
6. Induction Theory. 

In this section we present the formal theory of induced representations, 

restriction homomorphisms, transfer maps. This axiomatic theory was 

developed mainly by Green [~8] and Dress [~0] , [~I] . The basic 

axioms are abstract forms of the Frobenius reciprocity law and the 

Mackey double coset formula of ordinary representation theory. Later 

we shall apply the formalism to equivariant homology, cohomology, and 

topological transfer maps. 

6.1. Mackey functors. 

Let G be a finite group and let G ^ or G-Set be category of finite G- 

sets and G-maps. Let Ab be the category abelian groups. 

A bi-functor 

M = (M ,M~) : G-Set -----9 Ab 

consists of a contravariant functor M : G-Set ----) Ab and a covariant 

functor MW : G-Set-----)Ab; the functors are assumed to coincide on 

objects. We write 

M(s) : Mw(S) : M~(S) 

for a finite G-set S. If f : S --- 

notation 

) T is a morphism we often use the 

M~(f) : f~, M~6(f) : fw-. 

We use the topological notation: a lower star for covariant functors 

("homology"). Dress unfortunately uses a different notation. 
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bi-functor M = (M~,M~) is called a Mackey functor if it has the A 

following properties: 

(6.1.1) For any pullback diagram in G-Set 

u 

I 
I 

H I 
I 
I 
N* 
T 

s 

I 
I 
I 
I 
$ 

-) v 

the diagram 

{- 
H 

M(U) ) M(S) 

h 

is commutative. 

M(T) ~ M(V) 
f~ 

(6.1.2) The two embeddings S ----)S + T 4---- 

define an isomorphism 

T into the disjoint union 

M~(S+T) ..... -) M~(S) (D M~(T) . 

Let M and N be bi-functors. A natural transformation of bi-functors 

X : M-----,N consists of a family of maps X(S) : M(S)------ N (S) , in- 

dexed by the objects of G-Set, such that this family is a natural 

transformation M ----~ N and M ----9 
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Let M be a Mackey functor and S a G-set. Then 

M S : T ........ ~) M(S x T) 

Ms~(f) : M*(ids x f), Ms~(f) : M~(id S x f) 

defines a Mackey functor M s , as one easily checks. The projection 

maps pr : S x T -----@ T define natural transformation of bi-functors 

@S : M -----~ M S 

@S : M S -----~ M 

O s (T) : pr ~ 

O s (T) : pr . 

The relevant commutative diagrams follow from the functor properties 

of M and from 6.1.1. 

The functor M is called S-injective (S-projective) if 0 s (0 s) is split- 

injective (split-surjective) as a natural transformation of bi-functors. 

Proposition 6.1.3. 

Let M be a Mackey functor. Then the followinq assertions are equivalent: 

i) M is S-injective. 

ii) M is S-projective. 

iii) M is a direct summand of M S as bi-functor. 

Proof. 

i) ~ iii) By definition of S-injectivity. 

iii) ~ i) The assumption of iii) is that we have natural transfor- 

mation O : M ----~ M s , ~ : M S ---} M such that ~ O = id. We have to 

find a natural transformation ~S : id. : M S --4M such that ~SoS 

For a G-set T we define ~S(T) by the following diagram 
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M(T) 

I 
J 
f 
] o (T) [ 
J 

M(S x T) .... 

pr 

o s (T) 

-} M(S x T) .......... ~ M(T) 

S(T) 

© (SxT) 

¢, 

M(S x S x T) :, M(S x T) 

pr ~ (d x id) ~ 

(T) 

where d : S ) S x S is the diagonal. The left square is commutative 

by naturality. Using (d x id) pr : id and ~(T)@(T) : id one proves 

S(T)@S(T) : id. Moreover ~ S is defined as a composition of three 

natural transformation of bi-functors hence itself such a natural 

transformation. 

ii) <:) iii) is proved analogously. 

k-i 
Let S be a G-set. We let S ° be a point and S k = ~]" S. We denote 

i=o 
pr : S k+l @ S k the projection which omits the i-th factor, 

l 

O ~ i (k. If M is a Mackey functor we have two chain complexes 

d ° d I d 2 

(6.1.4) O ---~ M(S °) ~ M(S I) ~ M(S 2) ~ ... 

