3. A -Rings.

We present the theory of special A -rings. The algebraic material is
mainly taken from the paper [44] by Atiyah and Tall. The reader should
consult this paper for additional information. The main theorem to be
proven here is an exponential isomorphism for p-adic A =-rings which

is an algebraic version of the powerful theorem J'(X) = J"(X) in the

work of Adams [27] on fibre homotopy equivalence of vector bundles.

3.1. Definitions.

Let R be a commutative ring with identity. A A =-ring structure on R

consists of a sequence An : R— R, n € N, of maps such that for all

X,y € R

A% (x) =1
(3.1.1) K1(x) = x

Axty) =3 1 AT AT
If £ is an indeterminate we define

_ n n

(3.1.2) A (x) = Zm’o ATt
Then 3.1.1 shows that
(3.1.3) A, R— 1+ R[[E]]T

is a homomorphism from the additive group of R into the multiplicative

+
group 1 + R[{t]] of formal power series over R with constant term 1.

Exterior powers of modules have formal properties like 3.1.1 and we
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shall see later how exterior powers give A -ring structures on certain

Grothendieck groups.

A ring R together with a A ~ring structure on it is called a A -
ring. A A ~homomorphism is a ring homomorphism commuting with the

A -operations. We have the notions of A -ideal and A -subring.

Some further axioms are needed to insure that the A -operations

behave well with respect to ring multiplication and composition.

Let x1,...,xp, y,l,...,yq be indeterminates and let ug vy be the

i-th elementary symmetric functions in Xyrees

spectively. Define polynomials with integer coefficients:

,xp and y1,...,yq re-

. o n .
(3.1.4) Pn(u1,...,un, v1,...,vn) is the coefficient of t in
A +x.y.t).
Tl’l’J (T4x;v,¢)
. . n .
(3.1.5) Pn,m(u1,...,umn) is the coefficient of t in
Tri c i (1+xi{ ceet Xy t).
1 »es m m

Then Pn is a polynomial of weight n in the uy and alsc in the Vi and

Pn m is of weight nm in the u, - If we assume p » n, ¢ % n in 3.1.4 and
7

p2 mn in 3.1.5 then non of the variables u; vy involved are zero and

the resulting polynomials are independent of p,q.

A X -ring R is said to be special if in addition to 3.1.1 the

following identities hold for x,y € R

A_t(1) =1 + ¢

(3.1.6) A (xy)
ATC AT

P ( A1x,..., Ak A1y,..., A%y

1 mn
Pm,n( A Xpeers A X)),
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One can motivate 3.1.6 as follows. An element x in a A -ring is
called n-dimensional if Zt(x) is a polynomial of degree n. The ring

is called finite-dimensional if every element is a difference of finite

dimensional elements. If x = Xy + oo+ xp and y = Yo+ oo t yq in a

A -ring and the xi,yi are one-dimensional then

A tx) = T(+x,8) =1 + u,t + ... + u tf
i 1 P
(ui the i-th elementary function of the Xj as above) and we see that
the second identity of 3.1.6 is true for such x,y. If moreover the
product of one-dimensional elements is again one-dimensional then the
third identity of 3.1.6 is true for % = 2 X5 The axioms for a special
A -ring insure that many theorems about A -rings can be proved by

considering just one-~dimensional elements. We formalize this remark.

One defines a A -ring structure on 1+A[[t]]+ by:

"addition" is multiplication of power series.

(3.1.7) "multiplication" is given by
n n . n
(1+ ath) o (1+ant) =1+ P (aj,-..sa iby,ecasb )t
The " A -structure" is given by

m n n
= z . .
AT(1+ Zant ) 1 + Pn,m(a1' ,amn)t

Proposition 3.1.8.

+
1+ A[[t]] is a A -ring with the structure 3.1.7.

Proof.

Compare Atiyah-Tall [14] , p. 258.

Using this structure one sees that A is a special A -ring if and

only if A N is a A -homomorphism. Moreover one has the Theorem of
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Grothendieck that 1 + A[[t]]+ is a special A -ring (Atiyah-Tall loc.

cit.)
One can use 3.1.8 to show that certain A -rings are special.

Proposition 3.1.9.

Let R be a A -ring. Suppose that products of one-dimensional elements

in R are again one-dimensional; in particular 1 shall be one-dimensional.

Let R, € R be the subring generated by one-dimensional elements. Then

1

Ry is a A -subring which is special.

Proof.

Every element of R, has the form x-y where x,y are sums of one-

1

dimensional elements, say x = x1+ . +xp, y = y1+ “e +yq. Then %l(x)

is the i-th elementary symmetric function in the xj hence a sum of cne-
dimensional elements. Moreover 21(—y) is an integral polynomial in

the A7(y). Hence AN (x-y) = E:i Xi(x) An_i(—y) € R,. The remarks

1"
before 3.1.7 show that A, [R1 is a ring-homomorphism and At A tx) =

i . .
= A A t(x) if x is a sum of one-dimensional elements and these two

facts imply At A i(—x) = Aj’ At(-x) and then At Ri(x-y)= Ai'At(x-y)-

Remark 3.1.10.

One can show (Atiyah-Tall [14] ) - and later we shall use this fact -
that a A -ring R is special if and only if for any set Aqreeeray of
finite-dimensional elements in R there exists a A -monomorphism

f : R—)R' such that the fai are sums of one-dimensjional elements.

This is called the splitting principle for special A -rings.

That a A -ring structure, even if not special, may be very useful

can be seen from the following Proposition due to G. Segal.
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Proposition 3.1.11.

Let R be a

A -ring. Then all Z-torsion elements in R are nilpotent.

Proof.
Let a be a p-torsion element, say pna = 0. Then

n n n _n
1 = At(o) = A (@¥f = (1+at+..)P = 14aP tP +... mod p A

n
and hence a¥ = p b for some b € A. Therefore

-1

(pn+1)n _ n _ n n _
a = (p ab) = (pa)(a b) =0

3.2. Examples.

a) The integers may be given a A -ring structure by defining

At(1) =1+ 2 Hatn where m, = 1. The canonical structure on 2 is
given by
At(1) =1+t
(3.2.1) A m = (140)"
Ay = @ m % 0
A m = (=nF ™ET

This canonical structure is special by 3.1.9. It can be given the
following combinatorial interpretation: Let S be a set with m elements.
Let AXS be the set of all subsets of cardianlity k. Then [AKs| = () -
The theory of special X -rings may be thought of as an extremely
elegant way of handling combinatorial identities for sets, symmetric
functions, binomial coefficients, etc.

b) Let E,F be complex G-vector bundles over the (compact) G-space X

where G is a compact Lie group. Then exterior powers A 1 of G-vector
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bundles satisfy
A°E =1, A'E=£, AtEen = 8&7_ Atm ® ATm

Let KG(X) be the Grothendieck ring of such G-vector bundles over X
(segal [142] ). Then E +—> 1 + ( A1E)t + ( A2E)t2+... is a homomorphism
from the additive semi-group of isomorphism classes of G-vector bundles
over X into 1 + KG(X)[[t]]+ and extends therefore uniquely to the

Grothendieck group giving a map
A‘t : KG(X)———9 1+KG(X)[[t]]+ : X 1+ A1(x)t+...

such that A’ [E] = [AJXE)] for E a G-vector bundle. These A - yield

therefore a A -ring structure on K _(X).

