since | O ~"(w) dw < oc, AQ(w) > 1, and g(w) is bounded.
Using the estimate (23) we see that II is bounded by

C - Z 2-—k(1 +(ay/ay) + -+ +(a‘/a"”(2_”'k/1Q(CO))_l/("+ 1)

{AQ(w) > 241K}

<C Z 2a,k(l/m+n—((1/a,)+-~+(1/a,.)))Q—l/(n+1)(w)
().Q(w)>2"‘k}

<C Z za,k(l/'(n-)-l)—p)Q—l/(n+l)(w)
{AQ(w) > 241Ky

<CA7"Q "w),
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since p < (l/a;)+ --- +(1/a,) and p <1/(n+1). Integrating in w we get
i [ 0"(w) glw) dor < C3 [0 aw<ci, (26)

since g(w) is bounded and | 0~(w) dw < oc. Combining the estimates (25)
and (26) completes the proof.

5. AVERAGE SQUARE FUNCTION TECHNIQUES

In this section, we prove an analogue of the Sogge—Stein result in [ SoSt]
for an L? average decay. This improves on the result in [SoSt] in two
ways: first, the L? average decay turns out to be a much weaker hypothesis
than uniform decay when the dilations are truly nonisotropic, and second,
the extra decay beyond 1 in the hypothesis is minimized. In the final section
we will use Theorem 23 below to help verify the hypotheses of Theorem 15
in the course of proving Theorem 7.

We recall the nonisotropic maximal operators .#’ introduced by Greenleaf
in [ Gr]. Given an n-tuple (§,,..., B,,), we let .#' denote the maximal operator

M'f(x)=sup M f(x), (27)

>0

where the convolution operator M/ is given by
M, f(x)=f*6,(y do)(x),

and where ¢, denotes the nonisotropic dilation 5’ (&)= l;(t”'él,..., th& ).
Set §/¢ = t”*é Lo 15E ) 50 that 8,h(E) = h(5,&). The following theorem is
the appropriate nonisotroplc square function estimate. Note that in the
case ;= --- =B,>0, #' is simply the usual maximal operator .#, and in
the case of surface-carried measures, the L? average decay reduces, for all
practical purposes, to that of uniform decay (since the averages are taken
along rays of fixed direction in the case of the usual dilations).

THEOREM 15. Suppose t is a distribution supported in a ball B of radius
C, with |#(&)| < C, and max{|x|: xesupp t} < C,. Suppose moreover that

- 2 ) 1= - b -
{J lfté:é)l-dt} <G+ D7D,
!

()

([} wasra) <cqreien .
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where y is bounded and nonincreasing on [0, o), and 3 7_, ¥(2") < co. For

t >0, define t,(¢&) =f(5",g') as above with §,=20 for i=1, 2,.., n, and set

M f(x)=sup |f*1,(x)|

>0

Then |

(A Sl <C/CrCallf L2y Joradll fe%,

(in the case some B,=0, our proof yvields an additional factor log(C,/C))).

Remark 7. The point of isolating the constants C, and C, above is that
when we apply Theorem 15 in the final section, it will be to a piece of
surface that has been translated a distance cy2*”, resulting in C,, but
not C,, increasing by a factor of 1+¢,2*”. The additional factor of
log/(C,/C;) in the case that one of the f, vanishes can probably be
removed with a sharper argument, but in any event causes no problem in
our application. Finally, the sharpness of the condition on y follows from
Example 3 in the Introduction.

Proof. We first consider the case f§,>0 for all i=1,2,..,n Let 1=
p Pl |$:(¢)]2 be the usual Littlewood-Paley decomposition, define t* by

(&) = Pr(¢) #(¢), and set

A f(x) = sup | [ > 70l

t>0

By Minkowski’s inequality and the hypothesis > >, »(2") < oc, it suffices
to prove

A5 f1<CJCiCaf2) I f Iy feS, k20, (28)

We note that for k > 1, we have
= o~ 4N .

{7 Fearg] <ciamen,
' -~ . _,d[ 172 ,,

{j lVr"w’,é)I'T} < C12742(2%),
0

Indeed, 75(3'&) = $,(8.¢) f(_o:i,é) #0 only when |'¢| > 2*. Fixing k momen-
tarily. let @ be such that |0,¢| =2% Since the f, are positive, there are
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constants ¢, and c, such that r"(é &)= r"(&’ &) #0 only when ¢, <s<c,.
With the change of variable 7 =56, we have, using our hypothesis on t,

o 2dt_°CA, st_fz/\,l ds
| FSarS =] FEar =] s
< CCy(1+|85¢)) 71 p(18,¢1)? < CC 27 %p(2%)2.

The estimate for the term involving V¥ is similar, and this establishes (29).
Now we observe that

lim /+ 74(x) = lim [ e*"4f() 75(8,¢) g =0,
t—0 11—
for fe & and k> 1, and so the fundamental theorem of calculus yields

|f* r',‘(x)lz':ﬂ% {fi * T°(x) fro x T(x)} ds

= d
<2[ " fer A0 | fin e s

This implies that

M’:'fui;f sup | * 75(x)|? dx

R" t>0
x ds 12
ko 29 a
<2([ i+ Sax) ([ oo 2 eton| 2 ax)

12
AGer® dé)

-2([vor ]
([ ver [ 8z vRsara)” (30)

where &=(B,¢,.... ,&,). since s(d/ ds)(8.&)=8,& Using (29) together
with the observation that lcf;gl ~ 2% when Vr (5’5)#0 we obtain from
(30) that

I8 f117:< CCL2752p(25) || fll 2 24C22742p(25) 1 F .2
<CC G2 1113

which is (28) as required in the case k> 1.
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The case k=0 of (28) is handled by the observation that

[7%x)] = |7 % ¢o(x)] < Cy C, ‘Z 27t N (),

Jj=0
and so
sup |/ * t(0)| < Cy €y ¥ 27 My (x),
>0 j=0
where in the case f, = --- =f,=1 (the general case is handled similarly),

M is the skewed maximal operator

My f(x) = sup { [ 1= dy}. 31)

>0

Now if we let O =3,/, B so that Q is a ball of radius one and center, say,
x=(x", x,)=(0, R) (where Rx C,/C,), then

Maf5)= Mo firi=sup {[ (¥ =05, ~ R+ y)l ).

>0

This operator Mg is weak type 1.1 with constant CR since
[{x: My f(x)>2}| < CRI{Mf(x)>A}]. (32)

where M denotes the usual Hardy-Littlewood maximal function. In one
dimension, this follows easily from the fact that if {I,}, are the component
intervals of the open set ;= {Mf(x)>2} and if QF={J,CRI,, then
{x: My f(x)>4i} = QX In higher dimensions, if Q is a cube of side length
d, we let R- Q denote the rectangle with the same center as Q, but whose
side length in the x, direction is Rd, and in the other coordinate directions
is d. If we set

Qf:U {R°Q3QC9;.}»

it again follows that {x: M, f(x)>2} =QZF, and hence that (32) holds.
For the more general dilations J;, the set QF must be appropriately
modified. If we now interpolate with the L* estimate, we obtain that
Mg is bounded on L? with norm Cﬁz C./C,/C,, and hence that

sup, .o |/ * t%x)| is bounded on L* with norm CC, \/ﬁz C/C,C,, and
this leads to (28) in the case k =0.



80 IOSEVICH AND SAWYER

It remains only to consider the case when some of the B, vanish. For
simplicity of notation, we consider only the case ;= --- =f8,_,=0 and
B.=1, the general case being an obvious modification of this. Choose
pe& with ¢(&,)=1 for |£,| <1 and let

AE) =1() = (&, 0) (.,
so that u,=7,— 1y ® @,. Since

sup |/ (7o ® ¢, )(x)| < CM,,(f* 7o)(x)

t>0

where M, is a skewed maximal operator in the nth variable as in (31), and
since

IM,(f* 1)) 12 < C/ Co/Cy || f* To( X)) 12
=C/Co/C, | /212 < C/C Gy lIf N 12,

it suffices to prove

I < C/CC N fll fe, (33)

where u € &' satisfies
A<y,

2 12
e earal”<carien-?pe,

AZ)

; 9 a0)|<c, (34)

9,

5

172 ¢
dz} <C(1+1E) "2 9(&),

21 0
{J} 5e ALE 1)
A <min{C,, C, 12,1}

Indeed, the first four inequalities in (34) follow from the corresponding
inequalities for 7 and the rapid decay of ¢, while for the fifth we have that
|€,1 <1 implies @¢(&,) =1, and so

J .
— £

A&, &)l =188, &) — 2, 0)] < 1L, | 7

S CZ Ién I

L

n
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Now let 1=37 , |G (&, )| be the usual Littlewood-Paley decomposition
in the nth variable, define u* by ,u"(é) $R(&,) A(E), and set

ME f(x)=sup |f*ul(x)].

