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Abstract

In 1988, G. Andrews, F. Dyson, and D. Hickerson related the arithmetic of @(\/6) to

certain g-series. We have found g¢-series that relate in a similar way to @(\/ﬁ) In addition to
proving analogous results, including an explicit formula for a partition function, we also
obtain a generating function for the values of a particular L-function.
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1. Introduction and statement of results

In [3], Andrews et al., studied the relationship between the arithmetic of @ (V/6)
and certain partition functions. This connection allowed them to prove new results
about combinatorial objects by taking a non-combinatorial perspective. They were
interested in the following g-series:

qn(n+l)/2

)
R(q) =1+ =1+qg—@+2¢ 24"+ - .
D=1+ s Oag) = T4 +U ~ %
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2§: 1)nqn ~2q = 2q" =24’ + 24" + -
(=g =)~ (=)

They showed that the coefficients of R(¢) and L(q) are determined by the coefficients

of a certain Hecke L-function associated with the quadratic field @(\/6) Using the

arithmetic of @(\/6), the combinatorics of g-series, and basic hypergeometric series,
they proved a number of results about the coefficients of

1
- L(q24)a

24
qR(q™") —
(¢7) p

including multiplicativity and lacunarity. They also showed that the coefficients
attain every integer infinitely often. Examples of g-series with these properties are
rare and surprising. In the words of Dyson [6],

This pair of functions R(g) and L(g) is today an isolated curiosity. But I am
convinced that, like so many other beautiful things in Ramanujan’s garden, it will
turn out to be a special case of a broader mathematical structure. There probably
exist other sets of two or more functions with coefficients related by cross-
multiplicativity, satisfying identities similar to those which Ramanujan discovered
for his R(g). I have a hunch that such sets of cross-multiplicative functions will
form a structure within which the mock theta-functions will also find a place. But
this hunch is not backed up by any solid evidence. I leave it to the ladies and
gentlemen of the audience to find the connections if they exist.

In this paper we find g-series analogous to R(¢) and L(g), associated in a similar
way to Q (\/5) We relate a sum of these basic hypergeometric series with a Hecke L-
function, using the machinery of Bailey pairs. We prove analogous combinatorial
results to those in [3]; using the arithmetic of @(ﬂ), we establish combinatorial
properties of a certain partition function. In addition, we find a generating function
for values of the associated L-function.

Throughout the paper we employ the standard notation

n—1

(a)n = (a7 q)n = H (1 - aqk)‘
k=0
Let Ox = Z[v/2] be the ring of integers of K = @(v/2). In O define the norm of any
ideal a = (x 4+ yv2) as N(a) = [x? — 2.
Define the g-series W1(q) and W>(q) as

n+1)

Wilg) =) (")"(z_li;;q(z l—q+2¢* —¢ =24’ +3¢°+ -, (1.1
n=0 n



394 D. Corson et al. | Journal of Number Theory 107 (2004) 392—-405

Q) =-29-2¢ +2¢" +2¢° +2¢° —2¢° + - . (1.2)

n=1 49
Let y be the character

1 N(a)=+1mod 16,
z(a) =< =1 N(a) = +7mod 16, (1.3)
0  otherwise

and define a(n) for any positive integer n by

an) =Y ya) (1.4)
acOg
N(a)=n
Theorem 1.1. We have
1
aWi(q®) 5 Wa(q®) = aln)q". (1.5)
n=0

Remark. The a(n)’s are constructed such that the following holds (R(s)>1):

L) =Y 168 = “i’:). (1.6)

acOg n=1

In particular, L(y, s) is a standard Hecke L-function which is well known to have an
analytic continuation to C [2].

Corollary 1.2. The following identity is true:

qWi(—q )+1W2 Zb

n=1
n odd

where the b(n)’s are defined by

b(n) = > L
oo

N(a)=n

Remark. The b(n)’s are constructed such that the following holds (R(s)>1):

GO = T i D

ac Ok n=1
N(a) odd n odd
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Notice (i (s) is essentially the usual Dedekind {-function, but the only difference is
the omission of the Euler factor corresponding to the prime ideal above 2. Here (% (s)
has an analytic continuation to C with the exception of a simple pole at s = 1 (for
example, see [8]).

Consider the g-series identity in (1.5) with g = e~

. This gives a well-defined

t-series, since the substitution of e =3 " <_n?n into (1.1) amounts to performing
formal operations (addition, multiplication, and taking positive integral powers) of

power series.

