Proofs from the Book: Infinity of primes II

Alex losevich

May 14, 2020

Mersenne "prime" proof

- Suppose that the set of primes \mathbb{P} is finite and let p be the largest prime.

Mersenne "prime" proof

- Suppose that the set of primes \mathbb{P} is finite and let p be the largest prime.
- We claim that all the prime factors of the so-called Mersenne "prime" $2^{p}-1$ are greater than p.

Mersenne "prime" proof

- Suppose that the set of primes \mathbb{P} is finite and let p be the largest prime.
- We claim that all the prime factors of the so-called Mersenne "prime" $2^{p}-1$ are greater than p.
- Suppose that q is a prime factor of $2^{p}-1$. This means that

$$
2^{p} \equiv 1 \quad \bmod q
$$

Mersenne "prime" proof

- Suppose that the set of primes \mathbb{P} is finite and let p be the largest prime.
- We claim that all the prime factors of the so-called Mersenne "prime" $2^{p}-1$ are greater than p.
- Suppose that q is a prime factor of $2^{p}-1$. This means that

$$
2^{p} \equiv 1 \quad \bmod q
$$

- We are going to prove that $p \mid q-1$, which implies that $p<q$.

Multiplication modulo q

- We are going to consider

$$
G=\{1,2, \ldots, q-1\}
$$

under multiplication modulo q.

Multiplication modulo q

- We are going to consider

$$
G=\{1,2, \ldots, q-1\}
$$

under multiplication modulo q.

- This means that if $a \in G$ and $b \in G$, to compute $a \cdot b$ in G, we multiply $a \cdot b$ in the usual way and then find $x \in G$ such that

$$
a b-x \text { is a multiple of } q .
$$

Is G closed under multiplication $\bmod q$?

- An interesting problem immediately arises.

Is G closed under multiplication $\bmod q$?

- An interesting problem immediately arises.
- If $a, b \in G$, we can conclude that $a b \bmod q$ is in G provided that $a b \neq 0 \bmod q$.

Is G closed under multiplication $\bmod q$?

- An interesting problem immediately arises.
- If $a, b \in G$, we can conclude that $a b \bmod q$ is in G provided that $a b \neq 0 \bmod q$.
- Is it possible that $a b=0 \bmod q$. In other words, is it possible that $x=0$ above?

Is G closed under multiplication $\bmod q$?

- An interesting problem immediately arises.
- If $a, b \in G$, we can conclude that $a b \bmod q$ is in G provided that $a b \neq 0 \bmod q$.
- Is it possible that $a b=0 \bmod q$. In other words, is it possible that $x=0$ above?
- To put it in yet another way, is G closed under multiplication $\bmod q$?

No zero divisors!

- Fortunately, this cannot happen!

No zero divisors!

- Fortunately, this cannot happen!
- We proved in the first part of this lecture (Euclid's lemma) that if a prime $q \mid a b$, then q divides at least one of the integers a and b.

No zero divisors!

- Fortunately, this cannot happen!
- We proved in the first part of this lecture (Euclid's lemma) that if a prime $q \mid a b$, then q divides at least one of the integers a and b.
- But this is impossible in our case since $1 \leq a, b \leq q-1$.

No zero divisors!

- Fortunately, this cannot happen!
- We proved in the first part of this lecture (Euclid's lemma) that if a prime $q \mid a b$, then q divides at least one of the integers a and b.
- But this is impossible in our case since $1 \leq a, b \leq q-1$.
- We have just shown that

$$
G=\{1,2, \ldots, q-1\}
$$

is closed under multiplication modulo q.

Multiplicative inverses

- We are now going to see that every element of G has a multiplicative inverse modulo q, i.e for every

$$
a \in G=\{1,2, \ldots, q-1\}
$$

there exists $b \in G$ such that $a b \equiv 1 \bmod q$.

Multiplicative inverses

- We are now going to see that every element of G has a multiplicative inverse modulo q, i.e for every

$$
a \in G=\{1,2, \ldots, q-1\}
$$

there exists $b \in G$ such that $a b \equiv 1 \bmod q$.

- To see this, consider

$$
M=\{a, 2 a, 3 a, \ldots,(q-1) a\}
$$

where multiplication is modulo q.

Multiplicative inverses (continued)

- We already saw above that none of the elements in the list

$$
M=\{a, 2 a, 3 a, \ldots,(q-1) a\}
$$

are equal to 0 modulo q since q is prime.

Multiplicative inverses (continued)

- We already saw above that none of the elements in the list

$$
M=\{a, 2 a, 3 a, \ldots,(q-1) a\}
$$

are equal to 0 modulo q since q is prime.

