
3. ~ -Rin~s. 

We present the theory of special ~ -rings. The algebraic material is 

mainly taken from the paper [J~] by Atiyah and Tall. The reader should 

consult this paper for additional information. The main theorem to be 

proven here is an exponential isomorphism for p-adic ~ -rings which 

is an algebraic version of the powerful theorem J' (X) = J"(~) in the 

work of Adams [~] on fibre homotopy equivalence of vector bundles. 

3.1. Definitions. 

Let R be a commutative ring with identity. A A -rin~ structure on R 

consists of a sequence An : R---) R, n ~ ~, of maps such that for all 

x,y E R 

(3.1.1) 

l°(x) = I 

At(x) = x 

n(x+y ) = ~ n 
r=o 

Ar(x) ~ n-r (y) . 

If t is an indeterminate we define 

!3.1.2) ~t (x) = ~ n~ o ~n(x)tn" 

Then 3.1.1 shows that 

(3.1.3) ~t : R ---) I + R [[t]] + 

is a homomorphism from the additive group of R into the multiplicative 

group I + R[[t]] + of formal power series over R with constant term I. 

Exterior powers of modules have formal properties like 3.1.1 and we 
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shall see later how exterior powers give 

Grothendieck groups. 

A -ring structures on certain 

A ring R together with a ~ -ring structure on it is called a 

ring. A ~ -homomorphism is a ring homomorphism commuting with the 

-operations. We have the notions of I -ideal and A -subring. 

Some further axioms are needed to insure that the ~ -operations 

behave well with respect to ring multiplication and composition. 

Let x 1,...,xp, yl,...,y q be indeterminates and let ui,v i be the 

i-th elementary symmetric functions in Xl,...,x p and yl,...,y q re- 

spectively. Define polynomials with integer coefficients: 

(3.1 .4) 

(3.1.5) 

P (u I ; v I is the coefficient of t n in n '''''Un '''''Vn) 

~i,j (1+xiYjt) " 

Pn,m(Ul,...,Umn) is the coefficient of t n in 

T[ (1+x • ...-x t). 
i I < ... < i 11 Im 

m 

Then Pn is a polynomial of weight n in the u i and also in the v i, and 

Pn,m is of weight nm in the u i. If we assume p ~ n, q ~ n in 3.1.4 and 

p ~ mn in 3.1.5 then non of the variables ui,v i involved are zero and 

the resulting polynomials are independent of p,q. 

A ~ -ring R is said to be special if in addition to 3.1.1 the 

following identities hold for x,y ~ R 

(3.1.6) 

~t(1) = I + t 

~n(xy) = Pn ( ~Ix ..... Anx; A1y .... , Any) 

~m( ~n(x)) = Pm,n ( ~ I mnx) Xl..ol ~ 
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One can motivate 3.1.6 as follows. An element x in a A -ring is 

called n-dimensional if ~t(x) is a polynomial of degree n. The ring 

is called finite-dimensional if every element is a difference of finite 

dimensional elements. If x = x I + ... + Xp and y = Yl + "'" + Yq in a 

-ring and the xi,Y i are one-dimensional then 

~t(x) = ~ (l+xit) = I + ult + ... + Upt p 

(u i the i-th elementary function of the xj as above) and we see that 

the second identity of 3.1.6 is true for such x,y. If moreover the 

product of one-dimensional elements is again one-dimensional then the 

third identity of 3.1.6 is true for x = ~ x.. The axioms for a special 
1 

-ring insure that many theorems about ~ -rings can be proved by 

considering just one-dimensional elements. We formalize this remark. 

One defines a A -ring structure on 1+A[[t]] + by: 

(3.1.7) 

"addition" is multiplication of power series. 

"multiplication" is given by 

t n) = I + P (a I ..,an;b I .,bn)tn. (I+ ~ antn ) o (I+ ~ b n n '" ''" 

The " A -structure" is given by 

Am(l+ Zantn) = I + X Pn,m(al .... 'amn)tn" 

Proposition 3.1.8. 

1 + A[[t]] + is a -ring with the structure 3.1.7. 

Proof. 

Compare Atiyah-Tal! [~] , p. 258. 

Using this structure one sees that A is a special ~ -ring if and 

only if ~ t is a ~ -homomorphism. Moreover one has the Theorem of 
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Grothendieck that I + A[[t]] + is a special ~ -ring (Atiyah-Tall loc. 

cit.) 

One can use 3.1.8 to show that certain ~ -rings are special. 

Proposition 3.1.9. 

Let R be a ~ -ring. Suppose that products of one-dimensional elements 

in R are again one-dimensional; i__nn particular I shall be one-dimensional. 

Let R I C R be the subring generated by one-dimensional elements. Then 

R I is a ~ -subrin~ which is special. 

Proof. 

Every element of R I has the form x-y where x,y are sums of one- 

dimensional elements, say x = x1+ ... +Xp, y = yl + ... +yq. Then ~i(x) 

is the i-th elementary symmetric function in the x. hence a sum of one- 
3 

dimensional elements. Moreover Ai(-y) is an integral polynomial in 

the lJ(Y). Hence An(x-y) = ~i hi(x) An-i(-y) ~ R I. The remarks 

before 3.1.7 show that At I R I is a ring-homomorphism and A t A l(x) = 

= ~i ~ t(x) if x is a sum of one-dimensional elements and these two 

facts imply ~t A i(-x) = Ai A t(-x) and then At ~i(x-y) = li At(x-y). 

Remark 3.1.10. 

One can show (Atiyah-Tall [4~] ) - and later we shall use this fact - 

that a ~ -ring R is special if and only if for any set al,...,a n of 

finite-dimensional elements in R there exists a ~ -monomorphism 

f : R )R' such that the fa are sums of one-dimensional elements. 
1 

This is called the splitting Rrinciple for special A -rings. 

That a ~ -ring structure, even if not special, may be very useful 

can be seen from the following Proposition due to G. Segal. 
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Proposition 3.1.11. 

Let R be a ~ -ring. Then all Z-torsion elements in R are nilpotent. 

Proof. 

Let a be a p-torsion element, say pna = O. Then 

n n n n 

I = At(o) = ~t(a)P = (1+at+...) p --- 1+a p t p +... mod p A 

n 

and hence a p = p b for some b e A. Therefore 

a (pn+1)n = (p a b) n = (pna)(an-lb) = O 

3.2. Examples. 

a) The integers may be given a ~ -ring structure by defining 

t n where m I = I The canonical structure on Z is ~t(1) = 1 + Z m n 

given by 

(3.2.1) 

A (I) = I + t 
t 

m 
At(m) = (1+t) 

k(m) = (7) m ~ 0 

Ak(_m) = (_1)k ('m+k-lk ) 

This canonical structure is special by 3.1.9. It can be given the 

following combinatorial interpretation: Let S be a set with m elements. 

Let Aks be the set of all subsets of cardianlity k. Then I Aks ~ = (~). 

The theory of special A -rings may be thought of as an extremely 

elegant way of handling combinatorial identities for sets, symmetric 

functions, binomial coefficients, etc. 

b) Let E,F be complex G-vector bundles over the (compact) G-space X 

where G is a compact Lie group. Then exterior powers A i of G-vector 
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bundles satisfy 

A°E = I, AIE = E, An(E ~ F) = ~ni=o /%i(E) ~ A j (F) 

Let KG(X) be the Grothendieck ring of such G-vector bundles over X 

(Segal [~%2] ). Then E z ) I + ( AIE)t + ( A2E)t2+... is a homomorphism 

from the additive semi-group of isomorphism classes of G-vector bundles 

over X into I + KG(X) [[t]] + and extends therefore uniquely to the 

Grothendieck group giving a map 

I t : KG(X) ) I+KG(X) [[t]] + : x ~--9 I+ A1(x)t+... 

such that A i [E] = [ ~i(E)] for E a G-vector bundle. These A i 

therefore a A -ring structure on KG(X). 

yield 

Proposition 3.2.2. 

