3. λ-Rings.

We present the theory of special λ-rings. The algebraic material is mainly taken from the paper [14] by Atiyah and Tall. The reader should consult this paper for additional information. The main theorem to be proven here is an exponential isomorphism for p-adic λ-rings which is an algebraic version of the powerful theorem $J^{\prime}(X)=J^{\prime \prime}(X)$ in the work of Adams [2] on fibre homotopy equivalence of vector bundles.

3.1. Definitions.

Let R be a commutative ring with identity. A λ-ring structure on R consists of a sequence $\lambda^{n}: R \longrightarrow R, n \in \mathbb{N}$, of maps such that for all $x, y \in R$
(3.1.1)

$$
\begin{aligned}
& \lambda^{0}(x)=1 \\
& \lambda^{1}(x)=x \\
& \lambda^{n}(x+y)=\sum_{r=0}^{n} \quad \lambda^{r}(x) \quad \lambda^{n-r}(y)
\end{aligned}
$$

If t is an indeterminate we define
(3.1.2)

$$
\lambda_{t}(x)=\Sigma_{n \geqslant 0} \lambda^{n}(x) t^{n}
$$

Then 3.1 .1 shows that

$$
\begin{equation*}
\lambda_{t}: R \longrightarrow 1+R[[t]]^{+} \tag{3.1.3}
\end{equation*}
$$

is a homomorphism from the additive group of R into the multiplicative group $1+R[[t]]^{+}$of formal power series over R with constant term 1 .
shall see later how exterior powers give λ-ring structures on certain Grothendieck groups.

A ring R together with a λ-ring structure on it is called a $\boldsymbol{\lambda}$ ring. A λ-homomorphism is a ring homomorphism commuting with the λ-operations. We have the notions of λ-ideal and λ-subring.

Some further axioms are needed to insure that the λ-operations behave well with respect to ring multiplication and composition.

Let $x_{1}, \ldots, x_{p}, y_{1}, \ldots, Y_{q}$ be indeterminates and let u_{i}, v_{i} be the i-th elementary symmetric functions in x_{1}, \ldots, x_{p} and y_{1}, \ldots, y_{q} respectively. Define polynomials with integer coefficients:
(3.1.4)

$$
\begin{aligned}
& p_{n}\left(u_{1}, \ldots, u_{n} ; v_{1}, \ldots, v_{n}\right) \text { is the coefficient of } t^{n} \text { in } \\
& \Pi_{i, j}\left(1+x_{i} y_{j} t\right) .
\end{aligned}
$$

(3.1.5)

$$
\begin{aligned}
& P_{n, m}\left(u_{1}, \ldots, u_{m n}\right) \text { is the coefficient of } t^{n} \text { in } \\
& \pi_{i_{1}} \leqslant \ldots<i_{m}\left(1+x_{i_{i}} . \ldots \cdot x_{i_{m}} t\right) .
\end{aligned}
$$

Then P_{n} is a polynomial of weight n in the u_{i} and also in the v_{i}, and $P_{n, m}$ is of weight $n m$ in the u_{i}. If we assume $p \geqslant n, q \geqslant n$ in 3.1 .4 and $p \geqslant m n$ in 3.1 .5 then non of the variables u_{i}, v_{i} involved are zero and the resulting polynomials are independent of p, q.

A $\boldsymbol{\lambda}$-ring R is said to be special if in addition to 3.1 .1 the following identities hold for $x, y \in R$

$$
\begin{align*}
\lambda_{t}(1) & =1+t \\
\lambda^{n}(x y) & =P_{n}\left(\lambda^{1} x, \ldots, \lambda^{n} x ; \lambda^{1} y, \ldots, \lambda^{n} y\right) \tag{3.1.6}\\
\lambda^{m}\left(\lambda^{n}(x)\right) & =P_{m, n}\left(\lambda^{1} x, \ldots, \lambda^{m n} x\right) .
\end{align*}
$$

One can motivate 3.1 .6 as follows. An element x in a λ-ring is called n-dimensional if $\lambda_{t}(x)$ is a polynomial of degree n. The ring is called finite-dimensional if every element is a difference of finite dimensional elements. If $x=x_{1}+\ldots+x_{p}$ and $y=y_{1}+\ldots+y_{q}$ in a λ-ring and the x_{i}, y_{i} are one-dimensional then

$$
\lambda_{t}(x)=\pi\left(1+x_{i} t\right)=1+u_{1} t+\ldots+u_{p} t^{p}
$$

(u_{i} the i-th elementary function of the x_{j} as above) and we see that the second identity of 3.1 .6 is true for such x, y. If moreover the product of one-dimensional elements is again one-dimensional then the third identity of 3.1 .6 is true for $x=\Sigma x_{i}$. The axioms for a special
λ-ring insure that many theorems about λ-rings can be proved by considering just one-dimensional elements. We formalize this remark.

One defines a λ-ring structure on $1+A[[t]]^{+}$by:
"addition" is multiplication of power series.
(3.1.7) "multiplication" is given by $\left(1+\sum a_{n} t^{n}\right) \circ\left(1+\sum b_{n} t^{n}\right)=1+P_{n}\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right) t^{n}$.

The " λ-structure" is given by

$$
\Lambda^{m}\left(1+\sum a_{n} t^{n}\right)=1+\Sigma p_{n, m}\left(a_{1}, \ldots, a_{m n}\right) t^{n}
$$

Proposition 3.1.8.
$1+A[[t]]^{+}$is a λ-ring with the structure 3.1.7.

Proof.
Compare Atiyah-Tall [14], p. 258.

Using this structure one sees that A is a special λ-ring if and only if λ_{t} is a λ-homomorphism. Moreover one has the Theorem of

Grothendieck that $1+A[[t]]^{+}$is a special λ-ring (Atiyah-Tall loc. cit.)

One can use 3.1 .8 to show that certain λ-rings are special.

Proposition 3.1.9.
Let R be a λ-ring. Suppose that products of one-dimensional elements in R are again one-dimensional; in particular 1 shall be one-dimensional.

Let $R_{1} \subset R$ be the subring generated by one-dimensional elements. Then R_{1} is a λ-subring which is special.

Proof.
Every element of R_{1} has the form $x-y$ where x, y are sums of onedimensional elements, say $x=x_{1}+\ldots+x_{p}, y=y_{1}+\ldots+y_{q}$. Then $\lambda^{i}(x)$ is the i-th elementary symmetric function in the x_{j} hence a sum of onedimensional elements. Moreover $\lambda^{i}(-y)$ is an integral polynomial in the $\lambda^{j}(y)$. Hence $\lambda^{n}(x-y)=\Sigma_{i} \lambda^{i}(x) \quad \lambda^{n-i}(-y) \in R_{1}$. The remarks before 3.1 .7 show that $\lambda_{t} \mid R_{1}$ is a ring-homomorphism and $\lambda_{t} \lambda^{i}(x)=$ $=\lambda^{i} \lambda_{t}(x)$ if x is a sum of one-dimensional elements and these two facts imply $\lambda_{t} \lambda^{i}(-x)=\lambda^{i} \lambda_{t}(-x)$ and then $\lambda_{t} \lambda^{i}(x-y)=\lambda^{i} \lambda_{t}(x-y)$.

Remark 3.1.10.
One can show (Atiyah-Tall [14]) - and later we shall use this fact that a λ-ring R is special if and only if for any set a_{1}, \ldots, a_{n} of finite-dimensional elements in R there exists a λ-monomorphism $f: R \longrightarrow R$ such that the $f a_{i}$ are sums of one-dimensional elements. This is called the splitting principle for special λ-rings.

That a λ-ring structure, even if not special, may be very useful can be seen from the following Proposition due to G. Segal.

Proposition 3.1.11.
Let R be a λ-ring. Then all z-torsion elements in R are nilpotent.

Proof.

Let a be a-torsion element, say $p^{n} a=0$. Then

$$
1=\lambda_{t}(0)=\lambda_{t}(a)^{p^{n}}=(1+a t+\ldots)^{p^{n}} \equiv 1+a^{p^{n}} t^{p^{n}}+\ldots \bmod p A
$$

and hence $a^{p^{n}}=p b$ for some $b \in A$. Therefore

$$
a^{\left(p^{n}+1\right) n}=(p a b)^{n}=\left(p^{n} a\right)\left(a^{n-1} b\right)=0 .
$$

3.2. Examples.

a) The integers may be given a λ-ring structure by defining $\lambda_{t}(1)=1+\sum m_{n} t^{n}$ where $m_{1}=1$. The canonical structure on Z is given by
(3.2.1)

$$
\begin{aligned}
& \lambda_{t}(1)=1+t \\
& \lambda_{t}(m)=(1+t)^{m} \\
& \lambda^{k}(m)=\binom{m}{k} \quad m \geqslant 0 \\
& \lambda^{k}(-m)=(-1)^{k}\binom{m+k-1}{k}
\end{aligned}
$$

This canonical structure is special by 3.1.9. It can be given the following combinatorial interpretation: Let S be a set with melements. Let $\Lambda^{\mathrm{k}} \mathrm{S}$ be the set of all subsets of cardianlity k. Then $\left|\Lambda^{\mathrm{k}} \mathrm{S}\right|=\binom{\mathrm{m}}{\mathrm{k}}$. The theory of special λ-rings may be thought of as an extremely elegant way of handing combinatorial identities for sets, symmetric functions, binomial coefficients, etc.
b) Let E, F be complex G-vector bundles over the (compact) G-space X where G is a compact Lie group. Then exterior powers Λ^{i} of G-vector
bundles satisfy

$$
\Lambda^{\circ} E=1, \quad \Lambda^{1} E=E, \quad \Lambda^{n}(E \oplus F)=\Theta_{i=0}^{n} \quad \Lambda^{i}(E) \quad 囚 \Lambda^{j}(F)
$$

Let $K_{G}(X)$ be the Grothendieck ring of such G-vector bundles over X (Segal $[142]$). Then $E \longmapsto 1+\left(\Lambda^{1} \longmapsto\right) t+\left(\Lambda^{2} E\right) t^{2}+\ldots$ is a homomorphism from the additive semi-group of isomorphism classes of G-vector bundles over X into $1+K_{G}(X)[[t]]^{+}$and extends therefore uniquely to the Grothendieck group giving a map

$$
\lambda_{t}: K_{G}(x) \longrightarrow 1+K_{G}(x)[[t]]^{+}: x \longmapsto 1+\lambda^{1}(x) t+\ldots
$$

such that $\lambda^{i}[E]=\left[\Lambda^{i}(E)\right]$ for E a G-vector bundle. These λ^{i} yield therefore a λ-ring structure on $\mathrm{K}_{\mathrm{G}}(\mathrm{X})$.

