## 4. Permutation representations.

If $G$ is a finite group and $S$ a finite $G-s e t$ we can consider the associated permutation representation $V(S, F)$ of $S$ over the commutative ring $F$. The assignment $S \longmapsto V(S, F)$ induces a ring homomorphism

$$
h=h_{F}: A(G) \longrightarrow R(G ; F)
$$

of the Burnside ring into the representation ring. We shall describe some aspects of this homomorphism in particular when $F$ is a field or the ring of integers $Z$. We describe the connection to the J-homomorphism of section 2 and to $\lambda$-rings.

## 4.1. p-adic completion.

Let $p$ be a prime number and let $G$ be a p-group. Let

$$
A(G)_{p}^{A}=i n v_{n} \lim A(G) / p^{n} A(G) \cong A(G) Z_{Z_{p}}
$$

be the p-adic completion of $A(G)$.

If $|G|=p^{n}$ and $m=q(1, p)$ we have seen in exercise 1.9 .4 that $m^{n+1} \subset p A(G) \subset m$. Hence

## Proposition 4.1.1.

If $G$ is a $p$-group the $p$-adic and the m-adic topology on $A(G)$ coincide.

Let now $q$ be a prime different from $p$. Let $e: R\left(G, F_{q}\right) \rightarrow Z: x \mapsto \operatorname{dim} x$ be the augmentation and $I\left(G, F_{p}\right)=$ Kernel e the augmentation ideal.

The ring $A(G)_{p}^{\wedge}$ is a local ring with maximal ideal $\mathrm{m}^{\wedge}$, the completion of $m$.

We now consider the case $p \neq 2$. Since $A(G)\left[q^{-1}\right] \subset A(G)_{p}^{\wedge}$ we obtain from 2.1 the J-homomorphism
(4.1.2)

$$
J: R\left(G, F_{q}\right) \longrightarrow A(G)_{p}^{\wedge}
$$

We notice that for an $F_{p} G$-module $V$ eJ $(V$-dim $V)=1$. Hence
(4.1.3)

$$
J I\left(G, F_{q}\right) \subset 1+m^{\wedge} .
$$

The set $1+m^{\wedge} \subset A(G)_{p}$ is compact and a topological group with respect to multiplication. A fundamental system of neighbourhoods of 1 is given by $\left(1+\hat{m}^{i}\right) i \geqslant 1$, or $\left(1+\hat{m}^{i}+p^{j} \hat{m}\right)$. Since

$$
J\left(p^{i} I\left(G, F_{q}\right)\right)=(1+\hat{m})^{p^{i}} \subset 1+\hat{m}^{i+1}
$$

we see that $J: I\left(G, F_{q}\right) \longrightarrow I+m^{\wedge}$ is $p$-adically continuous and therefore induces a continuous map
(4.1.4)

$$
J^{\wedge}: I\left(G, F_{q}\right)_{p}^{\wedge} \longrightarrow \longrightarrow 1+\mathrm{m}^{\wedge}
$$

homomorphic from addition to multiplication.

### 4.2. Permutation representations over $\mathrm{F}_{\mathrm{q}}$.

We still assume that p is odd and consider the permutation representation map and its p-adic completion

$$
h: A(G) \longrightarrow R\left(G, F_{q}\right)
$$

(4.2.1)

$$
h^{\wedge}: A(G)_{p}^{\wedge} \longrightarrow \quad R\left(G, F_{q}\right)_{p}^{\wedge}
$$

Since $h(m) \subset p R\left(G, F_{q}\right)+I\left(G, F_{q}\right)$ and because the $p$-adic and $I\left(G, F_{q}\right)-$ adic topology on $R\left(G, F_{q}\right)$ coincide (see $[6]$ ) we obtain an induced continuous map between multiplicative topological groups


Definition 4.2.3.
We call the prime $q$ p-generic if it generates a dense subgroup of the p-adic units (i. e. if $q$ generates $Z / p^{2} Z^{*}$ ).

