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WE STUDY bordism of G-manifolds from a new point of view. 

Our aim is to combine the geometric approach of Conner and Floyd (see [9], [lo], [ll], 

[13]) and the K-theory approach which is contained in papers by Atiyah, Bott, Segal and 

Singer ([ 11, [2], [3]). For simplicity of exposition we restrict to unitary cobordism. 

We develop cobordism analogue of K-theory integrality theorems and show their 

relation to the results of Conner and Floyd. We get a systematic and conceptual understand- 

ing of various results about (unitary) G-manifolds. 

We now describe our techniques and results. Tn Section 1 we define equivariant cobor- 

dism U,*(X) along the lines of G. W. Whitehead [23], using all representations of the 

compact Lie group G for suspending. We construct a natural transformation 

a: U,*(X) -+ U*(EG x,X) 

of multiplicative equivariant cohomology theories which preserves Thorn classes. Special 

cases of c( have been studied by Boardman [6] and Conner [9]. In particular we answer a 

question of Boardman ([6], p. 138). 

The computation of a is interesting and very difficult in general. We have only partial 

results for cyclic groups. It is here that the methods of Atiyah-Segal [2] come into play: the 

fixed point homomorphism (Section 2) and localization (Section 3). 

We consider the set S c lJG* of Euler classes of representations (considered as bundles 

over a point) without trivial direct summand. The first main theorem is the computation of 

the localization S-’ U,* in terms of ordinary cobordism of suitable spaces. 

The Pontrjagin-Thorn construction gives a homomorphism 

from geometric bordism aeG of unitary G-manifolds to homotopical bordism. The map i is 

by no means an isomorphism (due to the lack of usual transversality theorems). The elements 

x E S, x # 1, do not lie in the image of i. One might conjecture that UsG is generated as an 

algebra by S and the image of i. We prove this for cyclic groups Z, of prime order p (Section 
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5). We also compute U,* for these groups by embedding it into an exact sequence (G = Z,) 

~~u*-tu,*~s-~u,*~~*(BG)~~, 

which is analogous to exact sequences of Conner and Floyd [13]. The resulting isomorphism 

g,(BG) r Cokernel 1 

gives a very convenient description of the relations in u*(BG) (compare [lo]). It can be used 

to prove that invariants of type v of Atiyah-Singer [3, p. 5871, characterize unitary bordism 

of G-manifolds (G cyclic). The product structure which u2n_1(BG) inherits from the above 

isomorphism has been found by Conner [9, pp. SO-811. 

Not every bundle can appear as normal bundle to the fixed point set of a G-manifold. 

The bundle has to satisfy various “integrality relations ” which are derived from our 

localization theorem. We prove that for G = Z, a bundle appears (up to bordism) as normal 

bundle to the fixed point set if and only if it satisfies these integrality relations. We list some 

theorems of Conner-Floyd [l I] which are easily accessible through our techniques: 27.1, 

$30, $31, 43.6, $46. See also [16]. 

Finally we use results of Conner [9] and Stong [22], Hattori [19] to show: K-theory 

characteristic numbers characterize unitary bordism of involutions. 

The intention of the present paper is to describe some general ideas. Various applica- 

tions will appear elsewhere. 

I am grateful to the referee who read my manuscript very carefully and made a number of 

suggestions which lead to an improvement of the presentation especially of Section 5. 

0 1. EQUIVARIANT COBORDISM 

We sketch the beginnings of equivariant unitary cobordism. For a detailed description 

see [17]. 

Let G be a compact Lie group. Let D(G) be the set of representations of G in some 

standard vector space c”, IZ = o, 1,2, . . . . We define a pre-order on D(G) as follows: 

V < W if and only if I’ is isomorphic to some G-submodule of W. We list without proof the 

following simple lemma. 

LEMMA 1.1. Any two isomorphisms f, g : V -+ W of complex G-modules are homotopic as 

G-isomorphisms. 

