Proofs from the Book: Infinity of primes

Alex losevich

May 7, 2020

What are primes and why do we care about them?

- We say that a positive integer $p>1$ is a prime if p is only divisible by 1 and itself.

What are primes and why do we care about them?

- We say that a positive integer $p>1$ is a prime if p is only divisible by 1 and itself.
- For example, 5 is a prime, but 4 is not since $4=2 \cdot 2$.

What are primes and why do we care about them?

- We say that a positive integer $p>1$ is a prime if p is only divisible by 1 and itself.
- For example, 5 is a prime, but 4 is not since $4=2 \cdot 2$.
- A prime factorization of the integer $n>1$ is the expression

$$
n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}
$$

where p_{k} 's are distinct primes.

What are primes and why do we care about them?

- We say that a positive integer $p>1$ is a prime if p is only divisible by 1 and itself.
- For example, 5 is a prime, but 4 is not since $4=2 \cdot 2$.
- A prime factorization of the integer $n>1$ is the expression

$$
n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}
$$

where p_{k} 's are distinct primes.

- Moreover, the prime factorization is unique!

Uniqueness of prime factorization

- The well-ordering principle says that any non-empty subset of the positive integers contains the least element. We shall take this concept for granted since it is easily derived from the principle of mathematical induction which is an axiom.

Uniqueness of prime factorization

- The well-ordering principle says that any non-empty subset of the positive integers contains the least element. We shall take this concept for granted since it is easily derived from the principle of mathematical induction which is an axiom.

Lemma

(Bezout's identity) Let a, b be integers with the greatest common divisor d. Then there exist integers x, y such that

$$
a x+b y=d
$$

Euclid's lemma

- After proving Bezout's identity, we shall use it to prove the following result due to Euclid.

Euclid's lemma

- After proving Bezout's identity, we shall use it to prove the following result due to Euclid.

Lemma

(Euclid) If a prime p divides the product $a b$ of two integers a and b, then p must divide at least one of those integers a and b.

Euclid's lemma

- After proving Bezout's identity, we shall use it to prove the following result due to Euclid.

Lemma

(Euclid) If a prime p divides the product $a b$ of two integers a and b, then p must divide at least one of those integers a and b.

- Finally, we shall use Euclid's lemma to establish the uniqueness of the prime number factorization.

Bezout and Euclid

Bezout and Euclid

0

Bezout and Euclid

Proof of Bezout's identity

- Let

$$
S_{a, b}=\{a x+b y: x, y \in \mathbb{Z} ; a x+b y>0\} .
$$

Proof of Bezout's identity

- Let

$$
S_{a, b}=\{a x+b y: x, y \in \mathbb{Z} ; a x+b y>0\} .
$$

- Observe that if $a \geq 0$, then taking $x=1, y=0$ shows that $a \in S_{a . b}$. If $a \leq 0$, taking $x=-1, y=0$ shows that $-a \in S_{a, b}$.

Proof of Bezout's identity

- Let

$$
S_{a, b}=\{a x+b y: x, y \in \mathbb{Z} ; a x+b y>0\} .
$$

- Observe that if $a \geq 0$, then taking $x=1, y=0$ shows that $a \in S_{\text {a.b }}$. If $a \leq 0$, taking $x=-1, y=0$ shows that $-a \in S_{a, b}$.
- In particular, $S_{a, b}$ is not empty.

Proof of Bezout's identity

- Let

$$
S_{a, b}=\{a x+b y: x, y \in \mathbb{Z} ; a x+b y>0\} .
$$

- Observe that if $a \geq 0$, then taking $x=1, y=0$ shows that $a \in S_{a . b}$. If $a \leq 0$, taking $x=-1, y=0$ shows that $-a \in S_{a, b}$.
- In particular, $S_{a, b}$ is not empty.
- By the well-ordering principle, $S_{a, b}$ has the least element

$$
d=a s+b t
$$

Proof of Bezout's identity (continued)

- We will show that d is the greatest common divisor of a and b.

Proof of Bezout's identity (continued)

- We will show that d is the greatest common divisor of a and b.
- We write

$$
a=d q+r, \text { where } 0 \leq r<d
$$

Proof of Bezout's identity (continued)

- We will show that d is the greatest common divisor of a and b.
- We write

$$
a=d q+r, \text { where } 0 \leq r<d
$$

- Observe that

$$
r=a-d q=a-q(a s+b t)=a(1-q s)-b q t
$$

which implies that $r \in S_{a, b} \cup\{0\}$.

