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INTRODUCTION

THE aM of this paper is to establish the basic propositions of differential topology (as
presented in Milnor [9], for example) for G-manifolds where G is a compact Lie group.

Mostow [11] and Palais [12] proved that any compact G-manifold can be imbedded in a
Euclidean G-space. In §1 a technique of de Rham’s [5] is used to prove an analogue of the
Whitney Imbedding Theorem, namely that any G-manifold M", ¢ subordinate > to the repre-
sentation ¥, can be imbedded in ¥2"t1!,

Section 2 concerns the classification of G-vector bundles. The precise statement is:
The equivalence classes of k-dimensional G-vector bundles over M" “subordinate” to V are
in a natural one-to-one correspondence with the equivariant homotopy classes of maps of M
into Gi(V"), the grassmannian of k-planes in V*, if t > n + k. The existence of a classifying
map is proved via a transversality argument. The equivalence of bundles induced by homo-
topic maps can be shown to follow from the existence and uniqueness of solution curves of
vector fields. Atiyah [1] has proved a similar theorem for compact topological spaces.

Section 3 develops a cobordism theory for G-manifolds. Equivariant homotopy groups
are defined and it is shown that the unoriented cobordism group of G-manifolds of dimension
n, subordinate to ¥ are isomorphic to the equivariant homotopy classes of maps of the
sphere in ¥?"** @R into the Thom space of the universal bundle over G, (V'*"*3 @ R)
where k + n = (2n + 3) dimension of V, if G is abelian or finite. There is a severe technical
difficulty in establishing even a weak transversality theorem for G-manifolds; hence, the
existence of the isomorphism for arbitrary compact Lie groups is still an open question.

Section 4 generalizes the results of R. Palais [14] on Morse Theory on Hilbert Manifolds
to the case of G-manifolds. It is shown that “ Morse functions” are dense in the set of
invariant real valued functions on M if M is finite dimensional. Also it is shown that passing
a critical value of a2 Morse function corresponds to adding on *“ handle-bundles ”* over orbits
or more generally over non-degenerate critical submanifolds. Morse inequalities are then
deduced for the case of critical submanifolds. The results in this section were announced in
[15]. Some of the results in this section have been obtained independently by Meyer [6].

I wish to thank Professor R. S. Palais for his advice and encouragement and for suggest-
ing this problem to me. I am also grateful for many helpful discussions with him.
t Research for this paper was partially supported by DA31-124-ARO(D)128.
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§0. NOTATIONS AND DEFINITIONS

Let G be a compact Lie group and X a completely regular topological space. An action
of G on X is a continuous map ¥:G x X — X such that y/(e, x) = x and Y¥(g, 9., x) = ¥(4g,,
(g, , x)) for all xe X and g,,g,€G. The pair (X, ) will be called a G-space. We will
denote by §: X — X the map given by g(x) = y(g, x) and (g, x) will be shortened to gx.
X,; will denote {xe X|gx = x for all geG}; G, is the isotropy group, {geGlgx =x}. 1If Y
is another G-space and f: X — Y then f is equivariant if, for all geG, fog = Gof and in-
variant if fo g = f. If #(X, Y) is some set of maps of X into Y (differentiable, linear, etc.)
then G acts on #(X, Y) by gf = §-f-g~*. Clearly #(X, Y); is the set of equivariant maps
in A#(X, Y).If H < G is a closed subgroup X|H will denote the pair (X, y|X x H).

Let M be a C* Hilbert manifold [7] with or without boundary. M will be called a
G-manifold if the action y: G x M — M is a differentiable map. The tangent bundle T(M)
of a G-manifold M is also a G-manifold with the action gX = dg,(X) for XeT(M),. More
generally, if 7:E — B is a fibre bundle and each §:E — E is a bundle map then = will be
called a G-bundle; if, in addition, = is a differentiable fibre bundle and E and B are G-
manifolds then 7 is a differentiable G-bundle. If the G-vector bundle n: E — B has a Rieman-
nian metric,{ , »,and g is an isometry for each g € G then nis called a Riemannian G-vector
bundle. If E is a Riemannian G-vector bundle then |e|| = {e, e}'/?, E(r) = {ecE| |e| <1},
E(r) = {e€E||le| < r} and E(r) = {ec E| |e| = r}. We write E = E(1) and E = E(1). Note
that T(M) — M is a differentiable G-vector bundle; if T(M) — M is a Riemannian G-vector
bundle then M is a Riemannian G-space. A Riemannian G-vector bundle V over a point is
an (orthogonal) representation. ¥* will denote the ¢-fold direct sum of ¥ with itself.

If M is a G-manifold and £ < M is a compact invariant submanifold then 7:v(Z) - Z
the normal bundle of T is a differentiable G-vector bundle; moreover, by a theorem of
Koszul [6], there is an equivariant diffeomorphism v(Z) - U where U is an open neighbor-
hood of £ in M. In particular, if xe M, B.(r) will denote the image of v(Gx)(r) under some
such diffeomorphism, S,(r) will denote the image of =~ '(x)(r). We write B(x) = B,(1),
S(x) = S,(1). B,(r) is a tubular neighborhood of Gx and S,(r) is a slice at x.

If V is a representation of G then G,(¥) will denote the grassmanian of k-planes in V.
G,(V) may be thought of as orthogonal projections on ¥ with nullity k; hence G acts on
G, (V) = MV, V)and G(V) is a G-manifold with this action. Denote by (V) the universal
bundle over G(¥); the fibre at Pe Gi(V) is the null space of P. The inner product on V'
induces a metric on (V) and with this metric p (V) — Gi(V) is a Riemannian G-vector
bundle. Let W <« ¥V be an invariant subspace of dimension k. For each Pe G,(V) we have a
representation of Gp on the null space of P; in particular, for P Gi(V); we have a representa-
tion of G and if Q and P are in the same component of G,(¥) the representations at P and Q
are equivalent. Hence, we denote by Gy (¥) the set of k-planes G,(V); which are equivalent
to W. Clearly G,(V) is a component of Gi(V)g. We write p (V) for m(M|Gu (V).

If f: X — Vis any map into a Euclidean G-space then averaging f over the group means
an equivariant map f* defined by *(x) = fc g~ f(gx)dg or the invariant map f defined by
fx)y= fG f(gx)dg as the context dictates.
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Let X be an equivariant vector field on M, i.e., X,, = gX,. If o,() denotes the maximal
solution curve to X with initial condition p then by the equivariance of X, go,(f) and 6,,(¢)
are both solution curves with initial condition gp and, hence, by uniqueness of solution
curves ga,(t) = a,,(t). Therefore the flow generated by X is equivariant. If f/: M - R is an
invariant function on the Riemannian G-space M then f gives rise to the vector field gradient
of f, Vf, by (Vf,, X)=df(X). Note that {gVf,, X> =(Vf,,g ' XD =df(¢g7'X) =
d(fg™1),,(X) = df (X)) = {Vfy,, X for all XeT(M),, so gVf, =V f,, and hence Vf is an
equivariant vector field.

Cs(M, N)will denote the equivariant C_, maps between the finite dimensional G-mani-
folds M and N with the C* topology for some fixed k. If fe C4(M, N),& > 0and y:R* - M,
@:R"— N are coordinate charts for M and N respectively then a sub-base for the neigh-
borhoods of f in the C* topology is given by {he Co(M, N)|N (¢t f¥ — o LAy} (x) < &

k
for || x| <1} where N (w)(x) = ) ||d’w,|, w:R™— R" and | || denotes the usual norm on
j=0

£
multilinear transformations. C;(M, N) is a space of the second category.

§1. GENERALIZED WHITNEY THEOREM

In this section we prove an analogue of the Whitney imbedding theorem for G-manifolds.
Let V be a finite dimensional orthogonal representation of G.

PROPOSITION 1.1. If M™ can be immersed in V* then M can be immersed in V*",

Proof. Let f: M — V' be an immersion and let W be a k-dimensional irreducible repre-
sentation of G contained in V. It will be sufficient to show that if W occurs s times in ¥* and
s > 2n, then there is an equivariant projection P: V* — ¥* with null space isomorphic to W
such that P-fis an immersion.

To that end consider the diagram T(M) Yyl (V) 5 Gy(V*) where 5’7(X )=
df(X)/Ildf (X)I|, i(P, w) = w and n(P, w) = P. The pair (P, w) represents a point in (V")
as a projection with null space isomorphic to W and a unit vector in that null space. Since W
is irreducible, i is a differentiable homeomorphism into. To show that i is an imbedding we
let Xp, ) be any tangent vector at (P, w) and let A(z) e V*, y(¢) € Gy(V*) be curves such that
(7'(0), (0)) = Xp, ). Then dip ) X = A'(0); but if 2'(0)=0, y'(0) = dni'(0) = O since
y(£) = 7 o A(¢). Hence di(X) = 0 implies X =0 al’l(}jO i is an imbedding.

Since the dimension of T(M) = 2n — 1, dim df (T(M)) n i(p(V*)) < 2n — 1 and since
i is an imbedding and  is differentiable the dim x o i ~*(@F(T(M)) A i(aw(VY) < 2n — 1.
But the dim of Gw(V") is (s — 1)/ where / is the dimension of the division algebra
Hom(W, W)¢. Hence, if (s — 1)/ > 2n — 1, and in particular if s > 2n there is a projection P
such that P ofc;'j-”/(w) =0ifand onlyif w = 0,i.e., P o fis an immersion. Moreover, if Py € G( V"),
P can be chosen arbitrarily close to P,.