KG(X) with this i -structure is a special ~ -rin@. 

Proof. 

The proof depends on the so called splitting principle which - especially 

for general G - is highly non-trivial. This splitting principle says: 

Given vector bundles EI,...,E k over X. There exists a compact G-space 

Y and a G-map f : Y ) X such that the induced map f W : KG(X) --) KG(Y) 

is injective and f~E. splits into a sum of line bundles. See Atiyah 
l 

[~] , 2.7.11 or Karoubi [I0~], p. 193 for the case G = {I} 

Using the splitting principle 3.2.2 follows essentially from 3.1.9. 

For a discussion of A -operations in K-theory see also Atiyah [@] , 

ch. III, [5] ; Karoubi [~0~] IV. 7. 

c) Other versions of topological K-theory like real K-Theory or 
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Real-K-Theory (Atiyah [~] ), yield special ~-rings too. 

d) A special case of b) is the representation ring R(G) of complex 

representations. Since representations are detected by restriction to 

cyclic subgroups and R(C) for a cyclic group C is generated by one- 

dimensional elements one can directly apply 3.1.9 to show that R(G) is 

special. 

e) The Burnside ring acquires a A -ring structure if we define 

hi(s) for a finite G-set S to be the i-th symmetric power of S. We 

h i use the identity ~n(s+T) = ~ i (S) An-i(T) to extend this to 

A(G) as under b). This A -ring structure is in general not special. 

See Siebeneicher [4W~] and the exercises to this section. 

f) See Atiyah-Tall [4~] , I. 2 for the construction of a free A- 

ring on one generator. 

3.3. ~ -operations. 

We assume that R is a special ~ -ring. Then R contains a subring iso- 

morphic to Z for if I ~ R had finite additive order m, then 

I = ~ t(o) = ~t(m'1) = (1+t) m would give a contradiction (compare 

coefficients of tm). A special ~ -ring R is called augmented i{ there 

is given a ~-homomorphism e : R ) Z. We call I = Ker e the 

augmentation ideal; it is a ~ -ideal. Any element x E R may be written 

uniquely x = e(x) + (x-e(x)) with e(x) E Z and x-e(x) E I. 

Define the ~ -operations on a special A -ring R: 

(3.3.1) ;%t/(1_t) (x) =: ~t(x) = I + ~ n& I ~i(x)ti" 

Then 

(3.3.2) ~t(x+y) = ~t(x) ~t(y) . 
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Moreover one has 

(3.3.3) 
n (x) = ~ n(x+n-1) . 

Proof. 

Using 3.2.1 we get 

~t/(1-t) (x) = I + ~ i& I 
,i+k-1 tk+i) 

A i(x) ( ~ k~ o ~ k ) 

= I + [ j) I ( ~ i=I j ~i(x) (j_i)j-1 )t j 

= I + ~ j>, I A J(x+j-1)t j 

We conclude from 3.3.3 that A J(x) = o for j > n implies ~ J(x-n)=o 

for j > n, i. e. if x is n-dimensional then x-n is of ~ -dimension at 

most n. 

Suppose R is an augmented ~ -ring with augmentation e : R ) Z and 

augmentation ideal I = ker e. We define the ~-filtration by: R n C R 

n I n 
is the additive group generated by monomials ~ (al) "''" . ~ r(ar) 

where a i E I and ~ n i ~ n. 

Proposition 3.3.4. 

(i) 

(ii) 

(iii) 

R O = R, RI = I. 

R m R n C Rm+ n . 

R is a ~ -ideal for n ~ I. 
n -- -- 

Proof. 

(i) and (ii) follow directly from the definitions. (iii) : R = Z ~,R I 

shows that R n is an ideal. To show R n is a A -ideal, it is sufficient 
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to show ~r( ~ m(x ) e R m for x & I. First we compute for i ~ m 

~i(x+m-1) = ~l(x+m-i) = 
i s i-s 
s=o ~ (x) ~ (m-i) 

= [ i i-s 
s=m ~S(x) ~, (m-i) ~ R m 

because ~i-S(m-i) = ~ i-S(m-s-1) = o for i ~ m ~ s+1. We use this in 

~r(~m(x)) = Ar(~m(x+m-1)) 

= Pr,m ( (x+m-1) ..... ~ rm(x+m-1)) 

and observe that Pr,m(Sl,...,Srm) is a sum of monomials each containing 

a term s i for i ~ m because Pr,m(Sl,...,Sm_1,o,...,o) = o. 

Sometimes we want to work only with the augmentation ideal. We 

define: A ring I without identity is called a special ~ -ring if there 

is an augmented special ~ -ring R with I as augmentation ideal. I then 

i 
carries the induced ~ -operations. We define the ~ -filtration as 

n I n 
before, I n being the ideal generated by monomials ~ (al)'... • ~ r(ar) 

where a i ~ I, ~ n i ~ n. We have 

(3.3.5) 11 = I, ImIn C Im+n, ~i(I n) c In. 

3.4. The Adams operations. 

Adams introduced in [4 ] certain operations derived from the 

which are much easier to handle algebraically. 

A i 

Let R be a special A -ring. Define maps 

n 
%u : R )R, n>p I 
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by 

(3.4.1) %42_t(x) = -t ~t ( ~t (x))/ ~ t (x) 

~t (x) = ~ n~ I ~n(x)tn" 

A more elementary way of defining the 

polynomial 

n 
is: Define the Newton 

Nn(S I ..,Sn) = ~ n n '" j=1 xj 

where s. is the i-th elementary symmetric function of the x.. Then put 
l 3 

(3.4.2) ~n(x) = Nn(~1(x) ..... ~n(x)). 

We leave it as an exercise to show that the two definitions are 

equivalent. 

We want to show that the ~n are A -ring homomorphisms. This 

means we have to verify certain identities between the ~ n_ and A j- 

operations. We use the verification principle which says that it is 

enough to verify the identities on elements which are sums of one- 

dimensional elements. A formal proof of this principle is given in 

Atiyah-Tall [~] , I. 3.4, I. 4.5. Since in the applications the 

-rings are finite-dimensional and since we have to prove the 

splitting principle in order to show that something is a special ~ - 

ring we do not prove the verification principle. 

Proposition 3.4.3. 

(i) If x is one-dimensional then 

n 
(ii) ~ is a I -homomorphism. 

(iii) ~m ~n = ~n ~m = ~mn. 

n n 
~2 x -- x . 
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r r 
(iv) ~ p (x) ~ x p mod p (p prime). 

Proof. 

(i) follows directly from 3.4.2. 

(ii) Suppose x i, yj are one-dimensional. Then xiY j is one-dimensional 

n 
because R is special. From 3.4.1 one obtains that ~ is an 

additive homomorphism. Moreover 

n 
~2n( ~ x i Z Yj) = ~un( }- xiY j) = ~ ~ (xiY j) = [ (xiYj) n 

n) : ( ~ x n) ( [ Yj : ~2n( Z x i) ~ n( Z Yj). 

~n( A m( ~-xi ) : ~n(sm(X I ..... Xr)) = Sm(X 1 ..... x n) 

= zm( [ x n) = Am( ~ n( ~- xi)) " 

Now use the verification principle. 

(iii) and (iv) are likewise immediate from the verification principle. 

As a consequence we have ~n on a special ~ -ring. Moreover the 

n preserve the ~ -filtration. 

Proposition 3.4.4. 