- Can any two elements of M be equal modulo q ? Suppose that $n a=m a$ modulo $q, n>m$.

Multiplicative inverses (continued)

- We already saw above that none of the elements in the list

$$
M=\{a, 2 a, 3 a, \ldots,(q-1) a\}
$$

are equal to 0 modulo q since q is prime.

- Can any two elements of M be equal modulo q ? Suppose that $n a=m a \operatorname{modulo~} q, n>m$.
- Then $(n-m) a$ is a multiple of q. But this is impossible because Euclid's lemma once again implies that q must divides at least one of $n-m$ and a.

Multiplicative inverses (continued)

- We already saw above that none of the elements in the list

$$
M=\{a, 2 a, 3 a, \ldots,(q-1) a\}
$$

are equal to 0 modulo q since q is prime.

- Can any two elements of M be equal modulo q ? Suppose that $n a=m a \operatorname{modulo~} q, n>m$.
- Then $(n-m) a$ is a multiple of q. But this is impossible because Euclid's lemma once again implies that q must divides at least one of $n-m$ and a.
- But q does not divide either because both $n-m$ and a are smaller than q !

Special subsets of G

- We now go back to our Mersenne prime. Recall that we assumed that p is the largest prime in the world and that

$$
q \mid 2^{p}-1
$$

Special subsets of G

- We now go back to our Mersenne prime. Recall that we assumed that p is the largest prime in the world and that

$$
q \mid 2^{p}-1
$$

- This means that 2^{p} corresponds to the element 1 in

$$
G=\{1,2, \ldots, q-1\} \quad \bmod q .
$$

Special subsets of G

- We now go back to our Mersenne prime. Recall that we assumed that p is the largest prime in the world and that

$$
q \mid 2^{p}-1
$$

- This means that 2^{p} corresponds to the element 1 in

$$
G=\{1,2, \ldots, q-1\} \quad \bmod q .
$$

- Consider the set

$$
H=\left\{1,2,2^{2}, \ldots, 2^{p-1}\right\} \quad \bmod q .
$$

Powers of 2

- What is the size of H ? It seems to have p elements, but perhaps there are repeats?

Powers of 2

- What is the size of H ? It seems to have p elements, but perhaps there are repeats?
- Suppose that

$$
2^{a}=2^{b} \quad \bmod q, a>b
$$

Powers of 2

- What is the size of H ? It seems to have p elements, but perhaps there are repeats?
- Suppose that

$$
2^{a}=2^{b} \quad \bmod q, a>b
$$

- Then

$$
2^{a-b}=1 \quad \bmod q .
$$

Powers of 2

- What is the size of H ? It seems to have p elements, but perhaps there are repeats?
- Suppose that

$$
2^{a}=2^{b} \quad \bmod q, a>b
$$

- Then

$$
2^{a-b}=1 \quad \bmod q
$$

- We have

$$
p=u_{1}(a-b)+v_{1}, 0<v_{1}<a-b, \text { since } p \text { is prime. }
$$

Powers of 2 (continued)

- It follows that

$$
1=2^{p}=2^{v_{1}} \quad \bmod q
$$

Powers of 2 (continued)

- It follows that

$$
1=2^{p}=2^{v_{1}} \quad \bmod q .
$$

- We can keep playing this game and eventually prove that $2=1$, which is a contradiction!

Powers of 2 (continued)

- It follows that

$$
1=2^{p}=2^{v_{1}} \quad \bmod q
$$

- We can keep playing this game and eventually prove that $2=1$, which is a contradiction!
- It follows that all the elements of H are distinct!

Powers of 2 (continued)

- It follows that

$$
1=2^{p}=2^{v_{1}} \bmod q
$$

- We can keep playing this game and eventually prove that $2=1$, which is a contradiction!
- It follows that all the elements of H are distinct!
- But is H closed under multiplication mod q ? Well, the product of two powers of 2 is a power of 2 , so the only question is whether the product of two powers of 2 can be 0 .

Powers of 2 (continued)

- It follows that

$$
1=2^{p}=2^{v_{1}} \quad \bmod q
$$

- We can keep playing this game and eventually prove that $2=1$, which is a contradiction!
- It follows that all the elements of H are distinct!
- But is H closed under multiplication $\bmod q$? Well, the product of two powers of 2 is a power of 2 , so the only question is whether the product of two powers of 2 can be 0 .
- But we know that this cannot happen because $H \subset G$ and we already showed this is impossible for elements of G.

Rolling begins

- We are now going to show that we can "roll" H into G.