G

Proposition 3.2,2.

KG(X) with this ) -structure is a special A -ring.

Proof.
The proof depends on the so called splitting principle which - especially
for general G - is highly non-trivial. This splitting principle says:

Given vector bundles E

.,E, over X. There exists a compact G-space

10 k
Y and a G-map £ : Y — X such that the induced map £% . KG(X)-——)KG(Y)
is injective and f*Ei splits into a sum of line bundles. See Atiyah

[9] , 2.7.11 or Raroubi [103], p. 193 for the case G = {1} .
Using the splitting principle 3.2.2 follows essentially from 3.1.9.

For a discussion of A -operations in K-theory see also Atiyah [9] ’

ch. 111, [#] ; Karouwi [103] 1Vv. 7.

c¢) Other versions of topological K-theory like real K-Theory or
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Real-K-Theory (Atiyah [8] ), vield special A -rings too.

d) A special case of b) is the representation ring R(G) of complex
representations. Since representations are detected by restriction to
cyclic subgroups and R(C) for a cyclic group C is generated by one-
dimensional elements one can directly apply 3.1.9 to show that R{G) is

special.

e) The Burnside ring acquires a A -ring structure if we define

Ai(S) for a finite G-set S to be the i-th symmetric power of S. We
use the identity A"(S+T) = E_i Ai(s) An_i(T) to extend this to
A(G) as under b). This A -ring structure is in general not special.

See Siebeneicher [143] and the exercises to this section.

f) See Atiyah-Tall E14] ;, I. 2 for the construction of a free A -

ring on one generator,

3.3. X -operations.

We assume that R is a special A -ring. Then R contains a subring iso-
morphic to 2 for if 1 € R had finite additive order m, then

1 =2 t(O) = At(m'1) = (1+t)™ would give a contradiction (compare
coefficients of tm). A special A -ring R is called augmented if there
is given a A -homomorphism e : R —>) Z. We call I = Ker e the

augmentation ideal; it is a A -ideal. Any element x € R may be written

uniquely x = e(X) + (x~e(x)) with e(x) € Z and x-e(xX) € I.

Define the y -operations on a special A -ring R:

i

et

(3.3.1) Aoy ® =y =1 XLy

Then

(3.3.2) Zt(x+y) = Jt(X) Xt(y)-
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Moreover one has
(3.3.3) ¥ 0 = ATen-1).

Proof.

Using 3.2.1 we get

= i i+k-1,  k+i
Agjpegy @ =1+ 2 00 AT, CTETHET

1
+
M

3 O LN
531 (230 2TeodIime

"
+
M

B 1y
i% 1 A (x+3-1)t
We conclude from 3.3.3 that AJ(x) = o for j > n implies ¥ I (x-n)=o
for j > n, i. e. if x is n-dimensional then x-n is of Y -dimension at

most n.

Suppose R is an augmented ) -ring with augmentation e : R——> 2 and

augmentation ideal I = ker e. We define the y-filtration by: Rn C R

n n
is the additive group generated by monomials ¥ 1(a1)-... . 1 r(ar)
where a, € I and Z ni; n.
Proposition 3.3.4.
(1) RO = R, R1 =1
(ii) Rm Rn C Rm+n
(iii) Rn is a A -ideal for n 2 1.

Proof.
(i) and (ii) follow directly from the definitions. (iii): R = Z 63}H

shows that Rn is an ideal. To show Rn is a A -ideal, it is sufficient
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to show AT( yM(x)) € R for x € I. First we compute for iz m

AMixime1) = yloem-) = T I y%m0 ¥ T men
= 2 ;=m ¥°(x) ¥y ¥ (m-1) € R
because gi—s(m-i) = )\i_s(m—s—‘l) =0 for i » m2 s+1. We use this in

AT M) = AT (AT (xm-1))
1 rm
= Pr,m( A (XHm=1),000, A (x+m=~1))
and observe that P (S,¢4+4.,5__) is a sum of monomials each containing
r,m "1 rm
a term s, for i » m because Pr,m(s1,...,sm_1,o,...,o) = 0.

Sometimes we want to work only with the augmentation ideal. We

define: A ring I without identity is called a special y -ring if there

is an augmented special A -ring R with I as augmentation ideal. I then

carries the induced y l-operations. We define the y -filtration as

n n
before, I being the ideal generated by monomials Y 1(a1)'... ¥ r(ar)

where a; € I, Zni 2 n. We have
i
¥ (In) < In'

(3.3.5) I, =I, I I ¢ I
m n m

1 +n’

3.4. The Adams operations.

Adams introduced in [1] certain operations derived from the A~

which are much easier to handle algebraically.
Let R be a special A -ring. Define maps

W : R—> R, n

A\
-
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by
(3.4.1) W 0 = -t £ (A (0)/ A ()
_ n n
Vo = 2 o el

A more elementary way of defining the ¥ is: Define the Newton

polynomial

where S5 is the i-th elementary symmetric function of the xj. Then put

1
(3.4.2) YR =N (A 0, ..., AT
We leave it as an exercise to show that the two definitions are

equivalent.

We want to show that the W are A -ring homomorphisms. This
means we have to verify certain identities between the Y no and AJ—

operations. We use the verification principle which says that it is

enough to verify the identities on elements which are sums of one-
dimensional elements. A formal proof of this principle is given in
Atiyah-Tall [4%] , I. 3.4, I. 4.5. Since in the applications the

A -rings are finite-dimensional and since we have to prove the
splitting principle in order to show that something is a special A -

ring we do not prove the verification principle.

Proposition 3.4.3.

(i) If x is one-dimensional then wﬁnx = x"

(ii) ¢ " is a A -~homomorphism.

(iii) w™ o= @Byl o ™,
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r r
(iv) q»P (x) = x* mod p (p prime).

Proof.
(i) follows directly from 3.4.2.
(ii) Suppose X yj are one-dimensional. Then xiyj is one-dimensional
because R is special. From 3.4.71 one obtains that q’n is an

additive homomorphism. Moreover

n n _ n _ n
WOZ xg Ty = WL xyy) = 2 Wk = 2 (xgyy)

n n, _ n n
(2 x)D 0Ly =W Zx) YT vy

PROATCT 2

n
-e
=}
0n
=1
%
A
%
H
n
0
®

Now use the verification principle.

(iii) and (iv) are likewise immediate from the verification principle.

n . .
As a consequence we have W on a special y -ring. Moreover the

Y n preserve the y -filtration.

Proposition 3.4.4.

