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MORAVA E-HOMOLOGY OF BOUSFIELD-KUHN FUNCTORS

ON ODD-DIMENSIONAL SPHERES
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(Communicated by Michael A. Mandell)

Abstract. As an application of Behrens and Rezk’s spectral algebra model
for unstable vn-periodic homotopy theory, we give explicit presentations for

the completed E-homology of the Bousfield-Kuhn functor on odd-dimensional

spheres at chromatic level 2, and compare them to the level 1 case. The latter
reflects earlier work in the literature on K-theory localizations.

1. Introduction

The rational homotopy theory of Quillen and Sullivan studies unstable homo-
topy types of topological spaces modulo torsion, or equivalently, after inverting
primes. Such homotopy types are computable by means of their algebraic models.
In particular, Quillen showed that there are equivalences of homotopy categories

HoQ(Top∗)2 ' HoQ(DGL)1 ' HoQ(DGC)2

between simply-connected pointed topological spaces localized with respect to ra-
tional homotopy equivalences, connected differential graded Lie algebras over Q,
and simply-connected differential graded cocommutative coalgebras over Q [21,
Theorem I].

Let p be a prime, Fp be the field with p elements, and Fp be its algebraic closure.
Working prime by prime, one has p-adic analogues where equivalences detected
through H∗(−;Q) are replaced by those through H∗(−;Fp). Various algebraic
models for p-adic homotopy types of spaces were developed (Kř́ıž [17], Goerss [12],
Mandell [20]). In the modern language of homotopy theory, these models are often
formulated in terms of “spectral” algebra. For example, Mandell’s model is given by
the functor that takes a connected p-complete nilpotent space X of finite p-type to

the Fp-cochains HFXp , where HFXp denotes the function spectrum F (Σ∞X,HFp).
This spectrum is a commutative algebra over HFp.

Recently, through the prism of chromatic homotopy theory, Behrens and Rezk
have established in [6] spectral algebra models for unstable vn-periodic homotopy
types (cf. Arone and Ching [4], Heuts [14], and see also [7, 1, 3, 13]). Here, instead
of inverting primes, they work p-locally for a fixed prime p and invert classes of
maps called “vn-self maps” (the case of n = 0 recovers rational homotopy). Cor-
respondingly, there is the n’th unstable monochromatic category Mf

nTop∗ in the
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sense of Bousfield [9]. They study the functor

(1) S
(−)
T (n) : Ho(Mf

nTop∗)
op → Ho

(
AlgComm(SpT (n))

)
that sends a space X to the ST (n)-valued cochains SXT (n). This last spectrum is

an algebra for the reduced commutative operad Comm in modules over ST (n), the
localization of the sphere spectrum with respect to the telescope of a vn-self map.

Considering a variant of localization with respect to the Morava K-theory K(n),
Behrens and Rezk have obtained an equivalence

c
K(n)
X : ΦK(n)(X)

∼−→ TAQSK(n)
(SXK(n))

of K(n)-local spectra, on a class of spaces X including spheres [6, Theorem 8.1]
(cf. [7, Section 8]). On the left-hand side, ΦK(n) = LK(n)Φn is a version of the
Bousfield-Kuhn functor (cf. Kuhn [19]). The right-hand side is the topological
André-Quillen cohomology of SXK(n) as an algebra over the operad Comm in SK(n)-

modules. The map c
K(n)
X arises from (1) as follows. Computing homotopy groups

of spaces in the source category of (1), we have a natural transformation

v−1
n π∗(−;V ) ∼=

[
Σ∗V,Mf

n (−)
]
Top∗

→
[
S

(−)
T (n),S

Σ∗V
T (n)

]
AlgComm(SpT (n))

where V is any p-local finite complex of type n with a vn-self map v : ΣkV → V for
some k, v−1

n π∗(−;V ) := v−1[Σ∗V,−]Top∗ are the vn-periodic homotopy groups with

coefficients in V , and Mf
n (−) := hofib

(
Lfn(−) → Lfn−1(−)

)
is the n’th monochro-

matic layer. Both sides of this natural transformation can be realized by functors
valued in spectra. Behrens and Rezk take a homotopy limit over suitable complexes
V of such natural transformations, while replacing ST (n) with SK(n) everywhere.