(6.1.5) O (----. M(S °) @ ..... M(S I) ~- ..... M(S 2) ( .... 

d o d I d 2 

k k 
defined by d k ~ (-i) i pr i ~ d k ~- (-i) i : , = pr~. 

i =o i :o 

Proposition 6.1.6. 

Let M be a Mackey functor. Then 

i) M s is always S-injective and S-projective. 

ii) If M is S-injective then the complexes 6.1.4 and 6.1.5 are exact. 
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Proof. 

The splitting of M S ----9 (Ms) s appears in the proof of 6.1.3. Let 

be a splitting of @S. Then a contracting homotopy of 6.1.4 is given by 

the maps 

k+l s := ~2 (S k) : M(S x S k) ------9 M(sk) 

A splitting of O S gives a contracting homotopy for 6.1.5. 

Remark. 

Instead of using functors into Ab one can consider functors into the 

category of modules over a ring or into an abelian category. This re- 

mark also applies to subsequent developments. 

It is often convenient to denote M(G/H) by M(H). If H < K < G and 

f : G/H ----:) G/K the canonical map then 

f : M(K) : M(G/K) ------9 M(G/H) : M(H) 

is called restriction from K to H 

and 

K 
res H 

f~ : M(H) : M(G/H) -- ) M(G/K) : M(K) 

is called induction from H t__qo K 

ind  

The axioms for a Mackey functor essentially tell how res and ind be- 

have under composition. This is the so called double coset formula 
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which one can never remember and which is avoided by this axiomatic 

treatment. Let 

P 
G/H x G/K } G/K 

I i 
I 

Q1 lq 
; I 

P 
G/H 9 G/G 

be the canonical pullback. The orbits A 1 ..... A r of G/H x G/K cortes- 

pond to the double cosets H\G/K. Let P(i), Q(i) be the restriction of 

P,Q to A. Then 6.1.1 and 6.1.2 say 
i 

r $e 
(6.1.7) res G ind G = ~- P(i). Q(i) 

i=l 

If A i is the orbit through (l,x) then via A i = G/G(I,x ) 

H 
(6.1.8) Q(i) : resHa x K x -I 

and 

(6.1.9) P(i)~ : ind K x- 1 o c(x)~ 
K ,~ Hx 

where c(x) is conjugation g I > x-lg x. The double coset formulas 

6.1.7 - 6.1.9 are sufficient to reconstruct the whole Mackey functor. 

Similar remarks apply to the exact sequences 6.1.4 and 6.1.5. We spell 

out what the exactness of 6.1.4 at M(S I) means in terms of double co- 

sets. Let S = ~ G/H, where F is a family of subgroups of G. Then 
H~F 

M(S) = ~ M(G/H). The image of M(S °) in M(S) is equal to the diffe- 
H6F 

fence kernel of the two p r o j e c t i o n  m a p s  P i  : M(S) - - - - . -~  M(S x S) w h i c h  

are maps 
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M (G/H) ----9 ~ M (G/H x G/K) 
H~F (H,K)~F x F 

Then (XH)~O H~ F M(G/H) is in the kernel if and only if for each x ~K 

and (H,K)~ F x F res(xH) ~M(H~ x Kx -I) is equal to res o c(x)x K, where 

again c(x) is the map induced by the conjugation x-iHx ~ K ---> xKx-l~ H. 

It is seen that this difference kernel is actually an inverse limit. 

6.2. Frobenius functors and Green functor. 

Let M,N, and L be Mackey functors G-Set -----9 Ab. A pairinq 

M x N ----) L 

is a family of bilinear maps 

M(S) x N(S) ----~ L(S) : (x,y) ~-- ) x-y 

indexed by the objects of G-Set, such that for any morphism f : S ---~T 

the following holds 

(6.2.1) 

L~f(x-y) = (M~fx). (N~fy) , x ~M(T) , y ~N(T) 

x- (N~fy) : L~f((M~fx)-y) , x~M(T) , y6 N(S) 

(M fx)-y : L f(x. (N~fy)) , x~ M(S) , y~ N(T). 

These formulas make sense if M,N, and L are just bi-functors. A bi- 

functor F together with a pairing F x F ----9 F is called a Frobenius 

functor if F(S) x F(S) ---~ F(S) makes F(S) into an associative ring 

with unit and morphisms f~ preserve units. 

