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Abstract. The relation between Eisenstein series and the J-homomorphism is an important topic in chro-

matic homotopy theory at height 1. Both sides are related to the special values of the Riemann ζ-function.
Number theorists have studied the twistings of the Riemann ζ-functions and Eisenstein series by Dirichlet

characters.

Motivated by the Dirichlet equivariance of these Eisenstein series, we introduce the Dirichlet J-spectra in
this paper. The homotopy groups of the Dirichlet J-spectra are related to the special values of the Dirichlet

L-functions. Moreover, we find Brown-Comenetz duals of the Dirichlet J-spectra, whose formulas resemble

functional equations of the corresponding Dirichlet L-functions. In this sense, the Dirichlet J-spectra we
constructed are analogs of Dirichlet L-functions in chromatic homotopy theory.
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Bernoulli numbers show up in many seemingly unrelated areas of mathematics, as observed in [Maz08].
They are the special values of the Riemann ζ-function at negative integers:

ζ(1 − k) = −
Bk
k
.

Another two such occasions are q-expansions of normalized Eisenstein series in number theory

E2k(q) = 1 −
4k

B2k
∑
n≥1

σ2k−1(n)q
n,

and the images of the J-homomorphisms in the stable homotopy groups of spheres in algebraic topology:

Im(J4k−1) ≃ Z/D2k, D2k = the denominator of B2k/4k.

The connections between the congruences of the normalized Eisenstein series E2k and images of the J4k−1 have
been explained in [Bak99; Lau99; Hop02; Beh09] in different ways since the invention of elliptic cohomology
and topological modular forms (TMF).
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2 NINGCHUAN ZHANG

Number theorists have studied the twistings of the Riemann ζ-functions and Eisenstein series by Dirichlet
characters. Let χ ∶ (Z/N)

×
→ C× be a primitive Dirichlet character of conductor N . Leopoldt defined

generalized Bernoulli numbers Bk,χ associated to χ (1.1.3) in [Leo58]. These numbers are algebraic numbers
in Q(χ). Moreover, they are related to the special values of the Dirichlet L-functions L(s,χ) at negative
integers:

L(1 − k;χ) = −
Bk,χ

k
.

As in the classical case, Bk,χ appears in the q-expansion of Ek,χ (1.2.7), the normalized Eisenstein series

assoicated to χ when (−1)k = χ(−1):

Ek(q;χ) = 1 −
2k

Bk,χ

∞
∑
n=1

σk−1,χ(n)q
n.

Denote the ideal of Z[χ] ∶= Z[Imχ] generated by the denominator of
Bk,χ
2k

by Dk,χ when (−1)k = χ(−1).1

One may now wonder what is the object in homotopy theory that completes the analogy below:

L-functions Modular forms Homotopy theory

ζ(1 − 2k) = −B2k

2k
E2k ≡ 1 mod D2k ImJ4k−1 ≃ Z/D2k

L(1 − k;χ) = −
Bk,χ
k

Ek,χ ≡ 1 mod Dk,χ ?

Table 1. Analogy of L-functions, modular forms and homotopy theory

In this paper, we construct analogs of Dirichlet L-functions in homotopy theory, called the Dirichlet J-
spectra, that fit in the table above. We further compute their homotopy groups and study their properties.
The relations between homotopy groups of the Dirichlet J-spectra and congruences of Ek,χ will be explained
in a subsequent paper in preparation.

The motivation of our construction of the Dirichlet J-spectra is the Dirichlet equivariance of the Eisenstein
series Ek,χ. This Eisenstein series is a modular form of weight k and level Γ1(N). Moreover, it satisfies
an automorphic equation (1.2.4) for a larger congruence subgroup Γ0(N) that translates into a Dirichlet
equivariance with respect to the action of the quotient group Γ0(N)/Γ1(N) ≃ (Z/N)

×
:

Ek,χ ∈ Hom(Z/N)×-rep(Cχ−1 ,H0(Mell(Γ1(N)),ω⊗k)).

Imitating this formula, we define the Dirichlet J-spectrum in Construction 3.4.1 by

J(N)hχ ∶= Map (M(Z[χ]), J(N))
h(Z/N)×

.

In this formula,

● The notation (−)hχ stands for the “homotopy χ-eigen-spectrum”.
● Z[χ] is the Z-subalgebra of C generated by the image of χ. The character χ induces a (Z/N)

×
-action on

Z[χ] where a ∈ (Z/N)
×

acts by multiplication by χ(a). M(Z[χ]) is the Moore spectrum of Z[χ] with a
(Z/N)

×
-action such that the induced (Z/N)

×
-action on π0 is equivalent to that on Z[χ]. The existence

of such actions on the Moore spectra is non-trivial since the taking Moore spectra is NOT functorial. In
Section 3.3, we give an explicit construction of M(Z[χ]) with (Z/N)

×
-action suggested by Charles Rezk.

1A priori, the denominator of
Bk,χ
2k

is not well-defined since the ring Z[χ] is in general not a unique factorization domain

and has non-trivial unit group. But since Z[χ] is a Dedekind domain, its fractional ideals have unique factorizations. As a

result, the principal fractional ideal generated by
Bk,χ
2k

can be uniquely written as the difference of two actual ideals of Z[χ].
Thus the “denominator ideal” makes sense.
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● J(N) is the “J-spectrum with µN -level structure”. It is defined as the homotopy pullback of the arithmetic
fracture square (3.2.8):

J(N) ∏p S
0
KU/p (p

vp(N))

S0
Q (∏p S

0
KU/p (p

vp(N)))
Q

⌟
Rationalization

Hurewicz

Here, S0
KU/p (p

v) ∶= (KU∧
p )

h(1+pvZp)
is a (Z/pv)

×
-Galois extension of the K(1)-local sphere S0

KU/p. J(N)

is endowed with a (Z/N)
×
-action by assembling the Galois actions of (Z/pvp(N))

×
for each prime p ∣ N .

In particular, J ∶= J(1) is equivalent to S0
KU , the Bousfield localization of the sphere spectrum S0 at

KU , as discussed in [Bou79]. We call it the J-spectrum, because its Hurewicz map detects the image of
the stable J-homomorphism. The details of this construction are explained in Section 3.2.

Proposition. (3.4.7) There is a variant of the homotopy fixed point spectral sequence to compute π∗(J(N)hχ):

Es,t2 ≃ ExtsZ[(Z/N)×] (Z[χ], πt(J(N)))Ô⇒ πt−s (J(N)hχ) .

As the E2-page consists of derived χ-eigenspaces of π∗(J(N)), it is appropriate to call this spectral sequence
the “homotopy eigen(-spectrum) spectral sequence”.

This computation is carried out p-adically. For a p-adic Dirichlet character χ ∶ (Z/N)
×
→ C×

p , we construct

the Dirichlet K(1)-local sphere S0
K(1) (p

v)
hχ

in a similar fashion. We show in Proposition 3.5.3 that the

p-completion of J(N)hχ decomposes into a wedge sum of Dirichlet K(1)-local spheres. When N = p > 2 or 4,
the summands in this decomposition represent elements of finite order in the K(1)-local Picard group, first
defined in [HMS94]. Moreover, we notice the definitions of the Dirichlet J-spectra and K(1)-local spheres
depend on the group actions on the Moore spectra. In the case when N = 4 and p = 2, we observe in
Remark 4.2.11 that the Dirichlet K(1)-local spheres constructed using different group actions on the Moore
spectra are differed by the the exotic element in the K(1)-local Picard group at p = 2.

The homotopy groups of these Dirichlet K(1)-local spheres are computed by a homotopy fixed point
spectral sequence (HFPSS), whose E2-page consists of continuous group cohomology.

Corollary. (3.5.7) Write N = pv ⋅N ′, where p ∤ N ′. Then χ factorizes as χ = χp ⋅ χ
′ where χp and χ′ have

conductors pv and N ′, respectively. Then there is a HFPSS:

Es,2t2 = ExtsZpJZ×p×(Z/N ′)×K(Zp[χ],Z
⊗t
p ) ≃Hs

c (Z
×
p × (Z/N ′)

×
;Z⊗tp [χ−1])Ô⇒ π2t−s (S

0
K(1)(p

v)hχ) ,

where Z⊗tp [χ] is the representation associated to the character Z×p × (Z/N ′)
× (a,b)↦χp(a)χ′(b)at
ÐÐÐÐÐÐÐÐÐÐÐ→ (Zp[χ])×.

In a subsequent paper, we will relate the group cohomology H1
c (Z×p×(Z/N ′)

×
;Z⊗kp [χ−1]) in Corollary 3.5.7

to congruences of the p-adic Eisenstein series Ek,χ−1 , using Dieudonné theory of height 1 formal groups and
formal A-modules.

Assembling the computations of homotopy groups of the Dirichlet K(1)-local spheres in Section 4, we
record the homotopy groups of the Dirichlet J-spectra in Theorem 5.1.1. These homotopy groups are related
to the special values of the corresponding Dirichlet L-functions:

Theorem. (5.1.2) Assume N = pv > 1. For all integers k satisfying (−1)k = χ(−1), we have

π2k−1 (J(pv)hχ [
1

`(χ)
]) ≃ Z [χ]/I∣k∣,χ−1 , where `(χ) = {

`, if ∣ Im(χ)∣ is a power of a prime ` ≠ p;
1, otherwise.
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where the possible multiplicative difference of the ideals Ik,χ and Dk,χ of Z[χ] contains the principal ideal
(2) in Z[χ].

This computation of Dirichlet J-spectra allows us to compare the spectrum J(N) with the Dedekind
ζ-function attached to Q(ζN). The comparison does not work directly, as the latter has only zero special
values. Instead, we focus on totally real abelian extensions of Q.

Definition. (5.2.4) Let K/Q be a finite abelian extension and N be the smallest integer such that K ⊆ Q(ζN).
We define:

J(K) ∶= J(N)hGal(Q(ζN )/K)

Here, we identify Gal(Q(ζN)/K) ⊆ Gal(Q(ζN)/Q) ≃ (Z/N)
×
.

Theorem. (5.2.6) Let K/Q be a totally real finite abelian extension and pv be the smallest integer such that
K ⊆ Q(ζpv). Denote the Galois group Gal(Q(ζN)/K) by G. Then

π4t−1 (J(K) [
1

∣G∣
]) = Z [

1

∣G∣
]/DK,2t,

where DK,2t ∈ Z>0 is the denominator of ζK(1 − 2t).

The special values of ζK are closely related to the algebraic K-theory of OK, the ring of integers of K.
The precise formula of this connection is given by the Lichtenbaum-Quillen Conjecture, which is proved by
Voevodsky-Rost. By comparing the spectra J(K) and K(OK), we propose the following questions:

Question. (5.2.10) Let K/Q be a finite abelian extension. Is there a natural Gal(K/Q)-equivariant map of
KU -local E∞-ring spectra h(K) ∶ J(K)→ LKUK(OK) extending the KU -local Hurewicz map hKU?

J(K) LKUK(OK)

J = S0
KU LKUK(Z)

∃h(K)?

hKU

In addition, for an arbitrary number field K, how can we extract a “J-spectrum” from LKUK(OK)?

Moreover, we find the Brown-Comenetz duals of the Dirichlet J-spectra and K(1)-local spheres in Sec-
tion 5.3. This duality phenomenon resembles functional equations of the corresponding Dirichlet L-functions.

Theorem. (5.3.14) Let p be an odd prime. Then we have:

IKU (J(pv)hχ [
1

`(χ)
]) ≃ Σ2J(pv)hχ

−1
[

1

`(χ)
] Ô⇒ πt (J(p

v)hχ [
1

`(χ)
]) ≃ π−2−t (J(p

v)hχ
−1

[
1

`(χ)
]) .

We also find the Brown-Comenetz dual of J(N). The formula resembles the functional equation of the
corresponding Dedekind ζ-function.

Proposition. (5.3.16,5.3.18) IKUJ(N) ≃ Σ2EKU ∧ J(N) ∧M(Ẑ), where E is a finite CW-spectrum

E ∶= Σ−2(S−1 ∪2 e
0 ∪η e

2),

and M(Ẑ) is the Moore spectrum of the group of profinite integers Ẑ. Moreover, we have

IKUJ(4N) ≃ Σ2J(4N) ∧M(Ẑ) Ô⇒ πt(J(4N))∧ ≃ HomZ(π−2−t(J(4N)),Q/Z),

where (−)∧ is the profinite completion of an abelian group.

It is because of these observations that the Dirichlet J-spectra constructed in this paper are analogs
of Dirichlet L-functions in chromatic homotopy theory. We end the introduction with a table of analogy
between homotopy theory and L-functions.
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Chromatic Homotopy Theory L-functions

J ∶= S0
KU ζ(s)

J(K) ∶= J(N)hGal(Q(ζN )/K) ζK(s)

J(N)hχ
−1

L(s;χ)

S0
K(1)(p

v)hχ
−1

Lp(s;χ)

Homotopy Groups Denominators of Special Values

Brown-Comenetz Duality Functional Equation

Table 2. Comparisons of chromatic homotopy theory and L-functions

Notations and conventions.

● Denote the Teichmüller character by the Greek letter ω and denote the sheaf of invariant differentials on
various stacks by the boldface version of the same Greek letter ω.

● Cn is the cyclic group of order n and σ is the sign representation of C2.
● Denote the suspension spectrum Σ∞X+ of a based space X+ also by X+.
● XE and LEX are the Bousfield localization of a spectrum X at a homology theory E. In particular, we

denote LE(1) by L1. SpE is the category of E-local spectra.
● KU is the topological complex K-theory, KO is the topological real K-theory, and KR is Atiyah’s genuine
C2-equivariant Real K-theory in [Ati66]. K(R) is the algebraic K-theory spectrum for a ring R.

● K(1) is the Morava K-theory of height 1 at a prime p. When the prime needs to be specified, we write
XKU/p for the K(1)-localization of X.2

● We write S0
p for the p-complete sphere spectrum. When p > 2, we write S0

ωa for the p-complete sphere

spectrum with an action of (Z/p)
×

induced by the character ωa, where 0 ≤ a ≤ p − 2.

● Cp is the analytic completion of Qp, the algebraic closure of the rational p-adics.

Acknowledgments. I would like to thank Matt Ando for his constant guidance and support throughout
this project and my graduate studies; Mark Behrens for many helpful conversations and answers to my
questions, and for pointing out a very important issue that I overlooked in an earlier version of this paper;
Charles Rezk for suggesting Construction 3.3.2 that resolves the issue Mark Behrens has pointed out, and
for explaining to me how to think about group actions on spectra; Mike Hopkins for advising me to think
about the connections between L-functions and homotopy theory. I would also like to thank Patrick Allen,
William Balderrama, Agnès Beaudry, Eva Belmont, Sanath Devalapurkar, David Gepner, Paul Goerss, Peter
May, Lennart Meier, Mona Merling, Catherine Ray, Jay Shah, XiaoLin Danny Shi, Vesna Stojanoska, and
Foling Zou for many helpful discussions and comments on this project.

1. Dirichlet characters and modular forms

1.1. Dirichlet L-functions and Dedekind ζ-functions. Definitions and statements in this subsection
are from [Iwa72, §1, §2], unless otherwise specified.

Definition 1.1.1. A multiplicative map χ ∶ Z → C is called a Dirichlet character of modulus N if it is
nonzero only at integers coprime to N and it only depends on the residue class modulo N . Alternatively,

2When p = 2, K(1) ≃ KU/2. When p is odd, K(1) and KU/p are related by the Adams splitting : KU/p ≃ ⋁p−2i=0 Σ2iK(1).
As a result, K(1) and KU/p are Bousfield equivalent.
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a Dirichlet character is equivalent to a group homomorphism χ ∶ (Z/N)
×
→ C×. A Dirichlet character

χ ∶ Z → C of modulus N is said to be primitive if it is not of modulus M for any M < N . This N is called
the conductor of χ. Denote the trivial Dirichlet character that maps every nonzero integer to 1 by χ0.

The Dirichlet L-function associated to χ is defined to be the series:

L(s;χ) ∶=
∞
∑
n=1

χ(n)

ns
.

By definition, L(s;χ0) = ζ(s). Like the Riemann ζ-function, L(s;χ) has a Euler factorization:

L(s;χ) =∏
p

(1 − χ(p)p−s)−1.

As a function of s, L(s,χ) converges absolutely for all s with Re(s) > 0 and non-absolutely for Re(s) > 0 when
χ ≠ χ0. Thus L(s;χ) defines a holomorphic function on the half plane Re(s) > 0 (Re(s) > 1 if χ = χ0) and it
admits an analytic continuation to the whole complex plane (minus s = 1 if χ = χ0). Just as the Riemann
ζ function, L(s;χ) takes special values at negative integers. These values are related to the generalized
Bernoulli numbers.

Definition 1.1.2. The ordinary Bernoulli numbers are defined to by

F (t) =
tet

et − 1
=

∞
∑
k=0

Bk
tk

k!
.

Let χ be a Dirichlet character with conductor N . We define the generalized Bernoulli numbers associated
to χ by setting

(1.1.3) Fχ(t) =
N

∑
a=1

χ(a)teat

eNt − 1
=

∞
∑
n=0

Bk,χ
tk

k!
.

Remark 1.1.4. Notice that the conductor of the trivial character χ0 is 1. So we have Fχ0(t) = F (t) and
Bk,χ0 = Bk.

Proposition 1.1.5. Bk,χ = 0 unless (−1)k = χ(−1). In particular, Bk = 0 when k is odd.

Proposition 1.1.6. Let k be a positive integer. For any Dirichlet character χ ∶ (Z/N)
×
→ C×, we have

L(1 − k;χ) = −
Bk,χ

k
.

It now follows from (1.1.3) that L(1 − k;χ) ∈ Q(χ), where Q(χ) is the field extension of Q by the image of
χ. In particular, ζ(1 − k) ∈ Q.

Arithmetic properties of Bk and Bk,χ are summarized below:

Theorem 1.1.7 (Clausen-von Staudt, von-Staudt). [MS74, Theorem B.3, B.4]

(1) The denominator of Bk, expressed as a fraction in the lowest term is equal to the product of all primes
p with (p − 1) ∣ 2k.

(2) A prime divides the denominator of Bk
2k

if and only if it divides the denominator of Bk.

Theorem 1.1.8. [Car59, Theorem 1 and 3] Let χ ∶ (Z/N)
×
→ C× be a primitive Dirichlet character of

conductor N .

(1) If N is divisible by at least two distinct prime numbers, then
Bk,χ
k

is an algebraic integer. When N = pv,

the ideal of Z[χ] generated by the denominator of
Bk,χ
k

contains only prime ideal factors of (p).



ANALOGS OF DIRICHLET L-FUNCTIONS IN CHROMATIC HOMOTOPY THEORY 7

(2) If N = pv, p > 2, let g be a primitive φ(N)-th root of unity mod p.
Bk,χ
k

is integral unless p = (p,1 −

χ(g)gk) ≠ (1). In this case, when v = 1,

(1.1.9) pBk,χ ≡ p − 1 mod pvp(k)+1;

when v > 1,

(1.1.10) (1 − χ(1 + p))
Bk,χ

k
≡ 1 mod p.

(3) If N = 4, then

(1.1.11)
Bk,χ

k
≡
k

2
mod 1.

If N = 2v, v > 2, then
Bk,χ
k

is an algebraic integer.

We also define Dedekind ζ-functions attached to number fields.

Definition 1.1.12. [Lan94, page 160] Let K be a number field. We define

ζK(s) =∏
p

1

1 − ∣OK/p∣−s
,

where p ranges over all nonzero prime ideals of OK.

When K/Q is a finite abelian extension, K ⊆ Q(ζN) for some N by the Kronecker-Weber Theorem.
Gal(Q(ζN)/K) is a subgroup of Gal(Q(ζN)/Q). The latter is isomorphic to (Z/N)

×
by Lemma A.2.1.

Theorem 1.1.13. [Was97, Theorem 4.3] Let K/Q be a finite abelian extension. Then ζK and Dirichlet
L-functions are related by:

ζK(s) = ∏
χ∶(Z/N)×→C×

Gal(Q(ζN )/K)⊆kerχ

L(s,χ).

1.2. Eisenstein series. One way to study the Dirichlet L-functions is through modular forms, more pre-
cisely the Eisenstein series. Here, we give a brief review of the basic theory of modular forms from [Sil94].

Definition 1.2.1. A subgroup Γ of SL2(Z) is called a congruence subgroup if it contains all matrices
congruent to NI2 in SL2(Z) for some integer N > 0. Examples of congruence subgroups are

● Γ(N) = {(
a b
c d

) ∈ SL2(Z) ∣ a ≡ d ≡ 1, b ≡ c ≡ 0 mod N},

● Γ0(N) = {(
a b
c d

) ∈ SL2(Z) ∣ c ≡ 0 mod N},

● Γ1(N) = {(
a b
c d

) ∈ SL2(Z) ∣ a ≡ d ≡ 1, c ≡ 0 mod N}.

Let Γ ≤ SL2(Z) be a congruence subgroup. Γ = SL2(Z) when N = 1. A modular form of level Γ and weight
k is a holomorphic function over the complex upper half plane h satisfying the functional equation:

(1.2.2) f(γz) = (cz + d)kf(z) for all γ = (
a b
c d

) ∈ Γ, Im z > 0.

and is holomorphic at all cusps. The space of such modular forms is denoted by Mk(Γ), where Γ is omitted
if it is SL2(Z).
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Recall that the classical Eisenstein series of weight k attached to a lattice Λ ⊆ C is defined by

Gk(Λ) = ∑
w∈Λ/{0}

1

wk
.

This formal power series is absolutely convergent when k > 2. Let z ∈ h be a complex number in the upper
half plane and denote the lattice (zZ⊕Z) ⊆ C by Λ(z). Define

Gk(z) ∶= Gk(Λ(z)) = ∑
(m,n)≠(0,0)

1

(mz + n)k
.

This is a modular function of weight k and level SL2(Z). It is easy to see Gk(z) = 0 when k is odd. As
G2k(z + 1) = G2k(z) by (1.2.2), G2k is a function of q = e2πiz:

G2k(q) = 2ζ(2k) +
(2πi)2k

(2k − 1)!