Theorem 1.3. The following is a generating function for L-values.

B 3 (e—St;e—lét) (—l)nﬂt”
e Wile ) —e Y WZ > Ll—n)— —

n=0 n n=0
7949 5 26765521

—10¢ — t
0 3 12

Theorem 1.1 is proven in two steps. In Section 2, using the theory of Bailey pairs,
we find alternate expressions for W;(g) and W>(g), and in Section 3 we prove the
theorem by revealing the connection to @(\/5) of these other representations. In
Section 4 we prove Corollary 1.2. In Section 5 we find an explicit formula for the
coefficients of our g-series, and provide combinatorial results. In Section 6 we
establish the generating function for L-values.

2. Hecke identities

Here, we employ the theory of Bailey pairs to obtain alternate g-series expressions
for Wi(q) and W>(q).

Definition 2.1. Two sequences a, and f,, form a Bailey pair relative to a if for
all n=0

P —

r=0 (q),1,,,(aq)”+,,.

Theorem 2.2 (Bailey’s Lemma). If o, and 3, form a Bailey pair relative to a, then

(PU)a(P2)alag/pipy)" — _ (aq) . (aq/p1p)) o n
,;) (ag/py) (aq/py), " (ag/p))., (aa/ps)., ,; (Pua(oalaao162) B

provided that both sums converge absolutely.

A proof can be found in [1].
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Theorem 2.3. The following identity is true:

Wilg) = (—1)"™ g (1 — g, (2.1)
n=0
lil<n
Proof. Recall that
n+1
(@)(~1)"q("2)
Wilg) =) 5
; (_q)n

In Bailey’s Lemma, let p;— o0, p, = ¢ and a = ¢q. Note that when p; - co then
(0 ()" = (=1)"92). This yields
. (] 1 n (" .
S 17gl oy == S (<110 (), 8, (22)
n=0 q n=0
By [4], the following form a Bailey pair relative to a = g¢:
q(3n2+n)/2(1 _ q2n+1) n } 1

—1 - d — .

Oy =

Substitution into (2.2) gives the result. [

Theorem 2.4. The following identity is true:

Walg)= > (=1)'q"®ED (14 ). (2.3)

n=1
—n<j<n—1

Proof. Recall that

Z (—1; (1 Q>n.
n>1

Make the substitution ¢— /g and shift the sums via n—n + 1. The left-hand side
becomes

(0w VD™ 21 - (290"
"2 (\/‘_I)nﬂ - \/g nzz() (q3/2)n .

The right-hand side becomes

_ 2n +3n+1)/2(1 +qn+l ( qu(/ﬂ /2 + qu(/Jrl)/ >
> (- Z S

n=0 j=—n-1
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Flip the last sum by taking i = —(j + 1) to get
_Z 2n +3n+1)/2(1 +qn+l (Z q*/(/+l /2 + Z q —i(i+1) /2)7
n=0 j=0 i=0
and then combine sums
_Z n (2n? +3n+l)/2(1 _|_qn+l (2 Z q—/(]+l )
n=0 J=0

It remains to show

_ Vl n+3n/2 n+1 G+/2 ) — 72\/6 (7q)n(7\/6_1)n
2fz (144 (;)q’ ) 1—\/21‘,; o

The following is a Bailey pair relative to a = ¢°:

n-+n 2n 2 n
0y — L Z G2 and p = (),
n

as can be seen by taking b = —¢'/? and ¢ = ¢'/? in Theorem 2.2 in [4]. Apply Bailey’s
lemma to this pair, choosing p; = —¢*/? and p, = ¢, to obtain

1 n_n? +3n/2 n+l JU+1)/2 ( + f) (_\/é)n(_q)n
g o TV ,zojq T g >Z @n),

Multiplying both sides by —2,/g(1 4 ¢) and simplifying yields the identity. [J

3. Proof of Theorem 1.1

Theorem 1.1 will follow from (2.1) and (2.3) once we know that the only ideals a
with y(a)#0 have N(a) = + 1 mod 8. The following lemma establishes that.

Lemma 3.1. There are no ideals of norm +3mod 8 in Og.

