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Mersenne ”prime” proof

Suppose that the set of primes P is finite and let p be the largest
prime.

We claim that all the prime factors of the so-called Mersenne ”prime”

2p − 1 are greater than p.

Suppose that q is a prime factor of 2p − 1. This means that

2p ≡ 1 mod q.

We are going to prove that p|q − 1, which implies that p < q.
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Multiplication modulo q

We are going to consider

G = {1, 2, . . . , q − 1}

under multiplication modulo q.

This means that if a ∈ G and b ∈ G , to compute a · b in G , we
multiply a · b in the usual way and then find x ∈ G such that

ab − x is a multiple of q.
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Is G closed under multiplication mod q?

An interesting problem immediately arises.

If a, b ∈ G , we can conclude that ab mod q is in G provided that
ab 6= 0 mod q.

Is it possible that ab = 0 mod q. In other words, is it possible that
x = 0 above?

.

To put it in yet another way, is G closed under multiplication
mod q?
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No zero divisors!

Fortunately, this cannot happen!

We proved in the first part of this lecture (Euclid’s lemma) that if a
prime q|ab, then q divides at least one of the integers a and b.

But this is impossible in our case since 1 ≤ a, b ≤ q − 1.

We have just shown that

G = {1, 2, . . . , q − 1}

is closed under multiplication modulo q.
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Multiplicative inverses

We are now going to see that every element of G has a multiplicative
inverse modulo q, i.e for every

a ∈ G = {1, 2, . . . , q − 1},

there exists b ∈ G such that ab ≡ 1 mod q.

To see this, consider

M = {a, 2a, 3a, . . . , (q − 1)a},

where multiplication is modulo q.
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Multiplicative inverses (continued)

We already saw above that none of the elements in the list

M = {a, 2a, 3a, . . . , (q − 1)a}

are equal to 0 modulo q since q is prime.

Can any two elements of M be equal modulo q? Suppose that
na = ma modulo q, n > m.

Then (n −m)a is a multiple of q. But this is impossible because
Euclid’s lemma once again implies that q must divides at least one of
n −m and a.

But q does not divide either because both n −m and a are smaller
than q!
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Special subsets of G

We now go back to our Mersenne prime. Recall that we assumed that
p is the largest prime in the world and that

q|2p − 1.

This means that 2p corresponds to the element 1 in

G = {1, 2, . . . , q − 1} mod q.

Consider the set

H = {1, 2, 22, . . . , 2p−1} mod q.
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Powers of 2

What is the size of H? It seems to have p elements, but perhaps
there are repeats?

Suppose that
2a = 2b mod q, a > b.

Then
2a−b = 1 mod q.

We have

p = u1(a− b) + v1, 0 < v1 < a− b, since p is prime.
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Powers of 2 (continued)

It follows that
1 = 2p = 2v1 mod q.

We can keep playing this game and eventually prove that 2 = 1,
which is a contradiction!

It follows that all the elements of H are distinct!

But is H closed under multiplication mod q? Well, the product of
two powers of 2 is a power of 2, so the only question is whether the
product of two powers of 2 can be 0.

But we know that this cannot happen because H ⊂ G and we already
showed this is impossible for elements of G .
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Rolling begins

We are now going to show that we can ”roll” H into G .

Given an arbitrary subset of a set of q − 1 elements, there is
absolutely no reason why the size of this subset should divide q − 1.

However, in our case, both G and H are closed under multiplication
mod q and both have multiplicative inverses mod q.

As we shall see, this makes a huge difference.
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Rolling pin
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Rolling pin in action

Recall that

H = {1, 2, . . . , 2p−1} and G = {1, . . . , q − 1} mod q.

We want to show that p|q − 1. If H = G , then p = q − 1 and we are
done.

If not, then there exists x ∈ G which is not in H. Let us consider

Hx = {x , 2x , . . . , 2p−1x} mod q.

Is it possible for Hx to intersect H?
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Keep rolling!

Suppose that Hx intersects H. This means that

h1x = h2 mod q for some h1, h2 ∈ H.

We have shown that every element of H has a multiplicative inverse
that lives in H. Therefore,

x = h−1
1 h2 mod q.

