
4. Permutation representations. 

If G is a finite group and S a finite G-set we can consider the asso- 

ciated permutation representation V(S,F) of S over the commutative 

ring F. The assignment S ~--~ V(S,F) induces a ring homomorphism 

h = h F : A(G) + R(G;F) 

of the Burnside ring into the representation ring. We shall describe 

some aspects of this homomorphism in particular when F is a field or 

the ring of integers Z. We describe the connection to the J-homomor- 

phism of section 2 and to ~-rings. 

4.1. p-adic completion. 

Let p be a prime number and let G be a p-group. Let 

A(G)p = invnlim A(G)/p n A(G) ~ A(G) (~ Z Zp 

be the p-adic completion of A(G). 

If ~G~ : pn and m = q(l,p) we have seen in exercise 1.9.4 that 

n+l 
m < p A(G) C m. Hence 

Proposition 4.1.1. 

I__ff G is a p-qroup the p-adic and the m-adic topoloqy on A(G) coincide. 

Let now q be a prime different from p. Let e: R(G,Fq)-~ Z: x ~9 dim x 

be the augmentation and I(G,Fp) : Kernel e the augmentation ideal. 

The ring A(G) 
P 

of m. 

is a local ring with maximal ideal m , the completion 
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A 
We now consider the case p # 2. Since A(G) [q-1] c A(G)p we obtain 

f r o m  2 . 1  t h e  J - h o m o m o r p h i s m  

A 
(4.1.2) J : R(G,Fq) ..... -9 A(G)p 

We notice that for an F G-module V eJ(V-dim V) = i. Hence 
P 

(4.1.3) JI(G,F ) c I + m ̂ . 
q 

The set 1 + m C A(G) is compact and a topological group with respect 

to multiplication. A fundamental system of neighbourhoods of 1 is 

given by (i+~i)i~.i , or (i+~i+p3~). Since 

i 
j(piI(G,Fq)) c (i+~) p c I+~ i+l 

we see that J : I(G,Fq) ---3 l+m ̂  is p-adically continuous and there- 

fore induces a continuous map 

(4. I. 4) J^ Fq) : I (G, ~ l+m A 
P 

homomorphic from addition to multiplication. 

4.2. Permutation representations over F . q 

We still assume that p is odd and consider the permutation represen- 

tation map and its p-adic completion 

(4.2.1) 

h : A(G) } R(G,Fq) 

hA: A(G) ̂  ~ R (G, Fq) ̂  p p" 
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Since h(m) ¢ p R(G,Fq) + I(G,Fq) and because the p-adic and I(G,Fq)- 

adic topology on R(G,Fq) coincide (see [~] ) we obtain an induced 

continuous map between multiplicative topological groups 

(4.2.2) h : l+m 9 I+I(G,Fq) 

Definition 4.2.3. 

We call the prime q p-generic if it generates a dense subgroup of the 

p-adic units (i. e. if q generates Z/p2Z~). 

Theorem 4.2.4. 

Let q be a p-generic prime. Then the composition 

h J : I (G,Fq) } l+I (G,Fq) 

is an isomorphism. 

In fact the proof will show that this is one of the isomorphisms which 

we had considered in the previous chapter on ~-rings, namely the map 

9q" 

Proof. 

^ A 
In order to prove the equality h J = ~ we need only consider cyclic ~q 

groups G : z/pnz because jr, h ̂  and ~ are compatible with restric- 
q 

a 
tion to subgroups and elements in R(G,Fq) are detected by their 

restriction to cyclic subgroups. 

We begin with the computation of 9q for G = z/pnz. The group algebra 

FqG = Fq[X]/(xa-l), a = pn decomposes as l~t~n(~ FqLXr ] /~t(x) , where 

~t(x) is the pt-th cyclotomic polynomial. If q is p-generic then ~t(x) 

is irreducible. Hence the Fq[X]/~t(x) =: V t are the irreducible 
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F G-modules in our case. By 3.12.2 we have the identity 
q 

~q(V t - dim V t) Oq(dim V t) = Oq(V t) . 