Rolling begins

- We are now going to show that we can "roll" H into G.
- Given an arbitrary subset of a set of $q-1$ elements, there is absolutely no reason why the size of this subset should divide $q-1$.

Rolling begins

- We are now going to show that we can "roll" H into G.
- Given an arbitrary subset of a set of $q-1$ elements, there is absolutely no reason why the size of this subset should divide $q-1$.
- However, in our case, both G and H are closed under multiplication $\bmod q$ and both have multiplicative inverses $\bmod q$.

Rolling begins

- We are now going to show that we can "roll" H into G.
- Given an arbitrary subset of a set of $q-1$ elements, there is absolutely no reason why the size of this subset should divide $q-1$.
- However, in our case, both G and H are closed under multiplication $\bmod q$ and both have multiplicative inverses $\bmod q$.
- As we shall see, this makes a huge difference.

Rolling pin

Rolling pin

Rolling pin in action

- Recall that

$$
H=\left\{1,2, \ldots, 2^{p-1}\right\} \text { and } G=\{1, \ldots, q-1\} \quad \bmod q .
$$

Rolling pin in action

- Recall that

$$
H=\left\{1,2, \ldots, 2^{p-1}\right\} \text { and } G=\{1, \ldots, q-1\} \quad \bmod q .
$$

- We want to show that $p \mid q-1$. If $H=G$, then $p=q-1$ and we are done.

Rolling pin in action

- Recall that

$$
H=\left\{1,2, \ldots, 2^{p-1}\right\} \text { and } G=\{1, \ldots, q-1\} \quad \bmod q .
$$

- We want to show that $p \mid q-1$. If $H=G$, then $p=q-1$ and we are done.
- If not, then there exists $x \in G$ which is not in H. Let us consider

$$
H x=\left\{x, 2 x, \ldots, 2^{p-1} x\right\} \quad \bmod q
$$

Rolling pin in action

- Recall that

$$
H=\left\{1,2, \ldots, 2^{p-1}\right\} \text { and } G=\{1, \ldots, q-1\} \quad \bmod q
$$

- We want to show that $p \mid q-1$. If $H=G$, then $p=q-1$ and we are done.
- If not, then there exists $x \in G$ which is not in H. Let us consider

$$
H x=\left\{x, 2 x, \ldots, 2^{p-1} x\right\} \quad \bmod q
$$

- Is it possible for $H x$ to intersect H ?

Keep rolling!

- Suppose that $H x$ intersects H. This means that

$$
h_{1} x=h_{2} \quad \bmod q \text { for some } h_{1}, h_{2} \in H .
$$

Keep rolling!

- Suppose that $H x$ intersects H. This means that

$$
h_{1} x=h_{2} \quad \bmod q \text { for some } h_{1}, h_{2} \in H
$$

- We have shown that every element of H has a multiplicative inverse that lives in H. Therefore,

$$
x=h_{1}^{-1} h_{2} \quad \bmod q
$$

Keep rolling!

- Suppose that $H x$ intersects H. This means that

$$
h_{1} x=h_{2} \quad \bmod q \text { for some } h_{1}, h_{2} \in H
$$

- We have shown that every element of H has a multiplicative inverse that lives in H. Therefore,

$$
x=h_{1}^{-1} h_{2} \quad \bmod q
$$

- We have also shown that the product of any two elements of H $\bmod q$ lives in H. Therefore, the previous line implies that $x \in H$, which is impossible since x, by definition, does not live in H !

Roll on!

- If $H \cup H x=G$, then since they do not intersect, $2 p=q-1$ and we are done since it shows that $p \mid q-1$.

Roll on!

- If $H \cup H x=G$, then since they do not intersect, $2 p=q-1$ and we are done since it shows that $p \mid q-1$.
- If not, there exists $y \in G$, such that $y \notin H$ and $y \notin H x$.

Roll on!

- If $H \cup H x=G$, then since they do not intersect, $2 p=q-1$ and we are done since it shows that $p \mid q-1$.
- If not, there exists $y \in G$, such that $y \notin H$ and $y \notin H x$.
- By the exact same argument as above, Hy does not intersect H and it does not intersect $H x$.

Roll on!

- If $H \cup H x=G$, then since they do not intersect, $2 p=q-1$ and we are done since it shows that $p \mid q-1$.
- If not, there exists $y \in G$, such that $y \notin H$ and $y \notin H x$.
- By the exact same argument as above, Hy does not intersect H and it does not intersect $H x$.
- If $H \cup H x \cup H y=G$, then $q-1=3 p$ and we are done.

