
7. Eguivariant homoloqy and cohomoloqy. 

We describe localization and splitting theorems for equivariant homo- 

logy and eohomology theories. In particular we use the fact that such 

theories are modules over the Burnside ring. We compute localizations 

at prime ideals of the Burnside ring. Our treatment in this chapter is 

axiomatic. 

7.1. A qeneral localization theorem. 

Let G be a compact Lie group. A G-equivariant cohomoloqy theory consists 

of a contravariant, G-homotopy invariant functor hG(?,?) from a suit- 

able category of pairs of G-spaces (e. g. compact spaces, or G-CW- 

complexes) into graded abelian groups. The grading is by an abelian 

group A which may be the integers, the real representation ring or 

some subquotient of it, etc. It assumed that A is equipped with a 

homomorphism i : Z ) A so that expressions like a+i (n) = a+n, a ~ A, 

n ~ Z, make sense, we require the long exact cohomology sequence to 

hold (at least for closed G-cofibrations A < X) and the suspension iso- 

~ ,~+i 
morphism hG(X) ~ n G (SX) . In the following we gradually add more 

and more axioms, like suspension isomorphisms for representations, 

product structure, ~ontinuity etc. 

If H is a subgroup of G we write 

(7.-1.1) hH(X,Y) = hG(GXHX, GXHY) 

for a pair (X,Y) of H-spaces and consider hH(?,?) as H-equivariant 

cohomology theory. 

Let now kG(?,?) be another equivariant cohomology theory with the same 

g r a d i n g  a s  h H a n d  w h i c h  i s  m u l t i p l i c a t i v e .  I n  p a r t i c u l a r  kG(X) i s  a 
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graded-commutative ring with unit. We assume given a pairing 

k~(X,Y) ~ x hG(X,Y) ) hG(X,Y) 

of cohomology theories which makes hG(X,Y) a kG(X,Y)-module. In parti- 

cular hG(GXHX) is via the projection p : GXHX ) G/H and 

k (G/H) ~ h (G/H) an kG(G/H)-module. Moreover it is also via 

k~(GXHX) >h G(GxHX) an k G k G > ~ ~ : k~(Point) module and this module 

structure "factors" over the ring homomorphism k G > k (G/H) = k~, 

called restriction homomorphism. 

be a multiplicatively closed subset which (for simplicity) Let S c k G 

W- 
lies in the center of k G, and is in particular commutative in the un- 

graded sense (center also in the ungraded sense). Let X be a G-space 

and put 

(7.1.2) X S {x~X I S AKernel(k G ) kG(~x)) = 

Proposition 7.1.3. Let X be a compact G-space with X s = ~. Then the 

localization 

S -I hG ~(x) : O. 

(Graded localization. Elements of S are made invertible.) 

Proof. Given x EX we can find by the slice theorem (Bredon [Z~], ~ ~.~) 

a G-neighbourhood U of the orbit Gx and a G-map r : U ) G/G x. If 

U ° = r-l(Gx ) then canonically U : G x G U ° and r is the G-extension 
x 

of U >Point. Since x does not lie in X s we can find s ~ S which is 
o 

contained in the kernel of k G > (G/Gx) . Since the kG-mOdule struc- 

h~G ~ > k~(G/G x) we see that sh~(U) = O, ture of (U) factors over k G 
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hence s-lh~(U) = O. Covering X by a finite number of such U, using the 

Mayer - Vietoris sequence and the exactness of the localization functor 

we conclude that s-lb,(X) = O. 

We now consider compact G-spaces X in general. If V is a compact G- 

neighbourhood of X s in X then by excision and 7.1.3 we have s-lh~(X,V)=O. 

Now assuming either the continuity 

(7.1.4) colim hG(X,V) : hG(X,xS) 
V 

of the cohomology theory or local properties of the pair X,X s which 

imply 7.1.4 (e. g. neighbourhood retract). We obtain 

Proposition 7.1.5. Let X be a compact G-space such that 7.1.4 holds. 

Then the inclusion X S ) X induces an isomorphism 

-i ~ lh~(xS ) S hG(X) % S- 

There are many variants of 7.1.3 and 7.1.5 according to the different 

technical (axiomatic) assumptions about theories and spaces involved. 

We mention some of them. First of all the treatment of homology is 

quite analogous. Compactness of the space in 7.1.3 may be replaced by 

finite dimensionality, working with the spectral sequence of a covering 

and an additive theory. 