>0

By Minkowski’s inequality and the hypothesis 3>, »(2") < oo, it suffices
to prove

1M [l < C/CCy 72V N fll feS, k20 (35)

The proof of (35) proceeds in the same way as the proof of (28), except
that the case k=0 isllandled differently. Arguing as in (30) with k=0 (and
noting that lim,_ o x%J"&)=0), we see that we must establish the boun-
dedness of the expression {¢° |19(8.)|( ds/s). But if 8 is such that |3,¢| =1,
then with 7 =4,¢, the substitution s = 76 yields

o PearS=[" s sors

2 o~ - \ dt
= [T Smirs
0 t

2 , dt
sj Imin{C,, C5t}|>—
0

2 C’
< CCilog —C—,l,
1

by the final inequality in (34). This completes the proof of Theorem 15.

6. VAN DER CORPUT ESTIMATES

In this section we present two nonasymptotic estimates of Van der Corput
type. The first shows that if a sufficiently high derivative of the phase func-
tion ¢ is controlled, then decay of the oscillatory integral | ey (s)ds is
governed by |¢”| ~'* at the zeroes of ¢', and by |¢'| ™' at the zeroes of ¢".
The second shows that if the third derivative of ¢ is suitably controlled,
then improved decay is obtained by subtracting off the appropriate asymptotic
term. The latter result will play a pivotal role in the next section in establishing
average L decay of oscillatory integrals | e“'*'¥(s) ds with a parameter .

THEOREM 16. Suppose the support of Y(s) is contained in [, t,], and
that ¢(s) is smooth and real-valued on [7,. ‘57] Let {r.}7_, and {s,}"_,
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be the real zeroes of ¢' and @" respectively in [t,,1,]. Assume there is
3< N< w satisfying

M <eylg"(rl"?  forall sesuppy, k=1,2,..m,  (36)

for a sufficiently small constant cy. Then there is a constant C such that

[ eois) ds1 <c( T Wl T e+ 3 b ).
k=1 ¢=1 i=1

Proof. Let J, denote the smallest interval containing r, such that |¢'(z)]
=|¢"(r,)|"*> when ¢ is an endpoint of J,. Then by Lemma 5.13 in [GuSa]

(see p. 29),

16" (ri)| < sup [¢"(s)]

seJy

<C (Supx. ves 19'(x)— ¢’(y)l>
1kl
+( sup [¢(x) = @'(p))} YN AN
X, ved;

Clg"(rol'? N -
< +C|¢N(rk)|(l/2)(l 1/(N—1)) ”¢(N)”L/:(h 1)

NETA
"y 12
<IN e 170
A

by (36), and since we may assume Cc, <3, we conclude that
[Tl S Clo"(re)l 2

Now write

je""’”’l,b(S) ds= i J‘ e Ny(s) ds+J e (s) ds.
k=1 v

Ik F=170¢

Then |{, e®Y(s)ds| < C Tl < Clg"(ro)] ~12 and by construction (and
calculus) we have

191> inkigm{ 16" (r)2, 16" (s,)1, 19" (z)1}

1<i<n
1<ig2
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on (Uy_, Jx) which implies

n

<C< S 182 T 1471 +
k=1 =1

IJ‘ ew(s)w(s) ds
(U )¢

T W)

as required.
THEOREM 17. Suppose the support of Y(s) is contained in [1,, 1,], and

that ¢(s) is smooth and real-valued on [t,, t,]. Let {r,}7_, and {s,}%_, be
the real zeroes of ¢' and ¢" respectively in [t,, t,]. Assume there is 0 <e <}

satisfying
g7 CIP"r V2= for s —r | <[9"(r)|<7 2,
k=1,.,m. (37)
Then there is C, such that

) m i, 27[1 172
Jewoutsyds= 3 e () per

2

<c€< L UG R SR PRI |¢'<ri>|~').
k=1 (= i=1

=1 i=

Proof. Since €™ (s)ds is bounded, it suffices to consider the case
|¢"(re)| = C, for k=1,.., m. We write

nm

jeid"x)l//(s) ds = Z J" e (s) ds +

J’ e (s) ds
k=1 "¢ (U I, )€

where I, .= (r,—|9"(rdl =274 e+ 14"(r)| T2 %), Note that (37)
implies

9" ()] =19"(re) + 6" (1) = ¢"(rs)]

= 14" (r)+ " ()t =1y
> 16" (r)l = 2 197(re) 2273 g7(ry| =120+ ¢

>%|¢”(rk)‘, fOI' IEIk_s,

provided C7*C*< 4. and so

> | prer 1ol
19'(ric+ 19" (ri)| 279 = f

¢" (1) dt ;% 67 (r, )|+

Tk
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Similarly |¢'| >1|¢"(r,)]"/>'* € at each endpoint of an I .. Thus

91> 232,"{% 9" (r IV, 19/ (s )], 19 ()1}

1</<n
1<i<2

on (Ul )¢ by calculus. So

J’ e (s) ds
(U I )¢

m n 2
<C(z PR RUCETNS SRPUPRIE I |¢’(r,~)l“>-
k=1 £=1

i=1

Finally,

J

I e

1 -~
ei‘ﬂs)l//(S) ds = |¢"(rk)| —(1/2)+e€ J*’ e'w(')lp(t) dt,
1

where U(1) =y(re+1|¢"(re)| =2 *<) and

(1) =(r+11¢"(r)| =79,

@'(0)=0,

@"(0)=£[¢"(ro)*,

" (1) = 1@" (r )| =23 ¢ (re + 1 |¢"(r)| =2+ < CP by (37).

Set A=|¢"(r)|% and &(1)=1t"*{o(t)—@(0)—(¢"(0) r/2)}. Then we
have

60l = |2 9" (c)

<C, (38)

d (1= (/)
()] = 7 {L g———%{ﬂ " (1) du}

= "' <1 ._%\ }Liz @" (1) dul
. /

0

N

sup " (1) < C*.

PESTES
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Thus
. +l . ‘V\ﬂ-
J' e:dﬁ(s)w(s) ds = ]¢"(rk)|—l/2Al/2j ei{(p(O)+(A/2+a(l))1-,¢(I) dt
I e -1
+l 2 ~
=eicp(0) |¢"(rk)!—~l/2 Al/ZJ eil'ul/:’.)A-r-:(r))w(I) d[.
-1
Now let
s=./21 /§+£(Z)=11/A+2£(t)
te'(1) A +2¢e(t) +te'(1)
ds=<~/A+2e(t)+ >dt= dt
A+ 2¢(1) A+ 2¢(1)
so that

JM eizz((1/2)A+e(1))lZ(t) dt:J- A+ 2e(1) ei(J:/Z) w(() A +28(l)
-1 —JAx2~-1) A+ 2¢e(t) + te'(1)
12

=J(O) AR |7 P ds+E,

_4n

where
JAF2D —Al2 AR () — U
IEl<U A1 s +U A1 g +'[ [y (1) l/:/,(o)lds
qn —JA¥2e=1) —A4'2 A=
- 47 | A +2¢(1) 1
—— d!
+"’(°)J_,,m A+ 20 +eq) A7|“

SCA '+ CA + Cl@"(ry)| ~ VP +e

+CJA'/2 | /A2+2.g(1)A—(A+2s(t)+ts’(t))lds

—an A

SCA™'=CA72¢"(r)]

since |e(t) +1€'(1)] < C by (38), and |¢"(r,)| "2 |¢"(r,)] T since
e<i So
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J. . ei¢ls)|/,(_g) ds =ei¢(0) |¢”(rk)| -1/2 J(O)

I e
A2

XJ ei(sz/Z) ds + e#® 16" (ro)l -12 J12F
—A47
=0 [§"(r)| V2 B0) [ e ds+ O(1¢"(r)] TP )

o<

by the error estimate (39) for E together with |[%i.e™7? ds| < CA™'2
Finally, we have

R R s} 2/2
f e“‘°/2)dS=J i1 +i)s} /')d{(l +i)S} + O(R")
0

0
R
0

=(1+i)j e ds+ O(R™Y),

by Cauchy’s Theorem, and so

J‘m ei(sz/Z)ds=(1+i)j e-fzds=\/§-i\/7_£=\/2_7ti.

%
— -

Using ¢(0) =¢(r,) and %(0) = ¥(r,), we thus obtain

J‘ i¢(s) i(r, 2mi \'? " —(1/2)—
e?Y(s)ds=¢' “( " > Y(ri) + 019" (re) =279
Iy e ¢"(ri)

as required.