Theorem 4.2.4.
Let $q$ be a $p$-generic prime. Then the composition

$$
{ }^{\wedge}{ }^{\wedge} J^{n}: I\left(G, F_{q}\right)^{\wedge} \longrightarrow 1+I\left(G, F_{q}\right)^{\wedge}
$$

is an isomorphism.

In fact the proof will show that this is one of the isomorphisms which we had considered in the previous chapter on $\lambda$-rings, namely the map ${ }^{9} q^{\circ}$

Proof.
In order to prove the equality $h^{\wedge} J^{\wedge}=\rho_{q}$ we need only consider cyclic groups $G=Z / p^{n} Z$ because $J^{\wedge}, h^{n}$ and $\rho_{q}$ are compatible with restriction to subgroups and elements in $R\left(G, F_{q}\right)^{\wedge}$ are detected by their restriction to cyclic subgroups.

We begin with the computation of $\Omega_{q}$ for $G=z / p^{n} Z$. The group algebra $F_{q} G=F_{q}[x] /\left(x^{a}-1\right), a=p^{n}$, decomposes as $\underset{1 \leqslant t \leqslant n}{G} F_{q}[x] / \phi_{t}(x)$, where $\Phi_{t}(x)$ is the $p^{t}$-th cyclotomic polynomial. If $q$ is p-generic then $\phi_{t}(x)$ is irreducible. Hence the $\mathrm{F}_{\mathrm{q}}[\mathrm{x}] / \Phi_{\mathrm{t}}(\mathrm{x})=: \mathrm{V}_{\mathrm{t}}$ are the irreducible
$F_{q}$ G-modules in our case. By 3.12 .2 we have the identity

$$
\rho_{q}\left(v_{t}-\operatorname{dim} v_{t}\right) \theta_{q}\left(\operatorname{dim} v_{t}\right)=\theta_{q}\left(v_{t}\right)
$$

Over a splitting field $F$ of $G$ the module $V_{t}$ splits $V_{t}=\Theta_{j} V_{t}(j)$, where $V_{t}(j)$ is onedimensional and a generator of $G$ acts as multiplication with $u^{j}$, where $u$ is a primitive $p^{t}$-th root of unity and $j \in Z / p^{t} Z^{*}$. Since the $\theta_{q}$-operations are compatible with field extension we obtain from 3.7.2

$$
\theta_{q}\left(v_{t}\right)=\pi \theta_{q}\left(v_{t}(j)\right)=\pi\left(1+v_{t}(j)+\ldots+v_{t}(j)^{q-1}\right)
$$

It is enough, by naturality, to study this for $t=n$. We claim that in $R(G, F) \cong Z\lceil Y\rceil /\left(Y^{a}-1\right) \Theta_{q}\left(V_{n}\right)=h(1+b G)$ where $b$ satisfies $1+b p^{n}=q^{a}$. This means we have to check

$$
\pi_{j}\left(1+y^{j}+\ldots+y^{j(q-1)}\right)=1+b\left(1+y+\ldots+y^{a-1}\right)
$$

But this is true if we replace $y$ by a-th roots of unity $v$ and evaluation at such $v$ determines elements of $Z[y] M y^{a}-1$ ). (This is essentially a computation with modular characters.) Now an easy checking of fixed point dimensions shows that $J\left(V_{n}\right)=1+$ bG. This shows hJ $\left(V_{t}\right)=\theta_{q}\left(V_{t}\right)$ and therefore $h^{\wedge} J^{\wedge}\left(V_{t}-\operatorname{dim} V_{t}\right)=\rho_{q}\left(V_{t}-\operatorname{dim} V_{t}\right)$. The equality $h^{\wedge} J^{\wedge}=\rho_{q}$ is now proved.

