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What are primes and why do we care about them?

We say that a positive integer p > 1 is a prime if p is only divisible by
1 and itself.

For example, 5 is a prime, but 4 is not since 4 = 2 · 2.

A prime factorization of the integer n > 1 is the expression

n = pa1
1 · p

a2
2 . . . pakk ,

where pk ’s are distinct primes.

Moreover, the prime factorization is unique!
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Uniqueness of prime factorization

The well-ordering principle says that any non-empty subset of the
positive integers contains the least element. We shall take this
concept for granted since it is easily derived from the principle of
mathematical induction which is an axiom.

Lemma

(Bezout’s identity) Let a, b be integers with the greatest common divisor
d . Then there exist integers x , y such that

ax + by = d .
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Euclid’s lemma

After proving Bezout’s identity, we shall use it to prove the following
result due to Euclid.

Lemma

(Euclid) If a prime p divides the product ab of two integers a and b, then
p must divide at least one of those integers a and b.

Finally, we shall use Euclid’s lemma to establish the uniqueness of the
prime number factorization.
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Bezout and Euclid
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Proof of Bezout’s identity

Let
Sa,b = {ax + by : x , y ∈ Z; ax + by > 0}.

Observe that if a ≥ 0, then taking x = 1, y = 0 shows that a ∈ Sa.b.
If a ≤ 0, taking x = −1, y = 0 shows that −a ∈ Sa,b.

In particular, Sa,b is not empty.

By the well-ordering principle, Sa,b has the least element

d = as + bt.
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Proof of Bezout’s identity (continued)

We will show that d is the greatest common divisor of a and b.

We write
a = dq + r , where 0 ≤ r < d .

Observe that

r = a− dq = a− q(as + bt) = a(1− qs)− bqt,

which implies that r ∈ Sa,b ∪ {0}.

But r < d and d is the least element in Sa,b, so r = 0 and hence d is
a divisor of a. In the same way, d is a divisor of b.
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Proof of Bezout’s identity (finale)

It remains to show that d is the greatest common divisor.

Suppose that a = cu, b = cv . Then

d = as + bt = cus + cvt = c(us + vt),

which implies that c is a divisor of d , so c ≤ d .

This completes the proof of Bezout’s identity.
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Proof of Euclid’s lemma

We shall now prove that if p is a prime and p divides ab, then p
divides at least one of a, b.

Suppose that p does not divide a. Then by Bezout’s identity, there
exist x , y such that

px + ay = 1.

Multiplying both sides by b yields

bpx + bay = b.

Observe that bpx is divisible by p because p is present and bay is
divisible by p because p divides ab by assumption. This implies that p
divides b, and Euclid’s lemma is proved.
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Existence and uniqueness of prime number factorization

Theorem

Every positive integer n can be written in the form

pa1
1 pa2

2 . . . pakk ,

where each pj is prime, aj ≥ 1, and

p1 < p2 < · · · < pk .

Moreover, this representation of n is unique.
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Proof of existence

We proceed by induction. First, 2 is prime. Now assume that every
number < n is either prime or a product of primes.

if n is prime, there is nothing to prove.

If n is not prime, n = ab, where a < n, b < n.

By the induction hypothesis, a is a product of primes and so is b, so
n = ab is also a product of primes.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 11 / 29



Proof of existence

We proceed by induction. First, 2 is prime. Now assume that every
number < n is either prime or a product of primes.

if n is prime, there is nothing to prove.

If n is not prime, n = ab, where a < n, b < n.

By the induction hypothesis, a is a product of primes and so is b, so
n = ab is also a product of primes.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 11 / 29



Proof of existence

We proceed by induction. First, 2 is prime. Now assume that every
number < n is either prime or a product of primes.

if n is prime, there is nothing to prove.

If n is not prime, n = ab, where a < n, b < n.

By the induction hypothesis, a is a product of primes and so is b, so
n = ab is also a product of primes.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 11 / 29



Proof of existence

We proceed by induction. First, 2 is prime. Now assume that every
number < n is either prime or a product of primes.

if n is prime, there is nothing to prove.