Let I be a special y =-ring. Assume x € I, Then the following holds:

1y w5 - ¥%x €1,

(11)  wEm) + 1% aFx) e I

(111) ARG + =X Tk e 1.,

n+1

Proof.

(i) We need only show that V’k( b'e m(a)) - km Y m(a) € Im+1 for a € I,
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because wk is a y -homomorphism. If RyveoorXy, have y¥ -dimension one,
i. e. y t(xi) = 1+xit, then 1+xi has A -dimension one, hence
qu(xi) = (1+xi)k - 1 and therefore
PRy ™ e tx ) = K™ oy Tk b 4x)
¥ 1 r 1 Tr
k m
= Y (sm(x1,...,xr)) -k Sm<x1""'xr)
k k
s (T4 ) = 1, ()% = 1) - K (kg pee %)

This is a symmetric polynomial of degree » m+1, hence (i) is true for

x = 2 X and, by the verification principle, therefore in general.

(ii) From the Newton polynomials we obtain the well-known identity

k k-1

vE - 5 T A T e -

1

T AR T o+ -1 ¥k AR (x) =0

which implies the result, because Qll(x) €1, M (x)e I, for 1 2 1,

and x € In.

(iii) From (i) and (ii) we obtain k Ak(x) + (—1)kkn(x) €I

n+1
Thus the result follows if there is no k-torsion. (One can produce
suitable universal situations without torsion, e. g. free A -rings;
thus one gets the result in general. One should note that the assertions

are natural with respect to A -homomorphisms.)

3.5. Adams-operations on representation rings.

Let G be a finite group and R(G;F) be the Grothendieck ring (= repre-
sentation ring) of finitely generated F(Gl-modules where F is a field.
We assume for simplicity that F has characteristic zero. Then elements
in R{G;F) are determined by their character. We identify R{(G;F) with
the corresponding character ring. Exterior powers define a special A -
ring structure on R(G;F). We want to compute the associated Adams-

operations.
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Proposition 3.5.1.

Let x € R{(G;F). Then

lPkX(g) x(gk), g € G.

In particular

k k+1Gj
i 4

Proof.

Restrict to the cyclic group C generated by g. Pass to an algebraic
closure of F so that x | C = y-z where y and z are sums of one-dimensio-
nal representations. The result then follows from 3.4.3 taking into
account that for a one-dimensional representation x the relation

Xk(g) = x(gk) holds.

Now assume that F = Q [ 311] where qu is a primitive n-th root of
unity. Assume that k is prime to the group order |G|. The Galois group
%*
Gal(Q[3] : Q) is isomorphic to %Z/nZ , namely so that k mod n corres-
_ k
) =3 .

Since characters of F[G}-modules take values in Q [ 3 n] we can apply

ponds to the field automorphism pX characterized by Pk(§n

Pk to such characters. Let Q [3 n] be a splitting field for G. (By a
famous theorem of Brauer it suffices to take for n the exponent of G;

see Serre [147], p. 109). Then we show

Proposition 3.5.2.

(1) ¥ x = P"x for x € R(G;Q [3 1) and (x,lGD) = 1.

irreducible too (again k prime to |G|).

Proof.

(i) Let x be the character of a matrix representation. Restrict to the
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cyclic subgroup C generated by g € G. Then the matrix for g is equi-
valent to a diagonal matrix with roots of unity u1,...,ur con the

diagonal. Then qlk(x)(g) = 3 u? = Pk( > u,) = Pk(x(g)).

(ii) Apply the Galois automorphism Pk to a matrix representation over

ofg 1.

Remark 3.5.3.
The Adams operation are, of course, independent of the field of defi-

nition. Therefore 3.5.2 holds more generally.

3.7. The Bott cannibalistic class ek.

Let R be a special ) -ring and let ¢ X be a primitive k-th root of

unity. Let P(R) € R be the subset of finite-dimensional elements in R.

Then P(R) is an additive semi-group. If X € P(R) we consider the pro-

duct
(3.7.1) o (x) :=T A_(x)er®,z[3 w
where the product is taken over all roots of tk—1 = o0 except 1. We

identify R with its image in R® 2 [3 k] under the canonical map
r—>»r @ 1. Then Gk(u) is contained in R. [In order to see this consider

the following diagram

R®, 2 [syreeessy ;] — 3 r®, 2{t ot ]
|

\

A
R » R, z [3, ]
where t1""’tk-1 are indeterminates and S1""'Sk—1 are the elementary
symmetric functions in the tj' The vertical maps are induced by sub-

stituting for tq,...,tx-q1 the roots of tk - 1 = o except 1. Then
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TTj A-t (x) is symmetric in the tj and since
3
Z [51,...,sk_1] C Z [t1""'tk—1] is an inclusion as a direct summand

we see that Trj 7\_ {(x) € R ®Z 2 [51""'Sk—1] . But the map at the

t.
J
bottom is an injection too because Z -—3Z [ 3 k] : n——n is a direct

injection;]We call it the Bott cannibalistic class ek. The following

is immediate from the definition.

Proposition 3.7.2.

(i) Eﬁ X is one~dimensional then

8 (x) =14+ x +... + xk_1.
k
(i1) If x,y € P(R) then
Sk(x+y) = ek(x) ek(y)
Since ek(1) =k ek is not in general a unit in R so that ek cannot

be extended to the additive subgroup generated by finite-dimensional
elements. In the next section on p-adic y -rings we find a remedy for

this defect.

3.8, p-~adic ¥ -rings.

Let p be a prime number. Let Zp denote the p-adic integers. One can
define Zp as the inverse limit ring inv lim Z/an. If A is a finitely
generated abelian group then A.QDZ Zp is cannonically isomorphic to the

p~adic completion of A

Ap := inv lim A/pn A.

Tensoring with Zp is an exact functor on the category of finitely

generated abelian groups. (See Atiyah-Mac Donald [11] , Ch. 10 for
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n
this and other back ground material on completions.) Groups Ap carry
the p-adic topology: a fundamental system of neighbourhoods of zero is
given by the subgroups pnAg. They are complete and Hausdorff .in this

topology.

If B is a special y -ring, then, by definition, there is a special
augmented A -ring R such that B = ker e where e is the augmentation.
Then we have the exact sequence (because e : R—3 Z splits)

0O—— B ® Zp-———-)RC@ Zp———) zp—) 0.
We want to define the structure of a special A -ring on R QDZP such
that B @ Zp is a A -ideal. We can extend the )} * by continuity if we

have shown

Proposition 3.8.1.

The A * are continuous with respect to the p-adic topology.

Proof.
k

Given i and N chose ko such that (% ) is divisible by pN for k > ko

and 1 € j € i, Then
ad (e%x) =p AN, AT AT ATe)

is contained in pN R 1f k 2 ko and 1 € 3 € i because Pj is of weight j

in the first j variables. If x-y = pkz then

i

2w - AT = T A AT e v

for k 2 k
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The proof of this Proposition shows that if a € Zp is the limit of
a sequence (an), an € Z then lim A l(anx) = AJTlim anx) = A l(ax)

and hence

= a

At(ax) = A £ (%) a € Zp

(3.8.2) at(aX) = gt(x)a X € R
Wk(ax) = a \{Jk(x).