A Green functor U : G-Set ----~ Ab is a Mackey functor U together with 

a pairing U x U ----)U making it into a Frobenius functor. 
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If U is a Green functor then a left U-module is a Mackey functor M to- 

gether with a pairing U x M ----~ M such that via this pairing M(S) be- 

comes a left U(S)-module (the unit IU(S)~ U(S) acting as identity). 

Theorem 6.2.2. 

Let U : G-Set ----~ Ab be a Green functor. Let S be a G-set. Then the 

followinq assertions are equivalent: 

i) The map f~ : U(S) ----~ U(P is ~urjective 

ii) U is S-injective. 

iii) All U-modules are S-injective. 

(P : Point). 

Proof. 

iii) :> 

ii) 

Us(P)----- 

ii), because U is a U-module. 

i), because by 6.1.3. U is S-projective; in particular 

U(P) is split surjective. 

i) ~ iii) : Choose x ~ U(S) with f~(x) = i. Let M be a U-module. Define 

a natural transformation : M S -----> M by 

(T) : M(S x T)-------~M(T) : y }---) q (p~x.y) 

where p : S x T ----> S and q : S x T -----~ T are the two projections. 

One checks that ~P is a natural transformation of Mackey functors. 

Moreover ~ is left inverse to ©S i M ----9 M s because for z E M(T) one 

has by 6.2.1 

S (p'~'x.q'my) (q p~x) y ~e (T) (z) : q : - 

and by 6.1.1. q p% : g~f x : g~-i = i, where we have used the pullback 

diagram 
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S x T > T 

i q I 

p Ig 
S _~ P 

f 

The universal example of a Green functor is the Brunside rinq functor. 

We describe this aspect of the Burnside ring now. Let A[S] be the 

Burnside ring of finite G-sets over S. If f : S --> T is a morphism 

then pullback along f defines a ring homomorphism fW: ALTjr ~ -----~ A[S 3 

and composition with f defines an additive map f~: : A[S]-----) A[T]. The 

ring structure on A[S] defines the pairing A x A ----) i. It is easily 

checked that these data make A into a Green functor. (Compare 5. 

where we have studied a slightly more general situation.) 

Proposition 6.2.3. 

Let M be a Mackey functor. Then M is in a canonical wa% a module over 

the Burnside rinq functor. 

Proof. 

Given f : T ----9 S we consider the homomorphism f f : M(S)------~ M(S). 

The assignment (f,x)~---} f f x is additive in f and induces therefore 

a bilinear map A[S] x M(S) ----9 M(S). We leave it as an exercise to 

verify that this defines a pairing and makes M into an A-module. 

Let U be a Green funetor. The assignment f : T ---- 

duces a ring homomorphism 

S ~---9 %f~l S in- 

(6.2.4) h(S) : h : A[S]-----~ U(S) 

and the h(S) from a natural transformation of Green functors. This 
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generalizes permutation representations~ 

We now discuss defect sets. 

Proposition 6.2.4. 

Let X and Y be finite G-sets and let U be a Green functor. Then 

U(X) ------} U(P) and U(Y) -----~ U(P) are surjective if and only if 

U(X x Y) -----9 U(P) i__ss surjective. (P = Point.) 

Proof. 

If U(X x Y) ----} U(P) is surjective we see from the factorization 

U(X x Y) ----3 U(X) ----9 U(P) that U(X)------} U(P) is surjective. If 

U(Y) -----9 U(P) is surjective then U is Y-projective so that 

U(Y x X) ----9 U(X) is surjective for any X. 

Corollary 6.2.5. 

There exists a unique minimal set D(U) o_ff conjuqacy classes of sub- 

qroups o_ff G such that the sum of the induction maps U(H) ----3 U(G), 

(H) 6 D(U) i__ss surjective. 

D(U) is called the defect set of the Green functor U. The famous in- 

duction theorem of Brauer is in this terminilogy the statement that 

the defect set of the complex representation ring are the groups S x P, 

P a p-group, S cyclic. 

6.3. Hyperelementary induction. 

An induction theorem for a given Mackey functor is a theorem which 

computes its defect base or gives at least some restrictions on the 

defect base. We shall present one general result of this nature. 