We now check that we are in a situation where 3.14 .1 and 3.14 .5 can be applied. To prove $\psi^{k} V=V$ for $(k, p)=1$ and $F_{q} G$-modules $V$ we again need only consider cyclic $G$ and then this follows from the determination of the irreducible $F_{q} G$-modules above.

Remark 4.2.5.
If $q$ is $p$-generic then the decomposition homomorphism
$\mathrm{d}: \mathrm{R}(\mathrm{G}, \mathrm{Q}) \longrightarrow \longrightarrow \mathrm{R}\left(\mathrm{G}, \mathrm{F}_{\mathrm{q}}\right)$
(Serre $[147], 15.2)$ is an isomorphism.

### 4.3. Representations of 2 -groups over $\mathrm{F}_{3}$.

We now consider the analogue of 4.2 for 2 -groups and restrict attention to representations over $\mathrm{F}_{3}$. We first recall what the theory of oriented $\gamma$-rings tells us in this case.

In this section $G$ shall be a 2 -group. We have the following objects

$$
R\left(G, F_{3}\right) \supset \operatorname{RO}\left(G, F_{3}\right) \supset \operatorname{RSO}\left(G, F_{3}\right) \supset \operatorname{ISO}\left(G, F_{3}\right)
$$

Here $R\left(G, F_{3}\right)$ is the representation ring of $F_{3} G$-modules, $R O$ the subring of those modules possessing a G-invariant quadratic form, RSO the subring of $F_{3} G$-modules on which each $g \in G$ acts with determinant one, and ISO is the augmentation ideal of zero-dimensional objects.

The ring RSO $\left(G, F_{3}\right)$ is an oriented $\lambda$-ring (3.10.2) and $\operatorname{ISO}\left(G, F_{3}\right)$ is an oriented or -ring. Let a roof denote 2 -adic completion. We have from 3.14.10

Proposition 4.3.1.
The map

$$
\xi_{3}^{\text {or }}: \operatorname{ISO}\left(G, F_{3}\right)^{\wedge} \cdots 1+\operatorname{ISO}\left(G, F_{3}\right)^{\wedge}
$$

is an isomorphism.

In order to relate this isomorphism to the $J$-homomorphism and to permutation representations we compute the map for cyclic groups $G=Z / 2^{n} Z$. We start with the representation ring.

We have a decomposition of the group ring

$$
F_{3} G \cong \underset{1 \leqslant t \leqslant n}{\oplus} F_{3}[x] / \Phi_{t}(x)
$$

where $\phi_{t}(x)$ is the $2^{t}$-th cyclotomic polynomial. The $\phi_{t}$ are no longer irreducible for $t \geqslant 3$. If $K_{t}=F_{3}\left[u_{t}\right]$, where $u_{t}$ is a primitive $2^{t}-t h$ root of unity then $\left[K_{t}: F_{3}\right]=2^{t-2}, t \geqslant 3$. Moreover $\Phi_{2}(x)=x^{2}+1$ is irreducible and $K_{2}=F_{3}\left[u_{t}\right]=F_{9}$.

First assume $t \geqslant 3$. Let $V_{t}$ be the $F_{3}$ G-module $k_{t}$ where a fixed generator $g \in G$ acts as multiplication with $u_{t}$. Then the dual module $V_{t}^{*}=\operatorname{Hom}\left(V_{t}, F_{3}\right)$ is $K_{t}$ and $g$ acting as $u_{t}^{-1}$. Moreover $F_{3}[x] / \Phi_{t}(x) \cong V_{t} \mathbb{E}^{\prime} V_{t}^{*}$ and $V_{t}$ is not isomorphic to $V_{t}^{*}$. The module $V_{t}$ cannot carry a G-invariant quadratic form, because this would imply $V_{t} \cong V_{t}^{*}$. But

is a G-invariant, non-degenerate quadratic form (where $\operatorname{Tr}: K_{t} \longrightarrow \mathrm{~F}_{3}$ is the trace map).

