Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Irina Bobkova
Northwestern University

Joint Mathematics Meetings
Special Session on Homotopy Theory
January 17, 2014
Homotopy Groups of Spheres

Consider the sphere spectrum S.

Question

How do we compute $\pi_* S$?

Answer

We choose appropriate localizations so that the problem becomes approachable.
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Chromatic Homotopy Theory

- Fix a prime p.
- The Johnson-Wilson theories $\{E(n)\}_{n=0,1,...}$ allow to filter the category of p-local spectra.
- Localizations with respect to Johnson-Wilson theories form chromatic tower

$$\ldots \to L_{E(2)}X \to L_{E(1)}X \to L_{E(0)}X.$$

Chromatic Convergence Theorem (Hopkins, Ravenel)

For a finite p-local spectrum X

$$X = \holim_n L_{E(n)}X.$$
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Morava K-theory

Let $K(n)$ denote n-th Morava K-theory.

Theorem (Ravenel, Hovey-Strickland)

There is a homotopy pullback diagram:

$$
\begin{array}{ccc}
L_{E(n)}X & \longrightarrow & L_{K(n)}X \\
\downarrow & & \downarrow \\
L_{E(n-1)}X & \longrightarrow & L_{E(n-1)L_{K(n)}X}.
\end{array}
$$

So we can concentrate on computing $\pi_* L_{K(n)}S$. We do it with the help of Morava E-theory and Morava Stabilizer Group.
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Morava E-theory

Theorem (Morava, Goerss-Hopkins-Miller, Devinatz)

- For each n there exists a spectrum E_n, called the n-th Morava E-theory,
- and a group \mathbb{G}_n, called the Morava Stabilizer group.
- \mathbb{G}_n acts on E_n.
- for H a closed subgroup of \mathbb{G}_n we can form homotopy fixed points spectra E_n^{hH}.
- $E_n^{h\mathbb{G}_n} = L_{K(n)} S^0$.
- For any closed subgroup H of \mathbb{G}_n there is a spectral sequence

$$E_2^{s,t} = H^*(H,(E_n)_*) \Longrightarrow \pi_* E_n^{hH}.$$
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Known results, $n=1$, $p=2$

Theorem (Adams, Baird, Ravenel)

For $n = 1$ and $p = 2$ there is the fiber sequence

\[L_{K(1)}S^0 \rightarrow KO\mathbb{Z}_2 \rightarrow KO\mathbb{Z}_2, \]

which is equivalent to

\[E_1^{hG_1} \rightarrow E_1^{hC_2} \rightarrow E_1^{hC_2}. \]
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Known results, $n=2$

Using the spectral sequence

$$E_2^{*,*} = H^*_c(G_2, (E_2)_*) \implies \pi_* L_{K(2)} S^0 :$$

- At $p \geq 5$ Shimomura and Yabe computed $\pi_* L_{K(2)} S^0$.
- At $p = 3$ G_2 contains C_3 Shimomura and Wang computed $\pi_* L_{K(2)} S^0$.
- At $p = 2$ G_2 contains Q_8 Shimomura and Wang computed the second page of the spectral sequence.
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Different approach

Plan

Try to build the $K(2)$-local sphere spectrum out of $E_2^{hH_i}$ for finite subgroups H_i of G_2. Work with the subgroup G_1^2 of G_2, such that there is a fiber sequence

$$L_{K(2)}S^0 \rightarrow E^{hG_2^1} \rightarrow E^{hG_2^1}.$$
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Known results, $n=2$, $p=3$

Theorem (Goerss, Henn, Mahowald, Rezk)

There exists a resolution in the $K(2)$-local category at the prime 3

$$E^{hG_2^1} \rightarrow E^{hG_{24}} \rightarrow \Sigma^8 E^{hSD_{16}} \rightarrow \Sigma^{40} E^{hSD_{16}} \rightarrow \Sigma^{48} E^{hG_{24}}$$

which can be realized to a tower of fibrations:

$$\begin{align*}
\Sigma^{45} E^{hG_{24}} & \rightarrow E^{hG_2^1} \\
\Sigma^{38} E^{hSD_{16}} & \rightarrow X_2 \\
\Sigma^{7} E^{hSD_{16}} & \rightarrow X_1 \\
E^{hG_{24}} & \rightarrow E^{hG_{24}}
\end{align*}$$
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Tower Spectral Sequence

Given a tower of fibrations with limit Z and fibers F_i:

\[
\begin{array}{c}
\uparrow & \uparrow & \uparrow \\
Z & X_n & \ldots & X_0 \\
\downarrow & \downarrow & \downarrow \\
F_{n+1} & F_n & F_0
\end{array}
\]

there exists a spectral sequence

\[
E_1^{s,t} = \pi_{t-s}F_s \Rightarrow \pi_{t-s}Z.
\]
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Known results, $n=2$, $p=2$

Theorem (Goerss, Henn, Mahowald, Rezk)

There exists a resolution in the $K(2)$-local category at the prime 2

$$E^{hS^1_2} \rightarrow E^{hG_{24}} \rightarrow E^{hC_6} \rightarrow E^{hC_6} \rightarrow X$$

which can be realized to a tower of fibrations:

$$
\begin{array}{ccc}
\Sigma^{-3}X & \rightarrow & E^{hS^1_2} \\
\downarrow & & \\
\Sigma^{-2}E^{hC_6} & \rightarrow & X_2 \\
\downarrow & & \\
\Sigma^{-1}E^{hC_6} & \rightarrow & X_1 \\
\downarrow & & \\
E^{hG_{24}} & \rightarrow & E^{hG_{24}}
\end{array}
$$
New results, n=2, p=2

Theorem (B.)

In the tower of fibrations:

\[
\begin{align*}
\Sigma^{-3} X & \longrightarrow E^{hS^1_2} \\
\Sigma^{-2} E^{hC_6} & \longrightarrow X_2 \\
\Sigma^{-1} E^{hC_6} & \longrightarrow X_1 \\
E^{hG_{24}} & \longrightarrow E^{hG_{24}} \\
\end{align*}
\]

\[\pi_* X = \pi_* \sum^{48} E^{hG_{24}}.\]
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Idea of the proof

Theorem (Henn)

There exists a resolution in the $K(2)$-local category

$$E^{hS^1_2} \rightarrow E^{hG_{24}} \vee E^{hG_{24}} \rightarrow E^{hC_6} \vee E^{hC_4} \rightarrow E^{hC_2} \rightarrow E^{hC_6}$$

which can be realized to a tower of fibrations:

$$
\begin{align*}
\Sigma^{-3} E^{hC_6} & \rightarrow E^{hS^1_2} \\
\Sigma^{-2} E^{hC_2} & \rightarrow X_2 \\
\Sigma^{-1}(E^{hC_6} \vee E^{hC_4}) & \rightarrow X_1 \\
E^{hG_{24}} \vee E^{hG_{24}} & \rightarrow E^{hG_{24}}
\end{align*}
$$
New Results, n=2, p=2

Lemma

Δ^{2+8i} is a homotopy class in $\pi_* X$.

Theorem (Folklore, Hopkins-Mahowald)

If Δ^{2+8i} is a homotopy class in $\pi_* X$, then $\pi_* X = \pi_* \Sigma^{48} E^{hG_{24}}$.
Towards a Resolution of the $K(2)$-local Sphere at the Prime 2.

Work in progress

Conjecture

\mathcal{X} is homotopy equivalent to $\Sigma^{48} E^{hG_{24}}$.