We begin with a result about restriction and induction for the 
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Burnside ring. Let N be a family of subgroups of G which is closed with 

respect to subgroups and conjugation. Let p a prime and define 

(6.3.1) N p : { H<G [9K~H with KEN and IH/KI a power of p } 

Let an index (p) denote localization at the prime ideal (p). Let Ke(N) 

denote the kernel of the restriction maps A(G) (p) --------> ~H~N A(H) (p) 

and let Im(N p) denote the image of the sum of the induction maps 

A(H) (p) > A(G) (p). Then we have 
H~N p 

Proposition 6.3.2. 

Ke(m) + Im(N p) = A(G) (p) . 

Proof. 

Ke(N) + Im(N p) is an ideal of A(G) (p) because Ke(N) certainly is an 

ideal as a kernel of a ring homomorphism and for any Frobenius functor 

the image of an induction map is an ideal (use 6.2.1). If this ideal 

is different from A(G) (p) then there exists a maximal ideal q of A(G) (p) 

with Ke(N) + Im(N p) < q. This ideal q has the form q : q(L,p), see 5. 

~. ~ Since Ke(N)< q this ideal extends to ~HEN A(H) (use e. g- 

Atiyah - Mac Donald [1ff] , 5.10), i. e. we may assume q : q(L,p) with 

LE N. By 5. ~,7 q(L,p) : q(K,p) where G/K ~q and by 5. ~,~ 

KEN p. Hence G/K is the image of 1 under the induction map A(K) ) A(G). 

But G/K ~q contradicts G/K 6:Im(N p) ¢ q. Hence a q with Ke(N) + Im(N p) c q 

cannot exist. 

Let now U be a Green functor G-Set --9 Ab. As usual we denote U(G/H) 

for the G-set G/H by U(H). Let N and N p be as above. 

Theorem 6.3.3. 

Assume that any torsion element in U(G) i__ss nilpotent. Assume that the 
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restriction map 

U (G) ~ - - - - - )  TI~H~ N U(H) (~ 

is injective. Then the induction mad 

U(H) (p) .... ~ U(G) (p) 
HEN p 

i__ss surjective. 

Proof. 

The injectivity and nilpotency hypothesis of the theorem imply that any 

element in the kernel of U(G)(p)----~ TFH~ N U(H)(p) is nilpotent. By 

6.3.2 we find x ~ Ke(N), y 6 Im(N p) with x + y : 1 A(G) (p). Now apply 

the natural transformation h : A(G) (p)----> U(G) (p) of 6.2.4. Then 

h(x) + h(y) : 1 E U(G)(p) and h(x), contained in the kernel of 

U(G) (p) -----9 ~H~N U(H)(p) , is nilpotent. Therefore h(y) : 1 - h(x) is 

a unit. But h(y) is in the image of ~ U(H) (p) .... ~ U(G)(p), so 
H ~ N p 

that this image being an ideal must be all of U(G)(p). 

If N = C is family of cyclic subgroups of G, then N p is the family of 

p-hyperelementary subgroups of G. A subgroup is called hyperelementary 

if it is p-hyperelementary for some prime p. Let Hy be the class of 

hyperelementary subgroups of G. 

Corollary 6.3.4. 

If U(G) is torsion free and U(G) -----9 [HeC U(H) is iniective then U 

satisfies hyperelementary induction, ~. e. the induction map 

H~HyU(H) 9 U(G) 

is surjective. 
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A particular example where the hypothesis of 6.3.4 is fulfilled is 

the Green functor "rational representation ring". By 6.2.2. any module 

over this Green functor also satisfies hyperelementary induction. 

6.4. Comments. 

based on Dress [~0] , [8~] . We refer to these This section is 

papers for further details, in particular for the connection with 

classical induction theorems. The reader should also study Dress 

[~0] , § ~ in order to see a general construction of Mackey 

functors which works in most of the algebraic applications. As a re- 

search problem I suggest that the reader takes the double coset formu- 

la of 5.12 and develops induction theory for compact Lie groups in 

analogy to the theory in this section. For applications of induction 

theory in topology see the next section (also for compact Lie groups). 

6.5. Exercises. 

i. Make multiplicative induction (5.12) as part of a Mackey functor. 

2. Let (p) c Z be a prime ideal. What is the defect set of the loca- 

lized Burnside ring functor A(G)q(H,p)? 

3. Provide the details in the proof of 6.2.3. 