The resulting limit is c
K(n)
(−) , which they show is an equivalence on certain X. Via

a suitable Koszul duality between Comm and the Lie operad, we may view the
spectrum TAQSK(n)

(SXK(n)) as a Lie algebra model for the unstable vn-periodic

homotopy type of X.

1.1. Main results. The purpose of this paper is to make available calculations
that apply Behrens and Rezk’s theory to obtain quantitative information about
unstable vn-periodic homotopy types, in the case of n = 2. These are based on our
computation of power operations for Morava E-theory in [31].

Let E be a Morava E-theory spectrum of height 2 with E∗ ∼= WFpJaK[u±1], where
|a| = 0 and |u| = −2. Recall that the completed E-homology functor is defined as
E∧∗ (−) := π∗(E ∧ −)K(2). It is E0-linear dual to E∗(−) with more convenient
properties than E∗(−) (see Rezk [22, Section 3]).

Building on and strengthening Rezk’s results in [24, §2.13 and §10], we obtain
the following.

Theorem 1. Given any non-negative integer m, denote by E∧∗ (Φ2S
2m+1) the com-

pleted E-homology groups of the Bousfield-Kuhn functor applied to the (2m + 1)-
dimensional sphere.

(i) The group E∧1 (Φ2S
2m+1) ∼= 0 if m = 0. As an E0-module, it equals (E0/p)

⊕p−1

if m = 1. It is a quotient of (E0/p
m)⊕p−1 ⊕ E0/p

m−1 if m > 1.
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(ii) More explicitly,

E∧1 (Φ2S
2m+1) ∼=



⊕p−1
i=1 (E0/p

m) · xi ⊕ (E0/p
m−1) · xp

(r1, . . . , rm−1)
if 2 ≤ m ≤ p+ 2

⊕p−1
i=1 (E0/p

m) · xi ⊕ (E0/p
m−1) · xp

(rm−p−1, . . . , rm−1)
if m > p+ 2

where rj = rj(x1, . . . , xp) = wm−1−j
0

∑p
i=1 di,j+1 xi. Here, as in Zhu [31,

Theorem 1.6],

di,τ =

τ−1∑
n=0

(−1)τ−n wn0
∑

m1+···+mτ−n=τ+i
1≤ms≤ p+1
mτ−n≥ i+1

wm1
· · ·wmτ−n

where the coefficients wi ∈ E0
∼= WFpJaK are defined by the identity

p+1∑
i=0

wi b
i = (b− p)

(
b+ (−1)p

)p − (a− p2 + (−1)p
)
b

in the variable b, so that wp+1 = 1, w1 = −a, w0 = (−1)p+1p, and the
remaining coefficients

wi = (−1)p(p−i+1)

[(
p

i− 1

)
+ (−1)p+1 p

(
p

i

)]
In particular, each relation rj contains a term (−1)j+1wm−1−j

0 wj1 xp.
(iii) The group E∧0 (Φ2S

2m+1) ∼= 0 for any m ≥ 0.

Since E is 2-periodic, the above determines the completed E-homology in all
degrees.

Remark 2. There is a ring structure on E∧1 (Φ2S
2m+1). Indeed, each generator xi

is a power bi of a certain element b. See Section 3.1 for details.

Remark 3. In [29, Sections 5.3–5.4], Wang obtained an equivalent presentation of
E∧∗ (Φ2S

2m+1) for m = 1 and any prime p. He then used it as the input of a spectral
sequence and computed π∗(ΦK(2)S

3) at p ≥ 5.

Example 4. We apply Theorem 1 and compute E∧1 (Φ2S
2m+1) at p = 2 for small

values of m. We have w(a, b) = b3 − ab− 2 so that w3 = 1, w2 = 0, w1 = −a, and
w0 = −2.