We now describe a particular of the localization process. We assume 

that our cohomology theory h G has suspension isomorphisms for a suit- 

able set of representations, i. e.: Given a family (Vj I j ~ J) of 

complex representations and to each j a natural isomorphism 

s3. : %~(X) ~ ~+lJ[h G (V~^ X) where vC3 : V.] ~ ~ is the one-point-compacti- 

fication and ljl is a suitable index depending additively on V (e. g. 
3 
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the dimension or V. itself). We assume for simplicity that the repre- 
3 

sentations are complex in order to avoid sign problems. The s are 
] 

assumed to commute. We define the multiplication with the Euler class 

of V, to be the composite map 
3 

G (x) ) ^ x) >Z[+' J l (x) 
S. 
] 

where the second map is induced by inclusion of the zero in V . Actually ] 

this is a special case of the previously discussed module structure, 

coming from a natural transformation of stable equivariant eohomotopy 

into h G. Let S be the multiplicatively closed subset generated by all 

such Euler-classes. Then X % X S is the set of all orbits which can be 

mapped into V ~ {oh , where V is any finite direct sum of V.'s. If in 
3 

particular V. consists of all non-trivial irreducible representations 
3 

then X s is the fixed point set of X. (See tom Dieck [~] for further 

information on this construction.) 

7.2. Classifyinq spaces for families of isotropy qroups. 

Let G be a compact Lie group. A set F of closed subgroups is called a 

familiy if it is closed under conjugation and taking subgroups. (For 

some of the following investigations it suffices: closed under conju- 

gation and intersection). 

Let F be a family. A G-space X is called F-trivial if there exists a 

G-map X ) G/H for some H eF. The G-space X is called F-numerable, if 

there exists a numerable covering (Uj I j ~J) of X by F-trivial G-sub- 

sets. See Dold [~I] for the notion of numerable covering. Partitions 

of unity in our context should consist of G-invariant functions. 

Let F be a family. We denote by T(G,F) the category of F-numerable G- 

spaces. The isotropy groups of such spaces lie in F. Let T(G,F)h be the 
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corresponding homotopy category. 

Proposition 7.2.1. The cateqory T(G,F)h contains a terminal object E(F), 

i. e. an object E(F) such that each F-numerable G-space X admits a G- 

map X ) E(F) unique U_l! t__oo G-homotopy. 

Proof. We immitate the Milnor construction [415] of a universal bundle. 

There exists a countable system (Hjl j 6 J) of groups Hj @ F such that 

every group in F is conjugate to an H (Palais [92~] , 1.7.27) Let 
J 

Ej = G/Hi ~G/Hj ~... be the join of a countibly infinite number of 

copies G/Hi. Let E(F) : ~j~j Ej be the join of the Ej (always carrying 

the Milnor topology). 

Let X be an object of T(G,F). We choose a numerable covering (Uala E A) 

by G-sets UaC X and G-maps fa : Ua > G/H a with H a ~ {Hjlj E J} . One 

can assume that A is countable (compare tom Dieck [~g] , Hilfssatz 2). 

From (Uala E A) and a subordinate G-invariant partition of unity one 

constructs a G-map X } E(F) and shows as in tom Dieck [÷9] 

that any two G-maps are G-homotopic. The space E(F) is contained in 

T(G,F) (see Dold [79] , 8. for numerability). Hence E(F) is the 

desired terminal object. 

Remark 7.2.2. A terminal object of T(G,F) is uniquely determined up to 

G-homotopy equivalence. If F~ is the family of all subgroups of G then 

E(F~ ) is G-contractible because a point is a terminal object in 

T(G, F~ )h. 

Proposition 7.2.3. Let X be a__nn object i__%n T(G,F) . Then X~ E(F) is G-ho- 

motopy-equivalent too E(F). 

Proof. By the methods of tom Dieck [%~] one proves that any two G- 
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Y : E(F) ,WX WX W- .... 

are G-homotopic. If XE T(G,F) then Y 6 T(G,F), so that Y is a terminal 

object in T(G,F)h. This yields the G-homotopy equivalences 

E(F) ~ X -~ Y~X -~ Y -~ E(F) 

Let H be a subgroup of G. For a G-space X let resHX be the H-space 

obtained by restricting the group action. If F is a family of subgroups 

of G let F/H = {L, H I L~ F] be the induced family of subgroups of H. 

With these notations we have 

Proposition 7.2.4. res H E(F) = E(F/H) . 