Let V be a complex G-module. We denote by I/” = I’ u {co} its one-point compacti- 

fication which we consider as pointed G-space with base point co. We write 1 V 1 for dim, V. 
Let V, WE D(G) and suppose V < W. So there is a U E D(G) with U @ V E W. Let 

yk: E,(G) + B,(G) be the universal k-dimensional complex G-vector bundle ([14]) and M,(G) 

its Thorn-space considered as pointed G-space. Let U also denote the G-bundle U x X --) X 

for any G-space X. A classifying map 

f": U@Yk'YIUI+k 
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induces a pointed G-map 

gu = Nf,): UC A M,(G) = M(U 0 ~3 + M(Y,~, +3 = Mlu, +k(G), 

where in general M(r) denotes the Thorn-space of the bundle 5. 

We define a natural transformation b”,, y by 

b”,, v (X, Y): CV’ A X, M,vl+n(G) A Yl”c (1) + 

[UC A v’ A x, UC A M,v,+n(G) A ?-I”, (2) 
, 

[WC A x, UC A &j+n(G) A % (3) 

[WC A x, MIwI+AG) A yl”c- 

Here [-, -1; denotes pointed G-homotopy set. X and Y are pointed G-spaces. (1) is smash- 

product with UC. The G-homeomorphisms UC/\ V” E (UO V)” 2 WC induce (2). The map 

gv induces (3). Because of Lemma 1.1 b”,, y does not depend on the choice of the isomorphism 

U@VE W.If U-c V-c Wthen 

b”,,.ob;,u =b”,,.. 

Therefore the transformations b”,, u form a direct system over D(G). We call the direct limit 

r7$(X; Y). 

If SX is the suspension with trivial G-action on the suspension coordinate we put 

u’c2”-1(x; Y) = uG2”(sx; Y). 

We make the usual conventions: If S” is the zero-sphere we put oGk(X) = 5ok(X; S”), 

o,‘(Y) = ~,-k(So; Y), and UGk(Z) = oGk(Z’), where Zf is Z with a separate base point, 

U,’ = UGk(Point), and UkG(X, Y) = okG(X/Y) if Y c X is a G-cofibration. 

The #Gk(-; Y) for fixed Y form an equivariant cohomology theory (Bredon [4]). There 

are pairings 

oGr(X; Y) @ o,‘(X’; Y’) 4 ~Gr+S(XA x’; Y A Y’). 

All this is well known when there is no group G (Whitehead [23]) and quite analogously 

here. The oGk(-) form a multiplicative cohomology theory. 

If c is a complex n-dimensional G-vector bundle over X the classifying map of 5 induces 

a map M(r) + M,(G) which represents the Thorn class 

t(c) E &‘“(I”(t)) 

of 5. Ifs: X+ --, M(5) is the zero section of 5 we call e(r) = s*t(t) the Euler class of r. If V 

is a complex G-module we can view V as a bundle over a point and so we have a Thorn class 

t(V) E 8G21’l(Vc) and an Euler class e(V) E UG 2 Iv1 Multiplication with t(V) gives a suspen- . 

sion isomorphism 

for any V E D(G). 

O(v): oGk(X) s ~Gk+2’V’(vc A x) 
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Now we introduce an important natural transformation. Let EG be a free contractible 

G-space such that EG + EG/G is numerable (Dold [18], p. 226). We only consider left 

G-actions. 

PROPOSITION 1.2. There exists a canonical natural transformation of equivariant coho- 
mology theories 

CC: o,*(Z) + o*((Z A EG+)/G). 

CI preserves multiplication and Thorn classes. If Y is a compact free G-space and Z = Y’ then 
a(Z) is an isomorphism. 

(o*(K) is the usual unitary cobordism ring of the pointed space K. If Z = M(5) then 

(Z A EG+)/G can be considered as the Thorn space of the bundle (r x l,,)/G.) 

Proof. The classifying map of the U&)-bundle 

(E,(G) x EG)IG + (4(G) x EG)IG 

induces a map of the corresponding Thorn spaces 

rk: (M,(G) A EG’)/G + n/l,, 

where M, = Mk({e}). We use r, to construct the natural transformation 

WC * Z * EG+)/G (M,+,v,(G) * EG’WI”, r*+lVl 
l 

C(V= * Z * EG+)/G, n/r,+ ,v,l”. 

By definition of the cobordism groups the last homotopy set maps naturally into 

Uzk+21YI((vc~~~ EG+)/G). 

Using a canonical relative Thorn isomorphism the last group is isomorphic to 

u’““((Z A EG+)/G). 