Proposition 3.2.2.
$K_{G}(X)$ with this λ-structure is a special λ-ring.

Proof.
The proof depends on the so called splitting principle which - especially for general G - is highly non-trivial. This splitting principle says: Given vector bundles E_{1}, \ldots, E_{k} over X. There exists a compact G-space Y and $a G-m a p ~ f: Y \longrightarrow X$ such that the induced map $f^{*}: K_{G}(X) \longrightarrow K_{G}(Y)$ is injective and $f^{*} E_{i}$ splits into a sum of line bundles. See Atiyah
[g], 2.7.11 or Karoubi [103], p. 193 for the case $G=\{1\}$.

Using the splitting principle 3.2.2 follows essentially from 3.1.9.

For a discussion of λ-operations in k-theory see also Atiyah [9] , ch. III, $[7]$; Karoubi $[103]$ IV. 7.
c) Other versions of topological K -theory like real K -Theory or

Real-K-Theory (Atiyah [8]), yield special λ-rings too.
d) A special case of b) is the representation ring $R(G)$ of complex representations. Since representations are detected by restriction to cyclic subgroups and $R(C)$ for a cyclic group C is generated by onedimensional elements one can directly apply 3.1 .9 to show that $R(G)$ is special.
e) The Burnside ring acquires a λ-ring structure if we define
$\lambda^{i}(S)$ for a finite $G-s e t s$ to be the i-th symmetric power of S. We use the identity $\lambda^{n}(S+T)=\sum_{i} \lambda^{i}(S) \lambda^{n-i}(T)$ to extend this to A(G) as under b). This λ-ring structure is in general not special. See Siebeneicher [149] and the exercises to this section.
f) See Atiyah-Tall [14], I. 2 for the construction of a free $\boldsymbol{\lambda}$ ring on one generator.

3.3. \quad-operations.

We assume that R is a special λ-ring. Then R contains a subring isomorphic to 2 for if $1 \in R$ had finite additive order m, then $1=\lambda_{t}(0)=\lambda_{t}(m \cdot 1)=(1+t)^{m}$ would give a contradiction (compare coefficients of t^{m}). A special λ-ring R is called augmented if there is given a λ-homomorphism $e: R \longrightarrow Z$. We call $I=$ Ker e the augmentation ideal; it is a λ-ideal. Any element $x \in R$ may be written uniquely $x=e(x)+(x-e(x))$ with $e(x) \in z$ and $x-e(x) \in I$.

Define the γ-operations on a special λ-ring R :

$$
\begin{equation*}
\lambda_{t /(1-t)}(x)=: \quad \gamma_{t}(x)=1+\Sigma_{n \geqslant 1} \gamma^{i}(x) t^{i} . \tag{3.3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\gamma_{t}(x+y)=\gamma_{t}(x) \quad \gamma_{t}(y) \tag{3.3.2}
\end{equation*}
$$

Moreover one has

$$
\begin{equation*}
\gamma^{n}(x)=\lambda^{n}(x+n-1) . \tag{3.3.3}
\end{equation*}
$$

Proof.
Using 3.2 .1 we get

$$
\begin{aligned}
\lambda_{t /(1-t)}(x) & =1+\sum_{i \geqslant 1} \lambda^{i}(x)\left(\sum_{k \geqslant 0}{\left.\underset{k}{i+k-1}) t^{k+i}\right)}=1+\sum_{j \geqslant 1}\left(\sum_{i=1}^{j} \lambda^{i}(x)\binom{j-1}{j-i} t^{j}\right.\right. \\
& =1+\sum_{j \geqslant 1} \lambda^{j}(x+j-1) t^{j} .
\end{aligned}
$$

We conclude from 3.3.3 that $\lambda^{j}(x)=0$ for $j>n$ implies $\gamma^{j}(x-n)=0$ for $j>n$, i. e. if x is n-dimensional then $x-n$ is of γ-dimension at most n .

Suppose R is an augmented λ-ring with augmentation $\mathrm{e}: \mathrm{R} \longrightarrow \mathrm{Z}$ and augmentation ideal $I=$ ker e. We define the γ-filtration by: $R_{n} \subset R$ is the additive group generated by monomials $\gamma^{n_{1}}\left(a_{1}\right) \cdot \ldots \cdot \gamma^{n_{r}}\left(a_{r}\right)$ where $a_{i} \in I$ and $\sum n_{i} \geqslant n$.

Proposition 3.3.4.

$$
\begin{aligned}
& \text { (i) } R_{0}=R, R_{1}=I . \\
& \text { (ii) } R_{m} R_{n}<R_{m+n} \\
& \text { (iii) } R_{n} \text { is a } \lambda \text {-ideal for } n \geqslant 1 .
\end{aligned}
$$

Proof.
(i) and (ii) follow directly from the definitions. (iii): $R=Z \oplus R_{1}$ shows that R_{n} is an ideal. To show R_{n} is a λ-ideal, it is sufficient
to show $\lambda^{r}\left(\gamma^{m}(x)\right) \in R_{m}$ for $x \in I$. First we compute for $i \geqslant m$

$$
\begin{aligned}
\lambda^{i}(x+m-1) & =\gamma^{i}(x+m-i)=\sum_{s=0}^{i} \quad \gamma^{s}(x) \quad \gamma^{i-s}(m-i) \\
& =\sum_{s=m}^{i} \gamma^{s}(x) \gamma^{i-s}(m-i) \in R_{m}
\end{aligned}
$$

because $\gamma^{i-s}(m-i)=\lambda^{i-s}(m-s-1)=0$ for $i \geqslant m \geqslant s+1$. We use this in

$$
\begin{aligned}
\lambda^{r}\left(\gamma^{m}(x)\right) & =\lambda^{r}\left(\lambda^{m}(x+m-1)\right) \\
& =P_{r, m}\left(\lambda^{1}(x+m-1), \ldots, \lambda^{r m}(x+m-1)\right)
\end{aligned}
$$

and observe that $P_{r, m}\left(s_{1}, \ldots, s_{r m}\right)$ is a sum of monomials each containing a term s_{i} for $i \geqslant m$ because $P_{r, m}\left(s_{1}, \ldots, s_{m-1}, 0, \ldots, 0\right)=0$.

Sometimes we want to work only with the augmentation ideal. We define: A ring I without identity is called a special γ-ring if there is an augmented special λ-ring R with I as augmentation ideal. I then carries the induced γ^{i}-operations. We define the γ-filtration as before, I_{n} being the ideal generated by monomials $\gamma^{n_{1}}\left(a_{1}\right) \cdot \ldots \cdot \gamma{ }^{n_{r}}\left(a_{r}\right)$ where $a_{i} \in I, \sum n_{i} \geqslant n$. We have

$$
\begin{equation*}
I_{1}=I, I_{m} I_{n} \subset I_{m+n}, \quad \gamma^{i}\left(I_{n}\right)=I_{n} . \tag{3.3.5}
\end{equation*}
$$

3.4. The Adams operations.

Adams introduced in [1] certain operations derived from the λ^{i} which are much easier to handle algebraically.

Let R be a special λ-ring. Define maps

$$
\psi^{n}: R \longrightarrow R, \quad n \geqslant 1
$$

by
(3.4.1)

$$
\begin{aligned}
\Psi_{-t}(x) & =-t \frac{d}{d t}\left(\lambda_{t}(x)\right) / \lambda_{t}(x) \\
\Psi_{t}(x) & =\sum_{n \geqslant 1} \psi^{n}(x) t^{n}
\end{aligned}
$$

A more elementary way of defining the ψ^{n} is: Define the Newton polynomial

$$
N_{n}\left(s_{1}, \ldots, s_{n}\right)=\sum_{j=1}^{n} x_{j}^{n}
$$

where s_{i} is the i-th elementary symmetric function of the x_{j}. Then put

$$
\begin{equation*}
\psi^{n}(x)=N_{n}\left(\lambda^{1}(x), \ldots, \lambda^{n}(x)\right) \tag{3.4.2}
\end{equation*}
$$

We leave it as an exercise to show that the two definitions are equivalent.

We want to show that the ψ^{n} are λ-ring homomorphisms. This means we have to verify certain identities between the ψ^{n} - and λ^{j} operations. We use the verification principle which says that it is enough to verify the identities on elements which are sums of onedimensional elements. A formal proof of this principle is given in Atiyah-Tall [14], I. 3.4, I. 4.5. Since in the applications the λ-rings are finite-dimensional and since we have to prove the splitting principle in order to show that something is a special λ ring we do not prove the verification principle.

Proposition 3.4.3.

(i) If x is one-dimensional then $\psi^{n} x=x^{n}$.
(ii) ψ^{n} is a λ-homomorphism.
(iii) $\psi^{m} \psi^{n}=\psi^{n} \psi^{m}=\psi^{m n}$.
(iv) $\psi^{p^{r}}(x) \equiv x^{p^{r}} \bmod p \quad$ (p prime).

Proof.

(i) follows directly from 3.4.2.
(ii) Suppose x_{i}, y_{j} are one-dimensional. Then $x_{i} y_{j}$ is one-dimensional because R is special. From 3.4.1 one obtains that ψ^{n} is an additive homomorphism. Moreover

$$
\begin{aligned}
\psi^{n}\left(\Sigma x_{i} \Sigma y_{j}\right) & =\psi^{n}\left(\Sigma x_{i} y_{j}\right)=\Sigma \psi^{n}\left(x_{i} y_{j}\right)=\Sigma\left(x_{i} y_{j}\right)^{n} \\
& =\left(\Sigma x_{i}^{n}\right)\left(\Sigma y_{j}^{n}\right)=\psi^{n}\left(\Sigma x_{i}\right) \psi^{n}\left(\Sigma y_{j}\right) . \\
\psi^{n}\left(\lambda^{m}\left(\Sigma x_{i}\right)\right) & =\psi^{n}\left(s_{m}\left(x_{1}, \ldots, x_{r}\right)\right)=s_{m}\left(x_{1}^{n}, \ldots, x_{r}^{n}\right) \\
& =\lambda^{m}\left(\Sigma x_{i}^{n}\right)=\lambda^{m}\left(\psi^{n}\left(\Sigma x_{i}\right)\right) .
\end{aligned}
$$

Now use the verification principle.
(iii) and (iv) are likewise immediate from the verification principle.