Continuing in this fashion, we eventually find a projection 7, the composition - -- P, -
P; o P, o Py, such that T o f'is an immersion and the range of T is isomorphic to V2",

PROPOSITION 1.2. If M" admits a 1-1 immersion in V*, then M can be 1-1 immersed in
V2n+ 1.
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Proof. Let f: M — V* be a 1-1 immersion and consider the diagram M x M — A5

V' fig(V") = G(V') where a(x, y) = f(x) — (D[ f(x) — f(). Since dim(M x M) =

2n,dim 7w o i " [a(M x M — A) N i(ip (V)] < 2n and hence if £ > 21 + 1 we can find a pro-

jection P: V' — V* with null space isomorphic to W such that i(x~(P)) is disjoint from the

image of df (so that P o f is an immersion) and from the image of «. If P(f(x)) = P(f(»))
then P o a(x, y) = 0 and hence a(x, y) ei(n~'(P)); thus P o fis 1-1.

COROLLARY 1.3. Suppose that M admits an immersion, f, in V*. Then any map g: M — V"
can be C*-approximated by an immersion. The approximation is also uniform.

Proof. The approximation, g, will be of the form g(x) = g(x) + Af(x) where 4 is a
bounded linear map: V*— V2" and | A|| < e. By a diffcomorphism of ¥* we may assume
Il.f(¥)l < 1 for all x and hence § will be a uniform approximation. To make g a C* approxi-
mation on some compact set C, we need only replace f(x) by 8f(x) where § = ¢/sup N, (f(x))

xeC

(see §0). Let 7; (resp. i,) denote the inclusion of ¥* (resp. ¥?") in ¥* x V?" and let P, denote
the internal projection of ¥* x V2" onto the second factor. Applying Prop. 1.1 to the map
fxg:M— V' x V" yields a projection P such that Po(fx g) is an immersion and
[P — Pyl <& If E=P(V'x V?"), then P o i, is an isomorphism onto E for ¢ sufficiently
small and thus (P o i,) " !: E — V?"is defined. Let § = (P o i,) ™! o Po(f x g). Note that g is an
immersion and §(x) = g(x) + (P o i) " o Po (f(x),0) = g(x) + (P o i) "' o P o iy(f(x)) = g(x)
+ Af (%).

COROLLARY 1.4. Suppose that M admits a one-to-one immersion, f, in V*. Then any map
g: M — V?**1 can be C*-approximated by a one-to-one immersion. The approximation is also
uniform.

Proof. Essentially the same as above.

COROLLARY 1.5. If M admits a one-to-one immersion in V* then M can be imbedded as a
closed subset of V3"t1,

Proof. Let g: M — V?"*1 be a proper map and apply the previous corollary. To get a
proper map, let if; be a locally finite partition of unity with compact support and average
over the group to get ¥;, an invariant partition of unity. Let f: M — V?"*! be a one-to-one
immersion (Cor. 1.4). If f(y) = 0 (there is at most one such point), let ¢, ..., , denote

those functions with yesupport y; and let m; = inf || f(x)]| i > r. Then define
Yi(x)>0
o0

9(x)= 3 () f(x)[m;.

i=r+1

+

Since g~ ([0, n]) = | support ; = compact set for n > r, g is proper.
i=1

Remark. If the origin is not in the image of f in Props .1.1, 1.2, 1.3, 1.4, 1.5, then the
new map can be chosen so as to avoid the origin also. If f: M — V! is defined by p(x)
= f(x)/Il f()|| then the dimension of the image of § is less than n, choose the projec-
tion, P, in Props. 1.1, 1.2 so as to avoid the n-dimensional set © o i “}(B(M) N i(fuw(V?))).
With such a choice of P the conclusion follows in Cors. 1.3, 1.4, and 1.5.
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Definition. Let V be a finite dimensional orthogonal representation of G. A G-manifold
M is said to be subordinate to V is for each x € M there exists an invariant neighborhood U
of x and an equivariant differentiable imbedding of U in V* — {0} for some ¢. (V) is the
category whose objects are G-manifolds subordinate to ¥ and whose maps are continuous
equivariant maps.

PROPOSITION 1.6. There are only a finite number of orbit types in 4(V).

Proof. Let Q be an orbit type in (V) and x € Q. By assumption there is a differentiable
imbedding of an invariant neighborhood of x in V* for some ¢. Hence there is a one-to-one
equivariant immersion of Q in ¥2"*! where n = dim Q; in particular since Q is compact Q
can be imbedded in 2 4im¢+1 Byt p29imG+1 contains only a finite number of orbit types [13]

ProrpositioN 1.7. M" if in 4(V') if and only if (i) for each me M, G/G,, is one of the orbit

types in 9(V) and (ii) there is a G,, equivariant monomorphism
T(M),/T(Gm),, — V™.

Proof. Necessity is clear and sufficiency follows from 1.7.10 of [13].

CoROLLARY 1.8. M"isin 9(V) if and only if M is locally imbeddable in V*+24m6+1 _ {0},

ProPoOSITION 1.9. If M is in 4(V) then M can be imbedded in V* for some t.

Proof. By Cor. 1.8 we may cover M by the interiors of compact invariant sets U,
such that each U, admits an imbedding f,: U, — V* — {0} where s = 2dim G + dim M + 1.
Since M is paracompact and has dimension n there is a countable refinement of U, by
compact invariant sets U;; i=0,1,...,n;jeZ*, such that U;n Uy =& if j#k [8].
Letfi;: U;; — V° — {0} be an imbedding; let r; be a diffeomorphism of the positive reals onto
(j,j+ i) and let

Jij(x)
(mreal!
Then each f;; is an imbedding and the images of f; ;» fu are disjoint if j# k; hence the map
fi:Uy= [ Uy; = V° — {0} given by fi(x) = f;;(x), xe Uy, is an imbedding. Let f, imbed U,
=1

in the unit spherein ¥ by fi(x) = (ro(I DA, /1 = roll L)AL L)

Finally, let h;: M — I be differentiable invarient functions with support #; = U, and such
that () Int h; (1) covers M and define f: M — V25 by f(x) = (ho(x) fo(x), Ay (X), Fi(x),
i=0

«os hy(X)f(x)). f is clearly equivariant and differentiable. If xeInt b (1), %, o df = df; and
hence f is an immersion; if f(x) = f(y) then h(y) = 1 and fi(y) = f(x) and so x = y and |
is 1-1. If {f(x,)}— f(x) then {h,(x,)} - h(x) =1 and hence x,e U, for n large and since
{hi(x)} = 1, {fi(x,)} = fx) but since f; is an imbedding {x,} - x and hence f is an
imbedding.

fij(x) = "j(”fij(x)”)

COROLLARY 1.10. (Generalized Whitney Theorem). If M is in 4(V') then any map f: M—
V* can be approximated C* and uniformly by an equivariant immersion if t > 2n and by an
equivariant 1-1 immersion if t > 2n 4 1. Moreover, if C is a closed subset of M and f|C is an
mmersion (1-1 immersion), the approximation f may be chosen to agree with f on C.
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Proof. The first statement follows from Prop. 1.9 and Cors. 1.3, 1.4. To prove the last
statement let g: M — V' be an imbedding with |g(x)|| = 1. Let #: M — I be an invariant
function such that C < Int h~'(1) and f|support % is an immersion (1-1 immersion).
Then x — (f(x), (1 — h(x))g(x)) is an immersion (1-1 immersion) of M in V' x V'. The
approximation of Cor. 1.3 (Cor. 1.4) has the desired properties.

Remark. If V is a representation of G in a Hilbert space then by the Peter—-Weyl theorem,
-]

V can be decomposed V =@ Vit where the V', are finite dimensional irreducible representa-
i=1

2]
tions of G, 0 < r; < oo and the direct sum is in the Hilbert sense. Let V* = V;. Then by
=1

i

Prop. 1.7 and the fact that closed subgroups of G obey the descending chain condition we
see that M is in 4(V) if and only if M is in 4(V*). In addition, all propositions of this
section except 1.6 hold for 4(V*) and hence for 4(V). As a consequence of this remark we
have that any equivariant differentiable map M" — L*(G)?**! can be approximated by an
equivariant 1-1 immersion since L?(G) contains at least one copy of each irreducible
representation of G. In particular, if f: M — R < L*(G)*"*" is proper, say f(x) =Y i (x)
where V; is an equivariant partition of unity, the approximation will be an imbedding.
Hence

COROLLARY 1.11. Any G-manifold M" can be imbedded as a closed subset of L*(G)*"*1
and hence has a complete invariant metric.

COROLLARY 1.12. Iff: M — N" is a continuous equivariant map then f can be approximated
by a differentiable map.

Proof. By Cor. 1.11, N may be considered as a retract of an open invariant neigh-
borhood U of N = L*(G)***! with retraction r:U— N. Let f;: M — U be a differentiable
approximation to f ([9]) and average f; over the group to get /*. The approximation is
given by r o f*,

§2. CLASSIFICATION OF G-VECTOR BUNDLES

Definition. Let n: E— M be a G-vector bundle of fibre dimension k< co over the
G-manifold M. = is said to be subordinate to the representation V of G if, for each me M,
the representation of G,, on n~(m) is equivalent to a subrepresentation of V*|G,. The
category #(V) will have as objects G-vector bundles subordinate to ¥ and bundle homo-
morphisms for maps.

Remark. (V) and #(V'*) are the same category where V* contains exactly one copy of
each irreducible representation occurring in V.

If n:E— M is a G-vector bundle and f:N—> M is equivariant then f*7 c N x E
inherits a natural G-structure from the product which makes f*z — N a G-vector bundle.
Moreover, if n is in #(V) then so is f*n. In particular, n: g (V*) = G (V") is in #(V) and
hence so is f*n for any equivariant map f: N — G, (V). The next theorem due to R. Palais
shows that ““all”” bundles over G-manifolds are obtained in this way.
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THEOREM 2.1. Let n: E"** — M”" be in B(V) and let f: E|C ~» u,(V*) be a bundle map where
C < M is a closed invariant subspace. If t > n + k, then f can be extended to a bundle map
h:E - (V7).