Hence we got maps 

[V’ A Z, Mk+&G)]; --) uzk((Z A EG+)/G) 

which yield the desired map a if we pass to the direct limit. It is clear that a is natural, 

multiplicative and preserves Thorn classes. The assertion about a(Y’) follows by applying 

the results of [15]. 

Remark. More generally we could have constructed a natural transformation 

c(: 0,*(X; Y) + o*((X A EG+)/G; ( YA EG+)/G). 

We call transformations of this type bundling transformations. Similar maps a exist for other 

cobordism theories, e.g. “ unoriented” cobordism. For G = Z, and Z = S” essentially thi: 

map was studied by Boardman [5], [6]. See also Conner [9, 121. Our approach gives ar 

immediate insight into the multiplicative property (see the question of Boardman, [6 

p. 1381). 
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Let Y be a G-space and a,‘(Y) the bordism group of n-dimensional unitary singular 
G-manifolds in Y. In the manner of Conner and Floyd [l l] one constructs an equivariant 
homology theory. 

There is a natural transformation of equivariant homology theories 

i: %!*C(-) + U*“(-), 

defined as in Conner-Floyd [Ill, 12. It is sufficient to indicate the construction of i for the 
coefficients of the theory. Given a unitary G-manifold M of dimension n. If n is even there 
exists a G-embedding M c V of M in some complex G-module VE D(G) such that the nor- 
mal bundle v has the correct complex structure. A classifying map for v gives in the usual 
way (Pontrjagin-Thorn construction) a map 

V’ + M(v) + M,(G), 

r = IV1 - _5 dim M. This map shall represent i[M]. If n is odd we embed into V@ R, 
VE D(G). 

Remark. The map i is not an isomorphism, if G is non-trivial (compare Theorem 3.1). 

PROPOSITION 1.3. Let Y be a free G-space. Then i: ‘S!,,“(Y) + U,‘(Y) is an isomorphism. 

Proof. By standard approximation techniques it is enough to consider the case that Y 
is a G-manifold. The group U,‘(Y) is the direct limit over homotopy sets of the form 

CVc, Mk(c) A Y’l’i = l?:, MY, x iW))lOG. 
But yk may be approximated by G-bundles over differentiable manifolds (e.g. Grassman- 
nians) and hence M(y, x id(Y)) by Thorn spaces which are in a neighbourhood of the zero- 
section free G-manifolds. But for G-maps between free G-manifolds usual transversality 
arguments apply, and we can immitate Thorn’s proof that geometric bordism may be 
described by homotopy groups of Thorn spaces. 

92. THE FlXED POINT HOMOMORPHISM 

Restriction to the fixed point set is a functor from G-spaces to spaces, compatible with 
homotopy in both categories. We analyse this process in our set up. 

We consider the classifying space BU as a space with base point 1. Whitney-sum of 
vector bundles induces an H-space structure s: BU x BU-, BU. We can assume ~(1, b) = 
s(b, 1) = b for all b E BU. Let J(G) be the set of isomorphism classes of non-trivial irreducible 
G-modules and let 

be the subspace of the product consisting of points which have only finitely many compo- 
nents different from the base point. Then s induces an H-space structure on B, again denoted 
by s and defined by 
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Let X be a compact pointed space with trivial G-action and Y a pointed G-space with 

fixed point set F. We use s to give u*(X; B’) the structure of a U*-algebra (cup product and 

Pontrjagin multiplication) and 0*(X; Bf A F) the structure of a 0*(X; B’)-module. 

Let R,(q be the additive subgroup of the representation ring R(G) of G (Segal [21], 

p. 113) which is additively generated by the non-trivial irreducible representations. Let A(G) 

be the group ring over the integers Z of the group R,(G). We define a grading on A(G) by 

assigning to elements of R,(G) as degree their (virtual) dimension over the reals. Let 

EG*(X; 8’) = 8*(X; B+ A F) @ A(G) 

be the graded tensor product over the integers. 

Our aim is to describe a homomorphism 

p: 8,*(X; Y) + L “c*(X; F) 

induced by “ restriction to the fixed point set.” We need the next lemma. We use the follow- 

ing notation: Let V(G) be the set of isomorphism classes of complex G-modules. If V E V(G) 

let V, be the trivial and V, be the non-trivial direct summand of V. Let Z(V) be the auto- 

morphism group of the G-module V. 

