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tation spheres of HZ. The computation is based on the Mackey functor homotopy
of HZ.
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Chapter 1

Introduction

Let G = Dy, = {,7]7* = e = 7%} be the dihedral group of order 2p. This article

gives a computational approach to the Dy,-spectrum HZ.

In equivariant homotopy theory, Mackey functors are the natural generalization of
abelian groups in the role of coefficients. In Chapter 2, we give a brief introduction
to Mackey functors, and a symmetric monoidal category structure called box

product.

In Chapter 3, we compute m, HZ, the RO(D,,)-graded homotopy groups of HZ,
in terms of Mackey functors. We also describe the ring structure and divisibility

of elements in 7, HZ.

In Chapter 4, we use the slice spectral sequence, which was developed in [HHR16]
and modified by Ullman in his thesis [Ull13], to compute the slice spectral sequence
for XY A HZ. Computing the general slice spectral sequence is usually hard.
However in specific cases, the structure of cohomological Mackey functor will

shed light on it. The main theorem we prove in this chapter is:

Theorem 1.1. Let G = Dy, and let V — W € RO(G), where both V' and W are

representations of G. Then there exists e(V —W) € ROG), such that SV-"W NHZ



has a spherical (|V| — |W|)-slice S*V=W) A HZ. The other slices are suspension

of HB, HB_ or HD.

Lewis diagrams of the Mackey functors used can be found in [lable 1.1

Table 1.1: Some G-Mackey functors

||N

Symbol z B B D

Lewis 0 Z/p 0 Z/2

2Ry [ 4 o
Y 1\” \v

Z_ 0




Chapter 2

Mackey Functors

In this chapter, we introduce basic definitions associated with Mackey functors.

2.1 Mackey Functors

Let G be the category of G-sets with G-equivariant morphisms and let b be

the category of finitely generated abelian groups.

We use Dress’s definition of Mackey functors [Dre73].

Definition 2.1.1. A G-Mackey functor M consists of a covariant functor M.,

and a contravariant functor M*

GY — b

such that:

(i) for disjoint G-sets S and T, M, and M* convert disjoint unions of finite

G-sets to direct sums of abelian groups.



(ii) for each pull-back diagram of finite G-sets

Sy —£~ 5,

| ; | £

T1 ﬁTQ

we have M (F)M*(f1) = M*(fo)M.(H).

The morphisms between Mackey functors are natural transformations.

The category of all G-Mackey functors and morphisms as mentioned is natu-

rally an abelian category, which we denote by Mg.

Since every G-set can be decomposed into direct sums of transitive G-sets, i.e.
the left G-sets of the form G/ H where H is a subgroup of G, a Mackey functor can
therefore be determined by its value on all the transitive G-sets together with the

restrictions and transfers between them.

For subgroups K C H C G, there exists a unique G-map G/K — G/H:
e its image under M, is called the transfer Tril.

e its image under M* is called the restriction Resit.

Definition 2.1.2. A Mackey functor M is called a fixed point Mackey functor
if M(G/H) = M(G/e)? for all H C G. In a fized point Mackey functor ,each

restriction is injective.

Furthermore, a fized point Mackey functor T is called a permutation Mackey func-

tor if T(G/e) is a free abelian group on a G-set T.

An example of Mackey functor is the Burnside Mackey functor:



Table 2.1: Some Cy-Mackey functors

Symbol O O . N O O
Lewis Z 0o | z2 | z 7/2 Z
diagram 1 Yo [ )| ) 2 1 0 B! Af Tv
Z Z_ 0 Z 7 Z[Cy]
Lewis symbol R R_ | (Z)2) L L_ R(Z?)

Example 2.1.3. [HHRd] For a finite group G, the Burnside ring A(G) of G is the
Grothendieck completion of the abelian monoid (under disjoint unions) of isomor-

phism classes of finite G-sets, with multiplication induced by Cartesian product.

The Burnside Mackey functor is constructed from the Burnside ring as follows: Let
A(S) denote the Grothendieck completion of the abelian monoid (under disjoint
unions) of isomorphism classes of finite G-sets over S, with multiplication induced
by Cartesian product. A finite G-set R over S is a G-set R with a G-set map to
S. Amap a: S — T of G-sets induces a map o, : A(S) — A(T) by composition,
and o : A(T') — A(S) by pullback.

2.2 Lewis Diagrams and Some Mackey Functors

To visualize Mackey functors, we use the Lewis diagrams which were first intro-
duced in [Lew88]. The following table extracted from [HHRc, Section 5] shows

some Lewis diagrams of Cy-Mackey functors .



The Lewis diagram of the D,,-Mackey functor M where p is an odd prime is

(G/ G) (2.2.1)
G/C \
G/C2
G/e

Figure 2.1}is a table of some D,,-Mackey functors.

2.3 Box Products, Green Functors, and Coho-

mological Mackey Functors

The box product of Mackey functors was first described in [Lew80] using Day
convolution. A constructive definition was given in |Lil5, Definition 3.1]. Li

proved in Section 4 of [Lil5] that the two definition are equivalent for any finite

group.

Definition 2.3.1. Given two Mackey functors M and N, the box product MUIN

1s the Mackey functor defined inductively:
MON(G/e) = M(G/e) ® N(G/e)

MON(G/H) = (M(G/H) @ N(G/H) P (MON(G/K)/WyK)/FR)

K<H
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Figure 2.1: Figures for Dy, Mackey Functors




where Wy K is the Weyl group Ny K/K and FR is the Frobenius reciprocity sub-

module generated by elements of the form

v ® Trig(y) — Trig(Resit(z) @)

and

Trif(y) ® x — Tril(y ® Resji(x))

foral K < H, x € M(G/H) and y € N(G/K).

For more concrete examples of computing the box products, one may refer to
[Li15].

The box product defines a closed symmetric monoidal category structure on
M, where the unit is the Burnside Mackey functor A(G). The reader may refer
to [HHRa] for more details. We don’t discuss general Mackey functors in this

article. Instead, we focus on cohomological Mackey functors.

A Mackey functor which behaves like a ring in the closed symmetric monoidal
category (Mg, 0, A) is called a Green functor. The definition of Green functors
was first given in [Lew80]. Kristen Mazur claimed in [Mazl1, Definition 1.3.2]

that there is an equivalent definition. We will use the definition given by Mazur.
Definition 2.3.2. A G-Mackey functor R is called a Green functor, if
(i) R(G/H) is a ring for all G/H,

(ii) for K < H < G, the restriction maps Restt : R(G/H) — R(G/K) are unit

preserving ring homomorphisms,



(iii) R satisfies Frobenius reciprocity: for K < H < G,

Trig(x) -y = Tric(vResi(y).)

A Green functor is commutative, if all the rings R(G/H) are commutative.

Remark 2.3.3. The reference Mazur mentioned is not correct, though the defini-

tions are still equivalent. The reader can refer to [Lew8(0].

A special type of Mackey functoris the cohomological Mackey functor.

Definition 2.3.4. [TW95, 16/ A Mackey functor is a cohomological Mackey

functor if for any K < H < G, TrilReslt = |H : K|.

We denote the category of cohomological Mackey functors and natural trans-
formations as €Mg. It is a full subcategory of My as an abelian category.
However, the Burnside Mackey functor is not a cohomological Mackey functor.
So €M does not inherit the closed symmetric monoidal category structure of
(Me, 0, A(G)). But luckily, it is still a closed symmetric monoidal category with
box product as the binary operation, but the unit is the fixed pointed Mackey
functor Z determined by Z(G/e) = Z.

Proposition 2.3.5. Z is the unit in EM¢, that is, if M is a cohomological Mackey
functor, then MZ = M.

Proof. We use induction for the proof. Clearly this is true for G/{e}. Let H be
a subgroup of G. Assume that the result is true for each G/K where |K| < |H|,

we will prove it for G/H.
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From the assumption we have

MOZ(G/H) = (M(G/H)® Z(G/H) @ (MOZ(G/K) /Wy K)/FR)

K<H

~ (M(G/H) @ M(G/K)/FR)

K<H

= M(G/H)

The third equality comes from the Frobenius relations. O]

Therefore, (€M, 0, Z) is a closed symmetric monoidal category.

In this article, we work with commutative cohomological Green functors, i.e.
Mackey functors that are both commutative cohomological Mackey functors and

Green functors.

When X is a ring spectrum, we have the fized point Frobenius relation,
Tri(Resf (a)b) = a(Tri (b)) fora e 7, X(G/H) and b € 7, X(G/K). (2.3.6)
which results from the box product of Green functors. In particular

a(Tri (b)) =0 when Rest(a) = 0. (2.3.7)

When the G-spectrum X is a commutative ring spectrum, for example HZ,
m, X is a commutative RO(G)-graded Green functor. The multiplication of ring

spectra induces box product of Green functors.
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2.3.A Lemmas for Cohomological Mackey Functors

There are some lemmas for cohomological Mackey functors, which we will use

later:

Lemma 2.3.8. If M is a Z-valued cohomological Mackey functor, i.e.,

M(G/H) =7 for all subgroups of G, then we have the following properties

(i) Res@, : M(G/G) =7 — M(G/Cy) =Z and
Res” M(G/Cy) =Z — M(G/e) = Z coincide as maps between abelian

groups as maps between abelian groups.

(i1) Resgp M(G/G)=7Z — M(G/C,) =7 and
ResS : M(G/Cy) = Z — M(G/e) = Z coincide as maps between abelian

groups.

(i) Tré, - M(G/Cy) =Z — M(G/G) =Z and
Tré" « M(GJe) = Z — M(G/C,) = Z coincide as maps between abelian

groups.

(iv) Trgp M(G/C,) =Z — M(G/G) =17 and
Tre? : M(GJe) = Z — M(G/Cy) = Z coincide as maps between abelian

groups.

Proof. We only work on the first and the others can be done in the same way. The

composition is Trg2 o Reng = [G : C5] = p. So there are only two possibilities:

(a)Trg, = p and Resg, = 1 or (b)Trg = 1 and Res& = p. For the same

reason, Resgp must be either 1 or 2. However, two compositions of restriction
e}

maps Res? o Resg2 and ResS” o Rescp have to coincide. But 1,2 and p are all

. . c
coprime, which forces Resg2 = Resc”. O
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We will give names to some Mackey functors which will be used:

Example 2.3.9 (Some D, cohomological Mackey functors). We define the fol-

lowing four types of Z-valued cohomological Mackey functors:

(i) We let Z =74, , denote the Mackey functor O in (2.2.1)), which means the

restrictions Res{cj} and Res{oep} are both 1,

(ii) We let Z = Z,,, denote the Mackey functor m in (2.2.1),which means the

restriction Res{cj} =2, and Res{oj} =p,

(iii) We let Z = Z,, denote the Mackey functor K in (2.2.1), which means the

restriction Res?j} =1, and Res{cep} =D,

(iv) We let Z = Z,, denote the Mackey functor @ in (2.2.1)), which means the

restriction Res?j} =2, and Res{ce”} =1.
Some cohomological Mackey functors which have the (G/e)value Z_ are:

(i) if M(G/G) =0 and ResS? =1, then the cohomological Mackey functor is

the fized point Mackey functor Z_ = 0.

(i) if M(G/G) =0 and ResS? = p, then the cohomological Mackey functor is

denoted by Z" =N.