Proof. Consider the G-vector bundle Hom(E, V") over M with fibre Hom(n~(m), V*)
at m. The action of G is given by g7 =g-T-5~! where TeHom(n (m), V*) and gTe
Hom (n~!(gm), V*). A section s of (Hom(E, V') is said to be non-singular if s(m) is a
non-singular linear transformation for each me M.

LeMMmA 2.2. There is a natural equivalence 0:non-singular sections of Hom(E, V*) —»
bundle maps of E into w(V*). Under this equivalence, equivariant sections correspond to
equivariant bundle maps.

Proof. Almost a tautology. If s is a non-singular section of Hom(E, V?) then s(m)(n~1(m))
is a k-plane in V" and if een™!(m) then s(m)(e) is a point in that k-plane. Hence s defines a
bundle map 6(s): E — w(V*). Moreover, if s is equivariant, s(gm)(ge) = g-s(m)-g '(ge) =
g-s(m)(e), hence O(s) is equivariant. Similarly, if f:E— w(V*) is a bundle map then
x— fln~!(x) defines a non-singular section of Hom(E, ¥*) which is equivariant if f is
equivariant.

Let T'5(E) denote the G equivariant sections of Hom(E, V") with the C° topology and
let 4 ¢(4, M) = T'4;(E) denote those sections which are non-singular at points of 4 = M.
Note that I'(E) is of the second category.

LeMMA 2.3. A/ o(M, M) is dense in Tg(E) if t > n + k.

Proof. Note that A/ 3(4, M) is open in I'g(E) if A is compact; hence, by Baire’s theorem,
it is sufficient to find a countable number of compact sets C; such that UC; = M and
N 6(C;, M) is dense in T'¢(E) and hence nA"(C;, M) =4 (quC;, M) is dense in ['4(E).

By the induction metatheorem of [13], we may assume the lemma true for all proper
closed subgroups of G; in particular, if xe M — M; we may assume that A"¢ (S, S,) is
denseinI'g _(E|S,)where S, is a slice at x. Moreover, the restriction map p: I'¢(E) - I'¢ (E|S,)
is open and hence p~'(A g (S, S)) = A ¢(GS,, M) is open and dense in I'4(E).

Now let ye M, U a neighborhood of y in My, and let vy, ..., v, be sections of E|U
such that vy(y),...,v(y) spans n~'(y) = F. Let T:U x F—>n~'(U) by T(u, Y.a,v4»)) =
Y a;v(u); averaging over the group yields an equivariant homomorphism T*:U x F —
n~!(U) which is an isomorphism at y and hence in some compact neighborhood B(y) of
y; i.., E|B(y) is equivariantly isomorphic to B(y) x F. Thus I'¢(E|B(y)) is homeomorphic
to C%(B(y), Hom¢(F, V*). Let N; = {TeHomg(F, V")|rank T = j}; N ;is a disjoint union of
submanifolds of Homg(F, V*) and each component has codimension at least ¢ — j and hence
codimension greater than » for j < k. Since A4 6(B(3), B(3)) consists of those sections which
are transverse regularto ( J N;, ie.,avoid |JN 24 6(B(3), B(y))is open and dense in T'(E).

Jj<k i<k

Since the restriction map p:T'¢(E) - I'4(E|B(»)) is open A 4(B(y), M) is open and dense in
I'4(M). Covering Mg by a countable number of sets B(y;) and M — M by a countable
number of sets GS,“, the lemma follows.
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Now let I'g(E, so) = I'¢(E) denote those sections which extend s,. I'¢(E, s,) is non-
empty since any extension of s, may be averaged over the group to get an equivariant

wiancint C M AranT, AfFtha canne A antncaws T Io At b o

extension; moreover, I G\-‘-‘, .)0) is of the second caicgory. Ao Mis compact andAnC= 50

then p:T' (E, so) > T'g(E]A) is open hence A o(4, M) NT'4(E, 5,) is dense in T'4(E, s5)-
Coverme M — C by a countable number of compact sets B(y,), (‘?_ with B(y)nC= &,

B V2 72 Eaiag bt

% N C =& we have A (M, M) N T¢(E, s,) is dense in I'g(E, s).

Y ol PR PR n Ta

n: P — M x I be the principal bundle of E. P is a G-bundle with compact fibre. It is clearly

sufficient to show that there is an equivariant bundle equivalence (P|M x 0) x I - P. To
that end let X* be an invariant vector field on P projecting onto d/d, i.e., X;';, = gX* and
dn(X,) = d/dt|,, . We may obtain such a vector field directly using an equivariant partition
of unity or alternatively define X* = grad(p, - n) where p,: M x I — [isthe projection and the
gradient is defined with respect to some invariant Riemannian metric for 7(P). Next let
= dy~ I,X * > dY.
O(k)
Since the actions of O(k) and G on P commute and since n(yp) = n(p) we have that X'isa G
equivariant and an O(k) equivariant vector field on P projecting onto d/dt. Let o,(¢) denote
the unique maximal solution curve to the vector field X with initial condition p. By the

f" nnnnnnnnnnnnnn of Vwe hova that ~~ (Y T at YT,-- DA v« O) v Tha tha mavimn
-Uqulvauau»c of X we nave tnat Uup\‘/ = “gp\‘l LU C i X vy X 1 O U8 maximum

domain of the equivariant map 6: U — P given by 0(p, t) = o,(t). We wish to show that
U=P|{(M x 0) x I. But if peP|M x 0, no,(t) = (m, t) and hence o,(f)en™'(m x 1) for all
(m, t) e U since dn(X) = d/dt. Hence, to determine the domain of ¢, we need only consider
the bundle 7 !(m x I) »m x 1. But n~'(m x I) is compact and hence o, is defined for all
tel. Thus U = (P|M x 0) x I Since X is an O(k) invariant vector field, 8 is a bundle map.
Hence 8 is an equivariant bundle equivalence.

COROLLARY 2.5. If n:E— M is a differentiable G-vector bundie and f,g:N - M are
homotopic then f*n is equivalent to g*n.

Proof. Let h: N x I - M be the homotopy. Let U « M x M be an invariant neighbor-
hood of the diagonal such that if (x, y) € U then there exists a unique minimal geodesic y,,
with y,,(0) = x and y,,(1) = y. Let p:U x I - M by p(x, y, 1) = y,,(t). Let hNxI—-M
be a differentiable approx1mat10n to h such that w(n,t) = (h(n, t), h(n,t))e U for al

A =~ A v, T Thas Tamt +
\'I l}c.lv A X, lllcllyoll- lb C\-lul\’ ACLIL U

o
is equivalent to w*p%n = h*n. But h*n i
hence h*n is a product, i.e., f*r = g*n.

77"

mhoThanram ) 4 Hanca w¥n¥e — (0 o 10)¥r — L¥er
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a product by the theorem since h is differentiable,

COROLLARY 2.6. The equivalence classes of k-dimensional G-vector bundles over M"
subordinate to V are isomorphic to the equivariant homotopy classes of maps of M into G\(V"*)
iftzn+k+1.

Proof. Follows formally as in [16].
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§3. COBORDISM AND EQUIVARIANT HOMOTOPY GROUPS

Let W be a finite dimensional orthogonal representation of G and let D(W) (resp S(W))
denote the unit ball (resp unit sphere) in W. If X is a G-space, let X" denote the space of
continuous equivariant maps of S(W) into X with the compact open topology. If f: X —» ¥
is equivariant there is an obvious induced map f%: X% —» ¥¥; the assignment X —» X%,
f—fY is a covariant functor from the category of G-spaces and equivariant maps to the
category of topological spaces and continuous maps.

Definition. A G-homotopy triple (X, 4, a) is a G-space X, an invariant subspace 4,
and a fixed point a (i.e. G, = G) in that subspace. If (X, 4, @) is a homotopy triple and n > 1
we define the nth W-homotopy group of (X, 4, a) by 7" (X, 4, a) = n(X¥, A%, a%). If
f:(X,4,a)~» (Y, B,b) is an equivariant map of triples the induced homomorphism
fv:m¥(X, 4, a) > nl'(Y, B, b) is defined by [ :n(X¥, A¥, a¥) - =, (YY, BY, b¥).

If A = {a} we denote n)/(X, 4, a) by n) (X, a); n¥ (X, @) is defined to be (X", a¥).

Remark. If G is the trivial group and W = R, then S(W) = S° and the above defini-
tion reduces to 7 (X, 4, a) = n, (X%, A", a%) =1 (X x X, A x A, (a,a)) = (X, 4, a)
@ n(X, A4, a).

n?(X, A, a) may alternatively be defined as equivariant homotopy classes of maps
(D(W x R*™Y, S(W x R"™), DR"™ ")) - (X, 4, a). In particular n¥(X, a) is the set of
homotopy classes of maps S(W x R) - X which carry both “north” and ‘““south” poles
to a.

If G, # G then (X|G,, A|G,, a) is a G, homotopy triple and one can consider the G,
equivariant homotopy groups =Y (X|G,, 4|G,, d) where W’ is any representation of G,
(not necessarily of the form W|G,). Note, however, that any G, equivariant map W' —» X
extends uniquely to a G equivariant map W’ x5 G — X where W’ x_ G is a G-vector bundle
over G/G,. Moreover, if n:E— G/G, is any G-vector bundle over G/G, such that the
representation of G, on n~'({e}) is equivalent of W’, the equivalence W’'-»7n~!({e})
extends by equivariance to a G-bundle equivalence W’ x G — E. Thus, E is determined by
the representation of G, on n~'({e}). Hence we may define the groups %7 (X, 4, a) as G-
equivariant homotopy classes of maps {D(E@® R""?), S(E ® R"™Y), *} into X, 4, a where
n: E — G/G, is the unique G-vector bundle with fibre equivalentto W', E ® R*~! denotes the
Whitney sum of E with a trivial bundle of dimension n — 1and * = {xe EQ@ R" " !jx = (0, y)
and n(x) = {e} €G/G,}. Clearly 7% (X, 4, a) = n}¥ (X|G,, A|G,, a).