LEMMA 2.1. The fixed point set of the Thorn space M,(G) is homotopy equivalent to 

V(MW’J)~BZ(I/,)+). 

The sum V (in the category of pointed spaces) is taken over all V E V(G) with 1 VI = n. 

Proof, Let Y,, over B,(G) be the universal complex n-dimensional G-vector bundle. The 

universal property of yn implies the following facts. The path-components of B,,(G)’ are clas- 

sifying spaces BZ(V), IV1 = n. The restriction of yn to BZ(V) is isomorphic to a bundle oj 

the form 

y(o) x l’(l): E(o) x E(1) -+ BZ(V,) x BZ(VJ = BZ(V). 

The bundle y(o) is the usual ) V,J-dimensional universal vector bundle and E(1) has only tht 

zero section as fixed point set. As usual we put M(y,) = MU(lV,j). 

Now consider the following composition of mappings which we explain in a moment 

CW” A X, K+,,,(G) A Y1: (1) 
+ 

CW,’ A X, (V MWY,i) A fWT/,)t) A Fl” (2) , 

[W,= A X,(nhi'u(lv,l) A BZ(VI)f) A F-J” 
(3) 

+ 

0 f12(‘y”‘-‘wo’)(x; BZ(vl)+ A F). 

Explanation. (1) is restriction to the fixed point set. We have used Lemma 2.1. The 

V = V, Q VI run through V E V(G) with I VI = n + I WI. Inclusion of the sum into the prod, 

uct induces (2). The definition of 8*(--; -) as a direct limit of homotopy sets gives (3). 

The space BZ(VI) is homotopy equivalent to a certain product I’IBU(mj),j E J(G). WC 

have a canonical map (unique up to homotopy) BZ(VI) -+ B (let mj go to infinity). If we USC 

this map in the composition above we get a map 

(pw’: [W” A X, M,+l,l(G) A Y-J”, ---) @ ~2(‘y0’-‘wo’)(X; B+ A F), IVI = n + IWI. 
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We denote the V-component of C++‘(X) by x(V) and define 

cpw: [IV’ A X, M,+,w,(G) A Y-J; --) z,‘“(X; F) 

by 
%&) = x+9 0 (V - K), IVI=n+lWI. 

One verifies that the 9, are compatible with the limiting process and hence yield a map 

Cp : &2”(X; Y) -+ L$“(X; F). 

In odd dimensions we replace X by SX and proceed as above. 

LEMMA 2.2. The map cp is a homomorphism of 0 *(X)-modules of degree zero. If Y = S” 
is the pointed zero sphere then cp is a homomorphism of o*(X)-algebras. The image of the 
Euler cZass e(V,) of VI under cp is 1 @ Vi. 

Proof. Straightforward verification. Note that the product in U,*-theory comes from a 

pairing of Thorn spaces M,(G) A M,(G) + M,+,(G). When we restrict to the fixed point set 

this is related to the H-space structure s on B. 

$3. LOCALIZATION 

Let S c U,* be the multiplicatively closed subset which contains 1 and the Euler 
classes e(V,), I/ E V(G). According to Lemma 2.2 q(S) consists of invertible elements. There- 

fore we introduce the elements of S as denominators into uc*(X; Y) and denote the resulting 

graded module of quotients by S-‘0,*(X; Y) (see Bourbaki [8] for notion and notation). 

The universal property of the canonical map 

I: 0,*(X; Y) + s-Vc*(X; Y) 

provides us with a unique homomorphism 

0: S-‘&*(X; Y) --,&*(X; F) 

with the property @A = cp. (Here X, Y, and F have the same meaning as in Section 2.) 

THEOREM 3.1. CD is an isomorphism. 

Proof. We construct an inverse Y to @. Given z E fi’(X; B+ A F). Assume for the mo- 

ment that t is even, t = 2n. The element z is represented by a map 

f: S2’A\+MMU(n+r)AB+AF. 

But X is compact, hence there exists a I’ E V(G) with 1 V,( = n + r and such that f factorises 

up to homotopy over 

(1) MU(jVbl)~BZ(V,)+ AF. 