(iii) if M(G/G) =Z/2 and Ress? =1, then the cohomological Mackey functor is
denoted by Z_ = 0J.

(v) if M(G/G) =Z/2 and ResS? = p, then the cohomological Mackey functor is

denoted by Z* = N,

Some other Mackey functors we are going to use in the next chapters are:
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(i) B =V is defined to be the cokernel of the morphism Z, , &N Z,
(ii)) B_ = A is defined to be the cokernel of the morphism Z, EN Z,,.

(iii) D = e is defined to be the cokernel of the morphism Z, , EN Z,,.

The morphisms mentioned above are actually the morphisms between M (G /e)-
values. Since all the Mackey functors listed are fixed point Mackey functors, the

morphisms between Mackey functors are completely determined.
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Chapter 3
RO(G)-graded Homotopy of
HZ

Notation: From now, unless otherwise stated, G denotes D,,, G’ denotes the
subgroup C, of G. In this paper there are two different types of homotopy:
m, X denotes the integer graded homotopy, while w, X denotes the RO(G) graded

homotopy of X. i% denotes the forgetful functor.

In this chapter, we describe the RO(G)-graded Green functor m,HZ, where
HZ is the Eilenberg-Mac Lane spectrum associated with the Mackey functor Z.
Let A(k) denote the composite of the inclusion of the 2p-th roots of unity with
the degree k-map on S'. If ¢ is a prime not equal to 2 or p, then SM? ~ §A1),
Therefore S*9 and S*Y have the same G-cell structure. This is an equivalence

relation called JO-equivalence on Page 4, [HHRD].

3.1 Mackey Functor Homotopy

In this section, we will illustrate how Mackey functors are engaged in equivariant

stable homotopy theory.
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Definition 3.1.1. Let X be a G-spectrum. Let V' be an orthogonal representation
of G, whose 1-point compactification is denoted by SV. Furthermore we let T,
denote the suspension spectrum of the union of the G-set T with a disjoint base
point. We define

Ty X(T) = [8¥ ATy, X]°

to be the set of G-equivariant maps between the spectra. And we define the Mackey
functor m, X to be the V-th Mackey functor homotopy of X In particular,

when V' is an n-dimensional trivial representation, we will just write m, X .

To determine the Mackey functor structure maps in m;, X, we need to specify
Res® : 7, X(G/H) — 7, X(G/K) and Tr% : 7, X(G/K) — 7, X(G/H). Such
maps are induced by the natural basepoint preserving G-map f : G/K, — G/H
such that f(zK)=xH for z € G.

We can define the Filenberg-Mac Lane spectrum for a Mackey functor M
in the same way as the Eilenberg-Mac Lane spectrum for an abelian group in

nonequivariant homotopy theory.

Definition 3.1.2. The Eilenberg-Mac Lane spectrum HM for the Mackey

functor M is the G-spectrum such that

moHM = M

mHM =0 if V#0.

For each Mackey functor M, HM exists([GM95, Section 5]). A specific con-

struction of Mackey functor Eilenberg-Mac Lane spectrum is given in [BO15].

Definition 3.1.3. A G-spectrum X 1is called a cohomological G-spectrum, if
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x,(X) is a cohomological Mackey functor for any integer n.

Example 3.1.4. We list a few examples of cohomological G-spectra without giving

any proof at this moment:

(i) HM where M is a cohomological Mackey functor.

(ii) SYAHZ. Itis because w,SYNHZ = H,(SV;Z). H,(SV;Z) can be computed
via chain complexes of fized point Mackey functor of Z|G]-modules. The
fized point Mackey functors of Z|G]-modules are all cohomological Mackey

functors. So are the kernels and cokernels of them.

3.2 Identifying RO(G)-graded homotopy of HZ

In this section, we compute the RO(G)-graded Mackey functor homotopy =, HZ.

Since HZ is a ring spectrum, we need to determine its ring structure.

Computing my, HZ where V is a virtual representation of Dy, can be done

through the following procedure: Let X be a finite G-CW spectrum, then
H.X(G/H) =7, X ANHZ(G/H) =7 (X N HZ)" (3.2.1)

Therefore w1, HZ =~ H,S™". In general H X (G/H) is different from H,(X),

because fixed points do not commute with smash products.

Recall that HZ is a commutative ring spectrum, so m, HZ is a commutative
RO(G)-graded Green functor. The multiplication of ring spectra induces box
product of Green functors. Since the Mackey functor homology H,X can be

computed via chain complexes of fixed point Mackey functors, H X = = (XAHZ)
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are actually cohomolocial Green functors. So we can leverage both the properties

of cohomological Mackey functors and of Green functors to do our computations.

In particular, when X is a virtual sphere SV~ where V and W are both
representations of G, the RO(G)-graded homology of SV=" can be computed
with chain complexes of Z|G]-modules. The group G = D5, has three equivalence
classes of JO-equivalent irreducible real representations: the trivial representation
1, the sign representation o, and the two dimensional representations A\. Though
there are actually other 2-dimensional irreducible representations of G = Dy, the
representation spheres obtained are of the same homotopy type if an integer other
than 2 or p is inverted. Such an equivalence is called JO-equivalence in [HHRD].

In this article we always consider JO-equivalent representation spheres.

Applying the forgetful functor i to a G-spectrum will give an H-spectrum.
In particular, there is an isomorphism

iG(r, X) =2 r, (i%X). (3.2.2)

%k

where H < . We need to point out that i on the left hand side of the equation
is the forgetful functor from My to My, while on the right hand side it is the
forgetful functor from the category of G-spectra to the category of H-spectra.

The reader should be aware of the abuse of notations.

Definition 3.2.3. A representation sphere SV is orientable, if T, the element
of order 2 in G, acts on Hy, SV (G/e) trivially. SV is not orientable if T acts on

EMSV(G/B) by multiplying by —1.

We should point out that ig2)\ = S as a C, representation, therefore S*

is not orientable. SV is orientable if and only if ngSV is orientable as a Cs-
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representation sphere. There are more examples of orientable and nonorientable

G-spheres:
Example 3.2.4. (i) The trivial sphere S™ is always orientable.
(i) S™ is orientable if and only if n is even.
(iii) S™ is orientable if and only if m is even.
(iv) SVTW is orientable if SV and S™ are both orientable or both nonorientable.

Let V be an actual representation of the form a+bo+cA and let W be [+mo+
n\. The orientability of SV only depends on the parity of b+ c. Therefore we can
generalize the definition of orientability to virtual representable spheres: SV—W
is orientable if and only if z& SV=W is orientable as a C,-virtual representation

sphere, or equivalently, b + ¢ +m + n is even.
For the reader’s convenience, we recall here. In addition we made a
corresponding version of Cj,-Mackey functors.

Table 3.1: Some Cy-Mackey functors

Symbol O O . S O O

Lewis Z Z/2 Z Z/2 Z

diagram | 1 J2 | L) |0 |2 )| of | af )y
Z Z_ 0 Z 7 Z[C5]

First let’s compute H,(SY;Z) when the group is Cy or C,.

The following proposition is taken from ([HHRd, §5]).

Proposition 3.2.5. By abuse of notation, we use o to denote the sign represen-

tation for both G and Cy. Therefore ig, (S*) = S'*7. Also, we have i, (S7) = S™.



When the subgroup H is Cy we have the following example:

19

Let T denote the generator of Csy. For positive n, the chain complex of S™ has

the form
0 1 2 3 n
Z~* 7" 7> 7 Ry /
1f 52 A‘( ‘)\V B A‘( jV A ﬁv ~ A‘( ‘)\V
7 < 7[Cy) <2—Z[Cy) <=—Z[CY) = Z[CY)]
where
Ti=1—(=1)7 and ¢ =1—(-1)"
The homology Mackey functors are
0 1 2 3 n
° 0 L4 0 £Ln
Z/2 0 Z/2 0 H,(G/G)
R al Iv
0 0 0 0 - Z[G]/(Tnta)
where
Z forn even O forn even
H,(G/G) - and  H, =

0 formn odd O forn odd

(3.2.7)

(3.2.8)



20

For negative n, the chain complex of S™ has the form

0 -1 —2 -3 -n

7Z— >z % .7 2?2 .7 0 .. .._ > .7 (3.2.9)
1( ‘)\2 v A\( ‘)\V T-1 A\( ))\V ) A\( ))\V T3 T_ A\( ‘)\V

Z——7[Cy) Z[Cs] Z[Cs) o 7]

Passing to homology we get

0o -1 =2 -3 —n (3.2.10)
0 0 0 ° H_,
0 0 o z/2 - H_(G/G)
[0 I I R NI
0 0 0 0 e Z[CY)) Fonin)

where
Z  forn even
H_,(G/G)=1 0 form=1
Z/2 forn>=1 andn odd
and

4 forn even
H_, =9 0O forn=1
0 forn > 1 and odd

When H = C,, the homology are quite different.

Proposition 3.2.11. We use X to denote the 2-dimensional irreducible represen-
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Table 3.2: Some C,-Mackey functors

Symbol 0 ] v N 0

Lewis Z 0 | Z/p Z Z

diagram 1 o L)) r{ )1 Av( jv
Z Z- 0 Z Z[Cy)]

tation of C,. Therefore ig, (S*) = s>
Let ~y be the generator of C,. For positive n, the chain complex of S™X has the

form

0 1 2 3 2n
Z-—- 7" 7" 7 27 (3.2.12)
(e alhe sl sl A
Z<—VZ[CP}<LZ[Cp]<LZ[Cp] e Z[Cy]
where
p—1
Yo =1—7 and 72i+1227k- (3.2.13)
k=0

The homology Mackey functors are

0 1 2 3 om (3.2.14)
v 0 v 0 H,,

Zlp 0 Z/p 0 H,(G/G)

Gy 0y 0y 0 af Jv



where

Z for n even
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O for n even

H (G/G)= and H , =
0 forn>1andn odd O forn>
For negative n, the chain complex of 5™\ has the form
0 —1 —2 -3 —2n
7 1 0 P

1f§p Af?vi Aijﬁ Afjv

A( Jv

z - 7[C,) - Z]C,| - Z[C,] - 2 7]C)
where
p—1
Vi =1—=7 and 7_g1 = Z”Yk-
k=0
Passing to homology we get
0 —1 -2 -3 —2n
0 0 0 v N
0 0 0 /D Z
(S O n{ 11
0 0 0 0 Z

1 and odd

(3.2.15)

(3.2.16)

(3.2.17)

If H is a subgroup of G, then a G-representation sphere is an H-representation

sphere once applied the forgetful functor i%. The isomorphism ({3 establishes

a way with which partial information of the G-Mackey functor homology of G-

representation spheres can be inferred from the H-Mackey functor homology of H-
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representation spheres. But we need to investigate the cellular structure carefully

in our case where G = Dy, since Dy, is not a commutative group.

The isomorphism ((3.2.2)) implies that the information given by Cy-Mackey
functor homotopy and C,-Mackey functor homotopy of HZ as a Csy-spectrum and
a Cp-spectrum will determine the G-Mackey functor H,(S";Z) to a large extent,

and actually, completely.

For the reader’s convenience, we repost [Figure 2.1 on next page.

