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Abstract

In 1988; G. Andrews, F. Dyson, and D. Hickerson related the arithmetic of Q
ffiffiffi
6

p� �
to

certain q-series. We have found q-series that relate in a similar way to Q
ffiffiffi
2

p� �
: In addition to

proving analogous results, including an explicit formula for a partition function, we also

obtain a generating function for the values of a particular L-function.

r 2004 Elsevier Inc. All rights reserved.

MSC: 11P81; 11M41

1. Introduction and statement of results

In [3], Andrews et al., studied the relationship between the arithmetic of Q
ffiffiffi
6

p� �
and certain partition functions. This connection allowed them to prove new results
about combinatorial objects by taking a non-combinatorial perspective. They were
interested in the following q-series:

RðqÞ ¼ 1 þ
XN
n¼1

qnðnþ1Þ=2

ð1 þ qÞð1 þ q2Þ?ð1 þ qnÞ ¼ 1 þ q � q2 þ 2q3 � 2q4 þ? :
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LðqÞ ¼ 2
XN
n¼1

ð�1Þn
qn2

ð1 � qÞð1 � q3Þ?ð1 � q2n�1Þ ¼ �2q � 2q2 � 2q3 þ 2q7 þ? :

They showed that the coefficients of RðqÞ and LðqÞ are determined by the coefficients

of a certain Hecke L-function associated with the quadratic field Q
ffiffiffi
6

p� �
: Using the

arithmetic of Q
ffiffiffi
6

p� �
; the combinatorics of q-series, and basic hypergeometric series,

they proved a number of results about the coefficients of

qRðq24Þ � 1

q
Lðq24Þ;

including multiplicativity and lacunarity. They also showed that the coefficients
attain every integer infinitely often. Examples of q-series with these properties are
rare and surprising. In the words of Dyson [6],

This pair of functions RðqÞ and LðqÞ is today an isolated curiosity. But I am
convinced that, like so many other beautiful things in Ramanujan’s garden, it will
turn out to be a special case of a broader mathematical structure. There probably
exist other sets of two or more functions with coefficients related by cross-
multiplicativity, satisfying identities similar to those which Ramanujan discovered
for his RðqÞ: I have a hunch that such sets of cross-multiplicative functions will
form a structure within which the mock theta-functions will also find a place. But
this hunch is not backed up by any solid evidence. I leave it to the ladies and
gentlemen of the audience to find the connections if they exist.

In this paper we find q-series analogous to RðqÞ and LðqÞ; associated in a similar

way to Q
ffiffiffi
2

p� �
: We relate a sum of these basic hypergeometric series with a Hecke L-

function, using the machinery of Bailey pairs. We prove analogous combinatorial

results to those in [3]; using the arithmetic of Q
ffiffiffi
2

p� �
; we establish combinatorial

properties of a certain partition function. In addition, we find a generating function
for values of the associated L-function.

Throughout the paper we employ the standard notation

ðaÞn :¼ ða; qÞn :¼
Yn�1

k¼0

ð1 � aqkÞ:

Let OK ¼ Z
ffiffiffi
2

p� �
be the ring of integers of K ¼ Q

ffiffiffi
2

p� �
: In OK define the norm of any

ideal a ¼ x þ y
ffiffiffi
2

p� �
as NðaÞ :¼ jx2 � 2y2j:

Define the q-series W1ðqÞ and W2ðqÞ as

W1ðqÞ :¼
X
nX0

ðqÞnð�1Þn
q

nþ1
2

� �
ð�qÞn

¼ 1 � q þ 2q2 � q3 � 2q5 þ 3q6 þ?; ð1:1Þ
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W2ðqÞ :¼
X
nX1

ð�1; q2Þnð�qÞn

ðq; q2Þn

¼ �2q � 2q3 þ 2q4 þ 2q6 þ 2q8 � 2q9 þ? : ð1:2Þ

Let w be the character

wðaÞ :¼
1 NðaÞ 	 71 mod 16;

�1 NðaÞ 	 77 mod 16;

0 otherwise

8><
>: ð1:3Þ

and define aðnÞ for any positive integer n by

aðnÞ :¼
X

aCOK

NðaÞ¼n

wðaÞ: ð1:4Þ

Theorem 1.1. We have

qW1ðq8Þ þ 1

q
W2ðq8Þ ¼

X
nX0

aðnÞqn: ð1:5Þ

Remark. The aðnÞ’s are constructed such that the following holds ðRðsÞ41Þ:

Lðw; sÞ :¼
X

aCOK

wðaÞ
NðaÞs ¼

X
nX1

aðnÞ
ns

: ð1:6Þ

In particular, Lðw; sÞ is a standard Hecke L-function which is well known to have an
analytic continuation to C [2].