After these preliminary remarks we define a p-adic y -ring A to be a
¥ =-ring which is the completion A = B QDZP of some ¥ -ring B which
is finitely generated as an abelian group; moreover we require that

the y -topology on B is finer than the p-adic topology.
We now describe some examples of p-adic ¥ -rings.

Proposition 3.8.3.

Let X be a finite connected CW-complex. Then the n-th y -filtration

on K(X) is contained in the n-th skeleton-filtration. In particular

the y -topology is discrete and 'ﬁ(x) ® Z_ is a p-adic ¥y -ring.

p

Proof.
Let x" be the n-skeleton on X. Then the n-th skeleton filtration
~
SnK(X) is defined to be the kernel of the restriction map
R - ~ . n=1 n-1
1% R(X)— K(X ). Any element of K({X } is represented by an ele-
ment x = [E] - (n-1) where E is an (n-1)-dimensional “undle. Hence
*

i¥ 3™y = x%(i%y) = x"(E-n+1) = 0. The relation 8,5,€ S, then

implies the result.

Let R{G) be the representation ring of the finite group G over the
complex numbers. Let R(G)—3 2 : X +— dim x be the augmentation with

kernel I(G). Then we can consider three topologies on R(G):
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(1) The p-adic topology.
(ii) The I{G)-adic topology.
(ii3i) The Y -topology, defined by the y ~filtration.
Proposition 3.8.4.
Let G be a p-group. Then the topologies (i), (ii), and (iii) coincide.

In particular I(G) @ Zp is a p-adic yw -ring.
We use the next Proposition for the proof of 3.8.4.

Proposition 3.8.5.

Let I be a y -ring which is generated by a finite number of elements

with finite y -dimension. Then the I-adic topology coincides with the

¥ —~topology.

Proof.
By definition of the y -filtration we have I,¢< 1", Let m be the

maximal y -dimension of a given finite set of generators for I. Then

+
¥ Tt applied to the monomials in the generators must lie in Iz. Since
m+1 - m+1 2 . 2 . .
¥ (-x) = - ¥ (x) mod I” we obtain Toe1 € I”. By induction one
shows I < Ik.

Proof of 3.8.4.

Put I = I(G). By 3.8.5 the topologies (ii) and (iii) coincide. Let

m = |G|. Then

(x—e(x))™ = x™e(x)™ mod p R(G)

because m is a p-power. By 3.5.1 we have q!mx = e(x) and by 3.4.3 (iv)

m .
we have q:mx = x mod p R(G). Putting these facts together we obtain
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(x-e(x))m = e(x) =~ e(x)m = 0 mod p R(G) .

This shows I < p I, hence the I-adic topology (and therefore the ¥ -
topology) is finer than the p-adic topology. One can show that mI < 12
(see Atiyah [6&] ), so that the p-adic topology is also finer

than the I-adic. (This last fact also follows from localization theorems

to be proved later in this lecture.)

As a slight generalization of 3.8.4 we mention

Proposition 3.8.6.

Let G be a p-group and X a connected finite G-CW-complex. Then

~

-~
KG(X)GD Zp is a p-adic y -ring. (KG(X) = kernel of xF— dim x)

Proof (sketch).

From the fact that X is a finite G-CW-complex one shows by induction
over the number of cells that KG(X) is a finitely generated abelian
group. By 3.8.5 the ¥ -topology coincides with the §G(X)-adic
topology. Let x° be the equivariant zero-skeleton of X. The kernel N
of r : K (X)— KG(XO) is nilpotent (compare Segal [142] , Proposition
5.1). Moreover KG(XO) E g R(Gx), the product taken over the orbits

of x°. Put I = RG(X). By Atiyah-Mac Donald [41] , Theorem 10.11, the
p-adic topology on rI is induced from the p-adic topology on KG(XO).
Hence from 3.8.4 we see that for some t,rItc prI, or equivalently,

It ¢ pI + N. But if Nk = O then Itk < (pI+N)k < pI. This shows that the

I-adic topology is finer than the p-adic topology.

Now we continue with the general discussion of p-adic ¥y -rings
A =B @Zp. If B is the n-th y -ideal of B we let A(n) = B @ Zp be

its closure. From 3.8.1 we obtain that the A(n) are ¥ —-ideals. By
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definition of a p-adic ¥ ~ring the topology defined by the system
A{n), n 2 1, is finer than the p-adic topology; in particular this

topology is also Hausdorff and one has
(3.8.7) A 2 inv lim A/A(n).

A(n) contains the n-th y -ideal An of A but An need not be closed in

the p-adic topology. We observe

(3.8.8) A(n)/A(n+1) = (B /B .4) ® 2,

because G)Zp is exact on finitely generated abelian groups. From 3.4.4

and 3.8.8 we obtain

Proposition 3.8.9.

A(n)/A(n+1) is a p-adic y -ring. The product of two elements is zero.

For a € A(n)/A(nt+1) we have

A (a) = (-1) k a

Y 7 (a)

[
=
o]

We shall show that ¥ k acts on A(n)/A(n+1) as multiplication with
a certain constant c(k,n) independent of the ring A. From

xk(x) = Zk(x+k—1) one computes

k :
(3.8.10) clk,n) = 3 (-1y -1 407 k=1,
i=
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where

o0 Y -
£(60) = 2 ._, (-7

n j=

is a certain formal power series in Z[[t]]. For n = 1 this isa geometric

series with sum
fT(t) =t .

If we differentiate fn(t) formally with respect to t we obtain the

recursion formula

an(t) = t{1-t) f;)(t)

so that fn(t) is actually a polynomial of degree n
= n : ]
£(6) = 25y e(,mitn.

In particular xln = o on A(n)/A(n+1) for m » n.

3.9. The operation s k*

We describe a variant of the Bott map ©, for p-adic y -rings A. A

k
topology shall always be the p-adic topology if not otherwise specified.

A series Z a ., with a. & A(r), converges in the p-adic topology

r»i
since it converges in the filtration topology (A(n)\ n 2 1) which is

finer. Therefore the set 1 + A of symbols 1 + a, a € A, with multipli-
cation (1+a){14b) = 1+a+b+ab is a group. It is a compact, topological

group, with neighbourhood basis of 1 given by (1+pnA ln 2 0), or

equivalently (1+pnA+A(n) |n 2 1).