7. AVERAGE L? DECAY

In this section, we investigate the average L? decay of oscillatory integrals
| €4 (s) ds with phase ¢,(s) depending on a parameter r. Theorem 17 of
- the previous section indicates the special role played by the quantity
|¢”| '/ evaluated at a critical point r(z). Thus we begin with what amounts
to a reverse L>** — L2 Holder inequality for |¢/(r(1))] ™'~

THEOREM 18. Let ¢,(s)=R(P(s)+1Q(s)) where P(s)=a s+ -+
an1+lsm+‘ and Q(S)=bls+bm+lsm+l' Let A=|a1|+”' +Iam+l! and
suppose &, 0, >0 satisfy

A21, |b26,>0, |bl<l  for k=1,2,.,m+1, (40)
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and if a, Q(x) — b, P(x) =Y 7*) ¢, x*, then
m+1
Z lce] > 0,4, (41)
k=2

(ie., P is not close to a multiple of Q). Let r(t) denote a smooth real root
of $1, to<t<ty, where |r(t)| <(6,/2m) and ¢/(r(t)) #0 for ty<t<t,. Then
Jor O<pu<1/2m—1),

Jll
1

0

—(1+u)

¢:(r(1))
R

dt<C, 5(5,4)7* (42)

Remark 8. The proof below shows that hypotheses (40) are sufficient
for the equivalence

J"l
2,

0

” -1
¢'(;e(t))l dt =~ Co7V (1) — r(ty)],

so that the additional hypothesis (41) can be viewed as yielding the reverse
Holder inequality

—12 —12

”‘cﬁf’(r(t))
R

< Cm. 61(C2A ) s E; lﬂé(—{_)_)'

L2+ L?

Proof. We have 0=¢;(r(1)) = R{ P'(r(t)) +1Q'(r(z))} which implies that
—P'(r(1))/Q'(r(t))=1t. So if we set h(x)= —P'(x)/Q'(x), then h(r(t)) =1,
r(t)=h~Yt), and r'(t) = 1/h'(h~'(1)). Now

0=2 (B10(0)) = 61(0)) ¥ (1) + RQ(r(1)

implies

Q'(r(1))
r'(t)

'qﬁ,(;(t)) =1Q'(r(0)) k' (h= (1))

> k(o)
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since |Q'(s)| = b, | —sm>(

I ¢”(,(,))I_u+,,,

o

r , _
=co-1j K (r)]~* dr

0,/2) for |s] <(
di<C; j (b~

=y [ IHth-

IOSEVICH AND SAWYER

6,/2m). Thus with d, =46,/2m,

l(t))| —(1+u) dt

dt

1 —u
()l R 0)

with r=h"'(1),

a4
<Gy | W dr

since |r(1)] <(d,/2m) <1,

a4
<Gy 1PN QN =P Q)7 d,

since |h'(x)| =
X IQ(Y)!"“ and |Q'(x) > (
ZZ" dk\

n|¢r(r(1)
J PR

—(1+u)

dt<

N

I(d/dx) (—(P'(x
0,/2)>0. Now if P'(x) Q"(x)—
then the proposition in Section 2 of [RiSt] shows that

—P"(x) Q'(x)]
P'(x) Q'(x) =

V@ (XN = |P(x) Q"(x)

4
] IPr Q=P QN dr

<e(5)’

n —u
C<Z Ialbk+2_blak+2‘> ,
k=0

since for 0 <k <m—1 we have

d, =

)}

(ia; j(j "‘l)b —J ‘_l)ajibi)

i+j=k+3iz1j22

=(k+2)(k+1)a,b; .,

—bya;.»)

Finally, since a, Q(x) — b, P(x) =372} ¢, x* implies ¢; , , =, by oo —b @ 12,

we have
m—1
< Z la,by >~
k=0

by the hypothesis (41).

blak'&2|> - (YZ lexl

) = Cm(a.’.A)-}
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We shall actually need a variant of Theorem 18 involving an error term
as follows.

THEOREM 19. Let ¢,(s)= R(P(s +1tQ(s)) where P(s)=a;s+ --- +
Ay s™ ! +Ep(s) and Q(s)=b,s+b,, 5"+ Ey(s). As in Theorem 18,
let A=la,|+ - +|a, .1l and suppose d,, 6, >0 satisfy

A1, |b128,>0, |bl<l  for k=1,2...m+]1,

and if a, Q(x)—b, P(x)=3"2) ¢, x*, then

m+1

Z ‘Ckl >62A

k=2
We suppose the error terms satisfy

k

d 2
_;/;EP(S) < C3sm+--k,

) (43)

<C3m+2 k
dk

EQ(S)

for 0 <k <m+2. Let ¥t) denote a smooth real raot of ¢, to<t<t,, where
1) <(6,/2m) and ¢'(r(1)) #0 for ty<t<t,. Then for 0<p<1/(2m—1),
the reverse Holder mequalzt; (42) continues to hold but with the constant C,,
now depending also on Cs in (43).

Proof. The proof of Theorem 18 applies without change up to the
application of the result in [RiSt] to the polynomial P'Q" —P"Q'. This
time we have, by (43),

m—1
X) Q(x) = P'(x) Q(x)= Y dx*+0(x™),

k=1 .
where as before, d,=(k+2)(k+1)a,b,,.>,—ba;.,) for 0<k<m—1.
We can now invoke an extension of the proposition in Section 2 of [RiSt],
given in Proposition 22 of the subsection on reverse Holder inequalities
below (with f=P'Q" — P"Q' and £/ =m —1), to complete the proof just as
in Theorem 18 above.

COROLLARY 20. Let ¢, and r(t) be as in Theorem 19. Then

(A)  [{£:167(r(0))| S BR}| < CAT#B! ~#R=(1 =001 =),
for 0<d6<1, B>0, (44)
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(B) |{: condition (!) fails}|
< CARM+m —pR=(1 =N +p), (45)
where () is condition (36) in Theorem 16 with ¢ =¢, and r,=r(1), ie.,
(N 16NV < Cy 197(r(1)]'%, tesupp Y. (46)
Proof. Part (A) is an immediate consequence of Theorem 19 as follows:
(BR°~1) =" = {11 197 (r(2))| < BR’} |

< (" ¢/(r(1))
\”u R

— (1 +u)

dt<C,A™*

For part (B), we note that :¢'™' |, < CAR and so if (46) fails for some
1, then |¢7(r(1))| < C(AR)*™ and (A) applies with B= A%~ and 6 =2/N.

7.1. Reverse Holder Inequalities for Finite-Type Functions

We begin with a simple weak type estimate for functions whose 7 th
derivative is bounded below.

LemMa 21.  Let I be an interval of length at most 1 and suppose that, for
some (=1, the function f satisfies

If(x) =¢; >0, for xel
Then
xel: 1fn] ™ > 21 <8e, ), (@)

Proof. We prove the lemma by induction on /. The case /=1 is an
easy exercise (similar to the argument below, anyway), so suppose now
that the lemma holds with / — 1 in place of /. Let de I be the point where
|/ ~V(x)| achieves its minimum on /, and set

J=(d—0,d+9),
where 6 > 0 will be chosen momentarily. By construction we have
[J1 <20 (48)

Since |/~ Y|>¢,6 on I\J, which consists of at most two intervals of
length not exceeding 1, we conclude from the induction assumption that

Hxel\J: [fix)] ">} <2[4° " e 64) =M 1] (49)
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Combining (48) and (49) now yields
Hxel: |f(x)] 7' >} <26+ 2[4 (¢, 64) =] <4 (e, 1),
upon choosing d =(c;A) ™', so that
‘ (6,82) ==V = (¢, )1 W) == = (¢ 1) =1,

This completes the proof of the lemma.

We can now give the analogue, for functions of finite type, of the proposition
in Section 2 of [RiSt].

PROPOSITION 22. Suppose that I is an interval of length at most 1, and
that

{+1

l
0<c, <Y IfPI< Y IfP0I<C,,  for xel
k=0 k=0

There is a constant C, depending only on ¢ such that

¢
Hxel: [fx)~' > 2} <C <f—> (e, 1), (50)
1

and in particular,

-

14

L [ f(x)] #dx< C‘,h,<%> (c))™*  for 0<,u<%. (51)
1

Proof. Note that (51) is an immediate consequence of (50). We prove
(50) by induction on /. The case /=1 is an easy exercise (similar to the
argument below, anyway), so suppose now that the proposition holds with
¢—1 in place of /. Let E={xe[0,1]:|f"(x)] >(c,/2)}. Then since
| £+ (x)| < C,, we can write

N
Ec |1,
i=1

where I, < {xel: |/ (x)] >=(c,/4)}, and N is an integer at most 2C,/c,.
Now let d, €I, be a point where |/~ "(x)| achieves its minimum on I,,
and set

Ji=(di'_5a di+5)9
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where é >0 will be chosen momentarily. By construction we have

N
U Jil <2NG§. (52)

i=1

Since [f“~V|>(c,/4)d on I,\J;,, Lemma 21 applied to the (at most)
two component intervals of each I,\J, shows that

{xe U I,»\O Jy If(x)l">z}l <2N[4"‘ <%51)_1/({_1):l. (53)
i=1

i=1

Since Y. 2o 1/ 1235 _o I/ ®l—=(c1/2) = (c,/2) on I\UX., I,, we conclude
from the induction assumption applied to each of the (at most) N + 1 intervals
comprising J\|JY_, I, that

N C -1 c —1/(¢-1)
{xel\u I: lf(x)]“>l}l<(N+l)[C,_,(;—2—> (7‘,1> ]
i=1 1

i (54)

Combining (52), (53), and (54) now yields

—1/(¢—1)
l{xel: |f(x)|"‘>l}l<2N6+2N{4“’<%’—6l> ]

‘-1 —1/(¢~1)
+(N+1)[C,_1<§—2-> (%‘-1) }
1

¢
<C, <&> (e, A)~,

(&1

for suitable constants C,, upon choosing é = (¢, 4) ~'. This completes the
proof of the proposition.