Let I be a special ~ -rin 9. Assume x E I n • Then the followin~ holds: 

(i) ~2k(x) - knx & In+ I 

(ii) ~k(x) + (-1)kk A k 

(iii) ~k 

(x) 6 In+ I 

(x) + (-1)kkn-lx ~ In+ I. 

Proof. 

k 
(i) We need only show that ~ ( m(a)) - k m ~ m(a) & Im+ I for a ~ I, 
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because ~k is a ~ -homomorphism. If Xl,...,x r have ~ -dimension one, 

i. e. ~ t(xi) = 1+xit, then 1+x i has ~ -dimension one, hence 

k(x i) = (1+xi)k - I and therefore 

~k(~m(x1+...+Xr) ) - k m ~m(x1+...+Xr) 

~k(s m m = (x I ..... x r)) - k Sm(X I ..... x r) 

Sm((1+xl)k - 1,...,(1+xr)k - I) -kmsm(xl,...,Xr ). 

This is a symmetric polynomial of degree ~ m+1, hence (i) is true for 

x = ~ x i and, by the verification principle, therefore in general. 

(ii) From the Newton polynomials we obtain the well-known identity 

~k(x)- ~k-1(x) A I (x)+...+(-I)k-1~) I (x) A k-1 (x)+(-1)kk Ak(x)=o 

which implies the result, because ~i(x) 6 I , li(x) 6 I for i ~ I, 
n n 

and x E I 
n 

(iii) From (i) and (ii) we obtain k Ak(x) + (-1)kkn(x) E In+ I • 

Thus the result follows if there is no k-torsion. (One can produce 

suitable universal situations without torsion, e. g. free A -rings; 

thus one gets the result in general. One should note that the assertions 

are natural with respect to A -homomorphisms.) 

3.5. Adams-operations on representation rings• 

Let G be a finite group and R(G;F) be the Grothendieck ring (= repre- 

sentation ring) of finitely generated F[G]-modules where F is a field• 

We assume for simplicity that F has characteristic zero. Then elements 

in R(G;F) are determined by their character. We identify R(G;F) with 

the corresponding character ring. Exterior powers define a special A - 

ring structure on R(G;F). We want to compute the associated Adams- 

operations. 
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Proposition 3.5.1. 

Let x e R(G;F). Then 

kx(g) = x(g k) , g ~ G. 

I__nn particular 

~k = ~k+ ~GI 

Proof. 

Restrict to the cyclic group C generated by g. Pass to an algebraic 

closure of F so that x I C = y-z where y and z are sums of one-dimensio- 

nal representations. The result then follows from 3.4.3 taking into 

account that for a one-dimensional representation x the relation 

xk(g) = x(g k) holds. 

Now assume that F = Q [ ~ n] where ~n is a primitive n-th root of 

unity. Assume that k is prime to the group order ~GI. The Galois group 

GaI(Q [ ~] : Q) is isomorphic to Z/nZt namely so that k mod n corres- 

ponds to the field automorphism pk characterized by pk(~n) = ~ k. 
n 

Since characters of F[G]-modules take values in Q [ ~ n~ we can apply 

pk to such characters. Let Q [~ n] be a splitting field for G. (By a 

famous theorem of Brauer it suffices to take for n the exponent of G; 

see Serre [ff~7] , P. 109). Then we show 

Proposition 3.5.2. 

(i) ~ kx = pkx for x E R(G;Q [ ~ n]) and (k,IGl) = I. 

(ii) If x is the character of an irreducibel module then 

irreducible too (a~ain k prime t_oo ~GI). 

k 
x is 

Proof. 

(i) Let x be the character of a matrix representation. Restrict to the 
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cyclic subgroup C generated by g @ G. Then the matrix for g is equi- 

valent to a diagonal matrix with roots of unity ul,...,u r 

diagonal. Then ~ k(x) (g) = Z u~ = pk( [ ui ) = pk(x(g)) " 

on the 

(ii) Apply the Galois automorphism pk to a matrix representation over 

Q[{n] 

Remark 3.5.3. 

The Adams operation are, of course, independent of the field of defi- 

nition. Therefore 3.5.2 holds more generally. 

3.7. The Bott cannibalistic class e k- 

Let R be a special ~ -ring and let ~ k be a primitive k-th root of 

unity. Let P(R) C R be the subset of finite-dimensional elements in R. 

Then P(R) ~s an additive semi-group. If x E P(R) we consider the pro- 

duct 

(3.7.1) 8k(X) := ~ ~ (x) 6 R ~ Z [~ ] 
u -u Z k 

where the product is taken over all roots of tk-1 = o except I. We 

identify R with its image in R~ Z [ ~ k] under the canonical map 

r[ ~ r ~ I. Then 8k(U ) is contained in R. ~n order to see this consider 

the following diagram 

R ~ Z Z Is I ..... Sk_1] - - 9  R ~ Z Z It I ..... tk_1] 

I 

; 1 $ 
a ~ a® z z [~k] 

where tl,...,tk_ I are indeterminates and Sl,...,Sk_ I are the elementary 

symmetric functions in the t.. The vertical maps are induced by sub- 
3 

stituting for tl,...,tk_ I the roots of t k - I = o except I. Then 
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~. ~ (x) is symmetric in the t. and since 
3 -t. ] ] 

Z [s I ..... Sk_1] C Z It I ..... tk_1] is an inclusion as a direct summand 

we see that ~j ~_t. (x) ~ R ~ Z Z [s I ..... Sk_1] . But the map at the 
J 

bottom is an injection too because Z >Z [~ k] : n| )n is a direct 

injection~We call it the Bott cannibalistic class 8 k. The following 

is immediate from the definition. 

Proposition 3.7.2. 

(i) If x is one-dimensional then 

k-1 
ek(X).. = I + x +... + x 

(ii) If x,y ~ P(R) then 

8k(x+y) = ek(X) Ok(Y) 

Since ek(1) = k @k is not in general a unit in R so that 8 k cannot 

be extended to the additive subgroup generated by finite-dimensional 

elements. In the next section on p-adic M -rings we find a remedy for 

this defect. 

3.8. p-adic ~ -rin@s. 

Let p be a prime number. Let Z denote the p-adic integers. One can 
P 

define Z as the inverse limit ring inv lim z/pnz. If A is a finitely 
P 

generated abelian group then A ~ z Z is cannonically isomorphic to the 
P 

p-adic completion of A 

Ap := inv lim A/p n A. 

Tensoring with Z is an exact functor on the category of finitely 
P 

generated abelian groups. (See Atiyah-Mac Donald [~I] , Ch. 10 for 
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A 
this and other back ground material on completions.) Groups A carry 

P 

the p-adic topology: a fundamental system of neighbourhoods of zero is 

given by the subgroups pnA^. They are complete and Hausdorff in this 
P 

topology. 

If B is a special ~ -ring, then, by definition, there is a special 

augmented ~ -ring R such that B = ker e where e is the augmentation. 

Then we have the exact sequence (because e : R---) Z splits) 

O- ~ B ~ Z ------) R (D Z ) Z ) O. 
P P P 

We want to define the structure of a special ~ -ring on R ~Z such 
P 

that B ~ Z is a A -ideal. We can extend the A i by continuity if we 
P 

have shown 

Proposition 3.8.1. 

The ~ i are continuous with respect to the p-adic topology. 

Proof. 

Given i and N chose k 
o 

and I $ j $ i. Then 

k 
such that (~ J ) is divisible by pN for k ~ k ° 

Aj(pkx) = pj(A1(pk) ..... ~ j(pk) ; A1(x ) ..... Aj(x)) 

is contained in pN R if k ~ k ° and I ~ j ~ i because Pi is of weight J 

in the first j variables. If x-y pk = z then 

i i-j j pN ~i(y) _ ~i(x) = ~ j=1 l (y) ~ (pkz) ~ R 

for k >/ k . 
o 
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The proof of this Proposition shows that if a ~ Z is the limit of 
P 

a sequence (an), a n E Z then lim A l(anX) = A l(lim anX) = A l(ax) 

and hence 

t(ax) = A t(x) a a ~ Zp 

(3.8.2) ~t(ax) = ~t(x) a x E R 

~k(ax) = a ~k(x). 