48

Let k be a natural number prime to p. Consider Zp (3 k] where §]<
is a primitive k~th root of unity in an algebraic closure of the p-
adic numbers. The product TI' (1-u) over all roots u of tk -1=0
except 1 is equal to k, hence a unit in Zp. Therefore 1-u is a unit in
Zp (3 k] and hence u/(u-1) € Zp [3 k] . The series
¥ (@) =1+ y'(a) wiu-1) + y2(a)(u/u-12 + ...
u/(u-1) *
converges in the p-adic topology on 1 + A @ 7 Zp [3 k] hence defines
p
an element g'u/(u_1)(a) in this multiplicative group. We define

(3.9.1) 9, (a) = Ty (a) €1 +2A@ zp[Sk]

u/ (u-1)
where the product is taken over all roots of tk - 1 =0 except 1. The
Zp—algebra Zp [3 k] is free as Zp—module with Zp-1 as a direct summand;
therefore A = A ®, Zp cA®, Zp [2 k] as a subring. (As to the
freeness of the modﬁle: Let L € Qp [t] be an irreducible polynomial
with L(% k) = 0. Then L divides the cyclotomic polynomial ¢k' Since Zp
is factorial we can choose for L a monic polynomial in Zp (t] ., by the
GauS-Lemma. Then Z, [3,1F Zy [t]/L and the right-hand side is clearly
a free module.) We claim: gk(a) € 1 + A. This follows from the fact
that a coefficient of a monomial in the y i(a) in the expansion of
gk(a) according to definition 3.9.1 is symmetric in the roots of

tk -1 =0 (compare 3.7).

Proposition 3.9.2.

The map

gk : A —> 1 4+ A

from the additive compact group A into the multiplicative compact group

1 + A is a continuous homomorphism. It commutes with the Adams operations
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and maps A(n) into 1 + A(n).

Proof.
gk is a homomorphism: directly from 3.3.2 and 3.9.1. Since

n pn n N pn N
g (pra) = (3k(a)) and (1+a)® € 1 + p + A(N) if ( ;)= Omodp
for 1 £ i € N we see that ¢ Kk is p-adically continuous. Since J
commutes with the ¥ ' it commutes with ? Since A(n) is a ¥ -ideal

9 kA(n) C 1 + A(n).

Remark 3.9.3.

If A is a ring without identity we can adjoin an identity in the
standard manner: On the additive group 2 x A define a multiplication
(m,a) (n,b) = (mn,mb+na+ab). Then 1 + A = {(1,a)‘a.61\} C 2 x A, If
B C A is an ideal and if 1 + B and 1 + A are groups then

(1+A) /(1+B) ¥ 1 + A/B.

3.10. Oriented ¥ -rings.

A ¥ -ring A is said to be oriented if

(3.10.1) X () = ¥, . (a), a € A.

This terminology has the following reason: Suppose A is the augmentation

ideal of the special augmented finite-dimensional A -ring R. Then

Proposition 3.10.2.

A is oriented if and only if for every finite-dimensional element x,

of dimension n say, Ar(x) = A" T(x) for all r.

Proof.
If 3.10.1 is satisfied for a, and a, then for a;-a, too. The equation
2 = AT implies A t(x) =+ A 1/t(x) and this yields
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¥oxmn) = AL (xen) = z\t/(1_t)<x)(1—t)“
=t A gy e
Faogxmm) = A g cem) = A G0 (=) /6 T
=t A (1-t) /£ XD -

Note that n must be the augmentation of an n-dimensional element x

because An(x) = 1, so that x-n € A. The same calculation gives
AT(x) = A"T(x) from 3.10.7.
. . . r n-r
We call R an oriented A -ring if AT(x) = A (x) whenever x

is n-dimensional.

Example 3.10.3.

Let KOG(X) be the Grothendieck ring of real G-vector bundles over the
compact G-space X where G is a compact Lie group. An n-dimensional G-
vector bundle E is called orientable if the n-th exterior power AT
is the G-vector bundle X x R —» X with trivial G-action on R. If E is

orientable then ATE 2 A" TE. Hence

Ks0,(X) = {E - F € KO (X) | E,F orientable }

is an oriented A -ring and the associated augmentation ideal is an

oriented ¥ -ring.

If x is a one-dimensional element in the oriented A -ring then

7\1 (x) = A%(x) = 1. Therefore one should think of such a ring as

containing essentially only even-dimensional elements.
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We now consider a refinement of the operations ek(resp. e k) for an

oriented A -ring R (a p-adic oriented y -ring A).

Let X € R be an element of dimension 2m. Let k be an odd integer.
Let J a set of k-th roots of unity u # 1 which contains from each pair

u,u_1 exactly one element. (Since k = 1(2) we have u # u_1.) The product

m -2m . . -
k ﬂ{ue J(1—u) is an algebraic integer because 7Tu#1(1 u) = k.
Therefore
m 2m
(3.10.4) K'TWoey A ,@0-werlZ, ]

where 3 x 1s a primitive k-th root of unity. The fact that R is

oriented implies

2m

mo_ (x) (1-1/u) "™,

(3.10.5) A _ =) (1-w) = “1/u
Therefore 3.710.4 is independent of the choice of J. We call this

element

or
ek (x) .
Proposition 3.10.6.
(i) If x and y are even-dimensional then eir(x+y) = egr(X) Ggr(y)-

or

(ii) The square of 8,7 (x) is o, (x).

k

(1i1) eir(x) € R.

Proof.
(i) follows directly from the analogous property of A £ (ii) follows
from the definitions, using 3.10.5. (iii) Using 3.10.5 again one can

see that eir(x) is formally invariant under the Galois group of Q(3

»

over Q.
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If A is an oriented p-adic x -ring one defines the square root of

? | bY
or _

(3.10.7) 3, (x) = TrueJ Xu/u_1(x)
Using x't = X 1-t one shows that the following holds
Proposition 3.10.8.

. or
(1) s (x+ty) = ¢ Er(x) e ir(y).
(ii) The square of gir(x) is gk(x).

(1ii) 9p7(x) € 1 + A,

We now compute eir(z) for a two-dimensional element z. We have
A _u(Z) =1 - uz + u2. If we formally write z = x+y with xy = 1 then
}\_u(z) = (1-ux) (1-uy) and therefore
-2 1-ux 1—51
(3.10.9) A (z)(1-u) T =y —/—= . 2
-u 1-u 1-u 1

If we multiply these expressions according to the definition of eir(z)

we obtain

(3.10.10) o % (z) = ky /2 Gewy TGew T
u u
=y T2 T
(x(k-1)/2 g/ y(k-1)/2)_

This last expression may also be written

(3.10.11) $K/2 _ K2

2 -1/2
X - X
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where we use this at this point merely as a suggestive formula without

1/2 or

having x K

defined. Actually o, (2) is an integral polynomial in z:

The polynomial

-1
Pk(t) = ﬂ'ue.J (t-(u+u ))
is contained in Z [t] and has degree (k-1)/2, e. g. P3(t) = 1+t,
PS(t) = —1+1+t2. One has for a 2-dimensicnal z
or _
(3.10.12) 8y {z) = Pk(z).

A proof follows from the identity

k=1

£ P 2 2 2k

t24t7%) = (e, 4225 (14

K

which can be seen by observing that both sides are monic polynomials

of degree 2k-2 having the 2k-th roots of unity = +1 as roots.