If $t=2$ let $V_{t}=F_{3}\left[u_{2}\right]=F_{9}$ with $g$ acting as multiplication with $u_{2}$. Then the norm map $N: F_{9} \rightarrow F_{3}$ is a G-invariant quadratic form. The associated bilinear form is

$$
\mathrm{b}: \mathrm{F}_{9} \mathrm{x} \mathrm{~F} 9 \longrightarrow \mathrm{~F}_{3}:(\mathrm{x}, \mathrm{y}) \longmapsto \longrightarrow \longrightarrow \varphi(\mathrm{x}) \mathrm{y}+\mathrm{x} \varphi(\mathrm{y})
$$

where $\varphi$ is the Frobenius automorphism. The determinant of $b$ is one.

Any G-invariant symmetric bilinear form must have determinant one in this case.

Finally there are two one dimensional representations, $V_{o}$ the trivial representation, and $V_{1}=F_{3}$ with $g$ acting as multiplication with -1 . They both carry quadratic forms $q: x \longmapsto x^{2}$ or $q^{-}: x \longmapsto \longrightarrow-x^{2}$.

We now enter the computation of $\rho \frac{\text { or }}{3}$ for the elements $V_{1}-\operatorname{dim} V_{1}$, $V_{2}-\operatorname{dim} V_{2}, V_{t}+V_{t}^{*}-\operatorname{dim}\left(V_{t}+V_{t}^{*}\right)$. It is sufficient to compute $\theta_{3}^{\text {or }}$ of the corresponding modules. Since character computations are easier, we compute for QG-module and then use the decomposition homomorphism. Let

$$
W_{t}=D[x] / \phi_{t}(x), \quad t \geqslant 1
$$

with $g$ acting as multiplication with $x$. Let $S_{t}$ be the homogeneous $G-$ set with $2^{t}$ elements and $V\left(S_{t}\right)$ its permutation representation. Let $a_{t}$ be the cardinality of $K_{t}$. Then we have

Proposition 4.3.1.
For $t \geqslant 3:$

$$
\theta_{3}^{\text {or }}\left(W_{t}\right)=v\left(S_{1}\right)-v\left(S_{0}\right)+2^{-t}\left(a_{t}-1\right) v\left(S_{t}\right)
$$

Moreover

$$
\begin{aligned}
& \ominus_{3}^{o r}\left(W_{2}\right)=v\left(S_{0}\right)-v\left(S_{1}\right)+v\left(S_{2}\right) \\
& \theta_{3}^{o r}\left(W_{1} \oplus W_{1}\right)=v\left(S_{0}\right)-2 v\left(S_{1}\right) .
\end{aligned}
$$

## Proof.

Suppose $t \geqslant 3$. We compute the character of $\theta_{3}^{\circ r}\left(W_{t}\right)$. Over a splitting field $W_{t}$ decomposes as $W_{t}=\oplus_{j}\left(W_{t}(j)+W_{t}(-j)\right)$ where $W_{t}(j)$ is onedimensional with $g$ acting as multiplication with $\left(u_{t}\right)^{j}$ and $1 \leqslant j=2 k+1<2^{t-1}$. From 3.10.12 we obtain

$$
\theta_{3}^{o r}\left(w_{t}\right)=\pi_{j}\left(1+w_{t}(j) \oplus w_{t}(-j)\right)
$$

with character value at $g$ equal to

$$
\pi_{j}\left(1+u^{j}+u^{-j}\right), \quad u=u_{t}
$$

This product is -1 , as can be seen by using the identity

$$
\pi_{j}\left(x+x^{-1}-\left(u^{j}+u^{-j}\right)\right)=x^{-2^{t-2}} \phi_{t}(x)
$$

and evaluating at $x$ a cubic root of unity. The character value of $\theta_{3}^{\text {or }}\left(W_{t}\right)$ at non-generators $x \neq 1$ of $G$ is 1 . The character value at 1 is $a_{t}$. It is an easy matter to check that the permutation representation of $s_{1}-S_{o}+2^{-t}\left(a_{t}-1\right) S_{t}$ has the same character.