3.3 Mackey Functor Homology of G, Ay i%SY

To prepare for further computation with spectral sequences, we need the Mackey

functor homology of G é\ S and of G4 é\ S™A for all integers n and m. The

reader can compare with (3.2.6)), (3.2.9), (3.2.12) and (3.2.15|) for the results.

The case when H = (5

Proposition 3.3.1. The chain complez of G+é\ S"? is given by the tensor product
of the chain complexes of ((3.3.2))) or ((3.3.4) ) with Z|G] over Z[C,)], depending

on whether m is positive or negative.

Proof. G4 é\ (—) is the left adjoint of the forgetful functor i¢ (—). The chain com-
2

plex functor passes the smash product of pointed G-spaces to the tensor product

of graded G-chain complexes. In this case,the graded chain complex of G/C; is

Z[G/Cs], concentrated in degree 0. It is also known that for an H-module M
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\\\\

\\\\

Z \

o

3

8 =2G/ZG(1 — 1)

\\\

+7)%

\\

ZG/(1

ZG/(1

zic/C,) " x
/7
|

\

Figure 3.1: Figures for Dy, Mackey Functors




where H is a subgroup of GG, there is a natural isomorphism

M ®q, Z[G/H] =M Xz[H) Z[G]
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of Z-modules. Taking H to be C5 and taking M to be the graded C5-chain complex

of S™ gives us the statement.

Therefore we have the chain complex for G Ag, S*:

0 1 2 3 b
00202 0-"..-20

for a positive integer n, where

mi(x)=x-(1—=7) and 7ypi(z)=x-(1+7)

for x € G4 Ao, C* (G /e) with the corresponding degrees.

Passing to homology we obtain

0 1 2 3 e b
. 0 o 0 Ker(m,)
ﬁ for n odd
Ker(t,) =

Ch

for n even

]

(3.3.2)

(3.3.3)
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For negative n, the chain complex is

(3.3.4)

o -1 -2 -3 -4 =5 n
0 0 0 o 0 o -o Coker(m,)
ﬁ forn = -1
Coker(r,) =< O for n < —3 and odd

for n even

A

Therefore we reach the conclusion:

Theorem 3.3.5. The Mackey functor homology groups of G+ é\ S"? are:
2

When n is nonnegative:

ab

for k =n and odd

)

for k =n and even

o forkevenand O <k<n

0 else
\
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When n is negative:

(ﬁ fork=n=-1
i for k=n < —3 and odd
H, =< @ fork=n and even

o forn<k< —3 and odd

0 else.

The case when H = C,
For H = C,, we have the following parallel lemmas and theorems:

Proposition 3.3.6. The chain complex 0fG+é\ S™ s given by the tensor product
P

of the chain complexes of (3.3.7)) or (3.3.9) with Z[G] as C,-modules, depending

whether m is positive or negative.

The chain complex G4 Ag, Cm s

0 1 2 3 2m
(3.3.7)
ﬁvﬁwﬁwamn_wmﬁ
for a positive integer m. The boundary maps for G4 Ac, Ccm
p—1
Yoi = (1 —7) and 941 = ka (3.3.8)
k=0

The Mackey functors homology is

0 1 2 3 2m —1 2m

<o
(@]
<o
(@]
(@n]
o
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For negative m, the chain complex is

0 -1 —2 -3 —2m
(3.3.9)
g4 E V-2 E v-3 5 ! Y—2m E
with ; defined in (3.3.8)).
The Mackey functor homology is
0 -1 —2 -3 —4 2—2m 1—2m —2m

Therefore we have the conclusion:

Theorem 3.3.10. The Mackey functor homology groups of G é\ SmA gre:
P

When m is nonnegative:

O for k=2m
Hy=4q v fork=2 where 0 <l <m
0 else.
When m is negative:
N for k=2m
H.=9 v fork=2j—1 wherem<j<O0.

0 else.
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3.4 Computation for Actual Representations

3.4.A Computing H,S5™

We start with the basic case: V = \. For simplicity we give the example of S*
for p = 3ie. G = S;3. The skeleton of S* for p = 3 is shown in [Figure 3.2

The picture above is the equator of S*. Each vertex represents an 1-dimension

Figure 3.2: Cellular structure for S*

cell, and each side a two dimension cell. We can see the 1-cells of each color are

indexed by G/C5. The 2-cells are indexed by G.

displays the equator of S*. Each vertex represents an 1-dimensional
cell, and each side represents a 2-dimensional cell. We can see the 1-cells of each
color are indexed by G/C5. The 2-cells are indexed by GG. The chain complex

used to compute its Mackey functor homology is

Z Y 2Z[G]/(1 - 7) —— " Z[G

(3.4.1)
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Here Z[G]/(1—7) and Z[G]/(1+7) are abbreviation for the left Z]|G]-modules
Z|G|/Z|G)(1 — 1) and Z[G]/Z]|G](1 4 7). V denotes the augmentation map from
Z|G]/(1 —1)(G/e) to Z(G/e). These maps are between fixed point Mackey func-

tors from which we can deduce the result for each G/H.

Iteratively tensoring the chain complex (13.4.1f) with itself will give the chain
complex C™*. However, the result is much too complicated, since graded tensor
products are hard to write down, and the differentials are not easy to compute.
So we would like to apply the method of equivariant Serre spectral sequence of

Mackey functors.

S0 SX SA

_—

2G, A St G, N S?

Every horizontal arrow followed by a vertical is a cofibration. Therefore for a

representation V', we smash every space with SV to get the filtration

SV SV A § SAV
2G., A SMHiEW) Gy A SV
02 |
X, X, X,

Then we have the equivariant Serre spectral sequence of Mackey functors with

lgl

s,t—s

= H (X;) that converges to H,S V.

Specifically, iteratively smashing S* with the filtration (3.4.A]) gives us a fil-
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tration for S™.

S0 —~SA GA . gm=DA A GX GgmaA
l | | |
2G,. NSt G N S? 2C, Ag, STHMDO G A §2m (3.4.2)
] [ [
XO Xl X2 X2m—1 Xgm

The filtration (3.4.2) will lead to a first quadrant spectral sequence of ZG-
modules with E' page

El,  =H, (X).

s,t—s —t—s

and the spectral sequence will converge to H, ,(S™). The homology of all the
cofibers X; is computed in [33.3]

We can see from the [Figure 3.3|that d, is only allowed in the 0-th row Ej, ..

To determine d; we should mention that the first row is a chain complex of left
ZG-modules. Furthermore, if we focus on the (G/e) values, we obtain a spectral
sequence which converges to H,(S?™). Since all terms above the 0-th row have
trivial (G/e) values, they all vanish in the spectral sequence E_, (G/FE). There-
fore, the 0-th row gives us a chain complex of H,52™, which has only one nonzero

term. All Mackey functors appearing in the 0-th row are fixed point Mackey

functors. We will show later that it is sufficient to compute all d;’s.

Proposition 3.4.3.
dy: Epy =20 B}, =0

= Pl
maps both generators of O(G/e) = ZG /(1 +7) to (1 —7)(>_ %)
k=0
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p—1
Proof. H,(S*) is the fixed point Mackey functor Z_ generated by (1—7)(>_ ).
k=0

But H,(S*)(G/e) = 0. This forces d, to map the generators of both

= p—1
0(G/e) 2 ZG/ZG(1 + 1) to (1 — 7)(>° ~%). Tt is easy to check that it is in-

k=0
deed a morphism of ZG-modules. O]
- -
O 20 O&20«——— [0

Figure 3.3: E! page of the spectral sequence associated with the filtration (3.4.2))
for m =8

10

6 2
2 2
4 e 2
2 2 2
2 2 2 2
2 e 2 2

0 D28 —fe2gc o 20 —a— 20 o 20 a2 o 200 a2 T 0

0 2 4 6 8 10 12 14 16
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Proposition 3.4.4.
d:El,=0— El,=20

maps the generator of O(G/e) = ZG to (—v, 1).

Proof. The differential is completely determined by the boundary map from the
2-cell to the 1-cells of S* because we construct the filtration of S?* in the way
in (3.4.2). So we use the same name for the differential from the 4-cell to the

3-cells. u

Proposition 3.4.5.

~ pl
maps both generators of (G /e) 2 ZG /(1 — 1) to (1 +7)(D_ +").
k=0
p—1
Proof. H,(5*")(G/e) is generated by (1 +7)(>_ +).
k=0
From the fact that H,(S3") = 0 we see Im(dl(E&E))) = H,(S*)(G/e). m

[Proposition 3.4.5| tells us that the 0-th row is 4-periodic. Each d; on the right

of E} 5 has the same behavior as the d; 4 units to the left.

Proposition 3.4.6. All d, : Ej,, 5 — Ej,.,4 are the same as dy - Ej; , — Ej,

for k > 0.

Proof. H,,S™(G/e) = 0 for 0 < k < 2m. So the differentials are completely

determined by the maps on (G/e)-values. O

Thus we have the E' page in [Figure 3.3|

From E%-page it is enough to know H,  (S™)
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Figure 3.4: E? page of the spectral sequence associated to the filtration ([3.4.2))
for m = 8

L for m even and positive
Theorem 3.4.7. H, (S™) =

O for m odd and positive

The differential dy is also easy to track.

Proposition 3.4.8.

2 2
do : EY g0 = Egaja
is V for 7 = 0 whenever both terms are nontrivial.

Proof. We restrict to the case ¢ = 2.(3.2.2)) tells us there is only one copy of Z/2
for the (G/C,) values, which is H,(S*")(G/C,). This implies that dy kills the e
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at (1,2) and the kernel of dj is also a e. Since the two copies of e at (1,2) are

given by the two copies of G é\ (52%9), by symmetry it has to be V. O
2

Proposition 3.4.9.

.2 2
do i B3 4505 = B 440

s A on both summands for j > 0.

Proof. Similar to |Proposition 3.4.8| we restrict to the case m = 3. By applying

the forgetful functor if, we get S*3°. Hence we can see that when there is a e
in the homology groups, there can be no more than one direct summand. So ds

is nontrivial. O

We have the following corollary with similar argument:
Corollary 3.4.10.
dy : E22m+1,4j+2m+2 — E22m,4j+2m+1

1s V on both summands for ¢ > 0.

2 2
dy: By ajiomss = Edmit ajromio

is A on both summands for ¢ >0 and j > 0.

Therefore we can see the E? page.
It is easy to see that there is no room for d; for j > 2. So E* = £

Luckily, we don’t need to worry about extension problems.
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Figure 3.5: E® page of the spectral sequence associated to the filtration ([3.4.2))
for m = 8

Proposition 3.4.11. There is no extension problem for Mackey functor homology

groups of H,(S™) when m is positive.

Proof. From (3.2.2) we know that the only undetermined terms of Mackey func-
tor homology groups are the (G/G) values. But the E® page has given the

information that is needed. O

16




3.4.B Computing H S
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The computation for C* is easier. Because igpr" =~ S™ as Cp spectra, we can

take the computation in (3.2.6) with replacement of Mackey functor notations.

Z forn =0
Y = Z|G/C)) for0<n<n (3.4.12)
0 otherwise.