We denote the induced map of S2’ A X into the space (1) again by J The space (1) has an 

inclusion fi into the fixed point set of M,(G) A Y, p = ) VI, according to Lemma 2.1. We 

regard fi f as a G-map 

S2’~ X+ M,(G) A Y, 

representing an element 

Chfl E GYX 09 q=2)VI -2r. 
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One can see that the element 

TAMhfO TOM DIECK 

ACf1j-J * e(V,)_’ E (s-‘&*(X; Y))2” 

depends only on z and not on the choice off and V. We define an A(G)-linear map Y by 

Y(z 0 1) = Xfifl . eVbel. 
(If t is odd, replace X by SX.) 

The construction of cp immediately gives q[fi f] = z @ VI and therefore 

@Wz 63 1) = wi-fif 1 .4w) 
= dfifl . WC)-’ 
1 ‘z’zlw 0 (--VI)) 

To prove ‘I’@ = id it is sufficient to prove ‘I’@2 = 1, 

x E oc*(X; Y) represented by 

Suppose we have 

f: WC A X -+ M,+,,,(G) A Y. 

cpx = Xx(V) 0 (K - w,) 

i.e. \YCP = 2. We start with 

as in the definition of CP. By definition of Y the element Y(Zx(V’) @ VI) is given by n[f ‘I, 
where f’ is the mapj, i: W,’ A X c W” A X. On the other hand f’ represents the image of x 

under 

&*(X; Y)wj 8,*(w” A x; Y)T-, oG*(w; A x; Y)o(w,)-+ 0,*(x; Y). 

But this composition obviously is multiplication with the Euler class e( WI). Put together we 

have 

Yqx = n[f’]e(W,)-’ = Ix. e(W,) . (W,)-’ = lx. 

COROLLARY 3.2. The elements of S are d@erent from zero. S- 1 U,* isafree U,-module. 

We go on to give a more geometric interpretation of Theorem 3.1. If X = Y = s” we 

have an isomorphism 

S-l&* g U,(B) 6 A(G). 

We give another description of elements in the right hand group. Let M be a compact 

unitary manifold without boundary and with trivial G-action. Let u E K,(M) (equivariant 

K-theory of M, see Segal [20]) be an element without trivial summand: We can write CI in 

the form a = E - F, where E is a complex G-vector bundle over M and F is a trivial G-vector 

bundle of the form pr: M x V-P M, with V a G-module. Moreover we can assume 

that E and F do not have direct summands with trivial G-action. Put 

Eg @ (EwOW) 
WE J(G) 

(Segal [20, Proposition 2.21) and let 

fw : M + BW+), m,=dimE,, 

be a classifying map for Ew . Then 

f: M c/wi IIBU(m,) + B 
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represents a bordism element x E U,(B). Let M be connected and E,,, , I;,,, be the fibre of E, F 

over m E M considered as G-modules. We asign to the pair (M, a) the element 

1-(M, CC): = x @(E,,, - F,,,) E U,(B) 0 A(G). 

It is clear that any y E U,(B) 0 A(G) is a sum of elements of the form T(M, ol). Hence we can 

view U,(B) @ A(G) as a suitable bordism group of pairs (M, u). 

Let q: M + P be the projection onto a point. Since unitary manifolds are orientable with 

respect to the cohomology theory U*(-) we have a Gysin homomorphism 

q! : U,*(M) -+ U,* 

of degree -dim M. 

THEOREM 3.3. We have YJT(M, CC) = e(F,,,)-‘q,(e(E)), where e(E) E U,*(M) is the Euler 

class of E. 

We omitthe simple proof and list only an easy consequence. If we are given a natural 

transformation of multiplicative equivariant cohomology theories ; ,,r. 

~1: U,*(-) --f hc*(-) 

which maps Thorn classes to Thorn classes, then c( is also compatible with Gysin homo- 

morphisms and Theorem 3.3 gives a method for computing the localized map S-la. The 

two most important examples of such transformations are the bundling transformation 

IX: U,* -+ U”(BG) 

of Section 1 and the equivariant analogue 

,u: lJ,* + KG* 

of the Conner-Floyd map ([12], Ch. 1.5). 