Proof of Bezout's identity (continued)

- We will show that d is the greatest common divisor of a and b.
- We write

$$
a=d q+r, \text { where } 0 \leq r<d
$$

- Observe that

$$
r=a-d q=a-q(a s+b t)=a(1-q s)-b q t
$$

which implies that $r \in S_{a, b} \cup\{0\}$.

- But $r<d$ and d is the least element in $S_{a, b}$, so $r=0$ and hence d is a divisor of a. In the same way, d is a divisor of b.

Proof of Bezout's identity (finale)

- It remains to show that d is the greatest common divisor.

Proof of Bezout's identity (finale)

- It remains to show that d is the greatest common divisor.
- Suppose that $a=c u, b=c v$. Then

$$
d=a s+b t=c u s+c v t=c(u s+v t),
$$

Proof of Bezout's identity (finale)

- It remains to show that d is the greatest common divisor.
- Suppose that $a=c u, b=c v$. Then

$$
d=a s+b t=c u s+c v t=c(u s+v t),
$$

- which implies that c is a divisor of d, so $c \leq d$.

Proof of Bezout's identity (finale)

- It remains to show that d is the greatest common divisor.
- Suppose that $a=c u, b=c v$. Then

$$
d=a s+b t=c u s+c v t=c(u s+v t),
$$

- which implies that c is a divisor of d, so $c \leq d$.
- This completes the proof of Bezout's identity.

Proof of Euclid's lemma

- We shall now prove that if p is a prime and p divides $a b$, then p divides at least one of a, b.

Proof of Euclid's lemma

- We shall now prove that if p is a prime and p divides $a b$, then p divides at least one of a, b.
- Suppose that p does not divide a. Then by Bezout's identity, there exist x, y such that

$$
p x+a y=1
$$

Proof of Euclid's lemma

- We shall now prove that if p is a prime and p divides $a b$, then p divides at least one of a, b.
- Suppose that p does not divide a. Then by Bezout's identity, there exist x, y such that

$$
p x+a y=1
$$

- Multiplying both sides by b yields

$$
b p x+b a y=b
$$

Proof of Euclid's lemma

- We shall now prove that if p is a prime and p divides $a b$, then p divides at least one of a, b.
- Suppose that p does not divide a. Then by Bezout's identity, there exist x, y such that

$$
p x+a y=1
$$

- Multiplying both sides by b yields

$$
b p x+b a y=b
$$

- Observe that bpx is divisible by p because p is present and bay is divisible by p because p divides $a b$ by assumption. This implies that p divides b, and Euclid's lemma is proved.

Existence and uniqueness of prime number factorization

Theorem

Every positive integer n can be written in the form

$$
p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}
$$

where each p_{j} is prime, $a_{j} \geq 1$, and

$$
p_{1}<p_{2}<\cdots<p_{k} .
$$

Moreover, this representation of n is unique.

Proof of existence

- We proceed by induction. First, 2 is prime. Now assume that every number $<n$ is either prime or a product of primes.

Proof of existence

- We proceed by induction. First, 2 is prime. Now assume that every number $<n$ is either prime or a product of primes.
- if n is prime, there is nothing to prove.

Proof of existence

- We proceed by induction. First, 2 is prime. Now assume that every number $<n$ is either prime or a product of primes.
- if n is prime, there is nothing to prove.
- If n is not prime, $n=a b$, where $a<n, b<n$.

Proof of existence

- We proceed by induction. First, 2 is prime. Now assume that every number $<n$ is either prime or a product of primes.
- if n is prime, there is nothing to prove.
- If n is not prime, $n=a b$, where $a<n, b<n$.
- By the induction hypothesis, a is a product of primes and so is b, so $n=a b$ is also a product of primes.

Proof of uniqueness

- Suppose, to the contrary, there is an integer that has two distinct prime factorizations.

Proof of uniqueness

- Suppose, to the contrary, there is an integer that has two distinct prime factorizations.
- Let n be the least such integer and write

$$
n=p_{1} p_{2} \ldots p_{j}=q_{1} q_{2} \ldots q_{k}
$$

where each p_{i} and q_{i} is prime, $j, k \geq 2$.

Proof of uniqueness

- Suppose, to the contrary, there is an integer that has two distinct prime factorizations.
- Let n be the least such integer and write

$$
n=p_{1} p_{2} \ldots p_{j}=q_{1} q_{2} \ldots q_{k}
$$

where each p_{i} and q_{i} is prime, $j, k \geq 2$.

