Resolutions of spheres

Irina Bobkova
Northwestern University

Midwest Women in Math Symposium
UIC, April 20, 2013
The groups stabilize along the diagonals.
Freudenthal Suspension Theorem

Theorem (Freudenthal)

For sufficiently large n the suspension map

\[
\text{Map}(S^k, \Sigma^n X) \xrightarrow{\Sigma} \text{Map}(S^{k+1}, \Sigma^{n+1} X)
\]

is an isomorphism.

Remark

Recall that $\Sigma S^n = S^{n+1}$.

Corollary

For $n > k + 1$

\[
\pi_{k+n}(S^n) \cong \pi_{k+n+1}(S^{n+1}).
\]
<table>
<thead>
<tr>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>n_4</th>
<th>n_5</th>
<th>n_6</th>
<th>n_7</th>
<th>n_8</th>
<th>n_9</th>
<th>n_{10}</th>
<th>n_{11}</th>
<th>n_{12}</th>
<th>n_{13}</th>
<th>n_{14}</th>
<th>n_{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^0</td>
<td>0</td>
</tr>
<tr>
<td>S^1</td>
<td>\mathbb{Z}</td>
<td>0</td>
</tr>
<tr>
<td>S^2</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_12</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_3</td>
<td>\mathbb{Z}_{15}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2^2</td>
<td>\mathbb{Z}_{12xZ_2}</td>
<td>$\mathbb{Z}_{84xZ_2^2}$</td>
<td>\mathbb{Z}_2^2</td>
</tr>
<tr>
<td>S^3</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_12</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_3</td>
<td>\mathbb{Z}_{15}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2^2</td>
<td>\mathbb{Z}_{12xZ_2}</td>
<td>$\mathbb{Z}_{84xZ_2^2}$</td>
<td>\mathbb{Z}_2^2</td>
</tr>
<tr>
<td>S^4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_12</td>
<td>\mathbb{Z}_2^2</td>
<td>\mathbb{Z}_{24xZ_3}</td>
<td>\mathbb{Z}_{15}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_3^2</td>
<td>$\mathbb{Z}_{120xZ_12xZ_2}$</td>
<td>$\mathbb{Z}_{84xZ_2^5}$</td>
</tr>
<tr>
<td>S^5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_{24}</td>
<td>\mathbb{Z}_2^2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
<tr>
<td>S^6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_{24}</td>
<td>\mathbb{Z}_2^2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
<tr>
<td>S^7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_{24}</td>
<td>\mathbb{Z}_2^2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
<tr>
<td>S^8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_{24}</td>
<td>\mathbb{Z}_2^2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
</tbody>
</table>
Resolutions of spheres

Definition

For $n > k + 1$, the group

$$\pi_k S := \pi_{n+k} S^n$$

is called the k-th stable homotopy group of spheres or the k-th stable stem.
A spectrum F is

- A collection of spaces $\{F_n\}_{n=0,1,2,...}$
- With structure maps $\Sigma F_n \to F_{n+1}$

Example

Given any space X we can construct a spectrum \tilde{X} by taking

- $\tilde{X}_n = \Sigma^n X$
- $\Sigma^{n+1} X = \Sigma \tilde{X}_n \xrightarrow{\sim} \tilde{X}_{n+1} = \Sigma^{n+1} X$

Example

Let $S_n = S^n$, the n-sphere. The spectrum S is called the sphere spectrum.
Homotopy Groups

Definition

Given a spectrum E, define its homotopy groups as

$$\pi_k E := \lim_{n} \pi_{n+k} E_n$$

Remark

The k-th stable stem

$$\pi_k S$$

is the k-th homotopy group of the sphere spectrum.
\(\pi_n(S) \) are very hard to compute.
All stable homotopy groups are finite, so we can investigate them one torsion at a time.
All stable homotopy groups are finite, so we can investigate them one torsion at a time.

There is the spectrum $S_{(p)}$, called the p-local sphere.
All stable homotopy groups are finite, so we can investigate them one torsion at a time.