∞
∑
n=1

σ2k−1(n)q
n, where σm(n) = ∑

0<d∣n
dm.

This is the q-expansion of G2k. As G2k(q) is a power series of q, it is holomorphic at the only cusp q = 0
and thus a modular form. Dividing G2k by the constant term in its q-expansion, we get the normalized
Eisenstein series E2k of weight 2k:

E2k(q) ∶=
G2k(q)

2ζ(2k)
= 1 −

4k

B2k

∞
∑
n=1

σ2k−1(n)q
n.

Let χ ∶ (Z/N)
×
→ C× be a primitive Dirichlet character of conductor N . We are now going to introduce the

twisting of Gk by χ following [Hid93, §5.1].

Definition 1.2.3. The Eisenstein series associated χ of weight k is defined to be

Gk(z;χ) ∶= ∑
(m,n)≠(0,0)

χ−1(n)

(mNz + n)k
.

This series is nonzero only when χ(−1) = (−1)k. It is not hard to see Gk(z;χ) ∈Mk(Γ1(N)). Moreover,
it also satisfies an automorphic equation for γ ∈ Γ0(N):

(1.2.4) Gk(γ ⋅ z;χ) = χ(d)(cz + d)
kGk(z;χ), for γ = (

a b
c d

) ∈ Γ0(N).

Definition 1.2.5. Mk(Γ0(N), χ) = {f ∈ Mk(Γ1(N)) ∣ f satisfies (1.2.4)}. In particular, Mk(Γ0(N), χ0) =
Mk(Γ0(N)).

Proposition 1.2.6. Set q = e2πiz and assume (−1)k = χ(−1). The q-expansion of Gk,χ is

Gk,χ(q) = 2L(k,χ−1) + 2N−k (
N

∑
l=1

χ−1(l)e
2πil
N )

(−2πi)k

(k − 1)!

⎛
⎜
⎜
⎜
⎝

∑
m≥0,n≥0
(n,N)=1

χ(n)nk−1qnm
⎞
⎟
⎟
⎟
⎠

.

When χ is primitive or χ = χ0, one can use the functional equation of L(s;χ−1) to normalize the constant
term of Gk,χ(z). We define

(1.2.7) Ek,χ(q) ∶=
Gk,χ(z; q)

2L(k,χ−1)
= 1 −

2k

Bk,χ

∞
∑
n=1

σk−1,χ(n)q
n, where σm,χ(n) = ∑

0<d∣n
χ(d)dm.
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Remark 1.2.8. E2k and Ek,χ can be expressed in terms of z as:

E2k(z) = ∑
(m,n)=1,m>0

1

(mz + n)2k
, Ek(z;χ) = ∑

(m,n)=1,m>0

χ−1(n)

(mNz + n)k
.

It is straight forward to check from these formulas that

G2k(z) = 2ζ(2k)E2k(z), Gk(z;χ) = 2L(k,χ−1)Ek(z;χ).

1.3. Moduli interpretations of modular forms. Modular forms are closely related to moduli stacks of
elliptic curves with level structures over C.

Definitions 1.3.1. Let Mell be the moduli stack of generalized elliptic curves over C. That is, cubic
curves with possible nodal singularities. Let N be a positive integer. Define the following moduli stacks:

● Mell(Γ0(N)) is the moduli stack for the pairs (C,H), where C is a generalized elliptic curve and H ⊆ C
is a subgroup of order N .

● Mell(Γ1(N)) is the moduli stack for the triples (C,H, η), where C is a generalized elliptic curve, H ⊆ C

is a subgroup of order N , and η ∶ Z/N
∼
Ð→H is an isomorphism.

Remark 1.3.2. Mell(Γ) =Mell when N = 1.

Proposition 1.3.3. For the stacks above, denote the sheaves of invariant differentials by ω. Then we have

Mk(Γ) ≃H0(Mell(Γ),ω⊗k).

It is not hard to see the forgetful map Mell(Γ1(N)) →Mell(Γ0(N)) is a (Z/N)
×
-torsor: g ∈ (Z/N)

×
≃

Aut(Z/N) acts by (C,H, η)↦ (C,H, η ○ g). As a result, there is a natural action of (Z/N)
×

on

H0(Mell(Γ1(N)),ω⊗k) ≃Mk(Γ1(N)).

Proposition 1.3.4. Let χ ∶ (Z/N)
×
→ C× be a Dirichlet character. Mk(Γ0(N), χ) defined in Definition 1.2.5

is isomorphic to Hom(Z/N)×-rep(Cχ−1 ,Mk(Γ1(N))).

Proof. It suffices to rephrase the automorphic equation (1.2.4) in terms of the (Z/N)
×
-action on the moduli

stack Mell(Γ1(N)). Consider the lattice Λ(z) = zZ⊕Z. There is a triple (C,H, η) associated to Λ(z):

C = C/Λ(z),H = Λ(z/N)/Λ(z) ⊆ C,η ∶ (Z/N)
∼
Ð→H,1↦ z/N.

For γ = (
a b
c d

) ∈ Γ0(N), its actions on the lattices are:

Λ(z)↦ Z(az + b)⊕Z(cz + b) = Λ(z),

Λ(z/N)↦ Z(az/N + b)⊕Z(cz/N + b) ≡ Λ(az/N) ≡ Λ(z/N) mod Λ(z),

z/N ↦ az/N + b ≡ az/N mod Λ(z).

Here the second line uses the facts c ≡ 0 mod N and a is invertible mod N . From this formula, the action
of γ is trivial when a ≡ 1 mod N , i.e. γ ∈ Γ1(N). For [γ] ∈ Γ0(N)/Γ1(N) ≃ (Z/N)

×
, its action on the triple

(C,H, η) is:

(C,H, η ∶ 1↦ z/N)z→ (C,H, η ○ [γ] ∶ 1↦ a↦ az/N).

Thus for f(z) ∈Mk(Γ0(N), χ) ≃ Hom(Z/N)×-rep(Cχ−1 ,Mk(Γ1(N))), we have

f(γ ⋅ z) = χ−1(a)(cz + d)kf(z) = χ(d)(cz + d)kf(z).

�
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2. From the J-homomorphism to the K(1)-local sphere

2.1. The J-homomoprhism and the e-invariant. The J-homomorphism is a group homomorphism
Jk,n ∶ πk(SO(n))→ πn+k(S

n). This map passes to a stable J-homomorphism Jk ∶ πk(SO)→ πk(S
0).

Definitions 2.1.1. The (unstable) J-homomoprhism is defined in the following ways:

(1) Loop spaces. An linear isometry of Rn restricts to a boundary preserving isometry of the unit ball Dn

and thus induces a selfmap Sn → Sn. From this, we get a continuous map gn ∶ SO(n) → ΩnSn. We
define

Jk,n ∶= πk(gn) ∶ πk(SO(n))Ð→ πk(Ω
nSn) ≃ πn+k(S

n).

(2) Framed cobordism. Geometrically, the image of the J-homomorphism identifies the framed k-dimensional
submanifolds of Sn+k whose underlying submanifolds are Sk. As the normal bundle of Sk ↪ Sn+k is
trivial, a framing of this embedding is equivalent a map f ∶ Sk → O(n). One can further show two
framings of the embedding Sk ↪ Sn+k are equivalent iff the associated maps are homotopical. Thus we
get a map Jk,n ∶ πk(O(n))→ πn+k(S

n).
(3) Thom space. A map f ∈ πk(SO(n)) ≃ πk+1(BSO(n)) induces a n-dimensional oriented vector bundle ξf

over Sk+1. The Thom space of ξf is a two-cell complex Th(ξf) = S
n ∪ en+k+1. Define Jk,n(f) to be the

gluing map of Th(ξf), i.e.

Sn+k = ∂en+k+1 Jk,n(f)
ÐÐÐÐ→ Sn ÐÐÐ→ Th(ξf).

Proposition 2.1.2. The definitions above are equivalent up to a sign.

Proposition 2.1.3. The J-homomorphisms Jk,n are compatible under stabilization. More precisely, let

in ∶ SO(n) ↪ SO(n + 1) be the map that sends an n × n orthogonal matrix A to (
A

1
). The following

diagram commutes:

πk(SO(n)) πn+k(S
k)

πk(SO(n + 1)) πn+k+1(S
k+1)

Jk,n

πk(in) Σ

Jk,n+1

Definition 2.1.4. We define the stable J-homomorphism to be the colimit:

Jk = colim
n

Jk,n ∶ πk(SO)Ð→ πk(S
0)

Remark 2.1.5. Jk,n stabilizes when n > k + 1.

Remark 2.1.6. The definitions of the J-homomorphism above can be phrased stably:

(1) The colimit of the maps gn in the first definition is a map g ∶ SOÐ→ Ω∞S∞. The induced map

πk(g) ∶ πk(SO)Ð→ πk (Ω
∞S∞) ≃ πk(S

0)

is then the k-th stable J-homomorphism.
(2) In terms of framed cobordism, the stable homotopy group πk(S

0) classifies the framed-cobordism classes
of k-dimensional manifolds with a framing on its stable normal bundle, when embedded in R∞. A framing
on the stable normal bundle of Sk is then a map f ∶ Sk → SO. Again if f1, f2 ∶ S

k → SO are homotopic,
then the corresponding stably framed k-dimensional manifolds are framed cobordant. From this point
view we get the stable J-homomorphism Jk ∶ πk(SO)→ πk(S

0).
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(3) f ∈ πk(SO) ≃ πk+1(BSO) induces a virtual vector bundle ξf of dimensional 0 on Sk+1. The Thom space

of ξf is a two-cell complex Th(ξf) = e
0 ∪ ek+1. Again, J(f) is defined to be the gluing map of the stable

two-cell complex Th(ξf).

Remark 2.1.7. The three definitions of the J-homomorphisms above lead to different directions in homotopy
theory. (1) leads to the units of ring spectra, studied in [ABG+14]. (2) is related to the work of Kervaire
and Milnor in [KM63]. (3) leads to the computation of the image of the J-homomorphism by Adams in
[Ada66], which we explain below.

Define the e-invariant of a stable map f ∶ S2k−1 → S0 as below. Consider the cofiber sequence:

S0 S0 ∪f e
2k S2k.

Apply complex K-theory homology KU to this sequence. As KU∗ is concentrated in even degrees, we get a
short exact sequence:

0 KU0(S
0) KU0(S

0 ∪f e
2k) KU0(S

2k) 0.

This is not only an extension of abelian groups, but also of KU0KU -comodules. As such, this short exact
sequence corresponds to an element

e(f) ∈ Ext1
KU0KU(KU(S0),KU(S2k)).

This is the e-invariant of f ∶ S2k−1 → S0.

Remark 2.1.8. KU∗KU is computed in [AHS71, Theorem 2.3]:

KU∗KU ≃ {f(u, v) ∈ Q((u, v)) ∣ f(ht, kt) ∈ Z [t, t−1,
1

hk
] ,∀h, k ∈ Z} ,

where t ∈KU2(KU). In particular,

KU0KU ≃ {f(w) ∈ Q((w)) ∣ f(Z) ⊆ Z} .

Theorem 2.1.9. [Ada66, Theorem 1.1–1.6] The image of the stable J-homomorphism Jk ∶ πk(SO)→ πk(S
0)

is described below:

(1) Jk is injective when k ≡ 0,1 mod 8.

(2) The image of J8k+3 is a cyclic group of order D4k+2, the denominator of B4k+2
8k+4

. The image of J8k−1 is
a cyclic group of order D4k or 2D4k.

(3) The image of J4k−1 in π4k−1(S
0) is a direct summand. The direct sum splitting is accomplished by the

homomorphism e′ ○ J4k−1 ∶ π4k−1(SO)↠ Z/D2k associated to the e-invariant.

2.2. K-theory and formal groups of height 1. In this subsection, we will discuss the relation between
complex K-theory and formal groups of height 1. In the end, we will identify Ext1

KU0KU(KU(S0),KU(S2k))
to a group cohomology. References on formal groups and chromatic homotopy theory can be found in [Ada95;
Hop99; Lur10].

Definition 2.2.1. A cohomology theory E is called complex oriented if it is multiplicative and it satisfies
the Thom isomorphism theorem for complex vector bundles. It is even periodic if E∗ is concentrated in
even degrees and there is a β ∈ E−2(pt) such that β is invertible in E∗.

Proposition 2.2.2. Let E be a complex oriented evenly periodic cohomology theory, then

(1) E∗(CP∞) ≃ E∗JtK where t ∈ E2(CP∞) is the first Chern class of the tautological line bundle ξ over CP∞.
(2) Let pi ∶ CP∞ × CP∞ → CP∞ be the projection map of the i-th component for i = 1,2. Then E∗(CP∞ ×

CP∞) ≃ E∗Jt1, t2K, where ti = p
∗
i c1(ξ).
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(3) The tensor product of line bundles over CP∞ induces a E0-formal group structure on Spf E(CP∞).

Denote this formal group associated to a complex-oriented cohomology theory E by ĜE.
(4) E(S2k) is identified with ω⊗k, the k-th tensor power of the sheaf of invariant differentials on ĜE.

Examples 2.2.3. Here are two examples of complex oriented cohomology theories and their associated
formal groups:

(1) For ordinary cohomology theory H, ĜH ≃ Ĝa is the additive formal group.

(2) For complex K-theory, ĜKU ≃ Ĝm is the multiplicative formal group.

Theorem 2.2.4 (Quillen). The formal group associated to the periodic complex cobordism MP ∶= ⋁
i∈Z

Σ2iMU

is the universal formal group. More precisely, the pair (MP0,MP0(MP )) classifies formal groups and
isomorphisms between formal groups.

As ĜMP is the universal formal group, one might wonder given a formal group over a ring R classified
by a map MP0 → R, is MP∗(−)⊗MP0 R a cohomology theory? The answer is yes when the map MP0 → R
satisfies certain flatness conditions. In particular, we have

Theorem 2.2.5 (Conner-Floyd). Let θ ∶ MP0 → KU0 be the map that classifies Ĝm. Then KU∗(X) ≃
MP0(X)⊗MP0 KU∗ and

KU0KU ≃KU0 ⊗MP0 MP0(MP )⊗MP0 KU0.

The map of Hopf algebroids θ ∶ (MP0,MP0(MP )) → (KU0,KU0KU) induces a map of comodule ext-
groups:

θ∗ ∶ Ext1
MP0MP (MP (S0),MP (S2k))→ Ext1

KU0KU(KU(S0),KU(S2k))

The e-invariant lives in the target and the source is on the E2-page of the Adams-Novikov spectral
sequence (ANSS):

Es,t2 = ExtsMP0MP (MP (S0),MP (St))Ô⇒ πt−s(S
0).

Theorem 2.2.6. The e-invariant map e ∶ π2k−1(S
0) → Ext1

KU0KU(KU(S0),KU(S2k)) factors through θ∗.
Moreover, θ∗ is an isomorphism when restricted the image of the J-homomorphism.

Remark 2.2.7. The computation of the 1-line in the ANSS and its comparison with the images of the J-
homomorphisms can be found in [Rav86, Section 5.3].

Thus, the image of the J-homomorphism is computed by its image under the e-invariant map in the
KU0KU -Ext groups. Completed at a prime p, these Ext-groups are identified with group cohomology.

Corollary 2.2.8. As MP0(MP ) classifies isomorphisms between formal group, SpecKU0KU is isomorphic

to the group scheme Aut(Ĝm) over Z.

Theorem 2.2.9. [Hov02] Let (A,Γ) be a Hopf algebroid.

(1) (SpecA,Spec Γ) is a groupoid scheme.
(2) There is an equivalence of abelian categories between (A,Γ)-comodules and quasicoherent sheaves over

the quotient stack SpecA//Spec Γ.

Corollary 2.2.10. The stack associated to the pair (KU0,KU0KU) is the classifying stack

BAut(Ĝm) ∶= SpecZ//Aut(Ĝm).

As a result, the e-invariant lives in

Ext1
KU0KU(KU(S0),KU(S2k)) ≃R1HomQcoh(BAut(Ĝm))(O,ω

⊗k)

≃H1(BAut(Ĝm),ω⊗k).
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The group scheme Aut(Ĝm) is not a constant group scheme over Z. However, it becomes one when
restricted to the closed points SpecFp ∈ SpecZ. This is even true over Spf Zp, the formal neighborhood of
SpecFp in SpecZ.

Lemma 2.2.11. Over Fp or Zp, Aut(Ĝm) ≃ Z×p as a constant pro-group scheme.

Thus for the p-adic e-invariant, it suffices to compute

(2.2.12) e ∈H1(BAut(Ĝm)∧p ,ω
⊗k) ≃H1 (BZ×p ,ω

⊗k) ≃H1
c (Z

×
p ; (KU∧

p )2k
),

where KU∧
p is the p-completion of the complex K-theory and Z×p acts on (KU∧

p )2k by the k-th power map.

2.3. The homotopy fixed point spectral sequence. Let G be a finite group. Recall that the group
cohomology of G is the derived functor of G-fixed points. If G acts on a spectrum E, then the group
cohomology of G with coefficients in π∗(E) computes homotopy groups of EhG, the homotopy fixed
point spectrum of E under the G-action.

Definition 2.3.1. Let G∧●
+ ∧ E be the group action cosimpicial spectrum. The homotopy fixed points of

this action is defined to be the totalization of this cosimplicial spectrum:

EhG ∶= Map(Σ∞EG+,E)G ≃ (Tot [Map(G●
+,E)])

G
.

The Bousfield-Kan spectral sequence associated to this cosimpicial spectrum is called the homotopy fixed
point spectral sequence (HFPSS), whose E2-page is identified with

(2.3.2) Es,t2 =Hs(G;πt(E))Ô⇒ πt−s(E
hG).

In (2.2.12), we showed that the p-adic e-invariant is in H1 (Z×p ; (KU∧
p )2k

), where Z×p acts on the p-adic

K-theory spectrum by the Adams operations. In [DH04], Devinatz and Hopkins defined EhG for pro-finite
groups and showed that the E2-page of the associated HFPSS consists of continuous group cohomology of
G. Moreover, they proved

Theorem 2.3.3. Let Z×p acts on the p-adic K-theory spectrum by Adams operation. Then the homotopy fixed

points (KU∧
p )

hZ×p is equivalent to S0
K(1), the K(1)-local sphere. Here, S0

K(1) is the Bousfield localization

of the sphere spectrum S0 at the Morava K-theory K(1) ∶=KU/p.

For a purpose of this paper, we need to study finite Galois extensions of S0
K(1) in the sense of [Rog08].

Definition 2.3.4. Define S0
K(1)(p

v) to be the homotopy fixed point spectrum (KU∧
p )

h(1+pvZp)
under the

Adams operations. This notation was used in [LN12, Definition 5.10].

S0
K(1)(p

v) is a (Z/pv)
×
-Galois extension of S0

K(1). This shows that there is a Galois correspondence

between open subgroups of Z×p and finite Galois extensions of S0
K(1). We consider the following family of

open subgroups of Z×p nested in a descending chain for p > 2:

Z×p ⊋ 1 + pZp ⊋ 1 + p2Zp ⊋ 1 + p3Zp ⊋ ⋯,
and for p = 2:

Z×2 = 1 + 2Zp ⊋ 1 + 22Zp ⊋ 1 + 23Zp ⊋ ⋯.

Now we are going to compute π∗ (S
0
K(1)(p

v)) using HFPSS, whose E2-page is

(2.3.5) Es,t2 =Hs
c (1 + pvZp; (KU∧

p )t)Ô⇒ πt−s (S
0
K(1)(p

v)) .

One reference of this computation (and also the HFPSS at height n) is [Hen17]. There are two cases.



14 NINGCHUAN ZHANG

Case I: p > 2 or p = 2 and v ≥ 2. In this case, Z×p and 1+4Z2 are pro-cyclic. Let g be a topological generator

in Z×p for p > 2 and in 1+4Z2 for p = 2. Then for p > 2, 1+pvZp = ⟨g(p−1)pv−1⟩ and for p = 2, 1+2vZ2 = ⟨g2v−2⟩.

Let n = 1 if G = Z×p and n = (p − 1)pv−1 if G = 1 + pvZp for p > 2, and n = 2v−2 if G = 1 + 2vZ2. The minimal
continuous projective resolution for Zp in ZpJGK is

(2.3.6) 0 ZpJGK ZpJGK Zp 0.
1−gn gn↦1

Since the length of the resolution is 1, the HFPSS collapses on E2-page. The p-adic Adams operations on
KU∧

p realize (KU∧
p )2t

as the t-th power representation of G. From this we get when G = Z×p for p > 2:

Hs
c (Z

×
p ; (KU∧

p )t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Zp, s = 0,1 and t = 0;

Z/pvp(k)+1, s = 1 and t = 2(p − 1)k;
0, otherwise.

(2.3.7)

Ô⇒ πi (S
0
K(1)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Zp, i = 0,−1;

Z/pvp(k)+1, i = 2(p − 1)k − 1;
0, otherwise.

(2.3.8)

and when G = 1 + pvZp (v > 1 if p = 2):

Hs
c (1 + p

vZp; (KU∧
p )t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Zp, s = 0,1 and t = 0;

Z/pvp(k)+v, s = 1 and t = 2k ≠ 0;
0, otherwise.

Ô⇒ πi (S
0
K(1)(p

v)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Zp, i = 0,−1;

Z/pvp(k)+v, i = 2k − 1 ≠ −1;
0, otherwise.

(2.3.9)

Case II: p = 2 and G = Z×2 . In this case, Z×2 is not pro-cyclic. Rather, we have

Z×2 ≃ {±1} × (1 + 4Z2).

Notice (KU∧
2 )hZ/2 ≃KO∧

2 , where Z/2 acts by complex conjugation on KU∧
2 . The homotopy groups of KO∧

2

are given by:

(2.3.10)
i mod 8 0 1 2 3 4 5 6 7
πi(KO

∧
2 ) Z2 Z/2 Z/2 0 Z2 0 0 0

Let g ∈ 1 + 4Z2 be a topological generator. g acts on π4l by multiplication by g2l and on π8l+1 and π8l+2 by
identity. The E2-page of the HFPSS is

(2.3.11) Es,t2 =Hs
c (1 + 4Z2;πt(KO

∧
2 )) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Z2, s = 0,1 and t = 0;
Z/2, s = 0,1 and t ≡ 1,2 mod 8;

Z/2v2(k)+3, s = 1 and t = 4k ≠ 0;
0, otherwise.