If n is not prime, n = ab, where a < n, b < n.

By the induction hypothesis, a is a product of primes and so is b, so
n = ab is also a product of primes.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 11 / 29



Proof of uniqueness

Suppose, to the contrary, there is an integer that has two distinct
prime factorizations.

Let n be the least such integer and write

n = p1p2 . . . pj = q1q2 . . . qk ,

where each pi and qi is prime, j , k ≥ 2.

We see p1 divides q1q2 . . . qk , so p1 divides some qi by Euclid’s
lemma.

Without loss of generality, p1 divides q1, which implies that p1 = q1

since they are both prime.
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Proof of uniqueness (concluded)

Going back to factorization of n, we may cancel p1 and q1, which
yields

p2p3 . . . pj = q2q3 . . . qk .

As a result, we have two distinct prime factorizations of some integer
strictly smaller than n, which contradicts the minimality of n.

This completes the proof of uniqueness of the prime number
factorization.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 13 / 29



Proof of uniqueness (concluded)

Going back to factorization of n, we may cancel p1 and q1, which
yields

p2p3 . . . pj = q2q3 . . . qk .

As a result, we have two distinct prime factorizations of some integer
strictly smaller than n, which contradicts the minimality of n.

This completes the proof of uniqueness of the prime number
factorization.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 13 / 29



Proof of uniqueness (concluded)

Going back to factorization of n, we may cancel p1 and q1, which
yields

p2p3 . . . pj = q2q3 . . . qk .

As a result, we have two distinct prime factorizations of some integer
strictly smaller than n, which contradicts the minimality of n.

This completes the proof of uniqueness of the prime number
factorization.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 13 / 29



Euclid’s proof of the infinity of primes

Suppose that there are finitely many primes, namely p1, p2, . . . , pn.

Consider
m = p1p2 . . . pn + 1.

Dividing m by pj yields the remainder of 1 for each j , so m is not
divisible by any of the pjs.

We conclude that m must be a prime number, which is a
contradiction since we assumed that

p1, . . . , pn

is a complete list of primes.
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Sam Northshield’s proof of the infinity of primes

Suppose that the set of primes P is finite. Then

0 <
∏
p∈P

sin

(
π

p

)

since all the angles π
p are in the first quadrant.

On the other hand,

∏
p∈P

sin

(
π

p

)
=
∏
p∈P

sin

(
π

p
+

2π
∏

p′∈P p
′

p

)
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Sam Northshield’s proof (concluded)

=
∏
p∈P

sin

π
(

1 + 2
∏

p′∈P p
′
)

p

 = 0.

Why is it 0?

Because
1 + 2

∏
p′∈P

p′

must be divisible by some p ∈ P by the virtue of the fact that every
number is a product of primes.
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Fermat numbers proof

Let
Fn = 22n + 1, n ≥ 0.

If we can show that all the Fermat numbers are relatively prime (no
divisors in common), then there must be infinitely many primes.

To this end, we are going to prove that

n−1∏
k=0

Fk = Fn − 2.
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Fermat and friends
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Fermat numbers proof (continued)

Suppose that we can prove this recurrence. Then if some Fk has a
divisor m in common with Fn, k < n, then m divides 2.

This implies that m = 1 or m = 2. The latter is impossible since all
Fermat numbers are odd.

This proves that Fn’s are relatively prime provided that the recurrence
above holds.

We now turn our attention to the proof of the recurrence.
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Proof of the Fermat recurrence

We proceed by induction. If n = 1, we have

3 = F0 = F1 − 2 = 221
+ 1− 2.

Assuming the formula for n, we have

n∏
k=0

Fk =
n−1∏
k=0

Fk · Fn = (Fn − 2)Fn

= (22n − 1)(22n + 1) = 22n+1 − 1 = Fn+1 − 2.
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Proof via mysterious definitions

For a, b ∈ Z, b > 0, define

Na,b = {a + nb : n ∈ Z}.

This is a two-way infinite arithmetic progression in Z.