Over a splitting field F of G the module V t splits V t = ~j Vt(J), 

where Vt(j) is onedimensional and a generator of G acts as multipli- 

cation with u j, where u is a primitive pt-th root of unity and 

j ~ z/ptz W. Since the O -operatbns are compatible with field extension 
q 

we obtain from 3.7.2 

Oq(V t) : ~ Oq(V t (j)) : T[ (l+Vt(J) + ... + Vt(j)q-i ) 

It is enough, by naturality, to study this for t = n. We claim that 

in R(G,F) ~ Z[y]/(ya-l) @q(V n) : h(l+bG) where b satisfies l+bpn = qa. 

This means we have to check 

ii ( 1 + yj ~ + ... + yj (q-l)) : 1 + b(l + y + ... + ya-l). 
] 

But this is true if we replace y by a-th roots of unity v and evalua- 

tion at such v determines elements of Z r ~ Lyj~ya-l). (This is essentially 

a computation with modular characters.) Now an easy checking of fixed 

point dimensions shows that J(V n) = 1 + bG. This shows hJ(V t) : Oq(V t) 

and therefore h A J ^ ( V  t - d im  V t )  = 9 q ( V  t - d im  V t ) .  The e q u a l i t y  

h^J ~ = Q is now proved. "q 

We now check that we are in a situation where 3.14.1 and 3.14.5 can 

be applied. To prove ~kv = V for (k,p) : 1 and F G-modules V we 
q 

again need only consider cyclic G and then this follows from the 

determination of the irreducible F G-modules above. 
q 
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Remark 4.2.5. 

If q is p-generic then the decomposition homomorphism 

d : R(G,Q) } R(G,Fq) 

(Serre [9~] , 15.2) is an isomorphism. 

4.3. Representations of 2-qroups over F 3. 

We now consider the analogue of 4.2 for 2-groups and restrict attention 

to representations over F 3. We first recall what the theory of oriented 

-rings tells us in this case. 

In this section G shall be a 2-group. We have the following objects 

R(G,F3) ~ RO(G,F3) ~ RSO(G,F 3) m ISO(G,F 3) 

Here R(G,F 3) is the representation ring of F3G-modules, RO the sub- 

ring of those modules possessing a G-invariant quadratic form, RSO the 

subring of F3G-modules on which each g % G acts with determinant one, 

and ISO is the augmentation ideal of zero-dimensional objects. 

The ring RSO(G,F 3) is an oriented ~ -ring (3.10.2) and ISO(G,F 3) is 

an oriented ~ -ring. Let a roof denote 2-adic completion. We have 

from 3.14.10 

Proposition 4.3.1. 

The map 

or ISO(G,F 3) A ~ 3 : -> i + ISO(G,F3 )^ 

is a__n_n isomorphism. 
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In order to relate this isomorphism to the J-homomorphism and to per- 

mutation representations we compute the map for cyclic groups G:z/2nz. 

We start with the representation ring. 

We have a decomposition of the group ring 

F3G Z ({9 F3 Ix]/(~t (x) 
l.~t.~n 

where ~t(x) is the 2t-th cyclotomic polynomial. The ~tare no longer 

irreducible for t ~ 3. If K t : F3[ut], where u t is a primitive 2t-th 

root of unity then [K t : F3] : 2 t-2, t ~3. Moreover ~2(x) : x2+l is 

irreducible and K 2 = F 3 [ut] : F 9. 

First assume t ~ 3. Let V t be the F3G-module K t where a fixed generator 

g~ G acts as multiplication with u t. Then the dual module V t =Hom(Vt,F 3) 

is K t and g acting as ut I. Moreover F3[x]/~t(x) Z V t ~, V~ and V t is 

The module V t cannot carry a G-invariant quadra- not isomorphic to V t- 

tic form, because this would imply V t ~ V~. But 

v t ,'~ vt ~ ------~ F 3 : (x,y) i-------> Tr(xy) 

is a G-invariant, non-degenerate quadratic form (where Tr : K t -----> F 3 

is the trace map). 

If t = 2 let V t = F3[u2] : F 9 with g acting as multiplication with u 2. 