Proposition 2.3.12. The extension problems of this spectral sequence are trivial.

Proof. We need to solve the extension problems when t− s = 0 or t− s ≡ 1 mod 8. The following explanation
is from Mark Behrens.

The extension when t − s = 0 is trivial, because there is no non-trivial extension of Z/2 by Z2.
When t−s ≡ 1 mod 8, we recall that the Hopf element η ∈ π1 (S0) has order 2. η is represented in (2.3.11)

by the non-zero element of H0(1 + 4Z2;π1(KO
∧
2 )) = Z/2. If the extension at t − s = 1 were nontrivial, then
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π1 (S0
K(1)) ≃ Z/4. From the short exact sequence

0 H1
c (1 + 4Z2;π0(KO

∧
2 )) π1 (S0

K(1)) H0
c (1 + 4Z2;π1(KO

∧
2 )) 0,

η would then have order 4 in π1 (S0
K(1)). This contradicts the fact that the order of η ∈ π1(S

0) is 2.

For the general t−s = 8k+1 case, replace η by βk ⋅η ∈ π8k+1(KO) in the argument above, where β ∈ π8(KO)
is the Bott element. �

In conclusion, we get when p = 2,

(2.3.13) πi (S
0
K(1)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 ⊕Z/2, i = 0;
Z2, i = −1;

Z/2⊕Z/2, i ≡ 1 mod 8;
Z/2, i ≡ 0,2 mod 8 and i ≠ 0;

Z/2v2(k)+3, i = 4k − 1 ≠ −1;
0, otherwise.

Alternatively, we can apply HFPSS on G = Z×2 directly. The E2-page is computed using the Hochschild-
Serre spectral sequence (HSSS) whose E2-page is

(2.3.14) Ep,q2 =Hp
c (1 + 4Z2;Hq(Z/2; (KU∧

2 )t))Ô⇒Hp+q
c (Z×2 ; (KU∧

2 )t).

This spectral sequence collapses on the E2-page and we have

Hs
c (Z

×
2 ; (KU∧

2 )t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2, s = 0,1 and t = 0;

Z/2v2(k)+3, s = 1 and t = 4k ≠ 0;
Z/2, s = 1 and t = 4k + 2;
Z/2, s ≥ 2 and t even;
0, otherwise.

3. Constructions of the Dirichlet J-spectra and K(1)-local spheres

Let χ ∶ (Z/N)
×
→ C× be a primitive Dirichlet character of conductor N . In this section, we construct

J(N)hχ, the Dirichlet J-spectrum in three steps:

(1) Identify an integral model of the J-spectrum, a ring spectrum whose Hurewicz map detects the image
of the J-homomorphism in π∗(S

0).
(2) Define J(N), “the J-spectrum with µN -level structure” using local structures of the finite group scheme

µN and the Hopkins-Miller theorem. J(N) comes with a natural (Z/N)
×
-action by assembling the

(Z/pv)
×
-Galois action at each prime.

(3) Construct a Moore spectrum M(Z[χ]) with a (Z/N)
×
-action that lifts the (Z/N)

×
-action on Z[χ]

induced by χ. Here Z[χ] is the subalgebra of C generated by the image of χ. This construction is
non-trivial since taking Moore spectrum is not functorial. We give an explicit construction of the Moore
spectra with group actions suggested by Charles Rezk.

From these data, we define the Dirichlet J-spectrum associated to χ by

J(N)hχ ∶= Map (M(Z[χ]), J(N))
h(Z/N)×

.

This definition leads to a spectral sequence whose E2-page consists of derived χ-eigenspaces of π∗(J(N)):

Es,t2 ≃ ExtsZ[(Z/N)×] (Z[χ], πt(J(N)))Ô⇒ πt−s (J(N)hχ) .

The actual computation of J(N)hχ is carried out by studying its local structures. Rationally, the Dirichlet
J-spectra are contractible unless χ is trivial. Completed at each prime, the J(N)hχ splits into a wedge sum
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of Dirichlet K(1)-local spheres. The Dirichlet K(1)-local spheres are constructed in a similar way as the
Dirichlet J-spectra, but the p-adic Moore spectra with a prescribed (Z/N)

×
-action induced χ is constructed

by Cooke’s obstruction theory in [Coo78]. This splitting of p-completion of integral Moore spectra uses the
uniqueness part of Cooke’s obstruction theory.

3.1. An integral model of the J-spectrum. In the previous section, we have explained the relations
between the images of the stable J-homomorphisms and the K(1)-local spheres:

Im(J4k−1)
∧
p ≃ π4k−1 (S0

K(1)) , k > 0.

We are now going to define an integral J-spectrum by assembling the K(1)-local spheres at each prime.

Theorem 3.1.1. [Bou79, Corollary 4.5, 4.6] Let J = S0
KU , the Bousfield localization of the sphere spectrum

S0 at complex K-theory.

(1) The J-spectrum and the KU/p-local spheres are related by the arithmetic fracture square:

(3.1.2)

J ∶= S0
KU ∏p S

0
KU/p

S0
Q (∏p S

0
KU/p)Q

⌟
LQ

hQ

Here hQ is the rational Hurewicz map and LQ is the rationalization map.
(2) Denote the denominator of B2k/4k by D2k. We have:

(3.1.3) πi(J) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z⊕Z/2, i = 0;
Q/Z, i = −2;

Z/D∣2k∣, i = 4k − 1 ≠ −1;
Z/2⊕Z/2, i ≡ 1 mod 8;

Z/2, i ≡ 0,2 mod 8 and i ≠ 0;
0, otherwise.

Corollary 3.1.4. J∧p ≃ S0
KU/p and J(p) ≃ S

0
E(1) is the Bousfield localization of S0 at E(1) ∶= BP ⟨1⟩.

Remark 3.1.5. J ∶= S0
KU is an E∞-ring spectrum since it is the localization of an E∞-ring spectrum by

[EKM+97].

Proof. (3.1.2) is the almost same homotopy pullback diagram for S0
KU as in the proof of [Bou79, Corollary

4.7], except for the lower left corner – the rationalization of S0
KU is a priori S0

KUQ, where KUQ ∶=KU ∧MQ
is the rational K-spectrum. Now it remains to show KUQ and HQ are Bousfield equivalent. This follows
from the facts that KUQ and the periodic HPQ ∶= ⋁iΣ2iHQ are equivalent cohomology theories via the
Chern character map and that HPQ is Bousfield equivalent to HQ.

The computation of π∗(J) is the integral version of that of the π∗ (S
0
E(1)) in [Lur10, Theorem 6, Lecture

35]. The arithmetic fracture square (3.1.2) induces a long exact sequence of homotopy groups:

⋯→ πi(J)Ð→ πi (S
0
Q)⊕∏

p

πi (S
0
KU/p)Ð→

⎛

⎝
∏
p

πi (S
0
KU/p)

⎞

⎠
⊗QÐ→ πi−1(J)→ ⋯
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Notice that (∏p πi (S
0
KU/p)) ⊗ Q = 0 unless i = 0 or −1 and πi (S

0
Q) = 0 unless i = 0, we have πi(J) ≃

∏p πi (S
0
KU/p) unless i ∈ {−2,−1,0}. In those three cases, there is an exact sequence:

0→ π0(J)→ Q⊕∏
p

Zp ⊕Z/2
h0
Ð→∏

p

Qp → π−1(J)→∏
p

Zp
h−1
ÐÐ→∏

p

Qp → π−2(J)→ 0.

As h0 is surjective and h−1 is injective, we have

π0(J) ≃ Z⊕Z/2, π−1(J) = 0, π−2(J) ≃ Q/Z.

For i ≠ 0,−1,−2, we recover πi(J) from Section 2.3 and Theorem 1.1.7. �

Remark 3.1.6. We call S0
KU the J-spectrum because the Hurewicz map (also the KU -localization map)

S0 Ð→ S0
KU detects the image of J4k−1. But πk(J) is not the same as the image of the stable J-homomorphism

in general. The spectrum J is non-connective and has an extra Z/2-summand in π0(J) and π8k+1(J) for
k > 0. For details, see [Ada66].

3.2. J-spectra with level structures. We will now add level structures to the J-spectrum. Let µN be
the N -torsion sub-group scheme of Ĝm. DefineMmult(N) to be the moduli stack of globally height 1 formal
groups with µN -level structures. R-points of Mmult(N) are given by:

Mmult(N)(R) ∶= {(Ĝ, η ∶ µN
∼
Ð→ Ĝ[N]) ∣

Ĝ is a formal group over R
that has height 1 at all primes

} .

The local structures of Mmult(N) are determined by the local behaviors of µN .

Lemma 3.2.1. Ĝm has no non-trivial finite subgroup over Q. Over Zp, finite subgroups of Ĝm are of the

form µpv for some v ≥ 0. As a result, (µN)Q ≃ 0 for all N and (µN)
∧
p ≃ µpv , where v = vp(N).

Proof. This follows from the facts that EndQ(Ĝm) ≃ Q and EndZp(Ĝm) ≃ Zp. �

Proposition 3.2.2. (Mmult(N))Q ≃ (Mmult)Q. Fix a prime p and let v = vp(N), we have

Mmult(N)∧p ≃Mmult(p
v)∧p ≃ B(1 + pvZp).

Corollary 3.2.3. Mmult(N) ≃Mmult(2N) for any odd number N .

Proof. This follows from the fact (Z/2N)
×

is canonically isomorphic (Z/N)
×

if N is odd. �

Theorem 3.2.4 (Hopkins-Miller, Goerss-Hopkins). [Rez98, Theorem 2.1] Let FG denote the category whose
objects are pairs (κ,Γ) where Γ is a finite height formal group over a finite field k of characteristic p and
whose morphisms are pairs of maps (i, f) ∶ (κ1,Γ1) → (κ2,Γ2), where i ∶ κ1 → κ2 is a ring homomorphism

and f ∶ Γ1
∼
Ð→ i∗Γ2 is an isomorphism of formal groups.

Then there exists a functor (κ,Γ)→ Eκ,Γ from FGop to the category of E∞-ring spectra, such that

(1) Eκ,Γ is a commutative ring spectra.
(2) There is a unit in π2(Eκ,Γ).
(3) πoddEκ,Γ = 0, which implies Eκ,Γ is complex-oriented.
(4) The formal group associated to Eκ,Γ is the universal deformation of (κ,Γ).

Proposition 3.2.5. There is a sheaf Otop
K(1) of K(1)-local E∞-ring spectra over the stack Ĥ(1) ≃ BZ×p ∶=

Spf Zp//Z×p such that

Γ (Otop
K(1),BZ×p) ≃ S

0
K(1), Γ (Otop

K(1),B(1 + pvZp)) ≃ S0
K(1)(p

v) ∶= (KU∧
p )

h(1+pvZp)
.
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Remark 3.2.6. Let Ĥ(h) be the moduli stack of formal groups over p-complete local rings with height h
reductions modulo the maximal ideal. The Hopkins-Miller theorem and the Goerss-Hopkins theorem imply

there is a sheaf of K(h)-local E∞-ring spectra Otop
K(h) over Ĥ(h) whose global section is the K(h)-local sphere

S0
K(h). For the algebro-geometric properties of the stack Ĥ(h), see [Goe08, Chapter 7].

Corollary 3.2.9 implies Mmult(N)∧p ≃ Mmult(p
v)∧p → (Mmult)

∧
p is a (Z/pv)

×
-torsor for each prime p.

Thus by Proposition 3.2.5 we can define J(N), the J-spectrum with µN -level structure by setting

J(N)∧p ∶= O
top
K(1)(Mmult(p

v)) ≃ S0
KU/p(p

v) and J(N)Q = S0
Q as follows:

Construction 3.2.7. J(N) is the homotopy pullback of the following arithmetic fracture square as in
(3.1.2):

(3.2.8)

J(N) ∏p S
0
KU/p (p

vp(N))

S0
Q (∏p S

0
KU/p (p

vp(N)))
Q

⌟
LQ

hQ

Here hQ is the rational Hurewicz map and LQ is the rationalization map. hQ exists because the lower right
corner in the diagram is a rational ring spectrum.

The J(N) defined above satisfies the prescribed local properties:

Corollary 3.2.9. J(N)Q ≃ S0
Q for all N and J(N)∧p ≃ S0

K(1)(p
v), where v = vp(N). Moreover, J(N) ≃

J(2N) for any odd number N .

Proposition 3.2.10. J(N) admits a natural (Z/N)
×
-action such that

● (Z/N)
×

acts on J(N)Q trivially.

● (Z/N)
×

acts on J(N)∧p ≃ S
0
K(1)(p

v) by the Galois action of its quotient group (Z/pv)
×
.

Proof. Since the spectrum S0
K(1)(p

v) is a (Z/pv)
×
-Galois extension of S0

K(1), it admits a natural (Z/pv)
×
-

action. As a result the product ∏p S
0
KU/p (p

vp(N)) admits a natural (Z/N)
×
≃∏p∣N (Z/pv)

×
-action. (When

p ∤ N , (Z/N)
×

acts on S0
KU/p trivially). The spectrum (∏p S

0
KU/p (p

vp(N)))
Q

in the lower right corner of

(3.2.8) then inherits a (Z/N)
×
-action from that on ∏p S

0
KU/p (p

vp(N)).

We now need to check the rational Hurewicz map hQ in (3.2.8) is (Z/N)
×
-equivariant. As both spectra are

rational, it suffices to check the induced maps on homotopy groups are equivariant by Cooke’s obstruction the-
ory (see Section 3.3). Since π∗(S

0
Q) is concentrated in π0 and (Z/N)

×
acts on it trivially, it reduces to checking

(Z/N)
×

acts π0 (S0
KU/p (p

vp(N))Q) trivially. Recall from Definition 2.3.4, S0
KU/p(p

v) ∶= (KU∧
p )

h(1+pvZp)
. The

HFPSS in Section 2.3 shows

π0 (S0
KU/p (p

v)Q) ≃H
0
c (1 + pvZp;π0 (KU∧

p ))⊗Q.

As the Adams operation ψa acts on π0 (KU∧
p ) trivially for all a ∈ Z×p , the residual (Z/pv)

×
-action on the

group cohomology H∗ (1 + pvZp;π0 (KU∧
p )) is also trivial. Hence (Z/pv)

×
acts trivially on π0 (S0

KU/p (p
v)Q).

We have shown the rational Hurewicz map hQ is (Z/N)
×
-equivariant. Then J(N) as the homotopy

pullback in (3.2.8) of a diagram of (Z/N)
×
-equivariant maps of spectra has a natural (Z/N)

×
-action with

the prescribed local properties. �
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Proposition 3.2.11. J(N) is a KU -local E∞-ring spectrum, with (Z/N)
×

acting on it by E∞-ring auto-
morphisms as described in Proposition 3.2.10.

Proof. This proposition contains three parts:

(1) J(N) is an E∞-ring spectrum since it is the homotopy pullback of a diagram of E∞ maps between
E∞-ring spectra.

(2) J(N) is KU -local since J(N)∧p ≃ S
0
KU/p (p

vp(N)) is KU/p-local for all primes p by Corollary 3.2.9.

(3) The action of (Z/pvp(N))
×

on J(N)∧p ≃ S0
KU/p (p

vp(N)) is E∞ by the Goerss-Hopkins theorem. Thus

the action of (Z/N)
×
≃ ∏p∣N (Z/pvp(N))

×
is E∞ on the upper right corner of (3.2.8). This implies the

induced (Z/N)
×
-action on lower right corner is also E∞. The trivial (Z/N)

×
-action on S0

Q is E∞. We

conclude (Z/N)
×

acts by E∞-ring maps on J(N) in Proposition 3.2.10, since the action is assembled
from E∞-actions on the other three corners of (3.2.8).

�

Remark 3.2.12. The homotopy fixed points J(N)h(Z/N)× is not equivalent to J , unless N is a power of 2.
As a result, J(N) is in general NOT a (Z/N)

×
-Galois extension of J . One explicit example is when N = 3,

we have

(J(3)h(Z/3)
×
)
∧

2
≃ (S0

KU/2)
h(Z/3)×

≃ (S0
KU/2)h(Z/3)× ≃ (BΣ2)KU/2 /≃ S0

KU/2 ≃ J
∧
2 .

Here we use the following facts:

● Homotopy fixed points commute with p-completion.
● J(3)∧2 ≃ S0

KU/2 by Corollary 3.2.9.

● Homotopy fixed points of finite group actions in SpK(1) are equivalent to homotopy orbits.

● (Z/3)
×

acts on S0
KU/2 trivially and (Z/3)

×
≃ C2 ≃ Σ2.

● (BΣp)+ ≃ S
0
KU/p × S

0
KU/p in SpK(1) by [Hop14, Lemma 3.1].

In general, J(N)h(Z/N)× is equivalent to J after inverting ∏p∣N(p − 1).

Parallel to (3.1.3), we now compute π∗(J(N)).

Proposition 3.2.13. The computation of π∗(J(N)) has two cases: 4 ∣ N and N is odd (since J(N) ≃ J(2N)
for odd N). Define D2k,N by

D2k,N = {
ND2k/(2Π), if 4 ∣ N ;
ND2k/Π, if 2 ∤ N,

where Π = ∏
p∣N,(p−1)∣(2k)

p.

When 4 ∣ N , we get

(3.2.14) πi(J(N)) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Z, i = 0;
Q/Z, i = −2;

Z/D∣2k∣,N , i = 4k − 1 ≠ −1;
Z/N, i ≡ 1 mod 4;

0, otherwise.
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When N is odd, we get

πi(J(N)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z⊕Z/2, i = 0;
Q/Z, i = −2;

Z/D∣2k∣,N , i = 4k − 1 ≠ −1;
Z/N ⊕Z/2⊕Z/2, i ≡ 1 mod 8;

Z/N, i ≡ 5 mod 8;
Z/2, i ≡ 0,2 mod 8 and i ≠ 0;
0, otherwise.

Remark 3.2.15. One can check from (3.2.14) that

Hom(πi(J(4N)),Q/Z) ≃ (π−2−i(J(4N)))∧

holds for all N and i, where (−)∧ is the profinite completion of a group. The formula is true up to summands
of Z/2 for J(N) when N is odd. We will see in Corollary 5.3.18 that this isomorphism is the result of

Brown-Comenetz duality IKU(J(4N)) ≃ Σ2J(4N)∧M(Ẑ). In particular, π4k−1(J(4)) ≃ π4k−1(J) = Z/D∣2k∣,
whose order is equal to the denominator of ζ(1−2k) (expressed as a fraction in lowest terms). The suggested
Brown-Comenetz duality for J(4) is similar to the functional equation of the Riemann ζ-function:

ζ(2k) =
(2πi)2k

2(2k − 1)!
⋅ ζ(1 − 2k).

3.3. Constructing Moore spectra with group actions. Another ingredient needed to construct the
Dirichlet J-spectra and K(1)-local spheres is a Moore spectrum with a (Z/N)

×
-action induced by a (p-adic)

Dirichlet character χ ∶ (Z/N)
×
→ C× (or C×

p). The first observation is following:

Lemma 3.3.1. There is a unique number n such that χ factorizes as

χ ∶ (Z/N)
×

Cn (Z[ζn])
× C×, when χ is C-valued;

χ ∶ (Z/N)
×

Cn (Zp[ζn])× C×
p , when χ is Cp-valued,

where Cn is the cyclic group of order n and the second maps send a generator g ∈ Cn to a primitive n-th root
of unity ζn.

Then it suffices to construct the Moore spectra M(Z[ζn]) and M(Zp[ζn]) with Cn-actions such that the
induced Cn-action on H0 (equivalently π0) is equivalent to that on Z[ζn] and Zp[ζn]. The latter is called the
integral/p-adic cyclotomic representation of Cn. Properties of such representations needed in this subsection
are summarized in Appendix A.

We can further reduce to cases n = pv by noting from Lemma A.1.2:

Z[ζn] ≃⊗
p∣n

Z[ζpvp(n)] Zp[ζn] ≃⊗
q∣n

Zp[ζqvq(n)],

non-equivariantly
ÔÔÔÔÔÔÔ⇒ M(Z[ζn]) ≃⋀

p∣n
M(Z[ζpvp(n)]) M(Zp[ζn]) ≃⋀

q∣n
M(Zp[ζqvq(n)]).

The constructions now split into three cases:

(1) In the integral case, we give an explicit construction suggested by Charles Rezk.
(2) The p-adic case where n = pv is the p-completion of the corresponding integral case.
(3) The p-adic case where (n, p) = 1 uses Cooke’s obstruction theory [Coo78] to lift group actions on homo-

topy groups to the homotopy category of spectra. The comparison of this case with the integral case
uses the obstruction theory to uniqueness of the lifting.

The integral case.
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Construction 3.3.2 (Charles Rezk). From the short exact sequence of Cpv -representations in Lemma A.1.3:

(3.3.3) 0 Z[ζpv ] Z[Cpv ] Z[Cpv−1] 0,

we define M(Z[ζpv ]) as the de-suspension of the cofiber of the quotient map Cpv ↠ Cpv−1 . That is, there is
a cofiber sequence:

(3.3.4) S0⋀(Cpv)+ S0⋀(Cpv−1)+ ΣM(Z[ζpv ]).

M(Z[ζpv ]) inherits a natural (Z/pv)
×
-action from its suspension as the cofiber of a Cpv -equivariant map.

Proposition 3.3.5. M(Z[ζpv ]) constructed above is a Moore spectrum for Z[ζpv ]. The induced (Z/pv)
×
-

action on H0(M(Z[ζpv ]);Z) is equivalent to the cyclotomic action of Cpv on Z[ζpv ].