7.2. The Average Decay Estimate

We can now give our average L? decay result. These estimates will be
used to control error terms in the proof of Theorem 7 in the final section
below. '

THEOREM 23.  Let ¢, be as in Theorem 19, i.e., let ¢ (s) = R(P(s) + tQ(s))
where P(s)=a;s+ -+ +a,,,.S" "'+ Ep(s) and Q(s)=b,s+b,,, "'+
Eg(s). Let A=la,|+ -+ +|a,,.,| and suppose 6, §,> 0 satisfy

A1, |b,126,>0, |b<]l  for k=1,2,. m+1,
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and if a, Q(x) —b, P(x) =372, ¢, x*, then

m+1

Y lcx] >6,4.
k=2

Suppose the error terms satisfy

dk

Es—kEP(S)

2
<C3Sm+' k,

(55)
dk
T Ey(s)

< C3Sm+2_k,

for 0 <k<m+2, and suppose Y is supported in [t,1,]. Then for 7,1,
sufficiently close to zero, we have

-

Let {r(t)}7'_, denote the real roots of ¢, in (7, T,) (of course, m is also a
function of t, but this plays no significant role, and we will suppress this
dependence for the sake of convenience). Then, for some € >0, we have

2
J e (s)ds| dt<CR™. (56)

2
dt<CR™'"¢ (57)

J. e N(s) ds

J‘{re (0, < ): |4} (ri(1))| < R ¢ for some k}

If in addition we have A < R'Y ™%, then
J".Y;
0

Proof. We begin by observing that if {s,(7)}7_, are the real roots of ¢}
in (7, 7,), then

2mi

— ‘dtsC'R‘l“.
o7 (ril2))

j‘ei‘ﬁ'('”l//(S)dS— :v; ei¢,(rk(l))<
= (58)

12
) Y(r(1))

d d
Z ¢ils A1) =7 R(P'(s/ (1)) +1Q'(s,(1)))

=R(P"(s/(1)) +1Q"(s,(1))) 5,(t) + RQ'(5,(1))
=¢7(s,1)) s,(1) + RO'(s,(1))
=RQ'(s,t)) = Rb, = R,
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provided 7, and 7, are sufficiently small. Similarly,

d
T #t;)=RQ' (1))~ Rb, = R.

It follows that there exist y, and #; such that

(st =cR|t—y,|, for s,(t)e(ry, 1) 5
$z)| = cR|t—m;l,  forall re(0,co) (59)
Now, in order to prove (57), define

t€(0, 0): (46) holds with r(¢) =r.(2) for all k;
E={|t—y,/ >R "and|t—n,|=R"! for all Z, j; and

g7 (re(0))| <R' ™€ for some k.

Since | e®'W(s) ds is bounded, inequality (45) in Corollary 20 yields

2
dt

f e (s) ds

J.{re(O. o)1 (46) fails with r(1) = ri(1) for some k}

S CR—(I —(Z/N))(l+/A)A(2/N)(l+/t)—;l < CR——I —€

if we choose N so large that 4> (2/N)(1+u4) and (1 —(2/N))(1 +u)> 1.
Since ¢,(s) is a polynomial of degree m + 1 that is normalized by (40) and
(41), we have

< CR-—I/(»H-I),

J PN (s) ds

and so

J‘em,(.v)w(s) ds } dtS CR—2/(m+l)Re—1 < CR—I —e"

J‘{re(o.fr_): lt—yl<RE- N

if € is chosen less than 1/(m + 1). Altogether we’ve shown that

je"”"”lp(s) ds| dr <CR™!'~e

J;" A {re0. o) |¢] (i) < R € for some k}
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On the other hand, if (46) holds with r(z) =r,(¢) for all &, we can invoke
Theorem 16 to obtain

I

< <ifIWuﬂl”m+ZJIMhnr”m+Zfl¢ )

k=1 (=1

dt

f(’"ﬁ“)l,//

=C(I+11+110),

where of course the integrations in I and II (but not in III) are further
restricted to those ¢ for which r,(¢) and s,() respectively lie in (7,,7,).
Now using Theorem 19, we obtain

m

I<CR' Y |

k=1"E
<CR (|¢
k=1

<CR7!C,R™,

m

¢§'(rk(l))“’ dr
R

— (1 4\ 11 +20)
> lEl,u/(l+;z)d[

since |E| < CR™ by (44) in Corollary 20 with B=1 and 6 =1 —e. Since
|t—v,]=R°"" on E, we have from (59),

n<cy | lt—y,/72dt<CR™2R'==CR™'"¢,

/=1 1= 2R

and similarly for term III.

Thus far we’ve proven (57). The first inequality (56) follows just as above
except that we do not include the restriction “|¢; (ri(1))] < R'~¢ for some
k” in the definition of E. Thus the measure of E is no longer small, and
in the estimate for term I we simply use [ [(¢;(r(¢))/R)| ~' dt < C without
applying Holder’s inequality.

Finally, we turn to the third inequality (58). Consider the set

F={te(0, oc): |¢](r(1))] > R' "< for all k}.
From the assumption 4 < R'"?' % we obtain for t€ F,

19" (1)]'* < (CAR)'A S CRUYA T2 C(R' ™) M= < C gl (ri0))| 2,
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for all ¢t and k=1, 2,.., m. Thus condition (37) in Theorem 17 holds with
¢, in place of ¢ and r,(¢) in place of r(¢). So applying Theorem 17 yields

27i 2

1/2
f lf N (s) ds — Z et <¢"( (t))> Vi)

2
<c($ [ wroiont-as 3 (16 der T [igio)2ar)
k=1"F =1 j=1

=C(I+11+1III).

Now terms II and III are dominated by CR~'~¢ just as in the proof of
(57) above. For term I, we use the fact that |¢](r,(z))]| > R'~€ for te F to
obtain

ISR Y [ B0M0) 7 dr< CRT74,

upon using the consequence j' (@7 (re(t))/R)| "' dt < C of Theorem 19
noted above. Of course, the integral over F¢ is handled by the method of
proof of (57). This completes the proof of Theorem 23.

8. MAXIMAL THEOREMS FOR NON-ISOTROPIC OPERATORS

We recall our main theorem for .#' on mixed homogeneous surfaces, but
in the setting of R”*! rather than R”, as we will be expressing the surface
as a graph.

THEOREM 24. Suppose ®(x) is mixed homogeneous of degree (a,,..., a,),
with a;> 1, namely,

D(AVx ..., AVanx,) = AD(x), A>0, xeR™

Suppose further that
~1 n—1 . n 1
D(w)~ ' eL”(S" ), O<p<min{—,=»,
m 2

and Y, = {x: ®(x)=1} is of finite type with polynomial bounds, namely,

P
Y 57 5 P(x)

2<1pi</

>c|x| ™M, (60)
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for some M>0,¢>2, and where B=(p,,..B,_1) is a multi-index, and
(¥yss Yu_1) Is a coordinate system orthogonal to V&(x) at x. Let M' be
defined as in (27) above with S given as the graph of @ +c,, and with
0<B, == =PBn_ <P, Then M' is bounded on LP(R"*'), ie., (8)
holds, for p > 1/p. Moreover, the constant C, in (8) is at most C(1 + |¢o[)"”
(in the case B, =0, our proof yields an additional factor log(1 + |co])).

Conversely, if (8) holds for a given p and c, #0, then p>m/n and
D(w)~' e LVP(S"TH).

Proof. The converse assertion is proved just as in Theorem 2 of
[IoSal], since the only issue is the behaviour of .#'f(x, x,.,) for small
x,.; when fis a function of x,_, blowing up appropriately at 0, and in
this respect, .4’ behaves the same as .#. The point here is that the tangent
plane at the origin is horizontal, and thus doesn’t rotate while dilating.