• When m = 2, since r1 = 2x1 − ax2, E∧1 (Φ2S
5) is the quotient of (E0/4) ·

x1 ⊕ (E0/2) · x2 subject to the relation ax2 = 2x1.
• When m = 3, we have r1 = −4x1 + 2ax2 and r2 = 2ax1 − a2x2 so that the

relations are

a2x2 = 2ax1

2ax2 = 4x1
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• When m = 4, we have r1 = 8x1 − 4ax2, r2 = −4ax1 + 2a2x2, and r3 =
2a2x1 + (−a3 + 4)x2. Thus the relations are

a3x2 = 2a2x1 + 4x2

2a2x2 = 4ax1

4ax2 = 8x1

• When m = 5 > p+2, we have r2 = 8ax1−4a2x2, r3 = −4a2x1+(2a3−8)x2,
and r4 = (2a3 − 8)x1 + (−a4 + 8a)x2. Thus the relations are

a4x2 = (2a3 − 8)x1 + 8ax2

2a3x2 = 4a2x1 + 8x2

4a2x2 = 8ax1

The relations above show that the exponent bounds for p-power torsion in The-
orem 1 are sharp, e.g. 2m−1x1 6= 0 and 2m−2x2 6= 0 in E∧1 (Φ2S

2m+1) in these cases
(see Bousfield [10, §2.5] and Selick [26]). Also, as in part (ii) of the theorem, each
rj contains a term 2m−1−jajx2. Unfortunately, it is impossible to simplify the re-
lations for E∧1 (Φ2S

2m+1) into 2m−1−jajx2 = 0 by an E0-linear change of variables
with xi. See Remark 9 below.

1.2. A comparison to the case of n = 1. As an application of Behrens and
Rezk’s theory, Theorem 1 is a step toward the program initiated in Arone and
Mahowald [2] to compute the unstable vn-periodic homotopy groups of spheres
using stable vn-periodic homotopy groups and Goodwillie calculus. See also Wang
[28, 29]. Here we discuss a version of Theorem 1 at height n = 1 according to this
program.

Proposition 5. Let E be a Morava E-theory spectrum of height 1, with E0
∼= WFp.

Then we have

E∧0 (Φ1S
2m+1) ∼= E0/p

m and E∧1 (Φ1S
2m+1) ∼= 0 m ≥ 0

Proof. This is stated in Rezk [24, §2.13], based specifically on computations in
§§8.3–8.4 there. �

Remark 6. There has been extensive work on the case of v1-periodic homotopy
theory. See Bousfield [8, §9.11] and [10, §§8.6–8.7] for an alternative approach to
the above theorem. In particular,

Φ1S
2m+1 ' S2m

K(1)/p
m

unless p = 2 and m ≡ 1, 2 mod 4, where S2m
K(1)/p

m is the K(1)-localization of the

Moore spectrum with i’th space Si+2m ∪pm ei+2m+1. See also Davis [11, esp. The-
orem 3.1] and the references therein for related information.

Rezk’s proof generalizes to height n = 2. Indeed, we will show Theorem 1 by
combining his framework and our explicit formulas from [31]. It is this frame-
work which relies on an interaction with Goodwillie calculus (see also Kuhn [18]).
Specifically, the E-homology of a vn-periodic Goodwillie tower of the identity func-
tor evaluated on odd-spheres is isomorphic to the dual of a Koszul resolution of a
Dyer-Lashof algebra for the E-theory (Behrens and Rezk [6, Theorem 9.1]).
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Remark 7. For any n, since Φn is a reduced homotopy functor (i.e. Φn(∗) ' ∗ and
Φn preserves weak equivalences), there is a natural “stabilization” map

Σ2Φn(X)→ Φn(Σ2X)

In view of the 2-periodicity of E, this induces a map on completed E-homology in
the same degree. Thus the groups {E∧∗ (ΦnS

2m+1)}m≥0 form a directed system. It
would be interesting to understand the colimit of this system and its implication
for homotopy types. Note that completed E-homology does not send homotopy
colimits to colimits in analytically complete E∗-modules in the sense of Rezk [24,
§2.5] (see Hovey [15]). Nevertheless, based on computational evidence from Theo-
rem 1, Proposition 5, and further, we hope to study the relationship between the
K(n)-local sphere and the Bousfield-Kuhn functor on odd-spheres hinted in Rezk
[25, §§3.20–3.21].