Roll on!

- If $H \cup H x=G$, then since they do not intersect, $2 p=q-1$ and we are done since it shows that $p \mid q-1$.
- If not, there exists $y \in G$, such that $y \notin H$ and $y \notin H x$.
- By the exact same argument as above, Hy does not intersect H and it does not intersect $H x$.
- If $H \cup H x \cup H y=G$, then $q-1=3 p$ and we are done.
- Otherwise, roll on!

Stop rolling!

- Since G is finite, the rolling process will eventually terminate.

Stop rolling!

- Since G is finite, the rolling process will eventually terminate.
- In the end, we will have

$$
G=H \cup H x_{1} \cup H x_{2} \cup \cdots \cup H x_{n},
$$

Stop rolling!

- Since G is finite, the rolling process will eventually terminate.
- In the end, we will have

$$
G=H \cup H x_{1} \cup H x_{2} \cup \cdots \cup H x_{n},
$$

- where $x_{j} \in G$ and $H x_{i} \cap H x_{j}=\emptyset$ if $i \neq j$.

Stop rolling!

- Since G is finite, the rolling process will eventually terminate.
- In the end, we will have

$$
G=H \cup H x_{1} \cup H x_{2} \cup \cdots \cup H x_{n},
$$

- where $x_{j} \in G$ and $H x_{i} \cap H x_{j}=\emptyset$ if $i \neq j$.
- It follows that $q-1=n p$, i.e $p \mid q-1$, as desired!

Stop rolling!

- Since G is finite, the rolling process will eventually terminate.
- In the end, we will have

$$
G=H \cup H x_{1} \cup H x_{2} \cup \cdots \cup H x_{n},
$$

- where $x_{j} \in G$ and $H x_{i} \cap H x_{j}=\emptyset$ if $i \neq j$.
- It follows that $q-1=n p$, i.e $p \mid q-1$, as desired!
- We are now ready to summarize the argument and draw conclusions.

What have we shown?

- We assumed that p is the largest prime and considered the number

$$
2^{p}-1
$$

What have we shown?

- We assumed that p is the largest prime and considered the number

$$
2^{p}-1
$$

- We then showed that if q is a prime that divides $2^{p}-1$, then $p \mid q-1$ and hence $p<q$.

What have we shown?

- We assumed that p is the largest prime and considered the number

$$
2^{p}-1
$$

- We then showed that if q is a prime that divides $2^{p}-1$, then $p \mid q-1$ and hence $p<q$.
- This shows that p is not the largest prime, which yields a contradiction.

What have we shown?

- We assumed that p is the largest prime and considered the number

$$
2^{p}-1
$$

- We then showed that if q is a prime that divides $2^{p}-1$, then $p \mid q-1$ and hence $p<q$.
- This shows that p is not the largest prime, which yields a contradiction.
- In the process, we sneaked in some fundamental notions of the area of mathematics called group theory. Please read up on it!

Harmonic Series is BACK!

- In the second lecture of the Basic Skills segment of the CoronaVirus Lecture Series, we showed that the partial sums

$$
\sum_{k=1}^{N} \frac{1}{k} \text { tend to }+\infty
$$

Harmonic Series is BACK!

- In the second lecture of the Basic Skills segment of the CoronaVirus Lecture Series, we showed that the partial sums

$$
\sum_{k=1}^{N} \frac{1}{k} \text { tend to }+\infty
$$

- Moreover, our argument implies that if x is a positive real number >1, and $n \leq x<n+1, n$ integer, then

$$
\log _{2}(x) \leq 1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

Unique prime factorization

- Also,

$$
1+\frac{1}{2}+\cdots+\frac{1}{n} \leq \sum_{m \in P_{\leq x}} \frac{1}{m},
$$

where $P_{\leq x}$ denotes positive integers which only have prime divisors $\leq x$.

Unique prime factorization

- Also,

$$
1+\frac{1}{2}+\cdots+\frac{1}{n} \leq \sum_{m \in P_{\leq x}} \frac{1}{m}
$$

where $P_{\leq x}$ denotes positive integers which only have prime divisors $\leq x$.

- In our first lecture on the infinity of primes, we proved that every integer has a unique prime factorization.

Unique prime factorization

- Also,

$$
1+\frac{1}{2}+\cdots+\frac{1}{n} \leq \sum_{m \in P_{\leq x}} \frac{1}{m},
$$

where $P_{\leq x}$ denotes positive integers which only have prime divisors $\leq x$.