Turning to the main assertion, we first note that it suffices to consider
the case where the cutoff function y(r) is supported in the interval [}, 2].
Indeed, with this done, one writes ¥ =Y 7_, ¥, where Yu(r) = @(2Fr),
k>1, and ¢ is supported in [3,2]. With ) denoting the maximal
operator corresponding to ¥, we rescale as at the beginning of Section 3,
and obtain that the .#) are bounded on L”(R"*') with constant
C2kmip)—kn Note that the factor 2¥™/7 arises since the resealed maximal
operator has ¢, replaced by 2kmeo. If p>m/n, Minkowski’s inequality
finishes the proof.

After perhaps making a change of scale 7 — t*, we may assume that in the
definition of ', B, =..=f,=p, while B, ., =1+ f. For a>0, we define

‘M;f(x, x,,+1)=SUp .ﬁf('\‘_tﬂy' '\.01*1~11+B(¢(y)+60)) ¢(.V)a l/’()’) dy

>0 "

= sup |/ » 73,

t>0

where 75(¢, ) =5Rne""“f"’"“‘”""‘”ﬂ”!@(x)l" Y(x)dx. As in [loSal], it
suffices to show that .4’ is bounded on L*R"*') for « +p >3, and with
norm at most C(1 + |co|)'. Indeed, applying Holder’s inequality, we get

1/r
L f1 < 710 (100U &) < C A1

provided a(r'/r) <p, e, r>(a+p)/p. Fix p>1/p>2 and set r= p/2. Then
L—p<p(r—1) and thus we can choose « in (3—p, p(r—1)), which yields
both a+p>1 and r>(a+p)/p. Then, if we have shown that .#, is
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bounded on L} R"*!') with norm at most C(1 + |c,|)"? for a+p >3,

U 41 l”>w <C (j (A Ifl')2>ws c ((1 +1eoh) [ | f|p>”'{

The L? bound in turn follows from Theorem 15 provided we verify that =
is bounded and

2~ 12
{f Irz(zﬁé‘, zl+b‘;,)|2dt} <C(1+|é|+l;_|)—(1/2)_5,
l .

2 12 (61)
{j IV;;(IBf, A2 dt} SC(l+ e D1+ 1] + |A])—(=e

1

Now set 1/m=(1/n)((1/a,)+ -+ +(1/a,)), |xlo=(|x; [+ -+ +|x,|)""
and §"'={weR": |w|,=1}. Define i*cx=(27x,,.., A%x,) for a multi-
index b= (b, ..., b,) so that in particular we have ®(1"¢x) = 1®(x). With
the change of variables r=|x|, and w=(|x|7™" ox, we have
lol,= (T, |x;r~4|%)" =1, and so if the cutoff function ¥ depends
only on r=|x|,, we obtain (upon omitting the harmless factor e'*v)

TG )= ey () o(x) dx

RII
= [ et Oy () () dix
R”
=J~ l’wa. ei{zj,;,w/‘;’_rm;aj+).d>(w)r'"}rn—l+ma!//(r) dr] (p(w)a dw
Sn-t 0
=[  H(0.& ) 0w) do,
S‘n——l
where
* n = .m'a m
H’(w, é’ ;) =J. ei{}:/slegjr 4+ AD(w) r }rn—l +ma¢(r) dr. (62)

0

Clearly, 7* is bounded. Turning to (61), we restrict attention to %, since

the argument for Vr* is the same, except that applying 0/04 to 7 brings
down a factor of @(x)+ ¢, into the integrand, resulting in the extra factor
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(14 ]col). In the case |A] < c |&], for ¢ small enough, V(x- &+ AD(x))| =
|€ + AV®(x)| = ¢ |£| and integration by parts yields |t*(&, )] < Cp(1 + |€]|
+ [A])~" for all N>0, and (61) follows immediately. So we now assume
that |A] > ¢ |¢| and write

2

f |75, £+ 852 de = j | HY0, 1%, 1) 9(0)* do| dt
j [ Hw, 1%, ' +21) &(w)* do| dt
{D(w) < A~ me}
2 2
+j j H(w, %, 1'5)) &(w)* doo|
1 Y {Diw)>a—m)
=1+1L
To handle term I, we use the estimate
j" |H*w, t°, 1" +))|% dt < C |Ad(w)] . (63)
1 ,

To see this in the special case f=0, let ye CZ(R.) satisfy >0 and
n(t)=1for 1 <r<2. Then

j |H*(w, & 12)|> (1) dt = j H(w, &, t2) H@, &, 1) n(1) dt

— J‘J~ [ J~ ei{EJ"=| wjﬁl-(r’"/"/—s”’/“'j)+l»1¢'(w)(r"'—s'"):”(t) df:|
x rn—l +maw(r) Sn— 1 +mz.//(s) dl’ dS.

Now the inner integral in square brackets equals

v 1 —(az/atz) ) '{S"' = (pmiaj . ymlaj m__ omyy
. {3y @S (rMa) — s™aj ) 12 D(w)r™ — ™)} dl
f{(l FadP =) }”(’) ’

which, upon integrating by parts, is dominated by

(1 —(8%/9e%)) n(2)]
1+ A®(w)|? |r™ —s™|?

dr < C(1 + [AD(w)|? |r—s|*) 7
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Thus

[ 18, & ) a1 dr < € [[ (14 120(@)12 Ir = i)™ Y(r) Y(s) dr ds

=Clid(w)| 7,

which is (63) as required.

Unfortunately, this simple argument doesn’t work in the case f # 0, since
the ¢ derivative of the phase function no longer has the special form above.
Instead, we must apply (56) of Theorem 23. For this, recall from (62) that

o
H%w, t”f, 1! +ﬂ;_) =J ‘{'ﬂzj=|“)Cr'”’aj+ll+ﬂ/t¢(w)r"',rn 1+mal//(r) dr
1

3
___f ei¢,(r)rn—1+m1¢(r) dr
0

where

At this point we must group together like powers of r. Note that the
hypothesis a,> 1 implies that the coefficient of 7, within the braces above,
is exactly A+ In general, the coefficient of P is (X0 =0, ©,8)]
(A®(w))). For convenience, we will assume that the g; are all distinct, the
general argument being the same with 3, gmay w;&; in place in place of
@&y

Now if [A®(w)| = CX_, |w;¢;|, then

d
0|z cliog
:

on supp ¥. So integration by parts yields |H*(w, tP¢, t'*25)| < Cal(1 +
|A®(w)|) =" and the left side of (63) is simply

j' |HXw, 1%, 1"+ P2)|2 di < c,\,j' (14 20(w)]) =2 dt < C |2d(w)| ~\.
1 1
On the other hand, if |A®(w)| < C 3, |w;{;], then we write

n w;&;
Ar)=iD(w) { 1P < — > S A '"}
P r)=1 (w){ jg,l (@) r

=R{t’B.G(r)+1'*Fe, , -&(r)},



MAXIMAL AVERAGES OVER SURFACES 101

where R=/®(w), B=((0,&,/AD(®)),.. (0,&,/AP(w)), 0) and &(r)=
(rm/’al’ )’"1/”3,..., r"’/"", I‘"').

Let T,, T,,... T, ., denote the unit tangent, principal normal, etc., to the
curve G (see Subsection 8.2 on local canonical form below). If p denotes the
rotation taking T..., T, t0 &,,..., &,,, then with V=pé,,, we have

¢(r)=R(PB+1' 7P, ) -6(r)=R(FpB+1'*pé, . ) pi(r)
=R(t*pB+1' V). I'(s),
where I(s) is the local canonical form of & at some r, € supp ¥, and
|I7'é.1‘=lé‘n+l ! 7-:‘1|>C7

as a simple computation involving ¢ shows. Here F(s)=(Iy(8),.s T(5))
satisfies

ko ki .
Fj(s)=k—l—'j'—’-—l-s’+ Oo(s’*1),

where k, is the curvature, k, is the torsion, etc. An elementary computation
shows that the k; are all nonzero for the curve & F) = (", priaz,
F™/an ) provided @, >a,> --- >a,> 1. See Subsection 8.2 below for these
facts.

If we now set

ey

P(s)=pB-I\(s),
Q(S) = I7 f(S),

then the hypotheses of Theorems 18, 19, and 23 are satisfied. Indeed,
| Bl = C~" implies that 4 in Theorem 18 is bounded below, and

=Y (V-¢) (”fﬂ%’v'k/‘_—_isn}, 0(sf+’)>

implies |b,|=|V-& |>c and |b,|<C for k>2. Hypothesis (41) is a
consequence of the fact that r” is not in the linear span of the monomials
{pmia pmias .y since a;> 1. Thus the hypotheses of Theorem 19 hold
in the case f=0. However, the conclusion persists for >0 since

0=4¢i(r(1)) = RE°{P'(r(1)) + 1Q'(r(1))}
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implies that

__P()
Q'(r(1))’
and
d —B 41 ! —BAn U
- ()= RQ(r(1) +1 ¢;(r(1)) r'(z)

implies that

Q'(r(1))

i
! r'(t)

)

|¢§'(r(t))
R

and the additonal factor of ## causes no harm since 7€ [1,2]. Thus (56) of
Theorem 23 applies, and after passing from I'(s) back to &(r), we obtain
(63) as claimed.