Proof. Consider any ideal a = (x+ yv2) with x? —2)? = 8n+ 3 for some neZ.
Look mod 2 to see x must be odd, x = 2k + 1. Then 4k> + 4k + 1 — 2y> = 8n + 3, so
2k* + 2k —y* =4n+ 1. Looking mod2 again shows y must also be odd, y =
2m+ 1. Then 2k? + 2k —4m* —4m — 1 =4n+ 1,50 k(k + 1) — 2m?> — 2m = 2n + 1.
If we look mod 2 again, we have that k(k + 1) is odd. But that is impossible. The
proof for N(a) = —3mod 8 is similar. [

The next two theorems complete the proof of Theorem 1.1.
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Theorem 3.2. The following identity is true:

i) = Y alng" (3.1)

n=0
n=1 mod 8

Proof. The fundamental solution of x> — 2y? = 1 (the solution with x and y minimal
positive) is (3,2). From [4, Lemma 3, p. 396], we know that we choose a unique
representative of each ideal a = (x+yv2) in Ok by restricting x>0 and
—% x<y S% X.

Suppose x> — 2y> = 8m + 1. Looking mod 2, we see x is odd. Write x = 2k + 1.

The inequalities become k>0 and |y| <k. Note that since N(a) = 1 mod 8, from (1.3)
N(a)—1

we can say y(a) = (—1)" 8 . This gives the following:

Rk y (2Ue1)2—2)2

> almg =) (=1) 2 F g
n=0 k=0
n=1 mod 8 <k

Now we split into two sums, corresponding to the cases k = 2n + 1 and 2n. Since y
must always be even, take y = 2j.

Z (_1)n+j+lq(4n+3)2—8j2 + Z (_l)n+jq(4n+l)z—8j2.

n=0 n=0
ji<n ji<n

Combining these two sums we get the result:

S (I (- gt O
n=0
il<n

Theorem 3.3. The following identity is true:

1
- = Y. alng". (3.2)
q n=0

n=—1 mod 8

N(a)+1
Proof. Suppose x> — 2y? = 8m — 1. From (1.3), y(a) = (—1)%. Again, x must be
odd, x=2k+1, and now y is also odd, y=2j+1. To ensure a unique
representative of each ideal, we use the inequalities above, k>0 and |y|<k.
Consider the two sums, kK =2n + 1 and k = 2n.

Z a(n)q” _ Z (_l)n+lq(4n+3)2_2(2j+1)2+ Z (_1)nq(4’l+1)2—2(2j+1)2'

n=0 n=0 n=0
n=—1mod 8 —n—1<j<n —n<j<n—1
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Shifting the first sum and combining them we get the result,

Z (_l)nq(4n71)272(2j+1)2(1 + qlén)' 0

n=1
—n<j<n—1

4. Proof of Corollary 1.2

Corollary 1.2 gives the result of Theorem 1.1 on the trivial character

I, N(a)= +1,+7mod 16,
@ =1, .
otherwise

with the particularly simple associated L-function (i(s). Instead of repeating the
methods used to prove Theorem 1.1, however, we can use Theorem 1.1 more
directly.

Proof of Corollary 1.2. Let y := ¢>™/16 be a primitive 16th root of unity. Substitute
g—yq in (3.1):

w0 = Y @M.

ac Ok

N(a)=1 mod 8
Dividing through by 7 shows
aWi(=¢* )= Y x(ayN gV
acOg
N(a)=1 mod 8

N(a)—1
Recall from (1.3) that y(a) = (—1) 8  when N(a) = | (mod 8), thus

ami(=¢))= > V= > by

ac Ok n=1 mod 8
N(a)=1 mod 8

Substitute ¢ — y¢q in (3.2),

inmq): S ana).

q n=0
n=—1mod 8
Multiplying through by 7y gives
aWa(—=¢) = Y (NN,
acOg

N(a)=—1mod 8
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N(a)+1
Similarly, y(a) = (—1) 8  when N(a) = —1mod 8, thus

ai(=¢") = Y. V=D b
acOg n=—1 mod 8
N(a)=—1mod 8

Since there are no ideals of norm +3 mod 8 in Ok, the result follows. [

5. Combinatorial interpretation

The g-series W(q) has interesting combinatorial properties. It is related to the
Rogers—Ramanujan-type identity [10, Eq. (8)]:

2 (—q),q">) _ (=),
< (9), (),

—
It is also a generating function for certain types of partitions. If

n+1)

ol
Wilg) =S WU 225 g,

n=0 (_q)” n=0

then A(n) counts the number of colored partitions of n into quasi-distinct parts where
the largest yellow part is less than or equal to the number of purple parts, weighted
by (—I)P T where P is the largest purple part and Y is the number of yellow parts.
Here, quasi-distinct means no two parts can have both the same value and color, but
there may be two parts of the same value and different colors. Notice from (3.1) that
A(n) =a@n+1).