As a consequence we have ψ^{n} on a special γ-ring. Moreover the ψ^{n} preserve the γ-filtration.

Proposition 3.4.4.

Let I be a special γ-ring. Assume $x \in I_{n}$. Then the following holds:
(i) $\quad \psi^{k}(x)-k^{n} x \in I_{n+1}$
(ii) $\quad \psi^{k}(x)+(-1)^{k} k \lambda^{k}(x) \in I_{n+1}$
(iii) $\quad \lambda^{k}(x)+(-1)^{k_{k} n-1} x \in I_{n+1}$.

Proof.
(i) We need only show that $\psi^{k}\left(\gamma^{m}(a)\right)-k^{m} \gamma^{m}(a) \in I_{m+1}$ for $a \in I$,
because ψ^{k} is a γ-homomorphism. If x_{1}, \ldots, x_{r} have γ-dimension one, i. e. $\gamma_{t}\left(x_{i}\right)=1+x_{i} t$, then $1+x_{i}$ has λ-dimension one, hence $\psi^{k}\left(x_{i}\right)=\left(1+x_{i}\right)^{k}-1$ and therefore $\psi^{k}\left(\gamma^{m}\left(x_{1}+\ldots+x_{r}\right)\right)-k^{m} \gamma^{m}\left(x_{1}+\ldots+x_{r}\right)$
$=\psi^{k}\left(s_{m}\left(x_{1}, \ldots, x_{r}\right)\right)-k^{m} s_{m}\left(x_{1}, \ldots, x_{r}\right)$

$$
s_{m}\left(\left(1+x_{1}\right)^{k}-1, \ldots\left(1+x_{r}\right)^{k}-1\right)-k^{m s_{m}}\left(x_{1}, \ldots, x_{r}\right)
$$

This is a symmetric polynomial of degree $\geqslant m+1$, hence (i) is true for $x=\sum x_{i}$ and, by the verification principle, therefore in general.
(ii) From the Newton polynomials we obtain the well-known identity

$$
\psi^{k}(x)-\psi^{k-1}(x) \lambda^{1}(x)+\ldots+(-1)^{k-1} \psi^{1}(x) \lambda^{k-1}(x)+(-1)^{k} k \lambda^{k}(x)=0
$$

which implies the result, because $\psi^{i}(x) \in I_{n}, \lambda^{i}(x) \in I_{n}$ for $i \geqslant 1$, and $x \in I_{n}$.
(iii) From (i) and (ii) we obtain $k \lambda^{k}(x)+(-1)^{k}{ }^{n}(x) \in I_{n+1}$. Thus the result follows if there is no k-torsion. (One can produce suitable universal situations without torsion, e. g. free λ-rings; thus one gets the result in general. One should note that the assertions are natural with respect to $\boldsymbol{\lambda}$-homomorphisms.)
3.5. Adams-operations on representation rings.

Let G be a finite group and $R(G ; F)$ be the Grothendieck ring (= representation ring) of finitely generated $F[G]$-modules where F is a field. We assume for simplicity that F has characteristic zero. Then elements in $R(G ; F)$ are determined by their character. We identify $R(G ; F)$ with the corresponding character ring. Exterior powers define a special λ ring structure on $R(G ; F)$. We want to compute the associated Adamsoperations.

Proposition 3.5.1.
Let $x \in R(G ; F)$. Then

$$
\psi^{k} x(g)=x\left(g^{k}\right), \quad g \in G
$$

In particular

$$
\psi^{k}=\psi^{k+|G|}
$$

Proof.

Restrict to the cyclic group C generated by g. Pass to an algebraic closure of F so that $x \mid C=Y-z$ where y and z are sums of one-dimensional representations. The result then follows from 3.4.3 taking into account that for a one-dimensional representation x the relation $\mathrm{x}^{\mathrm{k}}(\mathrm{g})=\mathrm{x}\left(\mathrm{g}^{\mathrm{k}}\right)$ holds.

Now assume that $F=Q\left[\zeta_{n}\right]$ where ζ_{n} is a primitive n-th root of unity. Assume that k is prime to the group order $|G|$. The Galois group Gal $(Q[3]: Q)$ is isomorphic to $Z / n Z^{*}$, namely so that k mod n corresponds to the field automorphism P^{k} characterized by $P^{k}\left(\zeta_{n}\right)=\zeta_{n}^{k}$. Since characters of $F[G]$-modules take values in $Q\left[\zeta_{n}\right]$ we can apply P^{k} to such characters. Let $Q\left[了_{n}\right]$ be a splitting field for G. (By a famous theorem of Brauer it suffices to take for n the exponent of G; see Serre $[147]$, p. 109). Then we show

Proposition 3.5.2.

(i) $\Psi^{k} x=P^{k} x$ for $x \in R\left(G ; Q\left[3_{n}\right]\right)$ and $(k,|G|)=1$.
(ii) If x is the character of an irreducibel module then $\psi^{k} x$ is irreducible too (again k prime to $|G|$).

Proof.
(i) Let x be the character of a matrix representation. Restrict to the
cyclic subgroup C generated by $g \in G$. Then the matrix for g is equivalent to a diagonal matrix with roots of unity u_{1}, \ldots, u_{r} on the diagonal. Then $\psi^{k}(x)(g)=\Sigma u_{i}^{k}=p^{k}\left(\Sigma u_{i}\right)=p^{k}(x(g))$.
(ii) Apply the Galois automorphism P^{k} to a matrix representation over $Q[\zeta n]$.

Remark 3.5.3.
The Adams operation are, of course, independent of the field of definition. Therefore 3.5 .2 holds more generally.

3.7. The Bott cannibalistic class θ_{k}.

Let R be a special λ-ring and let ζ_{k} be a primitive k-th root of unity. Let $P(R) \subset R$ be the subset of finite-dimensional elements in R. Then $P(R)$ is an additive semi-group. If $x \in P(R)$ we consider the product

$$
\begin{equation*}
\theta_{\mathrm{k}}(\mathrm{x}):=\pi_{\mathrm{u}} \lambda_{-\mathrm{u}}(\mathrm{x}) \in \mathrm{R} \otimes_{\mathrm{z}} \mathrm{z}\left[3_{\mathrm{k}}\right] \tag{3.7.1}
\end{equation*}
$$

where the product is taken over all roots of $t^{k}-1=0$ except 1 . We identify R with its image in $R \otimes Z\left[3_{k}\right]$ under the canonical map $r \longmapsto r \otimes 1$. Then $\theta_{k}(u)$ is contained in R. [In order to see this consider the following diagram

where t_{1}, \ldots, t_{k-1} are indeterminates and s_{1}, \ldots, s_{k-1} are the elementary symmetric functions in the t_{j}. The vertical maps are induced by substituting for t_{1}, \ldots, t_{k-1} the roots of $t^{k}-1=0$ except 1 . Then
$\pi_{j} \lambda_{-t_{j}}(x)$ is symmetric in the t_{j} and since
$z\left[s_{1}, \ldots, s_{k-1}\right] \subset z\left[t_{1}, \ldots, t_{k-1}\right]$ is an inclusion as a direct summand we see that $\pi_{j} \lambda_{-t_{j}}(x) \in R \otimes_{z} Z\left[s_{1}, \ldots, s_{k-1}\right]$. But the map at the bottom is an injection too because $Z \longrightarrow Z\left[3_{k}\right]: n \longmapsto n$ is a direct injection.] We call it the Bott cannibalistic class θ_{k}. The following is immediate from the definition.

Proposition 3.7.2.
(i) If x is one-dimensional then

$$
\theta_{k}(x)=1+x+\ldots+x^{k-1}
$$

(ii) If $x, y \in P(R)$ then

$$
\theta_{k}(x+y)=\theta_{k}(x) \theta_{k}(y)
$$

Since $\theta_{k}(1)=k \quad \theta_{k}$ is not in general a unit in R so that θ_{k} cannot be extended to the additive subgroup generated by finite-dimensional elements. In the next section on p-adic γ-rings we find a remedy for this defect.

3.8. p-adic x-rings.

Let p be a prime number. Let z_{p} denote the p -adic integers. One can define Z_{p} as the inverse limit ring inv $\lim Z / p^{n} Z$. If A is a finitely generated abelian group then $A \otimes_{Z} Z_{p}$ is cannonically isomorphic to the p-adic completion of A

$$
A_{p}:=\operatorname{inv} \lim A / p^{n} A
$$

Tensoring with z_{p} is an exact functor on the category of finitely generated abelian groups. (See Atiyah-Mac Donald [11] , Ch. 10 for
this and other back ground material on completions.) Groups A \hat{p} carry the p-adic topology: a fundamental system of neighbourhoods of zero is given by the subgroups $p^{n} A_{p}^{n}$. They are complete and Hausdorff.in this topology.

If B is a special γ-ring, then, by definition, there is a special augmented λ-ring R such that $B=$ ker e where e is the augmentation. Then we have the exact sequence (because $e: R \rightarrow Z$ splits)

$$
0 \longrightarrow \mathrm{~B} \otimes \mathrm{Z}_{\mathrm{p}} \longrightarrow \mathrm{R} \otimes \mathrm{z}_{\mathrm{p}} \longrightarrow \mathrm{Z}_{\mathrm{p}} \longrightarrow 0
$$

We want to define the structure of a special λ-ring on $R \boldsymbol{\otimes} Z_{p}$ such that $B \otimes Z_{p}$ is a λ-ideal. We can extend the λ^{i} by continuity if we have shown

Proposition 3.8.1.
The λ^{i} are continuous with respect to the p-adic topology.

Proof.
Given i and N chose k_{o} such that $\left(p_{j}^{k}\right)$ is divisible by p^{N} for $k \geqslant k_{o}$ and $1 \leqslant j \leqslant i$. Then

$$
\lambda^{j}\left(p^{k} x\right)=p_{j}\left(\lambda^{1}\left(p^{k}\right), \ldots, \lambda^{j}\left(p^{k}\right) ; \lambda^{1}(x), \ldots, \lambda^{j}(x)\right)
$$

is contained in $p^{N} R$ if $k \geqslant k_{0}$ and $1 \leqslant j \leqslant i$ because P_{j} is of weight j in the first j variables. If $x-y=p^{k} z$ then

$$
\lambda^{i}(y)-\lambda^{i}(x)=\sum_{j=1}^{i} \quad \lambda^{i-j}(y) \quad \lambda^{j}\left(p^{k} z\right) \in p^{N} R
$$

for $k \geqslant k_{0}$.