Indeed, consider the case of n = 1 and set

Xm =
(
E ∧ Ω2m+1Φ1(S2m+1)

)
K(1)

in Hovey [15, Corollary 3.5]. Therefore, in view of Proposition 5, the stabiliza-
tion hocolim Ω2m+1Φ1(S2m+1) has p-completed K-theory isomorphic to Zp, con-
centrated in even degrees. On the other hand, given any n, Φn preserves filtered
homotopy colimits. Thus, K(n)-locally, we have

hocolim
k

ΩkΦnS
k ' hocolim

k
ΦnΩkSk

' Φnhocolim
k

ΩkSk

' ΦnΩ∞S

' SK(n)

(cf. Remark 6 and [15, example following Corollary 3.5]).

2. Koszul complexes for modules over the Dyer-Lashof algebra of
Morava E-theory

Let E be a Morava E-theory spectrum of height n at the prime p. Its for-
mal group Spf E0CP∞ over E0

∼= WFpJu1, . . . , un−1K is the Lubin-Tate universal

deformation of a formal group G over Fp of height n.
Generalizing the Lubin-Tate deformation theory, Strickland shows that for each

k ≥ 0 there is a ring Ak ∼= E0BΣpk/Ik classifying subgroups of degree pk in the
universal deformation, where Ik is the ideal generated by the image of all transfer
maps from inclusions of the form Σi × Σpk−i ⊂ Σpk with 0 < i < pk [27, Theorem
1.1]. In particular, A0

∼= E0 and there are ring homomorphisms

s = sk, t = tk : A0 → Ak and µ = µk,m : Ak+m → Ak ⊗s t
A0
Am

classifying the source and target of an isogeny of degree pk on the universal defor-
mation and the composition of two isogenies.

As E is an E∞-ring spectrum, there are (additive) power operations acting on
the homotopy of K(n)-local commutative E-algebra spectra. A Γ-module is a left
A0-module M equipped with structure maps (the power operations)

Pk : M → tAk ⊗s A0
M k ≥ 0

which are a compatible family of A0-module homomorphisms. These power op-
erations form the Dyer-Lashof algebra Γ for the E-theory, with graded pieces
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Γ[k] := HomA0
(sAk, A0), k ≥ 0. There is a tensor product ⊗ for Γ-modules (Rezk

[24, §4.1]).
The structure of a Γ-module is determined by P1, subject to a condition involving

A2, i.e. the existence of the dashed arrow in the diagram

(2)

M tA1 ⊗s A0
M

tA2 ⊗s A0
M tA1 ⊗s t

A0
A1 ⊗s A0

M

P1

id⊗P1

µ⊗id

[24, Proposition 7.2]. This manifests the fact that the ring Γ is Koszul and, in
particular, quadratic (Rezk [23]).

Let D0 := A0, D1 := A1, and

Dk := coker

(
k−2⊕
i=0

A⊗i1 ⊗A2 ⊗Ak−i−2
1

id⊗µ⊗id−−−−−→ A⊗k1

)
k ≥ 2

Given Γ-modules M and N , Rezk defines the Koszul complex C•(M,N) by

Ck(M,N) := HomA0(M,Dk ⊗A0 N)

with appropriate coboundary maps [24, §7.3].

Proposition 8. If M is projective as an A0-module, then

ExtkΓ(M,N) ∼= HkC•(M,N)

In particular, if k > n, Dk
∼= 0 and so ExtkΓ(M,N) ∼= 0.

Proof. This is Rezk [24, Proposition 7.4]. �

2.1. The case of n = 2. Choose a preferred PN -model for E in the sense of Zhu
[30, Definition 3.29] so that the formal group of E is isomorphic to the formal
group of a universal deformation of a supersingular elliptic curve satisfying a list of
properties.

Using the theory of dual isogenies of elliptic curves, Rezk identifies that D2
∼=

A1/s(A0) [24, Proposition 9.3]. He also classifies Γ-modules with underlying A0-
module free of rank 1 [24, Proposition 9.7]. In particular, each of them takes the
form Lβ with structure map

P : Lβ → tA1 ⊗s A0
Lβ

x 7→ β ⊗ x
where x is a generator for the underlying A0-module, and β ∈ A1 is such that ι(β) ·
β ∈ s(A0) with ι(−) the Atkin-Lehner involution1 (this condition on β corresponds
to the condition in (2)). Moreover, L1 is the unit object in the symmetric monoidal
category of Γ-modules with respect to ⊗ and Lβ1 ⊗ Lβ2

∼= Lβ1β2 . Thus Lβ is
⊗-invertible as a Γ-module if and only if β ∈ A×1 .