Let V be a finite dimensional orthogonal representation of G. We wish to develop a
cobordism theory for 4(V).

Definition. The compact G-manifolds M7, M7 are said to be V-cobordant, M, & M,
(or cobordant, M, ~ M, if no confusion will result), if there exists a compact G-manifold
N™*1in 4(V) with ON"*! equivariantly diffeomorphic to M, U M,.

PROPOSITION 3.0. + is an equivalence relation.

Proof. Symmetry and reflexivity are obvious and transitivity follows from the fact that

there is an equivariant diffeomorphism of N x [0, 1) onto an open neighborhood of 6N
in N.
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Definition. n,(V) will denote the unoriented cobordism group of equivalence classes of
n-dimensional compact G-manifolds in (V). The group operationis given by [M,] +[M,]=
[M, U M,], ie. disjoint union. Similarly one can consider the oriented cobordism groups
Q (V).

Remark. Appropriate choices of G, V'yield the equivariant cobordism groups considered
by Conner and Floyd in [3] and [4].

Let T;.(W) denote the Thom space of the bundle w (W) — G{(W). T,(W) may be thought
of as u(W)(e)/ i (W)(e); G-acts on T (W) in the obvious way and the fixed point {f(W)(e)}
will be denoted by co. We wish to define a homomorphism 8: 0,(V) = =z} ""(T,(V"** @ R), )
where A= n+3and k + n=(n + h)dim V.

Let [M]en,(V) andi: M — V3"*! < y"** be an imbedding with 0¢i(M) (cor 1.10).
There is a bundle monomorphism v(M) = T(V"*")|i(M) = MxV"*" via the invariant metric
on V***and hence a bundle map b:v(M) - u (V") - (V" ** @ R). Let E: T(V"*") — pnth
be the end-point map; i.e. E(v, x) = v + x where xe V"*" and v is a tangent vector at x.
Then E = E{v(M)(§) » V"** is an equivariant diffeomorphism onto a neighborhood U of
i(M)forsomed > 0; choose é smallenough so that0¢ U. Let fy, ;: V" ** > T, (V""" @ R) be de-

fnadbhuf I — aohE-1 £ (un+h _ 11N _ ~n whorag (70 TE DY L, (18 HE My BN/
HICU VY Jp |V = G000 L, i\ U )= 00, wWalicq . il v [P\ Ry 175 4 O nJLE)/

a(V"** @ R) is the identification map and & < é. Extending f,,; to the one point com-
pactification of V"*% ie. to S(V"** @ R), we get, via the above Thom construction an
element 0[Men""" (T,(V"** @ R), w0).

ProposiTioN 3.1, 8 is a well defined homomorphism.

Proof. Let Q"' be a compact manifold in 9(V), 8Q = M, UM,, and let i;: M; -
p2tl — {0} =1, 2 be imbeddings. We must show that £, ; is equivariantly homotopic to
Ju».i, and hence that 8([M]) is independent of the choice of representative or imbedding.

If ¢ > 0 then ciy: M — V*"*! is an imbedding and f3, .;, is clearly homotopic to fy, ;,
hence we may assume, by choosing ¢ large enough, that #,(M,) ni,(M,) = &. Let
U;,j=1,2, be an equivariant collaring of M;in @, i.e. U; is an invariant neighborhood
of M;, with equivariant diffeomorphism y; M; x [0, 2) — U; such that ¥;|M; x {0} is
the identity. Let i;: U, u U, » V""" x [0,5] < V"**@® R by

lg(q) — {(l:l(x)’ t) lf q= d’l(x’ t)

(2(x),5—1) if g=y,(x, 0
and extend i, differentiably toi,: Q — V"™ x [0, 5] sothati,(Q — U, v U,) <« V*** x [2,3].
If Q¢ # J we insist that i,|Q; be transverse regular to {0} x [0, 5] in V;“' x [0, 5], i.e.
is(Qg) n {0} x [0, 5] = &. Then i, may be averaged over G to get an equivariant differen-
tiable map i;: Q — V""" x [0, 5]. Since h > n -+ 3, is may be approximated by an equi-
variant 1-1 immersion (and hence an embedding) i: Q — V"™ x [0, 5] with i|U, v U, = i,
(Corollary 1:10). Note that i(Q) n {0} x [0, 5] = . [If x¢ Q, this follows since i is an
imbedding; for xe Q, we note that i5(Q,) n {0} x [0, 5] = J and hence for a sufficiently
close approximation 7, i(Q,) n {0} x [0, 5] = ¢J]. Then we apply the Thom construction
as before to get an equivariant homotopy f, ;:S(V"*" @ R) x [0, 5] > T,(V*** @ R) with
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Fod SV "@®R) x {0} = for,;, and fo ISV " ®R) x {5} = fyy, ;,- Note that for each
te[0, 5], fo SV @ R) x {r}:(SF"** @®R), {0, 0}) > (T(V"*" @ R), o) if the neigh-
borhood U of i(Q) in ¥"** x [0, 5] used in the Thom construction is chosen small enough
so that Un 0 x [0, 5] = &. Hence [fy,1,] = [fag,i,]€n] (T(V"** @ R), 00) and thus 0 is
well defined. Clearly 9 is a homomorphism.

If G is trivial, i.e. G = e, then it is well known that 0 is an isomorphism [9]. One defines
a map :ny" "(T(V""" @ R), 0) = () by ALf1=/7"(G(V"*" ®R)) where (i) f; is
homotopic to f; (ii) “ differentiable,” and (iii) transverse regular (TR) toG, (V"** @ R). If £,
is any other such map, then there exists a homotopy F:S(V"** @ R) x [0,5] - T.(V"** ® R)
such that Fy = f,, Fs=f, and F is TR to G(V"*"*@®R); hence F" (G (V""" @ R)) is a
cobordism between f'7 /(G (V""" @ R)) and /7 (G (V" ** ® R)) and 1 is well defined. Clearly
Ao = identity. One then shows that that A is a monomorphism by using the fact that
w(V"** @ R) is (n + 1) universal (since G = e, V=R, and k = h).

Serious difficulties arise in trying to carry out this proof when G # e. First of all, if
f:M — N is a differentiable equivariant map and W < N a compact submanifold, it is not
true, in general, that f can be approximated by a map f;: M — N which is TR to W. For
example, let G=2Z,, M = one point, N = R the real line with Z, acting by reflection,
W =0¢eR and f(x) = 0, xe M. Clearly f is the only equivariant map M — N and is not
TR to W.

However, in the special case we are considering, M = S(V"** x R), N = T,(V"** ® R),
W = G,(V"** ® R) one can find in each equivariant homotopy class a map f which is TR
to Wif G is a “ nice”” group. However, if f; and f, are two such maps which are equivariantly
homotopic there will not, in general, be an equivariant homotopy A between them satisfying
(ii) and (iii). For example, let G=Z,, V=R® K, n=0, h = 3. Let M be a point, i: M —
(R + R)* and consider the maps fy, ;, §ofy.; Where e # geZ,; both maps are transverse
regular to G,(¥> @ R) and Ju,: 1s equivariantly homotopic to §efy; but there is no TR
homotopy between them as can be shown by a simple determinant argument. In addition
(V" + R) —» G (V""" @ R) is not necessarily (n + 1) universal. It turns out that the
notion of *‘ consistent transverse regularity ’ (CTR) is sufficient to overcome these difficulties.

The following lemmas are preparatory to proving the transversality theorem.

LemMA 3.2. Let M, N be G-manifolds and f: M — N a differentiable equivariant map.
If C is a closed invariant subspace of M and h,: C — N is a differentiable equivariant homotopy
of f|C then h, can be extended to a differentiable equivariant homotopy of f. Moreover, if U
is an open neighborhood of C, the extension F, may be chosen so that F{M — U =f|M — U.

Proof. By Proposition 1.66 of [13] and Corollary 1.11 of § 2, N is a G— ANR.
Hence, the map F: M x {0} uC x I- N given by FIM x 0 =f, F|C x I=h can be ex-
tended to a map also called F defined in an invariant neighborhood ¥ of M x {0}u C
x I'in M x I. ¥ contains an open invariant set of the form U, x I where U; > C. Let
o: M — I be differentiable, invariant with support « = U; n U and «(C) = 1. Define F: M
x I - N by F(x, t) = F(x, a(x)t).
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LEMMA 3.3. Let f: M — N be differentiable and equivariant and W < N a closed invariant
submanifold. Let C be a closed subset of M and suppose that f| Mg is transverse regular (TR)

*der

to W in Ng at poinis of C. Then there exisis a homoiopy f, such thai
o fo=1,
e AN A Vel Ly o1
(ii) f,|C =f|C and
(iii) f;|Mg is TR to W5 in Ng.

01 A ol o7 %

Proof. By the standard transversality lemma (§i.35 of {9]) there exists a homotopy
hy: Mg — Ng such that hy = fiMg, h,|C = f|C and h1 is TR to W; in Ng. Since Mg is a

closed subset of M the homotonvy 4, mav be extended to a differentiable equivariant homo-
AL/ Sws \‘vvvu WA AV VLAV MLVIUC Y T AAIMJ U ‘Ab\lll\l\lu TV O GWlllwiwiluii v vhluxvullulll. AL

topy f; of f by Lemma 1.