Example. When n = 4, the colored partitions of this type are 4 and 3 + 1’ with
weight 1, and 3+ 1 and 2+ 1 + 1’ with weight —1 (unprimed numbers are purple
parts, primed numbers are yellow parts). So 4(4) = 0. There are no ideals of norm
33 in Ok, so a(8 -4+ 1) =0 as well.

Example. When n = 5, the colored partitions of this type are 4+ 1 and 3 +1+ 1
with weight 1;and 5,4+ 1,34+ 2, and 2 + 2’ + 1 with weight —1. So 4(5) = —2. The
ideals of norm 41 in Ok are (7 +2v?2) and (7 — 2v2), and since 7 is —1 for both
these ideals because 41 = —7 mod 16, we also have a(41) = —2.

The following two results establish a general formula for the a(n)’s, which we use
to study A(n).

Lemma 5.1. The a(n)’s are multiplicative. That is, if gcd(n,m) =1 then a(nm) =
a(n)a(m).
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Proof. Recall the definition of a(n)

Suppose we have an ideal a with N(a) = nm. It is well known that Z[v/2] is a UFD,
so factor the ideal a = p;p,---p;. Then nm = N(p;)N(p,)---N(p,), since the norm is
multiplicative. Because n and m are coprime, there must be a (set theoretic) partition
{ni, ...omyo{m, ... ,mg} ={1,....,k} such that n=N(p, )N(p,,) --N(p,) and
m= N(pml)N(pmz) N(pm,) Let b= P Py = Pa, and ¢ = Py Py = Py - Then a =
be and N(b) =n and N(¢) = m. So

ac Ok b,cc Ok
N(a)=nm N(b)=n
N(c)=m

= > || > 20| =amam). O

bc Ok cc= Ok
N(b)=n N(c)=m

Theorem 5.2. If p is prime and e>=0, then

(e+1) if alp) =2 and p=+1mod8,
. (=1)%e+1) if alp)=—-2 and p= +1mod 8,
ap)={ o 3 (5.1)
(=1 if e is even and p = +3 mod §,
0 if p=2oreisodd and p= +3mod 8.

Proof. Since y(a) = 0 when N(a) is even, we have a(2°) = 0. For p an odd prime, 2 is
a quadratic residue mod p if and only if p = +1mod 8§, and it is exactly in this case
that (p) splits in Ok.

In the splitting case, let p factor as af. Since o and f are the only elements of norm
p, the elements of norm p°¢ are exactly the e + 1 elements of the form ockﬁl where
k+1=eand y(ofp') = ;{(a)k}g(ﬁ)l. Since o and f are conjugate, and hence have the
same norm, z(c) = x(B), and so (o) = y(«)°. When a(p) = 2, then y(x) = 1, and
when a(p) = —2, then y(x) = —1. There are no other possibilities for a(p) since
%(a) = x(B). This gives the first two cases.

Now suppose p = +3mod 8. There are no ideals of norm p° when e is odd by
Lemma 3.1, because p® = +3 mod 8.

When e is even, the only ideal of norm p° is (p¢/?), with factorization (p)e/z7 since p
does not split. Here (p) is the unique ideal of norm p* and y(p) = —1; since p* =

9mod 16 when p = +3, +5mod 16. Thus z(p*?) = (-=1)*>. O
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Remark. It is well-known that in a number field with degree greater than 1 over Q,
the number of positive integers that are norms of ideals has density 0 [9]. This
immediately gives that A(n) is almost always 0.

Corollary 5.3. A(n) hits every integer infinitely many times.

Proof. Given any integer k>2 consider any prime p = 1mod8. Then pf~! =
Imod8 and 9p*' =1mod8. Let n= (p*!' —1)/8 and m=9(p*' —1)/8. If
a(p) =2 then A(n) = a(8n+1) = a(p*') = k and A(m) = a(8m + 1) = a(9p*") =
—k. If a(p) = —2 then A(n) = a(8n+ 1) = a(p*~1) = (—1)*"'k and 4(m) = a(8m +
1) = a(9p*~1) = (=1)*k. Since there are infinitely many primes p = 1 mod 8, there
must be infinitely many p in at least one of these two cases. Thus A(n) hits +k
infinitely many times.