The proof of this Proposition shows that if $a \in Z_{p}$ is the limit of a sequence $\left(a_{n}\right), a_{n} \in Z$ then $\lim \lambda^{i}\left(a_{n} x\right)=\lambda^{i}\left(\lim a_{n} x\right)=\lambda^{i}(a x)$ and hence

$$
\begin{array}{ll}
\lambda_{t}(a x)=\lambda_{t}(x)^{a} & a \in Z_{p} \\
\gamma_{t}(a x)=\gamma_{t}(x)^{a} & x \in R \tag{3.8.2}\\
\psi^{k}(a x)=a \psi^{k}(x) . &
\end{array}
$$

After these preliminary remarks we define a p-adic γ-ring A to be a γ-ring which is the completion $A=B \otimes Z_{p}$ of some γ ring B which is finitely generated as an abelian group; moreover we require that the γ-topology on B is finer than the p-adic topology.

```
We now describe some examples of p-adic }\gamma\mathrm{ -rings.
```

Proposition 3.8.3.
Let X be a finite connected $C W$-complex. Then the $n-t h \quad \gamma$ filtration on $\tilde{K}(X)$ is contained in the $n-t h$ skeleton-filtration. In particular the γ-topology is discrete and $\tilde{K}(x) \otimes Z_{p}$ is a p-adic γ-ring.

Proof.
Let X^{n} be the n-skeleton on X. Then the n-th skeleton filtration $S_{n} \tilde{K}(X)$ is defined to be the kernel of the restriction map $i^{*}: \tilde{K}(X) \longrightarrow \tilde{K}\left(X^{n-1}\right)$. Any element of $K\left(X^{n-1}\right)$ is represented by an element $x=[E]-(n-1)$ where E is an $(n-1)$-dimensional bundle. Hence $i^{*} \gamma^{n}(y)=x^{n}\left(i^{*}-y\right)=\gamma^{n}(E-n+1)=0$. The relation $S_{n} S_{m} c S_{n+m}$ then implies the result.

Let $R(G)$ be the representation ring of the finite group G over the complex numbers. Let $R(G) \longrightarrow Z: x \longmapsto d i m x$ be the augmentation with kernel $I(G)$. Then we can consider three topologies on $R(G)$:
(i) The p-adic topology.
(ii) The I(G)-adic topology.
(iii) The γ-topology, defined by the γ-filtration.

Proposition 3.8.4.

Let G be a p-group. Then the topologies (i), (ii), and (iii) coincide. In particular $I(G) \otimes z_{p}$ is a p-adic γ-ring.

```
We use the next Proposition for the proof of 3.8.4.
```


Proposition 3.8.5.

Let I be $a \quad \gamma$-ring which is generated by a finite number of elements with finite γ-dimension. Then the I-adic topology coincides with the y -topology.

Proof.

By definition of the γ-filtration we have $I_{n} \subset I^{n}$. Let m be the maximal γ-dimension of a given finite set of generators for I. Then γ^{m+1} applied to the monomials in the generators must lie in I^{2}. Since $\gamma^{m+1}(-x) \equiv-\gamma^{m+1}(x) \bmod I^{2}$ we obtain $I_{m+1}<I^{2}$. By induction one shows $I_{k m+1}<I^{k}$.

Proof of 3.8.4.
Put $I=I(G)$. By 3.8 .5 the topologies (ii) and (iii) coincide. Let $\mathrm{m}=|\mathrm{G}|$. Then

$$
(x-e(x))^{m} \equiv x^{m}-e(x)^{m} \quad \bmod p R(G)
$$

because m is a p-power. By 3.5 .1 we have $\psi^{m} x=e(x)$ and by 3.4 .3 (iv) we have $\psi^{m} x \equiv x^{m} \bmod p R(G)$. Putting these facts together we obtain

$$
(x-e(x))^{m} \equiv e(x)-e(x)^{m} \equiv 0 \quad \bmod p R(G)
$$

This shows $I^{m} \subset P I$, hence the I-adic topology (and therefore the γ topology) is finer than the p-adic topology. One can show that $m I \quad \mathrm{I}^{2}$ (see Atiyah [6]), so that the p-adic topology is also finer than the I-adic. (This last fact also follows from localization theorems to be proved later in this lecture.)

As a slight generalization of 3.8 .4 we mention

Proposition 3.8.6.

Let G be a p-group and X a connected finite $G-C W$-complex. Then $\tilde{\mathrm{K}}_{\mathrm{G}}(\mathrm{X}) \otimes \mathrm{Z}_{\mathrm{p}}$ is a p-adic γ-ring. $\left(\tilde{\mathrm{K}}_{\mathrm{G}}(\mathrm{X})=\right.$ kernel of $\left.\mathrm{x} \longmapsto \operatorname{dim} \mathrm{x}\right)$

Proof (sketch).
From the fact that X is a finite $G-C W$-complex one shows by induction over the number of cells that $K_{G}(X)$ is a finitely generated abelian group. By 3.8 .5 the γ-topology coincides with the $\tilde{K}_{G}(X)$-adic topology. Let X° be the equivariant zero-skeleton of X. The kernel N of $r: K_{G}(X) \longrightarrow K_{G}\left(X^{\circ}\right)$ is nilpotent (compare Segal [142], Proposition 5.1). Moreover $K_{G}\left(X^{\circ}\right) \cong \pi R\left(G_{X}\right)$, the product taken over the orbits of X°. Put $I=\tilde{K}_{G}(X)$. By Atiyah-Mac Donald [-11], Theorem 10.11, the p-adic topology on $r I$ is induced from the p-adic topology on $K_{G}\left(X^{\circ}\right)$. Hence from 3.8.4 we see that for some $t, r I^{t} c p r I$, or equivalently, $I^{t} c \mathrm{pI}+\mathrm{N}$. But if $\mathrm{N}^{\mathrm{k}}=0$ then $\mathrm{I}^{\mathrm{tk}} \leqslant(\mathrm{pI}+\mathrm{N})^{\mathrm{k}}<\mathrm{pI}$. This shows that the I-adic topology is finer than the p-adic topology.

Now we continue with the general discussion of p-adic γ-rings $A=B Q Z_{p}$. If B_{n} is the $n-t h \quad \gamma$-ideal of B we let $A(n)=B_{n} \mathcal{Z}_{p}$ be its closure. From 3.8.1 we obtain that the $A(n)$ are γ-ideals. By
definition of a p-adic γ-ring the topology defined by the system $A(n), n \geqslant 1$, is finer than the p-adic topology; in particular this topology is also Hausdorff and one has
(3.8.7)

$$
A \cong \operatorname{inv} \lim A / A(n)
$$

$A(n)$ contains the $n-t h \quad \gamma$-ideal A_{n} of A but A_{n} need not be closed in the p-adic topology. We observe
(3.8.8)

$$
A(n) / A(n+1) \cong\left(B_{n} / B_{n+1}\right) \otimes Z_{p}
$$

because $\otimes Z_{p}$ is exact on finitely generated abelian groups. From 3.4.4 and 3.8 .8 we obtain

Proposition 3.8.9.

$A(n) / A(n+1)$ is a p-adic γ-ring. The product of two elements is zero. For a $\in A(n) / A(n+1)$ we have

$$
\begin{aligned}
& \lambda^{k}(a)=(-1)^{k-1} k^{n-1} a \\
& \psi^{k}(a)=k^{n} a
\end{aligned}
$$

We shall show that γ^{k} acts on $A(n) / A(n+1)$ as multiplication with a certain constant $c(k, n)$ independent of the ring A. From $\gamma^{k}(x)=\lambda^{k}(x+k-1)$ one computes

$$
\begin{equation*}
c(k, n)=\sum_{i=1}^{k}(-1)^{i-1} i^{n-1}\binom{k-1}{k-i} \tag{3.8.10}
\end{equation*}
$$

In order to analyse these numbers we put

$$
\gamma_{t}(x)=1+f_{n}(t) x
$$

where

$$
f_{n}(t)=\sum_{j=1}^{\infty}(-1)^{j-1} j^{n-1}\left(\frac{t}{1-t}\right)^{j}
$$

is a certain formal power series in $Z[[t]]$. For $n=1$ this isa geometric series with sum

$$
\mathrm{f}_{1}(\mathrm{t})=t
$$

If we differentiate $f_{n}(t)$ formally with respect to t we obtain the recursion formula

$$
f_{n+1}(t)=t(1-t) f_{n}^{\prime}(t)
$$

so that $f_{n}(t)$ is actually a polynomial of degree n

$$
f_{n}(t)=\sum_{j=1}^{n} c(j, n) t^{j}
$$

In particular $x^{m}=0$ on $A(n) / A(n+1)$ for $m>n$.

3.9. The operation ρ_{k}.

We describe a variant of the Bott map θ_{k} for p-adic γ-rings A. A topology shall always be the p-adic topology if not otherwise specified.

A series $\sum_{r \geqslant 1} a_{r}$, with $a_{r} \in A(r)$, converges in the p-adic topology since it converges in the filtration topology ($A(n) \mid n \geqslant 1$) which is finer. Therefore the set $1+A$ of symbols $1+a$, $a \in A$, with multiplication $(1+a)(1+b)=1+a+b+a b$ is a group. It is a compact, topological group, with neighbourhood basis of 1 given by $\left(1+p^{n} A \mid n \geqslant 0\right)$, or equivalently $\left(1+p^{n} A+A(n) \mid n \geqslant 1\right)$.