Trowvnaes 2 A To « AL N ho o Aiffopontinhls equivariant mav P S o SN
LEMMA 3.4, Let _/ civi Uy 0€ 4 ugycrerni tiaoie Cymivuriii nup Jj g Inurujutu.) unu lt:l

C < U < M where C is closed and invariant and U is open in M. If h: U — N is a differentiable
equivariant map with f|C = h|C then there is an equivariant homotopy F, and an open set
Vwith Ce Ve Uand
(i) Fo=f
(ii) FIM—-U=fM-U
(iii) F{|V = h{V
Proof. 1et ® c N x N be an invariant neighborhood of the diagonal in N x N

such that for all (x, y)e@ there is a unique minimal geodesic y,(x y) with yy(x, y) =
X, 71(x, y)=y. Define H:U - N x N by H(n) = (f(n), h()). Let U’ = H™*(¢) and choose
an open set ¥V in M so that V< U’. Let 1: M —[0, 1] be invariant and differentiable with
MM — U) =0and A(V) =1 and define
v (TS, k() nelU’
) neM — U’
Clearly F, has the desired properties.

Let n: E — B be a Riemarnian G-vector bundle. Then there is a canonical decomposition
T(E)JB~T(B)® E. If n':E’'— B’ is another differentiable G-vector bundle and f:E— E
is a differentiable equivariant map preserving the zero-section, define :17:E — E’ by the
composition E - T(B) @ E ~ T(E)|B% T(E"|B' ~ T(B)® E' ~ E', df is a bundle homo-
morphism, the linearization of f. fis said to be linear on E(m) if f|E(m) =§fJIE(m) .

LemMA 3.5. Let f be as above with B compact and suppose f linear on (E|CYn) where C

a5 L0D0 - of shdaili)

is closed in B. Then there is a differentiable equivariant homotopy F, of f such that
(1) F_ —_—-f

(;13 }7: is linear on E(d) for some 6 >0
(iii) F,|E — E(26) =f|E — E(26)
(iv) F{(E|C) =fI(E|C)

Proof. Apply Lemma 3.4 with h = df U = E(26); (iv) follows by choosing 26 < 7.

F(n
£\

Let V< W be orthogonal representations of G and let M be a compact G-manifold
equivariantly imbedded in the representation space ¥ with p:v(M) — M the normal bundle
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of this imbedding. Let n: G (W) — G,_(W) be the equivariant difftomorphism defined by
D(y) = Id — y; here r = dimension W and a point ye G, (W) is regarded as an orthogonal
projection: W— W with nullity k, D(p) clearly is an orthogonal projection with nullity
r—k.

Definition. Let M < V and p:v(M) —» M; an equivariant bundle epimorphism f:v(M) —
(W) is said to be consistent (with respect to the inclusion of ¥ in W) at x e M if the follow-
ing diagram is commutative:

D(s (xz_)’ W

U

P % S a T (f (),
The symbol U¥ denotes the orthogonal complement of the fixed point set in the representa-
tion space U of the group H, i.e. U¥ = (Up)™ . f is said to be consistent on C = M if f is
consistent at each xeC.

PROPOSITION 3.6. Let N**1 < V""" @ R and let fv(N)|U - (V""" @®R) (k+n+ 1=
dim(V"** @ R) be a consistent bundle map where U is a neighborhood of the closed in-
variant set Cc Uc N. Then fl(v(N)|C) may be extended to a consistent bundle map
V(N) - (V" " @ R).

COROLLARY 3.7. Let M" < V"** and let f;: V(M) — w (V""" @ R) i = 1, 2, be consistent
bundle maps. Then there is a homotopy F:v(M)x [0, 5] - w(V"*" ® R) such that

() Fo=/f
(ii) Fs=f,
(iil) F, is a consistent bundle map for each t.

Proof. Apply the above theorem to M x [0, 5]< V*"**@R, U= M x [0, 1),
UMx4,5],C=Mx00UM x 5and f:v(M) x [0, 5]|U - m(V"** @ R) defined by

i <1
f(U, t) - fz(v) > 4

Remark. The corrollary may be paraphrased, =: (V""" @ R) > G (V""" @D R) is
(n + 1) universal for consistent bundle maps.

C=C=

vev(M)

Proof of Proposition. By Lemma 2.2 we must find a non-singular equivariant section of
the G-vector bundle Hom(w(N), V"** @ R) which extends the section, s ' over C defined by f.
A section, s, is said to be consistent at x if

PSS Ve R

pH(x) O pH(x)%
is commutative, i.e. if s(x)|p~1(x)%~ is the identity. Note that a consistent non-singular sec-
tion defines a consistent bundle map and vice-versa. For 4 < B< N, H < G, let T'y(B, A)
denote the consistent A equivariant sections of Hom(v(N), V"** @ R) over Bu C which
extend the section s, and are non-singular on 4. Note that I'¢(¥, ) is a closed subset of the
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space of equivariant sections of Hom(v(N), ¥"*" @ R) with the C — 0 topology) and hence
is a complete metric space. We shall prove

@) Te(N, @) # &

(i) foreachxeN — C,thereisacompactinvariant set C, such thatxeC,, C,n C = &
and there exists a countable number of C,, such that UC, uC =N

(iii) {:TeV, &)= T4(C,, &) is open

@iv) I'g(C,, C,) is open and dense in I'4(C,., &).

Then by (iii) and (iv) I'c(N, C,) is open and dense in T'z(N, ¢J); by (i) and Baire’s
theorem N (N, C,) = (N, N) is open and dense in T'¢(W, ) and hence by (i) there
exists a non-singular equivariant consistent section and thus a consistent bundle map
v(N) = (V" " @ R) extending f.

(i) let s, be the section over U defined by fand let sy be the section over N defined by
WN)cT(V'HPOR)IN = (V""" @R)x N> V""" @ R. Let A: N — I'be differentiable
and invariant with A(N — U) = 0, /(C) = 1. Then s(x) = A(x)s;(x) + (1 — A(x))sy(x)
is clearly consistent hence I' (N, &) # .

(i) for each xe N — C, there is a slice S, in N such that S, C = &; thenlet C, =
G((S)e,), 1.e. C, = {yeGS,|G, is conjugate to G,.}. If P < ¥"** @ R is a submani-
fold (not necessarily compact) then P may be covered by a countable number of
C,,. Note that if there is only one orbit type in P, i.e. all G,, x€P, are conjugate
then C, contains a neighborhood of x and hence a countable number of C, will
cover P. If there are r orbit types in P, let (H) be the minimal orbit type, i.e.
H = G, for some xeP and there does not exista yeP with G, > H; then Py=
{xeP|G, is conjugate to H} is a closed submanifold of P with only one orbit
type and hence can be covered by a countable number of C,, (it is immaterial
whether one chooses a slice in P, or a slice in P to define C,). Moreover, P — P,
has only r — 1 orbit types and hence by induction may be covered by a countable
number of C, ; therefore P may be so covered.

(iii) to show that {:T'¢(N, &) —»T4(C,, &) is open, it is sufficient to show that if
sel4(N, &) and s'e€T4(C,, &) with ||s'—s|C,| <& then there exists a
s"elg(N, &) with {(s") =s"|C, =s" and |s" — 5| < 3¢/2. Suppose that s’ can
be extended to a consistent section s§” in a neighborhood U of C,; then since
lis”]Cx— s|C,|l < & there exists a neighborhood V of C, with |s|V — s”[V| < 3/2e.

Let 2:N—1 be invariant and differentiable with A(N — V) =0, A(C,)=1 and let

s7(x) = A(x)s”(x) + (1 — A(x))s(x) then s” clearly has the desired property.

To establish the neighborhood extension property for consistent sections and the set C,

we first note that I's(C,, &) = I'¢ (Si)¢,, J) by equivariance. Moreover, S,(2) (the slice
of radius 2 at x) is equivariantly contractible and hence by Corollary 2.6 v(M)[S.(2)~ S.(2)
x W x R* where W is a representation space of G, and k = a + dim W. Let 0:v(M)|S,(2) —»
S,(2) x W x R”® be an equivalence. Via 6 an element seI'¢ (S,(2), &) may be regarded as a
pair of G, equivariant maps s, : S,(2) - Hom(W, V*** @ R),s,:5.(2) - Hom(R%, V*** @ R).
If s €T ((Soex» &) then 55:(S)¢, — Hom(R% V"** @ R) may clearly be extended to a
map s5:5,(2) > Hom(R4, V*** @ R) since (S,)¢, is a G, equivariant retract of S,(2). To
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show that 57 may be extended so as to be consistent we note that s} is defined on (S,)¢,
by 8100y X W x 0 (S, X W x R* 2 v(M)(Se, = TV @ R)|(S)e, ~ (S X
V""" @R - V""" @R and hence s may be extended to s;:S5,(2) » Hom(W, V*** @ R) by
518D xWx 0cS,(2) x Wx R = v(M)|S(2) = S,(2) x V""" ®R - V"** @ R.Hence
the section s"(y) = s1(») + s5(») defined by s{ and s; clearly extends s’ and is consistent.
Thus Tg_ (S:(2), @) = T ((S))6,» &) and hence T'(GS,(2), &) - T'4(C,, &) is onto:

(iv) to show that I'G(C,, C,) is open and dense in T'¢(C,, &) or equivalently that
T (D, (Sy)6,) is open and dense in I'g (Syg,, &) let sel (S, )
s=s +5, as before where s :(S,)e,—Hom(W, V""" @®R), 5,:(S)s,—
Hom(R% V"** @ R). Note that s,(y) is a monomorphism for each y by consistency,
hence it is sufficient to show that s, can be approximated by a map s, with
53(») a monomorphism for each y. Since G, acts trivially on (S,)¢, and s, is G,
equivariant, we may regard s, as a map into Hom(R®, (V*** @ R)g).

Letting F; = {TeHom(R?, (V"** @ R)g Jrank T'= j} j=0,1...,a— 1, we see that codi-
mension F; <dim(S,)s, (Lemma 2.3) since dim(S,)s, + dim R® + dim T(Gx)s, =
dim(V™"*" @ R)¢_ and hence dim(S,)¢, + a < dim(V*** @ R);_. Thus, s, may be approxi-
mated arbitrarily closely by a map transversal to Fo U F; ... UF,_,, i.e. by a map s} with
55(y) a monomorphism for each y. Then s = s; + s5 is a non-singular approximation showing
that I'4(C,, C,) is dense in I's(C,, &). Clearly I'¢(C,, C,) is open.