The boundary maps are determined by:

\V4 forn=1

0 otherwise,

The homology Mackey functors are

where

Z for n even
H,(G/G) = and
0 forn odd

1—7 forkevenand 2 <k <n

147 forkoddand 2 <k <n

n (3.4.13)

O for n even

O for n odd
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3.4.C Computing H, SV
Computing H,S~™ for m > 0

We start from m = 1. There is a cellular filtration for S—:

We have the following filtration for S—:

ST—A SA /\T S—A 50
26 )57 GLAS™! (3.4.14)
[ H
X_2 X—l XO

H G, NS =ZG = O and its other Mackey functor homology vanishes.
H .G, é\ S—1=7 = O and its other Mackey functor homology also vanishes.
2

Thus H,S™* can be computed via the chain complex (which is the dual of

(3.4.1)):

2Z[G]/(1+7) " Z[G] & Z (3.4.15)

We have the following filtration for S~

S—Tm SAASTmA oL ST—A SAA S —= g0
—m(140) —1l-0o
2G., A S 2G., A S
G N St=2m Gi NS
| [
X _om X—2m+1 X o X Xo
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Figure 3.6: E' page of the spectral sequence associated to the filtration (3.4.16))

for m = 8.

=
[N
?)
|
o»

o»

O

b

0o»

7

QT

0o»

0o»

o»

0o»

Qe

Qe

Qe

Qe

Qe

Qe

Qe

Qe

Qe

—16

Every horizontal arrow followed by a vertical is a fibration.

There is a fourth quadrant spectral sequence with E'-page

—14

El

s,t—s

—12

—10

=H

=—=t—s

The picture is shown in [Figure 3.6|

The differentials are dual to the differentials of those shown in and

Figure 3.41 Therefore we have the following dual propositions:

Proposition 3.4.17.

(Xe) = H, (S7™).

d:Ejy=0—E;_, =20
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s A

Proposition 3.4.18.

I
ap

maps the generator of Ej (G /e) = ZG(G/e) = ZG to (—v,1).

Proof of both |Proposition 3.4.17 and [Proposition 3.4.18. The chain complex

1 1 1
Eyog < Ego < Eop

is the desuspension of the chain complex of S* in (3.4.15)). So the two differentials

are determined by the corresponding boundary maps. O]

Proposition 3.4.19.

maps (1,0) to (14 7)y"" and maps (0,1) to 1 — .

Proof. Dual to [Proposition 3.4.4] O]

Proposition 3.4.20.
d:E_,=0-E_,=24

p—1 p—1
maps the generator of ZG(G/e) to (3. %, S 4%).
k=0 k=0

Proof. Dual to |Proposition 3.4.5)| O
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Proposition 3.4.21.
d:By_,=2d— E_;=0

maps (1,0) € 2ZG /(1 — 7))(G/e) to =y~ (1 + 7) and maps (0,1) to 1 + 7.

Proposition 3.4.22.
dy: By ;=05 E) ;=20

p—1 p—1
maps the generator of Ey (G /e) = ZG(G/e) = ZG to (Y- 4%, 3~
k=0 k=0

Proof. The evaluation on (G/e) values is the same as in [Proposition 3.4.18, [

Proposition 3.4.23. Let k < —2. If E},_, and Ej,_; are both nontrivial, then

dy: B}y — Ejy_s is the same as dy : By, — Eb .

Proof. Dual to|Proposition 3.4.6] It is known that Ej, , and Ej, are isomorphic

if —2m < k —4 < 0. The chain complex is 4-periodic. O

IProposition 3.4.17|to [Proposition 3.4.21|gives E? page of the spectral sequence

and H _,, (S™™).

B for m even
Theorem 3.4.24. H , (S™™) =< 0O for m=—1
0 for m odd and less than — 1

for a positive integer m.

All dy’s are determined by the dy’s from the Oth row to the -1st row by (3.2.2)).

This argument is similar to [Proposition 3.4.8|
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Figure 3.7: E? page of the spectral sequence associated to the filtration (3.4.16)
for m = 8.

—16 —14 —12 —10 -8 —6 —4 -2

Figure 3.8: E® page of the spectral sequence associated to the filtration ([3.4.2))
for m = 8.

—16 —14 -12 -10 -8 —6 —4 -2 0
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Proposition 3.4.25.

2 2
dy: Eg 5 45 = E7y 4
is A : e — 2e and it is trivial for the summand A, for all j > 0.

Proposition 3.4.26.

2 2
dy: BS 45 = Ei 4500
1s V for j = 0 on both summands.

Corollary 3.4.27.

.2 2
dy : Egpit ajroms2 = Edmoajromst

1s V on both summands for m >0 and 7 > 0.

2 2
do B0 ajtomes = Eopmit ajromto

s A form >0 and 57 > 0.

Now we have the E3-page.

There is no room for higher differentials. So E? = E*.
Computing H, S~ for n >0

The good part of C~% is that the computation can also be done with a simple

chain complex, which is the dual of (3.3.2):
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Z for k=0
C.'” =2 Z[G/C,] for —n<k<0 (3.4.28)
0 otherwise.

The boundary maps are determined by:

\Y for k=0
1—7 forkoddand —n<k<0

14+7 forkevenand —n<k< -1

\ 0 otherwise,

so the homology is similar to ((3.2.10))

o -1 -2 -3 —n (3.4.29)

where

4 for n even

3.5 Computation for Virtual Representations

The hard part of computation is the case that V' = a + bo + mA, where n and
m have opposite signs. It can be done with tensoring the corresponding graded

chain complexes. However, the computation results show that we can actually
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infer H,SV(G/Q), together with the structure maps Res$ and Tr% as well, from
Resﬁ} and T rfe} for the two nontrivial proper subgroups H = Cy and H = C,,

The inference is done with the properties of Mackey functors:

a. Resﬁ}Resg = Res?e}

b. Tr?e}TrfI = TT{GG}

c. T T{Cep}Res{%} = Resngrgz
d. Resngra = TT{C;”}ReS{Cj}

e. Trfe}Resﬁ} = |H|
f. Tr% Res$ = |G/H).

(a) to (d) are from the definition of Mackey functors, (e) and (f) are the properties

of cohomological Mackey functors.

Below are a few results for cohomological Mackey functors:

Lemma 3.5.1. Suppose M is a cohomological G-Mackey functor. If
M(G/C,) =Z_ and M(G/Cy) =0, then M(G/G) =0 .

Proof. The composition Tré o ResZ = p. But M(G/C>) = 0 implies the com-

position is 0. So M (G/G) only contains p-torsions.

On the other hand, Trgp o Resgp = 2, but Resgp is a zero map since
M(G/C,) = Z_. So the composition Tr¢ o Resg, is also 0. Therefore M(G/G)

only contains 2-torsions. So M (G/G) must be 0. O

Proposition 3.5.2. If the cohomological Mackey functor Msatisfies the condition
that M(G/Cy) and M(G/C,) are both trivial, then
M(G/Q) is trivial.
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Proof. By the same argument we just used, we know pM(G/G) = 0 and
2M(G/G) = 0. So M(G/G) is trivial. O

For S? we have the following cofibration sequence:
S8 =G, NS
Cs

Smashing the cofibration with SV, we have the cofibration.

SV L gvite I g, NG (S™Y) (3.5.3)
2
The cofibration gives us a long exact sequence of Mackey functors:

NN ﬂk+1(G+(/)\igpSHV) 2, H(S") L Hy (SH7) = ﬂk<G+é\igpsl+V) e

(3.5.4)

In the computation for S* we didn’t use the method, because the chain com-
plex was easy. But for mixed virtual representation, the method will help us

simplify computation.

3.5.A Torsion free part
Suppose V' = bo + mA.

Theorem 3.5.5. For ﬁMSv, we have the following conclusions:



47

(i) If V is oriented, that is, m+n is even. Then H,,, ,(S™ ™) it a Z-valued

Mackey functor, then Hy,, ,,(S" ™) (G/H) =1Z for all H < G.

If m is nonnegative then Rest? = 1, otherwise it is p. If m-+n is nonnegative

then ResS? = 1, otherwise it is 2.

(i1) If V is not oriented, i.e. m +n + c is odd, then
Hop (8" (G/Cy) = Hyp (8" (Ge) = 2.

ﬂ2m+n (Sna—i-m)\) (G/G> = ﬂ2m+n (SnU—I—m/\) (G/OQ> :

Furthermore if m +n < =3, then H,,, ., (S" ) (G/G) = Z, otherwise it

1s trivial. If m is nonnegative then ResS? = 1, otherwise it is p.

Proof. Proof of (a) uses the combination of [Lemma 2.3.8 and (3.2.2]), which is

direct. Proof of (b) uses the long exact sequence ([3.5.4). If S®*™* is not oriented,

then S~ Do+ is oriented. We have the following exact sequences to consider:

a. when m is positive, the first few terms of the long exact sequence will be
O = E2m+n(8(n71)a+m)\) — EQm—&-n(SnUer)\) p_*> H?m-{—n(cg+ é'\ igp5n+m)\)
p

0 m n—1)oy\ no+m
_>ﬂ2m+n—1(s Mn=D) )%ﬂ%‘n—i—n—l(‘g * )\) —

The first three terms are the first three terms of one of the following exact

sequence:

M 0—-0-0-0-e—=0

2)0-0—-0-0-0



48

b. when m is negative, the last few terms of the long exact sequence will be
RN ﬂ2m+n+1(5’(n+1)a+)\) ﬂ*_> £2m+n+l(G+ é\ igpSH"J“mA)
P

D Hyp(S™5) 5 Hyp o (S®HD7H0Y) 5 Hy (G NG ST = 0

The last four terms of the exact sequence are the last four terms of one of
the following exact sequence

1) - —>m=RN->K—=0—0

2) - —aN=-N—=0=20-0

(3) - >N—=>N—K—e—0

All maps are maps of ZG-modules, hence are uniquely defined. In all of the exact

sequences, the conclusions of part(b) hold. ]

3.5.B Torsion part

At first, we need to clarify what ”torsion” means. ”Torsion” refers to nontrivial
Mackey functors with trivial M (G/G) values. In the case of homology group
Mackey functors of spheres, torsion may only show up in H, if £ does not equal

to 2m +n.

We shall recall H, (G A 57 in (Theorem 3.3.10)):

P

When m is nonnegative,

0 for k=2m

<o

H, (G é\ Smx) = for k =2l where 0 <l <m

0 else.
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When m is negative

for k = 2m

o

<o

Qk(GJFé\SmX): for k=27 —1 where m < j < 0.

0 else.

Case 1: m > 0:

For any integer n, we have a five-term exact sequence

0 :ﬂ2j+n+1<G+ é\ Sn+m)\) _>ﬂ2j+n(5mz\+(n—l)a) _>£2j+n(5na+m)\)

— Hyj (G é\ Sty = v ﬂ2j+n_1(5m)\+(nil)g) (3.5.6)

— ﬂ2j+nfl(sna+m>\> — Hyjn 1 (G é\ ST =0

for 0 < j < m and isomorphisms
ﬂksna+m)\ ~ Hksm/\+(n—l)a (357)

for k <nork>2m-+n.

We see from this exact sequence ([3.5.6)) that for 0 < j < m:
(1) Hyjppyy (S0 N H,;.,(S") is an injection.
(i) Hyjpp (SAF=1) N H,;(5"7%™) is a surjection.

(iii) if one of Hy;,, (5™ ™) and H,;,,,_,(S™*"~19) has a direct summand V,

then the other has the direct summand A.