Let k be a natural number prime to p. Consider $Z_{p}\left[\zeta_{k}\right]$ where ζ_{k} is a primitive $k-t h$ root of unity in an algebraic closure of the p adic numbers. The product $\pi(1-u)$ over all roots u of $t^{k}-1=0$ except 1 is equal to k, hence a unit in Z_{p}. Therefore $1-u$ is a unit in $Z_{p}\left[\zeta_{k}\right]$ and hence $u /(u-1) \in Z_{p}\left[\zeta_{k}\right]$. The series

$$
\gamma_{u /(u-1)}(a)=1+\gamma^{1}(a) u /(u-1)+\gamma^{2}(a)(u / u-1)^{2}+\ldots
$$

converges in the p-adic topology on $1+A \otimes_{Z_{p}} Z_{p}\left[\zeta_{k}\right]$ hence defines an element $\gamma_{u /(u-1)}(\mathrm{a})$ in this multiplicative group. We define

$$
\begin{equation*}
\rho_{k}(a)=\pi \gamma_{u /(u-1)}(a) \in 1+A \otimes z_{p}\left[3_{k}\right] \tag{3.9.1}
\end{equation*}
$$

where the product is taken over all roots of $t^{k}-1=0$ except 1 . The z_{p}-algebra $z_{p}\left[\zeta_{k}\right]$ is free as z_{p}-module with $z_{p} \cdot 1$ as a direct summand; therefore $A=A \otimes_{Z_{p}} Z_{p} \subset A \otimes_{Z_{p}} Z_{p}\left[了_{k}\right]$ as a subring. (As to the freeness of the module: Let $L \in Q_{p}[t]$ be an irreducible polynomial with $L\left(\zeta_{k}\right)=0$. Then L divides the cyclotomic polynomial ϕ_{k}. Since Z_{p} is factorial we can choose for L a monic polynomial in $Z_{p}[t]$, by the Gauß-Lemma. Then $z_{p}\left[\zeta_{k}\right] \cong z_{p}[t] / L$ and the right-hand side is clearly a free module.) We claim: $\rho_{\mathrm{k}}(\mathrm{a}) \in 1+\mathrm{A}$. This follows from the fact that a coefficient of a monomial in the $\gamma^{i}(a)$ in the expansion of $\rho_{k}(a)$ according to definition 3.9 .1 is symmetric in the roots of $t^{k}-1=0$ (compare 3.7).

Proposition 3.9.2.
The map

$$
\rho_{k}: A \longrightarrow 1+A
$$

from the additive compact group A into the multiplicative compact group $1+\mathrm{A}$ is a continuous homomorphism. It commutes with the Adams operations
and maps $A(n)$ into $1+A(n)$.

Proof.
ρ_{k} is a homomorphism: directly from 3.3.2 and 3.9.1. Since
$\rho_{k}\left(p^{n} a\right)=\left(\rho_{k}(a)\right)^{p^{n}}$ and $(1+a)^{p^{n}} \epsilon 1+p^{N}+A(N)$ if $\left(p_{i}^{n}\right) \equiv O \bmod p^{N}$ for $1 \leqslant i \leqslant N$ we see that ρ_{k} is p-adically continuous. Since ψj commutes with the x^{i} it commutes with ρk. Since $A(n)$ is a γ-ideal $\rho_{k} A(n) \subset 1+A(n)$.

Remark 3.9.3.
If A is a ring without identity we can adjoin an identity in the standard manner: On the additive group $Z \times A$ define a multiplication $(m, a)(n, b)=(m n, m b+n a+a b)$. Then $1+A=\{(1, a) \mid a \in A\} \subset Z \times A$. If $B C A$ is an ideal and if $1+B$ and $1+A$ are groups then $(1+A) /(1+B) \cong 1+A / B$.
3.10. Oriented γ-rings.

A γ-ring A is said to be oriented if

$$
\begin{equation*}
\gamma_{t}(a)=\gamma_{1-t}(a), \quad a \in A \tag{3.10.1}
\end{equation*}
$$

This terminology has the following reason: Suppose A is the augmentation ideal of the special augmented finite-dimensional λ-ring R. Then

Proposition 3.10.2.
A is oriented if and only if for every finite-dimensional element x, of dimension n say, $\lambda^{r}(x)=\lambda^{n-r}(x)$ for all r.

Proof.

If 3.10.1 is satisfied for a_{1} and a_{2} then for $a_{1}-a_{2}$ too. The equation

$$
\lambda^{r}(x)=\lambda^{n-r}(x) \text { implies } \lambda_{t}(x)=t^{n} \lambda_{1 / t}(x) \text { and this yields }
$$

$$
\begin{aligned}
\gamma_{t}(x-n) & =\lambda_{t /(1-t)}(x-n)=\lambda_{t /(1-t)}(x)(1-t)^{n} \\
& =t^{n} \lambda_{(1-t) / t}(x) \\
\gamma_{1-t}(x-n) & =\lambda_{(1-t) / t}(x-n)=\lambda_{(1-t) / t}(x)(1+(1-t) / t)^{-n} \\
& =t^{n} \lambda_{(1-t) / t}(x) .
\end{aligned}
$$

Note that n must be the augmentation of an n-dimensional element x because $\lambda^{n}(x)=1$, so that $x-n \in A$. The same calculation gives $\lambda^{r}(x)=\lambda^{n-r}(x)$ from 3.10.1.

We call R an oriented λ-ring if $\quad \lambda^{r}(x)=\lambda^{n-r}(x)$ whenever x is n-dimensional.

Example 3.10.3.
Let $\mathrm{KO}_{\mathrm{G}}(\mathrm{X})$ be the Grothendieck ring of real G-vector bundles over the compact G -space X where G is a compact Lie group. An n -dimensional $\mathrm{G}-$ vector bundle E is called orientable if the n-th exterior power $\Lambda^{n_{E}}$ is the G-vector bundle $\mathrm{X} \times \mathbb{R} \longrightarrow \mathrm{X}$ with trivial G-action on \mathbb{R}. If E is orientable then $\Lambda^{r} E \cong \Lambda^{n-r} E$. Hence

$$
\mathrm{KSO}_{G}(X)=\left\{E-F \in \mathrm{KO}_{G}(X) \mid E, F \text { orientable }\right\}
$$

is an oriented λ-ring and the associated augmentation ideal is an oriented γ-ring.

If x is a one-dimensional element in the oriented λ-ring then $\lambda^{1}(x)=\lambda^{\circ}(x)=1$. Therefore one should think of such a ring as containing essentially only even-dimensional elements.

We now consider a refinement of the operations Θ_{k} (resp. ρ_{k}) for an oriented λ-ring R (a p-adic oriented γ-ring A).

Let $x \in R$ be an element of dimension $2 m$. Let k be an odd integer. Let J a set of k-th roots of unity $u \neq 1$ which contains from each pair u, u^{-1} exactly one element. (Since $k \equiv 1(2)$ we have $u \neq u^{-1}$.) The product $k^{m} \pi_{u \in J}(1-u)^{-2 m}$ is an algebraic integer because $\pi_{u \neq 1}(1-u)=k$. Therefore

$$
\begin{equation*}
k^{m} \pi_{u \in J} \quad \lambda_{-u}(x)(1-u)^{2 m} \in R\left[\zeta_{k}\right] \tag{3.10.4}
\end{equation*}
$$

where ζ_{k} is a primitive k-th root of unity. The fact that R is oriented implies

$$
\begin{equation*}
\lambda_{-u}(x)(1-u)^{-2 m}=\lambda_{-1 / u}(x)(1-1 / u)^{-2 m} \tag{3.10.5}
\end{equation*}
$$

Therefore 3.10 .4 is independent of the choice of J. We call this element

$$
\theta_{k}^{o r}(x)
$$

Proposition 3.10.6.
(i) If x and y are even-dimensional then $\theta_{k}^{o r}(x+y)=\theta_{k}^{o r}(x) \theta_{k}^{o r}(y)$. (ii) The square of $\theta_{k}^{o r}(x)$ is $\theta_{k}(x)$.
(iii) $\Theta_{k}^{o r}(x) \in R$.

Proof.
(i) follows directly from the analogous property of λ_{t}. (ii) follows from the definitions, using 3.10.5. (iii) Using 3.10 .5 again one can see that $\theta_{k}^{o r}(x)$ is formally invariant under the Galois group of $Q\left(\zeta_{k}\right)$ over Q.

If A is an oriented p-adic γ-ring one defines the square root of ρ_{k} by
(3.10.7)

$$
\rho_{k}^{\text {or }}(x)=\pi_{u \in J} \quad \gamma_{u / u-1}(x)
$$

Using $\gamma_{t}=\gamma_{1-t}$ one shows that the following holds

Proposition 3.10.8.

(i) $\quad \rho_{k}^{\text {or }}(x+y)=\rho_{k}^{\text {or }}(x) \rho \rho_{k}^{\text {or }}(y)$.
(ii) The square of $\rho_{k}^{o r}(x)$ is $\rho_{k}(x)$.
(iii) $\rho_{k}^{\text {or }}(x) \in 1+A$.

We now compute $\Theta_{k}^{o r}(z)$ for a two-dimensional element z. We have $\lambda_{-u}(z)=1-u z+u^{2}$. If we formally write $z=x+y$ with $x y=1$ then $\lambda_{-u}(z)=(1-u x)(1-u y)$ and therefore

$$
\begin{equation*}
\lambda_{-u}(z)(1-u)^{-2}=y \frac{1-u x}{1-u} \cdot \frac{1-u^{-1} x}{1-u^{-1}} \tag{3.10.9}
\end{equation*}
$$

If we multiply these expressions according to the definition of $\theta_{k}^{\circ r}(z)$ we obtain
(3.10.10)

$$
\begin{aligned}
\theta_{k}^{\text {Or }}(z) & =k y^{(k-1) / 2} \pi_{u}(1-u x) \pi_{u}(1-u)^{-1} \\
& =y^{(k-1) / 2}\left(1+x+\ldots+x^{k-1}\right) \\
& =\left(x^{(k-1) / 2}+x^{(k-3) / 2}+\ldots+y^{(k-1) / 2}\right)
\end{aligned}
$$

This last expression may also be written

$$
\begin{equation*}
\frac{x^{k / 2}-x^{-k / 2}}{x^{1 / 2}-x^{-1 / 2}} \tag{3.10.11}
\end{equation*}
$$

where we use this at this point merely as a suggestive formula without having $x^{1 / 2}$ defined. Actually $\Theta_{k}^{o r}(z)$ is an integral polynomial in z : The polynomial

$$
P_{k}(t)=\pi_{u \in J}\left(t-\left(u+u^{-1}\right)\right)
$$

is contained in $Z[t]$ and has degree $(k-1) / 2$, e. $g . P_{3}(t)=1+t$, $P_{5}(t)=-1+1+t^{2}$. One has for a 2 -dimensional z

$$
\begin{equation*}
\theta_{k}^{o r}(z)=p_{k}(z) \tag{3.10.12}
\end{equation*}
$$

A proof follows from the identity

$$
t^{k-1} P_{k}\left(t^{2}+t^{-2}\right)=\left(1+t+\ldots+t^{2 k-1}\right) /(1+t)
$$

which can be seen by observing that both sides are monic polynomials of degree $2 k-2$ having the $2 k$-th roots of unity $= \pm 1$ as roots.