Definition. Let W < V"** @ Rand letf: W — p(V"*" @ R) be a differentiable equivariant
map. Then fis said to be consistently transverse regular (CTR) at 0 Wif f(0) ¢ G(V"** @ R)
or if f(0)e G(V"** @ R) then

@) fIWs: W5 - m(V"** @ R)g is transverse regular to G(V"** @ R); at 0, and if
F=(fIWs) {(G{(V"*" @ R)g) then
(ii) fis locally linear at F and
(i) f:v(F) - w (V""" @ R) is consistent.
fis said to be CTR at we W if f|S,, is CTR as a G,, map where S,, is the slice at w
defined by the end point map. fis said to be CTR on C < W if fis CTR at each xe C.

Lemma 3.8. If f is CTR on a neighborhood of W(1) in W then there is a neighborhood
of Wg(1) in W on which f is CTR.
Proof. Follows immediately from local linearity.

LEMMA 3.9. Let f: W — p(V"** ® R) be CTR in a neighborhood U of the closed set C.
If (V" @ R)® = W then there is a homotopy F,: W — u,(V"** @ R) such that

(D) Fo=f
(i) F|W — W(2) =f|W — W(2)
(iii) F,|C =f|C

(iv) Fy is CTR on a neighborhood of C| ) Ws(1).
Proof. By Lemma 3.3 we may assume that f| W is TR to G (V**" @ R)gin (V" ** @ R),

at points of Ws(2). Let F = (f1W(2)) ™ (G(V™** @ R);). Then by Lemma 3.5 we may assume
that f|W¢(2) is linear on v(F, W;)(8) for some & > 0. There is at most one CTR map
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h:v(F)(8) v U— (V""" @ R) such that 4|U = fand h|v(F, W)(S) = fand, since Wo (V" +*
@ R)¢ exactly one; hence, by Lemma 3.4 there is a homotopy F, satisfying (i), (i) and (iii)
with Fi| v(F, Ws)(0) = h, i.e. with F; satisfying (iv).

Let V"** be identified with S(J"** @ R) — {north pole} in some fixed way; it then makes
sense to talk of a map /:(S(V"** @ R)) - (T)V"** @ R), o) being CTR.

LemMmA 3.10. Let X =S(V"""®R) or SV " ®R) x I and let f: X > T, (V"**@R)
be an equivariant differentiable map which is CTR on a neighborhood of the closed set C = X,
If G, acts trivially on T(G/G,), for each x e X, then f is homotopic to a map f which is CTR
on X. Moreover, f may be chosen so that f|C = f|C.

Proof. Note that if xe X, the G, space S, satisfies the hypothesis of Lemma 3.9,
S, > (V"**@® R)®=, since G, acts trivially on T(G/G,),; and S, + T(G|G,), = V""" ® R|G,.

If H is an isotropy group in X, define the level of H by level G = 0; level H > s if
H g H’ where H' is an isotropy group with level H' =5 — 1; level H = s if level H > s and
level H# s + 1. Let X, = {xe X|level G, < r}. Then X_, = (J and X, = X;. Suppose that
X = X, and that f,: X —» T(V"** @ R) is defined so that

(i) £, is homotopic to f,

(i) f,IC =fIC,
(iii) £, is CTR on U, where U, is an open neighborhood of Cu X,.

If f_; = fthen (i), (ii), (iii) above are satisfied and hence we proceed by induction. Since
X, — (U, X, ;1) is compact we may choose a finite number of slices S,(3),i=1,...,m,

x;€ X,41— (U, 0 X, suchthat{ ) GSx;covers X,,; — (U, n X,,;)and GSx,(3) n(Cu X,=

L=1
&. Let £,71 = £, and suppose inductively that f;, ; has been defined so that
@) f., is homotopic to f,
(i) frr1lC=SIC,

4
(ii) f',, is CTR on U, — G( U sxi(s)),
i=1

@iv) f1., is CTR on G( O(Sxi)cx) :
1 i

i=

!
Applying Lemma 3.9 to f, ,1S,,, (3) and the closed subset 3,,, ,(3) () G( U (Sxi)Gxi) we get
i=1
a map f'I! such that (i) to (iv) are satisfied with / + 1 replacing /. Finally let f,., = £} 1.

r+1

Then f,., is homotopic to fand f,,,|C = f|C by construction. Moreover, f,;; is CTR on
U, - G( U Sxi(3)) > C.Since f,,, is also CTR on X, ,, by Lemma 3.8 there is a neighbor-
i=1

hood U, ,, of Cu X,,, on which f,, is CTR. Hence, the inductive hypothesis is satisfied
and f = f, has the required properties.

Note that if G is finite or if G is abelian then G, acts trivially on T(G/G,), and hence
lemma 3.10 holds.

TueoreM 3.11. If G is finite or abelian then 0: n,(V) - n'" (T (V""" @ R), ) is an
isomorphism.
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Proof. Qs onto : let [flen!" "T,(V"** ® R), o). By Lemma 3.10 there is a CTR map
Fwith [f1=[f]. Let f "HG (V""" ® R)) = M. Then O([M]) =[f».:] =[F] since the bundle
maps V(M) - (V""" @ R) defined by f and f,, ; are consistent and, therefore, homotopic by
Corollary 3.7; the Thom construction applied to M x I = S(V"*"@ R) x I then yields a
homotopy between f and f), ;. Hence 8 is onto.

To show that 0 is a monomorphism suppose ([ M]) = 0, i.e. suppose fy, ; is equivariantly
homotopic to [0]. If we knew that f;, ; was a CTR map Lemma 3.10 would imply that there
was a CTR homotopy F:S(V"""@R) x I - T(V"*"*@®R) with F, =/, ; and F; =[0]
and hence F~1(G (V""" ® R)) would provide a cobordism between M and J, i.e. would
show that [M] = 0. The only difficulty is that f,, ; need not be locally linear.

Let i: M < V"** and let xe M. Then the G, space, T(M),, splits as the direct sum of
T(GXx),, the tangent space to the orbit and its orthogonal complement W (orthogonal with
respect to the metric on M induced by i). Recall that any slice S, is the image of a G,
equivariant diffeomorphism :W(e) - M; y(W(e)) = S...

Definition. The imbedding i: M — V"*" is said to be straight at xe M if, for some slice
S, at x, S, = y(W(e)), there is a 6 >0 such that the map y': W(8) —» V"** given by
W(8) = Wg (5)xWE(5) LAY ViR (3,2) = i W()) + diy(2) for ye W (6);ze WE (8)defines
a slice at i(x) ei(M), i.e., Y'(W(9)) = i(M) and i "L oy’ : W(8) » M defines a slice at xe M.

Remark 1. It is clear that this condition is independent at the particular slice S, or
map .

Remark 2. If i is straight at x, then i is straight on a neighborhood of x, in fact, on.
G (W)(3)).
Remark 3. The map f,, ; is CTR in a neighborhood of x if and only if i is straight at xi

Hence to complete the proof of Theorem 3.11 we need only show there exists an imbedding
:M - V"** such that i is straight at each xe M.

LemMA 3.12. Let i: M — V"** be an imbedding which is straight on a neighborhood U
at the closed invariant set C. Let S(2) be a slice of radius 2 at xe M. Then there is an im-
bedding i: M — V"** such that i |C =i|C and iis straight on C U G((S)g.)-

Proof. Let y: W(e) — S,(2) be as above and define h:S,(2) —» F*** by the composition.
(D) L5 W(e) < Ws (e) x W) & V"+h where Y/(p, 2) = 10yi() + diy,(2) for ye W (e)
ze W(e) and extend h to GS(2) by equivariance. Let A: M — [0, 1] be an invariant differ-
entiable map with (Cu M — GS(2)) = 0, A(S(1) — U) = 1. Let i, : M — V""" be defined by
i(p) = (1 — Xp))i(p) + A(p)h(p). Note that #,|CLG(S)s, =i|CUG(S,)s, and diy|C
U G(Sy)g, = di|C U G(S,)g, and hence that i, is an imbedding of a closed neighborhood Q
of CUG(S,)g,. By construction i|Q is straight on Cu(S,)e,. Let i:M— V" be an
imbedding with i|Q = i |Q (Corrollary 1.10). Then i satisfies the stated conditions.

Remark. Note that the metric induced from ¥"** by ; and that induced by i agree on
CuUG(S,), and hence i is straight on C since i was straight on C.



144 ARTHUR G. WASSERMAN

To show that M admits a straight imbedding in ¥ ** one proceeds by induction on the

level sets M, = {xe M|level G, < r} as in Lemma 3.10. Lemma 3.12 justifies the inductive
step.

§4. EQUIVARIANT MORSE THEORY

In this section we extend the results of R. Palais in [14] to study an invariant C®
function f: M — R on a complete Riemannian G-space M.

Definition. At a critical point p of f, i.e., where Af,, = 0, we have a bounded, self-adjoint
operator, the hessian operator, ¢(f), = T(M), — T(M), defined by {o(f),v, w) = H(f)p
(v, w) where H(f), is the hessian bilinear form [14, §7]. A closed invariant submanifold ¥
of M will be called a critical manifold of fif 0V = &, VnOM = (¢ and if each peVis a
critical point of f. It follows that T(V),, < ker ¢(f), and so there is an induced bounded self-
adjoint operator @(f),: T(M),/T(V),— T(M),/T(V),. If §(f), is an isomorphism for each
peV then V is called a non-degenerate critical manifold of f.

Recall that £ is said to satisfy condition (C) [14, §10] if, for each closed subset .S of M
on which fis bounded, |Af|| is bounded away from zero or there is a critical point peS.

Definition. The invariant C,, function f: M — R is called a Morse function for the
Riemannian G-manifold M if it satisfies condition (C) and if the critical locus of fis a union
of non-degenerate critical manifolds without interior.