1Cf. Katz and Mazur [16, 11.3.1], Atkin and Lehner [5, Lemmas 7–10]. Note that ι(−) is not
an involution in general (see Rezk [24, §9.1 and §9.8]).
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Now let M = Lα and N = Lβ . We have identifications

A0
∼−→ C0(M,N) = HomA0(M,N) f 7→ (x 7→ fy)

A1
∼−→ C1(M,N) = HomA0

(M, tA1 ⊗s A0
N) g 7→ (x 7→ g⊗y)

A1/s(A0)
∼−→ C2(M,N) = HomA0

(
M, ι

2s
(
A1/s(A0)

)
⊗s A0

N
)

h 7→ (x 7→ h⊗y)

Thus the Koszul complex in this case is

A0
d0−→ A1

d1−→ A1/s(A0)

with d0f = ι(f)β − fα and d1g = ι(g)β + gι(α) [24, §9.18].
More explicitly, we have identifications

A0
∼= WFpJaK and A1

∼= WFpJa, bK/
(
w(a, b)

)
where

w(a, b) =

p+1∑
i=0

wi b
i = (b− p)

(
b+ (−1)p

)p − (a− p2 + (−1)p
)
b

(Zhu [31, Theorem 1.2]). Note that the parameters a and b are chosen as in Rezk
[24, §9.15] and they correspond precisely to h and α in Zhu [30, 31]. In particular,
the Γ-module of invariant 1-forms is ω = Lb.

Remark 9. As we will see in Section 4, the generators xi in Theorem 1 (ii) depend
on the choice of the parameter b for A1. We do not know if a different choice would
make the presentations simpler.

The ring homomorphism s : A0 → A1 is simply the inclusion of scalars, as A1

is a free left module over A0 of rank p + 1. We will thus abbreviate s(A0) as A0.
Following Rezk [24], we will also abbreviate ι(x) as x′, which is written as x̃ in Zhu
[30, 31]. Note that wp+1 = 1, p|wi for 2 ≤ i ≤ p, w1 = −a, and

(3) w0 = (−1)p+1p = bb′

[30, (3.30)]. Also, we have

(4) b′ = −bp − wpbp−1 − · · · − w2b+ a

(cf. [24, §9.15]).

3. Computing with Koszul complexes

Recall that ω = Lb is the Γ-module of invariant 1-forms defined in Section 2.1.
Write nul := L0, the Γ-module annihilated by Γ. In this section, we compute
Ext∗Γ(ωm,nul) for m ≥ 0. By Proposition 8,

Ext∗Γ(ωm,nul) ∼= H∗C•(Lbm , L0)

where

C•(Lbm , L0) : A0
−bm−−−→ A1

b′m−−→ A1/A0

Proposition 10. For all m ≥ 0, H0C•(Lbm , L0) ∼= H1C•(Lbm , L0) ∼= 0.

Proof. This is proven in Rezk [24, §10]. �

Rezk also gave a description of H2C•(Lbm , L0) ∼= A1/(A0 + b′mA1) in [24, §2.13]
(the general case of “Pm” as given is not completely correct; cf. Theorem 1). In
the following we will compute this second cohomology explicitly.
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3.1. The second cohomology. Write Bm := H2C•(Lbm , L0) ∼= A1/(A0 + b′mA1).
Clearly, B0

∼= 0. Let m > 0 for the rest of this section.
As a free module over A0, the ring A1 has a basis consisting of

(5) 1, b, b2, . . . , bp

Proposition 11. In the A0-module Bm, pmbi = 0 for 1 ≤ i ≤ p−1 and pm−1bp = 0.