Then the norm map N : F 9 --~ F 3 is a G-invariant quadratic form. The 

associated bilinear form is 

b : F 9 x F 9 ____) F 3 : (x,y) ~-----% ~(x)y + x ~(y) 

where ~ is the Frobenius automorphism. The determinant of b is one. 
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Any G-invariant symmetric bilinear form must have determinant one in 

this case. 

Finally there are two one dimensional representations, V the trivial 
o 

representation, and V 1 = F 3 with g acting as multiplication with -I. 

They both carry quadratic forms q : x I--~ x2 or q-: x ~I~ _x 2. 

or 
We now enter the computation of ~ 3 for the elements V 1 - dim V I, 

or 
V 2 - dim V 2, V t + V~- dim(V t + Vt~). It is sufficient to compute O 3 

of the c o r r e s p o n d i n g  m o d u l e s .  S i n c e  c h a r a c t e r  c o m p u t a t i o n s  a r e  e a s i e r ,  

we compute for QG-module and then use the decomposition homomorphism. 

Let 

w t : ~ Ix] /}t(x)' t~,i 

with g acting as multiplication with x. Let S t be the homogeneous G- 

set with 2 t elements and V(S t) its permutation representation. Let a t 

be the cardinality of K t. Then we have 

Proposition 4.3.1. 

For t ~ 3: 

or 2-t 
Q3 (Wt) = V(SI) - V(So) + (at-l)V(St)" 

Moreover 

or 
0 3 (W 2) : V(So) - V(S I) + V(S 2) 

°r(w I ~9 W I) : V(S o) - 2V(S I) {)3 
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Proof. 

Suppose t ~3. We compute the character of @~r(wt). Over a splitting 

field W t decomposes as W t = ~j (Wt(j) + Wt(-j)) where Wt(j) is one- 

dimensional with g acting as multiplication with (ut)J and 

1 ~ j : 2k + 1 •2 t-l. From 3.10.12 we obtain 

@3Or(Wt) : ]~ (13 + Wt(J) O Wt(-J)) 

with character value at g equal to 

F (i + u j + u -j) u : u t 
J ' • 

This product is -i, as can be seen by using the identity 

_2 t-2 
IT.(x + x -I -(u j + u -j)) : x ~t(x) 
] 

and evaluating at x a cubic root of unity. The character value of 

@~r(wt ) at non-generators x # 1 of G is i. The character value at 1 is 

a t . It is an easy matter to check that the permutation representation 

of S 1 - S o + 2-t(at-l)St has the same character. 

or or 
F i n a l l y  @ 3 (W 2) = l + w  2 ,  0 3 (W 1 ~ W 1) : 1 + W 1 ~ W 1 a n d  t h e  a s s e r t i o n  

of the proposition is easily verified. 

or with the quadratic J-homomorphism and permutation Connecting Q3 

representations presents the difficulty that permutation represen- 

tations do not generally preserve the orientation. We deal therefore 

with this problem first. 

Let A (G) < A(G) be the subring generated by finite G-sets S on which 
o 

each g 6 G acts through even permutations. 



78 

If S is any finite G-set we can assign to it a homomorphism 

s(S) : G----9 ZW : g l-------) signum(lg) 

where lg : S --4 S is left translation by g. The assignment S ~--~ s(S) 

induces a homomorphism 

s : A(G) ~ Hom(G,Z ~) 

from the additive group of A(G) into the multiplicative group 

Hom(G,Z~ . The kernel of s is A (G) . Let 
o 

j : Hom(G,Z W) :~ A(G) 

be given by 

j(f) : ~/~ - Ic/Hfl + i 

where Hf = kernel f. Then j maps into A(G) ~. Since 2A(G) ¢ kernel s 

everything passes to the 2-adic completions. Let sign be the compo- 

sition 

(4.3.3) sign : A(G) ̂  ) Hom(G/Z ~) ~ A(G)c A(G) A 
s j 

Then A (G)^------ ) A(G) ^ : x ~----) x + sign(x) -i has an image in Ao(G) ̂  

and does not change the cardinality. 