We have also shown that the product of any two elements of H
mod q lives in H. Therefore, the previous line implies that x ∈ H,
which is impossible since x , by definition, does not live in H!
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Roll on!

If H ∪ Hx = G , then since they do not intersect, 2p = q − 1 and we
are done since it shows that p|q − 1.

If not, there exists y ∈ G , such that y /∈ H and y /∈ Hx .

By the exact same argument as above, Hy does not intersect H and
it does not intersect Hx .

If H ∪ Hx ∪ Hy = G , then q − 1 = 3p and we are done.

Otherwise, roll on!

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 15 / 25



Roll on!

If H ∪ Hx = G , then since they do not intersect, 2p = q − 1 and we
are done since it shows that p|q − 1.

If not, there exists y ∈ G , such that y /∈ H and y /∈ Hx .

By the exact same argument as above, Hy does not intersect H and
it does not intersect Hx .

If H ∪ Hx ∪ Hy = G , then q − 1 = 3p and we are done.

Otherwise, roll on!

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 15 / 25



Roll on!

If H ∪ Hx = G , then since they do not intersect, 2p = q − 1 and we
are done since it shows that p|q − 1.

If not, there exists y ∈ G , such that y /∈ H and y /∈ Hx .

By the exact same argument as above, Hy does not intersect H and
it does not intersect Hx .

If H ∪ Hx ∪ Hy = G , then q − 1 = 3p and we are done.

Otherwise, roll on!

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 15 / 25



Roll on!

If H ∪ Hx = G , then since they do not intersect, 2p = q − 1 and we
are done since it shows that p|q − 1.

If not, there exists y ∈ G , such that y /∈ H and y /∈ Hx .

By the exact same argument as above, Hy does not intersect H and
it does not intersect Hx .

If H ∪ Hx ∪ Hy = G , then q − 1 = 3p and we are done.

Otherwise, roll on!

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 15 / 25



Roll on!

If H ∪ Hx = G , then since they do not intersect, 2p = q − 1 and we
are done since it shows that p|q − 1.

If not, there exists y ∈ G , such that y /∈ H and y /∈ Hx .

By the exact same argument as above, Hy does not intersect H and
it does not intersect Hx .

If H ∪ Hx ∪ Hy = G , then q − 1 = 3p and we are done.

Otherwise, roll on!

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 15 / 25



Stop rolling!

Since G is finite, the rolling process will eventually terminate.

In the end, we will have

G = H ∪ Hx1 ∪ Hx2 ∪ · · · ∪ Hxn,

where xj ∈ G and Hxi ∩ Hxj = ∅ if i 6= j .

It follows that q − 1 = np, i.e p|q − 1, as desired!

We are now ready to summarize the argument and draw conclusions.

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 16 / 25



Stop rolling!

Since G is finite, the rolling process will eventually terminate.

In the end, we will have

G = H ∪ Hx1 ∪ Hx2 ∪ · · · ∪ Hxn,

where xj ∈ G and Hxi ∩ Hxj = ∅ if i 6= j .

It follows that q − 1 = np, i.e p|q − 1, as desired!

We are now ready to summarize the argument and draw conclusions.

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 16 / 25



Stop rolling!

Since G is finite, the rolling process will eventually terminate.

In the end, we will have

G = H ∪ Hx1 ∪ Hx2 ∪ · · · ∪ Hxn,

where xj ∈ G and Hxi ∩ Hxj = ∅ if i 6= j .

It follows that q − 1 = np, i.e p|q − 1, as desired!

We are now ready to summarize the argument and draw conclusions.

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 16 / 25



Stop rolling!

Since G is finite, the rolling process will eventually terminate.

In the end, we will have

G = H ∪ Hx1 ∪ Hx2 ∪ · · · ∪ Hxn,

where xj ∈ G and Hxi ∩ Hxj = ∅ if i 6= j .

It follows that q − 1 = np, i.e p|q − 1, as desired!

We are now ready to summarize the argument and draw conclusions.

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 16 / 25



Stop rolling!

Since G is finite, the rolling process will eventually terminate.

In the end, we will have

G = H ∪ Hx1 ∪ Hx2 ∪ · · · ∪ Hxn,

where xj ∈ G and Hxi ∩ Hxj = ∅ if i 6= j .