Using Holder’s inequality, we can now dominate term I by

2
KJ U ‘D(w)‘”dw)f |H*(w, P2, £+ P)|? D(@)*** dowrdt,
1 \v3! 3l A {dlw) <A™}

<c|

SI -l A Plw) < iTmEy

U_ |HXw, 1P, ' 7F2)|? dt} D(w)*>+* dw,

1

scj (AD(w)) ! D)7 dw, by (63),

3= A {Blw) < i

< Cl——l J (2—-»15)2(14—;;—(1/2)) ¢(w)—p dCl),
S‘n—l
S C;t_l —2me(x+ p —(1/2)) = C/‘L_l —e”

since o+ p > 3.
Finally, we turn to estimating term II. First we claim that

\

2

, o i\
Ha((l), tﬂé, tl +ﬁ/:) _Z el¢,(rk(l)brk(1)mx+n—l W(’k(’)) < - >
. 1)

< C iP(w) 7175, (64)

where ¢ (r) =1 T7_, @& + 1" FiP(w) " and ri(1)isaroot of £ “Bpi(r) =

>r_wi(mja;) rima) =1 4 i d(w) mr” ' Of course, ri(t)=r, (t) and
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¢, =49, ,, are actually functions of ¢, w, £, and 4. For this, recall from above
that

Ha(w, é, t}) =J;) ei""”rf'_l*’"“\[/(r) dr,

where

= s ‘ wjéj > m/a; 1+ 8 m}
d(r) ld’(a)){t jgi (_Atp(w) P4 g Eem

Now if |[A®(w)| > C Y7, |w;&;|, then

ji 61| > ¢ 120(w)
dr

on suppy¥ and Y(r,(z))=0 for all k. So integration by parts yields
|H*(w, tP¢, ' T21)| < Ch(l + |AD(w)]) ™" and since Y(ry(t))=0 for all k,
the left side of (64) is simply

2 2
f |HXw, 1P, ' *P5) 12 di < Cj (1+]Ad(w)]) "N dt < C|2®(w)| 7' <.
1 1

On the other hand, if [41®(w)| < CX]_, |w;¢;|, then as in the proof of
(63) above,

¢i(r)=R{[ﬂ§'5(r)+tl+ﬁé'n+l 6:(7')},

where R=,®P(w), B=((w,&,/iP(w)),..., (0,&,/AD(w)),0) and &(r)=
(pmfen) pmiax pm/an ) This time we also note that

C<|B| < Clo(w)| 7' < CA™, (65)

since 4>c || and since |@(w)| >4~"¢ in the range of integration for
term I :
Then with p, V, and I as in the proof of (63), we set

P(s)=pB-I(s),
O(s) =V I(s).

As before, the hypotheses of Theorems 19 and 23 are satisfied. This time
however, by (65) again, A x ||pB| < CA™, and since R=1d(w)= A~
we have

A S CRme;‘(l — me) < CR(1/2|—66
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for € sufficiently small. Thus (58) of Theorem 23 applies, and after passing
from I'(s) back to &(r), we obtain (64) as claimed.
We can now begin to estimate term II as follows:

02

n<| J{H"(w,t”é,t”ﬂ/ -3l } () do| dt

{D(w)> 17} {18 Wi (1) > |AP(w)| '~ € Yk}
2

+ Hz[...]}q)(w)adw dr

{®(@)> 277} A {167 wlre D] > 14B(w)]' € Yk}

+f [ HH(0, 1%, 1 +3) B(w)* doo dt
{P(0) > A7) N {187 olri ol )] < |2P(@)]' =€ some k}
=III+IV+V.
Using (64), we can dispense with III immediately. With
E={0w: ®(w)> i} n{w: |¢] (ri (1) > |AD(w)|' " Vk}, (66)

we have, using Holder’s inequality,

11 sf <j B(w)—* dco) jE

<c| AN e ()2 = 122D (09) =7 deo < CA1 S,

{Plw)>s—meL

2

H*w, 78, 1" 2 =Y [+ ]| &(w)***dwdt
k

by (64) with R=|id(w)| if a+ p =3+ (€/2).
Using (57) of Theorem 23, we can easily estimate term V as follows:

vsj' U ¢(w)"’da)> j |H*(w, 15, z1+ﬁ,1)|2
1
| (D) > 17} A {187 olre 0] < 13D(e)]' =}
W) P dwdt

<| [1H e, 12, 0140 2)) dr | &(0)**7 doo
{Plw)> i —me} v
{107 ri 0] < i@ =)

<j Clid(w)] =~ ()" do
{Plw)>2—m€)
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by (57) with R=|i®(w)|. Thus
V<‘[~—l e¢(w)2(a+p (1/2)— (e/"))¢(a)) ”dwsC)ﬁ‘“,

provided a + p = (1/2) + (€/2).
So it remains to investigate

IV=r
1

with E as in (66), i.e.,

dt.

) 27i 172
i, (r (1)) n—1+max a
%Le rl1) W(r1)) <—-—¢;,(rk(t))> ®(w)* do

E={w: ®(w)>A7"} 0 {w: 9] o(re o] > |AP(w)|' ~€ Vk}.

Note that if we pass from the sphere §” ! to the level set X via the change
of variables

w w
=@ ~la ;= 1 — n ,
’7 (w) w <¢(w)l/a| ¢(a))l/an>

and set
r):_-tﬁ 'Z ﬂjé Y +tl+ﬁ

then with 7,(¢) denoting a root of ¢, we have

¢r) = (P(w)""),
gi(r) = D)™ Fi(D(w)'" ),
$1(r) = D)™™ §(P(c)™ 1),

r(1) =®(w) "V (1),

(67)

and we get

v=[ |z

J. '¢,(rk(l))r ([ ma+n 1 w(q) —1/m = (t))

1/2
< 2mi > ()™ """ dw

1¢,(q(r))r ( )mz+n—1 W('”lafk(t))

2

dt

S.(

x( 2ni >”’ da(n)
(7)) IVB()]|
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where

Inla=P(w)™"" ) = {ﬂeZ: Ilu <25 187 (Ful2))] > 41— mli"”"'”},

€1

and of course 3 is the level set {neR": &(y)=1}.

It suffices to consider a single k in the sum above, so for convenience in
notation we suppress the subscript k£ and the tildes over ¢, and r,, but
indicate the dependence of ¢, and r on 7 by writing ¢, , and r (). Thus by
expanding the square, we can rewrite term IV as

2
L L:‘ f ei{¢,.,,(r,,(l))—¢,,;(r;m)}(r”(t)rc(t))n—l+ma ‘/’(|’7larq("))

do(n) do({) .
Vo) IVO()]
(68)

XY(IClare (D)2 @7 (1, (1)) ¢7 (re(1))] 17

since &(w) ™" dw = ( da(n)/|VD(n)|) (see e.g., (28)(c) in [IoSal]). We
now observe that the phase function ¢(z, 7, {)=¢, ATa()) =, (rc, (1)) in
(68) satisfies

)
5 TR O =170 (r,(1) ri(1) + Ar ()

— {179, (ro(0) Fi(t) + Ar ()™}
=Ar, ()" —=r.(1)").

At this time we invoke the following consequence of the finite-type assump-
tion on Z:

o
== (o))

Zclpl V=A™ (69)

I<iaf</

~ for some large N. See Lemma 25 in the subsection on finite type below for
a proof of (69). It follows from (69) that

oi*l @
za—{t_ﬂ¢(ta n, g)}IZC}-l_Nsa
1<E</ oy* ot
and hence that
o @ folkl
= oL O+ = o(t,n, {)| =it~ (70)
L<ial<e 0¥ 01 1s;§|'</ Oy
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Indeed, if we set f(t, ¥) =1"@(t. 1, (), then

o= 8 o 9 ol
T v\ =t == f p=1
5 ot Wy =t 3 (t.y)+ Bt ay"f(t’ »).