The behavior of a function near a critical manifold is specified by the Morse Lemma.

LEMMA 4.1. Let n:E— B be a Riemannian G-vector bundle and f a Morse function
on E having B (i.e., the zero section) as a non-degenerate critical manifold. If B is compact
there is an equivariant diffeomorphism 0:E(r) > E for some r >0 such that f(0(e))
= ||Pe|i? — ||(1 — P)e||® where P is an equivariant orthogonal bundle projection.

Proof. Let E, = n~'(x) and let i,: E, > E, p,:T(E), - T(E),/T(B) then from the com-
mutative diagram we see that

T(E o : »—T(E),
AL N

‘L T(E),/T(B),

$(f )0 22 ,;w)x o

T(E),/T(B),

f/ i \;\ Y

T(E.) T(E).

o(f ° i) is an isomorphism. Hence, in each fibre, 0 is a non-degenerate critical point of the
function f o i, and hence, by the results of [12], there is an origin preserving diffeomorphism
0.:E,— E, and a projection P, such that foi, o 0.(e) =P e)|*>— (1 — Pe)|* in a
neighborhood of the origin. To complete the proof, we must show that 8, and P, are smooth
functions of x and that the resulting maps 0:E — E, P: E — E are equivariant.
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Let Hom(E, E) denote the G-vector bundle over B with fibre Hom(E,, E,) at x where
Hom(E,, E,) denotes the bounded linear operators on E, and the action of G on Hom(E, E)
is given by gT=g-T F where TeHom(E,, E,) and gTeHom(E,, E,). We
regard B c E via the zero section. We shall define an equivariant fibre preserving map

A:E —>Hom(E, E) such that

(i) A(e) is a self-adjoint operator for each ec E,
(i) f(e) = (A()e, &),
(iii) if xe€ B, (), o p, o di, = 2p, o di, o A(x)
E, = T(E)o—"" T(E),—2— T(E),/T(B),
ZA(x)l l¢(f' ix)o ‘ ltp(f)x ll?(f)x
E,=T(E) —=— T(E),—2— T(E),/T(B),

A is given by
1
<A(e)vlvz> = Jo(l - t)d2(f ° ‘p—l)(p(te)(dlpte(ﬁl)’ dlpte(ﬁZ))dts

where y:n~(U) — U x Fis any bundle chart for E at n(e) and #; denotes the tangent vector

at re corresponding to v;€E, i.e., §; = (@i re)),e(v;). Property (i) follows from the symmetry
L1

of d*(f-y~") and (iii) follows from the fact that rx = x for xe B and J (1 — Hdt = 1)2.
[}

Since f(B) =0 and df{B =0 Taylor’s formula for f with n = 1 yields the remainder
term

1
f(e) = J‘O(l - t)dz(fo 'p_l)W(te)(dl//te(é)a d‘llte(é))dt = <A(e)es e>
and hence (ii). To show that 4 is well-defined we apply the chainrule to (fo @ ) o (p oy 1) =
Sfo¥™! where ¢:n~'(U) - U x F is another bundle chart, noting that ¢ - ! is linear in
each fibre and hence d*(¢ o Y~ 1),(5,, ,) = 0 for v,, v, € E. Then
dz(f o l)vlt(e)(dll’e(ﬁl)’ d'//e(’_’z)) = dz(f ° ¢_1)¢(e)(d(l’e(l_71)s d¢e(52))
+d(fo 07 [d3(@ o U™ Vyie( AW o(B,), A (5,))]
= dz(f° (P— l)qz(e)(dq)e(ﬁl)a d¢e(52))
and hence A is well-defined. To demonstrate the equivariance of 4 we note that if y is a
bundle chart at n(e) then
@ xid)oyog Lin N gU)Lon W (U)——U x FZL U x F
is a bundle chart at n(ge). Then (A(ge)gvy, gv,> &Ld*(fo G oyt o (G~ x id))@> ¥
(d(g x id)dy(9,), d(g x id)d (5,) and by the invariance of f and the chain rule this equals
A*(f o Y™ Vg (@We(B1), AP 52)) + d(f o ¥ )yo(d2(G " x id)(dG(®;), dg(D,).

Since §7' x id is linear in each fibre d%(§™! x id) =0 and hence {A(ge)gv,, gv,> =
{A(e)vy,v,) and thus A(ge) = g o A(e) - g~ ! since the metric is invariant. The maps 0, P are
limits of polynomials in 4 and hence are equivariant and differentiable. The rest of the
proof follows formally as in [14, §7].
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An important property of Morse functions is given by:

ProrosITION 4.2. If f is a Morse function the critical locus of f in f** = f ~'[a, b] is the
union of a finite number of disjoint, compact, non-degenerate critical manifolds of f.

Proof. Let {a,} be a sequence at points in the critical set. Since, by assumption, a,
is in a non-degenerate critical manifold without interior we may choose points {b,} such
that

1
(i) the distance p(a,, b,) < -
(i)a—-1<f(b)<b+1
1
(iii) 0 < [|Af ]l < -

Then by condition (C) there is a critical point p adherent to {b,} and hence {b,} has a
subsequence which converges to p. The corresponding subsequence of {a,} will also converge
to p, thus proving the compactness of the critical set in £,

We also have the Diffeomorphism Theorem.

THEOREM 4.3. Let f be a Morse function on M, 0M = &, with no critical value in the
bounded interval [a, b]. If f°~%**° is complete for some 6 >0 then f°=f "' (—0, a] is
equivariantly diffeomorphic to f°.

Proof. Essentially, this theorem is Proposition 2, Section 10 of [14]. We need only verify
that the map defined there is equivariant. The map is given by p — o, (a(f(p))) where
«:R—=Ris C,; hence

gp— 0, f (9P))) = 4, (2( £ (P))) = go (e f (P)))-

COROLLARY 4.4. (Palais and Stewart [13]). Every differentiable deformation v, of a
G-manifold M is trivial.

Proof. Recall that a differentiable deformation is a one-parameter family of actions
Y, :Gx M—> M such that the action ¥:Gx M x R— M x R given by y(g,m,t) =
(Y (g, m), t) is differentiable. ¥, is trivial if there is a one-parameter family of diffeomorphisms
6, of M such that (g, m) = 0,/(g, 0, *(;m)). Let M x R have a complete invariant metric
with respect to i and let f: M x R — R be the projection onto the second factor. Since f'is
a Morse function and has no critical points.the map 6,(p) = o,(¢) has the required properties.

Definition. LetV, Wbe Riemannian G-vector bundles over B. The bundle V(1) @ W(1) =
{(x, ) eV W||x| <1, |yl <1} (not a manifold) is called a handle-bundle of type
(V, W) with index = dimension of W. Let N, M be G-manifolds with boundary, N« M
and F: V(1)@ W(1) > M a homeomorphism onto a closed subset H of M. Let F=
Fiy(1)® W(1). We shall write M = N Uy H and say that M arises from N by attaching a
handle-bundle of type (V, W) if

() M=NuH
(ii) Fis an equivariant diffeomorphism onto H n N
(iii) F|V(1) @)W is an equivariant diffeomorphism onto M — N.
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LemMa 4.5 (Attaching Lemma). Let n: E— B be a Riemannian G-vector bundle and P
an orthogonal bundle projection. Let V = P(E), W = (1 — P)(E) and define f,g:E - R by
f(e) = ||Pe|®> — |(1 — P)e||?, ge) =f(e) — 3¢/2A(|| Pe||?/) where ¢ > 0 and 1 is a positive C®
Junction which is monotone decreasing, M[0, 1/2]) = 1 and A(1) = 0. Then {xeE(2¢)jg(x) <
—&} arises from {xe E(Q2e)| f(x) < —e&} by attaching a handle-bundle of type (V, W).

Proof. Let o(s) be the unique solution of A(¢)/1 + ¢ = 2/3(1 — s) for se[0, 1]. Define
F:V(1) ® W(1) > E by F(x,») = (o(|x|Dyl? + &'/ + (sa(|x|)M2y. Tt is shown in
Section 11 of [14] that F has the required properties.

Note that B is a non-degenerate critical manifold of /. By the Morse lemma we can
choose coordinates for n:E— B and a projection P such that f(e) = | Pe|? — ||(1 — P)e||®
in a neighborhood of B for any function f having B as a non-degenerate critical manifold.
Hence, by abuse of notation, we shall also refer to the handle-bundle of type (P(E), (1 — P)E)
as a handle-bundle of type (B, f).

THEOREM 4.6. Let [ be a Morse function on the complete Riemannian G-space M. If f
has a single critical value a < ¢ < b in the bounded interval [a, b] then the critical locus of f
in [a, b] is the disjoint union of a finite number of compact submanifolds N,, ..., N,. f? is
equivariantly diffeomorphic to f * with s handle-bundles of type (N,,f) disjointly attached.

Proof. Only the last statement remains. Let {U;};-, . be disjoint tubular neighbor-
hoods of the critical submanifolds {N,} given by the maps T;: v(N,;)(26) — U; where v(N,)
is the normal bundle of N, in M with the induced Riemannian metric. We may assume
¢ = Oand by the Morse Lemma that f o T(x) = [ P;x|*> — [[(1 — P,)x||* where P, is an orthog-
onal bundle projection in v(N;). Choose & so that 0 < & < §% and a < — 3¢, 3¢ < b.