Proof. By adjointness 

[Y, res H E(F)] H = [G x H Y, E(F) ] G" 

If Y 6T(H,F/H) then G x H Y& T/G,F). Hence the H-equivariant homotopy 

set [Y, res H E(F)] H contains a single element which means that resHE(F) 

is a terminal object. Note that resHE(F) E T(H,F/H) . 

7.3. Adjacent families. 

Families of isotropy groups have been used successfully in bordism 

theory by Conner and Floyd [~}] and later by Stong [~55"] Kosniowski 

~D&] and others. The classifying spaces E(F) of 7.2 allow to extend 

some of these methods to arbitrary equivariant homology and cohomology 

theories. We give some indications of how this can be done. 
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Let F 1C F 2 be two families of subgroups of G and let E i by a terminal 

object of T(G,Fi)h. Then we have a G-map f : E 1 ) E 2 unique up to 

G-homotopy. In the following we assume f to be a closed G-cofibration 

(replace, if necessary, E 2 with the mapping cylinder of f). If 

f' : E 1 ' > E 2' is another such G-cofibration then the pair (E2,E I) 

is G-homotopy-equivalent to the pair (E2',EI'); compare tom Dieck- 

Kamps-Puppe [~0] , Satz 2.32. The G-homotopy equivalence moreover is 

unique in the category of pairs (use terminality). 

Suppose an equivariant homology theory h~ is given. We define a new 

homology theory by 

(7.3.1) h [F2,FI] (X,Y) :: h~(E 2 x X, E 1 x X u E 2 xY). 

The exact homology sequence of a pair follows without trouble if Y is 

closed in X (or use mapping cylinders). Another choice of (E2,E I) 

yields, by the remarks above, a functor which is canonically isomorphic 

to h~[F2,FI],_ . We put h[F2,~ ] ~ .  : h -,~F2] if F 1 is empty, i. e. 

h g f . [ F 2 ]  (X,Y) :=  h ~ ( E  2 x X, E 1 x X) .  

The exact homology sequence of the triple 

(E 2 x X, E 1 

gives via theexcision isomorphism 

x X vE 2 x Y, E 2 x Y) 

h@(E I x X, E 1 x Y) ~ h~(E I x X ~E 2 x Y, E 2 x Y) 

the long exact sequence of homology theories 
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(7.3.2) ) hn+ 1 [F2,FI] (X,Y) > h n IF1] (X,Y) --9 

--~ h n [ F 2 ] (X,Y) ) ... 

where n again is taken from a suitable index set. 

The relation of the homology theories to the exact sequences of Conner 

and Floyd is as follows. (We use the notations of Stong [155] .) Let 

~G (F 2,F I) be the unoriented G-bordism theory of manifolds in 

T(G,F 2) with boundary in T(G,F I) . Then 

Proposition 7.3.3. There exists a natural isomorphism 

G G 
'~ (F2,F I) ~ ~ [F2'FI] - 

Proof. Exercise. (See tom mieck [53] .) 

Proposition 7.3.3 tells us that bordism with families is unrestricted 

bordism of suitable spaces. 

One of the main uses of families is the induction over orbit types 

using adjacent families. Two families F 2 ) F 1 are called adjacent if 

their difference F 2\ F 1 is just a single conjugacy class. We are going 

to analyze this situation. 

Let F 2 ) F 1 be adjacent, differing by the conjugacy class of H. Let CZ 

denote the cone over the space Z. Then we have 

Proposition 7.3.4. There exists a canonical natural isomorphism 

h [F2,FI] (X,A) Z h (GXNHE(NH/H) x (CEF2,EF 2) x (X,A)) . 
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Proof. In the statement of the proposition E(NH/H) is of course the 

free numerable NH/H-space. One shows that 

(GXNH E(NH/H) ) ~ EF 1 

is a terminal object of T(G,F2)h, hence can be taken ~space EF 2. To 

prove this one recondires the proof of 7.2.1. The above claim then 

follows from the following considerations: If A and B are G-spaces 

and P is a point, then we have a G-homeomorphism 

A~B =-- (A~P) x B ~A x B~P) . 

Using excision this yields 

h@@ (A~B,B) --" 

h~ ((A~ P) x B ~A x (B~P) B) 

h ((i~ P) x B~ A x (B~ P) (h~P) x B) 

h (i x (B~P), i x B). 