Proof. Applying H∗(−;Z) to the cofiber sequence (3.3.4), we can show that M(Z[ζpv ]) is a Moore spectrum.
The rest follows from (3.3.3). �

Below are some examples of the Cpv -equivariant cell structures of ΣM(Z[ζpv ]):

⋆

[0]1

0 1

⋆

[0]1

0 1 2

⋆

[0]1

0 1 2 3 4 5 6

[1]4 [0]4

⋆

[2]4 [3]4

0

41

5

2

6 3

7

[0]3

⋆

[1]3 [2]3

6 3 0

7

4

1 8

5

2

Figure 1. Cpv -cell structures of ΣM(Z[ζpv ]) for pv = 2,3,7,8,9

● ⋆ is the base point and is fixed by the Cn-action.
● [a]b ∶= (a mod b) is the label of (non-equivariant) 0-cells.
● a ∶= (a mod n) is the label of (non-equivariant) 1-cells.
● g ∈ Cn ≃ Z/n acts on the labels by mapping (a mod b) to (a + g mod b).

Here is another description of this construction:

(1) M(Z[ζ2]) ≃ S
σ−1, where σ is the sign representation of C2.

(2) Cn acts on C by multiplication by n-th roots of unity. Denote the associated Cn-representation by ρcyclo

and the representation sphere by Sρcyclo . When n = p, the Cp-cell structure of ΣM(Z[ζp]) above shows

Sρcyclo ≃ ΣM(Z[ζp]) ∪ (Cp ×D
2).

As a result, M(Z[ζp]) is the 1-skeleton in this equivariant cell structure of the representation sphere
Sρcyclo .

(3) Foling Zou has observed and proved the following relation between M(Z[ζpv ]) and M(Z[ζp]) via private
conversations with the author:

Proposition 3.3.6 (Foling Zou). There is a Cpv -equivariant equivalence:

M(Z[ζpv ]) ≃ (Cpv)+⋀
Cp

M(Z[ζp]),

where a ∈ Z/p ≃ Cp acts on Z/pv ≃ Cpv by sending (b mod pv) to (b + apv−1 mod pv).
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Proof. Notice that Cpv−1 ≃ Cpv/Cp, we can rewrite this quotient as pointed sets by

(Cpv−1)+ ≃ S
0
⋀
Cp

(Cpv)+,

where Cp acts on Cpv as described in the proposition. From this we get:

ΣM(Z[ζpv ]) ∶=Cofib (S0
⋀(Cpv)+ Ð→ S0

⋀(Cpv−1)+)

≃Cofib
⎛

⎝
S0
⋀(Cp)+⋀

Cp

(Cpv)+ Ð→ S0
⋀S0

⋀
Cp

(Cpv)+
⎞

⎠

≃Cofib (S0
⋀(Cp)+ Ð→ S0

⋀S0)⋀
Cp

(Cpv)+

≃ΣM(Z[ζp])⋀
Cp

(Cpv)+.

�

Taking external smash product of M(Z[ζpv ]) with the prescribed Cpv -actions over all p ∣ n, we have
constructed a Moore spectrum M(Z[ζn]) with a Cn-action such that the induced action on H0(−;Z) is
equivalent to the cyclotomic action of Cn. We now give an explicit description of the Cn-equivariant simplicial
structure of M(Z[ζn]).

Write n = pv11 ⋯pvmm . Xn ∶= ΣmM(Z[ζn]) is constructed as follows:

(1) Set the 0-th skeleton by sk0Xn ∶= ⋆∐Cn/Cp1⋯pm , where ⋆ is the base point fixed by the (Z/N)
×
-action.

(2) Assuming we have defined skk−1Xn for k <m, then define the k-th skeleton to be:

skkXn ∶= skk−1Xn⋃
⎛

⎝
∐

i1<⋯<im−k
Cn/Cpi1⋯pim−k

⎞

⎠
×∆k.

The attaching map of an equivariant k-simplex Cn/Cpi1⋯pim−k ×∆k is described by the following:

● The 0-th face Cn/Cpi1⋯pim−k ×∆k
[0] is attached to the base point ⋆.

● Let {j1 < ⋯ < jk} be the complement of {i1,⋯im−k} ⊆ {1,⋯,m}. Then the l-th face Cn/Cpi1⋯pim−k×∆k
[l]

for 1 ≤ l ≤ k is attached to the equivariant (k − 1)-complex

Cn/Cpi1⋯pim−k ⋅pjl ×∆k−1

via the quotient map of orbits.
(3) The top simplex is Cn × ∆m. The 0-th face Cn × ∆m

[0] is attached to the base point ⋆. The l-th face

Cn × ∆m
[l] for 1 ≤ l ≤ m is attached to the (m − 1)-equivariant simplex Cn/Cpl × ∆m−1 via the quotient

map Cn↠ Cn/Cpl .

Remark 3.3.7. The non-equivariant Euler number of Xn = ΣmM(Z[ζn]) is equal to 1 + (−1)mφ(n) since it
is non-equivariantly a wedge sum of φ(n) many copies of Sm. On the other hand, by counting the number
of non-equivariant simplices in each dimension from the above construction, we get

1 + (−1)mφ(n) = e(Xn) = 1 +
m−1

∑
k=0

⎛

⎝
(−1)k ∑

i1<⋯<im−k

n

pi1⋯pim−k

⎞

⎠
+ (−1)mn

Ô⇒ φ(n) = n +
m

∑
k=1

⎛

⎝
(−1)k ∑

i1<⋯<ik

n

pi1⋯pik

⎞

⎠
.

This is precisely the formula of φ(n) ∶= ∣{a ∈ N ∣ 1 ≤ a ≤ n, (a,n) = 1}∣ via the Inclusion and Exclusion
Principle.
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Remark 3.3.8. The construction above is not unique. For example when n = 2, M(Z[ζ2]) is by definition
S0 with a C2-action such that the induced action of C2 on π∗(S

0) is the sign representation in all degrees.

Figure 1 shows our model for M(Z[ζ2]) is Sσ−1. But one can check S(2k−1)(σ−1) also satisfies the assumptions
for all k ∈ Z and these are non-equivalent C2-actions on S0.

The p-adic case when n = pv. By Corollary A.3.1, (Z[ζpv ])
∧
p ≃ Zp[ζpv ]. From this we can simply define

the Moore spectrum with a Cpv -action by setting

(3.3.9) M(Zp[ζpv ]) ∶=M(Z[ζpv ])
∧
p .

The p-adic case when p ∤ n. In this case, Proposition A.2.3 implies that (Z[ζn])
∧
p /≃ Zp[ζn], since the

two sides have different ranks as Zp-modules. As a result, the construction in the n = pv case does not apply.
Instead, we use Cooke’s obstruction theory in [Coo78] to lift the Cn-action on Zp[ζn] = π0(M(Zp[ζn])) to
the Moore spectrum M(Z[ζn]).

Let X be a spectrum and hAut(X) be the group of self-homotopy equivalences of X. hAut(X) is an
associative H-space. Then π0(hAut(X)) is the group of homotopy classes of homotopy equivalences of X.
Denote the identity component of hAut(X) by hAut1(X). There is an short exact sequence of H-spaces:

1 hAut1(X) hAut(X) π0(hAut(X)) 1.

This induces a fiber sequence by taking classifying spaces:

BhAut1(X) BhAut(X) Bπ0(hAut(X)).

An action of a group G on π0(X) is then a group homomorphism α ∶ G→ π0(hAut(X)).

Theorem 3.3.10. [Coo78, Theorem 1.1] There is an obstruction theory to lift α to an action on X:

BhAut(X)

BG Bπ0(hAut(X)).
Bα

The obstruction classes to the existence of such liftings live in

Hn(G;{πn−2(hAut1(X))}), n ≥ 3.

In particular, one can always lift a G-action on π∗(X) to X if G is finite and ∣G∣ is invertible in πn(hAut1(X))
for all n ≥ 1.

Corollary 3.3.11. When p ∤ n, any of Cn-action on π∗ of a p-complete spectrum can be lifted to an action
on the spectrum itself.

Proof. As n is invertible in Zp, group cohomology of Cn with coefficients in Zp-modules vanishes in positive
degrees. As a result, the obstruction classes in Theorem 3.3.10 all vanish. �

As a result, there exists a Cn-action on the p-adic Moore spectrum M(Zp[ζn]) such that the induced
action on π0 agrees with p-adic cyclotomic representation of Cn.

One last thing to check is the compatibility of the constructions in the integral and p-adic cases when
p ∤ n. Fix an embedding ι ∶ Z[ζn]↪ Zp[ζn]. ι induces a map of Galois groups:

ι∗ ∶ Gal(Qp(ζn)/Qp) Gal(Q(ζn)/Q).
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By Proposition A.3.4, there is an equivalence of p-adic Cn-representations:

(3.3.12) Z[ζn]⊗Zp ≃ ⊕
[σ]∈Coker ι∗

(Zp[ζn])ι○σ,

where Cn acts on the summand (Zp[ζn])ι○σ by

Cn (Z[ζn])
× (Z[ζn])

× (Zp[ζn])×.σ ι

By Corollary 3.3.11, there is a Cn-action on M(Zp[ζn])∨∣Coker ι∗∣ such that the induced Cn-action on π0 agrees
with the right hand side of (3.3.12). On the other hand, the Cn-action M(Z[ζn])

∧
p induces an equivalent

Cn-representation on π0. To check the two Cn-actions on the p-adic Moore spectrum are equivalent, we use
the uniqueness part of Cooke’s obstruction theory.

Proposition 3.3.13. In Theorem 3.3.10, the obstruction classes to the uniqueness of the liftings live in

Hn(G;{πn−1(hAut1(X))}), n ≥ 2.

Corollary 3.3.14. Let X be a p-complete spectrum. When p ∤ n, any two lifts of a Cn-action from π∗(X)
to X are Cn-equivariantly equivalent.

As a result, there is a Cn-equivalence:

M(Z[ζn])
∧
p ≃ ⋁

[σ]∈Coker ι∗
(M(Zp[ζn]))ι○σ.

Remark 3.3.15. When n = pv, there could be non-equivalent Cpv -actions on M(Zp[ζpv ]) inducing the same
action on π0. One counterexample in the integral case is C2-equivariant spheres S2σ−2 and S0 – both induce
trivial action on the homotopy groups.

Pre-composing with the map (Z/N)
×
↠ Cn in Lemma 3.3.1, we have shown in this subsection:

Theorem 3.3.16. Let χ ∶ (Z/N)
×
→ C× or C×

p be a Dirichlet character.

(1) There is a Moore spectrum M(Z[χ]) or M(Zp[χ]) with a (Z/N)
×
-action such that the induced action

on π0 is equivalent to that induced by χ.
(2) Let ι ∶ Z[χ]↪ Zp[χ] be an embedding. There is a (Z/N)

×
-equivariant equivalence:

(3.3.17) M(Z[χ])∧p ≃ ⋁
[σ]∈Coker ι∗

M(Zp[ι ○ σ ○ χ]).

3.4. The homotopy eigen spectra. Now we are ready to twist the J-spectrum and the K(1)-local spheres
with a Dirichlet character. Analogous to Proposition 1.3.4, the twisting is realized as the “homotopy χ-eigen-
spectrum”.

Construction 3.4.1. Let χ ∶ (Z/N)
×
→ C× be a primitive Dirichlet character of conductor N . We define

the Dirichlet J-spectrum by:

(3.4.2) J(N)hχ ∶= Map(M(Z[χ]), J(N))h(Z/N)× ,

Let χ ∶ (Z/N)
×
→ C×

p be a primitive p-adic Dirichlet character of conductor N and set v = vp(N). We define
the Dirichlet K(1)-local sphere to be

(3.4.3) S0
K(1)(p

v)hχ ∶= MapZp (M(Zp[χ]), S0
K(1)(p

v))
h(Z/N)×

.

The (Z/N)
×
-actions on the Moore spectrum and J(N) are described in Theorem 3.3.16 and Proposi-

tion 3.2.10, respectively. (Z/N)
×

acts on S0
K(1)(p

v) through the Galois action of its quotient group (Z/pv)
×
.
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Remark 3.4.4. The spectra J(N)hχ and S0
K(1)(p

v)hχ depend on the constructions of the (Z/N)
×
-actions on

M(Z[χ]) and M(Zp[χ]), which is not unique in general as illustrated in Remark 3.3.8. When N = 4, p = 2

and χ ∶ (Z/4)
×
≃ C2 → C×

2 , different models of M(Z2[χ]) lead to different S0
K(1)(4)

hχ. We will explain the

differences in more detail in Remark 4.2.11.

One immediate consequence of this construction is

Proposition 3.4.5. If χ1 and χ2 are Dirichlet characters of conductor N with isomorphic induced repre-
sentations, then J(N)hχ1 ≃ J(N)hχ2 . In particular, J(N)hχ ≃ J(N)h(σ○χ) for any σ ∈ Gal(Q(χ)/Q).

Remark 3.4.6. As S0
K(1)(p

v) is K(1)-local, we have

S0
K(1)(p

v)hχ ≃ MapK(1)-loc (M(Zp[χ])K(1), S
0
K(1)(p

v))
h(Z/N)×

is also K(1)-local.

Proposition 3.4.7. The E2-pages of the HFPSS to compute π∗ ((J(N))hχ) and π∗ (S
0
K(1)(p

v)hχ) are

identified with

Es,t2 ≃ ExtsZ[(Z/N)×] (Z[χ], πt(J(N)))Ô⇒ πt−s (J(N)hχ)(3.4.8)

Es,t2 ≃ ExtsZp[(Z/N)×] (Zp[χ], πt (S
0
K(1)(p

v)))Ô⇒ πs−t (S
0
K(1)(p

v)hχ)(3.4.9)

where a ∈ (Z/N)
×

acts on Z[χ] and Zp[χ] by multiplication by χ(a).

Proof. We give a proof of (3.4.8). The proof of (3.4.9) is similar. By construction, the E2-page of the HFPSS
for (3.4.2) is

Es,t2 =Hs((Z/N)
×

;πt(Map(M(Z[χ]), J(N)))).

Denote the rank of Z[χ] as a free Z-module by r. Then M(Z[χ]) is non-equivariantly equivalent to (S0)
∨r

.
The Atiyah-Hirzebruch spectral sequence:

Es,t2 =Hs(M(Z[χ]);πt(J(N)))Ô⇒ πs+t(Map(M(Z[χ]), J(N)))

collapses on the E2-page since H∗(M(Z[χ]);−) is concentrated in degree 0. Together with the universal
coefficient theorem, this implies:

πt(Map(M(Z[χ]), J(N))) ≃H0(M(Z[χ]);πt(J(N)))

≃HomZ(H
0(M(Z[χ]);Z), πt(J(N)))

≃HomZ(Z[χ], πt(J(N))).

By Theorem 3.3.16, (Z/N)
×

acts on Z[χ] ≃H0(M(Z[χ]);Z) by χ. Since Z[χ] is a finite free Z-module, the
Grothendieck spectral sequence

Es,t2 =Hs((Z/N)
×

; ExttZ(Z[χ], πt(J(N))))Ô⇒ Exts+tZ[(Z/N)×] (Z[χ], πt(J(N)))

collapses on the E2-page, yielding

Hs((Z/N)
×

; HomZ(Z[χ], πt(J(N)))) ≃ ExtsZ[(Z/N)×] (Z[χ], πt(J(N))) .

�

Remark 3.4.10. The E2-page of (3.4.8) consists of the derived χ-eigenspaces of π∗(J(N)). Moreover, J(N)hχ

is defined as the homotopy χ-eigen-spectrum of J(N). In this sense, we will call (3.4.8) the homotopy
eigen spectral sequence (HESS). 3

3The alternative name “homotopy eigen-spectrum spectral sequence” would be too redundant.
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3.5. Local structures of the Dirichlet J-spectra. While it is not hard to compute the E2-page of
(3.4.8) directly, the differentials are non-trivial as the cohomological dimension of (Z/N)

×
with coefficients

in Z-modules is infinite. Instead, we will compute π∗ (J(N))
hχ

rationally and completed at each prime p.
Over Q, the spectral sequence is concentrated in the 0-th line, since (Z/N)

×
is a finite group. By

Corollary 3.2.9, J(N)Q ≃ S0
Q and (Z/N)

×
acts on it trivially. We conclude from these facts:

Proposition 3.5.1. The homotopy groups of (J(N)hχ)Q are given by

πi ((J(N)hχ)Q) ≃ {
Q, i = 0 and χ = χ0;
0, otherwise.

Corollary 3.5.2. (J(N)hχ)Q is contractible unless χ = χ0 is trivial. In that case, N = 0 and J(N)hχQ ≃

JQ ≃ S0
Q.

Proof. By Corollary 3.2.9, J(N)Q ≃ S0
Q. Then Es,t2 ⊗Q = 0 for all (s, t) ≠ (0,0) (3.4.8). The remaining entry

E0,0
2 ≃ Q(χ−1)(Z/N)× is zero unless χ = χ0 is trivial, yielding the claim. �

Proposition 3.5.3. Fix an embedding ι ∶ Q(χ)↪ Cp. The p-completion of the Dirichlet J-spectrum decom-
poses as

(J(N)hχ)
∧
p
≃ ⋁

[σ]∈Coker ι∗
S0
K(1)(p

v)h(ι○σ○χ),

where ι∗ ∶ Gal(Qp(ζn)/Qp)↪ Gal(Q(ζn)/Q) is defined in (A.3.3).

Proof. Since homotopy fixed points and p-completions commute and that the p-completion of J(N) is
S0
K(1)(p

v)

(J(N)hχ)
∧
p
≃ MapZp (M(Z[χ])∧p , S

0
K(1)(p

v))
h(Z/N)×

The rest follows from (3.3.17). �

Now we give explicit descriptions of how (J(N)hχ)
∧
p

decomposes when N = pv.

Examples 3.5.4. Let χ ∶ (Z/N)
×
→ C× be a Dirichlet character of conductor N = pv. Fix an embedding

ι ∶ Z[χ]↪ Cp. There are two cases.

● p = 2. The v = 1 case is trivial. For v > 1, (Z/2v)
×
≃ {±1} × Z/2v−2. When v = 2, χ is primitive when it is

non-trivial, i.e. χ(−1) = −1. When v > 2, χ is primitive of conductor 2v iff Z[χ] ≃ Z[ζ2v−2]. In both cases,
we have by Proposition A.2.3, (Z[ζ2v−2])

∧
2 ≃ Z2[ζ2v−2]. As a result,

(J(2v)hχ)
∧
2
≃ S0

K(1)(2
v)h(ι○χ).

Notice for any two 2-adic Dirichlet characters χ1 and χ2 of conductor 2v with the same parity, there is
a σ ∈ Gal(Q2(ζ2v−2)/Q2) such that χ1 = σ ○ χ2. By Proposition 3.4.5, the above isomorphism does not
depend on ι, since ι ○ χ(−1) is independent of the choice of ι.

● p > 2. In this case, (Z/pv)
×
≃ (Z/p)

×
×Z/pv−1. When v = 1, χ is primitive iff it is non-trivial. When v > 1,

χ is primitive iff ζpv−1 ∈ Z[χ], i.e. χ∣Z/pv−1 is injective. By Corollary A.3.6, there is an isomorphism of

p-adic (Z/pv)
×
-representations:

(Z[χ])
∧
p ≃ ⊕

0≤a≤p−2
kerωa=kerχ∣(Z/p)×

Zp[χa],



ANALOGS OF DIRICHLET L-FUNCTIONS IN CHROMATIC HOMOTOPY THEORY 27

where χa = ω
a ⋅ (ι ○ χ∣Z/pv−1) and ω ∶ (Z/p)

×
→ Z×p is the Teichmüller character. This implies a decompo-

sition of the p-completion of the Dirichlet J-spectrum as in Proposition 3.5.3:

(3.5.5) (J(pv)hχ)
∧
p
≃ ⋁

0≤a≤p−2
kerωa=kerχ∣(Z/p)×

S0
K(1)(p

v)hχa .

Now we need to compute the homotopy groups of the Dirichlet K(1)-local spheres. Like the integral case,
while the E2-page of (3.4.9) are not hard to compute in general, there are infinitely many differentials unless
p ∤ φ(N) = ∣ (Z/N)

×
∣. We now set up another spectral sequence that we will use in Section 4.

Proposition 3.5.6. Let χ ∶ (Z/N)
×
→ C×

p be a p-adic Dirichlet character of conductor N . Write N = pv ⋅N ′

where p ∤ N ′. There is an equivalence of K(1)-local spectra:

S0
K(1)(p

v)hχ ≃ MapZp (M(Zp[χ]),KU∧
p )

h(Z×p×(Z/N
′)×)

,

where Z×p × (Z/N ′)
×

acts on the Moore spectra through the action of (Z/N)
×

described in Section 3.3 via the

quotient map Z×p × (Z/N ′)
×
↠ (Z/pv)

×
× (Z/N ′)

×
≅ (Z/N)

×
; and on KU∧

p via the Adams operations by the
factor Z×p .

Proof. Recall from Definition 2.3.4 that S0
K(1)(p

v) ∶= (KU∧
p )

h(1+pvZp)
. From this, we have

S0
K(1)(p

v)hχ ∶=MapZp (M(Zp[χ]), S0
K(1)(p

v))
h(Z/N)×

≃MapZp (M(Zp[χ]), (KU∧
p )

h(1+pvZp)
)
h(Z/N)×

≃MapZp (M(Zp[χ]),KU∧
p )

hG

where G is an extension of 1+pv by (Z/N)
×
. The subgroup 1+pvZp acts trivially on the Moore spectrum and

by the Adams operations on KU∧
p . Notice that the (Z/pv)

×
-action on S0

K(1)(p
v) ∶= (KU∧

p )
h(1+pvZp)

is via

the residual Adams operations by viewing (Z/pv)
×

as a group group of Z×p . The group G is then isomorphic

to Z×p × (Z/N ′)
×
, with actions on M(Zp[χ]) and KU∧

p as claimed. �

Corollary 3.5.7. Write χ = χp ⋅ χ
′ where χp and χ′ have conductors pv and N ′, respectively. There is

another spectral sequence to compute homotopy groups of Dirichlet K(1)-local spheres:

(3.5.8) Es,2t2 = ExtsZpJZ×p×(Z/N ′)×K(Zp[χ],Z
⊗t
p ) ≃Hs

c (Z
×
p × (Z/N ′)

×
;Z⊗tp [χ−1])Ô⇒ π2t−s (S

0
K(1)(p

v)hχ) ,

where Z⊗tp [χ] is the Z×p × (Z/N ′)
×
-representation associated to the character Z×p × (Z/N ′)

× (a,b)↦χp(a)χ′(b)at
ÐÐÐÐÐÐÐÐÐÐÐ→

(Zp[χ])×.