- We see p_{1} divides $q_{1} q_{2} \ldots q_{k}$, so p_{1} divides some q_{i} by Euclid's lemma.

Proof of uniqueness

- Suppose, to the contrary, there is an integer that has two distinct prime factorizations.
- Let n be the least such integer and write

$$
n=p_{1} p_{2} \ldots p_{j}=q_{1} q_{2} \ldots q_{k}
$$

where each p_{i} and q_{i} is prime, $j, k \geq 2$.

- We see p_{1} divides $q_{1} q_{2} \ldots q_{k}$, so p_{1} divides some q_{i} by Euclid's lemma.
- Without loss of generality, p_{1} divides q_{1}, which implies that $p_{1}=q_{1}$ since they are both prime.

Proof of uniqueness (concluded)

- Going back to factorization of n, we may cancel p_{1} and q_{1}, which yields

$$
p_{2} p_{3} \ldots p_{j}=q_{2} q_{3} \ldots q_{k} .
$$

Proof of uniqueness (concluded)

- Going back to factorization of n, we may cancel p_{1} and q_{1}, which yields

$$
p_{2} p_{3} \ldots p_{j}=q_{2} q_{3} \ldots q_{k}
$$

- As a result, we have two distinct prime factorizations of some integer strictly smaller than n, which contradicts the minimality of n.

Proof of uniqueness (concluded)

- Going back to factorization of n, we may cancel p_{1} and q_{1}, which yields

$$
p_{2} p_{3} \ldots p_{j}=q_{2} q_{3} \ldots q_{k}
$$

- As a result, we have two distinct prime factorizations of some integer strictly smaller than n, which contradicts the minimality of n.
- This completes the proof of uniqueness of the prime number factorization.

Euclid's proof of the infinity of primes

- Suppose that there are finitely many primes, namely $p_{1}, p_{2}, \ldots, p_{n}$.

Euclid's proof of the infinity of primes

- Suppose that there are finitely many primes, namely $p_{1}, p_{2}, \ldots, p_{n}$.
- Consider

$$
m=p_{1} p_{2} \ldots p_{n}+1
$$

Euclid's proof of the infinity of primes

- Suppose that there are finitely many primes, namely $p_{1}, p_{2}, \ldots, p_{n}$.
- Consider

$$
m=p_{1} p_{2} \ldots p_{n}+1
$$

- Dividing m by p_{j} yields the remainder of 1 for each j, so m is not divisible by any of the $p_{j} s$.

Euclid's proof of the infinity of primes

- Suppose that there are finitely many primes, namely $p_{1}, p_{2}, \ldots, p_{n}$.
- Consider

$$
m=p_{1} p_{2} \ldots p_{n}+1
$$

- Dividing m by p_{j} yields the remainder of 1 for each j, so m is not divisible by any of the $p_{j} s$.
- We conclude that m must be a prime number, which is a contradiction since we assumed that

$$
p_{1}, \ldots, p_{n}
$$

is a complete list of primes.

Sam Northshield's proof of the infinity of primes

- Suppose that the set of primes \mathbb{P} is finite. Then

$$
0<\prod_{p \in \mathbb{P}} \sin \left(\frac{\pi}{p}\right)
$$

since all the angles $\frac{\pi}{p}$ are in the first quadrant.

Sam Northshield's proof of the infinity of primes

- Suppose that the set of primes \mathbb{P} is finite. Then

$$
0<\prod_{p \in \mathbb{P}} \sin \left(\frac{\pi}{p}\right)
$$

since all the angles $\frac{\pi}{p}$ are in the first quadrant.

- On the other hand,

$$
\prod_{p \in \mathbb{P}} \sin \left(\frac{\pi}{p}\right)=\prod_{p \in \mathbb{P}} \sin \left(\frac{\pi}{p}+\frac{2 \pi \prod_{p^{\prime} \in \mathbb{P}} p^{\prime}}{p}\right)
$$

Sam Northshield's proof (concluded)

$$
=\prod_{p \in \mathbb{P}} \sin \left(\frac{\pi\left(1+2 \prod_{p^{\prime} \in \mathbb{P}} p^{\prime}\right)}{p}\right)=0 .
$$

Sam Northshield's proof (concluded)

$$
=\prod_{p \in \mathbb{P}} \sin \left(\frac{\pi\left(1+2 \prod_{p^{\prime} \in \mathbb{P}} p^{\prime}\right)}{p}\right)=0 .
$$

- Why is it 0 ?