Moreover the pair (B ~P, B) is G-homotopy-equivalent to the pair (CB,B) . 

7.4. Localization and orbit families. 

We assume given an additive G-homology theory h~which is stable in 

the following sense: Let V be a complex G-module. Then we are given 

suspension isomorphism as in 7.1 

s v : ~ (x) ~ h +ivl(VC^ x) 

which are compatible SwS v = s W O V" We assume that the theory is 

multiplicative with unit 1 6 ~ (sO). The image of 1 under 
O 
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(v c) ~, ~ (s °) 
~o (s°) ~ [o _~ - Ivl  n~. 

is called Euler class e(V) of V (n is the zero section S °= ~o,~I --)vC)" 

Let M be a set of G-modules which is closed under direct sums. Let 

s : s(M) : {e(V) Iv~M] 

We formally invert the elements of S and obtain a new homology theory 

-i 
S h ~ (X,A) . 

Theories of this type where investigated e. g. in tom Dieck [SG] , 

[53] ~ ~], [s~] 

Let F be the family of all subgroups of G. Let F S be the family of 

isotropy groups appearing on unit spheres S(V), V6M. Then we have 

Proposition 7.4.1. There exists a natural isomorphism of homoloqy 

theories 

s -I h~(x,m "-h. [~, ~s] (X,A) 

Proof. As in tom Dieck [~6] one sees that S -I h ~ (X,A) is a direct 

limit over groups h~((DV, SV) x (X,A)) where V runs through the G-modules 

in M. Since an additive homology theory is compatible with direct limits 

we have to show essentially the following: Let V be the direct sum of 

a countable number of all irreducible representations which appear as 

direct summands in modules of H. Then the unit sphere S(V ) is a ter- 

minal object in T(G,Fs)h. Obviously S(V ) E F(G,Fs) . Any two G-maps 

S(V~) ) S(V~) are G-homotopic (Husemoller [~] , 3.6 page 31 - 32). 

The existence of a G-map E(F s) --9 S(Voo) is seen as follows: If 
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a : G/H } S(V) is a G-map, then 

(Ulgl H, u2g2H .... ) } ~- u . a (gjH) 
j:l ] 

is a G-map from G/H ~G/H~... into 
j:l 

v {o I 

We have seen in 7.1 that localization allows to cut out suitable pieces 

of G-spaces. This is also true in the context of families. Let F be a 

family and X a G-space. Put 

X F = {x EX I Gx~ F~ , X F : X ~ X F 

We assume that X,X F etc. are numerable and that the pairs (X,XF), (A,A F) 

have suitable excision properties. 

Proposition 7.4.2. The inclusion (XF,A F) 

morphism 

) (X,A) induces an iso- 

. F) " h. {×A) 

Proof. 7.2.3 gives h (E(F) ~XF,X F) = O. Since E(F~) = CE(F) we have as 

in the proof of 7.3.4 h ~ (E(F)~XF,X F) ~ h~(E(F ) x X F, E(F) x X F) and 

the latter group is by excision isomorphic to h~((E(F~), E(F)x(x,xF))- 

(One has to assume that this excision is actually possible.) The exact 

homology sequence of h~ IF ,F] for the pair (X,X F) now yields the 

asserted isomorphism. 

We have to discuss the excision problem. To begin with we have 

h~ [F ,F] (K) = O for G-subsets K of K F. If X is completely regular 

then X F is closed in X (Palais [9~] , 1.7.22). If K c X F is closed in 

X, then we have ordinary excision h~[F ,F ] (X K) : h IF ,F] (X). In 
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order to pass from (X~K) to X,X F we must investigate the natural map 

1 : h~[F ,El (X F) ) inv lie h~[F ,El (U), 

where the inverse limit is taken over the open G-neighbourhoods U of 

X F, and see under which conditions 1 is an isomorphism. 

Now one can use continuity conditions of the theory h~ . But for many 

spaces X one does not use this continuity. One notes that the inverse 

limit is taken over isomorphisms. Therefore 1 is injective if X F is a 

G-retract of a neighbourhood U and 1 is surjective if a retraction 

r : U ) X F is G-homotopic to the inclusion U c X. 

We now discuss localization of equivariant homology at prime ideals of 

the Burnside ring and its relation to families of isotropy groups. 

Again we adopt an axiomatic approach. 