From 3.10.10 one obtains for a 2-dimensional z the identiy
(3.10.13)

$$
\theta_{k}^{\text {or }}(z)=1+\psi_{z+}^{1} \psi_{z}^{2}+\ldots+\psi^{(k-1) / 2} z
$$

3.11. The action of ρ_{k} on scalar γ-rings. We consider p-adic γ-rings A with trivial multiplication, like $A(n) / A(n+1)$ in Proposition 3.8.9, on which Ψ^{k} is multiplication by k^{n} and λ^{k} multiplication by $(-1)^{k-1} k^{n-1}$. Then we have seen in 3.8 . that

$$
\gamma_{t}(x)=1+f_{n}(t) x
$$

where $f_{n}(t)$ in an integral polynomial defined by the recursion formula

$$
f_{q}(t)=t, \quad f_{n+1}(t)=t(1-t) f_{n}^{\prime}(t) .
$$

Therefore ρ_{k} is given by

$$
\rho_{k}(x)=\pi_{u}\left(1+x f_{n}\left(\frac{u}{u-1}\right)\right)=1+x \sum_{u} f_{n}\left(\frac{u}{u-1}\right)
$$

We have to compute the rational number (Galois theory)

$$
\sum_{u} f_{n}\left(\frac{u}{u-1}\right)=: b_{n}(k)
$$

the sum being taken over the k-th roots of unity $u \neq 1$. Put $h_{n}(t)=$ $=f_{n}\left(\frac{t}{t-1}\right)$.

Proposition 3.11.1.
We have the following identity between formal power series in x and t over Q

$$
\log \left(1+\frac{t}{1-t}\left(1-e^{x}\right)\right)=\sum_{n \geqslant 1} h_{n}(t) \frac{x^{n}}{n!}
$$

(The meaning of the left hand side is: Use the power series $\log (1+y)=y-\frac{y^{2}}{2}+\frac{y^{3}}{3}-\ldots$ and replace y with the power series $\frac{t}{1-t}\left(1-e^{x}\right)$ which has no constant term.)

Proof.
we put

$$
K(t, x):=\log \left(1+\frac{t}{1-t}\left(1-e^{x}\right)\right)=\sum_{n \geqslant 1} g_{n}(t) \frac{x^{n}}{n!}
$$

where the $g_{n}(t)$ are certain power series in t. We differentiate $K(t, x)$ with respect to t and x and obtain

$$
\frac{d K}{d t}=\frac{e^{x}}{t e^{x}-1}+\frac{1}{1-t}, \quad \frac{d K}{d x}=\frac{t e^{x}}{t e^{x}-1}
$$

hence

$$
t \frac{d K}{d t}-\frac{d K}{d x}=\frac{t}{1-t}
$$

We apply this differential equation to $\sum_{n \geqslant 1} g_{n}(t) \frac{x^{n}}{n!}$ and compare coefficients, thus obtaining

$$
\begin{array}{r}
g_{1}(t)=-\frac{t}{1-t} \\
g_{n}(t)=\operatorname{tg}_{n-1}^{\prime}(t)
\end{array}
$$

and these are precisely the recursion formulas for the h_{n}.

If we replace t in 3.11 .1 with k-th root of unity $u \neq 1$ we obtain an identity between formal power series in x over $Q\left(\zeta_{k}\right)$. We compute the $b_{n}(k)$ as follows

$$
\begin{aligned}
& \sum_{n \geqslant 1} b_{n}(k) \frac{x^{n}}{n!}=\sum_{u \neq 1} \log \frac{1-u e^{x}}{1-u} \\
= & \log \prod_{u-1} \frac{1-u e^{x}}{1-u}=\log _{k} \frac{1}{k}\left(1+e^{x}+\ldots+e^{(k-1) x}\right) \\
= & \log \frac{e^{k x}-1}{k x}-\log \frac{e^{x}-1}{x} \\
= & \sum_{n \geqslant 1}\left(k^{n}-1\right) a_{n} \frac{x^{n}}{n!}
\end{aligned}
$$

if we use the expansion $\log \frac{e^{x}-1}{x}=\sum_{n \geqslant 1} a_{n} \frac{x^{n}}{n!}$.

The a_{n} are easily expressed in terms of Bernoulli numbers B_{m} which are defined by

$$
\frac{t}{e^{t}-1}=1+\sum_{m \geqslant 1} B_{m} \frac{t^{m}}{m!}
$$

This yields immediately $B_{1}=-\frac{1}{2}, B_{2 m+1}=0$ for $m \geqslant 1$. If we differentiate the defining series of the a_{n} with respect to x we obtain

$$
\Sigma_{n \geqslant 1} \operatorname{ma}_{n} \frac{x^{n-1}}{n!}=1-\frac{1}{x}+\sum_{n \geqslant 0} B_{n} \frac{x^{n-1}}{n!}
$$

and then

$$
a_{n}=\frac{B^{n}}{n} \text { for } n>1, a_{1}=\frac{1}{2}
$$

Collecting these computations we obtain

Proposition 3.11.2.

$$
\rho_{k}: A(n) / A(n+1) \rightarrow 1+A(n) / A(n+1) \text { is the map }
$$

$$
x \longmapsto 1+\left(k^{n}-1\right) \frac{B_{n}}{n} x
$$

We now come to oriented γ-rings. From the recursion formula for the rational functions $h_{n}(t)$ one proves by induction

$$
\begin{align*}
h_{m}\left(t^{-1}\right) & =(-1)^{m} h_{m}(t) \tag{3.11.3}\\
f_{m}(t) & =(-1)^{m} f_{m}(t)
\end{align*}
$$

Proposition 3.11.4.

Let A be an oriented p-adic γ-ring. Then

$$
\oint_{\mathrm{k}}^{\text {or }}: A(2 n) / A(2 n+1) \longrightarrow 1+A(2 n) / A(2 n+1) \text { is the map }
$$

$$
x \longmapsto 1+\left(k^{2 n}-1\right) \frac{B_{2 n}}{4 n} x
$$

Remark 3.11.5.
Equating coefficients in $\quad \sum \gamma^{r}(a) t^{r}=\sum \gamma^{r}(a)(1-t)^{r}$ one finds

$$
\gamma^{k}=(-1)^{k} \gamma^{k}+(-1)^{k}(k+1) \gamma^{k+1}+c
$$

where c has γ-filtration at least $k+2$. This gives by induction $A(2 n-1)=A(2 n)$ for $n \geqslant 1$.
3.12. The connection between Θ_{k} and ρ_{k}. The map θ_{k} was only defined for finite-dimensional elements x. In order to extend it to negatives of such elements one must have that $\Theta_{k}(x)$ is a unit. This can sometimes be accomplished by passing to the p-adic completion. We describe the formal setting.

Let R be an augmented special λ-ring with augmantation $e: R \rightarrow Z$ and augmentation ideal $B=$ ker e. Moreover we assume:
(i) R is finitely generated as an abelain group by $x_{1}=1, x_{2}, \ldots, x_{m}$ which are finite-dimensional.
(ii) $e\left(x_{r}\right)=\operatorname{dim} x_{r}$ for $r=1, \ldots, m$.
(iii) The $\underset{x}{ }$-topology on B is finer than the p-adic topology.

We then have $e(x)=\operatorname{dim} x$ whenever x is finite-dimensional and moreover $X_{t}(x-e(x))$ is a polynomial in t of degree $\leqslant \operatorname{dim} x$, hence

$$
\gamma-\operatorname{dim}(x-e(x)) \leqslant \operatorname{dim} x
$$

Proposition 3.8 .5 shows that the B-adic topology coincides with the γ-topology. The ring $A=B \otimes z_{p}$ is a p-adic \quad-ring, by (iii) above.

Proposition 3.12.1.
Let $i: R \longrightarrow R \otimes Z_{p}$ be the canonical map and $(k, p)=1$. Then for finite-dimensional $x \in R$ the element i $\theta_{k}(x)$ is a unit in $R \Leftrightarrow Z_{p}$.

Proof.

If $\operatorname{dim} x=n$ then $e \theta_{k} x=\theta_{k} e x=\theta_{k} n=k^{n}$. Put $r=k^{n}$, then $(r, p)=1$ and r^{-1} exists in Z_{p}. Therefore $r^{-1} i \theta_{k} x=1+a, a \in B \& Z_{p}$. But $1+A \subset B \otimes Z_{p}$ is a multiplicative subgroup. If $(1+a)(1+b)=1$ then $r^{-1}(1+b)$ is the inverse of $i \theta_{k} x$.

We may now extend θ_{k} to a homomorphism $R \rightarrow z_{p} \otimes R$. If $e^{\prime}: R \otimes z_{p} \longrightarrow Z_{p}$ is induced by $e: R \rightarrow Z$ then, for x, y finitedimensional

$$
e^{\prime} \theta_{k}(x-y)=k^{e x-e y}
$$

Therefore θ_{k} induces a homomorphism

$$
\theta_{\mathrm{k}}: B \longrightarrow 1+A, \quad A=B \otimes z_{\mathrm{p}}
$$

Proposition 3.12.2.
The following diagram is commutative:

$$
(k, p)=1
$$

Proof.
Let $m=$ dim x. Then $\gamma_{t}(x-m)$ is a polynomial of degree $\leqslant m$. Using

$$
\gamma_{t /(t-1)}(x-m) \quad \lambda_{-t}(m)=\lambda_{-t}(x)
$$

and the definition of θ_{k} and ρ_{k} we obtain

$$
\Theta_{k}(x)=\rho_{k} i(x-m) \theta_{k}(m)
$$

and hence $\theta_{k}(x-m)=\rho_{k} i(x-m)$. This suffices for the proof.

3.13. Decomposition of p-adic γ-rings.

Let A be a p-adic δ-ring. A fundamental system of neighbourhoods of zero for the p-adic topology may be taken as $\left(p^{n} A+A(n) \mid n \geqslant 1\right)$. The natural numbers \mathbb{N} are considered as a (dense) subset of the p-adic numbers.