Define a subset O of Z to be open if either O is empty, or for every
a ∈ O, there exists b > 0 such that

Na,b ⊂ O.
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Properties of open and closed sets

We say that O ⊂ Z is closed if Z\O is open.

Every set Na,b is open since given any a′ ∈ Na,b, i.e a′ = a + kb for
some k ,

Na,b = Na+kb,b.

By the same argument, the union of any number (finite or infinite) of
Na,b’s is open.
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Properties of open sets (continued)

We claim that the intersection of two open sets is open.

Suppose that O1 and O2 are both open and consider a ∈ O1 ∩ O2.

Then Na,b1 ⊂ O1 and Na,b2 ⊂ O2 for some b1, b2 > 0.

But then
Na,b1b2 ⊂ O1 ∩ O2,

so O1 ∩ O2 is open.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 23 / 29



Properties of open sets (continued)

We claim that the intersection of two open sets is open.

Suppose that O1 and O2 are both open and consider a ∈ O1 ∩ O2.

Then Na,b1 ⊂ O1 and Na,b2 ⊂ O2 for some b1, b2 > 0.

But then
Na,b1b2 ⊂ O1 ∩ O2,

so O1 ∩ O2 is open.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 23 / 29



Properties of open sets (continued)

We claim that the intersection of two open sets is open.

Suppose that O1 and O2 are both open and consider a ∈ O1 ∩ O2.

Then Na,b1 ⊂ O1 and Na,b2 ⊂ O2 for some b1, b2 > 0.

But then
Na,b1b2 ⊂ O1 ∩ O2,

so O1 ∩ O2 is open.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 23 / 29



Properties of open sets (continued)

We claim that the intersection of two open sets is open.

Suppose that O1 and O2 are both open and consider a ∈ O1 ∩ O2.

Then Na,b1 ⊂ O1 and Na,b2 ⊂ O2 for some b1, b2 > 0.

But then
Na,b1b2 ⊂ O1 ∩ O2,

so O1 ∩ O2 is open.

Alex Iosevich (iosevich@gmail.com ) Infinity of Primes May 7, 2020 23 / 29



Properties of closed sets

We claim that Na,b is also closed.

To see this, observe that

Na,b = Z\ ∪b−1
k=1 Na+i ,b

since
Z = ∪b−1

k=0Na+i ,b,

hence Na,b is a complement of an open set, so it is closed!
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Primes enter the picture

What does it mean to say that every integer is a product of primes in
terms of our current setup? It means that

Z\{−1, 1} =
⋃
p∈P

N0,p.

Suppose that the set of primes P is finite. Then the right hand side is
a union of finitely many closed sets.

If
⋃

p∈PN0,p is closed, we are done because then {−1, 1} is open,
which is impossible since by definition, open sets contain an infinite
two-sided arithmetic progression.
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Unions of closed sets

Since each N0,p is closed, it is a complement of a open set Op.

By DeMorgan Laws (which we shall prove in a moment),⋃
p∈P

N0,p =
⋃
p∈P

Z\Op = Z\
⋂
p∈P

Op.

Since the intersection of finitely many open sets is open, as we
showed above, we conclude that⋃

p∈P
N0,p is closed and we are done!
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DeMorgan Laws

We shall state these for subsets of the integers, but these laws are
really universal. Let A1,A2, . . . ,An ⊂ Z. Then

n⋃
i=1

Z\Ai = Z\
n⋂

i=1

Ai .

To prove this, suppose that m ∈ Z\
⋂n

i=1 Ai . Then m /∈
⋂n

i=1 Ai .

It follows that m ∈ Z\Ai for some i , which means that

m ∈
n⋃

i=1

Z\Ai .
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DeMorgan Laws (continued)

Now suppose that m ∈
⋃n

i=1 Z\Ai . Then m ∈ Z\Ai for some i .

This implies that m /∈
⋂n

i=1 Ai , so we conclude that

m ∈ Z\
n⋂

i=1

Ai .

We have shown that the left hand side is a subset of the right hand
side, and vice-versa, so the proof is complete.
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DeMorgan Laws in pictures
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