- In our first lecture on the infinity of primes, we proved that every integer has a unique prime factorization.
- It follows that

$$
\sum_{m \in P_{\leq x}} \frac{1}{m}=\prod_{p \in \mathbb{P}, p \leq x}\left(\sum_{k \geq 0} \frac{1}{p^{k}}\right), \text { where } \mathbb{P} \text { denotes the set of primes. }
$$

Geometric series are back!

- The inner sum is just a geometric series! In the first lecture of the BASIC SKILLS series we proved that

$$
\sum_{k=0}^{\infty} \frac{1}{p^{k}}=\frac{1}{1-\frac{1}{p}}
$$

Geometric series are back!

- The inner sum is just a geometric series! In the first lecture of the BASIC SKILLS series we proved that

$$
\sum_{k=0}^{\infty} \frac{1}{p^{k}}=\frac{1}{1-\frac{1}{p}}
$$

- It follows that

$$
\log _{2}(x) \leq \prod_{p \in \mathbb{P} ; p \leq x} \frac{1}{1-\frac{1}{p}}=\prod_{p \in \mathbb{P} ; p \leq x} \frac{p}{p-1}
$$

The counting function for the primes

- Given $x>2$, let

$$
\pi(x)=\#\{p \in \mathbb{P}: p \leq x\}
$$

the counting function for the primes $\leq x$.

The counting function for the primes

- Given $x>2$, let

$$
\pi(x)=\#\{p \in \mathbb{P}: p \leq x\},
$$

the counting function for the primes $\leq x$.

- We have

$$
\log _{2}(x) \leq \prod_{p \in \mathbb{P} ; p \leq x} \frac{p}{p-1}=\prod_{k=1}^{\pi(x)} \frac{p_{k}}{p_{k}-1},
$$

where p_{k} denotes the k th prime.

The counting function for the primes

- Given $x>2$, let

$$
\pi(x)=\#\{p \in \mathbb{P}: p \leq x\}
$$

the counting function for the primes $\leq x$.

- We have

$$
\log _{2}(x) \leq \prod_{p \in \mathbb{P} ; p \leq x} \frac{p}{p-1}=\prod_{k=1}^{\pi(x)} \frac{p_{k}}{p_{k}-1},
$$

where p_{k} denotes the k th prime.

- Since not every integer is prime, $p_{k} \geq k+1$.

The final stretch

- Using the above,

$$
\log _{2}(x) \leq \prod_{k=1}^{\pi(x)} \frac{p_{k}}{p_{k}-1} \leq \prod_{k=1}^{\pi(x)} \frac{k+1}{k}
$$

since the function $t \rightarrow \frac{t+1}{t}$ is decreasing.

The final stretch

- Using the above,

$$
\log _{2}(x) \leq \prod_{k=1}^{\pi(x)} \frac{p_{k}}{p_{k}-1} \leq \prod_{k=1}^{\pi(x)} \frac{k+1}{k}
$$

since the function $t \rightarrow \frac{t+1}{t}$ is decreasing.

- But this is a telescoping product, i.e

$$
\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \ldots \frac{\pi(x)+1}{\pi(x)}=\pi(x)+1 .
$$

The telescope is back...

Finale

- In other words, we have just shown that

$$
\log _{2}(x) \leq \pi(x)+1
$$

Finale

- In other words, we have just shown that

$$
\log _{2}(x) \leq \pi(x)+1
$$

- Not only does this show that there are infinitely many primes, it shows that the counting function for primes grows at least as fast as the logarithm function.

Finale

- In other words, we have just shown that

$$
\log _{2}(x) \leq \pi(x)+1
$$

- Not only does this show that there are infinitely many primes, it shows that the counting function for primes grows at least as fast as the logarithm function.
- In a future lecture, we are going to prove a result due to Chebyshev, which says that there exist constants $C, c>0$ such that

$$
c \frac{x}{\log (x)} \leq \pi(x) \leq C \frac{x}{\log (x)}
$$

where $\log (x)$ denotes the natural logarithm.

A quick glimpse into deep waters

- The Prime Number Theorem, due to Hadamard and de la Vallee Poussin (1896) says that

$$
\pi(x)=\frac{x}{\log (x)}+\text { smaller terms }
$$

A quick glimpse into deep waters

- The Prime Number Theorem, due to Hadamard and de la Vallee Poussin (1896) says that

$$
\pi(x)=\frac{x}{\log (x)}+\text { smaller terms }
$$

- The celebrated Riemann Hypothesis is equivalent to the statement that

$$
\pi(x)=\frac{x}{\log (x)}+\text { terms smaller than } C x^{\frac{1}{2}+t i n y b i t}
$$