Let v be a large constant to be determined later. Let {u}cZ. be a
maximal collection of points whose pairwise distances apart are at least
A7 Then \J; B(u;, A~") covers X, where B(u;, A7*) denotes the ball
centered at y; of radius 27" Let {p;(n)}, denote a partition of unity sub-
ordinate to {B(u;,227*)}; and let {,(t)}; be a partition of unity on
[1,2] with 7, supported in [1;— 27", t;+27*]. Now decompose integra-
tion over [1,2]xY. ,x Y., In (68) into a sum of at most AM€ pieces of
the form

2
Li‘j'k::L J; L_ el{d’,.qlrﬂu))—lﬁ,_;(r:(lb);(’.”(t)rc(t))n—l+maW(I”lur”(t))

) W[C]y re (27D @7 (1) @1 re(£)] 712

. da(n) do(l)
xn,(t) py(n) pil<) Vo(n) V()] ’

(71)

We claim that
160 (r(O) =167 (r (e Z 2! =< for mi(6) pym) #0. (72)
Indeed, from (67) we have

167 ()] = 167 (7 o) [B(@) 727> [20()| ¢ Blw) ™

1] — —(2im) — A l—€ 1 — —(2/m) — -
=/~l 545((0)! (2/m) e>/~l e(A ms)l (2/m) €>}"] e(m+1)

on the set E. Moreover, 0=¢, ,(r,(1)) implies

n

02,000,101 = (5 2 r ) L) Vo
j 1

J j=

which yields

9,0 =1 t"égr,,(t)‘"””"'\! <o (M
! |
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since |¢; ,(r,(t))| =cA' = on X, and r,(t) = ||, since Y(lnl,r,(1))#0.
n

Thus we now have
aq;

X r”(t)(m/uj)~2+ t] ‘*ﬁlm(m—— 1)r'7(t)m—2}

IV, (87 (r,(1)2}] =2 187 (

<SCLA 3" V,r 0] < CA2*,
and if we choose v much larger than ¢, we obtain

(g7, (r ()7 = (7, (7, (2)))°]
<C)2+“/1—V€ C/" (v— c)e<2|¢ v(ti))lz,

which yields (72).
Using the finite type condition (70),we can now invoke Proposition 5 on
p. 317 of [St2] to obtain the following estimate for L; ; ;:

L; .kl < Ce2' M)~V Ny L, (r U 2187 (r (2] 12

X (ryj(ti) r#k(ti))n——l-(-mcx (l//( |/uj|a ryj(ti)) lp( I.ukla r/xk(ti))'

More precisely, we use the implicit function theorem as in [IoSal] to write
X as the graph of a function ¥ on the support of #,(t) p;(n) px({), and then
use (70) to establish the hypotheses needed for the proposition in [St2].
Using (72) and (73), and then changing variables back to the sphere S,
we obtain

AT
Ly il < Cemtvosne [T
i jok -

L

[ =y ()
g

x |7 (1 ()] V2 P(0)* dr f Te. o)1 Y (g (1)

e

X |91 (k. D) 7V D)™ deo dt

where Q; is a ball containing the support of p;(v), and [#;,1;+27"]
contains the support of 7,(t). Applying Holder's inequality and using
&~ 'eL”(5") yields
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A TVE
|L- ‘klgC/’_‘“//HNoe'['
i j. v

i

J, 100 017 @ Y (1) dod

-ve

i+ 2
+C)~_“/“+N°EJ JQ |¢’r'.w(rk.w(t)|_l @(w)21+/)
! (3

i

XY (re (1)) do dt.

Finally, summing in i, j, k gives

AT
IVK Y |L, ;x| SCAH0=te ¥ J'

i jok i jok T

X P()* TP Y(ry (1)) deo dt

- ? rolrk (t)l“
= C -1 -/ +Ne Lo\ kw
%‘L jgk }.@((0)

X D) Y1y, (1) doo d

[ 190 urunl !
O

<C;u—l--(l//wzvlezj B(w)>+* " dow,
o

by Theorem 18,
SC)._I_”/(H.Nze, lf a+p>%.

Thus we obtain IV<CA~!'~¢ as required if we choose € so small that
N,e<(1/¢). This completes the proof of Theorem 24 (equivalently, of
Theorem 7).

8.1. Finite Type

In this subsection, we prove the result on finite type which implies the
crucial inequality (69) above.

LEMMA 25. Let r,(t) be as above and set s,(t)=(r,(t))". If Z is finite
type ¢ with constant 0>0, ie,

PIE
oy*

5-!7'2&
I<jal</

for all unit vectors T, then

1<z </
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Proof. If 3y ca <. 1(0™/0y%) s5,(1)] <3, then (see p. 343 of [St3]),

a k
(&) =10

Now we have (after dividing out by ¢#),

1

)

k=1

<cd, for all directions y.

0=)Y “j;ngl—r,,(t)'"/“i+ltmr Z énj—s (1) + Atms, (1),
Jj=1 J Jj=1 i P
#
and so
a k n .
OE<5;> {; éﬂjzs AV + Atms, (1 )}
=

0\° AN o \¥
(&) (5] o) e (55) sto
a k
<——> ﬂ,}sﬂ(l')”“fwL 0(c6 <)),

upon noting that s,(7) € supp ¥, and so is bounded away from zero. Thus

we can write
n a k a k
0=j§l W, (é}) 1+ O(cé |€I)=<5;> (w-n)+ 0(co &)

a k
= [wl (-—-a > (T-n) + O(colE]),
-}7

where w,=¢&;(m/a;) s,(1)""% and ¥=w/[W|| is a unit vector and ||w] = |&].

Thus

12

P

for ¢ sufficiently small, contradicting the hypothesis since, once again by
p. 343 in [St3],
AP
<5)> v '”)l

where the sup is taken over all directions y. This completes the proof of the

0
[) @] <gomsceoss

alul
oy*

T ;71 X sup Z

k=1

)}

I<ai<s

lemma.
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8.2. Local canonical form

The purpose of this subsection is to briefly review the local canonical
form as applied to curves of the form &(r) = (r®, r*,..., r), where b, > b,
> ... >b,>0. But first we begin with an arbitrary smooth curve &;(s),
parameterized by arc length s, so that

ko= 173 ()] = 1.

Now define

1
&, =—03g'
ko

and
ky=la7"|.

Now &7 -@; =1 implies 37’ -@; =0, so that if k, #0 we can define

S

1
—_—
=0 N
k, !

with the result that {5}, 33} is an orthonormal set.

Now 75 -3 =1 implies 53'-53 =0, and 73 -G, =0 implies &5’ -7, =
-5, -6, = —k,, so that 33’ +k,, is perpendicular to both 3} and 7;.

Thus if
ky=|52" +k,a7|

is nonzero, we can define

7=

1
k_ (an + kl?l )s
so that {G7, 53,53} is an orthonormal set.

Continuing in this way, if we have already defined &, k..., k,,_, and
{1.33..... 0} by

k=17 +k; 7, 2<j<m,
1 —_—
G = (@ kT, 2<j<m,

so that {57, 33,.., G, } is orthonormal, then @, -G, =1 implies 5, -7, =0,
and @, -G, =0 implies G, -0, =~0, -G, =—0, - (k;g;21 —k; 15,1 )

J J
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which vanishes for j<m —1, and equals —k,,_, for j=m—1. Thus if we
define

km= |Iam’+km—lam—l ”9

ey
Opm+1

k‘l—(a',:"f'km_]m),
we obtain that {57, 73,...,5,,-1} is orthonormal.

The curve G5 in R” is said to be nondegenerate provided k,k, ---k,_,
#0, and if we fix s, and then translate, flip, and rotate coordinates so that
G1(50) T3 (o)., Tp(5o) are the coordinate directions 7,23,..,2; with
origin 7, (s,), then 7, expressed in these new coordinates is referred to as
the local canonical form of @; at s,. Note that k, is the curvature and -,
is the torsion of ;. If we expand @y by Taylor’s formula in the new coor-
dinates 1, the local canonical form is essentially (1. (k,/2) 1, (k,k,/6) £,...,
((kyky -k, _,)/n") t") plus higher order terms.

We turn now to the special curves G(r) = ((r> *'/(b, + 1)), (r®>* 1/(b, + 1)),...,
(r*'(b,+1))), where b, >b,> --- >b,> —1. Then &(r)=(r", r’..., rt»)
which yields

—r b by b,
F___a(r)= (ro, re2., ron)
! ds/dr \/erl g 2,

Continuing, we compute

d _, (djdrygy (byr" 7', b,r5 1)

G, = =
ds ! ds/dr T R

(2b1r2b|—l+ s +2bnr2b"~l)( by rb rb)
3 - roL e, ron),
2(’.2b1+ —}-I"b")z

which has first and last components

(by—by) r:=t (b, —b,) rbr+ 21
(r2b1+ +r2bn)2

L)

and

(bn__bl)rb,,+2b,—1+ +(bn_bn_l)rb,,+2b,,_,—l
(,.2b1+ +’.2b,,)z

)

respectively. Since b, >b,> --- >b,, we see that these components are
nonvanishing on (0, oc). Thus the first and last components of G, are non-
vanishing, and similar calculations show that the same holds for 73..., 7.
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We conclude that the curve &(r)=((r"*1/(b, +1)), (r2*'/(by+1)),..,
(r®*1)(b,+1))) is nondegenerate on (0, o). Note that if two of the
exponents were equal, then ¢ would be contained in a hyperplane and thus
be degenerate.