Proposition 3.13.1.
The map

$$
\mathbb{N} \times A \longrightarrow A:(k, a) \longmapsto \longrightarrow \psi^{k}(a)
$$

is uniformly continuous.

Proof.
Let $M=2 N$ and suppose p^{M} divides s. If x_{1}, \ldots, x_{r} have γ^{\prime}-dimension one then

$$
\begin{aligned}
\psi^{k+s}\left(\Sigma x_{i}\right) & -\psi^{k}\left(\Sigma x_{i}\right)=\Sigma\left(1+x_{i}\right)^{k}\left(\left(1+x_{i}\right)^{s}-1\right) \\
& =p^{N} s_{1}+S_{N}
\end{aligned}
$$

where S_{j} is a symmetric function of weight $\geqslant j$ in the x_{i} for $j=1, N$. Hence given $N \geqslant 1$ we have shown that there exists $M \geqslant 0$ such that $p^{M} \mid s$ implies

$$
\psi^{k+s}(x)-\psi^{k}(x) \in p^{N} A+A(N)
$$

for all x which are a sum of elements of γ-dimension one. By the verification principle for special γ-rings this holds for all x . Hence our map is uniformly continuous in the first variable. Since it is a homomorphism in the second variable it is uniformly continuous.

We can now extend the map $(k, a) \longmapsto \Psi^{k}(a)$ by continuity to a map $Z_{p} \times A \longrightarrow A$, denoted with the same symbol. Therefore $\psi^{k}: A \longrightarrow A$ is defined for all $k \in Z_{p}$ as a continuous homomorphism. Moreover we still have $\psi^{k} \psi^{1}=\psi^{k l}$. If Γ denotes the compact topological group of p-adic units then A becomes a topological Γ-module.

By Hensel's Lemma Z_{p} contains the roots of $x^{p-1}-1=0$. This is a cyclic group of order $p-1$ generated by d, say. The additive group A splits into eigenspaces of ψ^{d}

$$
\begin{align*}
& A=\oplus \begin{array}{c}
p-2 \\
i=0
\end{array} A_{i} \tag{3.13.2}\\
& A_{i}=\left\{x \in A \mid \psi^{\left.d_{x}=d^{i} x\right\}}\right.
\end{align*}
$$

(This is so because A may be considered as $Z_{p}[C]$ module, where C is the cyclic group generated by T and T acting as ψ^{d}; and the group algebra $Z_{p}[C]$ splits completely because Z_{p} contains the ($p-1$)-th roots of unity). Since ψ^{d} is a ring homomorphism we have

$$
\begin{equation*}
A_{i} A_{j} \subset A_{i+j} \tag{3.13.3}
\end{equation*}
$$

so that A becomes a $Z /(p-1)$-graded ring. Let U be the kernel of the reduction $\bmod p Z_{p}^{*} \rightarrow Z / p Z$. Then U acts on each group A_{i} because $u \in U$ commutes with ψ^{d}. Put

$$
\begin{equation*}
A_{i}(n)=A_{i} \cap A(n) \tag{3.13.4}
\end{equation*}
$$

Then

Proposition 3.13.5.
$A_{i}(n)=A_{i}(n+1) \quad$ if $\quad n \neq i \bmod (p-1)$.

Proof. It follows from 3.8 .9 that Ψ^{d} acts on $A_{i}(n) / A_{i}(n+1)$ as multiplication by d^{n}. On the other hand, by definition of A_{i}, it acts as multiplication by d^{i}. Hence if the quotient is non-zero we must have $n \equiv i \bmod (p-1)$.
3.14. The exponential isomorphism ρ_{K}.

We now come to the main result in the theory of p-adic $\underset{\sim}{x}$-rings which says that ρ_{k} is an isomorphism if k generates the p-adic units ($p \neq 2$). This is the algebraic reformulation of Atiyah-Tall $[1+]$ of the theorem $J^{\prime}(X)=J^{\prime \prime}(X)$ of Adams [2] , which is one essential step in the computation of the group $J(X)$ of stable fibre homotopy classes of vector bundles over X.

Let A be a p-adic γ-ring. The group Z_{p}^{*} is topologically cyclic if $p \neq 2$. An integer k is a topological generator if and only if k generates $\left(z / p^{2}\right)^{*}$.

Theorem 3.14.1.
Let A be a p-adic γ-ring $(p \neq 2)$. Assume that $A(n)=A(n+1)$ for n 产 $0 \bmod \mathrm{p}-1$. Let k generate the p -adic units. Then

$$
\rho_{\mathrm{k}}: A \longrightarrow 1+A
$$

is an isomorphism.

Proof.
We have $A=$ inv $\lim A / A(n), 3.8 .7$. We have a commutative diagram with exact rows (see 3.9 .2 and 3.9.3)

Therefore it suffices to prove the theorem for $A(n) / A(n+1)$. In that case ρ_{k} is the map $a \longmapsto 1+d(k, n)$ a where $d(k, n) \in Z_{p}$ is independent of the particular ring, hence is an isomorphism if $d(k, n)$ is a unit. By assumption we only have to consider the case $n \equiv 0 \bmod p-1$. We have computed the numbers $d(k, n)$ in 3.11 .2 and it follows from the clausenvon Staudt Theorem (Borewicz-Safarevic [30], p. 410) that $d(k, n)$ is a unit in Z_{p} if k is a p-adic generator and $n \equiv O(p-1)$. Actually it has been observed by Atiyah-Tall [14], p. 283 that the results of 3.11 and the Clausen-von Staudt theorem is not necessary. One only needs to produce a p-adic γ-ring such that $A(n) / A(n+1) \neq 0$ for $n \equiv O(p-1)$ and F_{k} is an isomorphism. We shall describe such an example in a moment and thereby completing the proof of Theorem 3.14.1.

Example 3.14.2.
Let $R(Z / p ; Q)$ be the Grothendieck ring of $Q[2 / p]$-modules. There are two irreducible modules: The trivial module 1 , and V which splits as
$w+w^{2}+\ldots+W^{p-1}$ over the complex numbers. Hence the augmentation ideal I is the free group on a single generator $x=1+W+\ldots+W^{p-1}-p$. By 3.5 the Adams operations are given as follows: $\psi^{k}=$ id if $(k, p)=1$, $\psi^{k}=0$ if p / k. Evaluation of characters at a generator g of z / p gives an isomorphism $I \longrightarrow p Z: x \mapsto-p$. We have

$$
\gamma_{t}(x)=\pi_{i=1}^{p-1} \quad \gamma_{t}\left(w^{i}-1\right)=\prod_{i}\left((1-t)+w^{i} t\right)
$$

and evaluating at g maps the right hand polynomial (short calculation) into $(1-t)^{p}-(-t)^{p}$. Therefore $\gamma^{r}(-p)=0$ for $r \geqslant p$ and $p \mid \gamma^{r}(-p)$ for $1 \leqslant r \leqslant p-1$. Since ψP acts on I_{n} / I_{n+1} as multiplication by p^{n} and $\psi^{P}=0$ we see that I_{n} / I_{n+1} is a p-group (cyclic in this case). Moreover I_{n} / I_{n+1} is non-zero only if $n \equiv 0(p-1)$ because $\psi k,(k, p)=1$, acts as k^{n} and as identity. Since $\gamma^{p-1}(-p)=(-1)^{p-1} p$ the lowest power of p attainable in I_{n} is $\left(y^{p-1}(-p)\right)^{v}$ where $(v-1)(p-1)<n \leqslant v(p-1)$. Hence $I_{n} / I_{n+1}=Z / p$ for $n \equiv O(p-1)$ and the p-adic topology and the χ-topology coincide. We now compute ρ_{k} on $I_{n} / I_{n+1} \otimes Z_{p} \cong I_{n} / I_{n+1}$ for $n \equiv O(p-1)$. A generator for I_{n} / I_{n+1} is the image of p^{r}. Hence

$$
\begin{aligned}
\rho_{k}(p) & =\rho_{k}(-p)^{-1}=\pi_{u}\left(\left(1-\frac{u}{u-1}\right)^{p}-\left(\frac{u}{1-u}\right)^{p}\right)^{-1} \\
& =\pi_{u} \frac{(1-u)^{p}}{1-u^{p}}=k^{p-1}=1+\frac{k^{p-1}-1}{p} \cdot p
\end{aligned}
$$

Since k generates the p-adic units $m=p^{-1}\left(k^{p-1}-1\right)$ is an integer prime to p. We obtain

$$
\rho_{k}\left(p^{r}\right)=\rho_{k}(p)^{p^{r-1}}=(1+m p)^{p^{r-1}} \equiv 1+\operatorname{mp} \bmod p^{r+1}
$$

so that 3_{k} is on I_{n} / I_{n+1} the map $\rho_{k}(a)=1+m a \in 1+I_{n} / I_{n+1}$. Since $I_{n} / I_{n+1}=Z / p$ this is an isomorphism.

Remark 3.14.3.
We know from 3.11. that for $\mathrm{n}=\mathrm{r}(\mathrm{p}-1) \quad \mathrm{S}_{\mathrm{k}}$ in the example above is the map $a \longmapsto 1+\left(k^{n}-1\right) \frac{B_{n}}{n}$ a and that pB_{n} is p-integral. We obtain $m \equiv\left(k^{n}-1\right) \frac{B_{n}}{n} \equiv\left((1+m p)^{r}-1\right) \frac{B_{n}}{n} \equiv \operatorname{mrp} \frac{B_{n}}{n} \equiv-m\left(\mathrm{pB}_{n}\right) \bmod p$. Hence $\mathrm{pB}_{\mathrm{n}} \equiv-1 \bmod \mathrm{p}$. This is one of the von Staudt congruences.

We now describe certain instances where the hypothesis of Theorem 3.14 .1 is fulfilled.

Let A be any p-adic γ-ring. In 3.13 we have described a splitting of A into eigenspaces A_{i} of Adams operations ($i=0,1, \ldots, p-2$). Then ρ_{k} induces a map

$$
\rho_{k}: A_{0} \longrightarrow 1+A_{0}
$$

and by 3.13 .5 we can apply the Theorem to it:

Proposition 3.14.4.

Let A be a p-adic γ-ring, $p \neq 2$. Let k be a generator of the p-adic units. Then

$$
\rho_{k}: A_{0} \longrightarrow 1+A_{0}
$$

is an isomorphism.

Proposition 3.14.5.
Let A be a p-adic x-ring. Assume that $\psi^{k}=i d$ for $(k, p)=1$. Then $A(n) / A(n+1)=0$ for $n \neq 0(p-1)$.