Remark 3.5.9. When N = p > 2 or N = 4 and p = 2, M(Zp[χ]) is non-equivariantly equivalent to S0
p and

χ = ωa for some a. Proposition 3.5.6 identifies the Dirichlet K(1)-local spheres S0
K(1)(p)

hωa and S0
K(1)(4)

hω

with elements of finite order in the K(1)-local Picard group PicK(1), first defined in [HMS94].

4. Computations of the Dirichlet K(1)-local spheres

In this section, we compute homotopy groups of the Dirichlet K(1)-local spheres and J-spectra. By
Proposition 3.5.3, we can recover the p-primary parts of the homotopy groups of Dirichlet J-spectra from
the corresponding summands of Dirichlet K(1)-local spheres. Let χ ∶ (Z/N)

×
→ C×

p be a p-adic Dirichlet

character of conductor N . The computations of π∗ (S
0
K(1)(p

v)hχ) break up into four cases:
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(1) N = 1.
(2) N = pv and p > 2.
(3) N = 2v.
(4) N is not a p-power.

In the N = 1 case, we recover the classical K(1)-local sphere, whose homotopy groups are computed in (2.3.8)
when p > 2, and in (2.3.13) when p = 2. When N is power of p, we use HFPSS/HESS (3.4.9) and (3.5.8)
to compute homotopy groups of the Dirichlet K(1)-local spheres. When N has prime factors other than p,

the character χ factorizes as a product χ = χp ⋅χ
′, where χp has conductor pvp(N). The Dirichlet K(1)-local

spheres are contractible when ∣ Imχ′∣ is not a power of p. When ∣ Imχ′∣ is a power of p, we compute the
homotopy groups of the Dirichlet K(1)-local spheres from its construction.

4.1. The N = pv and p > 2 case. Let’s start with the N = p > 2 case. We will compute π∗ (S
0
K(1)(p)

hχ)

when p > 2 first using the homotopy eigen spectral sequence (HESS) (3.4.9). The E2-page of this spectral
sequence is:

(4.1.1) Es,t2 = ExtsZp[(Z/p)×] ((Zp)χ, πt (S
0
K(1)(p)))Ô⇒ πt−s (S

0
K(1)(p)

hχ) ,

where a ∈ (Z/p)
×

acts on (Zp)χ by multiplication by χ(a).

Remark 4.1.2. When χ is the trivial character χ0, we recover the HFPSS in (2.3.5).

Let g ∈ (Z/p)
×

be a generator. A projective resolution of (Zp)χ as a Zp[(Z/p)
×
]-module is

⋯Ð→ Zp[(Z/p)
×
]
×(∑χ(g)−igi)
ÐÐÐÐÐÐÐÐ→ Zp[(Z/p)

×
]
×(g−χ(g))
ÐÐÐÐÐÐ→ Zp[(Z/p)

×
]
g↦χ(g)
ÐÐÐÐ→ (Zp)χ.

By (2.3.8), the homotopy groups of S0(p) are

πt (S
0
K(1)(p)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Zp, t = 0 or − 1;

Z/pvp(k)+1, t = 2k − 1 ≠ −1;
0, otherwise.

Descending from the Adams operations on (KU∧
p )t, (Z/p)

×
acts trivially on π0 and π−1 and by χ = ωk on

π2k−1 of S0
K(1)(p). A direct computation shows

Proposition 4.1.3. When χ = ωa, a ≠ 0, the E2-page of (4.1.1) is

Es,t2 = {
Z/pvp(k)+1, s = 0, t = 2k − 1, and (p − 1) ∣ (k − a);

0, otherwise.

As the spectral sequence collapses on the E2-page, we conclude

(4.1.4) πt (S
0
K(1)(p)

hωa) = {
Z/pvp(k)+1, t = 2k − 1, and (p − 1) ∣ (k − a);

0, otherwise.

We can also use the HFPSS in (3.5.8) to compute π∗ (S
0
K(1)(p)

hωa). The E2-page of this spectral sequence

is:

(4.1.5) Es,2t2 = ExtsZpJZ×pK ((Zp)χ̃,Z
⊗t
p ) ≃Hs

c (Z
×
p ;Z⊗tp [χ−1])Ô⇒ π2t−s (S

0
K(1)(p)

hχ) ,

where (Zp)χ̃ is the Z×p-representation associated to the character χ̃:

χ̃ ∶ Z×p (Z/p)
× Z×p .

χ
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The two approaches to compute π∗ (S
0
K(1)(p)

hχ) are related by the diagram:

(4.1.6)

ExtrZp[(Z/p)×] ((Zp)χ,H
s
c (1 + pZp; (KU∧

p )t)) Extr+sZpJZ×pK ((Zp)χ̃, (KU∧
p )t)

ExtrZp[(Z/p)×] ((Zp)χ, πt−s (S
0
K(1)(p))) πt−r−s (S

0
K(1)(p)

hχ)

HFPSS

HSSS

(4.1.5)

(4.1.1)

Here, the top line is a Hochschild-Serre spectra sequence. Retrospectively from this diagram, we get when
χ = ωa, a ≠ 0:

(4.1.7) ExtsZpJZ×pK ((Zp)χ̃, (KU
∧
p )2t

) ≃Hs
c (Z

×
p ;Z⊗tp [χ−1]) = {

Z/pvp(t)+1, s = 1, (p − 1) ∣ (t − a);
0, otherwise.

When N = pv > p > 2, we compute the homotopy groups of the Dirichlet K(1)-local spheres using (3.5.8).
The other spectral sequence (3.4.9) does not quite work in this case. This is because cdp ((Z/pv)

×
) = ∞

when v > 1, whereas cdp (Z×p) = 1. As in Proposition 3.5.6, there is an identification:

S0
K(1)(p

v)hχ ≃ MapZp (M(Zp[χ]),KU∧
p )

hZ×p ,

Using the resolution in (2.3.6), we get the E2-page of the HESS:

(4.1.8) Es,2t2 =Hs
c (Z

×
p ;Z⊗tp [χ−1]) = {

Zp[χ] /(χ(g) − gt) , s = 1;
0, otherwise,

where g is a topological generator of Z×p .

Lemma 4.1.9. Let χ∣(Z/p)× = ω
a. Then

Zp[χ] /(χ(g) − gt) = {
Z/p, t ≡ a mod (p − 1);
0, otherwise.

Proof. Since χ is primitive, we have χ(g) = χ∣(Z/p)×(g) ⋅ ζpv−1 = ω
a(g)ζpv−1 . Rewrite χ(g) − gt as

gt − χ(g) = gt − ωa(g)ζpv−1 = ω
a(g)(1 − ζpv−1) + g

t − ωa(g).

As 1− ζpv−1 is a uniformizer of Zp[χ] ≃ Zp[ζpv−1], gt −χ(g) is invertible whenever gt −ωa(g) is. This happens
when t /≡ a mod (p − 1). When t ≡ a mod (p − 1), vp(g

t − ωa(g)) ≥ 1 > vp(1 − ζpv−1), yielding

(gt − χ(g)) = (1 − ζv−1
p ) Ô⇒ Zp[χ] /(χ(g) − gt) ≃ Z/p.

�

Again let χ∣(Z/p)× = ω
a. The spectral sequence collapses at the E2-page and we conclude:

(4.1.10) πi (S
0
K(1)(p

v)hχ) = {
Z/p, i = 2(a + k(p − 1)) − 1;
0, otherwise.

We can also compute π∗ (S
0
K(1)(p

v)hχ) from the following identification:

Proposition 4.1.11. S0
K(1)(p

v)hχ ≃ Cofib (S0
K(1)(p

v−1)→ S0
K(1)(p

v))
hχ∣(Z/p)×

.
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Proof. As χ is primitive of conductor pv, Zp[χ] = Zp[ζpv−1] as an algebra. Recall from (3.3.9), M((Zp[ζpv−1])
is the p-completion of the integral Moore spectrum M(Z[ζpv−1]) with a prescribed Cpv−1-action. As the Moore
spectrum is defined by

M(Z[ζpv−1]) ∶= Σ−1Cofib (S0
⋀(Cpv−1)+ Ð→ S0

⋀(Cpv−2)+) ,

we have

S0
K(1)(p

v)hχ ∶=MapZp (M(Zp[χ]), S0
K(1)(p

v))
h(Z/pv)×

≃MapZp (S
0
χ∣(Z/p)× ,MapZp (M(Zp[ζpv−1]), S0

K(1)(p
v))

hZ/pv−1
)
h(Z/p)×

≃(Cofib (Map((Cpv−2)+, S
0
K(1)(p

v))→Map((Cpv−1)+, S
0
K(1)(p

v)))
hZ/pv−1

)
hχ∣(Z/p)×

≃Cofib (S0
K(1)(p

v−1)→ S0
K(1)(p

v))
hχ∣(Z/p)× .

In the last step, we used the facts that

Map((Cpv−2)+, S
0
K(1)(p

v))hZ/p
v−1

≃ S0
K(1)(p

v)h(Z/p
v−1)/(Z/pv−2) ≃ S0

K(1)(p
v)hZ/p ≃ S0

K(1)(p
v−1)

Map((Cpv−1)+, S
0
K(1)(p

v))hZ/p
v−1

≃ S0
K(1)(p

v)h(Z/p
v−1)/(Z/pv−1) ≃ S0

K(1)(p
v)

�

Using the long exact sequence associated to this cofibration, we can recover (4.1.10) from π∗ (S
0
K(1)(p

v))

in (2.3.9) and the spectral sequence (4.1.1). Another consequence of this identification is the following:

Corollary 4.1.12. (KU∧
p )∗ (S

0
K(1)(p

v)hχ) ≃ HomZp (Zp[χ], (KU∧
p )∗) as Z×p-(KU∧

p )∗-modules.

Let χ1 and χ2 be two p-adic Dirichlet characters of conductors pv1 and pv2 , respectively. From (4.1.10),

πi (S
0
K(1)(p

v1)hχ1) ≃ πi (S
0
K(1)(p

v2)hχ2) whenever χ1∣(Z/p)× = χ2∣(Z/p)× and v1, v2 > 1. But this does NOT

imply S0
K(1)(p

v1)hχ1 ≃ S0
K(1)(p

v2)hχ2 as spectra.

Proposition 4.1.13. S0
K(1)(p

v1)hχ1 ≃ S0
K(1)(p

v2)hχ2 iff χ1∣(Z/p)× = χ2∣(Z/p)× and v1 = v2.

Proof. This follows from Corollary 4.1.12 and the lemma below. �

Lemma 4.1.14. Let X and Y be two K(1)-local spectra. X and Y are equivalent iff (KU∧
p )∗X ≃ (KU∧

p )∗ Y

as Z×p-(KU∧
p )∗-modules.

Proof. The only if direction is clear. Let f ∶ (KU∧
p )∗X

∼
Ð→ (KU∧

p )∗ Y be an isomorphism of Z×p-(KU∧
p )∗-

modules. There is a HFPSS to compute π∗ (Map(X,Y )):

Es,t2 =Hs
c (Z

×
p ; (KU∧

p )t (Map(X,Y )))Ô⇒ πt−s (Map(X,Y )) .

The isomorphism f is an element of E0,0
2 , since it is isomorphic to Hom(KU∧

p )∗
((KU∧

p )∗X, (KU
∧
p )∗ Y )

Z×p .

The HFPSS collapses on the E2-page, as cd(Z×p) = 1. This implies f ∈ E0,0
2 is a permanent cycle, and is

represented by a map of spectra α ∶X → Y such that (KU∧
p )∗ α = f .

We claim α is a weak equivalence. As f = (KU∧
p )∗ α is an isomorphism of Z×p-(KU∧

p )∗-modules, α induces

an isomorphism on the E2-page of the HFPSS to compute π∗(X) and π∗(Y ). It now follows from [Boa99,
Theorem 5.3] that α is a weak equivalence. �
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4.2. The N = 2v case. We start with the N = 4 case, when the only non-trivial 2-adic Dirichlet character
of conductor 4 is the Teichmüller character ω ∶ (Z/4)

×
→ Z×2 . By Proposition 3.5.6, the Dirichlet K(1)-local

sphere is identified with

S0
K(1)(4)

hω ≃MapZ2
(M(Z2[ω]),KU

∧
2 )hZ

×
2(4.2.1)

≃ (MapZ2
(M(Z2[ω]),KU

∧
2 )h{±1})

h(1+4Z2)

= ((KU∧
2 )

hω
)
h(1+4Z2)

.

Parallel to the computation of the classical K(1)-local sphere at p = 2 in Section 2.3, we will first identify

(KU∧
2 )

hω
geometrically.

Proposition 4.2.2. Let σ be the sign representation of C2 on Z Define KRhσ to be the homotopy σ-eigen-
spectrum of Atiyah’s C2-equivariant KR-spectrum in [Ati66]. Then we have an identification:

KRhσ ∶= Map(M(Z[σ]),KR)hC2 ≃ Σ2KO.

Proof. By Figure 1, M(Z[σ]) is C2-equivariantly equivalent to Sσ−1. Now using the (1 + σ)-periodicity of
KR [Ati66, Theorem 2.1], we have a C2-equivalence

Map(Sσ−1,KR) ≃ Σ1−σKR ≃ Σ2KR.
The claim now follows from the equivalence KRhC2 ≃KO. �

Remark 4.2.3. This statement depends on the actual model of M(Z[σ]). If we started with S1−σ, where C2

also acts by the sign representation on π∗(S
0), we would have

Map(S1−σ,KR)hC2 ≃ Σ−2KO.

In terms of the HFPSS computations, the E2-pages of Map(Sσ−1,KR)hC2 and Map(S1−σ,KR)hC2 are the
same. The difference is the d3-differentials, which are invisible in algebra. Likewise, one can check the
HFPSS for

Map(S2σ−2,KR)hC2 ≃ Σ4KO ≃KSp

has the same E2-page as that for KRhC2 ≃KO. Again the difference is the d3-differentials that are invisible
in algebra.

Remark 4.2.4. A more explicit construction is the following. For any compact space X, KRhσ(X) consists

of virtual complex vector bundles [E] over X such that ψ−1([E]) = [E] = −[E]. For any such virtual vector
bundle, its tensor product with the complexification of a real vector also satisfies this condition. As a result,
KRhσ is a KO-module spectrum.

Let ξ be the tautological complex line bundle over CP1 ≃ S2. Then [ξ]−[ξ] ∈KRhσ(S2). Proposition 4.2.2

implies the external tensor product with ξ − ξ induces an isomorphism:

(ξ − ξ) ⊠ (−)C ∶KO(X)
∼
Ð→KRhσ(S2 ×X).

As elements in KRhσ(X) satisfy [E] = −[E], KRhσ can be thought of as the purely imaginary K-theory,
compared to the real K-theory KO ≃KRhC2 .

Corollary 4.2.5. (KU∧
2 )

hω
≃ Σ2KO∧

2 and its homotopy groups are given by:

i mod 8 0 1 2 3 4 5 6 7

πi ((KU
∧
2 )

hω
) 0 0 Z2 Z/2 Z/2 0 Z2 0

Remark 4.2.6. The equivalence (KU∧
2 )

hω
≃ Σ2KO∧

2 is NOT (1 + 4Z2)-equivariant.
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(a) (Σ4k(1−σ)KR)
hC2
≃ Σ8kKO ≃KO
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(b) (Σ(4k+2)(1−σ)KR)
hC2
≃ Σ8k+4KO ≃ Σ4KO

−8 −6 −4 −2 0 2 4 6 8
0

2

4

6

8

◻ ◻

●
●

●

●

●

●

●

●
●
●

◻

●

●

●

●

●

●

●

●

●

●

●

●
●
●

◻

●

●

●

●

●
●

(c) (Σ(4k+1)(1−σ)KR)
hC2
≃ Σ8k+2KO ≃ Σ2KO
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(d) (Σ(4k+3)(1−σ)KR)
hC2
≃ Σ8k+6KO ≃ Σ6KO

Figure 2. d3-differentials in the HFPSS for different C2-actions on the K-theory spectrum
(Adams grading. ◻ = Z and ● = Z/2. (A) and (B) are the same as Figures 3 and 6 in [HS14].)

The next step is to compute the HFPSS:

Es,t2 =Hs
c (1 + 4Z2;πt ((KU

∧
2 )

hω
))Ô⇒ πt−s (S

0
K(1)(4)

hω) .

Let g ∈ 1 + 4Z2 be a topological generator. Descending the Adams operations on KU∧
2 to (KU∧

2 )
hω

, we

get g acts on π4t+2 ((KU∧
2 )

hω
) by g2t+1. The actions on the Z/2-terms are trivial since Z/2 has only trivial

automorphism. Using the continuous resolution (2.3.6), we compute the E2-page of the HFPSS:

(4.2.7) Es,t2 =Hs
c (1 + 4Z2;πt ((KU

∧
2 )

hω
)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z/4, s = 1, t ≡ 2 mod 4;
Z/2, s = 0,1, t ≡ 3,4 mod 8;
0, otherwise.

Proposition 4.2.8. The extension problems of this spectral sequence are trivial.

Proof. We need solve the extension problems at t − s ≡ 3 mod 8. The argument here is analogous to

Proposition 2.3.12. As (KU∧
2 )

hω
≃ Σ2KO∧

2 is a KO∧
2 -module spectrum, we denote the non-zero element in

π3 ((KU∧
2 )

hω
) by Σ2η. This is an element of order 2 and represents a permanent cycle in E0,1

2 of (4.2.7).

As Σ2η represents an element of order 2 in π3 (S0
K(1)(4)

hω), the extension problem is trivial. For general

t − s = 8k + 3, replace Σ2η by βt ⋅Σ2η in the argument above, where β ∈ π8(KO
∧
2 ) is the Bott element. �
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From this, we conclude:

(4.2.9) πi (S
0
K(1)(4)

hω) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Z/4, i ≡ 1 mod 4;
Z/2, i ≡ 2,4 mod 8;

Z/2⊕Z/2, i ≡ 3 mod 8;
0, otherwise,

We also record the E2-page of the HESS associated to (4.2.1):

(4.2.10) ExtsZ2JZ×2K ((Z2)ω̃, (KU
∧
2 )t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Z/4, s = 1, t ≡ 2 mod 4;
Z/2, s > 1, t ≡ 2 mod 4;
Z/2, s > 0,4 ∣ t;
0, otherwise.

Remark 4.2.11. As explained in Remark 3.3.8, we could have chosen M(Z[ζ2]) = S1−σ when defining the
Dirichlet J-spectra and K(1)-local spheres. Denote the resulting homotopy eigen-spectra by

Xh′ω ∶= MapZ2
(S1−σ,X)hC2 ,

where ω ∶ C2 ≃ (Z/4)
×
→ Z×2 is the 2-adic Teichmüller character. Then by Remark 4.2.3, (KU∧

2 )
h′ω

≃
Σ−2KO∧

2 . A similar computation as above yields:

πi (S
0
K(1)(4)

h′ω) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Z/4, i ≡ 1 mod 4;
Z/2, i ≡ −2,0 mod 8;

Z/2⊕Z/2, i ≡ −1 mod 8;
0, otherwise,

Note that π2k−1 (S0
K(1)(4)

hχ) = π2k−1 (S0
K(1)(4)

h′χ) when (−1)k = χ(−1).

Both S0
K(1)(4)

hω and S0
K(1)(4)

h′ω are elements of order 4 in the K(1)-local Picard group PicK(1) at prime

2. Their difference in PicK(1) is the exotic K(1)-local sphere EK(1), an element whose HFPSS has the

same E2-page as that for the K(1)-local sphere.4 One construction of this element is given in [HS14, Section
9]. It is also the K(1)-localization of a finite CW -spectra E , described in Theorem 5.3.6. By identifying

EK(1) with (KSp∧2)
h(1+4Z2), we can compute its homotopy groups as in (2.3.13):

(4.2.12) πi (EK(1)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2, i = 0,−1;
Z/2, i ≡ 4,6 mod 8;

Z/2⊕Z/2, i ≡ 5 mod 8;

Z/2v2(k)+3, i = 4k − 1 ≠ −1;
0, otherwise.

When p = 2 and N = 2v > 4, we apply Proposition 3.5.6 as before:

S0
K(1)(2

v)hχ ≃ MapZ2
(M(Z2[χ]),KU

∧
2 )

hZ×2 .

Lemma 4.2.13. S0
K(1)(2

v)hχ ≃ MapZ2
(M(Z2[χ]), (KU

∧
2 )

hχ∣(Z/4)× )
h(1+4Z2)

.

4The spectrum EK(1) has been referred to by different letters (like P ) in the literature. Here we use the letter E since it

stands for exotic. In Theorem 5.3.9, we will see it is the “error term” in the K(1)-local Brown-Comenetz duality at prime 2.
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Proof. We prove the claim by breaking the Z×2 -homotopy fixed points into two steps.

S0
K(1)(2

v)hχ ≃MapZ2
(M(Z2[χ]),KU

∧
2 )

hZ×2

≃MapZ2
(M(Z2[χ]),MapZ2

(S0
χ∣(Z/4)× ,KU

∧
2 )

h(Z/4)×
)

h(1+4Z2)

≃MapZ2
(M(Z2[χ]), (KU

∧
2 )

hχ∣(Z/4)× )
h(1+4Z2)

.

Here, S0
ω ∶= Sσ−1 and S0

ω0 ∶= S
0. In the third line, we used the fact χ ⋅ χ∣(Z/4)× is trivial when restricted to

(Z/4)
×

and is equal to χ̃ when restricted to 1 + 4Z2 . �

Let g be a topological generator of 1+ 4Z2. Denote by Ann (χ̃(g) − 1) the ideal of annihilators of χ̃(g)− 1
in Z2[χ]/(2). The computation now splits into two subcases depending on the parity of χ:

● When χ(−1) = 1, (KU∧
2 )

hχ∣(Z/4)× ≃KO∧
2 . By (2.3.6) and (2.3.10), E2-page of the HESS is:

Es,t2 =ExtsZ2J1+4Z2K (Z2[χ], πt (KO
∧
2 ))

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Z2[χ] /(χ̃(g) − g
2k) , s = 1, t = 4k;

Ann (χ̃(g) − 1) , s = 0, t ≡ 1,2 mod 8;
Z2[χ] /(2, χ̃(g) − 1) , s = 1, t ≡ 1,2 mod 8;

0, otherwise.