8.3. Parametric Surfaces

In this last subsection, we turn to proving the main result for .#’ on para-
metric surfaces of codimension 1 and 2, which we recall for convenience in
the setting of R+ 1.

THEOREM 26. Suppose an {-dimensional surface S,¢{=n or n—1 (but
¢ >22), is given parametrically as

S={(D(x),... D, (x), B(x) +¢o) eR"!: xe R}, (74)

where @(x) is P-homogeneous of degree m, and ®;(x) is P-homogeneous of
degree m; #m. Suppose further that

(i) There is 0 < p <min{({/m), 3} such that
D(w)~' e LS.

(ii) The image of
Y={x:®(x)=1}

under the map R is of finite type with polynomial bounds.
(iii) For each ve S"~1,

-~

a_ é n
rank { v, D (.\'- }:| = 2
[5.\‘,@.\'} ,E, @il ) 1<ij<¢

whenever

V. { Y vkcbk(.\')} =0.
k=1

Let M’ be defined as in (7) above with 0K f,=f,=--- =B,<B,.,. Then

M is bounded on LP(R"*'), ie., (8) holds, for p>(1/p). Moreover, the

constant C, in (8) is at most Cy(1+ |co|)"" (in the case B, =0, our proof

yields an additional factor log(1 + |c,])).

Proof. Just as in the proof of Theorem 7, the mixed homogeneity of the
functions @,,..., @, @ permits a rescaling argument and reduction to the
case where the cutoff function y(r) is supported in [1,2]. This time,
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however, the scaling factor is 2'*/7)=“ and the terms sum provided
p>{/m, accounting for the restriction 0< p <min{(¢/m), 1} in (i). With
{T.} >0 denoting the dilation group, let |x| =inf {r>0:T,-1xe S
Then the “polar coordinate” change of variable x = 7.« where r = x and
weS”~! has Jacobian cr’~'drdw (since trace P is /) and results in the
following formula for 7%:

PE A= eltAm e iomiy x) g(x)* dy
R’

= [foc ei{.ﬂ’(T,w)~é+»‘.¢(cu)r"'} r/'—l+ma¢(r) d)‘:, ¢((D)a dow.
s’-1 170

In the case |A|>c|¢|, we verify (61) as before, using the fact that
A T,a))f:ZJ’.':1 &;(w) &;r™ and r™ is not in the linear span of the r™
since m; # m. Hypothesis (i) enters exactly as before, while hypothesis (ii)
enters in proving the finite type condition (69) for the roots r,(1)". More
precisely, we compute that for the new phase function

Br) =172 - R(T,n) + 11+ Pjpm
— tﬂf ) [r”"cb,(n),..., l'm"(p,,(l])] + ¢! +/?,1rm’

we have

t“/"r(fj(r) =¢ [m,r™md,(n),.., mr"® . (n)] PT,n+ mtirm,
=[mr™E ., mr™E - R(n) + miir, (75)

Denote by F{(y, r) the function on the right side of (75) but with n replaced
by a coordinate patch yeR"~! (as in [IoSal]), and similarly let r(y)
denote a smoothly varying root, i.e., F(y, 7(y))=0. Now (69) follows easily
from the chain rule as in the proof of Lemma 25 above, if we assume that
F(y,r) is of finite type in the y-variable, uniformly in r. Hypothesis (ii) is
precisely what is needed for this.

Finally, hypothesis (iii) is used to obtain decay of order —1 for 7% in the
case |4 < c [¢], for ¢ sufficiently small. Indeed. it suffices to verify the rank
condition for 37_, v, D.(x)+ €P(x) in place of Y7_, v, ®.(x), and a
continuity argument establishes this for sufficiently small € > 0.

We end the paper with an example of a parametric surface S of codimen-
sion 1 to which Theorem 9 (or more precisely Remark 3) applies, so that
«#' is bounded on L* yet the decay of the Fourier transform of surface-
carried measure is strictly worse than — 3. This is in contrast to our conjec-
ture that if S is the graph of a mixed homogeneous function satisfying the
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hypotheses of Theorem 9, then the decay of the Fourier transform of
surface-carried measure is —1—¢, and ./ is bounded on L2

ExXAMPLE. We construct a three-dimensional surface S in R* given
parametrically as

S={(Dy(x), Dy(x), D3(x), 1 + Dy(x)) e R*: xe R, 1< x| <2},

where @, @,, @, and @, are homogeneous in the usual sense of degrees
1, 2, 3, and 4 respectively. If we let x=rw=r(w,, ®,, w;) where w;=

V1—wi—w3, and if 4 is a large positive constant, then we define for
w,, ®, small

To see how these definitions arise, consider the phase function
¢, =& R(x)+ Atd(x)
=&, D () r+&,P5(w) 1P+ E,D5(w) r* + Atd(w) rt.

Set t=1and ,=¢,=¢,=4 so that

() =[P () r + Py(@) r* + D(w) 1 + D(w) r*].
Now r=1 is a repeated critical point of ¢,(r) if and only if both

0=¢1(1)=A[D|(0) +2P,(w) + 3P;(w) +4D(w)],

0= ¢1(1) = A[205() + 6B 4() + 120(w) ],

4
in other words, '

P(w) =3P;(w) +8P(w),
D,(w)= —3D;(w) — 6P(w).

Note also that

$1(1) =A[D3(w) +3D(w)]
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and
9"1(1) = A[6@;(w) + 24P(w)],

so that by stationary phase,

'fe“‘:'mx“""qb("”l//(l.\‘l)dx
=J fm e N(r) r? dr dow
s?Jo
~ [ ey 47(1)] 7 do
§2

=[62] —1/3j 123+ 32D & (1) + 4d(w) ]~ doo,
s?

provided r=1 is a repeated critical point of ¢,(r). With the choices made
above in (76), this is indeed the case and we have

$1(1) = AL D3() + 3B(w)] = A[34 + 300*],

and so

‘.ei’,i~.ﬁl,\‘)+}.¢(,\')} l//(lv\‘l) d.\‘
~[6.]717 j _ePDA3NI Y L deok 4 0,] 7 doo
§.

~ C/'.—I/SJ‘ QL3+ 30k ] g
s?
zC/:—-(l/.?)—(l,’k)' '

Thus decay of the Fourier transform of surface-carried measure is strictly
- worse than — 3 provided we choose & > 6.

On the other hand, we now verify the hypotheses of Theorem 9, or
rather the weakened form in Remark 3. Clearly (i) holds since ®(w)~' € L"(S?)
for all p >0 if 4 is large enough. As for (ii), we have

I={x:0(x)=1] ={x=rw: A+ ot + 0, =r"*}.

Now the map #=(®,, ®,, @) takes spheres centered at the origin into
planes since for each fixed r, @4(rw) is a linear combination of @, (rew) and
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@,(rw). It follows that X is then mapped into a surface of finite type, so (ii)
holds.

Finally, we show that the weakened hypothesis (iii) in Remark 3 holds:
there is €>0 such that |(&, &) < C|E] =V ~¢ for ¢ in the cone ¢ =
{(&, &) eR*: |E,41 < ||} for ¢ small. We do this by first showing that

al 3
rank[axia\' { Z vk¢k(l)Hlsi.]s3>1 (77

o Nk=1

whenever

3
V_\,{ Y vkqﬁk(.'c)}:O.
k

=1
For this, we write

V- R(x)= Y v Bl

k=1
= (8v,r — 6v,r)(A4 + ©¥) +(=vyr+3v,r2=3v,r%) ;.
We now assume, in order to derive a contradiction, that both V(v- %(x))

and V?(v- 2(x)) vanish at some point, which we assume occurs when r = 1
(the general case is similar). A calculation yields

=ai (v- R, 21 =2(4v, = 3v,) ko ™!

w,

0= g (v-R(xX))],oy=—Vvy+3v,—3v,
0w,
5 (78)
0 =3 (v-R(x))|, 2, =6vy( =24 = 20* + w,) — 18v;0,
= & (v-R(x))|,oy=—Vv,+6v,—9v
"~ ordw, Sr=rm 2 ¥
The second and fourth equations in (78) yield
vy =%"2, V3=%V2- (79)

We consider the cases w; #0 and w, =0 separately. If w, #0, then
the first equation in (78) yields v, = 3 v,, which together with (79) implies
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that v=(0, 0, 0), a contradiction. If, on the other hand, w, =0, then the
third equation in (78) yields

0 = 6V2( —2A + (02) - 18V3(O2,
which together with (79) implies that

12v,4 2v,4

T6(v,—3va) —(12)v,

(l)z "'4A,

which is a contradiction for 4 > 1. This establishes our assertion regarding
(77), and this guarantees a decay of at least —1i. The additional —e decay
arises from the fact that there is finite type in the remaining directions.
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