After these preliminary remarks we define a p-adic ~ -rin~ A to be a 

-ring which is the completion A = B ~Zp of some ~ -ring B which 

is finitely generated as an abelian group; moreover we require that 

the ~ -topology o__nn B is finer than the p-adic topology. 

We now describe some examples of p-adic ~ -rings. 

Proposition 3.8.3. 

Let X be a finite connected CW-complex. Then the n-th ~ -filtration 

o__nn ~(X) is contained in the n-th skeleton-filtration. In particular 

the ~ -topology is discrete and ~(X) ~ Z is a p-adic ~ -rin@. 

Proof. 

Let X n be the n-skeleton on X. Then the n-th skeleton filtration 

Sn~(X) is defined to be the kernel of the restriction map 

: ~(X)-----~(xn-I). Any element of K(X n-l) is represented by an ele- 

ment x = [E] - (n-~) where E is an (n-])-dimensional bundle~ Hence 

n n ~ n 
i ~ ~ (y) = ~ (i_y) = ~ (E-n+l) = O. The relation SnSm& Sn+ m then 

implies the result. 

Let R(G) be the representation ring of the finite group G over the 

complex numbers. Let R(G) )Z : x~-9 dim x be the augmentation with 

kernel I(G). Then we can consider three topologies on R(G): 
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(i) 

(ii) 

(iii) 

The p-adic topology. 

The I(G)-adic topology. 

The ~ -topology, defined by the ~ -filtration. 

Proposition 3.8.4. 

Let G be a p-group. Then the topologies (i), (ii), and (iii) coincide. 

I__nn particular I(G) ~ Zp is a p-adic ~ -rin@. 

We use the next Proposition for the proof of 3.8.4. 

Proposition 3.8.5. 

Let I be a ~ -tin@ which is @enerated by ~ finite number of elements 

with finite ~ -dimension. Then the I-adic topology coincides with the 

-topology. 

Proof. 

By definition of the ~ -filtration we have I n c I n. Let m be the 

maximal ~ -dimension of a given finite set of generators for I. Then 

m+1 
applied to the monomials in the generators must lie in 1 2. Since 

m+1 m+1 1 2 
(-x) ~ - ~ (x) mod we obtain Im+ I ~ 1 2. By induction one 

shows Ikm+1 ~ I k. 

Proof of 3.8.4. 

Put I = I(G). By 3.8.5 the topologies (ii) and (iii) coincide. Let 

m = ~G~. Then 

(x-e(x)) m -- xm-e(x) m mod p R(G) 

because m is a p-power. By 3.5.1 we have ~mx = e(x) and by 3.4.3 (iv) 

we have ~mx ~ x m mod p R(G). Putting these facts together we obtain 
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(x-e(x)) m ~ e(x) - e(x) m ~ O mod p R(G) 

This shows I m = p I, hence the I-adic topology (and therefore the M - 

topology) is finer than the p-adic topology. One can show that mI < 12 

(see Atiyah [&] ), so that the p-adic topology is also finer 

than the I-adic. (This last fact also follows from localization theorems 

to be proved later in this lecture.) 

As a slight generalization of 3.8.4 we mention 

Proposition 3.8.6. 

Let G be a p-group and X a connected finite G-CW-complex. Then 

~G(X) ~ Zp i__ss ~ p-adic ~ -rin~. (~G(X) = kernel of xl >dim x) 

Proof (sketch). 

From the fact that X is a finite G-CW-complex one shows by induction 

over the number of cells that KG(X) is a finitely generated abelian 

group. By 3.8.5 the ~ -topology coincides with the ~G(X)-adic 

topology. Let X ° be the equivariant zero-skeleton of X. The kernel N 

of r : KG(X)----)KG(X°) is nilpotent (compare Segal [~%2] , Proposition 

5.1). Moreover KG(X°) M ~ R(Gx), the product taken over the orbits 

of X °. Put I = ~G(X). By Atiyah-Mac Donald [~] , Theorem 10.11, the 

p-adic topology on rI is induced from the p-adic topology on KG(X°). 

Hence from 3.8.4 we see that for some t, rI tc prI, or equivalently~ 

I t c pI + N. But if N k = O then I tk c (pI+N) k c pI. This shows that the 

I-adic topology is finer than the p-adic topology. 

Now we continue with the general discussion of p-adic M -rings 

A = B ~Zp. If B n is the n-th ~ -ideal of B we let A(n) = B n ~ Zp be 

its closure. From 3.8.1 we obtain that the A(n) are ~ -ideals. By 
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definition of a p-adic ~-ring the topology defined by the system 

A(n), n ~ I, is finer than the p-adic topology; in particular this 

topology is also Hausdorff and one has 

(3.8.7) A ~ inv lim A/A(n). 

of A but A A(n) contains the n-th ~ -ideal A n n 

the p-adic topology. We observe 

need not be closed in 

(3.8.8) A(n)/A(n+1) ~ (Bn/Bn+ I) ~ Zp 

because ~ Z is exact on finitely generated abelian groups. From 3.4.4 
P 

and 3.8.8 we obtain 

Proposition 3.8.9. 

A(n)/A(n+1) is a p-adic ~ -ring. The product of two elements is zero. 

For a e A(n)/A(n+1) we have 

~k(a ) (-i) k-1 k n-1 = a 

~uk(a) = kna. 

k we shall show that ~ acts on A(n)/A(n+1) as multiplication with 

a certain constant c(k,n) independent of the ring A. From 

k ~k 
(x) = (x+k-1) one computes 

k 
(3.8.10) c(k,n) ~ (_i)i-I .n-1 .k-l) 

= i (k-i 
i=I 

In order to analyse these numbers we put 

~t(x) = I + fn(t)x 
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where 

fn(t ) = ~ ~ n-1 1_tt j=1 (-I)J-I 3 ( _ ) 

is a certain formal power series in Z[[t]]. For n = I this isa geometric 

series with sum 

f1(t) = t . 

If we differentiate fn(t) formally with respect to t we obtain the 

recursion formula 

fn+1(t) = t(1-t) f' (t)n 

so that fn(t) is actually a polynomial of degree n 

fn(t ) = [ n tj j=1 c(j,n) . 

m 
In particular ~ -- o on A(n)/A(n+1) for m > n. 

3.9. The operation ~ k" 

We describe a variant of the Bott map 8k for p-adic ~ -rings A. A 

topology shall always be the p-adic topology if not otherwise specified. 