Let QS(G,F 3) be the monoid of orientation preserving F3G-modules with 

quadratic form under orthogonal sum. Denote f : QS(G,F3) ___u'} ISO(G,F3) 

the map (M,q) b-----> M - dim M. 



79 

We define a modified quadratic J-map 

J' : QS(G,F 3) ----~', Ao(G)A 

by J' (M,q) = (JQ(M,q) + sign JQ(M,q)-I) I where (-)i means that we di- 

vide the value in the bracket by its cardinality (which is a power of 

3, hence invertible in Ao(G)^). 

Theorem 4.3.4. 

The followinq diaqram i__ss commutative 

QS (G, F 3 ) 

f 

ISO (G, F 3 ) 

j, 

or 
~3 

.~ Ao(G) A 

i 
lh 
I 
< 

) RSO (G, F3 )^ 

Proof. 

It is sufficient to consider cyclic groups G = z/2nz. In that case any 

(M,q) is orthogonal sum of forms carried by one of the modules 

V t + V , t>~3, V 2, V 1 (D V I. In the case of V t + V the form must be 

hyperbolic. From 2.3.4 one obtains JQ(V t ~ Vt,q) = l+2-t(at-l)St 

(compare 4.3.2). Since sign S t = Sl-i we compute J' (V t ~ Vt,q) = 

-i Sl_l+2-t a t ( (at-l)S t) and with 4.3.2 we obtain the desired commutati- 

vity. The remaining cases give the following results: 

1 
JQ(V2,q) = i-$2, J' (v2, q) = ~(l-Sl+S 2) 

JQ(V 1 ~9 vl,q ~9 q) = JQ(V 1 (9 vl,q- ~) q-) = i-2S 1 

J' (v I (5 Vl, q (9 q) = l(2Sl-l) 

JQ(V 1 ~) Vl,q (9 q-) = l+S I, J' (V 1 ~9 vl, q 6) q-) = l(2Sl-l). 
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Again with 4.3.2 we obtain the desired co~mutativity. 

4.4. Permutation representations over Q. 

The previous investigations can be used to give a very round-about 

prove of 

Theorem 4.4.1. 

Let G be a p-group. Then 

i__ss surjective. 

hQ : A(G) -} R(G,Q) 

We make various remarks how this is related to the forgoing results. 

We have decomposition homomorphisms dq : R(G,~) --- > R(G,Fq) and 

d 3 : R(G,Q) -----~ RO(G;F3) . If G is a p-group, p # q and q is p-generic 

then dq is an isomorphism. If G is a 2-group then d 3 is an isomorphism. 

In order to show that hQ is surjective one can therefore try to show 

the same for h F or hF3. 
q 

It is now easy to show that the cokernel of hQ is annihilated by the 

order of the group G. This can be seen as follows. The characters in 

R(G,Q) are constant on conjugacy classes and the set of generators of 

a cyclic group. If H < G is cyclic then h(G/H) (g) is non-zero if and 

only if g is conjugate to an element in H and h(G/H) (g) : ~ G/Hg i is 

divisible by INH/HI . Hence any class function which is constant on 

generator sets of cyclic groups is a Z-linear combination of 

INH/HI -I h (G/H) l H ~: G cyclic. As a consequence hQ is surjective for 

a p-group if the p-adic completion is surjective. For p # 2 this 

follows immediately from 4.2.4. For p : 2 one deduces from 4.3.4 that 
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Ao(G) 9 RSO(G) is surjective. But if V is any Q[G] -module let D(V) 

be its determinant module. Then D(V) ~ 1 is a permutation representa- 

tion and V ~ D(V) ~ 1 is orientation preserving. Hence 

V : V ~ D(V) G 1 - D(V) ~ 1 is in the image of dQ. 

4.5. Comments. 

The material in this section is taken from Segal [~%~] . The presen- 

tation in 4.3 is unsatisfactory; I hope some reader can elaborate on 

it. There are important connections between the Burnside ring and in- 

tegral permutation representations, see Oliver ~I] , [422] and the 

references there to earlier work of Dress and Endo-Miyata. For 4.4.1 

see also Ritter [1%Z] • 