From 3.10.10 one obtains for a 2-dimensional z the identiy

(3.10.13) T (z) =1+ wlat vl v L.+

° (k—1)/2Z

3.11. The action of ¢ k on scalar X -rings.

We consider p-~adic y -rings A with trivial multiplication, like
A(n)/A(n+1) in Proposition 3.8.9, on which q/k is multiplication by

n

k™ and  AX multiplication by (-1)5 k™71,

Then we have seen in 3.8.

that
¥ (¥) =1+ £ (t)x

where fn(t) in an integral polynomial defined by the recursion formula
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(0 = ¢, £aq(8) = t(1-t) £ (t).
Therefore Sy is given by
u 1
gpx) = T (+xf (29)) =1 + x 2, £,

We have to compute the rational number (Galois theory)

u =
Z-u £a(Gmg) =2 e (0
the sum being taken over the k-th roots of unity u # 1. Put hn(t) =

_ t
a fn(t—1

).

Proposition 3.11.1.

We have the following identity between formal power series in x and t

over Q

n
t X _ X
log(1 + 4=¢ (1=e™)) = 2 h (¢) %

(The meaning of the left hand side is: Use the power series

2 3
log{l+y) =y - %? + %? - ... and replace y with the power series
T%g (1-e®) which has no constant term.)
Proof.
We put
t X xn
K(t,x) i= log(l+ 50 (1-e")) = T g (8) X

where the gn(t) are certain power series in t. We differentiate K(t,x)

with respect to t and x and obtain
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hence

n
We apply this differential equation to Z.n>1 gn(t) %T and compare

coefficients, thus obtaining

and these are precisely the recursion formulas for the hn.

If we replace t in 3.11.1 with a k-th root of unity u # 1 we obtain

an identity between formal power series in x over Q( 3.). We compute

>
>k
the bn(k) as follows

n

3 X

1—uex
T-u

u#tl

X
log TTu 1~ue log & (1+e%+...+eK71)xy

-1 1-u k
ekx— ex—1
= log ™ - log %
Ei n xn
= Ly ST ag oy
e¥-1 > X"
if we use the expansion log ol Sz a T
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The a, are easlly expressed in terms of Bernoulli numbers Bm which are

defined by
m
t t
=1 + B —
et—1 Zm>,1 m m!
This yields immediately B1 = - %,qu+1 =0 for m2 1. If we differen-

tiate the defining series of the a, with respect to x we obtain

n-1 n-1
S X

+ B
‘Llla o n n!

na X =1 =
nz 1 n n!

M

xX|=

and then
n
B
an = = for n > 1, a, =

Collecting these computations we obtain

Proposition 3.11.2.

§y ¢ A)/A(+1) —> 1 + A(n)/A(n+1) 1is the map

B
Xy 1+ (kP-1) Tnx .

We now come to oriented ¥ -rings. From the recursion formula for

the rational functions hn(t) one proves by induction

(3.11.3) ey = )™

h (t)

F
t
|

(=™ £ (£) .

The previous calculations yield
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Proposition 3.11.4.

Let A be an oriented p-adic y -ring. Then

9?‘ : A(2n) /A(2n+1) —> 1 + A(2n)/A(2n+1) is the map
B
2n 2n
Xb——>1 + (k777=1) an X .

Remark 3.11.5.

Equating coefficients in J xr(a)tr = Z Y r(a) (‘I-t)r one finds

R T T I S DLy WSV S

where c has y -filtration at least k+2. This gives by induction

A(2n-1) = A(2n) for n 2> 1.

3.12. The connection between 6, and ¢

k k'

The map ek was only defined for finite~dimensional elements x. In order

to extend it to negatives of such elements one must have that Gk(x) is
a unit. This can sometimes be accomplished by passing to the p-adic

completion. We describe the formal setting.

Let R be an augmented special A -ring with augmantation e : R— 2

and augmentation ideal B = ker e. Moreover we assume:

(i) R is finitely generated as an abelain group by Xy = 1, yresrXy

which are finite-~dimensional.
(ii) e(xr) = dim X for r = 1,...,mn.

(iii) The y ~-topology on B is finer than the p-adic topology.

We then have e(x) = dim X whenever x is finite-dimensional and

moreover ¥ t(x-—e(x)) is a polynomial in t of degree £ dim x, hence

¥- dim (x-e(x)) £ dim x.
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Proposition 3.8.5 shows that the B-adic topology coincides with the

¥ —topology. The ring A = B @ Zp is a p-adic y ~-ring, by (iii) above.

Proposition 3.12.1.

et i : R— R Zp be the canonical map and (k,p) = 1. Then for

finite-dimensional x € R the element i ek(x) is a unit in R® 2z _.

Proof.

If dim x = n then eekx = erx = ekn = k", Put r = kn, then (r,p) = 1
and r | exists in By Therefore r-1iekx = 1+a, a € B ® Z,- But

1+A € B ® Zp is a multiplicative subgroup. If (1+a) (1+b) = 1 then

r—1(1+b) is the inverse of iekx.

We may now extend 8, to a homomorphism R —= Zp@ R. If
e' : R G)Zp-—-» Zp is induced by e : R-—>2Z then, for x,y finite-

dimensional

e'@k(x—y) = kS¥TEY .
Therefore ek induces a homomorphism

8, : B-—> 1 + A, A=B®Zp.

Proposition 3.12.2.

The following diagram is commutative:

B
\\
\ .
. N\ Sk (x,p)} = 1
\‘ )
i
A ———— 3 14A .

Q
>k
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Proof.

Let m = dim xX. Then xt(x—m) is a polynomial of degree £ m. Using

¥y (emqy (XM A_pm) o= A_ (x)

and the definition of ek and 8y We obtain

6k(x) = gk i(x-m) ek(m)
and hence ek(x-m) = 9k i(x-m). This suffices for the proof.

3.13. Decomposition of p-adic y -rings.

Let A be a p-adic x -ring. A fundamental system of neighbourhoods of
zero for the p-adic topology may be taken as (pnA + A(n)l n 2 1). The
natural numbers N are considered as a (dense) subset of the p-adic

numbers.

Proposition 3.13.1.

The map
k
™N X A ._ﬁ At (k’a) '_____% q) (a)

is uniformly continuous.

Proof.
Let M = 2N and suppose pM divides s. If yreoorXy, have y ~dimension

one then

(Zx) - Y(Zx) = x4 ) 5-1)
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where Sj is a symmetric function of weight 2 j in the X, for j = 1,N.
Hence given N > 1 we have shown that there exists M 2 O such that pM]s
implies

v - w0 e Y A+ am

for all x which are a sum of elements of y -dimension one. By the
verification principle for special ¥y =-rings this holds for all x.
Hence our map is uniformly continuous in the first variable. Since it

is a homomorphism in the second variable it is uniformly continuous.

We can now extend the map (k,a) +—> qlk(a) by continuity to a map

Zp X A -——3 A, denoted with the same symbol. Therefore %/k : A —>A is

defined for all k € Zp as a continuous homomorphism. Moreover we still
have \yk 4'1 = q’kl. If ™ denotes the compact topological group of

p-adic units then A becomes a topological [’ -module.