A series ~ r ~ I ar' with a r e A(r), converges in the p-adic topology 

since it converges in the filtration topology (A(n) I n ~ I) which is 

finer. Therefore the set I + A of symbols I + a, a 6 A, with multipli- 

cation (1+a) (1+b) = 1+a+b+ab is a group. It is a compact, topological 

group, with neighbourhood basis of I given by (1+pnA In ~ 0), or 

equivalently (1+pnA+A(n) I n ~ I). 
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Let k be a natural number prime to p. Consider Zp [ ~ k~ where ~ k 

is a primitive k-th root of unity in an algebraic closure of the p- 

adic numbers. The product ~ (l-u) over all roots u of t k - I = O 

except I is equal to k, hence a unit in Z . Therefore 1-u is a unit in 
P 

Zp [~ k] and hence u/(u-1) ~ gp [ ~ k] . The series 

~u/(u_1) (a) = I + ~1(a) u/(u-1) + ~2(a) (u/u-l)2 + ... 

in the p-adic topology on I + A ~ Z Z [~ k] hence defines converges 
P P 

an element ~u/(u_1) (a) in this multiplicative group. We define 

(3.9.1) ~k(a) = ~ ~u/(u_1) (a) E I + A~D Zp[~k~ 

where the product is taken over all roots of t k - I = O except I. The 

Zp-algebra Zp [~ k] is free as Z -module with Z -I as a direct summand; 
P P 

therefore A = A ~Z Zp C A ~ Z Zp [5 k ] as a subring. (As to the 
P P 

freeness of the module: Let L ~ Qp [ t] be an irreducible polynomial 

with L( ~ k ) = O. Then L divides the cyclotomic polynomial 0k. since Zp 

is factorial we can choose for L a monic polynomial in Z It ] , by the 
P 

GauB-Lemma. Then Zp [~ k] ~ Zp [t]/L and the right-hand side is clearly 

a free module.) We claim: ~ k(a) E I + A. This follows from the fact 

i 
that a coefficient of a monomial in the ~ (a) in the expansion of 

k(a) according to definition 3.9.1 is symmetric in the roots of 

t k - I = O (compare 3.7). 

Proposition 3.9.2. 

The ma~ 

9k : A ---~ I + A 

from the additive compact group A into the multiplicative compact group 

I + A is a continuous homomorphism. It commutes with the Adams operations 
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and maps A(n) into I + A(n). 

Proof. 

k is a homomorphism: directly from 3.3.2 and 3.9.1. Since 
n n n n pN ~ N 

~k(p a) = (~k(a)) p and (l+a) p ~ I + + A(N) if ( ) ~ 0 mod p 

is p-adically continuous. Since ~ j for I ~ i ~ N we see that ~ k 

i Since A(n) is a ~ -ideal commutes with the ~ it commutes with ~ k" 

kA(n) C I + A(n). 

Remark 3.9.3. 

If A is a ring without identity we can adjoin an identity in the 

standard manner: On the additive group Z ~ A define a multiplication 

(m,a) (n,b) = (mn,mb+na+ab). Then I + A = {(1,a) la ~A ~ C Z × A. If 

B C A is an ideal and if I + B and I + A are groups then 

(I+A)/(I+B) ~ I + A/B. 

3.10. Oriented ~ -rings. 

A ~ -ring A is said to be oriented if 

(3.10.1) ~ t(a) = ~1_t(a) , a ~ A. 

This terminology has the following reason: Suppose A is the augmentation 

ideal of the special augmented finite-dimensional A -ring R. Then 

Proposition 3.10.2. 

A is oriented if and only if for every finite-dimensional element x, 

of dimension n say, ~r(x) = A n-r(x) for all r. 

Proof. 

If 3.10.1 is satisfied for a I and a 2 then for al-a 2 too. The equation 

r(x) = ~n-r(x) implies ~ (x) = t n t i/t(x) and this yields 
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~t(x-n) = ~ t/(1_t) (x-n) = A t/(1_t) (x) (1-t)n 

= t n 
(l-t)/t (x) 

1_t (x-n) = ~ (1_t)/t(x-n) = 

= t n 
(1-t)/t (x) 

(x) (I+(I-t)/t) -n 
(1-t)/t 

Note that n must be the augmentation of an n-dimensional element x 

because A n(x) = I, so that x-n ~ A. The same calculation gives 

~r(x) = ~ n-r(x) from 3.10.1. 

We call R an oriented A -ring if 

is n-dimensional. 

r 
(x) = A n-r(x) whenever x 

Example 3.10.3. 

Let KOG(X) be the Grothendieck ring of real G-vector bundles over the 

compact G-space X where G is a compact Lie group. An n-dimensional G- 

vector bundle E is called orientable if the n-th exterior power A nE 

is the G-vector bundle X x ~---)X with trivial G-action on ~. If E is 

orientable then ArE ~ An-rE. Hence 

KSOG(X) = ~ E - F E KOG(X) I E,F orientable } 

is an oriented ~ -ring and the associated augmentation ideal is an 

oriented ~ -ring. 

If x is a one-dimensional element in the oriented ~ -ring then 

~1(x) = ~°(x) = I. Therefore one should think of such a ring as 

containing essentially only even-dimensional elements. 
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We now consider a refinement of the operations @k(resp. ~ k ) for an 

oriented ~ -ring R (a p-adic oriented ~ -ring A). 

Let x ~ R be an element of dimension 2m. Let k be an odd integer. 

Let J a set of k-th roots of unity u # I which contains from each pair 

-I -I 
u,u exactly one element. (Since k ~ I(2) we have u # u .) The product 

k m 2m ~u~ j(1-u)- is an algebraic integer because ~u~1(1-u) = k. 

Therefore 

(3.10.4) km ~uE J ~-u (x) (1-u)2m ~ R [ ~ k] 

where ~ k is a primitive k-th root of unity. The fact that R is 

oriented implies 

(3.10.5) A _u(X) (l-u) -2m = A _i/u(X) (I-I/u) -2m 

Therefore 3.10.4 is independent of the choice of J. We call this 

element 

or (x) 
e k 

Proposition 3.10.6. 

(i) If x and y are even-dimensional then 

__ 8°r(x) is @k(X) (ii) The square of k -- " 

or 
(iii) 8 k (x) E R. 

Or(x ) or 
e r(x+y) = @k ek (Y)" 

Proof. 

(i) follows directly from the analogous property of A t" (ii) follows 

from the definitions, using 3.10.5. (iii) Using 3.10.5 again one can 

see that 8~r(x) is formally invariant under the Galois group of Q( ~ k ) 

over Q. 
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If A is an oriented p-adic ~ -ring one defines the square root of 

k by 

or 
(3.10.7) ~ k (x) = 7~ ~ (x) 

u E J u/u-1 

Using ~t = ~ 1-t one shows that the following holds 

Proposition 3.10.8• 

°r(x) 9 or( ). (i) ~ ~ r(x+y) = ~ k k Y 

or 
(ii) The square of ~ k (x) is 9k(X). 

°r(x) E I + A. (iii) ~k 

°r(z) for a two-dimensional element z. We have We now compute O k 

A _u(Z) = I - uz + u 2. If we formally write z = x+y with xy = I then 

A_u(Z) = (1-ux) (1-uy) and therefore 

-1 
(3.10 9) ~ _u(Z ) (I_u)-2 1-ux 1-u x 

• = Y 1-u -I 
1-u 

8or, , If we multiply these expressions according to the definition of k tz) 

we obtain 

(3.10.10) ekr(z) = ky (k-I)/2 7Fu(1-ux) L(1-u)-1 

=y (k-1)/2(1+x+...+xk-1) 

= (x(k-1)/2 + x(k-3)/2 + ... + y(k-1)/2). 

This last expression may also be written 

(3.10.11) xk/2 -k/2 
- x 

xi/2 -I/2 
- x 
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where we use this at this point merely as a suggestive formula without 

°r(z) is an integral polynomial in z: having x I/2 defined. Actually 8k 

The polynomial 

Pk (t) = ~u@ J (t-(u+u-1)) 

is contained in Z [t] and has degree (k-I)/2, e. g. P3(t) = 1+t, 

P5(t) = -I+I+t 2. One has for a 2-dimensional z 

(3.10.12) e k °r(z) = Pk(Z) 

A proof follows from the identity 

t k-1Pk(t2+t -2) = (1+t+...+t2k-1)/(1+t) 

which can be seen by observing that both sides are monic polynomials 

of degree 2k-2 having the 2k-th roots of unity = +I as roots. 

From 3.10.10 one obtains for a 2-dimensional z the identiy 

°r(z) = I + ~Iz+ ~2 ~(k-I)/2 z (3.10.13) e k z + ... + . 