(4.2.14)

● When χ(−1) = −1, (KU∧
2 )

hχ∣(Z/4)× ≃ Σ2KO∧
2 by Proposition 4.2.2. The E2-page of the HESS is:

Es,t2 =ExtsZ2J1+4Z2K (Z2[χ], πt (Σ2KO∧
2))

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Z2[χ] /(χ̃(g) − g
2k+1) , s = 1, t = 4k + 2;

Ann (χ̃(g) − 1) , s = 0, t ≡ 3,4 mod 8;
Z2[χ] /(2, χ̃(g) − 1) , s = 1, t ≡ 3,4 mod 8;

0, otherwise.

(4.2.15)

In both cases, the spectral sequences collapse at the E2-pages. Analogous to Proposition 2.3.12 (Proposi-
tion 4.2.8), the extension problems at t−s ≡ 1 mod 8 (t−s ≡ 3 mod 8, resp.) are trivial. We further simplify
the formulas using the following facts about Z2[χ] from Proposition A.2.3.

Lemma 4.2.16. Let χ be a primitive 2-adic Dirichlet character of conductor 2v ≥ 8. Let g be a topological
generator of 1 + 4Z2.

(1) Z2[χ] is a totally ramified extension of Z2 of ramification index 2v−3.
(2) 1 − χ̃(g) is a uniformizer of Z2[χ] and Z2[χ]/(1 − χ̃(g)) ≃ Z/2.
(3) The ideal of annihilators of χ̃(g) − 1 ∈ Z2[χ]/(2) is isomorphic to Z/2.
(4) Z2[χ]/(χ̃(g) − g

k) = Z/2 for any k.

Proof. Only (4) needs a proof. χ̃(g) = ζ2v−2 since χ is primitive. Write χ̃(g) − gk = χ̃(g) − 1 + 1 − gk. By (2),
χ̃(g) − 1 is a uniformizer. On the other hand v2(1 − g

k) ≥ 2 > v2(χ̃(g) − 1), since g ≡ 1 mod 4. This implies:

(χ̃(g) − gk) = (χ̃(g) − 1) Ô⇒ Z2[χ]/(χ̃(g) − g
k) = Z/2.

�

Proposition 4.2.17. When χ(−1) = 1, we have

(4.2.18) πi (S
0
K(1)(2

v)hχ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z/2, i ≡ 0,2,3,7 mod 8;
Z/2⊕Z/2, i ≡ 1 mod 8;

0, otherwise.
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When χ(−1) = −1, we have

(4.2.19) πi (S
0
K(1)(2

v)hχ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z/2, i ≡ 1,2,4,5 mod 8;
Z/2⊕Z/2, i ≡ 3 mod 8;

0, otherwise.

Remark 4.2.20. The computations above depend on the actual model of the C2-actions on the Moore spectra:

● When χ(−1) = 1, if we choose S2−2σ as a model for the C2-action on S0 with trivial induced action on π∗,
(4.2.18) becomes:

πi (S
0
K(1)(2

v)h
′χ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z/2, i ≡ 3,4,6,7 mod 8;
Z/2⊕Z/2, i ≡ 5 mod 8;

0, otherwise.

● When χ(−1) = −1, if we choose S1−σ as a model for the C2-action on S0 that induces sign representations
on π∗, (4.2.19) becomes:

πi (S
0
K(1)(2

v)h
′χ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z/2, i ≡ 0,1,5,6 mod 8;
Z/2⊕Z/2, i ≡ 7 mod 8;

0, otherwise.

Note that π2k−1 (S0
K(1)(2

v)hχ) = π2k−1 (S0
K(1)(2

v)h
′χ) when (−1)k = χ(−1).

Like the odd prime case, we can recover the results in Proposition 4.2.17 using the following identification:

Proposition 4.2.21. Let χ be a primitive 2-adic Dirichlet character of conductor 2v > 4. When χ(−1) = 1,
we have

S0
K(1)(2

v)hχ ≃ Cofib ((KO∧
2 )
h(1+2v−1Z2) → (KO∧

2 )
h(1+2vZ2)) .

If χ(−1) = −1, then

S0
K(1)(2

v)hχ ≃ Cofib(((KU∧
2 )

hω
)
h(1+2v−1Z2)

→ ((KU∧
2 )

hω
)
h(1+2vZ2)

) .

Proof. This is the same as proof of Proposition 4.1.11. �

Corollary 4.2.22. There is an equivalence of (1 + 4Z2)-(KO∧
2 )∗-modules:

(KO∧
2 )∗ (S

0
K(1)(2

v)hχ) ≃

⎧⎪⎪
⎨
⎪⎪⎩

Hom (Z2[χ], (KO
∧
2 )∗) χ(−1) = 1;

Hom (Z2[χ], (KU
∧
2 )

hω
∗ ) χ(−1) = −1,

This computation leads to a p = 2 version of Proposition 4.1.13. Let χ1 and χ2 be two 2-adic Dirich-

let characters of conductors 2v1 and 2v2 , respectively. From Proposition 4.2.17, πi (S
0
K(1)(2

v1)hχ1) ≃

πi (S
0
K(1)(2

v2)hχ2) whenever χ1(−1) = χ2(−1) and v1, v2 > 2. But this DOES NOT imply S0
K(1)(2

v1)hχ1 ≃

S0
K(1)(2

v2)hχ2 as spectra. We have the p = 2 version of Proposition 4.1.13:

Proposition 4.2.23. S0
K(1)(2

v1)hχ1 ≃ S0
K(1)(2

v2)hχ2 iff χ1(−1) = χ2(−1) and v1 = v2.

Proof. This follows from Corollary 4.2.22 and the p = 2 version of Lemma 4.1.14. �

Lemma 4.2.24. Let X and Y be two K(1)-local spectra and p = 2. Then X ≃ Y iff (KO∧
2 )∗X ≃ (KO∧

2 )∗ Y
as (1 + 4Z2)-(KO∧

2 )∗-modules.
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4.3. The N is not a p-power case. Write N = pv ⋅N ′, where p ∤ N ′ > 1. In this case, a primitive Dirichlet
character χ ∶ (Z/N)

×
→ C×

p factorizes into a product χ = χp ⋅ χ
′, where χp has conductor pv and χ′ has

conductor N ′. The subgroup (Z/N ′)
×

of (Z/N)
×

acts trivially on S0
K(1)(p

v).

Proposition 4.3.1. S0
K(1)(p

v)hχ is contractible when ∣ Imχ′∣ is not a power of p.

Proof. We claim that when ∣ Imχ′∣ is not a power of p, the E2-page of spectral sequence (3.5.8) to compute
homotopy groups of S0

K(1)(p
v)hχ is zero. That is, the group cohomology

Hs
c (Z

×
p × (Z/N ′)

×
;Z⊗tp [χ−1])

is zero for all s ≥ 0 and t ∈ Z. Suppose ζn ∈ Imχ′ and p ∤ n. The (Z/N ′)
×

contains a subgroup Cn such that
χ′∣Cn is injective. We have a Hochschild-Serre spectral sequence to compute this group cohomology:

(4.3.2) Er,s,t2 =Hr
c (Z

×
p × (Z/N ′)

×
/Cn;Hs(Cn;Z⊗tp [χ−1]))Ô⇒Hs

c (Z
×
p × (Z/N ′)

×
;Z⊗tp [χ−1]).

The group cohomology of Cn vanishes in positive degrees since its order is invertible in Zp. As a generator
g ∈ Cn acts on Z⊗tp [χ−1] = Zp[χ] by multiplication by ζ−1

n , the fixed points of this group action is zero. This

shows Er,s,t2 = 0 for all s ≥ 0 in (4.3.2). Consequently, the E2-page of (3.5.8) to compute π∗ (S
0
K(1)(p

v)hχ) is

zero and the Dirichlet K(1)-local sphere is contractible. �

Corollary 4.3.3. Suppose χ is primitive character of conductor N = pv ⋅ N ′ as above. S0
K(1)(p

v)hχ is

contractible when p ∤ φ(N ′), in particular when:

(1) N = q ≠ p is a prime such that p ∤ (q − 1).
(2) N = qv > 2q for any prime q not equal to p.

Proof. χ′ is a primitive character since χ is. This guarantees Imχ′ is not trivial. The assumption p ∤ φ(N ′)
implies that Imχ′ contains no p-power roots of unity. The claim now follows from Proposition 4.3.1. �

When Imχ′ contains only p-power roots of unity, the spectral sequence (3.5.8) does not collapse on the

E2-page. Instead, we compute π∗ (S
0
K(1)(p

v)hχ) by identifying the spectrum from its construction.

Theorem 4.3.4. Suppose Imχ′ ≃ Cpn for some n ≥ 1. Then we have:

S0
K(1)(p

v)hχ ≃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ (S0
K(1)(2p)

hχ∣(Z/2p)× )
∨p
, if pv ≤ 2p; (Case I)

Σ (S0
K(1)(p)

hχ∣(Z/p)× )
∨p
, if n ≥ v − 1 > 0 and p > 2; (Case II)

Σ (S0
K(1)(4)

hχ∣(Z/4)× )
∨p
, if n ≥ v − 2 > 0 and p = 2; (Case II’)

Σ (S0
K(1)(p

v−n)hχ∣(Z/p)× )
∨p
, if n < v − 1 and p > 2; (Case III)

Σ (S0
K(1)(2

v−n)hχ∣(Z/4)× )
∨p
, if n < v − 2 and p = 2. (Case III’)

Here (Z/2p)
×

is thought of as a subgroup of (Z/N)
×

via the inclusions (Z/2p)
×
⊆ (Z/pv)

×
⊆ (Z/N)

×
.

Proof. We prove the cases when p > 2. The p = 2 cases are similar. Recall from Construction 3.4.1 that

S0
K(1)(p

v)hχ ∶= MapZp (M(Zp[χ]), S0
K(1)(p

v))
h(Z/N)×

.

We need to compare Zp[χp], Zp[χ′], and Zp[χ]. As χp is primitive, Zp[χp] = Zp[ζpv−1] as an algebra. Our
assumption says Imχ′ ≃ Cpn for some n ≥ 1. As a result, Zp[χ] = Zp[ζpmax{v−1,n}]. In particular, when pv ≤ p,
Zp[χp] = Zp and Zp[χ] = Zp[χ′]. So there are three cases depending on n and v − 1 (v − 2 when p = 2).
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In Case I when pv ≤ p and p > 2, we have the following identification:

S0
K(1)(p

v)hχ ∶=MapZp (M(Zp[χ]), S0
K(1)(p))

h((Z/p)××(Z/N ′)×)

≃MapZp (M(Zp[ζpn]),Map (S0
χ∣(Z/p)× , S

0
K(1)(p)))

h((Z/p)××(Z/N ′)×)

(∗) ≃MapZp (M(Zp[ζpn])h(Z/N ′)× ,Map (S0
χ∣(Z/p)× , S

0
K(1)(p))

h(Z/p)×
)

≃MapZp (M(Zp[ζpn])h(Z/N ′)× , S
0
K(1)(p)

hχ∣(Z/p)× )

≃MapK(1) ((M(Zp[ζpn])h(Z/N ′)×)K(1), S
0
K(1)(p)

hχp) .

In (*), we used the facts that (Z/p)
×

acts trivially on the source, and that (Z/N ′)
×

acts trivially on the
target. Also, notice S0

K(1)(p)
hχp ≃ S0

K(1) when χp is trivial. We now show:

(M(Zp[ζpn])h(Z/N ′)×)K(1) ≃ (S−1
K(1))

∨p
.

In (3.3.9), M((Zp[ζpn]) is defined to be the p-completion of the integral Moore spectrum M(Z[ζpn]). The
p-completion commutes with the taking homotopy orbits, since it is equivalent to smashing with M(Zp) in
this case. As a result, we should first find M(Z[ζpn])h(Z/N ′)× . By (3.3.4), we have:

M(Z[ζpn]) ∶= Σ−1Cofib ((Cpn)+ Ð→ (Cpn−1)+)

Ô⇒M(Z[ζpn])h(Z/N ′)× ≃ Σ−1Cofib (((Cpn)+)h(Z/N ′)× Ð→ ((Cpn−1)+)h(Z/N ′)×) .(4.3.5)

Lemma 4.3.6. Let H be a closed subgroup of G. Then (G/H)hG ≃ BH.

The Lemma implies that ((Cpn)+)h(Z/N ′)× ≃ (B kerχ′)+ and ((Cpn−1)+)h(Z/N ′)× ≃ (Bχ′−1(Cp))+. From

the short exact sequence of abelian groups:

0 kerχ′ χ′−1(Cp) Cp 0,

we get a fiber sequence of classifying spaces:

B kerχ′ Bχ′−1(Cp) BCp.

Together with (4.3.5), we have shown M(Z[ζpn])h(Z/N ′)× ≃ Σ−1 (BCp)+ as a spectrum. It now remains to

identify (BCp)+ in SpK(1).

Lemma 4.3.7. Let A be a finite abelian group and A(p) be its Sylow p-subgroup. Then

(BA+)K(1) ≃ (S0
K(1))

∨∣A(p)∣
.

Proof. By [HKR00, Corollary 5.10], (KU∧
p )∗ (BA) ≃ Fun(A(p), (KU

∧
p )∗), where Z×p acts on A(p) trivially.

The claim now follows from Lemma 4.1.14. �

Corollary 4.3.8. (M(Zp[ζpn])h(Z/N ′)×)K(1) ≃ (S−1
K(1))

∨p
.
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In Case II when p > 2 and n ≥ v − 1 > 0, Zp[χ] = Zp[ζpn]. From this, we have:

S0
K(1)(p

v)hχ ∶=MapZp (M(Zp[χ]), S0
K(1)(p

v))
h((Z/pv)××(Z/N ′)×)

≃MapZp (M(Zp[ζpn])h(Z/N ′)× , S
0
K(1)(p

v))
h(Z/pv)×

≃MapZp (Σ−1(BCp)+, S
0
K(1)(p

v))
h(Z/pv)×

≃MapK(1) ((S
−1
K(1))

∨p
, S0
K(1)(p

v))
h(Z/pv)×

.

The subgroup (Z/p)
×
⊆ (Z/pv)

×
acts on (S−1

K(1))
∨p

≃ (M(Zp[ζpn])h(Z/N ′)×)K(1) by χp∣(Z/p)× . We claim the

other summand Z/pv−1 ⊆ (Z/pv)
×

acts on the homotopy orbit trivially. This is because both actions of
(Z/N ′)

×
and Z/pv−1 on the Moore spectrum M(Zp[ζpn]) factors through the action by Cpn . As (Z/N ′)

×

surjects onto Cpn via χ′, the action of Z/pv−1 on M(Zp[ζpn])h(Z/N ′)× is trivial, yielding:

S0
K(1)(p

v)hχ ≃MapK(1) ((S
−1
K(1))

∨p
, S0
K(1)(p

v))
h(Z/pv)×

≃(S1)∨p ∧Map(S0
χ∣(Z/p)× , (S

0
K(1)(p

v))
hZ/pv−1

)
h(Z/p)×

≃Σ (S0
K(1)(p)

hχ∣(Z/p)× )
∨p
.

In Case III when p > 2 and v − 1 > n, Zp[χ] = Zp[ζpv−1]. By Proposition 3.3.6, there is a Cpv−1-equivalence:

M(Zp[ζpn]) ≃ (Cpv−1)+ ⋀
Cpn

(Cpn)+⋀
Cp

M(Zp[ζp]) ≃ (Cpv−1)+ ⋀
Cpn

M(Zp[ζpn]).

We have the identification:

S0
K(1)(p

v)hχ ∶=MapZp (M(Zp[χ]), S0
K(1)(p

v))
h((Z/pv)××(Z/N ′)×)

≃(MapZp (M(Zp[ζpv−1]), S0
K(1)(p

v))
h(Z/N ′)×

)
h(Z/pv)×

≃
⎛
⎜
⎝

MapZp
⎛

⎝
(Cpv−1)+ ⋀

Cpn

M(Zp[ζpn]), S0
K(1)(p

v)
⎞

⎠

h(Z/N ′)×
⎞
⎟
⎠

h(Z/pv)×

≃MapZp ((Cpv−1/Cpn)+⋀M(Zp[ζpn])h(Z/N ′)× , S
0
K(1)(p

v))
h(Z/pv)×

≃MapK(1) ((Cpv−1/Cpn)+⋀(S−1
K(1))

∨p, S0
K(1)(p

v))
h(Z/pv)×

.

Like in the previous cases, the subgroup (Z/p)
×
⊆ (Z/pv)

×
acts on (M(Zp[ζpv−1])h(Z/N ′)×)K(1) by χp∣(Z/p)× .

The other summand Z/pv−1 ⊆ (Z/pv)
×

acts on the source (Cpv−1/Cpn)+∧(S
−1
K(1))

∨p via the projection Z/pv−1 ≃

Cpv−1 ↠ Cpv−1/Cpn , and on the target S0
K(1)(p

v) by the Galois action. As the latter action is free, we have

S0
K(1)(p

v)hχ ≃MapK(1) ((Cpv−1/Cpn)+⋀(S−1
K(1))

∨p, S0
K(1)(p

v))
h(Z/pv)×

≃Σ(MapK(1) (S
0
χ∣(Z/p)× , S

0
K(1)(p

v)hZ/p
n

)
h(Z/p)×

)

∨p

≃Σ (S0
K(1)(p

v−n)hχ∣(Z/p)× )
∨p
.
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This completes the proof. �

In Cases I and II (II’) in Theorem 4.3.4, we can now compute π∗ (S
0
K(1)(p

v)hχ) using (2.3.8) and (4.1.4)

when p > 2, and (2.3.13) and (4.2.9) when p = 2, respectively. Computations in Case III (III’) are similar.
Here we list the results below.

Corollary 4.3.9. When p > 2, suppose χ∣(Z/p)× = ω
a for some 0 ≤ a ≤ p − 2. We have:

πi (S
0
K(1)(p

v)hχ) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Z⊕pp , a = 0 and i = 0 or 1;

(Z/pvp(k)+1)
⊕p
, n ≥ v − 1, i = 2k ≠ 0, and (p − 1) ∣ (k − a);

(Z/pvp(k)+v−n)
⊕p
, n < v − 1, i = 2k ≠ 0, and (p − 1) ∣ (k − a);

0, otherwise.

When p = 2, if χ∣(Z/4)× is trivial, then

πi (S
0
K(1)(2

v)hχ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z⊕2
2 , i = 0;

(Z2 ⊕Z/2)⊕2, i = 1;
(Z/2⊕Z/2)⊕2, i ≡ 2 mod 8;

(Z/2)⊕2, i ≡ 1,3 mod 8 and i ≠ 1;

(Z/2v2(k)+3)
⊕2

n ≥ v − 2 and i = 4k ≠ 0;

(Z/2v2(k)+v−n+1)
⊕2

n < v − 2 and i = 4k ≠ 0;
0, otherwise.

If χ∣(Z/4)× = ω, then

πi (S
0
K(1)(2

v)hχ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Z/2)⊕2, i ≡ 3,5 mod 8 and i ≠ 1;
(Z/2⊕Z/2)⊕2, i ≡ 4 mod 8;

(Z/4)
⊕2

n ≥ v − 2 and i ≡ 2 mod 4;

(Z/2v−n)
⊕2

n < v − 2 and i ≡ 2 mod 4;
0, otherwise.

5. Comparisons of J-spectra and L-functions

In this section, we first compute homotopy groups of the Dirichlet J-spectra by assembling the results
in Section 4. From there, we compare these homotopy groups with the special values of the corresponding
Dirichlet L-functions in Theorem 5.1.2. This comparison allows to relate the spectrum J(N) and Dedekind
ζ-functions in Section 5.2. In addition, we find the Brown-Comenetz duals of the Dirichlet J-spectra and
K(1)-spheres, as well as J(N) in Section 5.3. This duality phenomenon is the similar to the functional
equations of the corresponding L-functions.

5.1. Dirichlet J-spectra and L-functions.

Theorem 5.1.1. Let χ be a primitive Dirichlet character (Z/N)
×
→ C× of conductor N .

(1) When N = p > 2, if ∣ Imχ∣ > 1 is not a prime power, then

J(p)hχ ≃ ⋁
0≤a≤p−2

kerωa=kerχ

S0
K(1)(p)

hωa Ô⇒ πi (J(p)
hχ) = {

Z/pvp(k)+1, i = 2k − 1 and kerωk = kerχ;
0, otherwise.
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If ∣ Imχ∣ > 1 is a power of a prime `, then

J(p)hχ ≃ (Σ (S0
KU/`)

∨`
)⋁ ⋁

0≤a≤p−2
kerωa=kerχ

S0
KU/p(p)

hωa .

When ` > 2, we have

πi (J(p)
hχ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z⊕`` , i = 0;
Z⊕`` , i = 1 and kerχ ≠ 0;

Z/p⊕Z⊕`` , i = 1 and kerχ = 0;

Z/pvp(k)+1, i = 2k − 1 ≠ 1 and kerωk = kerχ;

(Z/`v`(k)+1)
⊕`
, i = 2k ≠ 0, and (` − 1) ∣ k;

0, otherwise.

When ` = 2 (in particular whenever p = 22n + 1 is a Fermat prime), we have

πi (J(p)
hχ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z⊕2
2 , i = 0;

(Z2 ⊕Z/2)
⊕2
, i = 1 and kerχ ≠ 0;

Z/p⊕ (Z2 ⊕Z/2)
⊕2
, i = 1 and kerχ = 0;

(Z/2⊕Z/2)⊕2, i ≡ 2 mod 8;

Z/pvp(k)+1 ⊕ (Z/2)⊕2, i = 2k − 1 ≠ 1, i ≡ 1,3 mod 8, and kerωk = kerχ;

Z/pvp(k)+1, i = 2k − 1, i ≡ 5,7 mod 8, and kerωk = kerχ;

(Z/2v2(k)+3)
⊕2

i = 4k ≠ 0;
0, otherwise.