$4. INTEGRALITY 

The localization Theorem 3.1 is intimately connected with the Conner-Floyd approach 

to equivariant bordism. Geometrically the restriction to the fixed point set defines a homo- 

morphism 

‘pi : an’ + 0 u,,(~BW,N 

where the sum is taken over all t, t, with II = 2t + 2Ct, 1 VI, VE J(G). We recall its definition 

(see also Conner-Floyd [13, 5.1). 

Let M be a unitary G-manifold and let F denote a component of the tied point set. The 

normal bundle to Fin M has a canonical G-invariant complex structure, hence has the form 

@(V@ NV), VE J(G). Let fV : F+ BU(t,) be a classifying map for NV. Then ‘pl [M] is 

defined to be the sum over all F of the singular manifolds 

(fV) : F -+ lIBU(t,). 

We have an inclusion 

w: 0 U,,(I-IBU(t,)) + U,(B) 0 A(G) 
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mapping the element y E U,,(lDU(t,)) to b(y) 0 (-Xt, V), where 

b: ~,,(H~Wt,)) + U,,(B) 

is the canonical map. Let v: BU+ BU denote the “inverse” of the H-space BU (with 
vl = 1) and n: B-, B the map induced by Hjv: lljBU+ IIjBU. 

PROPOSITION 4.1. The following diagram is commutative. 

KG 1 + up 

wa1 
I I 

rp 

U*(B) 0 A(G) U*(n)@id ’ U*(B) 0 A(G) 

Proof. Given a G-manifold M of even dimension, the definition of i requires an embed- 
ding M c V, where V is a complex G-module. The image i[M] is represented by a map 
h:V’ -+ M,(G) which is transverse to the zero section and such that the restriction of h to M 
is a classifying map of the normal bundle v~, V of M in I’. If we restrict h to the fixed point 
set we get a map (with W = V,) 

h,: WC-+ VMU(m,) A (njBU(mj))’ 
(ml 

which is transverse to the sum Cof the BU(m,) x IIj BU(mj) = :B,, . (Here(m) runs through 
(m,, mj) with m, + I: 1 Vj 1 mj = m,j E J(G).) Moreover h,-lC is the fixed point set F of M. 
The map h, induces F -+ C which is a classifying map for v~, y 1 F and which decomposes 
into a sum of F(,,,, + B,,, . We have the equality of bundles 

(1) vF, w IF,,, @ “w, vi Fan, z VP, M IFw @ “MM, vl F(m, - 

But these are bundles over a trivial G-space. Hence we have decompositions of the form 

VF, M IF(m) = @jCvj 0 Nj, cm,) 
VM, Y I F(m) = OjCvj 0 Dj, cm,> 0 Do, (m) 

with trivial G-action on D,, (,,,). The equality (1) yields the following stable equivalences 

(2) 
NJ:&,, N D. 

J. Cm) 

vF, w I F,m, - Do, (m) 

(N-l means a bundle inverse to N). If Pj, (mj is a stable classifying map of Dj, (mj, then 
cpi[M] is 

x:(m,C(Pj,(m) lj E J(G)):F~m) + Bl @(Cj(mj - kj)Q) 
if we have V = V, @ Ej kj Vj . (Note: In our earlier notation V, = Cj kj Vj .) If qj, (mj denotes 
a stable classifying map of Nj, cm), then WV, [M] is 

z,,,C(qj, (m) I j E J(G)) : F(m) + BI @ ( - zj I, (m) 5) 
with Ii, (,,,I = dim, Nj, (,,,). 

From (2) we get 

vqj. cm) homotopic Pj, cm) 
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and from (1) we get 

kj = lj, cm) + mj 

and hence commutativity of the diagram. If IZ is odd we embed M into I’@ R and proceed 

as above. 

Since the bundling transformation a preserves Thorn classes and hence Euler classes we 

have an induced map S-la. Proposition 4.1 and Theorem 3.1 have as corollary the 

PROPOSITION 4.2. Ifx E %'. ' is represented by a G-mantfold without stationary points, 
then aix is in the kernel of the canonical map A: U*(BG) -+ S-l U*(BG) (i.e. crix is annihilated 

by some product of Euler classes contained in S). 