Corollary 1.2. The following identity is true:

qW1ð�q8Þ þ 1

q
W2ð�q8Þ ¼

X
nX1
n odd

bðnÞqn;

where the bðnÞ’s are defined by

bðnÞ :¼
X
n odd
aCOK

NðaÞ¼n

1:

Remark. The bðnÞ’s are constructed such that the following holds ðRðsÞ41Þ:

z�KðsÞ :¼
X

aCOK

NðaÞ odd

1

NðaÞs ¼
X
nX1
n odd

bðnÞ
ns

:
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Notice z�KðsÞ is essentially the usual Dedekind z-function, but the only difference is

the omission of the Euler factor corresponding to the prime ideal above 2: Here z�KðsÞ
has an analytic continuation to C with the exception of a simple pole at s ¼ 1 (for
example, see [8]).

Consider the q-series identity in (1.5) with q ¼ e�t: This gives a well-defined

t-series, since the substitution of e�t ¼
P

N

n¼0
ð�tÞn

n! into (1.1) amounts to performing

formal operations (addition, multiplication, and taking positive integral powers) of
power series.

Theorem 1.3. The following is a generating function for L-values.

e�tW1ðe�8tÞ � et
X
nX0

ðe�8t; e�16tÞn

ð�e�16t; e�16tÞn

¼
X
nX0

Lðw;�nÞ ð�1Þnþ1
tn

n!

¼ � 10t � 7949

3
t3 � 26765521

12
t5 �? :

Theorem 1.1 is proven in two steps. In Section 2, using the theory of Bailey pairs,
we find alternate expressions for W1ðqÞ and W2ðqÞ; and in Section 3 we prove the

theorem by revealing the connection to Q
ffiffiffi
2

p� �
of these other representations. In

Section 4 we prove Corollary 1.2. In Section 5 we find an explicit formula for the
coefficients of our q-series, and provide combinatorial results. In Section 6 we
establish the generating function for L-values.

2. Hecke identities

Here, we employ the theory of Bailey pairs to obtain alternate q-series expressions
for W1ðqÞ and W2ðqÞ:

Definition 2.1. Two sequences an and bn; form a Bailey pair relative to a if for
all nX0

bn ¼
Xn

r¼0

ar

ðqÞn�rðaqÞnþr

:

Theorem 2.2 (Bailey’s Lemma). If an and bn form a Bailey pair relative to a; then

X
nX0

ðr1Þnðr2Þnðaq=r1r2Þ
n

ðaq=r1Þnðaq=r2Þn

an ¼ ðaqÞ
N
ðaq=r1r2ÞN

ðaq=r1ÞNðaq=r2ÞN

X
nX0

ðr1Þnðr2Þnðaq=r1r2Þ
nbn;

provided that both sums converge absolutely.

A proof can be found in [1].
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Theorem 2.3. The following identity is true:

W1ðqÞ ¼
X
nX0
jjjpn

ð�1Þnþj
q2n2þn�j2ð1 � q2nþ1Þ: ð2:1Þ

Proof. Recall that

W1ðqÞ :¼
X
nX0

ðqÞnð�1Þn
q

nþ1
2

� �
ð�qÞn

:

In Bailey’s Lemma, let r1-N; r2 ¼ q and a ¼ q: Note that when r1-N then

ðr1Þn
1
r1


 �n

-ð�1Þn
q

n
2ð Þ: This yields

X
nX0

ð�1Þn
q

nþ1
2

� �
an ¼ 1

1 � q

X
nX0

ð�1Þn
q

n
2ð ÞðqÞnqnbn: ð2:2Þ

By [4], the following form a Bailey pair relative to a ¼ q:

an ¼ qð3n2þnÞ=2ð1 � q2nþ1Þ
1 � q

Xn

j¼�n

ð�1Þj
q�j2 and bn ¼ 1

ð�qÞn

:

Substitution into (2.2) gives the result. &

Theorem 2.4. The following identity is true:

W2ðqÞ ¼
X
nX1

�npjpn�1

ð�1Þn
qnð2n�1Þ�ðj2�jÞð1 þ q2nÞ: ð2:3Þ

Proof. Recall that

W2ðqÞ :¼
X
nX1

ð�1; q2Þnð�qÞn

ðq; q2Þn

:

Make the substitution q-
ffiffiffi
q

p
and shift the sums via n-n þ 1: The left-hand side

becomes

X
nX0

ð�1Þnþ1ð�
ffiffiffi
q

p Þnþ1

ð ffiffiffi
q

p Þnþ1

¼
�2

ffiffiffi
q

p

1 � ffiffiffi
q

p
X
nX0

ð�qÞnð�
ffiffiffi
q

p Þn

ðq3=2Þn

:

The right-hand side becomes

�
X
nX0

ð�1Þn
qð2n2þ3nþ1Þ=2ð1 þ qnþ1Þ

Xn

j¼0

q�jðjþ1Þ=2 þ
X�1

j¼�n�1

q�jðjþ1Þ=2

 !
:
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Flip the last sum by taking i ¼ �ðj þ 1Þ to get

�
X
nX0

ð�1Þn
qð2n2þ3nþ1Þ=2ð1 þ qnþ1Þ

Xn

j¼0

q�jðjþ1Þ=2 þ
Xn

i¼0

q�iðiþ1Þ=2

 !
;

and then combine sums

�
X
nX0

ð�1Þn
qð2n2þ3nþ1Þ=2ð1 þ qnþ1Þ 2

Xn

j¼0

q�jðjþ1Þ=2

 !
:

It remains to show

�2
ffiffiffi
q

p X
nX0

ð�1Þn
qn2þ3n=2ð1 þ qnþ1Þ

Xn

j¼0

q�jðjþ1Þ=2

 !
¼

�2
ffiffiffi
q

p

1 � ffiffiffi
q

p
X
nX0

ð�qÞnð�
ffiffiffi
q

p Þn

ðq3=2Þn

:

The following is a Bailey pair relative to a ¼ q2:

an ¼ qn2þnð1 � q2nþ2Þ
ð1 � q2Þ

Xn

j¼0

q�jðjþ1Þ=2 and bn ¼ ð�qÞn

ðqÞnð�q3=2Þnðq3=2Þn

;

as can be seen by taking b ¼ �q1=2 and c ¼ q1=2 in Theorem 2.2 in [4]. Apply Bailey’s

lemma to this pair, choosing r1 ¼ �q3=2 and r2 ¼ q; to obtain

1

ð1 þ qÞ
X
nX0

ð�1Þn
qn2þ3n=2ð1 þ qnþ1Þ

Xn

j¼0

q�jðjþ1Þ=2 ¼
ð1 þ ffiffiffi

q
p Þ

ð1 � q2Þ
X
nX0

ð� ffiffiffi
q

p Þnð�qÞn

ðq3=2Þn

:

Multiplying both sides by �2
ffiffiffi
q

p ð1 þ qÞ and simplifying yields the identity. &

3. Proof of Theorem 1.1

Theorem 1.1 will follow from (2.1) and (2.3) once we know that the only ideals a

with wðaÞa0 have NðaÞ 	 71 mod 8: The following lemma establishes that.

Lemma 3.1. There are no ideals of norm 73 mod 8 in OK :

Proof. Consider any ideal a ¼ x þ y
ffiffiffi
2

p� �
with x2 � 2y2 ¼ 8n þ 3 for some nAZ:

Look mod 2 to see x must be odd, x ¼ 2k þ 1: Then 4k2 þ 4k þ 1 � 2y2 ¼ 8n þ 3; so

2k2 þ 2k � y2 ¼ 4n þ 1: Looking mod 2 again shows y must also be odd, y ¼
2m þ 1: Then 2k2 þ 2k � 4m2 � 4m � 1 ¼ 4n þ 1; so kðk þ 1Þ � 2m2 � 2m ¼ 2n þ 1:
If we look mod 2 again, we have that kðk þ 1Þ is odd. But that is impossible. The
proof for NðaÞ ¼ �3 mod 8 is similar. &