3.11. The action of 9 k on scalar K -rin~s. 

We consider p-adic ~ -rings A with trivial multiplication, like 

A(n)/A(n+1) in Proposition 3.8.9, on which ~k is multiplication by 

k n and ~k multiplication by (-1)k-lk n-1. Then we have seen in 3.8. 

that 

~t(x) = I + fn(t)x 

where fn(t) in an integral polynomial defined by the recursion formula 
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fl (t) = t, fn+1 (t) = t(1-t)f'n(t) . 

Therefore ~k is given by 

9k(X) = 7~ u (1+Xfn(u_--Ul)) = I + x I u fn(u_~Ul ) 

We have to compute the rational number (Galois theory) 

Z U -- t fn(u_~Ul ) =: bn(k) 

the sum being taken over the k-th roots of unity u # I. Put hn(t) = 

= fn(t_-~tl ) . 

Proposition 3.11.1. 

We have the followin~ identity between formal power series in x and t 

over Q 

log(1 + ~ (1-eX)) = 
n 

x 

n~, I hn(t) ~ " 

(The meaning of the left hand side is: Use the power series 
2 3 

log(1+y) = Y - ~2 + ~--3 - ... and replace y with the power series 

t 
(1-e x) which has no constant term.) 

1-t 

Proof. 

We put 

n 
x 

K(t,x) := iog(1+ (1-eX)) = ~ n2, I gn (t) 

where the gn(t) are certain power series in t. We differentiate K(t,x) 

with respect to t and x and obtain 
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X 
dK e I 

dt teX_l  I - - r _ .  

dK te x 

dx teX_1 

hence 

dK dK t 
t 

dt dx 1-t 

n 
x 

We apply this differential equation to ~ n~,1 gn (t) ~ and compare 

coefficients, thus obtaining 

t 
gl (t) 1-t 

gn(t) = tgn_ I (t) 

and these are precisely the recursion formulas for the h . 
n 

If we replace t in 3.11.1 with a k-th root of unity u ~ I we obtain 

an identity between formal power series in x over Q(i~k). We compute 

the b (k) as follows 
n 

n x 

x Z 
~- b n(k) n--[ = 1-u n), I u#1 log 1-ue 

1-ue x I (k-1) x) 
= log "~u-1 1-u - log ~ (1+eX+...+e 

ekX_ 1 eX_1 
= log kx log 

n 
x 

= ~ n>. I (kn-1) an 

eX-1 _~ x n 
if we use the expansion log 

x n~1 an ~ " 
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The a are easily expressed in terms of Bernoulli numbers B which are 
n m 

defined by 

t = 1 + Z B m tm 
t m ~ I ~ " 

e -I 

I 
This yields immediately B I = - ~, B2m+1 = O for m~ I. If we differen- 

tiate the defining series of the a with respect to x we obtain 
n 

n-1 n-1 
"7 x I ~- x 
z. n~ I nan n! - I - - + /_.. B x n~.o n n. I 

and then 

B n I 
an - n for n ~ I, a I = --2 

Collecting these computations we obtain 

Proposition 3.11.2. 

k : A(n)/A(n+1) --~ I + A(n)/A(n+1) is the map 

B 
x ~---)I + (kn-1) ~ x . 

n 

We now come to oriented ~ -rings. From the recursion formula for 

the rational functions hn(t) one proves by induction 

(3.11.3) h (t -I) = (-I) m 
m hm(t) 

fm(t) = (-I) m fm(t) 

The previous calculations yield 
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Proposition 3.11.4. 

Let A be an oriented p-adic ~ -rin~. Then 

or 
k : A(2n)/A(2n+1) ----~ I + A(2n)/A(2n+1) is the map 

B2n 
x~---~ I + (k2n-1) ~ x . 

Remark 3.11.5. 

Equating coefficients in 7 zr(a)tr 7 ~ r(a ) (l-t) r 
_ = _ one finds 

k = (_1)k ~ k + (_l)k(k+1) ~ k+1 + c 

where c has M -filtration at least k+2. This gives by induction 

A(2n-1) = A(2n) for n ~ I. 

3.12. The connection between 8 k and 9 k" 

The map e k was only defined for finite-dimensional elements x. In order 

to extend it to negatives of such elements one must have that @k(X) is 

a unit. This can sometimes be accomplished by passing to the p-adic 

completion. We describe the formal setting. 

Let R be an augmented special I -ring with augmantation e : R---) Z 

and augmentation ideal B = ker e. Moreover we assume: 

(i) R is finitely generated as an abelain group by x I = I, x2,..,x m 

which are finite-dimensional. 

x r) for r = I, ..,m. (ii) e( = dim x r 

(iii) The ~ -topology on B is finer than the p-adic topology. 

We then have e(x) = dim x whenever x is finite-dimensional and 

moreover ~ t(x-e(x)) is a polynomial in t of degree ~ dim x, hence 

~- dim (x-e(x)) ~ dim x. 
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Proposition 3.8.5 shows that the B-adic topology coincides with the 

-topology. The ring A = B~ Z is a p-adic ~ -ring, by (iii) above. 
P 

Proposition 3.12.1. 

Let i : R ) R ~ Zp be the canonical map and (k,p) = I. Then for 

finite-dimensional x 6 R the element i 8k(X) is a unit in R ~ Zp. 

Proof. 

If dim x = n then eSkx = 8kex : @k n = k n. Put r = k n, then (r,p) = I 

and r -I exists in Zp. Therefore r-liek x = l+a, a 6 B ~ Z . But 
P 

I+A C B ~ Z is a multiplicative subgroup. If (1+a) (1+b) = ] then 
P 

-I 
r (1+b) is the inverse of iSkx. 

We may now extend ~k to a homomorphism R --~ Zp ~ R. If 

e' : R ~ Zp---~ Zp is induced by e : R----gZ then, for x,y finite- 

dimensional 

e'@k(x-y ) = kex-ey 

Therefore 8k induces a homomorphism 

e k : B ---~ I + A, A = B~ Z . 

P 

Proposition 3.12.2. 

The followin~ dia@ram is commutative: 

B 

i/k\, Sk 
\ 

A 9 I+A 

~k 

(k,p) = I 
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Proof. 

Let m = dim x. Then ~t(x-m) is a polynomial of degree ( m. Using 

-~ t/(t-1) (x-m) A _t(m) = A_t(x) 

and the definition of e k and ~k we obtain 

ek(X) = 9k i(x-m) ek(m) 

and hence 8k(x-m) = 9k i(x-m). This suffices for the proof. 

3 13. Decomposition of p-adic ~ -rin~s 

Let A be a p-adic ~ -ring. A fundamental system of neighbourhoods of 

zero for the p-adic topology may be taken as (pnA + A(n) I n ~ I). The 

natural numbers ~ are considered as a (dense) subset of the p-adic 

numbers. 

Proposition 3.13.1. 

The map 

IN x A ----) A : (k,a) ~-----9 ~k(a) 

i__ss uniformly continuous. 

Proof. 

M 
Let M = 2N and suppose p divides s. If Xl,...,x r have 

one then 

~'-dimension 

k+s 
(Zx i) - ~,k(z xi) = ~ (1+xi)k((1+xi)S-1) 

N 
= p S I + S N 
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where S. is a symmetric function of weight ~ j in the x for j = I,N. 
3 l 

Hence given N ~ I we have shown that there exists M ~ O such that pMls 

implies 

~k+S(x ) _ ~2k(x) 6 pN A + A(N) 

for all x which are a sum of elements of ~ -dimension one. By the 

verification principle for special ~ -rings this holds for all x. 