The contrapositive of Proposition 4.2 is a general existence theorem for fixed points on 

G-manifolds. If S does not contain zero divisors (e.g. G a torus) and [M] E a,,’ is repre- 

sented by a manifold without fixed points, then cri[M] = 0. In particular M bounds if we 

forget the G-action (compare Bott [7]). 

An element y E U,(B) @ A(G) is in the image of rp only if S-‘u(y) is “ integral ” (i.e. 

contained in the image of A: U*(BG) -+ S-‘U*(BG)). This “integrality condition” is 

analogous to K-theory integrality conditions (Atiyah-Segal [2]). We say that the “ integrality 

theorem” holds if the integrality of S-‘a(y) implies y E image cp. 

$5. CYCLIC GROUPS 

THEOREM 5.1. Let G be the cyclic group Z, of prime order p. Then we have: 

(a) There exists a canonical exact sequence 

0 -+ u,-,+ up 7+ (s-‘u,*),a, D&BZ,) --) 0. 

(b) S-la induces an isomorphism 

Cokernel1 g Cokernel A 

(i.e. the integrality theorem holds). 

(c) Uo* isgenerated (as an algebra) by the image of i: 4%o* + Uo* and S. The map i is injective. 

Proof. (a) Let T/,(G) be the set of isomorphism classes of complex G-modules without 

trivial direct summand. For V E V,(G) let S(v) be the unit sphere in a G-invariant hermitian 

metric (we do not distinguish between elements of V,(G) and representing G-modules). We 

have a Gysin sequence C(V) 

*** -+ U,G* u&, + U$_,(SV)--i up, --t ***. 

Here e( v>* means multiplication with e( I’). 

If W = U @ V E V,(G) we have a morphism X(v) --t X(W) consisting of the three pieces 

id: U,,G -+ U,,G and e(U).: U~-,lvl + U~_,lwl and j, : U,“_, (Sv)+ Uz_l (SW) with 

j: SV-r SW the inclusion. The direct limit over these morphisms yields an exact sequence 

1 B 6 
1 ..a+ U,‘+ (S-‘U*‘),+ U,_,(BG) -+ a.* 
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as follows: The limit over id: U,’ + U,” is clearIy U,, ‘. The limit over the multiplications 

e(U)* is well known to be isomorphic to S-l UeG, the isomorphism being induced by mapping 

x E UL,“, to e(V)-‘x E (S-l U,‘), . The sphere SVis a free G-space because G = Z, and V 

has no G-trivial direct summands. We have natural isomorphisms 

U,‘(SV) z %!,G(SV) z U,(SV/G) 

(see Proposition 1.3) and the direct limit over the U,,(SV/G) is U,(BG). 

We use (1) to prove (a). If IZ is even, then U,,(BG) = U,, and 

6: U,, = U,(BG)-+ U,,' 

composed with the map E: U,,' -+ U,, which forgets the group action is multiplication by p. 
Hence 

o -+ U,,+ UnG--+(S-lU*G)n+ U,_,(BG) 

is exact for even II, by (1) and because U, is torsion free. Moreover UoG + UT,,, _,(SV) + 

U,,,, -l(BG) is seen to map 1 to the bordism class of the inclusion SV/G --) BG. But 8,(BG) 

is generated (as U,-module) by such elements (Conner-Floyd [lo]). So we conclude that /? 

is onto for n even. If k is odd we know by Theorem 3.1 that (S-l U,*), = o, and (1) together 

with (a) for n even gives UkG = o. This proves (a). 

(b) To prove (b) we use the cohomology form of (1) and the bundling transformation CL 

We have a commutative diagram 

. . . -_t UGn 09. ~ U2;+2lvI + U”,+2lvI(Sv) _+ . . . 

I I 

(x L1 

I 

a 

- a. -+ U”(BG) e(v)’ + U”+21VI(BG) + U”+‘IVI(EG x .SV) + - * * 

with exact rows (Gysin sequences). The right hand a is an isomorphism by Proposition 1.2. 

We pass to the direct limit and get (b). 

(c) We have the natural transformation i relating geometrical with homotopical bor- 

dism. If we take the direct limit over the V E VI(G) of the commutative diagrams 

* * * -+ 9YnG(DV) + ?iYnG(DV, SV) + %,“- I(sv) -+ . . * 

we get a commutative diagram 

o 4 U, --+ U,' T (S-l U,G), p U,_ ,(BG) + o. 