(2) When N = pv, v > 1 and p > 2, we have

J(pv)hχ ≃ ⋁
0≤a≤p−2

kerωa=kerχ∣(Z/p)×

S0
K(1)(p

v)hχa Ô⇒ πi (J(p
v)hχ) = {

Z/p, i = 2k − 1 and kerωk = kerχ∣(Z/p)× ;
0, otherwise.

where χa = ω
a ⋅ (ι ○ χ∣Z/pv−1) and ι ∶ Q(χ)↪ Cp is an embedding as in Examples 3.5.4.

(3) When N = 4, the only non-trivial character satisfies χ(−1) = −1. We have:

J(4)hχ ≃ S0
K(1)(4)

hω Ô⇒ πi (J(4)
hχ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Z/4, i = 4k + 1;
Z/2, i ≡ 2,4 mod 8;

Z/2⊕Z/2, i ≡ 3 mod 8;
0, otherwise.

(4) When N = 2v > 4, J(4)hχ ≃ S0
K(1)(2

v)h(ι○χ), where ι ∶ Q(χ)↪ C2 is an embedding. If χ(−1) = 1, then

πi (J(2
v)hχ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z/2, i ≡ 0,2,3,7 mod 8;
Z/2⊕Z/2, i ≡ 1 mod 8;

0, otherwise.

If χ(−1) = −1, then

πi (J(2
v)hχ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z/2, i ≡ 1,2,4,5 mod 8;
Z/2⊕Z/2, i ≡ 3 mod 8;

0, otherwise.

(5) Suppose N has more than one prime factors.

(a) J(N)hχ is contractible unless there is a prime p such that ∣ Imχ∣(Z/N ′)× ∣ = p
n where N ′ = N/pvp(N).

In particular, J(N)hχ is contractible whenever v`(N) ≥ 2 for at least two distinct primes `.
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(b) When there is such a prime p, then J(N)hχ ≃ (J(N)hχ)
∧
p
. When p is odd, we have

πi (J(N)hχ) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Z⊕pp , χ∣(Z/p)× is trivial and i = 0 or 1;

(Z/pvp(k)+1)
⊕p
, n ≥ v − 1, i = 2k ≠ 0, and kerωk = kerχ∣(Z/p)× ;

(Z/pvp(k)+v−n)
⊕p
, n < v − 1, i = 2k ≠ 0, and kerωk = kerχ∣(Z/p)× ;

0, otherwise.

When p = 2, if χ∣(Z/4)× is trivial, then

πi (J(N)hχ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z⊕2
2 , i = 0;

(Z2 ⊕Z/2)⊕2, i = 1;
(Z/2⊕Z/2)⊕2, i ≡ 2 mod 8;

(Z/2)⊕2, i ≡ 1,3 mod 8 and i ≠ 1;

(Z/2v2(k)+3)
⊕2

n ≥ v − 2 and i = 4k ≠ 0;

(Z/2v2(k)+v−n+1)
⊕2

n < v − 2 and i = 4k ≠ 0;
0, otherwise.

If χ∣(Z/4)× = ω, we have

πi (J(N)hχ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Z/2)⊕2, i ≡ 3,5 mod 8 and i ≠ 1;
(Z/2⊕Z/2)⊕2, i ≡ 4 mod 8;

(Z/4)
⊕2

n ≥ v − 2 and i ≡ 2 mod 4;

(Z/2v−n)
⊕2

n < v − 2 and i ≡ 2 mod 4;
0, otherwise.

Proof. By Proposition 3.5.1, J(N)hχQ is contractible unless χ is trivial. As a result, we can compute

π∗ (J(N)hχ) by assembling computations of the Dirichlet K(1)-local spheres in Section 4, via Proposi-
tion 3.5.3. �

Theorem 5.1.2. Let Dk,χ be the ideal of Z[χ] generated by the denominator of
Bk,χ
2k

∈ Q(χ). Set Dk,χ = (1)

when (−1)k ≠ χ(−1) (i.e. when Bk,χ = 0).

(1) Assume N = p > 2 or N = 4 when p = 2. For all integers k satisfying (−1)k = χ(−1), we have

π2k−1 (J(N)hχ [
1

`(χ)
]) ≃ Z [χ]/D∣k∣,χ−1 , where `(χ) = {

`, if ∣ Im(χ)∣ is a power of a prime `;
1, otherwise.

(2) When N = pv > 2p, π2k−1 (J(pv)hχ) ≃ Z [χ]/Ik,χ−1 , where Ik,χ is an ideal of Z[χ] such that its multi-
plicative difference with Dk,χ contains the principal ideal (2) in Z[χ].

Remark 5.1.3. By Remark 4.2.11 and Remark 4.2.20, the statements above are independent of the models
of M(Z[χ]) when (−1)k = χ(−1).

Proof. In the first four cases in Theorem 5.1.1, the Dirichlet J-spectra are equivalent to their p-completions
after inverting `(χ) by Corollary 3.5.2, Proposition 3.5.3 and Corollary 4.3.3. The only thing remains to
check is π2k−1 where (−1)k = χ(−1) and N = pv > 1. For that, it suffices to compare the arithmetic properties
of Bk,χ in Theorem 1.1.8 with computations in Section 4.1.

(1) N = p > 2. Comparing the decomposition in Examples 3.5.4 and computation in (4.1.4) with Theo-
rem 1.1.8, we need to check the following:
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● Let g be a primitive (p − 1)-st root of unity mod p. The ideal p ∶= (p,1 − χ(g)gk) of Z[χ] is not
equal to (1) iff kerχ = kerω−k. To see this, notice by Corollary A.3.5, there is an isomorphism of
(Z/p)

×
-representations:

Z[χ]/p ≃ ⊕
0≤a≤p−2

kerωa=kerχ

(Z/p)ωa ≃ ⊕
0≤a≤p−2

kerωa=kerχ

(Z/p)⊗a.

Then 1 − χ(g)gk is invertible in Z[χ]/p iff 1 ≡ ga ⋅ gk mod p for some a satisfying 0 ≤ a ≤ p − 2 and
kerχ = kerωa. Since g is a primitive (p−1)-st root of unity mod p, this condition is further equivalent
to saying (p − 1) ∣ (a + k) for such an a. From this we conclude kerχ = kerω−k.

● When p ≠ (1), the congruence (1.1.9) pBk,χ ≡ p − 1 mod pvp(k)+1 implies Z[χ]/Dk,χ ≃ Z/pvp(k)+1.

It suffices to check this formula holds p-adically and 2-adically since the denominator ideal of
Bk,χ
k

is
p-primary by Theorem 1.1.8. As 2 ∣ (p − 1), Dk,χ has no 2-primary factors by (1.1.9). p-adically, p is
the same as (p) when it is not (1). Now (1.1.9) becomes

pBk,ωa ≡ p − 1 mod pvp(k)+1 Ô⇒
Bk,ωa

2k
≡
p − 1

2pk
mod Zp,

where a satisfies kerωa = kerχ and (p − 1) ∣ (k + a). This implies

Z[χ]/Dk,χ−1 ≃ Z/pvp(k)+1 ≃ π2k−1 (J(p)hχ [
1

`(χ)
]) .

(2) N = pv, v > 1 and p > 2. By Lemma 4.1.9, p = (p,1 − χ(g)gk) ≠ (1) when kerχ∣(Z/p)× = kerω−k. In

that case, p = (1 − ζpv−1 , p) = (1 − ζpv−1). On the other hand, since 1 + p is a generator of the subgroup

Z/pv−1 ⊆ (Z/pv)
×

and χ is primitive, χ(1+p) is also a primitive pv−1-th root of unity. As a result, (1.1.9)
translates into

(1 − χ(p + 1))
Bk,χ

k
≡ 1 mod p Ô⇒

Bk,χ

k
≡

1

1 − ζpv−1
mod Zp[ζpv−1].

Thus Dk,χ is either (1 − ζpv−1) or (2(1 − ζpv−1)). Whereas by Theorem 5.1.1, π2k−1 (J(pv)hχ) ≃ Z/p ≃
Z[χ]/(1 − ζpv−1).

(3) N = 4. In this case χ = χ−1 since (Z/4)
×
≃ C2. By (1.1.11), we have when k is odd:

Bk,χ

k
≡

1

2
mod 1 Ô⇒

Bk,χ

2k
≡ ±

1

4
mod 1.

Thus Dk,χ = Dk,χ−1 is equal to the ideal (4) of Z[χ] ≃ Z. This matches the computation in (4.2.9) that

π2k−1 (S0
K(1)(4)

hω) ≃ Z/4 when k is odd.

(4) N = 2v > 4. Theorem 1.1.8 says
Bk,χ
k

is an algebraic integer. As a result, Dk,χ the denominator ideal of
Bk,χ
2k

contains (2) as a sub-ideal. By Theorem 5.1.1, π2k−1 (J(2v)hχ) ≃ Z/2 ≃ Z[χ]/(1 − ζ2v−2). As both
Dk,χ and Ik,χ contain the ideal (2) in Z[χ], their difference contains the ideal (2).

�

5.2. J(N) and the Dedekind ζ-function of Q(ζN). In this subsection, we compare the spectrum J(N)
with Dedekind ζ-function of the field Q(ζN). We will focus on the case when N = pv for some prime p. By
Theorem 1.1.13, Dedekind ζ-functions of Q(ζN) and Dirichlet L-functions are related by:

(5.2.1) ζQ(ζN )(s) = ∏
χ∶(Z/N)×→C×

L(s,χ).
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When N = pv, this yields:
ζQ(ζpv )(s)

ζQ(ζpv−1)(s)
= ∏
χ∶(Z/pv)×→C×

primitive

L(s,χ).

The formula above reminds us of Proposition 4.1.11 and Proposition 4.2.21.

Proposition 5.2.2. Let p > 2 be a prime and χ ∶ (Z/pv)
×
→ C×

p be any primitive p-adic Dirichlet character
of conductor pv.

Cofib(J(pv−1)→ J(pv)) ≃

⎧⎪⎪
⎨
⎪⎪⎩

⋁
p−2
a=1 S

0
K(1)(p)

hωa , v = 1;

⋁
p−2
a=0 S

0
K(1)(p

v)hχa , v > 1,

where χa = ω
a ⋅ (χ∣Z/pv−1).

Proof. By Corollary 3.2.9, Cofib(J(pv−1) → J(pv)) is equivalent to its p-completion, since the map is an
equivalence rationally, and when completed at a prime other than p. At prime p, we have

Cofib(J(pv−1)→ J(pv)) ≃ Cofib(J(pv−1)→ J(pv))∧p ≃ Cofib (S0
K(1)(p

v−1)→ S0
K(1)(p

v)) .

When v = 1, taking this cofiber removes the a = 0 summand in the Adams splitting of S0
K(1)(p). When v > 1,

the claim follows from Proposition 4.1.13 and the Adams splittings. �

Corollary 5.2.3. Notations as above. When p > 2 and v > 1, we have

Cofib(J(pv−1)→ J(pv)) ≃ ⋁
a∈[0,p−2]/∼

J(pv)hχa ,

where a ∼ b if kerωa = kerωb.

Proof. This follows from Proposition 5.2.2 and Case (2) in Theorem 5.1.1. �

One might now wonder if there is a connection between special values of ζQ(ζN ) and homotopy groups of
J(N) as in Theorem 5.1.2. Notice in (5.2.1), both even and odd characters show up on the right hand side.
Also recall L(1− k,χ) = 0 unless (−1)k = χ(−1). This implies ζQ(ζN )(1− k) = 0 for all positive integers k. As
a result, a direct analogy of Theorem 5.1.2 does not exist in this case.

There are two ways one might try to fix this. The first one is to exclude odd characters in the product
formula (5.2.1). Let K be a totally real finite abelian extension of Q, and N be the smallest integer such
that K ⊆ Q(ζN). K being totally real is equivalent to Gal(Q(ζN)/K) containing complex conjugation, which
is identified with −1 ∈ (Z/N)

×
via Lemma A.2.1. This means in the product formula Theorem 1.1.13

ζK(s) = ∏
χ∶(Z/N)×→C×

Gal(Q(ζN )/K)⊆kerχ

L(s,χ),

only even characters show up on the right hand side and ζK has non-zero special values as s = 1 − 2k.

Definition 5.2.4. Let K/Q be a finite abelian extension and let N be the smallest integer such that
K ⊆ Q(ζN). We define

J(K) ∶= J(N)hGal(Q(ζN )/K).

Here, we identify Gal(Q(ζN)/K) ⊆ Gal(Q(ζN)/Q) ≃ (Z/N)
×
. The action of (Z/N)

×
on J(N) was described

in Proposition 3.2.11.

Remark 5.2.5. The construction J(K) does not satisfy Galois descent, as observed in Remark 3.2.12.
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Theorem 5.2.6. Let K/Q be a totally real finite abelian extension and pv be the smallest integer such that
K ⊆ Q(ζpv). Denote the Galois group Gal(Q(ζN)/K) by G. Then

π4t−1 (J(K) [
1

∣G∣
]) = Z [

1

∣G∣
]/DK,2t,

where DK,2t ∈ Z>0 is the denominator of ζK(1 − 2t).

Proof. It suffices to compare the sides at primes not dividing ∣G∣. We first show G ⊆ (Z/p)
×
⊆ (Z/pv)

×
≃

Gal(Q(ζpv)/Q). This is true when v = 1 since Gal(Q(ζp)/Q) ≃ (Z/p)
×
. Now assume v > 1 and suppose G

contains an element of order p. Then we have Gal(Q(ζpv)/Q(ζpv−1)) ≃ Cp ⊆ G. By Galois correspondence

between subfields of Q(ζpv) and subgroups of (Z/pv)
×
, this would imply K ⊆ Q(ζpv−1), contradicting our

assumption.
It follows that p ∤ ∣G∣. Let ` be a prime such that ` ∤ ∣G∣ and ` ≠ p. By Corollary 3.2.9, we have

J(K)∧` = (J(pv)hG)
∧
`
≃ S0

KU/`

This shows π4t−1 (J(K)∧` ) = π4t−1 (S0
KU/`) = Z`/D2t. Using the product formula Theorem 1.1.13 and Carlitz’s

Theorem 1.1.8, we get π4t−1 (J(K)∧` ) ≃ Z`/D2t = Z`/DK,2t.
Completed at the prime p, we have by Corollary 3.2.9 and Theorem 5.1.1

J(K)∧p = (J(pv)hG)
∧
p
≃ S0

K(1)(p
v)hG ≃ ⋁

0≤a≤p−2
G⊆kerωa

S0
K(1)(p

v)hω
a

≃ ⋁
χ∈Hom((Z/p)×,C×)/∼

G⊆kerχ

(J(pv)hχ)
∧
p

where χ1 ∼ χ2 iff they have the same images (thus differ by an element in the Galois group). Now we can
prove the claim by comparing Theorem 1.1.13 and Proposition 4.1.11 via Theorem 5.1.2. �

A second approach to relate J(N) to ζQ(ζN ) is to consider the Taylor expansion of the Dedekind ζ-functions
at zero special values.

Definition 5.2.7. For any number field K, we denote by ζ∗K(1− k) the coefficient of the first non-zero term
in the Taylor expansion of ζK(s) at s = 1 − k.

From the definition, ζ∗K(1−k) = ζK(1−k) when the latter is not zero. This special value ζ∗K(1−k) is closely
related to the algebraic K-theory of OK, the ring of integers of K.

Theorem 5.2.8 (Lichtenbaum-Quillen Conjecture, Voevodsky-Rost). [Kol04, pages 199 – 200] For all k ≥ 2:

ζ∗K(1 − k) = ±
∣K2k−2(OK)∣

∣K2k−1(OK)tors∣
⋅RBk (K),

up to powers of 2, where RBk (K) is the k-th Borel regulator of K.

Let K/Q be a finite abelian extension. In the case when K is totally real, both π2k−1(J(K)) and K2k−1(OK)
capture the denominator of ζ∗K(1 − k). We now want to compare J(K) and K(OK). Recall in Proposi-

tion 3.2.11, we showed J(N) is a KU -local E∞-ring spectrum, with a natural (Z/N)
×
-action by E∞-maps.

This implies J(K) is a KU -local E∞-ring spectrum, with a natural Gal(K/Q)-action by E∞-maps.
While K(OK) is not a KU -local spectrum (since it is connective and is not a wedge sum of Eilenberg-

MacLane spectra), it is very close to one in the following sense:

Theorem 5.2.9 (Waldhausen). [Mit94, Conjecture 11.5] Fix a prime `. Assuming Lichtenbaum-Quillen
Conjecture holds at `, the E(1)-localization map K(OK) → L1K(OK) is an `-local isomorphism on πn for
all n ≥ 1.
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This shows the KU -localization map to K(OK) → LKUK(OK) is an equivalence on the 1-connective
covers of the two spectra. K(OK) is an E∞-ring spectrum by a result of May [Mit94, 2.8], Since Quillen’s
construction of algebraic K-theory spectra is functorial, there is a natural Gal(K/Q)-action on K(OK) by
E∞-maps. So just like J(K), LKUK(OK) is a KU -local E∞-ring spectrum, with a natural Gal(K/Q)-action
by E∞-maps. When K = Q, J(Q) = J and LKU(K(Z)) is connected by the KU -local Hurewicz map:

hKU ∶ J = S0
KU Ð→ LKUK(Z).

A natural question to ask here is:

Question 5.2.10. Let K/Q be a finite abelian extension. Is there a natural Gal(K/Q)-equivariant map of
KU -local E∞-ring spectra h(K) ∶ J(K)→ LKUK(OK) extending the KU -local Hurewicz map hKU?

J(K) LKUK(OK)

J = S0
KU LKUK(Z)

∃h(K)?

hKU

In addition, for an arbitrary number field K, how can we extract a “J-spectrum” from LKUK(OK)?

5.3. Brown-Comenetz duality. From Remark 3.2.15 and the computations in Section 4 and Theorem 5.1.1,
we observe the following duality phenomena hold in many (but not all) cases:

πt(J(N)) ≃ π−2−t(J(N)), πt (J(N)hχ) ≃ π−2−t (J(N)hχ
−1
) .

This duality resembles the functional equations of the Dedekind ζ-functions and Dirichlet L-functions. Let
χ ∶ (Z/N)

×
→ C× be a primitive Dirichlet character of conductor N and k is a positive integer such that

(−1)k = χ(−1). Then we have the following functional equation of L(k;χ):

L(k;χ) =
τ(χ)

2(k − 1)!
⋅ (

2πi

N
)
k

⋅L(1 − k;χ−1), where τ(χ) =
N

∑
a=1

χ(a)e
2πia
N .

The duality in homotopy groups we observed is a result of Brown-Comenetz duality of the spectra. In
this subsection, we find the Brown-Comenetz duals for the Dirichlet J-spectra, K(1)-local spheres, and the
spectra J(N). Let’s first review the setup following [HG94].

Definitions 5.3.1. Let I be the spectrum that represents the cohomology theory X ↦ HomZ(π0(X),Q/Z).
The Brown-Comenetz dual of a finite type spectrum X is defined to be

IX ∶= Map(X,I) ≃ I ∧DX,

where DX ∶= Map(X,S0) is the Spanier-Whitehead dual of X. In particular, I = IS0 is the Brown-
Comenetz dual of S0.

It follows from the definition that πt(IX) ≃ HomZ(π−t(X),Q/Z).

Definition 5.3.2. Let I1 ∶= Map(L1S
0, I) be the Brown-Comenetz dual of the E(1)-local sphere L1S

0. The
K(1)-local Brown-Comenetz dual of S0 is defined by IK(1) ∶= LK(1)I1. Define the E(1)-local and K(1)-local
duals of a spectrum X to be

I1X ∶= Map(X,I1) ≃ I1 ∧DE(1)X, IK(1)X ∶= Map(X,IK(1)) ≃ IK(1) ∧DK(1)(X).

Proposition 5.3.3. Homotopy groups of I1X and IK(1)X are computed by:

πt(I1X) ≃HomZ(p) (π−t(L1X),Q/Z(p)) ,(5.3.4)

πt(IK(1)X) ≃HomZp(π−t(M1X),Qp/Zp),(5.3.5)
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where M1X ∶= hoFib(L1X → L0X).

Proof. (5.3.4) follows from the definition. (5.3.5) is in [HG94, page 84]. �

Theorem 5.3.6 (Hopkins). [Dev90, Remark 1.5], [MR99, Corollary 9.6] When p > 2, I1 ≃ Σ2L1 (S0
p), where

S0
p is the p-complete sphere. When p = 2, I1 ≃ Σ2L1 (E∧2 ), where E is a finite CW-spectrum defined by

E ∶= Σ−2(S−1 ∪2 e
0 ∪η e

2).

Remark 5.3.7. E(1)-localization does NOT commute with p-completion. On one hand, we have L1 (S0
p) ≃

M(Zp) ∧L1S
0, since L1 is smashing by [Rav92, Theorem 7.5.6]. One the other hand, (L1S

0)
∧
p
≃ S0

K(1). We

can then show M(Zp) ∧L1S
0 /≃ S0

K(1) by comparing their homotopy groups.

Localized at an odd prime p, E is equivalent to the sphere spectrum. As a result, the formula I1 ≃ Σ2L1(E
∧
p )

holds for all primes p. This suggests:

Corollary 5.3.8. IKU ∶= Map(LKUS
0, I) ≃ Σ2LKU(E∧), where E∧ is the profinite completion of E.

Theorem 5.3.9 (Gross-Hopkins). When p > 2, IK(1) ≃ S
2
K(1). When p = 2, IK(1) ≃ Σ2EK(1) .

The Dirichlet J-spectra and K(1)-local spheres constructed in this paper are KU -local and K(1)-local,
respectively. The analysis above shows:

IKU (J(N)hχ) ≃Σ2DKU (J(N)hχ) ∧LKU(E∧)

IK(1) (S
0
K(1)(p

v)hχ) ≃

⎧⎪⎪
⎨
⎪⎪⎩

Σ2DK(1) (S
0
K(1)(p

v)hχ) , p > 2;

Σ2DK(1) (S
0
K(1)(p

v)hχ) ∧ EK(1), p = 2.