Hence our map is uniformly continuous in the first variable. Since it 

is a homomorphism in the second variable it is uniformly continuous. 

k 
We can now extend the map (k,a) ~--~ ~ (a) by continuity to a map 

k 
Z x A ---)A, denoted with the same symbol. Therefore ~ : A--)A is 
P 

defined for all k ~ Z as a continuous homomorphism. Moreover we still 
P 

have ~k ~ 1 = ~kl. If ~ denotes the compact topological group of 

p-adic units then A becomes a topological ~ -module. 

By Hensel's Lemma Z contains the roots of x p-I - I = O. This is a 
P 

cyclic group of order p-1 generated by d, say. The additive group A 

d 
splits into eigenspaces of 

(3.13.2) 

A = ~ p-2. A 
l=O 1 

A i: A i  dx:dix 

(This is so because A may be considered as Z [C] module, where C is 
P 

the cyclic group generated by T and T acting as ~ d; and the group 

algebra Z [ C] splits completely because Z contains the (p-1)-th roots 
P P 

d 
of unity). Since ~ is a ring homomorphism we have 

(3.13.3) A i Aj C Ai+ j 
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so that A becomes a Z/(p-1)-graded ring. Let U be the kernel of the re- 

duction mod p Z~ ---9 Z/pZ. Then U acts on each group A because u~ U 
p l 

commutes with ~d. Put 

(3.13.4) A (n) = A. n A(n). 
1 1 

Then 

Proposition 3.13.5. 

Ai(n) = Ai(n+1) if n ~ i mod (p-l). 

d 
Proof. It follows from 3.8.9 that ~ acts on Ai(n)/Ai(n+1) as 

multiplication by d n. On the other hand, by defirJtion of A., it acts 
1 

as multiplication by d i. Hence if the quotient is non-zero we must 

have n~ i mod (p-l). 

3.14. The exponential isomorphism ~ k" 

We now come to the main result in the theory of p-adic ~ -rings which 

says that ~ k is an isomorphism if k generates the p-adic units (p~2). 

This is the algebraic reformulation of Atiyah-Tall [~] of the theorem 

J' (X) = J" (X) of Adams [Z] , which is one essential step in the 

computation of the group J(X) of stable fibre homotopy classes of vector 

bundles over X. 

Let A be a p-adic ~ -ring. The group Zp is topologically cyclic if 

p ~ 2. An integer k is a topological generator if and only if k generates 

(Z/p2) ~. 

Theorem 3.14.1. 

Let A be a p-adic ~ -ring (p#2). Assume that A(n) = A(n+1) for 

n ~ 0 mod p-1. Let k generate the p-adic units. Then 
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~k : A ---~ I + A 

is an isomorphism. 

Proof. 

We have A = inv lim A/A(n), 3.8.7. We have a commutative diagram with 

exact rows (see 3.9.2 and 3.9.3) 

0.---> A(n) /A(n+1) ---~A/A(n+I) --3 A/A(n) ------>0 [. 
~ k  ' k  I ~ ' k  

I 
4, $ 

0 - - - - - )  1 + A ( n ) / A ( n + l ) - - - - ~  1 + A / A ( n + I ) - - - ) 1  + A / A ( n ) - - - , ~  0 . 

Therefore it suffices to prove the theorem for A(n)/A(n+1). In that 

case ~ k is the map a~ 1+d(k,n)a where d(k,n) ~ Zp is independent 

of the particular ring, hence is an isomorphism if d(k,n) is a unit. By 

assumption we only have to consider the case n ~ O mod p-1. We have 

computed the numbers d(k,n) in 3.11.2 and it follows from the Clausen- 

yon Staudt Theorem (Borewicz-Safarevic [30] , p. 410) that d(k,n) is 

a unit in Z if k is a p-adic generator and n ~ O (p-l), Actually it 
P 

has been observed by Atiyah-Tall ~] , p. 283 that the results of 

3.11 and the Clausen-von Staudt theorem is not necessary. One only 

needs to produce a p-adic ~ -ring such that A(n)/A(n+1) ~ O for 

n ~ O (p-l) and ~k is an isomorphism. We shall describe such an 

example in a moment and thereby completing the proof of Theorem 3.14.1. 

Example 3.14.2. 

Let R(Z/p;Q) be the Grothendieck ring of Q [ Z/p ] -modules. There are 

two irreducible modules: The trivial module I, and V which splits as 
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W + W 2 + ... + W p-I over the complex numbers. Hence the augmentation 

ideal I is the free group on a single generator x = I + W +...+ wP-I-p. 

k 
By 3.5 the Adams operations are given as follows: ~ = id if (k,p)=1, 

k 
= 0 if p/k. Evaluation of characters at a generator g of Z/p gives 

an isomorphism I ---) pZ : x| ) -p. We have 

~t(x ) = ~ P-li=1 ~ t(wi-1) = ~i((1-t) + wit), 

and evaluating at g maps the right hand polynomial (short calculation) 

into (l-t) p - (-t) p. Therefore ~ r(_p) = 0 for r ~ p and p i zr(-P) 

for I ~ r ~ p-1. Since ~ p acts on In/In+ I as multiplication by pn 

and ~ p = 0 we see that In/In+ I is a p-group (cyclic in this case). 

Moreover In/In+ I is non-zero only if n ~ 0 (p-l) because ~ k, (k,p)=1, 

acts as k n and as identity. Since ~ p-1(_p) = (-I) p-I p the lowest 

power of p attainable in I n is ( ~ p-1(_p))V where (v-l) (p-l)< n$ v(p-1). 

Hence In/In+ I = Z/p for n ~ 0 (p-l) and the p-adic topology and the 

-topology coincide. We now compute ~ k on In/In+1~ Z p In/In+1 

for n ~ 0 (p-l). A generator for In/In+ I is the image of pr. Hence 

u p {1_uu)p)-1 9k(p) = 9k(-p) -I = ~u((1 - ~-/~) - _ 

= ~ (1-u)P = k p-I = I + kP-1-1 • p 

u i -u P P 

I I_i Since k generates the p-adic units m = p- (k p- ) is an integer prime 

to p. We obtain 

r-1 r-1 
~k(p r) = ~k(p) p = (1+mp) p ~ I + mp r mod pr+1 

so that ~ k is on In/In+ I the map ~k(a) = 1+ma ~ I + In/In+ I. Since 

In/In+ I = Z/p this is an isomorphism. 
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Remark 3.14.3. 

We know from 3.11. that for n = r(p-1) ~k in the example above is 
B 

a and that pB n is p-integral. We obtain the map a~--~ I + (kn-1) n 

B B B 
n _ r_1 n n ~ _m(PBn ) m ~ (kn-1) -- = ((1+mp) ) -~ H mrp mod p. Hence 
n n 

pB n ~ -I mod p. This is one of the von Staudt congruences. 

We now describe certain instances where the hypothesis of Theorem 

3.14.1 is fulfilled. 

Let A be any p-adic ~ -ring. In 3.13 we have described a splitting 

of A into eigenspaces A i of Adams operations (i = O,I,...,p-2). Then 

? k induces a map 

k : Ao-----9 1 + A ° 

and by 3.13.5 we can apply the Theorem to it: 

Proposition 3.14.4. 

Let A be a p-adic g -rin~, p ~ 2. Let k be a ~enerator of the p-adic 

units. Then 

~k : Ao ) I + A ° 

is an isomorphism. 

Proposition 3.14.5. 

Let A be a p-adic ~ -rin~. Assume that 

A(n)/A(n+1) = 0 for n ~ 0 (p-l). 

hu k = id for (k,p) = I. Then 

Proof. 