The next two theorems complete the proof of Theorem 1.1.
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Theorem 3.2. The following identity is true:

qW1ðq8Þ ¼
X
nX0

n	1 mod 8

aðnÞqn: ð3:1Þ

Proof. The fundamental solution of x2 � 2y2 ¼ 1 (the solution with x and y minimal
positive) is (3,2). From [4, Lemma 3, p. 396], we know that we choose a unique

representative of each ideal a ¼ ðx þ y
ffiffiffi
2

p
Þ in OK by restricting xX0 and

� 2
3þ1

xoyp 2
3þ1

x:

Suppose x2 � 2y2 ¼ 8m þ 1: Looking mod 2; we see x is odd. Write x ¼ 2k þ 1:
The inequalities become kX0 and jyjpk: Note that since NðaÞ 	 1 mod 8; from (1.3)

we can say wðaÞ ¼ ð�1Þ
NðaÞ�1

8 : This gives the following:

X
nX0

n	1 mod 8

aðnÞqn ¼
X
kX0
jyjpk

ð�1Þ
k2þk

2
�y2

4 qð2kþ1Þ2�2y2

:

Now we split into two sums, corresponding to the cases k ¼ 2n þ 1 and 2n: Since y

must always be even, take y ¼ 2j:X
nX0
jjjpn

ð�1Þnþjþ1
qð4nþ3Þ2�8j2 þ

X
nX0
jjjpn

ð�1Þnþj
qð4nþ1Þ2�8j2 :

Combining these two sums we get the result:X
nX0
jjjpn

ð�1Þnþj
qð4nþ1Þ2�8j2ð1 � q8ð2nþ1ÞÞ: &

Theorem 3.3. The following identity is true:

1

q
W2ðq8Þ ¼

X
nX0

n	�1 mod 8

aðnÞqn: ð3:2Þ

Proof. Suppose x2 � 2y2 ¼ 8m � 1: From (1.3), wðaÞ ¼ ð�1Þ
NðaÞþ1

8 : Again, x must be
odd, x ¼ 2k þ 1; and now y is also odd, y ¼ 2j þ 1: To ensure a unique
representative of each ideal, we use the inequalities above, kX0 and jyjpk:
Consider the two sums, k ¼ 2n þ 1 and k ¼ 2n:X

nX0
n	�1 mod 8

aðnÞqn ¼
X
nX0

�n�1pjpn

ð�1Þnþ1
qð4nþ3Þ2�2ð2jþ1Þ2 þ

X
nX0

�npjpn�1

ð�1Þn
qð4nþ1Þ2�2ð2jþ1Þ2 :
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Shifting the first sum and combining them we get the result,X
nX1

�npjpn�1

ð�1Þn
qð4n�1Þ2�2ð2jþ1Þ2ð1 þ q16nÞ: &

4. Proof of Corollary 1.2

Corollary 1.2 gives the result of Theorem 1.1 on the trivial character

jwjðaÞ ¼
1; NðaÞ 	 71;77 mod 16;

0 otherwise

�

with the particularly simple associated L-function z�KðsÞ: Instead of repeating the

methods used to prove Theorem 1.1, however, we can use Theorem 1.1 more
directly.

Proof of Corollary 1.2. Let g :¼ e2pi=16; be a primitive 16th root of unity. Substitute
q-gq in (3.1):

gqW1ððgqÞ8Þ ¼
X

aCOK

NðaÞ	1 mod 8

wðaÞðgqÞNðaÞ:

Dividing through by g shows

qW1ð�q8Þ ¼
X

aCOK

NðaÞ	1 mod 8

wðaÞgNðaÞ�1qNðaÞ:

Recall from (1.3) that wðaÞ ¼ ð�1Þ
NðaÞ�1

8 when NðaÞ 	 1 ðmod 8Þ; thus

qW1ð�q8Þ ¼
X

aCOK

NðaÞ	1 mod 8

qNðaÞ ¼
X

n	1 mod 8

bðnÞqn:

Substitute q-gq in (3.2),

1

gq
W2ðgqÞ ¼

X
nX0

n	�1 mod 8

aðnÞðgqÞn:

Multiplying through by g gives

qW2ð�q8Þ ¼
X

aCOK

NðaÞ	�1 mod 8

wðaÞgNðaÞþ1qNðaÞ:
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Similarly, wðaÞ ¼ ð�1Þ
NðaÞþ1

8 when NðaÞ 	 �1 mod 8; thus

qW2ð�q8Þ ¼
X

aCOK

NðaÞ	�1 mod 8

qNðaÞ ¼
X

n	�1 mod 8

bðnÞqn:

Since there are no ideals of norm 73 mod 8 in OK ; the result follows. &

5. Combinatorial interpretation

The q-series W1ðqÞ has interesting combinatorial properties. It is related to the
Rogers–Ramanujan-type identity [10, Eq. (8)]:

XN
n¼0

ð�qÞnq
nþ1
2

� �
ðqÞn

¼ ð�q2; q2Þ
N

ðq; q2Þ
N

:

It is also a generating function for certain types of partitions. If

W1ðqÞ :¼
X
nX0

ðqÞnð�1Þn
q

nþ1
2

� �
ð�qÞn

¼
X
nX0

AðnÞqn;

then AðnÞ counts the number of colored partitions of n into quasi-distinct parts where
the largest yellow part is less than or equal to the number of purple parts, weighted

by ð�1ÞPþY where P is the largest purple part and Y is the number of yellow parts.
Here, quasi-distinct means no two parts can have both the same value and color, but
there may be two parts of the same value and different colors. Notice from (3.1) that
AðnÞ ¼ að8n þ 1Þ:

Example. When n ¼ 4; the colored partitions of this type are 4 and 3 þ 10 with
weight 1; and 3 þ 1 and 2 þ 1 þ 10 with weight �1 (unprimed numbers are purple
parts, primed numbers are yellow parts). So Að4Þ ¼ 0: There are no ideals of norm
33 in OK ; so að8 � 4 þ 1Þ ¼ 0 as well.

Example. When n ¼ 5; the colored partitions of this type are 4 þ 1 and 3 þ 1 þ 10

with weight 1; and 5; 4 þ 10; 3 þ 2; and 2 þ 20 þ 1 with weight �1: So Að5Þ ¼ �2: The

ideals of norm 41 in OK are 7 þ 2
ffiffiffi
2

p� �
and 7 � 2

ffiffiffi
2

p� �
; and since w is �1 for both

these ideals because 41 	 �7 mod 16; we also have að41Þ ¼ �2:

The following two results establish a general formula for the aðnÞ’s, which we use
to study AðnÞ:

Lemma 5.1. The aðnÞ’s are multiplicative. That is, if gcdðn;mÞ ¼ 1 then aðnmÞ ¼
aðnÞaðmÞ:
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Proof. Recall the definition of aðnÞ

aðnÞ :¼
X

aCOK

NðaÞ¼n

wðaÞ:

Suppose we have an ideal a with NðaÞ ¼ nm: It is well known that Z
ffiffiffi
2

p� �
is a UFD,

so factor the ideal a ¼ p1p2?pk: Then nm ¼ Nðp1ÞNðp2Þ?NðpkÞ; since the norm is
multiplicative. Because n and m are coprime, there must be a (set theoretic) partition
fn1;y; nrg,fm1;y;msg ¼ f1;y; kg such that n ¼ Nðpn1

ÞNðpn2
Þ?Nðpnr

Þ and

m ¼ Nðpm1
ÞNðpm2

Þ?Nðpms
Þ: Let b ¼ pn1

pn2
?pnr

and c ¼ pm1
pm2

?pms
: Then a ¼

bc and NðbÞ ¼ n and NðcÞ ¼ m: So

aðnmÞ ¼
X

aCOK

NðaÞ¼nm

wðaÞ ¼
X

b;cCOK

NðbÞ¼n
NðcÞ¼m

wðbÞwðcÞ

¼
X

bCOK

NðbÞ¼n

wðbÞ

0
BB@

1
CCA X

cCOK

NðcÞ¼m

wðcÞ

0
BB@

1
CCA ¼ aðnÞaðmÞ: &

Theorem 5.2. If p is prime and eX0; then

aðpeÞ ¼

ðe þ 1Þ if aðpÞ ¼ 2 and p 	 71 mod 8;