(iv) if Hy;,, (5" "™*) contains a summand e, so does Hy ., _;(S™T"=D7),
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(v) if ﬂ2j+n_1(5m)‘+("*1)") contains a direct summand e, so does ﬂ2j+n_1(5"0+m>\)_

Statement (iii) is not obvious. It comes from the fact that
0=V —=>V—Aa—0

is a split exact sequence and H. 2j(Sm)‘) is either ¥ or A and induction on n. We

leave the proof to the reader.
Statement (iv) and (v) are deductions of (i) and (ii).

(3.2.2) tells us H,(SV)(G/C,) can only contain at most one copy of Z/3.

From [Figure 3.4| and |Figure 3.8 we know

a. Hy; 1(S™) =eif misoddand m <2j—1 < 2m.
b. Hy; 5(5™) has a summand e if m is even and m < 2j — 2 < 2m.
c. Hy; 5(5™) has a summand V¥ if j is odd and 1 < j <m

d. QQj_Q(Sm’\) has a summand A if jis even and 2 < j <m

Combining the four equations with the five-term exact sequence gives Mackey

functor homology H,(S™*7).

Corollary 3.5.8.  a. Hy; (S™7) has a summand e if m is odd and

m<2j—1<2m.
b. Hy; (S™717) has a summand A if j is odd and 1 < j < m
¢. Hy; 1(S™717) has a summand ¥ if j is even and 2 < j <'m

d. Hy; o(S™17) is @ if m is even and m < 2j — 2 < 2m.



ol

Induction on n gives all the homology groups:

Theorem 3.5.9. Assuming m > 0,

(i) If n+m >0, then H,(S"T™*) has a summand ® if m < k < 2m +n and

k —m s even.

(i) If n+m < 0, then H,(S™*™) has a summand e if 2m +n < k < m — 3

and k —m is odd.

(iii) H,(S™+t™) has a summand ¥ if k equals n + 41 + 1 + (=1)"* for some

nonnegative integer | and k < 2m + n.

(iv) H,(S"T™) has a summand A if k equals n + 4l + 1 + (=1)" for some

nonnegative integer | and k < 2m + n.

Remark 3.5.10. In part (iii) and part (iv) of either |Theorem 3.5.9 or |Theo-
k is implicitly assumed to be greater than n.

Case 2: m < 0:

There are three cases to be considered: m = —1,m = —2 and m < —3.

Subcase (i) m = —1

We have a short exact sequence

==n—3

0— H, _,(SM") = H, 5(Gy ) S" N =R — H,_ (S 007y =0 (3.5.11)

and isomorphisms H, (S~ (1o) = g, (S™"9) forall k >n—1or k < n — 4.
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In the exact sequence (3.5.11)), all terms are torsion free. Therefore we can com-
pute the torsion sub-Mackey functors by applying forgetful functor 182 to S—AFne:

when H,(S™"7)(G/Cy) = Z/2, there is a summand e in H,(S~**"?). Combin-

ing this with |Proposition 3.2.5| gives us the complete result.

Subcase (ii) m = —2

We have an exact sequence

0= H, 5(S7M") = H, 4(Gy é\ ST =¥y H (S PF0D9)

= H, y(S77) = Hy y(Gy ) ST =R = H, 5 (S7R7) 0
(3.5.12)

and isomorphisms H, (S~ (=Do)y = [f, (§=2Mn9) for k. >n —2or k < n — 5.

The only torsion subgroup Mackey functor that we need to compute is

H

_3(S722M9) in the exact sequence. Induction on n (in the negative direction)

shows that it is B if n is odd and it is B_ if n is even. H, 5(S72")(G/Cy) = 0,

so by |Proposition 3.5.2| there is no summand e.

Subcase (iii) m < —3
We have a five-term exact sequence
0 :ﬂ2j+n+1(G+ é\ Sn+m/\) _>ﬂ2j+n(sm>\+(n—l)a) _>ﬂ2j+n(5na+m>\>
P
- £2j+n(G+ é\ Sn+m>\) = % — H2j+n_1(5’m/\+(”_1)‘7) - H2j+n_1(5na+m)\)
P
— Hyjn 1 (G A SN —

(3.5.13)

for 1 —m < j < —2, and isomorphisms H, (S™*("=Yo) = H, (Sno+mA) for
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kz2n—2ork<2m+n+1.

Similar argument about positive m gives the Mackey functor homology: if
there is a summand e in H,; , (S™*"= V) (resp. Hy,\, 1 (S™ D7) then
there is a ® in H,;, (S™ ") (resp. Hyj;yp, 1(S™F).).

==2j4n

Therefore we obtain the following results:

Theorem 3.5.14. Assuming m < 0,

(i) If n +m > 0, then H,(S™"™*) has a summand e if m < k < 2m +n and

k —m s even.

(ii) If n +m < 0, then H,(S™*™) has a summand e if 2m +n < k <m —3

and k —m is odd.

(iii) H,(S™*™) has a summand ¥ if k equals n — 4l — 4 + (—=1)*T! for some

nonnegative integer | and 2m +n < k.

(iv) H,(S"T™) has a summand A if k equals n — 4l — 4 + (=1)" for some

nonnegative integer | and 2m +n < k.

To summarize, we will split the results from the chain complex as follows:

Theorem 3.5.15.

(i) If V is orientable, i.e., if n + m is even (see the beginning of this section),
then Hy((SY) it a Z-valued Mackey functor, i.e. Hy,(SV)(G/H) = Z for
all H<G.

If m is nonnegative then ResS? = 1, otherwise it is p. If b+ c is nonnegative

then Res$? = 1, otherwise it is 2.
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(i) If V is not orientable, i.e. n+ m is odd, then
Hyy (SV)(G/Cy) = H(SY)(Ge) = 7.

Hyy (SY)(G/G) = Hyy (SV)(G/C).

Furthermore if b+ ¢ < =3, then
Hy, (SV)(G/G) =27/,

otherwise it is trivial. If m is nonnegative then Rest? = 1, otherwise it is
.
Theorem 3.5.16. We have the following conclusion for H,SY for V.= m\+no

and k # |V|:

(i) If n+m >0, then H,(SV;Z) has a summand D if m <k < |V| and k —m

1S even.

(ii) If n +m < 0, then H,(SV;Z) has a summand D if |V| < k < m — 3 and
k —m is odd.

(iii) If m >0, H,(SV;Z) has a summand B if k = n+4l+ 1+ (=1)" for some

nonnegative integer | and k < |V|.

(iv) If m >0, H,(SY;Z) has a summand B_ if k =n+4l+ 1+ (=1)" for some

nonnegative integer I and k < |V|.

(v) If m <0, H,(SY;Z) has a summand B if k equals n — 4(l + 1) + (—1)"™!

for some nonnegative integer I and |V | < k.
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(vi) If m < 0, H,(SY;Z) has a summand B_ if k equals n — 4(l + 1) + (=1)"

for some nonnegative integer I and |V| < k.

3.6 Ring Structure of 7, HZ

In and [§3.5, we have obtained 7, HZ with description in Mackey functors. In
this section, we introduce some families of elements in 7, HZ, which are defined
analogously to Definition 3.4 of [HHRc|. We let V' be an actual representation of

G with isotropy group Gy .

Definition 3.6.1. Four elements in 7¢(HZ).

(i) We use ay to denote the composition of the equivariant inclusion of S° — SV
with the map SV — SV ANHZ induced by the smash product S — S°ANHZ ~

HZ. Therefore ay is an element in n_, HL(G/G).

(i) If X is a summand of V', the computation in the previous section shows that
£|VC2‘—VHZ(G/OQ) &= Z/2

We use by to denote the generator of myc, v HZ(G/G).

(iii) If W is an oriented representation of G (we do not require that W& = 0),

then @y _wHZ =Z. We let uw denote the generator of my_wHZ(G/G).

For nonoriented W, E\W\_WHZ =7Z_. We let uy denote the generator of

£|W|7WHZ(G/CP>'

(iv) The underlying equivalence SV — SWVI defines an element ey in

mySYI(G/Gy) = my 1 S°(G/Gy)
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There is one thing we should point out in advance: each element mentioned
above in m, HZ has a corresponding fixed point Mackey functor generated by it.
When discussing the properties, we should link the properties of the elements with
the associated Mackey functors.

Before discussing the ring structure, we should point out that the ring structure
is compatible with the properties of box products and Green functors in [§2.3] and

our computation relies on such properties heavily.

The following lemma is the Dy, version of Lemma 3.6 of [HHR(]:

Lemma 3.6.2. Properties of ay, by, ey and uy

The elements ay € m_yHZ(G/G), by, € Tyoy_yHL(G/G),ev € my_ 1y HZ(G/Gy)

and uw € Ty _wHZ(G/G) for W oriented as in |Definition 5.6.1| satisfy the fol-

lowing:

(Z) ay+w = ayaw and Uy+w = Uyuw .
(11) e and by (if it can be defined) have order 2. any has order p.

(i1i) For oriented V, Trgv(ev) and Trg/v(evﬂ,) have infinite order, while

Trl (evio) has order 2 if [V| >0 and Trg (e,) = Tt (e,) = 0.
(iv) For V. ="bo and W containing a copy of X\, we have ayby = by 1w .

(v) For oriented V and Gy C H C G

Trgv(ev)uv =|G/Gy| € n)HZ(G/G) = Z

and  Tv8 (evio)uvis = |G'/Gy| € T, HZ(G/G') =Z  for [V]| > 0.

(1)2) Clv+WTI'gV(6v+W) =0 Zf ‘Vl > 0.
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(vit) For V and W oriented, uWTrgv(ev+W) = |GV/Gv+W|TrgV(eV).

For nonoriented W similar statements hold in m, HZ(G/G"). 2W is oriented

and ugw is defined in Wy _ow HZ(G/G) with Res&, (uaw) = uZy.

If we look at the Mackey functor H,SY = x, \ HZ to which the element in

m,HZ(G/H) corresponds, the lemma is straightforward.
Proof. Left as exercises. O]

We first describe the negative representation graded subring 7, HZ(G/G).

Theorem 3.6.3.
7, HZ(G/G) = Zlugy, Uar, Unto, Aoy ax, bA] /(U4 , — Usolay, 24, 2Dy, pay)

Another way to describe the free part of 7, HZ(G/G) as the subring of even
degree polynomials in Z[uy, u,].

Note that ap = up = eg = 1 € 1yHZ(G/G), we can define invertibility in
n,HZ. We say that * € m, HZ(G/H) is invertible, if there exists
y € my_ v HZ(G/H) such that e Trly = ug = 1.

More generally, we can define divisibility similarly: = € =, HZ(G/H) is
divisible by y € =,,_wHZ(G/H), if there exists z € 7, ., _wHZ(G/H) such
that yz = x. In this way, invertible elements can be considered as elements
divisible by 1 € r,HZ(G/H).

Regarding the divisibility by wuy, we have the following corollary of
Lemma 3.6.2
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Corollary 3.6.4. For some elements in wy_, HZ(G/G) or my_, HZ(G/G') we

have the following divisibility:

i) U T8 (e95) = TrS (ResC usyea,) = 2. So 2 is divisible by usy, i.6. 2yt
G G G

1s well defined.
(ii) upnTr%(e2x) = 2p = Urio 17 (erso). So 2p is divisible by both uzy and Uy, .
(i1i) uATrec”(e,\) = p. So p is divisible by uy, i.e. puy~* is well defined.