By Hensel's Lemma Zp contains the roots of xp_1 - 1 = 0. This is a
cyclic group of order p-1 generated by d, say. The additive group A

splits into eigenspaces of W d

-2
A= @® P°° a,
(3.13.2) i=o0 1

Ai = X € A ‘ Yy dx = dlx } .

(This is so because A may be considered as Zp [ c] module, where C is
the cyclic group generated by T and T acting as VY d; and the group
algebra Zp[ C] splits completely because Zp contains the (p-1)-th roots

of unity). Since qid is a ring homomorphism we have

(3.13.3) A, A. CA, .
i 7] i+3
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so that A becomes a Z/(p-1)-graded ring. Let U be the kernel of the re-

duction mod p Z; —— Z/pZ. Then U acts on each group A, because u €U

commutes with qld. Put

(3.13.4) Ai(n) = Ai n A(n).
Then

Proposition 3.13.5.

A . (n) = A;(n+1) if n # i mod (p-1).

Proof. It follows from 3.8.9 that d acts on Ai(n)/Ai(n+1) as
multiplication by d". on the other hand, by defintion of Ai' it acts
as multiplication by a'. Hence if the quotient is non-zero we must

have n= i mod (p-1).

3.14. The exponential isomorphism ¢ K*

We now come to the main result in the theory of p-adic y -rings which
says that ¢ Kk is an isomorphism if k generates the p-adic units (p#2).
This is the algebraic reformulation of Atiyah-Tall [7%] of the theorem
J'(X) = J"(X) of Adams [2] , which is one essential step in the
computation of the group J(X) of stable fibre homotopy classes of vector

bundles over X.
: . x . . R
Let A be a p-adic g -ring. The group Zp is topologically cyclic if
P # 2. An integer k is a topological generator if and only if k generates

(z/p%)*.

Theorem 3.14.1.

Let A be a p-adic ¥ -ring (p#2). Assume that A(n) = A(n+1) for

n ? O mod p-1. Let k generate the p-adic units. Then
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. _ +
Qk A — 1 A
is an isomorphism.

Proof.
We have A = inv lim A/A(n), 3.8.7. We have a commutative diagram with

exact rows (see 3.9.2 and 3.9.3)

0.—-3 A(n)/A(n+1) —3 A/A(n+1) —3 A/A(n) ——= 0O

| |

\o ‘o 2

|* k |‘k I k
|

: l !

00— 1 + A(n)/A(n+1) —> 1 + A/Aa(n+1)— 1 + A/A(n)— O

Therefore it suffices to prove the theorem for A(n)/A(n+1). In that
case g, is the map a+— 1+d(k,n)a where d(k,n) € Zp is independent

of the particular ring, hence is an isomorphism if d(k,n) is a unit. By
assumption we only have to consider the case n = O mod p~1. We have
computed the numbers d(k,n) in 3.11.2 and it follows from the Clausen-
von Staudt Theorem (Borewicz-Safarevic [30] , p. 410) that d{(k,n) is

a unit in Zp if k is a p-adic generator and n = O (p-1), Actually it
has been observed by Atiyah-Tall [4%] , p. 283 that the results of
3.11 and the Clausen-von Staudt theorem is not necessary. One only
needs to produce a p-adic ¥ ~ring such that A(n)/A{(n+1) # O for

nx= 0 (p-1) and §]< is an isomorphism. We shall describe such an

example in a moment and thereby completing the proof of Theorem 3.14.1.

Example 3.14.2.

Let R(Z/p;Q) be the Grothendieck ring of Q [ Z2/p ] -modules. There are

two irreducible modules: The trivial module 1, and V which splits as
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W+ W + ... + Wp_1 over the complex numbers. Hence the augmentation

ideal I is the free group on a single generator x = 1 + W +...+ wp-1-p.
By 3.5 the Adams operations are given as follows: kpk = id if (k,p)=1,
'+'k = 0 if p/k. Evaluation of characters at a generator g of Z/p gives

an isomorphism I — pZ : X $—3 -p. We have
_ p-1 i _ _ i
¥ x) = Wi, ¥ w-1 = T, (0-t) +We),

and evaluating at g maps the right hand polynomial (short calculation)
into (1—t)p - (—t)p. Therefore a’r(—p) = 0 for r 2 p and p ' yr(—p)

for 1 € r € p-1. Since Y P acts on In/In as multiplication by pn

+1

and \ P = 0 we see that In/I is a p-group (cyclic in this case).

n+1

Moreover In/In is non-zero only if n= O (p-1) because k, (k,p)=1,

+1
n . . . p-1 p-1
acts as k' and as identity. Since P (-p) = (=1} p the lowest
power of p attainable in In is ( ¥ p-T (—p))v where (v-1)(p-1)< n ¢ v(p-1).
Hence In/In+‘I = Z/p for n= O (p-1) and the p-adic topology and the

¥ ~topology coincide. We now compute § X on In/In+1® Zp = In/In+1

for n = O (p-1). A generator for In/In is the image of pr. Hence

+1

-1

= - - L,P P
8, = g,6p) = T (- =5 (=)
S GmwP et KB
u P E

Since k generates the p-adic units m = p—1 (kp_1—1) is an integer prime

to p. We obtain

-1 r-1

r
?k(Pr) = .?k(p)p = (1+mp)P = 1 + mpr mod er

so that @

$x Since

is on In/InH the map gk(a) = 1+4ma € 1 + Iﬁ/In+1'

In/In+1 = Z/p this is an isomorphism.
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Remark 3.14.3.

We know from 3.11. that for n = r(p-1) Sy in the example above is
B
the map ar—>1 + (kn—1) 7? a and that an is p-integral. We obtain
n Bn r Bn Bn
m = (k'=1) - F ((14mp) ~-1) - TP - F -m(an) mod p. Hence

an = -1 mod p. This is one of the von Staudt congruences.

We now describe certain instances where the hypothesis of Theorem

3.14.1 is fulfilled.
Let A be any p-adic y -ring. In 3.13 we have described a splitting

of A into eigenspaces Ai of Adams operations (i = 0,1,...,p-2). Then

?k induces a map

E]( : AO -_— 1 + Ao

and by 3.13.5 we can apply the Theorem to it:

Proposition 3.14.4.

Let A be a p-adic y -ring, p # 2. Let k be a generator of the p-adic

units. Then

Sy T A, ——> 1 + A

is an isomorphism.

Proposition 3.14.5.

Let A be a p-adic ¥ -ring. Assume that qlk = id for (k,p) = 1. Then

A(n)/A(n+1) = 0 for n # O (p-1).

Proof.

For x € A(n)/A(nt+1) we have x = kx = k"x and k"-1 € Zs'for ng Oo(p-1).
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Let A be a p-adic yx -ring. Put

(3.14.6) a = {aly¥a=a, all x}
A, =a/m, N={a- ¢ a|aen, all k}.
r
(1+2) = {1+a | y*a = a, all x ]
(1+2) = (1+A)/M, M = { (1+a)/ w®(1+a) |aea, all x}.