For x ~ A(n)/A(n+1) we have x = ~ kx = knx and kn-1 ~ Z~ for n~ O(p-1). 
P 
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Let A be a p-adic ~ -ring. Put 

(3.14.6) C { a all k ] A = I ~ka = a, I 

A U = A/N, N = {a - ~ka I a E A, all k} . 

r 
(I+A) = {1+a I ~ka = a, all k ] 

(I+A) p = (I+A)/M, M = { (1+a)/ ~k(1+a) I a 6 A, all k] . 

Since ~ k commutes with the Adams operations we have induce~ maps 

(3.14.7) 

)r 
( 9k : A - - - - - - ' *  (I+A) p 

(gk) p : Ap . . . .  )(I+A)~ 

Theorem 3.14.8. 

I_~f p # 2 and k is a venerator of the p-adic units then the maps 3.14.7 

r 

( ~ k ) and ( ~ k) r 

are isomorphisms. 

Proof. 

One first shows: If 0 --~ X --9 Z --) Y ---) O is an exact sequence of p- 

adic ~ -rings and the Theorem is true for X and Y, then it is true for 

Z, The following diagram with exact rows (ker- coker sequences) is 

commutative 

P Im P _ _ _ _ )  
0 > X ----) Z -- )Y X ----~ Z F'----~ Yr--90 

I i i i r i 

$ r $ r $ r $ $ 
& 

o---~ (1+x) --~ (1+z) --9 (1+Y) --} (1+x)r-~ (I +Z)r,--> (1+Y)r~o. 
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One applies the fi~e lemma. (To establish the ker- coker sequence note 

that 

I- ~k 

o----~ x } x ) x 9 xr----~o 

is exact if k is a generator of the p-adic units). The Theorem is true 

for A(n)/A(n+1): For n~O(p-1) A(n)/A(n+1) = O, (A(n)/A(n+1))p = O; 

for n ~ O(p-1) ~k itself is already an isomorphism by 3.14.1. By the 

first part of the proof the Theorem is true for all A/A(n). From 

inv lira (A/A(n) [~) = (inv lim A/A(n))P 

and an analogous equality for (I+A)/(I+A(n)) the Theorem for A follows. 

(Note that "invlim" is exact on compact groups.) 

We now discuss analogous results for p = 2 where oriented ~ -rings 

is not (topologically) are needed. The group of 2-adic units P = Z 2 

cyclic, but Q/ {~ I I is; e.g. 3 is a generator. Since -I E Zp the 

-I 
operation ~ is defined for p-adic ~ -rings, see 3.13. 

Proposition 3.14.9. 

If A is an oriented p-adic ~ -ring then 
-I 

= id. 

Proof. 

If x has ~ -dimension I then 1+x has ~-dimension I. Therefore 

I = AO(2+2x) = ~2(2+2x) = AI(I+x) 2 = (l+x) 2 

-I I 
so that ~/ (x) = 1+---x - I = x. Hence the Proposition is true for a 

sum of one-dimensional elements. Now apply a "verification principle". 
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Theorem 3.14.10. 

Let A be an oriented p-adic ~ -rin~ (p any prime). Let k be a ~enerator 

of ~ / { ~ I ~ . Then 

or 
~k : A } I + A 

induces isomorphisms 

or ~ or 
(~k) and (gk)C 

or 
If p = 2 then ~k is an isomorphism. 

Proof. 

Let p = 2. We have to show that A(n)/A(n+1) is mapped isomorphically. 

By 3.11.5 this group is zero if n -_-- I mod 2. So let n = 2m. Then 
B 

or n by 3.1 I 4 In k (a) = I + d' (k,n)a and d' (k,n) = (kn-1) ~ ~ Z 2 . . 

this case if n = 2rd, d odd and r ~ I, then k n = I + 2 r+2 c, c odd, 
B 
__nn = c 2B n and by because k is a generator of Z / { + I I " Hence (kn-1) 2n d 

the Clausen-von Staudt theorem 2B2m- -I mod 2. Therefore d' (k,n) ~ Z 2. 

If one wants to avoid the Clausen-von Staudt theorem one can compute 

~ k°r in a special case as in 3.14.2. For p # 2 2d' (k,n) = d(k,n) ~Z ~P 

hence d' (k,n)~ Z ~. So one can proceed as in the proof of 3.14.8. 
P 

or 
3.15. Thom-isomorphism and the maps O k , O k . 

Let G be a compact Lie group, E > X a complex G-vector bundle over 

the compact G-space X. If M(E) is the Thom space of E we have the Thom 

class t(E)~ ~G(M(E)) and ~G(M(E)) is a free KG (X) -module with a single 

generator t(E). Therefore we must have a relation of the type 

~kt(E) = Q%(E)t(E) with a uniquely determined element ~k(E)~KG(X). 



68 

Proposition 3.15.1. 

The equality @k(E) : ~k(E) holds. 

Proof. Both O k and ~k are natural for bundle maps and homomorphic from 

addition to multiplication. By the topological splitting principle it 

therefore suffices to proof the equality for line bundles E. Let 

s # : ~G(ME) ) KG(X) be induced by the zero section. Then s~t(E) = I-E 

and therefore I-E k : ~k(l-E) : s ~ ~kt(E) = s~(~k(E)t(E)) = ~k(E) (l-E). 

This implies @k(E) = ]+E+...+E k-I (look e. g. at X a complex projective 

space). Now use 3.7.2. 

or 
For real vector bundles and @ k the situation is analogous but slightly 

more complicated. We describe the ingredients. Let E > X be a real 

G-vector bundle of dimension 8n which has a Spin(8n)-structure. With 

this Spin-structure one defines a Thom-class t(E) ~ ~OG(M{E)) and the 

generalized Bott periodicity (Atiyah [10] ) says that again ~OG(M(E)) 

~°r(E) by the equation is a free KOG (X) -module on t(E). We define @k 

"°r(E)t(E) If k is odd then we also have defined in 3.10 ~kt (E) : Qk 

°r(E) because E, having a Spin-structure, is orientable. the element Qk 

Prooosition 3.15.2. 

For k odd and E a G-vector bundle with Spin(8n)-structure the equality 

@k°r(E) = "°r(E)@k holds. In particular ~r(E) __is in.pendent of the Spin- 

structure for odd k. 

Proof. Using 3.10.10 a proof is contained in Bott [~I] , Proposition 

10.3, Theorem B on p. 81 and Theorem C" on p. 89. 

3.16. Comments. 

This section is based on Atiyah-Tall [9~] . That paper axiomatizes 

certain basic results of Adams [I] , [2] . The reader should 
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also study the ~lation-ship between I -rings, formal groups, Witt- 

vectors, and Hopf-algebras (Hazewinkel [~[] ). It would be interesting 

to investigate the topological significance of the number theoretical 

properties of the Bernoulli numbers. We also mention the exponential 

isomorphism for ~-rings obtained in Atiyah-Segal [13] ; this is 

related to 9k but gives an isomorphism on the whole ring (under a 

suitable hypothesis). 

3.17. Exercises. 

I. Show that the tensor product of special X-rings A,B is a special 

I -ring in a canonical way such that the maps A---) A ~ B, B --9 A ~ B 

are A-homomorphisms. 

2. Show that there exists a free special ~ -ring U on one generator 

u E U. This ring is characterized by the following universal property: 

Given a special ~ -ring R and x6 R there is a unique homomorphism 

f : U )R of ~-rings such that f(u) : x. 

3. Show that if R is special ~-ring and x 6 ~ n-dimensional then 

there exists a special ~ -ring S m R such that x = Xl+...+x n where 

the x E S are one-dimensional (splitting principle). 
1 

4. If S is a finite G-set let A i(s) be the set of subsets M c S with 

IM I : i. The G-action on S induces a G-action on Ai(s). Show that the 

S J ~ A i(s) induce a k-ring structure on A(G) . This structure is 

in general not special. 