It follows that q − 1 = np, i.e p|q − 1, as desired!

We are now ready to summarize the argument and draw conclusions.

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 16 / 25



What have we shown?

We assumed that p is the largest prime and considered the number

2p − 1.

We then showed that if q is a prime that divides 2p − 1, then p|q − 1
and hence p < q.

This shows that p is not the largest prime, which yields a
contradiction.

In the process, we sneaked in some fundamental notions of the area of
mathematics called group theory. Please read up on it!
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Harmonic Series is BACK!

In the second lecture of the Basic Skills segment of the CoronaVirus
Lecture Series, we showed that the partial sums

N∑
k=1

1

k
tend to +∞.

Moreover, our argument implies that if x is a positive real number
> 1, and n ≤ x < n + 1, n integer, then

log2(x) ≤ 1 +
1

2
+ · · ·+ 1

n
.
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Unique prime factorization

Also,

1 +
1

2
+ · · ·+ 1

n
≤

∑
m∈P≤x

1

m
,

where P≤x denotes positive integers which only have prime divisors
≤ x .

In our first lecture on the infinity of primes, we proved that every
integer has a unique prime factorization.

It follows that

∑
m∈P≤x

1

m
=

∏
p∈P,p≤x

∑
k≥0

1

pk

 , where P denotes the set of primes.

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 19 / 25



Unique prime factorization

Also,

1 +
1

2
+ · · ·+ 1

n
≤

∑
m∈P≤x

1

m
,

where P≤x denotes positive integers which only have prime divisors
≤ x .

In our first lecture on the infinity of primes, we proved that every
integer has a unique prime factorization.

It follows that

∑
m∈P≤x

1

m
=

∏
p∈P,p≤x

∑
k≥0

1

pk

 , where P denotes the set of primes.

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 19 / 25



Unique prime factorization

Also,

1 +
1

2
+ · · ·+ 1

n
≤

∑
m∈P≤x

1

m
,

where P≤x denotes positive integers which only have prime divisors
≤ x .

In our first lecture on the infinity of primes, we proved that every
integer has a unique prime factorization.

It follows that

∑
m∈P≤x

1

m
=

∏
p∈P,p≤x

∑
k≥0

1

pk

 , where P denotes the set of primes.

Alex Iosevich (UR CoronaVirus Lecture Series) Infinity of Primes May 14, 2020 19 / 25



Geometric series are back!

The inner sum is just a geometric series! In the first lecture of the
BASIC SKILLS series we proved that

∞∑
k=0

1

pk
=

1

1− 1
p

.

It follows that

log2(x) ≤
∏

p∈P;p≤x

1

1− 1
p

=
∏

p∈P;p≤x

p

p − 1
.
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The counting function for the primes

Given x > 2, let
π(x) = #{p ∈ P : p ≤ x},

the counting function for the primes ≤ x .

We have

log2(x) ≤
∏

p∈P;p≤x

p

p − 1
=

π(x)∏
k=1

pk
pk − 1

,

where pk denotes the kth prime.

Since not every integer is prime, pk ≥ k + 1.
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The final stretch

Using the above,

log2(x) ≤
π(x)∏
k=1

pk
pk − 1

≤
π(x)∏
k=1

k + 1

k
,

since the function t → t+1
t is decreasing.

But this is a telescoping product, i.e

2

1
· 3

2
· 4

3
. . .

π(x) + 1

π(x)
= π(x) + 1.
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The telescope is back...
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Finale

In other words, we have just shown that

log2(x) ≤ π(x) + 1.

Not only does this show that there are infinitely many primes, it
shows that the counting function for primes grows at least as fast as
the logarithm function.

In a future lecture, we are going to prove a result due to Chebyshev,
which says that there exist constants C , c > 0 such that

c
x

log(x)
≤ π(x) ≤ C

x

log(x)
,

where log(x) denotes the natural logarithm.
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A quick glimpse into deep waters

The Prime Number Theorem, due to Hadamard and de la Vallee
Poussin (1896) says that

π(x) =
x

log(x)
+ smaller terms.

The celebrated Riemann Hypothesis is equivalent to the statement
that

π(x) =
x

log(x)
+ terms smaller than Cx

1
2

+tinybit .
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