ð�1Þeðe þ 1Þ if aðpÞ ¼ �2 and p 	 71 mod 8;

ð�1Þe=2
if e is even and p 	 73 mod 8;

0 if p ¼ 2 or e is odd and p 	 73 mod 8:

8>>><
>>>:

ð5:1Þ

Proof. Since wðaÞ ¼ 0 when NðaÞ is even, we have að2eÞ ¼ 0: For p an odd prime, 2 is
a quadratic residue mod p if and only if p 	 71 mod 8; and it is exactly in this case
that ðpÞ splits in OK :

In the splitting case, let p factor as ab: Since a and b are the only elements of norm

p; the elements of norm pe are exactly the e þ 1 elements of the form akbl where

k þ l ¼ e and wðakblÞ ¼ wðaÞkwðbÞl : Since a and b are conjugate, and hence have the

same norm, wðaÞ ¼ wðbÞ; and so wðakblÞ ¼ wðaÞe: When aðpÞ ¼ 2; then wðaÞ ¼ 1; and
when aðpÞ ¼ �2; then wðaÞ ¼ �1: There are no other possibilities for aðpÞ since
wðaÞ ¼ wðbÞ: This gives the first two cases.

Now suppose p 	 73 mod 8: There are no ideals of norm pe when e is odd by
Lemma 3.1, because pe 	 73 mod 8:

When e is even, the only ideal of norm pe is ðpe=2Þ; with factorization ðpÞe=2; since p

does not split. Here ðpÞ is the unique ideal of norm p2 and wðpÞ ¼ �1; since p2 	
9 mod 16 when p 	 73;75 mod 16: Thus wðpe=2Þ ¼ ð�1Þe=2: &
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Remark. It is well-known that in a number field with degree greater than 1 over Q;
the number of positive integers that are norms of ideals has density 0 [9]. This
immediately gives that AðnÞ is almost always 0:

Corollary 5.3. AðnÞ hits every integer infinitely many times.

Proof. Given any integer kX2 consider any prime p 	 1 mod 8: Then pk�1 	
1 mod 8 and 9pk�1 	 1 mod 8: Let n ¼ ðpk�1 � 1Þ=8 and m ¼ 9ðpk�1 � 1Þ=8: If

aðpÞ ¼ 2 then AðnÞ ¼ að8n þ 1Þ ¼ aðpk�1Þ ¼ k and AðmÞ ¼ að8m þ 1Þ ¼ að9pk�1Þ ¼
�k: If aðpÞ ¼ �2 then AðnÞ ¼ að8n þ 1Þ ¼ aðpk�1Þ ¼ ð�1Þkþ1

k and AðmÞ ¼ að8m þ
1Þ ¼ að9pk�1Þ ¼ ð�1Þk

k: Since there are infinitely many primes p 	 1 mod 8; there
must be infinitely many p in at least one of these two cases. Thus AðnÞ hits 7k

infinitely many times.
For the jkj ¼ 1 case, consider any p 	 73 mod 8: For any even e; we have

pe 	 1 mod 8: Let n ¼ ðpe � 1Þ=8; then AðnÞ ¼ að8n þ 1Þ ¼ aðpeÞ ¼ ð�1Þe=2: So AðnÞ
hits 71 infinitely many times. &

6. Proof of Theorem 1.3

We prove the generating function for L-values (Theorem 1.3) in two steps.
Theorem 6.1 is a corollary to Theorem 1.1 which proves the existence and gives an

explicit form of the asymptotic expansion of
P

N

n¼1 aðnÞe�nt: Then, independent of

Theorem 1.1, we prove that an asymptotic expansion of
P

N

n¼1 aðnÞe�nt is in fact a

generating function for L-values.