For the |k| =1 case, consider any p = +3mod8. For any even e, we have

p°=1mod8. Let n = (p° — 1)/8, then A(n) = a(8n+ 1) = a(p®) = (—1)*/%. So A(n)
hits +1 infinitely many times. [

6. Proof of Theorem 1.3

We prove the generating function for L-values (Theorem 1.3) in two steps.
Theorem 6.1 is a corollary to Theorem 1.1 which proves the existence and gives an
explicit form of the asymptotic expansion of >, a(n)e™™. Then, independent of
Theorem 1.1, we prove that an asymptotic expansion of Y~ a(n)e ™ is in fact a
generating function for L-values.

Theorem 6.1. As t\0 we have

w —81. ,—161

w iy e (e ™)
E a(n)e™™ ~e 'Wi(e ) — e E —_—
- (—e 161, g 161)

n=0
Proof. Recall (Theorem 1.1) that
1
Z a(n)q" = qWi(q®) +=Wa(q®). (6.1)
n=1 q

We will make the specialization ¢ = ¢~' and then demonstrate convergence of the
resulting ¢-series. In the first term

e—Stn(nH)/z (_ 1 )n (E—St; E—St)

(_e—8t; 8_8[)11

n

W (eigt) =

n=0
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is a convergent z-series since (e~%;e78) —0. For the second term, it can be seen that
W, (e~8") is asymptotically, as 0, equal to the following convergent z-series when
we let t = ¢,q = ¢, and a = —¢* in Theorem 1.1 of [5]:

W2(8—8t) ~ Z (e—St; 6_161)00 _ (6—81; e_lét)n
(_6—161; eflét) (_eflét; e—l6z)n :

n=0 0

The first term in the sum goes to 0 as z\0. The result is now just a matter of
substituting ¢ = ¢’ in (6.1), and applying the above observations. [

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. The proof is analogous to the proof of Proposition 3.1 in [7].
Note that L(y,s) has an analytic continuation to C. Suppose the asymptotic
expansion as £\ 0 is given by

> alm)e ™~ c(n)". (6.2)

n=1 n=0

Consider the following integral (assume R(s)>1):

. —nt | »s—1 _ * —nt ,s—1
/0 (Za(n)e >l a’t—Za(n)/0 e dt

n=1 n>1

=S [T et tar = L. (63)

n=1 n 0

where for the second equality we have made the substitution 7" = nt. We can switch
the order of integration and summation in the first equality because we have absolute
convergence, which follows from the following linear bound on the a(n)’s:

Lemma 6.2. For all n, a(n)<n.

Proof. It is easily seen by induction that for all meN, m + 1<2™, and hence m +
1<p™ for all primes p.
Factor n as py"py?---pi*. Then, by the results of Section 5, we see

la(n)|<la(pi")a(p5®) - a(py* )| <|(my + 1)(my + 1) (me + DI<|p{"p5* -pi* | =n. O

For any N >0, (6.3) combined with the asymptotic expansion (6.2) implies that for
some &> 0,

I'(s)L(z,s) = /OL (Z a(n)e"”) £~ dt

n=1

- /‘S (Z c(n)z”>f1 dr + /w (Z a(n)e’”) £dr. (6.4)
0 \n>0 & n=1
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We truncate our asymptotic expansion to break up the first part of the integral as

/06 <Z c(n)t”)fl dt = /oﬁnzN; c(n)" = dt + /08 o dr

n=0

SI’H-S

N
=y c(n)n+s+F(s).

n=0

That f = O(:"**~!) means that for some M, we have f<MM*+~!. We then
have that

C1t=¢
tN —+s

= M|

F(s)|<|M|| | NP tar
Fol<i| [ -

t=0

which is finite for R(s)> — N. So F(s) is analytic for R(s)> — N.
Now consider the second half of (6.4), G(s) = [ (3, a(n)e™)r"" dt. By

Lemma 6.2, again, the integrand is bounded for any s, and so G(s) is analytic.
So (6.4) becomes

8n-&-s

n+s

N
FS)L(zs) = Y eln) =+ F(s) + Gs),
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