Finally $\theta_{3}^{\mathrm{or}}\left(W_{2}\right)=1+W_{2}, \theta_{3}^{\mathrm{or}}\left(W_{1} \oplus W_{1}\right)=1+W_{1} \oplus W_{1}$ and the assertion of the proposition is easily verified.

Connecting $\theta_{3}^{\text {or }}$ with the quadratic $J$-homomorphism and permutation representations presents the difficulty that permutation representations do not generally preserve the orientation. We deal therefore with this problem first.

Let $A_{0}(G)=A(G)$ be the subring generated by finite G-sets $S$ on which each geg acts through even permutations.

If $S$ is any finite $G$-set we can assign to it a homomorphism

$$
s(S): G \longrightarrow Z^{*}: G 1 \longrightarrow \longrightarrow \operatorname{signum}\left(l_{g}\right)
$$

where $l_{g}: S \longrightarrow S$ is left translation by $g$. The assignment $S \longmapsto s(S)$ induces a homomorphism

$$
s: A(G) \longrightarrow \longrightarrow \operatorname{Hom}\left(G, Z^{*}\right)
$$

from the additive group of $A(G)$ into the multiplicative group $\operatorname{Hom}\left(G, Z^{*}\right)$. The kernel of $s$ is $A_{O}(G)$. Let

$$
j: \operatorname{Hom}\left(G, Z^{*}\right) \rightarrow A(G)
$$

be given by

$$
j(f)=G / H_{f}-\left|G / H_{f}\right|+1
$$

where $H_{f}=$ kernel $f$. Then $j$ maps into $A(G)^{*}$. Since $2 A(G) \subset$ kernel $s$ everything passes to the 2 -adic completions. Let sign be the composition


Then $A(G)^{\wedge} \longrightarrow A(G)^{\wedge}: x \longmapsto x+\operatorname{sign}(x)-1$ has an image in $A_{0}(G)^{\wedge}$ and does not change the cardinality.

Let $Q S\left(G, F_{3}\right)$ be the monoid of orientation preserving $F_{3} G$-modules with quadratic form under orthogonal sum. Denote $\mathrm{f}: \mathrm{QS}\left(\mathrm{G}, \mathrm{F}_{3}\right) \longrightarrow \operatorname{ISO}\left(\mathrm{G}, \mathrm{F}_{3}\right)$ the $\operatorname{map}(M, q) \longmapsto M-\operatorname{dim} M$.

We define a modified quadratic J-map

$$
J^{\prime}: \operatorname{QS}\left(G, F_{3}\right) \longrightarrow A_{0}(G)^{\wedge}
$$

by $J^{\prime}(M, q)=(J Q(M, q)+\operatorname{sign} J Q(M, q)-1)_{1}$ where $(-)_{1}$ means that we divide the value in the bracket by its cardinality (which is a power of 3 , hence invertible in $\left.A_{0}(G)^{\wedge}\right)$.

## Theorem 4.3.4.

The following diagram is commutative


Proof.
It is sufficient to consider cyclic groups $G=Z / 2^{n} Z$. In that case any $(M, q)$ is orthogonal sum of forms carried by one of the modules $v_{t}+V_{t}^{*}, t \geqslant 3, V_{2}, V_{1} \oplus V_{1}$. In the case of $V_{t}+V_{t}^{*}$ the form must be hyperbolic. From 2.3.4 one obtains $J Q\left(V_{t} \oplus V_{t}^{*}, q\right)=1+2^{-t}\left(a_{t}-1\right) S_{t}$ (compare 4.3.2). Since sign $S_{t}=S_{1}-1$ we compute $J^{\prime}\left(V_{t} \oplus V_{t}, q\right)=$ $a_{t}^{-1}\left(S_{1}-1+2^{-t}\left(a_{t}-1\right) S_{t}\right)$ and with 4.3 .2 we obtain the desired commutativity. The remaining cases give the following results:

$$
\begin{aligned}
& J Q\left(v_{2}, q\right)=1-S_{2}, J^{\prime}\left(v_{2}, q\right)=\frac{1}{3}\left(1-S_{1}+S_{2}\right) \\
& J Q\left(V_{1} \oplus V_{1}, q \oplus q\right)=J Q\left(V_{1} \oplus V_{1}, q^{-} \oplus q^{-}\right)=1-2 S_{1} \\
& J^{\prime}\left(V_{1} \oplus V_{1}, q \oplus q\right)=\frac{1}{3}\left(2 S_{1}-1\right) \\
& J Q\left(V_{1} \oplus V_{1}, q \oplus q^{-}\right)=1+S_{1}, J^{\prime}\left(v_{1} \oplus v_{1}, q \oplus q^{-}\right)=\frac{1}{3}\left(2 S_{1}-1\right)
\end{aligned}
$$

Again with 4.3.2 we obtain the desired commutativity.

### 4.4. Permutation representations over $Q$.

The previous investigations can be used to give a very round-about prove of

Theorem 4.4.1.
Let $G$ be a p-group. Then

$$
h_{Q}: A(G) \longrightarrow R(G, Q)
$$

is suriective.

We make various remarks how this is related to the forgoing results. We have decomposition homomorphisms $d_{q}: R(G, Q) \longrightarrow R\left(G, F_{q}\right)$ and $d_{3}: R(G, Q) \longrightarrow \operatorname{RO}\left(G ; F_{3}\right)$. If $G$ is a $p$-group, $p \neq q$ and $q$ is p-generic then $d_{q}$ is an isomorphism. If $G$ is a 2 -group then $d_{3}$ is an isomorphism. In order to show that $h_{Q}$ is surjective one can therefore try to show the same for $h_{F_{q}}$ or $h_{F_{3}}$.

It is now easy to show that the cokernel of $h_{Q}$ is annihilated by the order of the group G. This can be seen as follows. The characters in $R(G, Q)$ are constant on conjugacy classes and the set of generators of a cyclic group. If $H<G$ is cyclic then $h(G / H)(g)$ is non-zero if and only if $g$ is conjugate to an element in $H$ and $h(G / H)(g)=1 G / H^{g}$ is divisible by $|N H / H|$. Hence any class function which is constant on generator sets of cyclic groups is a Z-linear combination of $|\mathrm{NH} / \mathrm{H}|^{-1} h(\mathrm{G} / \mathrm{H}), \mathrm{H}$ a G cyclic. As a consequence $\mathrm{h}_{\mathrm{Q}}$ is surjective for a p-group if the p-adic completion is surjective. For $p \neq 2$ this follows immediately from 4.2.4. For $p=2$ one deduces from 4.3.4 that
$A_{O}(G) \longrightarrow \operatorname{RSO}(G)$ is surjective. But if $V$ is any $Q[G]$-module let $D(V)$ be its determinant module. Then $D(V) \oplus 1$ is a permutation representation and $V \oiint D(V) \oplus 1$ is orientation preserving. Hence $\mathrm{V}=\mathrm{V} \oplus \mathrm{D}(\mathrm{V}) \oplus 1-\mathrm{D}(\mathrm{V}) \oplus 1$ is in the image of $\mathrm{a}_{\mathrm{Q}}$.

### 4.5. Comments.

The material in this section is taken from Segal [146]. The presentation in 4.3 is unsatisfactory; I hope some reader can elaborate on it. There are important connections between the Burnside ring and integral permutation representations, see oliver $[121],[122]$ and the references there to earlier work of Dress and Endo-Miyata. Eor 4.4.1 see also Ritter $[133]$.