(v) uye, = 1. So u, is invertible.

3.7 Some Eilenberg-Mac Lane Spectra

Proposition 3.7.1. There is an element uy_, in w,HZ(G/G), such that

Res$uy_o = uy/u,.

Proof. By [Theorem 3.5.15]

Mo HZL = ﬂo(s/\ﬂ) =Z.

Resgp = 1. So uy/u, is in the image of the restriction map from m,, ,_, HZ, which

is an isomorphism. O

Computation of some suspensions of HZ are actually Eilenberg-Mac Lane spec-

tra.

Theorem 3.7.2. We have the following FEilenberg-Mac Lane spectra which are

suspensions of HZ4:

(i) Hzl,p o~ Sl—&-a—)\ A HZ;'
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(ii) HZ,, = S*7* N HZ;
(iti) HZ,y, = S* " NHZ;
(iv) HZ* = S?** N HZ;

(v) HLZ_ = S'"" NHZ.

The notions of the Mackey functorS can be found in [Equation 2.2.1,.

Proof. Compute the Mackey functor homotopy using the results in [33.5] m
We recall [Table 1.1] here

Table 3.3: Some G-Mackey functors

Symbol Z

N

B B_ D

Lewis Z/p 0 Z/2

For the Mackey functor B,B_ and D, we can construct the Eilenberg-Mac Lane spec-

tra leveraging [Theorem 3.5.15||Corollary 3.6.4] and [Proposition 3.7.1}

Proposition 3.7.3. Applying the Eilenberg-Mac Lane spectrum functors to the

exact sequences of Mackey functors whose meaning can be found in|Equation 2.2.1):

(7’) Zl,p — Z — E;

(ii)) Z" —7Z_— B_
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(iii) Ly, —Z — D

We have the cofiber sequences
(i) HZ,, =" HZ — HB;
(ii) HZ* 2= HZ — HB_

(iii) HZy, % HZ — HD

Proof. The only thing that needs to be proved is that u)_, and us, exists and the
restrictions to (G/({e})) induce isomorphisms. This is the conclusion of

ftion 3.7.1{ and |Definition 3.6.1(iii). O

In the case that G = Cy and e is the Mackey functormentioned in [Table 2.1]
let o denote the sign representation of Cy, then X! He = ¥.rc2 He and X He = He
(ref. [Hil12]). A similar result applies in the case that G = C, and ¥ the Mackey
functor in , then S'HVY = %% He and S HV = HV,

We have analogous results for Ds,.

Theorem 3.7.4. We have the following equivalences of Eilenberg — Mac Lane

spectra if we suspend HB, HB_ and HD with representation spheres of G:

(i) ' HB = S\ HB 2 yHe-V/22\gp SYHB~Y'HB , Y*HB = HB;

(is) S'HB =Y HB = y*e-V/22 \gp yYwHB ~YWHB, YHB = HB;
(i) S'HD = S4B = Y HB.

Proof. Smash product preserves cofibration sequences. So the computation can

be done by smashing the cofibration sequences in [Proposition 3.7.3| with the rep-

resentation spheres. ]
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As a corollary, we investigate the suspension of HB, HB_ and HD with the

regular representation sphere.

Corollary 3.7.5. Suspension with regular representation spheres will give the

following equivalences:
(i) S’¢HB 2 Y2HB_;
(ii) X’ HB_ = Y?HB;

(i1i) XPCHD = YPHD.

The results will be used in [§4.4]
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Chapter 4

Slice Spectral Sequences

The slice tower is an analog of the Postnikov tower in classical stable homotopy
theory. The associated spectral sequence is called the slice spectral sequence.
In this chapter, we will describe the slice spectral sequence of RO(G)-graded

suspensions of HZ.

4.1 Definition of the Slice filtration and the Al-

gebraic Slice Filtration

The original version of the (topological) slice spectral sequence was first introduced
in [HHR16]. In Ullman’s thesis [UIl13], he introduced a variant of the slice spectral
sequence, called the regular slice spectral sequence, which was convenient in both
definition and application. Moreover, the definition given by Ullman is equivalent
to the old one in [HHRI16] up to suspension. In this paper, when we say "slice

spectral sequence”, we refer to the regular slice spectral sequence defined in [Ull13].

Definition 4.1.1. A full subcategory T of Sp®, the category of genuine G spectra

1s called a localizing subcategory, if
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(i) When X is in T, any object weakly equivalent to X is also in T.

(i1) T is closed under cofibration and extensions. That means, if
X—=>Y—=Z

1s a cofiber sequence and X € 1, then Z is in 7 if and only if Y is in T.
(#i) T is closed under coproducts.

Definition 4.1.2. The slice spheres of dimension k are defined to be the spectra
of the form G Q Sner - where n|H| = k. The category 75 is defined to be the

localizing category generated by the slice spheres of dimension > k.

Definition 4.1.3. A G-spectrum X is called slice (n—1)-connected, if X € 7¢.
We also write X > n. A G-spectrum Y is called slice n-coconnected, if for every
slice sphere S of dimension > n, [§, Y] is the trivial Mackey functor 0. We also

write Y < n.

Since 7¢

" is a localizing subcategory, there is a unique functorial fiber sequence

P.X - X — P"lX

where P, X € 7¢ and P"1X < n.

Since 7., C 7¢, {P,X} is a decreasing filtration, and hence {P"X} is an

increasing filtration. We have natural maps P, X — P,X and P"X — P" 'X.

Definition 4.1.4. We denote the cofiber of the map P11 X — P, X by P'X. It
is called the n-th slice of X.

Proposition 4.1.5. P’ X is equivalent to the fiber of the map P, X — P,_1X.
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Proof. We have the following commutative diagram of cofibration sequences:

Py X —=X——>pPrX (4.1.6)

]

P, X ——=X—=PvlX

L

PrX x SF

where [ is the fiber of the map P, X — P,_1X. Each row and each column isa

a cofibration sequence. So F' = P'X. O
Thus we have the following corollary as a criterion of n-slices:

Corollary 4.1.7. If X > n and X <n+ 1, then X is a G-n-slice.

Let P be the family of all proper subgroups of G and let EP be the universal
P-space. That means EP is determined up to equivariant homotopy equivalence

by the following property:

*x H=@G
S H+£G.

(EP,)Y =

Let EP be the mapping cone of P — x. Similarly EP is determined up to
equivariant homotopy equivalence by the following property:
. SY H=G

(EP)H =
x  H#G.

With the definitions above we can define the geometric fixed point spectrum,

which plays an important role in equivariant stable homotopy theory:
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Definition 4.1.8. Let X be a G-spectrum. The geometric fized point of X,
denoted as ®CX, is the fized point spectrum ((EP A X)f)G, where the subscript

f denotes the fibrant replacement. Moreover, for a subgroup H of G, ®7X is
defined to be ®7 (% X).

The homotopical characterization of ®¢X is simple: 7¢®¢X = 70X =
. X(G/G) and 7HdHX = 1 X(G/H) =0 if H # G. A computationally conve-

nient criteria of 7¢ is a theorem by Hill and Yarnall [FIY1S]:

Theorem 4.1.9. A G-spectrum X is in 7€ if and only if
@7 X =0

forall H< G and k <n/|H|.

Applying the geometric fixed point argument in [Theorem 4.1.9] we can derive

the following results for 7%

Proposition 4.1.10. Let V' be a representation of degree d and let n be an integer

such that the following equation holds for all H C G':

n n—+d
— +d2’mVH:[ w
[!HJ |H|

Then the functor SV A (=) : 75 — 78, is an equivalence of categories, with inverse

STV A(-).

As a result, we have the following equivalences between the localizing subcat-

egory T

Theorem 4.1.11. Smashing spheres induce equivalences for 7C:
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(i) SPé A (=) induces the equivalence 7¢ — Tf+|2p|.

(i1) S* A (=) induces the equivalence 7§ — TC.

(iii) S* A (=) induces the following equivalences of categories

R R R

G G G
Tp+1_>7-p+3_>"'%7—2p

G G G
T2 %Tﬁl %"'_>Tp71

G G
Tp+2 7 Tpta

=Ty

(i) S7 A (=) induces the equivalence T¢ — 70, .

Proof. Notice that dimpZ = [G : H], dim)\§ = 1, dim\% = dim\® =

0,
dimo®® = dimo® = 0, and dimo®» = 1. Then apply |[Proposition 4.1.10] O

Corollary 4.1.12. There are three equivalence classes of categories {7¢}. Since

7 ~ 78, we only need to determine the equivalence class for 0 < n < 2p.
(i) 1§ ~rferf 7O G g~
(i) 78 2 7f o 5 T

(iti) TG,y 7O~ T

Corollary 4.1.13. Smashing an n-slice with S*¢ will result in an (n + k|G|)-
slice. Here k can be any integer. Specifically, S*¢ N HZ is a k|G| slice for each
k.

Proof. Smash product preserves cofibration. Then use [Theorem 4.1.11{i). O
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With the slice tower defined, we want to define a spectral sequence. The slice
tower is an analog of the Postnikov tower, and because of the way we define it,
we can expect the spectral sequence to converge to the Mackey functor homotopy
of the G-spectrum. The spectral sequence is called the slice spectral sequence,
though originally the words ”slice spectral sequence” refers to a slight different
spectral sequence, firstly used in [HHRI16]. The version we use is called regular
slice spectral sequencein [Ull13]. Besides, we need to find computational methods

for the slice spectral sequence.
Definition 4.1.14. ([Ull153])We define the slice filtration on the homotopy

groups of X by

F'm X = im(n, Py X = 1, X) = ker(r, X — m,PH71X).

The slice spectral sequence converges to

EYX =m P/X = F'r, X/F*"m_ X

In this way, computation with slice spectral sequences associated with X is
converted to computation with the slice filtration {F*} on the homotopy groups

of X.

Definition 4.1.15. A slice is called a spherical slice if it is a slice of the form

YSVHZ = SV N HZ, where V is a representation of G.

Remark 4.1.16. The reader should be careful that a spherical slice is NOT a slice

sphere.
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The good part of spherical slices is that computation done in helps
us figure out when =V HZ is a slice. We will discuss it later in [§4.4]

Definition 4.1.17. Let ¢ be a real number and let M be a Mackey functor. Define
i* to be the map between Mackey functors such that i*M(G/H) =0 if |H| > ¢ and
i*M(G/H) = M(G/H) otherwise. The restrictions and transfers of i:M(G/H)

are inherited from M.

Definition 4.1.18. ([Ull13, 1.8]) the algebraic slice filtration on a Mackey

functor is defined by the following:
FEM(G/H) = {x € M(G/H)|itya = 0, C H,|J| < k},

and we define Fy to be the sub-Mackey functor generated by M(G/H) for H < k
by restrictions and transfers between G-sets. Here we only require k to be a real

number

Example 4.1.19. Let M be the Mackey functor B. If k = 3.5, then F*B = ()
and F,B = B. If k = 2.5, then F*M = B and Z.B = (.

The relations between the slice filtrations on the homotopy groups ([Defini-|
tion 4.1.14) and the algebraic slice filtrations (Definition 4.1.18) are established

in the following theorems:

Theorem 4.1.20. [Ull13, Proposition 8.4] If n < 0, then for a (n — 1)-connected

spectrum X, we have the identity

FSEnX = tg[(s%»n)/nﬂnX
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Theorem 4.1.21. [Ull13, Corollary 8.6] If n > 0, then for a (n+ 1)-coconnected

spectrum X, we have the identity

We omit the proofs of the two theorems.