There is the spectrum $S_{(p)}$, called the p-local sphere.

p-torsion part of $\pi_n(S) = \pi_n(S_{(p)})$
\[\pi_n(S(p)) \] are very hard to compute.
Algebra vs. Topology

<table>
<thead>
<tr>
<th>Algebra</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M \otimes \mathbb{Z}/p$</td>
<td>$X_{(p)}$</td>
</tr>
<tr>
<td>p-local module</td>
<td>p-local spectrum</td>
</tr>
</tbody>
</table>
Algebra vs. Topology

<table>
<thead>
<tr>
<th>Algebra</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M \otimes \mathbb{Z}/p$</td>
<td>$X_{(p)}$</td>
</tr>
<tr>
<td>p-local module</td>
<td>p-local spectrum</td>
</tr>
<tr>
<td>$S^{-1}M$</td>
<td>$L_E X$</td>
</tr>
<tr>
<td>localizing set S</td>
<td>localizing spectrum E</td>
</tr>
</tbody>
</table>
There exists a family of spectra \(\{E(n)\}_{n=0,1,...} \), such that \(L_{E(n)} \) filter the category of spectra.
There exists a family of spectra \(\{E(n)\}_{n=0,1,...} \) such that \(L_{E(n)} \) filter the category of spectra.

They fit into a **chromatic tower**

\[\cdots \rightarrow L_{E(2)}X \rightarrow L_{E(1)}X \rightarrow L_{E(0)}X. \]
There exists a family of spectra \(\{E(n)\}_{n=0,1,...} \) such that \(L_{E(n)} \) filter the category of spectra.

They fit into a chromatic tower
\[
\cdots \to L_{E(2)}X \to L_{E(1)}X \to L_{E(0)}X.
\]

The tower converges.

Theorem (Chromatic Convergence Theorem)

For nice spectra

\[
X = \lim_{n} \ L_{E(n)}X
\]
We can study the homotopy groups not only one prime at a time but also one chromatic layer $L_{E(n)}$ at a time.

This is called Chromatic Homotopy Theory.
Resolutions of spheres

\(\pi_n(LE(k)S(p)) \) are very hard to compute
Resolutions of spheres

\[\pi_n(L_{E(k)}S_p) \] are very hard to compute

but \(L_{E(k)}S_p \) are made out of smaller building blocks called \(L_{K(m)}S_pS \) which are more approachable.
Resolutions of spheres

- $\pi_n(L_{E(k)}S(p))$ are very hard to compute
- but $L_{E(k)}S(p)$ are made out of smaller building blocks called $L_{K(m)}S(p)S$ which are more approachable.
- We approach them with the help of Lubin-Tate theory of deformations of formal group laws.
Fix a prime p.
Fix a prime p.

For each n there exists a spectrum E_n, called the n-th Morava E-theory.
Morava theory

- Fix a prime p.
- For each n there exists a spectrum E_n, called the n-th Morava E-theory
- and a group \mathbb{G}_n, called the Morava Stabilizer group.
Morava theory

- Fix a prime p.
- For each n there exists a spectrum E_n, called the n-th Morava E-theory
- and a group \mathcal{G}_n, called the Morava Stabilizer group.
- \mathcal{G}_n acts on E_n.
Fix a prime p.

For each n there exists a spectrum E_n, called the n-th Morava E-theory
and a group \mathbb{G}_n, called the Morava Stabilizer group.

\mathbb{G}_n acts on E_n.

for F a subgroup of \mathbb{G}_n we can form homotopy fixed points spectra E_n^{hF}.
Fix a prime \(p \).

For each \(n \) there exists a spectrum \(E_n \), called the \(n \)-th Morava \(E \)-theory

and a group \(\mathbb{G}_n \), called the Morava Stabilizer group.

\(\mathbb{G}_n \) acts on \(E_n \).

for \(F \) a subgroup of \(\mathbb{G}_n \) we can form homotopy fixed points spectra \(E_n^{hF} \).

\(E_n^{h\mathbb{G}_n} = L_{K(n)} S(p) \).
Theorem (Hopkins-Mahowald-Sadofsky)

For $n = 1$ and prime 2 there is the fiber sequence

$$L_{K(1)} S \rightarrow KO\mathbb{Z}_2 \rightarrow KO\mathbb{Z}_2,$$

which is equivalent to

$$E_1^{hG_1} \rightarrow E_1^{hC_2} \rightarrow E_1^{hC_2}$$
Theorem (Goerss-Henn-Mahowald-Rezk)

For $n = 2$ and prime 3 there exists the tower of fibrations

$$L_{K(2)} S \rightarrow X_3 \rightarrow X_2 \rightarrow X_1 \rightarrow E_2^{hG_{24}}$$

where the fibers are homotopy fixed points spectra with respect to various finite subgroups of Morava Stabilizer Group.

Conjecture (Work in Progress)

For $n = 2$ and prime 2 there exists the tower of fibrations

$$E_2^{hG_2^1} \rightarrow X_2 \rightarrow X_1 \rightarrow E_2^{hG_{24}}$$

where the fibers are homotopy fixed points spectra with respect to various finite subgroups of Morava Stabilizer Group and the top of the tower is ”half” of $L_{K(2)} S$.