Resolving the $K(2)$-local Sphere

Irina Bobkova
Northwestern University

Manifolds, K-theory and Related Topics
June 23, 2014
How do we compute stable homotopy groups of spheres?

We choose appropriate localizations of the stable category so that the problem becomes approachable.
Fix a prime p.
Fix a prime p.

Let $K(n)$ denote n-th Morava K-theory.
Fix a prime p.

Let $K(n)$ denote n-th Morava K-theory.

Can reconstruct p-local $\pi_* S^0$ out of $\pi_* L_{K(n)} S^0$.
Fix a prime p.
Let $K(n)$ denote n-th Morava K-theory.
Can reconstruct p-local $\pi_* S^0$ out of $\pi_* L_{K(n)} S^0$.

Resolving the $K(2)$-local Sphere

Morava K-theory

- Concentrate on computing $\pi_* L_{K(n)} S$ for all primes p and all n.
- Computational tools: Morava E-theory and Morava Stabilizer Group.
Morava E-theory

Theorem (Morava, Goerss-Hopkins-Miller, Devinatz)

For each n there exists a spectrum E_n, called the n-th Morava E-theory,
Morava E-theory

Theorem (Morava, Goerss-Hopkins-Miller, Devinatz)

- For each n there exists a spectrum E_n, called the n-th Morava E-theory,
- and a group G_n, called the Morava Stabilizer Group.
For each n there exists a spectrum E_n, called the n-th Morava E-theory,

and a group G_n, called the Morava Stabilizer Group.

G_n acts on E_n.

Also can form E_{hH}^n for subgroups $H < G_n$.

$E^* = H^*(H, (E_n)^*) = \Rightarrow \pi_* E_{hH}^n$.

Theorem (Morava, Goerss-Hopkins-Miller, Devinatz)
Resolving the $K(2)$-local Sphere

Morava E-theory

Theorem (Morava, Goerss-Hopkins-Miller, Devinatz)

- For each n there exists a spectrum E_n, called the n-th Morava E-theory,
- and a group \mathbb{G}_n, called the Morava Stabilizer Group.
- \mathbb{G}_n acts on E_n.
- $E_n^{h\mathbb{G}_n} \simeq L_{K(n)}S^0$.

Morava \(E \)-theory

Theorem (Morava, Goerss-Hopkins-Miller, Devinatz)

- For each \(n \) there exists a spectrum \(E_n \), called the \(n \)-th Morava \(E \)-theory,

- and a group \(\mathbb{G}_n \), called the Morava Stabilizer Group.

- \(\mathbb{G}_n \) acts on \(E_n \).

- \(E_n^{h\mathbb{G}_n} \simeq L_{K(n)} S^0 \).

- Also can form \(E_n^{hH} \) for subgroups \(H < \mathbb{G}_n \).
Morava E-theory

Theorem (Morava, Goerss-Hopkins-Miller, Devinatz)

- For each n there exists a spectrum E_n, called the n-th Morava E-theory,
- and a group \mathcal{G}_n, called the Morava Stabilizer Group.
- \mathcal{G}_n acts on E_n.
- $E_n^{h\mathcal{G}_n} \simeq L_{K(n)}S^0$.
- Also can form E_n^{hH} for subgroups $H < \mathcal{G}_n$
- $E_2^{*,*} = H^*(H, (E_n)_*) \Longrightarrow \pi_* E_n^{hH}$.
Theorem (Adams, Baird, Ravenel)

For \(n = 1 \) and \(p = 2 \), \(G_1 \cong \mathbb{Z}_2^\times \cong C_2 \times \mathbb{Z}_2 \) and there is the fiber sequence

\[
E_1^{hG_1} \cong L_{K(1)} S^0 \rightarrow E_1^{hC_2} \rightarrow E_1^{hC_2}.
\]
Known results, $n=1$

Theorem (Adams, Baird, Ravenel)

- For $n = 1$ and $p = 2$ $G_1 \cong \mathbb{Z}_2^\times \cong C_2 \times \mathbb{Z}_2$ and there is the fiber sequence

$$E_1^{hG_1} \cong L_{K(1)}S^0 \rightarrow E_1^{hc_2} \rightarrow E_1^{hc_2}.$$

- For $n = 1$ and $p > 2$ $G_1 \cong \mathbb{Z}_p^\times \cong C_{p-1} \times \mathbb{Z}_p$ and there is the fiber sequence

$$E_1^{hG_1} \cong L_{K(1)}S^0 \rightarrow E_1^{hc_{p-1}} \rightarrow E_1^{hc_{p-1}}.$$
Known results, n=2

- There exists a fiber sequence
 \[L_{K(2)}S^0 \rightarrow E_2^{h\mathbb{G}_2^1} \rightarrow E_2^{h\mathbb{G}_2^1}. \]

- \(\mathbb{G}_2^1 \) is a subgroup of \(\mathbb{G}_2 \).
Known results, $n=2$, $p=3$

Theorem (Goerss, Henn, Mahowald, Rezk)

There exists a resolution in the $K(2)$-local category at the prime 3

$$E^{hG_{2}} \xrightarrow{} E^{hG_{24}} \xrightarrow{} \Sigma^{8} E^{hSD_{16}} \xrightarrow{} \Sigma^{40} E^{hSD_{16}} \xrightarrow{} \Sigma^{48} E^{hG_{24}}$$

which can be realized to a tower of fibrations:

$$\Sigma^{45} E^{hG_{24}} \xrightarrow{} E^{hG_{2}}$$

$$\Sigma^{38} E^{hSD_{16}} \xrightarrow{} X_{2}$$

$$\Sigma^{7} E^{hSD_{16}} \xrightarrow{} X_{1}$$

$$E^{hG_{24}} \xrightarrow{} E^{hG_{24}}$$
Resolving the $K(2)$-local Sphere

Tower Spectral Sequence

Given a tower of fibrations with limit Z and fibers F_i

\[
\begin{array}{c}
Z \\
\uparrow \\
F_{n+1}
\end{array} \xrightarrow{} \begin{array}{c} X_n \\
\uparrow \\
F_n
\end{array} \xrightarrow{} \ldots \xrightarrow{} \begin{array}{c} X_0 \\
\uparrow \\
F_0
\end{array}
\]

there exists a spectral sequence

\[
E_1^{s,t} = \pi_{t-s} F_s \Rightarrow \pi_{t-s} Z.
\]
New results, n=2, p=2

Theorem (B.)

There exists a resolution in the $K(2)$-local category at the prime 2

$$E^{hS_2^1} \to E^{hG_{24}} \to E^{hC_6} \to E^{hC_6} \to X$$

where $\pi_* X = \pi_* \Sigma^{48} E^{hG_{24}}$ and which can be realized to a tower of fibrations:

$$\Sigma^{-3} X \to E^{hS_2^1}.$$

$$\Sigma^{-2} E^{hC_6} \to X_2$$

$$\Sigma^{-1} E^{hC_6} \to X_1$$

$$E^{hG_{24}} \to E^{hG_{24}}.$$