Sam Northshield's proof (concluded)

$$
=\prod_{p \in \mathbb{P}} \sin \left(\frac{\pi\left(1+2 \prod_{p^{\prime} \in \mathbb{P}} p^{\prime}\right)}{p}\right)=0 .
$$

- Why is it 0 ?
- Because

$$
1+2 \prod_{p^{\prime} \in \mathbb{P}} p^{\prime}
$$

must be divisible by some $p \in \mathbb{P}$ by the virtue of the fact that every number is a product of primes.

Fermat numbers proof

- Let

$$
F_{n}=2^{2^{n}}+1, n \geq 0
$$

Fermat numbers proof

- Let

$$
F_{n}=2^{2^{n}}+1, n \geq 0
$$

- If we can show that all the Fermat numbers are relatively prime (no divisors in common), then there must be infinitely many primes.

Fermat numbers proof

- Let

$$
F_{n}=2^{2^{n}}+1, n \geq 0
$$

- If we can show that all the Fermat numbers are relatively prime (no divisors in common), then there must be infinitely many primes.
- To this end, we are going to prove that

$$
\prod_{k=0}^{n-1} F_{k}=F_{n}-2
$$

Fermat and friends

Fermat and friends

Fermat Numbers

$$
F_{n}=2^{2^{n}}+1
$$

Fermat Primes

$$
\begin{aligned}
& \mathrm{F}_{0}=2^{2^{0}}+1=3 \\
& \mathrm{~F}_{1}=2^{2^{1}}+1-5 \\
& \mathrm{~F}_{2}=2^{2^{2}+1-17} \\
& \mathrm{~F}_{3}=2^{2^{3}}+1=257 \\
& \mathrm{~F}_{4}=2^{2^{4}}+1=65537
\end{aligned}
$$

Fermat numbers proof (continued)

- Suppose that we can prove this recurrence. Then if some F_{k} has a divisor m in common with $F_{n}, k<n$, then m divides 2 .

Fermat numbers proof (continued)

- Suppose that we can prove this recurrence. Then if some F_{k} has a divisor m in common with $F_{n}, k<n$, then m divides 2 .
- This implies that $m=1$ or $m=2$. The latter is impossible since all Fermat numbers are odd.

Fermat numbers proof (continued)

- Suppose that we can prove this recurrence. Then if some F_{k} has a divisor m in common with $F_{n}, k<n$, then m divides 2 .
- This implies that $m=1$ or $m=2$. The latter is impossible since all Fermat numbers are odd.
- This proves that F_{n} 's are relatively prime provided that the recurrence above holds.

Fermat numbers proof (continued)

- Suppose that we can prove this recurrence. Then if some F_{k} has a divisor m in common with $F_{n}, k<n$, then m divides 2 .
- This implies that $m=1$ or $m=2$. The latter is impossible since all Fermat numbers are odd.
- This proves that F_{n} 's are relatively prime provided that the recurrence above holds.
- We now turn our attention to the proof of the recurrence.

Proof of the Fermat recurrence

- We proceed by induction. If $n=1$, we have

$$
3=F_{0}=F_{1}-2=2^{2^{1}}+1-2
$$

Proof of the Fermat recurrence

- We proceed by induction. If $n=1$, we have

$$
3=F_{0}=F_{1}-2=2^{2^{1}}+1-2
$$

- Assuming the formula for n, we have

$$
\prod_{k=0}^{n} F_{k}=\prod_{k=0}^{n-1} F_{k} \cdot F_{n}=\left(F_{n}-2\right) F_{n}
$$

Proof of the Fermat recurrence

- We proceed by induction. If $n=1$, we have

$$
3=F_{0}=F_{1}-2=2^{2^{1}}+1-2
$$

- Assuming the formula for n, we have

$$
\begin{gathered}
\prod_{k=0}^{n} F_{k}=\prod_{k=0}^{n-1} F_{k} \cdot F_{n}=\left(F_{n}-2\right) F_{n} \\
=\left(2^{2^{n}}-1\right)\left(2^{2^{n}}+1\right)=2^{2^{n+1}}-1=F_{n+1}-2 .
\end{gathered}
$$

Proof via mysterious definitions

- For $a, b \in \mathbb{Z}, b>0$, define

$$
N_{a, b}=\{a+n b: n \in \mathbb{Z}\} .
$$

Proof via mysterious definitions

- For $a, b \in \mathbb{Z}, b>0$, define

$$
N_{a, b}=\{a+n b: n \in \mathbb{Z}\} .
$$

- This is a two-way infinite arithmetic progression in \mathbb{Z}.