The top sequence is Conner-Floyd’s sequence relating free and arbitrary G-bordism ([13]). 
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We can identify F,, with 

where the sum is taken over k, kj with k + 2Ckj = II. Then A’ is taking the normal bundle to 

the fixed point set. The map t is the map bt’cpl of Proposition 4.1. It is injective, hence i is 

injective. It is obvious from Theorem 3.1 that S-‘U, ’ is generated as an algebra by the 

image of t and S. The elements s-l, s E S, are in the image of t. We put 3-l = t(s-I). 

The algebra F* is generated by the image of A’ and the s-l, s E S, because ifs = e(V) then 

p’(s-‘) in U,l,l_,(BG) is represented by SV/G + BG and these elements generate u,(BG) 

as U,-module. Moreover it is sufficient to take only s of the form Dk, D = e(V), where V 

is a fixed irreducible G-module. 

Given x E cl”‘, we can write 

Ax = Zsi t(xJ, si E s, xi = Zxij D-j. 

Hence there is an integer m 3 o such that D”ix is contained in the algebra generated by S 

and image (Ai). If m > o put 

(2) D”~x = liy f E(liyj)sj , Sj# 1. 

We have relations of the following type 

(3) sj = Duj, 

where uj is contained in the algebra generated by S and image (Ai). It is sufficient to prove 

this for s = sj = e(V), V irreducible. Since U,(BZ,) = Z, there is an integer a such that 

a/?‘@-‘) = fl’(D-‘) and hence there is z E a,’ such that D(a - (2’~)s) = s. If we combine (2) 

and (3) we get 

D”‘-‘ix = D-‘&y + E(Aiyj)uj. 

We apply p and get 

o = /?(D m-1Ax) = p(D-lAiy) = p’(D-‘l’y). 

Hence there is y’ E f@*’ such that Aiy’ = D-‘iiy. The relation 

D”-‘lx = A(iy’ + C(iyj)uj) 

gives that D”-’ Ax is contained in the algebra generated by S and image (U) and hence by 

induction also Ix. The assertion (c) follows easily. 

$6. CHARACTERISTIC NUMBERS 

We assume G = Z,. The map a can be computed from the localized map S’cc. It is 

not difficult to see, that CI is injective if S-‘cc is injective. 

PROPOSITION 6.1. The map S-la is injective for G = Z, . 

Proof. This is an easy consequence of results of Conner [9]. We compare our map S-‘cc 

with the map 8’ of [9], p. 87. The range of a’ coincides with the integral part in degree 

zero of S-‘U*(BZ,), and a’ is essentially the map S-la 0 (U,(rz) 0 id) (see Proposition 

1.1). The result follows from [9, Theorem 14.11. 
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We come now to characteristic numbers. Let K*(X) be Z-graded complex K-theory and 

let Z[aI, a, , . . .] be a polynomial ring in indeterminates a,, a,, . . . (of degree zero). There 

exists a unique multiplicative stable natural transformation of degree zero 

B: U*(X) + K*(X) $3 Z[a,, a,, . . .], 

such that the Euler class of the line bundle q is mapped to 

(y - 1) + (q - 1)’ 0 a, + (q - 1)3 0 a2 + * * * . 

If X is a point then B is an embedding as a direct summand (Hattori [19], Stong [22]). B 

defines a natural transformation of cohomology theories and hence a transformation of the 

corresponding spectral sequences. On the E,-level this transformation is an embedding as 

a direct summand. If the K-theory spectral sequence is trivial (e.g. X = BG), then also the 

lJ*-theory spectral sequence and B induces on the E,-level an injective map. Hence 6 

itself is injective. 

If we expand Bx with respect to the basis of Z[a,, a2 , . . .] consisting of monomials in 

the a,,a,, . . . we consider the resulting coefficients as K-theory characteristic numbers. 

Combining Proposition 6.1, Theorem 5.1 .(c) and the remarks above we see that the map BCZ 
is injective for G = Z, . We express this fact in the next proposition. 

PROPOSITION 6.2. The bordism class of a unitary Z,-manifold is determined by its K-theor) 
characteristic numbers. 
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