Since @ X commutes with the Adams operations we have induced maps

r P
(8 & ——— (1en)
(3.14.7)
(Sk)r, : Ap————>(1+A)‘_,

Theorem 3.14.8.

If p # 2 and k is a generator of the p-adic units then the maps 3.14.7

(g,) and (g,),
are isomorphisms.

" Proof.

One first shows: If O 3 X -~ Z — ¥ —3 0 is an exact sequence of p-
adic ¥ =-rings and the Theorem is true for X and Y, then it is true for
Z, The following diagram with exact rows (ker- coker sequences) is

commutative

n n r

0 —3X — 32 ——3Y > X y Z Y _—>0
| I I B P r ""
A

O —> (1+X) -~ (1+2) — (1+Y) —:"(1+X)P—) (1+Z)r'—) (1+Y)r’—)O.
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One applies the five lemma. (To establish the ker- coker sequence note

that

is exact if k is a generator of the p-adic units). The Theorem is true
r

for A(n)/A(n+1): For n§0(p-1) A(n)/A(n+1) =0, (A(n)/A(n+1)), = 0;

for n= O(p-1) ?k itself is already an isomorphism by 3.14.1. By the

first part of the proof the Theorem is true for all A/A(n). From
. . r r
inv lim (A/A(n) ) = (inv lim A/A(n))

and an analogous equality for (1+A)/(1+A(n)) the Theorem for A follows.

(Note that "invlim" is exact on compact groups.)

We now discuss analogous results for p = 2 where oriented ¥ -rings

are needed. The group of 2-adic units [ = Z;

cyclic, but '/ {+ 1} is; e.g. 3 is a generator. Since -1 € Zp the

operation QI_1 is defined for p-adic y -rings, see 3.13.

is not (topologically)

Proposition 3.14.9.

If A is an oriented p-adic y -ring then $1_1 = id.

Proof.

If x has y -dimension 1 then 1+x has ) -dimension 1. Therefore

1= A%2+2x) = 2a%(242x) = Al(1ex)2 = (14x)°2

1 1

so that ql_ (x) = Tie 1 = x. Hence the Proposition is true for a

sum of one-dimensional elements. Now apply a "verification principle”.
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Theorem 3.14.10.

Let A be an oriented p-adic y -ring (p any prime). Let k be a generator

of T/{+ 1} . Then

gir t A ———3% 1 +A
induces isomoxphisms
or M or
(8,7 and (g ) pe

If p =2 then gir is an isomorphism.

Proof.

Let p = 2. We have to show that A(n)/A(n+1} is mapped isomorphically.

By 3.11.5 this group is zero if n = 1 mod 2. So let n = 2m. Then
B

gir(a) =1 + d' (k,n)a and d'(k,n) = (k"-1) 2—2 €z, by 3.11.4. In
this case if n = 2%d, d odd and r 2 1, then X" = 1 + 2572 ¢, ¢ odd,
because k is a generator of Z;/ { + 1} . Hence (kn-1) l—z-g- = —g 2Brl and by
the Clausen-von Staudt theorem 2B21ﬁ5 -1 mod 2. Therefore 4d'(k,n) & Z;—.
If one wants to avoid the Clausen-von Staudt theorem one can compute

¢ gr in a special case as in 3.14.2. For p # 2 2d'(k,n) = d(k,n) ez;

hence d' (k,n) € Z:. So one can proceed as in the proof of 3.14.8.

3.15. Thom-isomorphism and the maps Gk’ Oir.

Let G be a compact Lie group, E —» X a complex G-vector bundle over

the compact G-space X. If M(E) is the Thom space of E we have the Thom

class t(E)& ?G(M(E)) and 'IEG(M(E)) is a free K_(X)-module with a single

G

generator t(E). Therefore we must have a relation of the type

Wkt(E) = gk(E)t(E) with a uniquely determined element Sk(E) GKG(X) .
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Proposition 3.15.1.

The equality O, (E) = ’ék(g) holds.

Proof. Both Qk and Ek are natural for bundle maps and homomorphic from

addition to multiplication. By the topological splitting principle it

therefore suffices to proof the equality for line bundles E. Let

¥ . %C(ME)———% KG(X) be induced by the gzero section. Then ékt(E)= 1-E
and therefore 1-EX = ¢*(1-8) = s* ¢y t(p) = ¥ (@ _(B)t () =T _(®) (1-E).
This implies Qk(E) = 1+1§:+...+Ek—l (look e. g. at X a complex projective

space). Now use 3.7.2.

For real vector bundles and @oi the situation is analogous but slightly
more complicated. We describe the ingredients. Let E —> X be a real
G-vector bundle of dimension 8n which has a Spin(8n)-structure. With
this Spin-structure one defines a Thom-class t(E) € ibG(M(E)) and the

generalized Bott periodicity (Atiyah [10] ) says that again gbp(M(E))

is a free KOG(X)—module on t(E). We define 5§r(E) by the equation

v em) = 8PP (E)E(E). If k is odd then we also have defined in 3.10
the element Qir(E) because E, having a Spin-structure, is orientable.

Propesition 3.15.2.

For k odd and E a G-vector bundle with Spin(8n)-structure the equality

Gor(E) = aor(E) holds. In particular %

" °T(g) is indpendent of the Spin-

k

.

structure for odd k.

Proof. Using 3.10.10 a proof is contained in Bott [31] , Proposition

10.3, Theorem B on p. 8l and Theorem C" on p. 89.

3.16. Comments.

This section is based on Atiyah-Tall [44] . That paper axiomatizes

certain basic results of Adams [11 ., [2] . The reader should
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also study the mlation-ship between A -rings, formal groups, Witt-
vectors, and Hopf-algebras (Hazewinkel [35] ). It would be interesting
to investigate the topological significance of the number theoretical
properties of the Bernoulli numbers. We also mention the exponential
isomorphism for A -rings obtained in Atiyah-Segal [13] ; this is
related to ?‘k but gives an isomorphism on the whole ring (under a

suitable hypothesis).

3.17. Exercises.

1. Show that the tensor product of special A-rings A,B is a special
A -ring in a canonical way such that the maps A—» A® B, B—» A @ B

are A -homomorphisms.

2. Show that there exists a free special X -ring U on one generator
u € U. This ring is characterized by the following universal property:
Given a special A -ring R and x¢€ R there is a unique homomorphism

f + U—>R of A-rings such that f(u) = x.

3. Show that if R is special A-ring and x € R n-dimensional then

there exists a special A -ring S > R such that x = x +...+xn where

1

the xie S are one-dimensional (splitting principle).

4. If S is a finite G-set let Ai(S) be the set of subsets McS with
IM] = i. The G-action on S induces a G-action on Ai(S). Show that the
S > Ai(S) induce a A-ring structure on A(G). This structure is

in general not special.