Proof via mysterious definitions

- For $a, b \in \mathbb{Z}, b>0$, define

$$
N_{a, b}=\{a+n b: n \in \mathbb{Z}\} .
$$

- This is a two-way infinite arithmetic progression in \mathbb{Z}.
- Define a subset O of \mathbb{Z} to be open if either O is empty, or for every $a \in O$, there exists $b>0$ such that

$$
N_{a, b} \subset O
$$

Properties of open and closed sets

- We say that $O \subset \mathbb{Z}$ is closed if $\mathbb{Z} \backslash O$ is open.

Properties of open and closed sets

- We say that $O \subset \mathbb{Z}$ is closed if $\mathbb{Z} \backslash O$ is open.
- Every set $N_{a, b}$ is open since given any $a^{\prime} \in N_{a, b}$, i.e $a^{\prime}=a+k b$ for some k,

$$
N_{a, b}=N_{a+k b, b} .
$$

Properties of open and closed sets

- We say that $O \subset \mathbb{Z}$ is closed if $\mathbb{Z} \backslash O$ is open.
- Every set $N_{a, b}$ is open since given any $a^{\prime} \in N_{a, b}$, i.e $a^{\prime}=a+k b$ for some k,

$$
N_{a, b}=N_{a+k b, b} .
$$

- By the same argument, the union of any number (finite or infinite) of $N_{a, b}$'s is open.

Properties of open sets (continued)

- We claim that the intersection of two open sets is open.

Properties of open sets (continued)

- We claim that the intersection of two open sets is open.
- Suppose that O_{1} and O_{2} are both open and consider $a \in O_{1} \cap O_{2}$.

Properties of open sets (continued)

- We claim that the intersection of two open sets is open.
- Suppose that O_{1} and O_{2} are both open and consider $a \in O_{1} \cap O_{2}$.
- Then $N_{a, b_{1}} \subset O_{1}$ and $N_{a, b_{2}} \subset O_{2}$ for some $b_{1}, b_{2}>0$.

Properties of open sets (continued)

- We claim that the intersection of two open sets is open.
- Suppose that O_{1} and O_{2} are both open and consider $a \in O_{1} \cap O_{2}$.
- Then $N_{a, b_{1}} \subset O_{1}$ and $N_{a, b_{2}} \subset O_{2}$ for some $b_{1}, b_{2}>0$.
- But then

$$
N_{a, b_{1} b_{2}} \subset O_{1} \cap O_{2}
$$

so $O_{1} \cap O_{2}$ is open.

Properties of closed sets

- We claim that $N_{a, b}$ is also closed.

Properties of closed sets

- We claim that $N_{a, b}$ is also closed.
- To see this, observe that

$$
N_{a, b}=\mathbb{Z} \backslash \cup_{k=1}^{b-1} N_{a+i, b}
$$

Properties of closed sets

- We claim that $N_{a, b}$ is also closed.
- To see this, observe that

$$
N_{a, b}=\mathbb{Z} \backslash \cup_{k=1}^{b-1} N_{a+i, b}
$$

- since

$$
\mathbb{Z}=\cup_{k=0}^{b-1} N_{a+i, b}
$$

Properties of closed sets

- We claim that $N_{a, b}$ is also closed.
- To see this, observe that

$$
N_{a, b}=\mathbb{Z} \backslash \cup_{k=1}^{b-1} N_{a+i, b}
$$

- since

$$
\mathbb{Z}=\cup_{k=0}^{b-1} N_{a+i, b}
$$

- hence $N_{a, b}$ is a complement of an open set, so it is closed!

Primes enter the picture

- What does it mean to say that every integer is a product of primes in terms of our current setup? It means that

$$
\mathbb{Z} \backslash\{-1,1\}=\bigcup_{p \in \mathbb{P}} N_{0, p}
$$

Primes enter the picture

- What does it mean to say that every integer is a product of primes in terms of our current setup? It means that

$$
\mathbb{Z} \backslash\{-1,1\}=\bigcup_{p \in \mathbb{P}} N_{0, p} .
$$

- Suppose that the set of primes \mathbb{P} is finite. Then the right hand side is a union of finitely many closed sets.