4.2 Slices for prime order cyclic groups

Let us start with the easiest case: which trivial suspensions of HZ will be slices?
The answer can be found at the end of [Hil12], which can be stated as the following

theorem:

Theorem 4.2.1. For cyclic groups of prime orders, we have the following results:
(i) if G = Csy, then ¥"HZ is an n-slice for 0 < n < 6;
(i) If G = Cs, then X"HZ is an n-slice for 0 < n < 4;

(i1i) If G = C, where p > 5, ¥"HZ is an n-slice for 0 < n < 3.

Proof. Computation for H,S"*# for H = Cy and H = C, can be found in

and (F2T7).

If H = (5, then
[SkPe2 S™ A HZ]? =2 H,_,(S7";Z)(Cy/Cy).

by (3.2.9) we know that it is nontrivial if k¥ — n is a negative odd integer and less
than or equal to —3. Combine with the requirement that 2k > n, we find that

n>7. So when 0 <n <6, S" A\ HZ will be a slice.
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If H= C,, then
[S*en, 5" N HZ) = Hy_, (57207 Z).

by we know that it is nontrivial if kK — n is a negative odd integer and less
than or equal to —3. Combine with the requirement that pk > n, we need to solve
the inequality pk > n > k+3. So when p = 3, we get k > 2 and n > 5. Therefore
for 0 < n <4, S" AN HZ will be a slice. When p > 5, we get £k > 1 and n > 4.

Therefore for 0 < n < 3, S™ A HZ will be a slice. O

Theorem 4.2.2. Let G be a cyclic group of prime order, and V' be a representation

of G. SV N HZ is a spherical slice, if the following conditions are satisfied:

(i) If G = Cy and V = a + bo where o is the sign representation, then

b<a<b+6.

(i) If G = C3 and V = a + c\ where where \ is the 2-dimensional irreducible

representation, then ¢ < a < ¢+ 4,

(iii) If G = C, and V = a + c\, where X is the 2-dimensional irreducible repre-

sentation if and only if

VI/p=(a+2c)/p <a<(V|]+4)/p,

or equivalently,

2¢/(p—1)

IN
IN

a<(2¢+4)/(p—1).
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Proof. First, since m,SY A HZ(G /e) = Z and m,,SY N HZ(G /e) = 0 for k # |V,

SV A HZ has to be a |V|-slice if it is a slice.

If H = C,, we can use [Corollary 4.1.13] and the result obtained in
rem 4.2.1} a representation sphere SV A HZ is a |V|-slice if and only if V is a

suspension of S A HZ by S*rc2 where 0 < n < 6.

If H = C3, the same technique shows SV A HZ is a |V|-slice if and only if V

is a suspension of S™ A HZ by S**¢s, where 0 < n < 4.

When p > 5, the previous method do not apply. (As an example, the reader

can check that S is a 5-slice.) We need to do hard-core computation:
[Sk;pcp’ Sa—i—cx A HZ](C”/CP) ~ ﬂk,a(s(c_(p_l)k/m;Z)(Cp/Cp).

If SV A HZ is a slice, then [S*» SotA A HZ) = () for all k > |V|/p.

H, ,(St==Dk/2)X(G /e) is nonzero only if k —a and ¢ — (p — 1)k/2 are either
both negative or nonnegative. We will discuss the following cases.

Case 1:

Ifk—a>0andc— (p—1)k/2 >0, then ¢ > (p—1)k/2 > a(p — 1)/2. Then
we have a < (a + 2¢)/p, or equivalently, pa < |V|.

If a = (a+2¢)/p, then V = apc,, and S¥ A HZ is a slice. Otherwise pa < |V].

The smallest integer k such that 7, SV A HZ # () is a. By [Theorem 4.1.9, SY AHZ

. . C . .. C :
is not in 7,4 . So it cannot be in in v therefore not a slice.

Case 2: If k—a<0Oand c— (p—1)k/2 <0, thenc< (p—1)k/2 < a(p—1)/2

that is, a > |V|/p. Transforming the inequalities, we obtain

2c/(p—1)<k<a
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that is, 2¢/(p — 1) —a < k —a < 0. From (3.2.17) we know that

H, (Se=w=DR2XNC /C,) # 0 if and only if ¢ — (p — 1)k/2 < —2 and k — a

is a negative odd integer less than or equal to —3. So there exists k such that

H,_ (Se==DR2XNC /C) # 0 if and only if a > (2¢ +4)/(p — 1). Therefore

SV A HZ is a slice if and only if a < (2c +4)/(p — 1).

4.3 Slices of Eilenberg-Mac Lane spectra

We mention two theorems which were first proved in [Hil12]:

Theorem 4.3.1. A spectrum is a 0-slice, if and only if it is an Eilenberg-Mac Lane spec-
trum HM for some Mackey functor M.
A spectrum is a 1-slice, if and only if it is XM for a Mackey functor M whose

restrictions are all injective maps.

For the cases of cyclic groups of prime orders, there are good results for " H M

when M(G/G) = 0. Remember that |Corollary 4.1.13| works for arbitrary finite

groups. We can apply it for cyclic groups of prime orders.

If G = (5 and e is the Mackey functorin {lable 2.1} let o denote the sign

representation of Cy, then X" He = >"°%2 He is a 2n-slice.

If G = C), and ¥ the Mackey functor in [Table 3.2 then X"HV¥ = % He is
an pn-slice.

Let me remind the reader the meaning of HB, HB_ or HD, by

Notice that ingﬁ = HB_ = HV and ingQ = He, A natural question

is: will the suspensions of HB, HB_ or HD be slices? If they are, what will
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Table 4.1: Some G-Mackey functors with M (G/e) =0

Symbol B B D

Lewis 1 Z/p Z/2

diagram
Z / p Z/ p_ \\
\\ \ Z/2

their slice filtration be? The answer is surprisingly YES. Furthermore, their slice

filtration levels remains the same as the cases of cyclic groups.

Theorem 4.3.2. X"HB is a pn-slice. X"HB _ is a pn-slice. X"HD is a 2n-slice.

Proof. For the cases that n > 0, by [Theorem 4.1.21] F*~'x, "HB # F*r,Y>"HB

if and only if FGtn-b/np o+ ZEt/nB - This can only happen when
(s+n—1)/n<pand (s+n)/n>p.

So the only possible integer s is n(p-1). In this case, F* 'z, ¥>"HB = ) and

Fér, >"HB = B_. So the only nontrivial slice of ¥"H B is the np slice X" H B.

For the cases that n < 0, by [I'heorem 4.1.20] F,_,7,,>"HB # Fym,>"HB will

only happen when (s+n—1)/n > pand (s+n)/n < p, where F*" 'z, S"HB = ()
and F*r,>"HB = B_. So the only possible integer s is again n(p-1). The only

nontrivial slice of X" H B is the np slice X" HB.

Similar proofs apply to HB_ and HD. n
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4.4 Slice spectral sequences for XV HZ

In this section we describe the slice spectral sequences for XV HZ leveraging
and the results we have obtained in [Chapter 3| In this section, we

assume the representation V' is of the form V = a + bo + c\. We use d to denote

a + b+ 2c, the degree of V.

First recall [Proposition 3.5.2

Proposition 4.4.1. Suppose M is a Dqy-cohomological Mackey functor. If
M(G/Cy) = 0= M(G/Cy),

then M is the trivial Mackey functor ().

Proof. Suppose z € M(G/G). We have
pr = Tr&Rengx = 0.

_ G G .. _
2z =Tr¢ Res¢, x = 0.
Then z is both a 2-torsion and a p-torsion. Hence x = 0. O]

Lemma 4.4.2. Let GG be a finite group and let H be a subgroup of G. If a spectrum

E is an G-n-slice, then i$E is an H-n-slice for H.
Proof. See Proposition 4.13 of [HHR16]. O

For the special case that G' = Dy, we have the converse of Lemma 4.4.2]
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Theorem 4.4.3. Let X be a G-spectrum all of whose Mackey functor homotopy
are cohomological. If it is both a Cy-n-slice and a C,-n-slice after applying the

forgetful functors igg and igp, then it is a G-n-slice.

Proof. We only need to check [S**¢, X9 = 7,(S~Fre AX)(G/G) = 0 for k|G| > n.
If the Mackey functor my(S~*¢ A X)(G/H) = 0 for both H = C, and H = Cy,

then m,(S~*< A X)(G/H) = 0 by [Proposition 3.5.2l %ps = |G/H|py, thus

the condition is satisfied because X is both a C)p-slice and a Cs-slice with proper

forgetful functor applied on it. m

Thus we have the following detection theorem for spherical slices as a corol-

lary of [Theorem 4.4.3; if i SV A HZ and i¢, S A HZ are both d-slices for the

subgroups. Then SV A HZ is an G-d-slice. We know that g, SV = Slatot(broo,

i& SV = §etbted - Applying [Theorem 4.2.2, we obtain the relations that a,b and ¢
P

have to follow:

Corollary 4.4.4. SV A HZ is a G-d-slice if:

(i) b+c<a+c<b+c+6, or equivalently, b < a < b+ 6;

(i) if p=3, thenc<a+b<c+4,

if p>5, then 2¢/(p—1) <a+b<(2c¢+4)/(p—1).

The main theorem of the whole article is the following one:

Theorem 4.4.5. Let V —W € RO(G), where both V' and W are representations
of G. Then there exists e(V —W) € RO(G), such that SY~W NHZ has a spherical
(|V| = |[W|)-slice S®V=W) N HZ. The other slices are suspensions of HB, HB

or HD, or wedges of them.
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Assuming that [Proposition 4.4.7, [Proposition 4.4.9 [Proposition 4.4.10| and

[Proposition 4.4.11| are all correct, we give a proof of the theorem.

Proof. For a virtual representation V—W in RO(G), we can always find an integer

k such that V — W + kpg is a representation of G. By [I'heorem 4.1.11] smashing

with S*7¢ induces an equivalences of slices. So we only need to work with actual

representations.

We first assume that SV) A HZ exists for each SV A HZ. We will figure out

what conditions S¢V) A HZ should satisfy.

Carolyn Yarnall proved that if G is a cyclic p-group, then S™ A HZ has a
spherical n-slice. As in the naive case, the theorem holds for G = C, and C,.
A similar computation proves that for G = C, where ¢ is a prime and for V a

representation of C,, S A HZ also has a spherical slice.

Let d be the degree of V. From [Lemma 4.4.2] the slice filtration commutes
with the forgetful functor . Therefore iZ, (P$SY A HZ) is a spherical Cs-d-slice
and igp(PjSV A HZ)is a spherical C,-d-slice.

Noticing that when G = C,; where ¢ is a prime and V' is a representation of
C,, then either SYHZ > |V| or SYHZ < |V| holds. In either case, SYHZ has a

Cy-V-slice (however, it can be either the top slice or the bottom slice).