To find Brown-Comenetz duals of these spectra, it now remains to identify their Spanier-Whitehead duals in
SpKU and SpK(1), respectively. We start with the K(1)-local cases, which the KU -local cases depend on.

Proposition 5.3.10. Let χ be a p-adic Dirichlet character of conductor pv. The Spanier-Whitehead dual
of the Dirichlet K(1)-local sphere attached to χ is

DK(1) (S
0
K(1)(p

v)hχ) ≃

⎧⎪⎪
⎨
⎪⎪⎩

S0
K(1)(2

v)hχ
−1
∧ EK(1), p = 2 and χ(−1) = −1;

S0
K(1)(p

v)hχ
−1
, otherwise.

Proof. When p > 2, by Lemma 4.1.14, it suffices to check the Z×p-action on the KU∧
p -homology of the Dirichlet

K(1)-local spheres. In Corollary 4.1.12, we computed:

(KU∧
p )∗ (S

0
K(1)(p

v)hχ) ≃ HomZp (Zp[χ], (KU
∧
p )∗) ,

where Z×p acts on Zp[χ] through the character χ, and on (KU∧
p )∗ by the Adams operations. The dual

Z×p-representation of Zp[χ] is Zp[χ−1]. Also notice (KU∧
p )∗ is self dual as graded Z×p-representations. We

have:

Hom(KU∧
p )∗

((KU∧
p )∗ (S

0
K(1)(p

v)hχ) , (KU∧
p )∗) ≃ HomZp (Zp[χ

−1], (KU∧
p )∗) ≃ (KU∧

p )∗ (S
0
K(1)(p

v)hχ
−1
) .

This implies DK(1) (S
0
K(1)(p

v)hχ) ≃ S0
K(1)(p

v)hχ
−1

when p > 2.

When p = 2, by Lemma 4.2.24, we need to check the (1+4Z2)-action on the KO∧
2 -homology of the Dirichlet

K(1)-local spheres. By Corollary 4.2.22, we have

(KO∧
2 )∗ (S

0
K(1)(2

v)hχ) ≃

⎧⎪⎪
⎨
⎪⎪⎩

Hom (Z2[χ], (KO
∧
2 )∗) , χ(−1) = 1;

Hom (Z2[χ], (KU
∧
2 )

hω
∗ ) , χ(−1) = −1.
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Here 1 + 4Z2 acts by the character χ∣Z/2v−2 on Z2[χ] and by Adams operations on (KO∧
2 )∗ and (KU∧

2 )
hω
∗ .

Notice that Z2[χ] is dual to Z2[χ
−1], (KO∧

2 )∗ is self-dual, and (KU∧
2 )

hω
∗ is dual to (KU∧

2 )
h′ω
∗ , where

(KU∧
2 )

h′ω
∶= Map (S1−σ,KR∧

2)
h{±1}

. From this, we get

Hom(KO∧
2)∗

((KO∧
2 )∗ (S

0
K(1)(2

v)hχ) , (KO∧
2 )∗) ≃

⎧⎪⎪
⎨
⎪⎪⎩

Hom (Z2[χ
−1], (KO∧

2 )∗) , χ(−1) = 1;

Hom (Z2[χ
−1], (KU∧

2 )
h′ω
∗ ) , χ(−1) = −1.

≃

⎧⎪⎪
⎨
⎪⎪⎩

(KO∧
2 )∗ (S

0
K(1)(2

v)hχ
−1
) , χ(−1) = 1;

(KO∧
2 )∗ (S

0
K(1)(2

v)hχ
−1
∧ EK(1)) , χ(−1) = −1.

This implies the claim at p = 2. �

Theorem 5.3.11. When the conductor of χ is a power of p, the Brown-Comenetz dual of the Dirichlet
K(1)-local sphere attached to χ is:

IK(1) (S
0
K(1)(p

v)hχ) ≃

⎧⎪⎪
⎨
⎪⎪⎩

Σ2S0
K(1)(2

v)hχ
−1
∧ EK(1), p = 2 and χ(−1) = 1;

Σ2S0
K(1)(p

v)hχ
−1
, otherwise.

Proof. We used the fact EK(1) ∧ EK(1) ≃ S
0
K(1) in the case when p = 2 and χ(−1) = −1. �

From computations in Section 4, we know L0 (S0
K(1)(p

v)hχ) ≃ ∗ whenever the conductor N of χ is a power

of p. This implies M1S
0
K(1)(p

v)hχ = S0
K(1)(p

v)hχ. Also, as the homotopy groups of the Dirichlet K(1)-local

spheres are finite p-groups, they are (non-canonically) isomorphic to their p-adic Pontryagin duals. Now
plugging Theorem 5.3.11 into (5.3.5), we get

πt (S
0
K(1)(p

v)hχ) ≃HomZp(πt (S
0
K(1)(p

v)hχ) ,Qp/Zp) (non-canonically)

≃HomZp(πt (M1S
0
K(1)(p

v)hχ) ,Qp/Zp)

≃

⎧⎪⎪
⎨
⎪⎪⎩

π−2−t (S
0
K(1)(2

v)hχ
−1
∧ EK(1)) , p = 2 and χ(−1) = 1;

π−2−t (S
0
K(1)(p

v)hχ
−1
) , otherwise.

When the conductor N of the p-adic Dirichlet character χ is not a p-power, the Brown-Comenetz dual of
the Dirichlet K(1)-local is slightly different.

Corollary 5.3.12. Let χ be a p-adic Dirichlet character N = pv ⋅N ′. Write χ = χp ⋅χ
′ as before. If ∣ Imχ′∣ > 1

is not a p-power, then

IK(1) (S
0
K(1)(p

v)hχ) ≃ IK(1)(∗) ≃ ∗.

If ∣ Imχ′∣ > 1 is a p-power, then

IK(1) (S
0
K(1)(p

v)hχ) ≃

⎧⎪⎪
⎨
⎪⎪⎩

S0
K(1)(2

v)hχ
−1
∧ EK(1), p = 2 and χ∣(Z/4)× is trivial;

S0
K(1)(p

v)hχ
−1
, otherwise.

Proof. When ∣ Imχ′∣ > 1 is not a p-power, the claim follows from Proposition 4.3.1. The other cases follow
from Theorem 4.3.4 and Theorem 5.3.11. �

Now we identify the KU -local Spanier-Whitehead dual of the Dirichlet J-spectra J(N)hχ. Similar to
(5.3.4), we have in SpKU :

(5.3.13) πt(IKUX) ≃ HomZ (π−t(LKUX),Q/Z) .
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In this case, our strategy is to assemble duality formulas via the arithmetic fracture squares for KU -local

spectra. By Proposition 3.5.1, J(N)hχQ is contractible unless χ is trivial. In Proposition 3.5.3, we described

how J(N)hχ decomposes upon p-completion. Now from Theorem 5.3.11 and Corollary 5.3.12, we have:

Theorem 5.3.14. Let χ ∶ (Z/N)
×
→ C× be a primitive Dirichlet character of conductor N .

(1) Suppose N = pv and p is odd. If ∣ Imχ∣ > 1 is not a power of another prime (in particular whenever
v > 1), then

IKU (J(pv)hχ [
1

`(χ)
]) ≃ Σ2J(pv)hχ

−1
[

1

`(χ)
] Ô⇒ πt (J(p

v)hχ [
1

`(χ)
]) ≃ π−2−t (J(p

v)hχ
−1

[
1

`(χ)
]) ,

where `(χ) is as in Theorem 5.1.2:

`(χ) = {
`, if ∣ Im(χ)∣ is a power of a prime ` ≠ p;
1, otherwise.

(2) If N = 2v ≥ 4, then

IKU (J(2v)hχ) ≃ {
Σ2J(2v)hχ

−1
∧ EKU , χ(−1) = 1;

Σ2J(2v)hχ
−1
, χ(−1) = −1.

Ô⇒ πt (J(2
v)hχ) ≃

⎧⎪⎪
⎨
⎪⎪⎩

π−2−t (J(2
v)hχ

−1
∧ EKU) , χ(−1) = 1;

π−2−t (J(2
v)hχ

−1
) , χ(−1) = −1.

Remark 5.3.15. In (1) above, it is necessary to invert `(χ). This is because the degrees of suspensions are
different in Theorem 5.3.11 and Corollary 5.3.12.

We now identify the Brown-Comenetz dual of J(N). It is KU -local by Proposition 3.2.11. This means
IKU(J(N)) ≃ Σ2LKU (E∧) ∧DKU(J(N)) by Corollary 5.3.8.

Proposition 5.3.16. J(N) is Spanier-Whitehead self-dual in SpKU . It follows that

IKU(J(N)) ≃ Σ2LKU (E∧) ∧ J(N) ≃ Σ2EKU ∧ J(N) ∧M(Ẑ).

Proof. This is because J(N)Q ≃ S0
Q and J(N)∧p ≃ S0

K(1) (p
vp(N)) are both Spanier-Whitehead self-dual in

SpQ and SpK(1), respectively. �

Lemma 5.3.17. J(4N) ∧ EKU ≃ J(4N).

Proof. Since E ≃ S0 when 2 is inverted, the equivalence holds rationally, and completed at an odd prime. At
prime 2, J(4N)∧2 ≃ S0

K(1)(2
v+2) by Corollary 3.2.9, where v = v2(N). The claim now follows from the fact

that S0
K(1)(4) ∧ EK(1) ≃ S

0
K(1)(4). �

Corollary 5.3.18. IKU(J(4N)) ≃ Σ2J(4N) ∧M(Ẑ). By (5.3.13) and the Universal Coefficient Theorem,

πt(J(4N))∧ ≃ πt(J(4N) ∧M(Ẑ)) ≃ πt+2(IKU(J(4N))) ≃ HomZ(π−2−t(J(4N)),Q/Z),

as observed in Remark 3.2.15.

Appendix A. Cyclotomic representations of cyclic groups

In the appendix, we study the integral and p-adic cyclotomic representations of the cyclic group Cn.
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A.1. Integral cyclotomic representations. Let Φn(t) be the n-th cyclotomic polynomial, i.e. the min-
imal polynomial of a primitive n-th root of unity ζn over Q. The integral cyclotomic representation of Cn
has underlying abelian group Z[ζn] ≃ Z[t]/Φ(t) and g ∈ Cn acts by multiplication by a primitive n-th root
of unity (or t ∈ Z[t]/Φ(t)). The rank of Z[ζn] as a free abelian group is equal to deg Φn(t) = φ(n).

Examples A.1.1. We consider the following examples:

(1) When n = 5, Z[ζ5] is a free Z-module of rank 4 as φ(5) = 4. {1, ζ5, ζ
2
5 , ζ

3
5} form a basis of Z[ζ5]. The

minimal polynomial of ζ5 is Φ5(t) = t
4 + t3 + t2 + t + 1. Let g ∈ C5 be a generator that acts on Z[ζ5] by

multiplication by ζn. Then the matrix representation of g ∈ C5 with respect the basis {1, ζ5, ζ
2
5 , ζ

3
5} of

Z[ζ5] is

g =

⎛
⎜
⎜
⎜
⎝

−1
1 −1

1 −1
1 −1

⎞
⎟
⎟
⎟
⎠

.

(2) When n = 6, Z[ζ6] is a free Z-module of rank 2 as φ(6) = 2. {1, ζ6} form a basis of Z[ζ6]. The minimal
polynomial of ζ6 is Φ6(t) = t

2 − t + 1. Let g ∈ C6 be a generator that acts on Z[ζ6] by multiplication by
ζn. Then the matrix representation of g ∈ C6 with respect the basis {1, ζ6} of Z[ζ6] is

g = (
0 1
1 −1

) .

Lemma A.1.2. The cyclotomic representation of Cn is equivalent to the external tensor product of the
cyclotomic representations of Cpvp(n) , i.e. there is an equivalence of Cn-representations:

Z[ζn] ≃⊗
p∣n

Z [ζpvp(n)]

Lemma A.1.3. There is a short exact sequence of Cpv -representations:

(A.1.4) 0 Z[ζpv ] Z[Cpv ] Z[Cpv−1] 0

where Cpv acts on Z[Cpv−1] via the quotient map Cpv ↠ Cpv−1 .

Proof. This follows from the observations that Φpv(t) =
tp
v
−1

tpv−1−1
and Z[Cn] ≃ Z[t]/(tn − 1). �

A.2. p-adic cyclotomic representations. From now on, let χ ∶ (Z/N)
×
→ C×

p be a p-adic Dirichlet charac-
ter of conductor N and Zp[χ] be the Zp-subalgebra of Cp generated by the image of χ. Again, Zp[χ] = Zp[ζn]
for some n. Write n = pv ⋅ n′ with p ∤ n′, we have Zp[ζn] ≃ Zp[ζpv ] ⊗Zp Zp[ζn′]. Now it suffices to analyze
Cn-actions on Zp[ζn] in the cases when n = pv or p ∤ n. Let’s first recall some basic facts of cyclotomic
extensions of Q:

Lemma A.2.1. [Was97, Theorem 2.5, 2.6] We recall the following basic facts of the cyclotomic extension
Q(ζn)/Q.

(1) Q(ζn)/Q is a Galois extension of degree φ(n) and Gal(Q(ζn)/Q) ≃ (Z/n)
×
, with a ∈ (Z/n)

×
acting by

ζn ↦ ζan.
(2) The ring of integers of Q(ζn) is Z[ζn]. Consequently, for any σ ∈ Gal(Q(ζn)/Q), σ(Z[ζn]) = Z[ζn].

As a result of this lemma, we can extract the action of (Z/N)
×

on Z[ζn] from that on Q(ζn).

Proposition A.2.2. For any σ ∈ Gal(Q(χ)/Q), the (Z/N)
×
-representation induced by the Dirichlet char-

acter σ ○ χ is isomorphic to that induced by χ.
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Proof. Let Z[χ] = Z[ζn], where ζn is a primitive n-th root of unity. For any σ ∈ Gal(Q(χ)/Q), σ(ζn) is also
a primitive n-th root of unity. As a result, the minimal polynomials of ζn and σ(ζn) are both Φn(t). It
follows that the matrix representations of χ and σ ○χ are differed by a change of basis induced by σ. Thus,
the integral representations induced by χ and σ ○ χ are isomorphic. �

Proposition A.2.3. Write n = pv ⋅ n′, where p ∤ n′ and let m be the multiplicative order of p mod n′, i.e.

m = min{k > 0 ∣ pk ≡ 1 mod n′}.

Then Qp(ζn)/Qp is a Galois extension of local fields of residue index m and ramification index φ(pv).
Moreover,

Gal(Qp(ζn)/Qp) ≃ Gal(Qp(ζn′)/Qp) ×Gal(Qp(ζpv)/Qp) ≃ (Z/m) × (Z/pv)
×
,

where a generator ϕ ∈ Z/m acts on Qp(ζn′) by the lift of the Frobenius (p-th power map) from Zp[ζn′]/(p) ≃
Fpm to Qp(ζn′) ≃W(Fpm). In particular, ϕ(ζn′) = ζ

p
n′ .

A.3. p-completions of integral cyclotomic representations. We conclude this appendix with a discus-
sion on how Z[χ] decomposes upon p-completion. The simplest case is

Corollary A.3.1. Zp[ζpv ] ≃ Z[ζpv ]⊗Z Zp ≃ (Z[ζpv ])
∧
p .

Proof. By Proposition A.2.3, Qp(ζn)/Qp is a totally ramified extension of local fields of rank φ(pv). This
means Zp[ζpv ] is a free Zp-module of rank φ(pv), which is equal to the rank of Z[ζpv ] as a free Z-module.
This implies Z[ζpv ] does not split upon p-completion. �

Comparing Lemma A.2.1 and Proposition A.2.3, we have shown:

Proposition A.3.2. Fix an embedding ι ∶ Q[ζn] ↪ Cp. For any σ ∈ Gal(Qp(ζn)/Qp), σ ○ ι(Q(ζn)) =
ι(Q(ζn)). In addition, the restriction map on the Galois group induced by ι

(A.3.3) ι∗ ∶ Gal(Qp(ζn)/Qp)Ð→ Gal(Q(ζn)/Q)

is injective. More precisely, rewrite Q(ζn) = Q(ζpv)⊗Q Q(ζn′) and ι = ιp ⊗ ιn′ , where

ιp ∶ Q(ζpv)↪ Cp, ιn′ ∶ Q(ζn′)↪ Cp.
Then we have

● ι∗p ∶ Gal(Qp(ζpv)/Qp)
∼
Ð→ Gal(Q(ζpv)/Q) is an isomorphism.

● ι∗n′ ∶ Gal(Qp(ζn′)/Qp) ↪ Gal(Q(ζn′)/Q) is the inclusion of the subgroup of (Z/n′)
×

generated by p ∈

(Z/n′)
×
.

Proposition A.3.4. Pick a representative σ ∈ Gal(Q(ζn)/Q) for each coset in

Coker ι∗ = Gal(Q(ζn)/Q)/Gal(Qp(ζn)/Qp).
Z[ζn]⊗Zp decomposes as a Zp-algebra by

Z[ζn]⊗Z Zp
∏(ι○σ)⊗1
ÐÐÐÐÐ→

∼
∏

[σ]∈Coker ι∗
Zp[ζn] ≃ ⊕

[σ]∈Coker ι∗
Zp[ζn].

Proof. The minimal polynomial of ζn over Z is

Φn(t) = ∏
σ∈Gal(Q(ζn)/Q)

(t − σ(ζn)).

We have an isomorphism Z[ζn]⊗Z Zp ≃ Zp[t]/(Φn(t)). Over Zp, Φn(t) factorizes as

Φn(t) = ∏
[σ]∈Coker ι∗

Φn,σ(t), where Φn,σ(t) ∶= ∏
τ∈Gal(Qp(ζn)/Qp)

(t − τ ○ ι ○ σ(ζn)).
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For each σ ∈ Gal(Q(ζn)/Q), Φn,σ(t) is the minimal polynomial of ι ○ σ(ζn) over Zp. As Φn,σ(t) are coprime
to each other for different cosets [σ] ∈ Coker ι∗ and Zp[t]/(Φn,σ(t)) ≃ Zp[ζn] for all σ, the claim now follows
from the Chinese Reminder Theorem. �

Corollary A.3.5. Let χ ∶ (Z/N)
×
→ C× be a Dirichlet character with Z[χ] = Z[ζn]. Z[χ]⊗Z Zp decomposes

as a p-adic (Z/N)
×
-representation by

Z[χ]⊗Z Zp ≃ ⊕
[σ]∈Coker ι∗

Zp[ι ○ σ ○ χ],

where ι ○ σ ○ χ is the p-adic Dirichlet character defined by

(Z/N)
×

(Z[χ])
×

(Z[χ])
× C×

p .
χ σ ι

Proof. This is done by forcing the isomorphism in Proposition A.3.4 to be (Z/N)
×
-equivariant. �

Corollary A.3.6. When χ ∶ (Z/N)
×
→ C× is a primitive Dirichlet character of conductor N = pv and p > 2,

there is an equivalence of (Z/pv)
×
-representations:

Z[χ]∧p ≃ ⊕
0≤a≤p−2

kerωa=kerχ∣(Z/p)×

Zp[χa],

where χa = ω
a ⋅ (ι ○ χ∣Z/pv−1) and ω ∶ (Z/p)

×
→ Z×p is the Teichmüller character.

Proof. By Corollary A.3.5, we need show the following two sets of characters are the same:

(A.3.7) {ι ○ σ ○ χ ∣ [σ] ∈ Coker ι∗} = {ωa ⋅ (ι ○ χ∣Z/pv−1) ∣ 0 ≤ a ≤ p − 2,kerωa = kerχ∣(Z/p)×}.

We first prove the v = 1 case. A p-adic character of conductor p is necessarily of the form ωa for some a, since
Zp contains all (p−1)-st roots of unity. As ι and σ are injections, ker ι○σ ○χ = kerχ. Now it suffices to check
the two sets have the same size. Since Zp[ι ○ χ] = Zp, we have ∣Coker ι∗∣ = ∣Gal(Q(χ)/Q)∣ = rankZ(Z[χ]). χ

factorizes as (Z/p)
×
↠ Cn′ ↪ (Z[ζn′])

× for some n′∣(p − 1). Then Z[χ] has rank φ(n′). Let g ∈ (Z/p)
×

be a

generator, then kerχ is the subgroup of (Z/p)
×

generated by gn
′
. We have

{a ∣ 0 ≤ a ≤ p − 2,kerωa = kerχ = ⟨gn
′
⟩ ⊆ (Z/p)

×
} = {a ∣ 0 ≤ a ≤ p − 2, the order of a ∈ (Z/p)

×
is (p − 1)/n′}.

The size of this set is φ(n′), which is equal to ∣Coker ι∗∣, from which we conclude the two sets of characters
in (A.3.7) are the same when v = 1.

When v > 1, write Z[χ] = Z[χ∣(Z/p)×] ⊗ Z[χ∣Z/pv−1]. χ being primitive implies χ∣Z/pv−1 is injective and

Z[χ∣Z/pv−1] = Z[ζpv−1]. By Corollary A.3.1, Z[χ∣Z/pv−1]
∧
p = Zp[ι○χ∣Z/pv−1]. On the other hand , write ι = ιn′ ⋅ ιp

as in Proposition A.3.2, where ιp ∶ Q(ζpv−1) ↪ Cp is a field extension. Proposition A.3.2 says ι∗p is an
isomorphism, which implies Coker ι∗ = Coker ι∗n′ . The analysis above shows:

Z[χ]∧p ≃Z[χ∣(Z/p)×]
∧
p⊗

Zp
Zp[ιp ○ χ∣Z/pv−1]

⊕
[σ]∈Coker ι∗

Zp[ι ○ σ ○ χ] ≃
⎛
⎜
⎝

⊕
[σ]∈Coker ι∗

n′

Zp[ιn′ ○ σ ○ χ∣(Z/p)×]
⎞
⎟
⎠
⊗
Zp

Zp[ιp ○ χ∣Z/pv−1]

Now we have reduced this case to the v = 1 situation for the character χ∣(Z/p)× . �
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