Primes enter the picture

- What does it mean to say that every integer is a product of primes in terms of our current setup? It means that

$$
\mathbb{Z} \backslash\{-1,1\}=\bigcup_{p \in \mathbb{P}} N_{0, p}
$$

- Suppose that the set of primes \mathbb{P} is finite. Then the right hand side is a union of finitely many closed sets.
- If $\bigcup_{p \in \mathbb{P}} N_{0, p}$ is closed, we are done because then $\{-1,1\}$ is open, which is impossible since by definition, open sets contain an infinite two-sided arithmetic progression.

Unions of closed sets

- Since each $N_{0, p}$ is closed, it is a complement of a open set O_{p}.

Unions of closed sets

- Since each $N_{0, p}$ is closed, it is a complement of a open set O_{p}.
- By DeMorgan Laws (which we shall prove in a moment),

$$
\bigcup_{p \in \mathbb{P}} N_{0, p}=\bigcup_{p \in \mathbb{P}} \mathbb{Z} \backslash O_{p}=\mathbb{Z} \backslash \bigcap_{p \in \mathbb{P}} O_{p}
$$

Unions of closed sets

- Since each $N_{0, p}$ is closed, it is a complement of a open set O_{p}.
- By DeMorgan Laws (which we shall prove in a moment),

$$
\bigcup_{p \in \mathbb{P}} N_{0, p}=\bigcup_{p \in \mathbb{P}} \mathbb{Z} \backslash O_{p}=\mathbb{Z} \backslash \bigcap_{p \in \mathbb{P}} O_{p}
$$

- Since the intersection of finitely many open sets is open, as we showed above, we conclude that

$$
\bigcup_{p \in \mathbb{P}} N_{0, p} \text { is closed and we are done! }
$$

DeMorgan Laws

- We shall state these for subsets of the integers, but these laws are really universal. Let $A_{1}, A_{2}, \ldots, A_{n} \subset \mathbb{Z}$. Then

$$
\bigcup_{i=1}^{n} \mathbb{Z} \backslash A_{i}=\mathbb{Z} \backslash \bigcap_{i=1}^{n} A_{i}
$$

DeMorgan Laws

- We shall state these for subsets of the integers, but these laws are really universal. Let $A_{1}, A_{2}, \ldots, A_{n} \subset \mathbb{Z}$. Then

$$
\bigcup_{i=1}^{n} \mathbb{Z} \backslash A_{i}=\mathbb{Z} \backslash \bigcap_{i=1}^{n} A_{i}
$$

- To prove this, suppose that $m \in \mathbb{Z} \backslash \bigcap_{i=1}^{n} A_{i}$. Then $m \notin \bigcap_{i=1}^{n} A_{i}$.

DeMorgan Laws

- We shall state these for subsets of the integers, but these laws are really universal. Let $A_{1}, A_{2}, \ldots, A_{n} \subset \mathbb{Z}$. Then

$$
\bigcup_{i=1}^{n} \mathbb{Z} \backslash A_{i}=\mathbb{Z} \backslash \bigcap_{i=1}^{n} A_{i}
$$

- To prove this, suppose that $m \in \mathbb{Z} \backslash \bigcap_{i=1}^{n} A_{i}$. Then $m \notin \bigcap_{i=1}^{n} A_{i}$.
- It follows that $m \in \mathbb{Z} \backslash A_{i}$ for some i, which means that

$$
m \in \bigcup_{i=1}^{n} \mathbb{Z} \backslash A_{i}
$$

DeMorgan Laws (continued)

- Now suppose that $m \in \bigcup_{i=1}^{n} \mathbb{Z} \backslash A_{i}$. Then $m \in \mathbb{Z} \backslash A_{i}$ for some i.

DeMorgan Laws (continued)

- Now suppose that $m \in \bigcup_{i=1}^{n} \mathbb{Z} \backslash A_{i}$. Then $m \in \mathbb{Z} \backslash A_{i}$ for some i.
- This implies that $m \notin \bigcap_{i=1}^{n} A_{i}$, so we conclude that

$$
m \in \mathbb{Z} \backslash \bigcap_{i=1}^{n} A_{i}
$$

DeMorgan Laws (continued)

- Now suppose that $m \in \bigcup_{i=1}^{n} \mathbb{Z} \backslash A_{i}$. Then $m \in \mathbb{Z} \backslash A_{i}$ for some i.
- This implies that $m \notin \bigcap_{i=1}^{n} A_{i}$, so we conclude that

$$
m \in \mathbb{Z} \backslash \bigcap_{i=1}^{n} A_{i}
$$

- We have shown that the left hand side is a subset of the right hand side, and vice-versa, so the proof is complete.

DeMorgan Laws in pictures

DeMorgan Laws in pictures

-