Combining the results we obtained in [Proposition 4.4.7, |Proposition 4.4.9)

[Proposition 4.4.10] and |Proposition 4.4.11| will give us the result. Furthermore,

the proofs of the four propositions give explicit construction of how the slices are

obtained.
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The map uy_, we introduced in|Proposition 3.7.1|plays a crucial in this section,

because the cofiber of u;\_,) has a good slice filtration:

Theorem 4.4.6. The cofiber of the map wjr—q) : SY N HZ — SVHO-1=0) A HZ
1s a wedge of suspension of HB and HB_. Thus the cofiber only has kp-slices for

some integers k.

Proof. V+IlA—1—0)=a—1+ (b—1)o+ (¢c+)\. The cofiber has nontrivial
Mackey functor homotopy in dimension ¢ — 2, ¢ — 4,...,c — 2l, with value either

B or B_ appearing altenatively in such dimensions. So the cofiber has (¢ — 2)p,

(¢ —4)p,...,(c —2])p slices by [Theorem 4.3.2] O

As an example, consider the cofiber sequence
SSAHZ 20275 §6-20423 A HZ — X

Then m,X = B, ;X = B_. Other Mackey functor homotopy of X is trivial. So

X has a 4p-slice X*H B and a 6p-slice Y°HB_.

We shall remind the readers that in |(Chapter 3| we proved that ngS)‘ = Stto,

igpsa = S'. Thus g, SV = Slato+brao, igp GV _ GatbieX

Proposition 4.4.7. Ifi¢, (SV A HZ) < d and i, (S¥ A HZ) < d both hold, then
SY A HZ has a spherical G-d-slice. For 0 < k < d, the k-slices of SY N HZ is
either (i)SFPHB, or(ii) S¥PHB, or (i4)SF2HD, or (iv) the wedge of (i) and
(i1i), or (iv) the wedge of (ii) and (iii).

Proof. By [Theorem 4.1.9} i&, (SV A HZ) < d implies a+c¢ < d/2 = (a+b+2c)/2,

so a < b. z'gp (SY' ANHZ) < d implies a +b < d/p. If we can find a spherical d-slice
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together with a map to SV A HZ such that the cofiber is < d — 1, then we are

done.

Let S¢V) A HZ denote the desired spherical slice. Let e(V) = a(V) +b(V)o +

c¢(V)A. Then the following conditions which we obtain from [Theorem 4.2.2| are

required if such a spherical slice exists:

(i) (Cy-slice condition) b(V) < a(V) < b(V) + 6

(ii) (Cp-slice condition) if p =3, then 0 < a(V) +b(V) —c(V) <4
if p > 5, then 2¢(V)/(p—1) <a(V)+b(V) < (2¢(V)+4)/(p—1)

(iii) (requirement on orientation). b(V) + ¢(V) = b+ ¢, i.e e(V) has the same

orientability as V.

Condition (iii) guarantees that we can use the map uy_, in the proof.

If such an e(V') exists, then we have the cofiber sequence
e(V) sV d—1
S“)VNHZ - ANHZ — P X. (4.4.8)

The desired representation e(V') can be found in two steps:

First, we take a look at igpSV A HZ =2 Satb)+eX A {17, The condition
igp(S VAHZ) < dimplies that a+b < d/p. So there exists a degree representation
on U = u+v) of C,, such that SYAHZ is the d-slice for @'gp (SYAHZ) (See [Yar17]).
Therefore we have the equation a + b+ 2¢c = u + 2v, hence c —v = (a + b —u)/2.

Let f be ¢ —v. Then we have a map

Uy 2 SV NHZ — SV AHZ
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with cofiber C'of. According to [Theorem 4.4.6| the cofiber Cof is wedge of sus-

pensions of HB and HB_. Since

ie, (V—f(A=1=0))=a+b+ch— f(A-2)
=(a+b—2f)+ (c— )X

=u + UX,

we have ingo f < n, thus it has slices with filtration < d.

Second, we consider ig2§U A HZ. There is a positive integer g such that
Uggo : SU"2° NHZ — SY NHZ

with cofiber Cof; such that z&C’o fi < d. Similarly, C'of; is a wedge sum of

suspensions of HD with slice filtration < d.

Notice that SV —F*—o=1=299 A 7 is a H-d-slice for both H = Cy and H = C,,

according to |Corollary 4.4.4|it is a G-d-slice. So e(V) =V — f(A—0 — 1) — 2go.

We shall point out that we cannot exchange the two steps, because the first
step uses the fact that iZ X\ = pc, implicitly, so ig SV =/*A~179) ~ i SV therefore
the operation does not affect the slices of i&, SV A HZ.

Therefore we have obtained all the slices of SV A HZ: the G-d-slice is

SV —f(A—o—1)=290 A HZ = Glat)+o+f=2g9)o+(c=fIA A HZ,

and other slices are computed as before. O

Proposition 4.4.9. Ifi¢, (SV A HZ) > d and i¢, (S N HZ) > d, then SV A HZ
has a spherical G-d-slice, and 7, Py1(SY AN HZ)(G/e) is trivial for all k.
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Proof. The proof is similar to that of |[Proposition 4.4.7, The only difference is that

this time we need to find the bottom slice S¢V) A HZ and the map Uf(A—0)+2g0 1O
SeVIANHZ. O

Proposition 4.4.10. Ifig (SYAHZ) < d and igp(SV/\HZ) >d , then SY NHZ

has a spherical G-d-slice.

Proof. |[Proposition 3.7.1| proved that there is a map

Ur_y : ST ANHZ — HZ.

ig, Sto=r =2 80 as a Cy-spectrum. So smashing S¥ A HZ with S~ induces an
equivalence between Cs-spectra. We choose [ to be the lease positive integer such
that igp(SV“)‘*l*l"/\HZ) < d. There is a map from SY AHZ to SV -1=lo AHZ,

induced by multiplication with wu;y—s). S VHA=l-lo A 7 satisfied the condition in

[Proposition 4.4.7, so we can apply [Proposition 4.4.7to it. Since ¢ (SYANHZ) > d

and @gp (SVHA-I=lo A HZ) < d, the fiber of wy_y), which is a wedge of trivial
suspensions of HB and HB_, is slice d-connected. SYV+A~=lo A HZ, is slice d + 1-
coconnected since i (SV 7 A HZ) and igp(SV”)‘*l*l" N HZ) are both slice
d 4 1-coconnected. So it has slices if slice filtration d and less. Thus we get the

slice filtration for S¥ A HZ n

Proposition 4.4.11. Ifi¢ (SYANHZ) > d and i¢, (S¥ NHZ) < d, then S¥' NHZ

has a spherical G-d-slice.

Proof. Similar to the proof|Proposition 4.4.10, Let [ be the least integer such that

SVH(A+e=N A HZ > d. Then the cofiber of

Un_gy : ST N ANHZ — SV ANHZ
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is slice d-coconnected because of the choice of I. Then we can apply
to SVH(IH+o=N A HZ for its slices of slice filtration d and more. O
4.5 Examples of Slice Spectral Sequences

In this section, we will work on specific examples of slice towers (and therefore,

the slice spectral sequences) for SV A HZ.

4.5.A S"ANHZ

The simplest example is S™ A HZ. We will give the slice tower of L HZ for

G = Dg and G = Djg. In both cases, the condition in [Proposition 4.4.9] are

satisfied, so we apply the proposition to obtain the slices.
Example 4.5.1. We want to find the triple (a,b,c) such that:
(i) b+c<a+c<b+c+6, or equivalently, b < a < b+ 6;

(i) c<a+b<c+4.

(6,2,4) turns out to be the only solution. Following the steps in|Proposition 4.4.9,
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the Slice tower of L HZ for G = Dg is as follows:

39 — slice
33 — slice
27 — slice
26 — slice
22 — slice
21 — slice
18 — slice
16 — slice

YSBHB SYANHZ

UN\—o
211H§—> Sl5—a+)\ A HZ
UN\—o

E9H57 o 514720+2/\ A HZ

UN—0o

ElgHQ Sl3—3a+3>\ A HZ

U20

ZHHQ—> Sllfa+3/\ A HZ

U2o

E7H§ S9+U+3)\ A HZ
UN—o
EQHQ 58—0—4/\ A HZ

U20

56+20+4)\ ANH Z

Example 4.5.2. When G = Dyg, we want to find another triple (a,b, ¢) such that

(i) b+c<a+c<b+c+6, or equivalently, b < a < b+ 6;

(i) 2¢/(p—1) <a+b< (2c+4)/(p—1).

Coincidentally, (6,2,4) is the solution again. The 16-slice for S1® N HZ is

SOT20 AN HZ as well. However, the slice tower (and the slices) are quite different

from the slice tower (and the slices) for G = Ss, which is shown as follows: The
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Figure 4.1: Slice Spectral Sequence of X1¢ A HZ for G = S;
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Slice tower of L°HZ for G = Dy is:

65 — slice YBHB_ SYANHZ
Ur—o

55 — slice YUHB —— SY A ANHZ
Ur—o

45 — slice YYHB —— SW20t2X A H7Z,
Uxr—o

35 — slice STHB —— SB30+t3A AN HZ
Uxr—o

26 — slice YBHD —— S22+ A 7,
u2e

22 — slice SUHD —— §l0-20+4A A 07,

18 — slice YYHD S8HINNHZ
u2e

16 — slice S6+20+N A HZ,

4.5.B S" ANHZ

We will give the slice tower of S A HZ for G = Dy,.

Applying the forgetful functor argument, we get
i, (S ANHZ) ~ S" NHZ

and

i¢. S"" NHZ ~ S"' N HZ.

ngSHU ANHZ <11, but ig55110/\HZ > 11. So the condition in |Propositi0n 4.4.10|
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Example 4.5.3. We choose | to be the lease positive integer such that

Z'gp(slla-‘rl)\—l—la A HZ) ~ Sll—ZH—l)\ S 11.

The answer is that | = 3. So

Pll(sll A HZ) _ 5110-1-3()\—1—0) A HZ _ S—3+80+3)\ A HZ

The Slice tower of S N HZ for G = Dy is:

40 — slice
30 — slice
20 — slice
11 — slice
8 — slice
4 — slice
0 — slice
4.5.C S™ANHZ

Y HB Sl NHZ
Ur—o

SSHB S—1H+1004X A [TZ,
Ur—o

SUHB S—2H90+2) A [7,

S3+2a+3)\ A HZ

UN\—o

Sf3+80+3/\ A HZ

SAHD SYHD ANY?HD A HD
Y2HD YS2?HDANHD
HD

We will deal with a comparatively simple case: S™%* A HZ while G = D.
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First we smash S~ A HZ with S%%¢  so the slices are preserved (Corol-|
lary 4.1.13). Since pg = 1+ 0 + 2\, we get S35 A HZ.

The cofiber sequence
ZSHE SN S3+3a A HZ SN S2+20+>\ A HZ

already gives the slices of S373° A HZ: Y3HB is a 9-slice, and S?*t27+* A HZ is
a 6-slice. Then we smash the whole cofiber sequence with S=3¢¢ to get the slice

spectral sequence for S~ A HZ. We get

ST ANYPHB —s STAN HZ — §7306 A §2+20HA A O Z

Taking advantage of [Corollary 3.7.5, we get

S73c ANSPHB =Y"3HB_

to be the —9-slice and

S—3pG A SQ—I—QU—H\ A HZ — S—l—a—5>\ A HZ

to be the —12-slice.
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Figure 4.3: Slice Spectral Sequence of X~ A HZ for G = S;
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