Let Q =f~2%% and define g: Q — R by

gGo= {1 U
S0 = 3PP TN xe,

where A is the function defined in the Attaching Lemma. It is shown in (14, §11) that g is
C* and g° = (f[Q)*. Moreover, by the Attaching Lemma, g ¢ is equivariantly diffeomorphic
to (f|Q@) "¢ u s handle-bundles of type (N;, f). Since f has no critical value in [@, —&] or
[e, b] itis sufficient to show that g~ ~ g*. To that end we apply the Diffeomorphism Theorem
to the manifold without boundary g~*(—5e/4, 5¢/4) and the function g. We note that
g~ C%/82/8 s complete and hence we need only show that g is a Morse function, i.e., |Vg|
is bounded away from zero forxeg™!(—5¢/4, 5¢/4). Since g(N,)) = —3¢/2, N;n g~ *(—5¢/4,
5¢/4) = (J. Hence there is an « > 0 such that T;,(v(N)(@)) N g~ '(—5¢/4, 5¢/4) = . More-
over, f(g~'(—5¢/4, 5¢/4)) < [ —5¢/4, S5¢/4] and hence, since f has no critical points in
g~ '[—5¢/4, 5¢/4], | Vf.| must be bounded away from zero, say |[V/f.] =7 > 0. But

910 — JU;=f1@ - {JU; and hence |Vg,]=%>0 for xeQ— (JU,.
i=1 i=1 i=1

Thus we need only show that ||Vg|| |U, ~ g~!(—5¢/4, 5¢/4) is bounded away from zero. To
compute {|Vg|| we first construct a Riemannian metric {,>* for T(v(N))) such that (v, v,>=
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FATS AT

(vy, v,) where v;€v(N)), {,> denotes the metric in v(N;) and ; denotes the tangent

vector at xev(N;) corresponding to v;. Then if xev(¥N), let W= Pfx)— (1 — P)(x)e

T(V{N\\ WP I'IQVP /’(n o ’T'\ (\u\ — ’)F/Pv \u\ — /I — Py \A)\-I — 11’(” pv” lc\/pv uy\ unr‘n
ARV j ). VO RAVO O Y & Jx\W) LpNE Ay W) LAy W) CIE A JENL A, W SIS

g o T(x) = |Px|* — |1 — Px||* — 3¢/24(|| Px||*/e). Since A (t) <0, d(goT)(w)= 2HXII2
32(I1Px))? = 2l|x||>. But d(g o T) (W) = dgr.dT(®)) = Vg1, dT(W)> < Vgl 1T (W] <
IVgrell 14Tl 11%] = | Vgrll 1dT,l llx]|. Since |Ix]| > o we see that [Vgr.| = [ 20/ dT.|
We need only show that |dT,|| is bounded. Since N; is compact |dT| is bounded on
N; < v(N;) and hence in a neighborhood v(N))(f) of N,. Hence since § was arbitrary we
assume 26 < fB. Finally, we have (f|Q)°~ (f1Q)=g*~g °~(f|Q) °*uUs handle-
bundies of type (;, f) and therefore f®~ f ¢ U s handie-bundies® /¥ U s handie-bundies.
The homology implications of the above theorem are contained in

COROLLARY 4.7 (Bott [2]). Let Ny, ..., N, be those critical manifolds in f“° with index
(Ni’f) =ki < 0 Then

Hf" % Z,) ~ il (N Z,).

N\ Tet H

Duennf Ny tha alhas £ -
i¥iej Jo LOL iX;

L¥00;. DY e acove

+
v v PU
V(1) @ W(1) denote the ith handle bundle and let P;: V;® W, — V,® W, denote the pro-
jection onto V;. Then by excising out the interior of f* we have

tha oy £a, 0 handl
Ll 111J ~~t J O 11AliuL

HP 1% 22) % Y, Hy(Hi, Vill) @ W(D; 22).

But H,(H, V(1) ® W(1); Z,) = H(W(1), W(1); Z,) since the fibre of H is convex and we
have an equivariant fibre preserving retraction, p, of H onto V(1)@ W(DUOO w()

given by
o(hY = ol P(. (1 — PY)) = n(x. v)
PR = PR N )= P\ 0
2 .
”,. x ..:0\' if | "51"H,\LH
3 i \2— iy’ 2
(2, pel + Iyl -2-2) it ez 1 - 220,
(Mlix] Iyl 2
Hence

AP 15 2 3, B0, W(; Z5)

S S H NG Z) + 3 HW. W(D): 2)

where the last isomorphism is the Thom isomorphism for i < ¢. It only remains to show that
H (W(1), W(1); Z,) = 0 if dim W = oo or even strong that =, (W(1), W(1)) =0 for all m.

Yeto: D® S"1 5 Wi, Wi represent an element of . (W(1). W(1)). We may approximate
LAOL UK. L7 4 D =7 FF{4J, Y1) ICPICOVIIL Qil VIVILIVIIL UL dup\ PP (L fy TP\RJJ. VY& LUIGY Qp/pi Valilidis

a by a map o which is homotopic to «, differentiable and transverse regular to N, the zero
section. Since codimension N = o0, a'(D") n N = (J and we can deform o« into W(1) and
hence [« =]0. Thus critical manifolds of infinite index do not affect the homology of

> 1.
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Now let a, b be arbitary regular values of f, a < b, and again denote the critical mani-
folds of finite index k; by {N;},i=1,..., . Let R(X) = dimension of H,(X; Z,) and x(X)
the Euler characteristic of X. Then we have the Morse inequalities.

t

@ 2% = X (=D

i=1

(i) RU% IS X, RusND

(i) 3~ RO 33 (<D Ria ().

The statements follow from the above corollary and the fact that y is additive, and
R,, Y (—1* "R,, are subadditive ([14], §15).

n<k
Remark. If every critical manifold of finite index in £ has an orientable normal bundle
then equations (i), (ii), (iii), are valid with integer coefficients.

We now show that there exist Morse functions on any finite-dimensional G-manifold, M.
To that end let # (4, M) = Cs(M, R) denote those functions whose critical locus in 4
is a union of non-degenerate critical orbits, Clearly .# (4, M) is open if 4 is compact.

DEensiTY LEMMA 4.8. For any finite-dimensional G-manifold M, M (M, M) is dense in
Cs(M, R).

Proof. Let xe M — M. By the induction metatheorem of [13] we may assume that
M (S(x), S(x)) is dense in C¢ (S(x), R), where S(x) is a slice at x. Since the restriction map
p:Ce(M, R) - C¢ (S(x), R) is open, p~ (M (S(x), S(x)) = M(B(x), M) is dense in
Cs(M,R). Now let ye M; and let A = B,n M;. We show that #s(4, M) is dense in
Cs(M, R) and then complete the proof with Baire’s theorem. Let f: M — R. We must find a
C* approximation, f’, such that f’ has only non-degenerate critical points in 4. We note
that #(A, M) is dense in C(Mg, R) (10, p. 37] and that the restriction map Cgz(M, R) —
C(Mg, R) is open. Hence, we may assume that f|M has only non-degenerate critical
points and by induction that y is the only critical point in 4 which is degenerate for f (y is
non-degenerate for f|Mg). This problem is local and is settled by the following.

LEMMA 4.9. Let W be an Euclidean G-space and f: W — R an invariant C® function such
that f|\W¢ has only non-degenerate critical points and such that 0 W is the only degenerate
critical point of f in W(1). Then there exists a C*® invariant function f': W — R such that

@) fIW - W) =fIW — W(2)
(ii) f' has only non-degenerate critical points in W(1)
(ii) f’ is a C* approximation to f.

Proof. Let P: W — W denote the internal projection onto Wy . Define f* by f'(w) = f(w) +
eA(Iwiel®(1 — P)w|i2, where &, ¢ are constants to be chosen and A is the function of
Lemma 4.5. We choose ¢ < 2 such that if xe W is a critical point of f, then ||x|| > ¢ or
x = 0; this is clearly possible since f|Wg has only isolated critical points by the Morse
Lemma. Then note that f'|Wg = f|W; and f'|W — W(c) =f|W — W{(c) which proves (i)
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and shows that f* has at most 0 as a degenerate critical point. By definition of £, @o(f)(v)=
©o(/)(¥) + 2¢(1 — P)v or in matrix form

n _ | 0o f1W5) c |
“"’(f)“l "D B+2eIJ

where B, C, D are determined by f and ¢, is the Hessian operator. But ¢o(f|#;) is non-
singular since f| W, has only non- degenerate critical points and hence det ¢y(f’) is a non-

7ara nalunamial in » with rantg 13} can than ha caticfied hy shanginge o gmall
vy PUJ IVLILIGL KIL O VYILLL LUV Gl, ey Gn, \111} CLLL L1Vl Uv Satidiivul U] VllUUDllls G Ollldil
enough and (ii) be demanding that ¢ # ¢;
RBowmmasl- Yat £ 4 (7 AL whara 7 Alacad and - AL _ D a nacitiva fiinetinn T at
ANCTTIET IV, J—tbLJ LYy 12 G\L/ .lVl} Yiiviv o lD VIUDUU Ali\l G- i¥d —7 v A PUDAIJVU LUllveivil. LwL

Ce(f, C,8) = {he Coe(M)RIC = f|C and |h(x) — f(x)| < e&(x)}. Then C4(f, C,¢) is of the
second category and the same argument as above shows that #y(M, M) Cy(f, C,¢)
is dense in C4(f, C, ).

COROLLARY 4.10. There exists a Morse function on M.

Proof. Let {{;} be a countable partition of unity with compact support. Then f(x) =

E

»

L iyr,(x) is proper. Uniformly approximating f by a function in Cg(f, @, 1) N M (M, M)

ylelds a Morse function.

CoroLLARY 4.11. If M is compact then M is equivariantly diffeomorphic to
(NisSf) V(N3 f) oo O, (N, f) where the (N;,f) are handle-bundles over orbits. M
has the equivariant homotopy type of (Vy(1) X 5,G) Ug,(Va(1) X g, G) ... Uy (Vi(1) X g, G)
where V(1) xy G is a disc bundle over G/H; and the g; are attaching maps.

Proof. Let fe M (M, M) and apply the main theorem to f and the interval [minf— 1,
max f+ 1] to get the first statement. The second follows from the deformation defined in

Coroilary 4.7.
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