Theorem 6.1. As tr0 we have

XN
n¼1

aðnÞe�ntBe�tW1ðe�8tÞ � et
X
nX0

ðe�8t; e�16tÞn

ð�e�16t; e�16tÞn

:

Proof. Recall (Theorem 1.1) that

X
nX1

aðnÞqn ¼ qW1ðq8Þ þ 1

q
W2ðq8Þ: ð6:1Þ

We will make the specialization q ¼ e�t and then demonstrate convergence of the
resulting t-series. In the first term

W1ðe�8tÞ ¼
X
nX0

e�8tnðnþ1Þ=2ð�1Þnðe�8t; e�8tÞn

ð�e�8t; e�8tÞn
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is a convergent t-series since ðe�8t; e�8tÞn-0: For the second term, it can be seen that

W2ðe�8tÞ is asymptotically, as tr0; equal to the following convergent t-series when

we let t ¼ q; q ¼ q2; and a ¼ �q2 in Theorem 1.1 of [5]:

W2ðe�8tÞB
X
nX0

ðe�8t; e�16tÞ
N

ð�e�16t; e�16tÞ
N

� ðe�8t; e�16tÞn

ð�e�16t; e�16tÞn

� �
:

The first term in the sum goes to 0 as tr0: The result is now just a matter of
substituting q ¼ e�t in (6.1), and applying the above observations. &

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. The proof is analogous to the proof of Proposition 3.1 in [7].
Note that Lðw; sÞ has an analytic continuation to C: Suppose the asymptotic
expansion as tr0 is given byX

nX1

aðnÞe�ntB
X
nX0

cðnÞtn: ð6:2Þ

Consider the following integral (assume RðsÞ41):Z
N

0

X
nX1

aðnÞe�nt

 !
ts�1 dt ¼

X
nX1

aðnÞ
Z

N

0

e�ntts�1 dt

¼
X
nX1

aðnÞ
ns

Z
N

0

e�T Ts�1 dT ¼ GðsÞLðw; sÞ; ð6:3Þ

where for the second equality we have made the substitution T ¼ nt: We can switch
the order of integration and summation in the first equality because we have absolute
convergence, which follows from the following linear bound on the aðnÞ’s:

Lemma 6.2. For all n; aðnÞpn:

Proof. It is easily seen by induction that for all mAN; m þ 1p2m; and hence m þ
1ppm for all primes p:

Factor n as pm1

1 pm2

2 ?pmk

k : Then, by the results of Section 5, we see

jaðnÞjpjaðpm1

1 Þaðpm2

2 Þ?aðpmk

k Þjpjðm1 þ 1Þðm2 þ 1Þ?ðmk þ 1Þjpjpm1

1 pm2

2 ?pmk

k j ¼ n: &

For any N40; (6.3) combined with the asymptotic expansion (6.2) implies that for
some e40;

GðsÞLðw; sÞ ¼
Z

N

0

X
nX1

aðnÞe�nt

 !
ts�1 dt

¼
Z e

0

X
nX0

cðnÞtn

 !
ts�1 dt þ

Z
N

e

X
nX1

aðnÞe�nt

 !
ts�1 dt: ð6:4Þ
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We truncate our asymptotic expansion to break up the first part of the integral as

Z e

0

X
nX0

cðnÞtn

 !
ts�1 dt ¼

Z e

0

XN

n¼0

cðnÞtnþs�1 dt þ
Z e

0

Oðtnþs�1Þ dt

¼
XN

n¼0

cðnÞ enþs

n þ s
þ FðsÞ:

That f ¼ OðtNþs�1Þ means that for some M; we have fpMtMþs�1: We then
have that

jFðsÞjpjMj
Z e

0

tNþs�1 dt

����
���� ¼ jMj tNþs

N þ s

����
����
����
t¼e

t¼0

which is finite for RðsÞ4� N: So FðsÞ is analytic for RðsÞ4� N:

Now consider the second half of (6.4), GðsÞ ¼
R
N

e ð
P

nX1 aðnÞe�ntÞts�1 dt: By

Lemma 6.2, again, the integrand is bounded for any s; and so GðsÞ is analytic.
So (6.4) becomes

GðsÞLðw; sÞ ¼
XN

n¼0

cðnÞ enþs

n þ s
þ FðsÞ þ GðsÞ;

where FðsÞ þ GðsÞ is analytic. Taking residues of both sides, we find

cðnÞ ¼ ð�1Þn

n!
Lðw;�nÞ: &
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