Proof. Given (3) and (4), in Bm we have wm0 b
i = b′mbmbi = b′mbm+i = 0 and

wm−1
0 bp = wm−1

0 (−b′ − wpbp−1 − · · · − w2b)

= − bm−1b′m − wm−1
0 wpb

p−1 − · · · − wm−1
0 w2b

= − wm−1
0 wpb

p−1 − · · · − wm−1
0 w2b

(6)

Since p|wi for 2 ≤ i ≤ p, the last expression has a factor of wm0 and so vanishes in
Bm as we have just shown. �

Let 1 ≤ m ≤ p. Under the map of multiplication by b′m, the elements in (5)
become

(7) b′m, w0b
′m−1, w2

0b
′m−2, . . . , wm−1

0 b′, wm0 , w
m
0 b, . . . , w

m
0 b

p−m

Note that wm−1
0 b′ = 0 in Bm is equivalent to (6). Thus, as a quotient of the

ring (A0/p
m)⊕p−1 ⊕ A0/p

m−1 from the above proposition, Bm has relations given
precisely by the vanishing of the first (m− 1) terms in (7).

To write down these (m − 1) relations explicitly, we recall the formulas of b′τ ,
2 ≤ τ ≤ m from Zhu [31, Section 4.1]. There, b′ is written as α̃. We have

(8) b′τ = dp,τ b
p + dp−1,τ b

p−1 + · · ·+ d0,τ 1 ≤ τ ≤ p

where

di,τ =

τ−1∑
n=0

(−1)τ−n wn0
∑

m1+···+mτ−n=τ+i
1≤ms≤ p+1
mτ−n≥ i+1

wm1
· · ·wmτ−n

as in [31, Theorem 1.6 (ii)]. In particular, the formula of the coefficient dp,τ has

a leading term (−1)τwτ−1
1 wp+1. Thus the term wm−τ0 wτ−1

1 bp must appear in the
relation wm−τ0 b′τ = 0 in Bm.

Next, consider the case of m > p. Under multiplication by b′m, (5) becomes

b′m, w0b
′m−1, w2

0b
′m−2, . . . , wp0b

′m−p

Similarly, it remains to determine formulas for b′τ , m − p ≤ τ ≤ m (ignoring
wp0b

′m−p if m = p+ 1, as above). As noted in [31, Section 4.1], the exact expression
of (8) holds more generally for any τ ≥ 1, if one bears in mind the convention that
wτ = 0 whenever τ > p + 1. In fact, the computation of dτ := d0,τ for α̃τ in the
case i = 0 and 1 ≤ τ ≤ p from Zhu [30, proof of Proposition 6.4] goes, mutatis
mutandis, for the general case.

4. Proof of Theorem 1

Recall that given a Morava E-theory E of height n, the completed E-homology
functor is defined as E∧∗ (−) := π∗(E ∧ −)K(n). In particular,

(9) E∧∗ (ΦnX) ∼= E∧∗ (ΦK(n)X)
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since the map id∧LK(n) : E ∧ΦnX → E ∧LK(n)ΦnX induces a K(n)-equivalence
by the Künneth isomorphism.

In [24], Rezk sets up a composite functor spectral sequence (CFSS) followed by
a mapping space spectral sequence (MSSS) to compute the homotopy groups of

derived mapping spaces R̂E(A,B) between K(n)-local augmented commutative E-
algebras A and B. He identifies the E2-term in the CFSS as Ext-groups over the
Dyer-Lashof algebra Γ. The CFSS converges to the E2-term in the MSSS.

In particular, [24, §2.13] shows that this setup specializes to compute the E-

cohomology of the topological André-Quillen homology TAQSK(n)(S
S2m+1

+

K(n) ), and

that the two spectral sequences both collapse at the E2-term when n = 2. Here

A = ES
2m+1
+ := F (Σ∞+ S

2m+1, E) and B = E o E is a square-zero extension (see
[24, §5.10]).

Now, by Behrens and Rezk [6, Theorem 8.1] and (9), we identify the abutment
of the MSSS as

πt−sR̂E(ES
2m+1
+ , E o E) ∼= πt−sF

(
TAQSK(2)(S

S2m+1
+

K(2) ), E
) ∼= E∧t−s(Φ2S

2m+1)

For a fixed t, Rezk identifies the possibly nonzero terms on the E2-page of the
CFSS as ExtsMod?Γ

(ωm, ω(t−1)/2 ⊗ nul), where Mod?Γ is the category of Z/2-graded

Γ-modules in the sense of [24, §5.6]. Thus for degree and periodicity reasons, we
may set t = 1 and the calculations in Section 3 then complete the proof, with bi

written as xi in Theorem 1. �
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