Proof.
For $x \in A(n) / A(n+1)$ we have $x=\psi^{k} x=k^{n} x$ and $k^{n}-1 \in z_{p}^{*}$ for $n \neq O(p-1)$.

Let A be a p-adic γ-ring. Put
(3.14.6)

$$
\begin{aligned}
A^{\Gamma} & =\left\{a \mid \psi^{k} a=a, a l l k\right\} \\
A_{\Gamma} & =A / N, N=\left\{a-\psi^{k} a \mid a \in A, a l l k\right\} \\
(1+A)^{\Gamma} & =\left\{1+a \mid \psi^{k} a=a, a l l k\right\} \\
(1+A) \Gamma & =(1+A) / M, M=\left\{(1+a) / \psi^{k}(1+a) \mid a \in A, a l l k\right\}
\end{aligned}
$$

Since \oint_{k} commutes with the Adams operations we have induced maps

$$
\left(\rho_{k}\right)^{\Gamma}: A^{\Gamma} \longrightarrow(1+A)^{\Gamma}
$$

(3.14.7)

$$
\left(\underline{o}_{k}\right)_{\Gamma}: A_{\Gamma} \longrightarrow(1+A)_{\Gamma}
$$

Theorem 3.14.8.
If $p \neq 2$ and k is a generator of the p-adic units then the maps 3.14 .7

$$
\left(\rho_{k}\right)^{\Gamma} \quad \text { and } \quad\left(\rho_{k}\right) \Gamma
$$

are isomorphisms.

Proof.

One first shows: If $O \rightarrow X \rightarrow Z \rightarrow Y \rightarrow O$ is an exact sequence of $p-$ adic γ-rings and the Theorem is true for X and Y, then it is true for Z. The following diagram with exact rows (ker- coker sequences) is commutative

One applies the five lemma. (To establish the ker- coker sequence note that

is exact if k is a generator of the p-adic units). The Theorem is true for $A(n) / A(n+1):$ For $n \neq 0(p-1) \quad A(n) / A(n+1)^{\Gamma}=0,(A(n) / A(n+1)) \Gamma_{\Gamma}=0$; for $n \equiv O(p-1) \quad \rho_{k}$ itself is already an isomorphism by 3.14.1. By the first part of the proof the Theorem is true for all $\mathrm{A} / \mathrm{A}(\mathrm{n})$. From

$$
\text { inv } \lim \left(A / A(n)^{\Gamma}\right)=(\operatorname{inv} \lim A / A(n))^{\Gamma}
$$

and an analogous equality for $(1+A) /(1+A(n))$ the Theorem for A follows. (Note that "invlim" is exact on compact groups.)

We now discuss analogous results for $p=2$ where oriented γ-rings are needed. The group of 2-adic units $\Gamma=Z_{2}^{*}$ is not (topologically) cyclic, but $\Gamma /\{ \pm 1\}$ is; e.g. 3 is a generator. Since $-1 \in Z_{p}$ the operation ψ^{-1} is defined for p-adic γ-rings, see 3.13 .

Proposition 3.14.9.
If A is an oriented p-adic $\quad \gamma$-ring then $\Psi^{-1}=i d$.

Proof.
If x has γ-dimension 1 then $1+x$ has λ-dimension 1 . Therefore

$$
1=\lambda^{0}(2+2 x)=\lambda^{2}(2+2 x)=\lambda^{1}(1+x)^{2}=(1+x)^{2}
$$

so that $\psi^{-1}(x)=\frac{1}{1+x}-1=x$. Hence the Proposition is true for a sum of one-dimensional elements. Now apply a "verification principle".

Theorem 3.14.10.
Let A be an oriented p-adic γ-ring (p any prime). Let k be a generator of $\Gamma /\{ \pm 1\}$ - Then

$$
\rho_{\mathrm{k}}^{\text {or }}: A \longrightarrow 1+A
$$

induces isomorphisms

$$
\left(\rho_{k}^{\text {or }}\right)^{r} \text { and }\left(\rho_{k}^{\text {or }}\right) \Gamma
$$

If $p=2$ then $\rho_{k}^{o r}$ is an isomorphism.

Proof.

Let $p=2$. We have to show that $A(n) / A(n+1)$ is mapped isomorphically. By 3.11.5 this group is zero if $n \equiv 1 \bmod 2$. So let $n=2 m$. Then

$$
\rho_{k}^{\text {or }}(a)=1+d^{\prime}(k, n) a \text { and } d^{\prime}(k, n)=\left(k^{n}-1\right) \frac{B_{n}}{2 n} \in z_{2} \text { by 3.11.4. In }
$$ this case if $n=2^{r} d, d$ odd and $r \geqslant 1$, then $k^{n}=1+2^{r+2} c$, codd, because k is a generator of $z_{2}^{*} /\{ \pm 1\}$. Hence $\left(k^{n}-1\right) \frac{B_{n}}{2 n}=\frac{c}{d} 2 B_{n}$ and by the Clausen-von Staudt theorem $2 \mathrm{~B}_{2 \mathrm{~m}} \equiv-1 \bmod 2$. Therefore $\mathrm{d}^{\prime}(\mathrm{k}, \mathrm{n}) \in \mathrm{z}_{2}^{*}$. If one wants to avoid the Clausen-von Staudt theorem one can compute $\rho_{k}^{\text {or }}$ in a special case as in 3.14.2. For $p \neq 2 \quad 2 d^{\prime}(k, n)=d(k, n) \in z_{p}^{*}$ hence $d^{\prime}(k, n) \in Z_{p}^{*}$. So one can proceed as in the proof of 3.14.8.

3.15. Thom-isomorphism and the maps $\theta_{k}, \theta_{k}^{o r}$. Let G be a compact Lie group, $E \longrightarrow X$ a complex G-vector bundle over the compact G-space X. If $M(E)$ is the Thom space of E we have the Thom class $t(E) \in \tilde{K}_{G}(M(E))$ and $\widetilde{K}_{G}(M(E))$ is a free $K_{G}(X)$-module with a single generator $t(E)$. Therefore we must have a relation of the type $\psi^{k} t(E)=\tilde{\theta}_{K}(E) t(E)$ with a uniquely determined element $\tilde{\theta}_{K}(E) \in K_{G}(X)$.

Proposition 3.15.1.
The equality $\theta_{K}(E)=\tilde{\theta}_{K}(E)$ holds.

Proof. Both θ_{k} and $\tilde{\theta}_{k}$ are natural for bundle maps and homomorphic from addition to multiplication. By the topological splitting principle it therefore suffices to proof the equality for line bundles E. Let $s^{*}: \widetilde{K}_{G}(M E) \longrightarrow K_{G}(X)$ be induced by the zero section. Then $s^{*} t(F)=1-E$ and therefore $1-E^{k}=\psi^{k}(1-E)=s^{*} \psi^{k} t(E)=s^{*}\left(\tilde{\theta}_{k}(E) t(E)\right)=\tilde{\theta}_{k}(E)(1-E)$. This implies $\theta_{k}(E)=1+E+\ldots+E^{k-1}$ (look e. g. at X a complex projective space). Now use 3.7.2.

For real vector bundles and $\theta_{\mathrm{k}}^{\mathrm{or}}$ the situation is analogous but slightly more complicated. We describe the ingredients. Let $\mathrm{E} \rightarrow \mathrm{X}$ be a real G-vector bundle of dimension 8 n which has a $\operatorname{spin}(8 n)-s t r u c t u r e$. With this Spin-structure one defines a Thom-class $t(E) \in \tilde{K O}_{G}(M(E))$ and the generalized Bott periodicity (Atiyah [10]) says that again $\tilde{K}_{G}(M(E))$ is a free $\mathrm{KO}_{\mathrm{G}}(\mathrm{X})$-module on $\mathrm{t}(\mathrm{E})$. We define $\tilde{\theta}_{\mathrm{K}}$ or (E) by the equation $\Psi^{k} t(E)=\tilde{\theta}_{k}^{o r}(E) t(E)$. If k is odd then we also have defined in 3.10 the element $\theta_{k}^{o r}(E)$ because E, having a spin-structure, is orientable.

Proposition 3.15.2.

For k odd and E a G-vector bundle with $\operatorname{spin}(8 n)$-structure the equality $\theta_{k}^{\text {or }}(E)=\tilde{\theta}_{k}^{o r}(E)$ holds. In particular $\tilde{\theta}_{k}^{o r}(E)$ is independent of the spinstructure for odd k.

Proof. Using 3.10 .10 a proof is contained in Bott [31], Proposition 10.3. Theorem B on p. 81 and Theorem $C^{\prime \prime}$ on p. 89.
3.16. Comments.

This section is based on Atiyah-Tall [14] . That paper axiomatizes certain basic results of Adams [1] , [2] . The reader should
also study the relation-ship between $\boldsymbol{\lambda}$-rings, formal groups, Wittvectors, and Hopf-algebras (Hazewinkel [95]). It would be interesting to investigate the topological significance of the number theoretical properties of the Bernoulli numbers. We also mention the exponential isomorphism for λ-rings obtained in Atiyah-Segal [13] ; this is related to \hat{s}_{K} but gives an isomorphism on the whole ring (under a suitable hypothesis).

3.17. Exercises.

1. Show that the tensor product of special λ-rings A, B is a special λ-ring in a canonical way such that the maps $A \rightarrow A \otimes B, B \rightarrow A \otimes B$ are $\boldsymbol{\lambda}$-homomorphisms.
2. Show that there exists a free special λ-ring U on one generator $u \in U$. This ring is characterized by the following universal property: Given a special λ-ring R and $x \in R$ there is a unique homomorphism $\mathrm{f}: U \longrightarrow R$ of λ-rings such that $f(u)=x$.
3. Show that if R is special λ-ring and $x \in \mathbb{R}$ n-dimensional then there exists a special λ-ring $s \supset R$ such that $x=x_{1}+\ldots+x_{n}$ where the $x_{i} \in S$ are one-dimensional (splitting principle). 4. If S is a finite $G-$ set let $\wedge^{i}(S)$ be the set of subsets $M \in S$ with $|M|=i$. The G-action on S induces a G-action on $\Lambda^{i}(S)$. Show that the $S \longmapsto \Lambda^{i}(S)$ induce a λ-ring structure on $A(G)$. This structure is in general not special.