G 
We are given the G-equivariant theory t (X,Y). We assume that t~(X,Y) 

is naturally a module over A(G). We put t~(X,Y) = t~(G/U x X,G/U x Y) 

U is an A(U)-module. The restriction and assume that t~ 

res : r : tG(x)~ ) tU(x) 

shall be compatible with the restriction s : p,(G) ) A(U) i. e. 

r(x-y) : s(x)-r(y) , x ~A(G), y ~t~(X) . Moreover we have natural trans- 

formations (induction) ind : t~(U/K x X) ; t~(X) such that the 

composion 

t U(X) > t~(U/K x X) ) t U(X) 
res ind 

is multiplication with U/K E A(U). 
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Consider the prime ideal q : q(H,p) of A(G) (see 5. ~. ) where 

H < G, NH/H is finite of order prime to p if p # O. Assume that we have 

families F 1 ) F 2 such that for K 6 FI~ F 2 q(K,p) = q(H,p) . Let an index 

(p) or q denote localization at the prime ideal (p) c Z or q ¢ A(G). 

Then we have 

Proposition 7.4.3. Multiplication with y& q(H,p), e. 2- Y : [G/HI , i__ss 

a__nn automorphism of the homoloqy theory t GM IF I,F2] (p) . The canonical 

G G i__%s ann isomorphism. map tM [F I,F2] (p)--3 t~ IF I,F 2 ] q 

Proof. Using exact sequences 7.3.2 and the exactness of localization 

we see that it suffices to consider adjacent F 1 ~ F 2, say with FIWF2:(K) 

and q(K,p) : q(H,p). We then use the isomorphism of 7.3.4. We abbreviate 

NK : N. The space E(N/K) is the classifying space (in the sense of 

Segal [9~] ) of the category with objects the elements of N/K and 

exactly one morphism between any two objects. This category defines a 

simplicial space and its geometric realisation is E(N/K). The skeleton 

filtration of this simplicial space gives a spectral sequence which 

has as E2-term the homology of the following chain complex 

• .. (--- t,(G x N (N/K i x Z) < 
d 
1 

tw(G x N (N/K)i+ix Z)< 

i 

with Z : (CEF2,EF 2) x (X,A) and d i = Z (-l)J (prj)w_ where prj omits 
j=o 

the (l+j)-th factor. Multiplication by y, being a natural transformation 

of homology theories, induces anendomorphism of this spectral sequences. 

Hence it suffices to show that multiplication with y is an isomorphism 

on tG(G x N (N/K) i x (CEF2,EF 2) x (X,A)) (p) for i~, i. The group in 

question is isomorphic to tG(G/K x (N/K) i-I x (CEF2,EF 2) x (X,A)) (p) 

and therefore the action of y E A(G) only depends on its restriction 

y' ~ A(K). By 5. ~. this restriction has the form 
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y' = ~Ky [K/K] + Z a  i [K/Ki] with a iE Z and (K i) < (K), (K i) # (K). 

But ~K(y) ~ ~H(y) ~ O mod p, because y 6 q(H,p). Since we localized 

at (p) multiplication with ~K(y) [K/K] is an isomorphism. The proof 

of 7.3.4 will be finished if we can show that multiplication with 

[K/Ki] is zero. But by the axiomatic assumption this multiplication 

factors over t~(G/K x K/K i x (N/K) i-I x (CEF2,EF 2) x (X,A)) (p) and 

this group is zero by 7.4.2. 

7.5. Localization and splittinq of equivariant homoloqy. 

G which is a module Again we are given an equivariant homology theory t~ 

over A(G) such that the axioms of the previous section are satisfied. 

If we localize at (p) the theory becomes a module over A(G) (p). The 

idempotents of A(G) (p) split off direct factors we are going to des- 

cribe these direct factors. 

Let q : q(H,p) a prime ideal of A(G) where H is the defining group of 

q (i. e. G/H q) . We consider two chain complexes 

t G G (G/H) ( G ((G/H)2) 

d o d I d 2 

t G } t% (G/H) G ((G/H) 2) 
d ° dl~ t@_ d2 > ... 

with d i = Z (-I) j (prj)~ and d i = ~ (-I) j (prj) 
] =o ] =o 

(Here (prj) ~ is the induction (alias transfer) which is assumed to 

exist with suitable properties.) 

Proposition 7.5.1. The homology of these chain complexes is zero when 

localized at q. 

Proof. We define a contracting homotopy s for the first chain complex 
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by the formula 

s : [G/H] -l(pro )~ : t G. ((G/H)i)q )t%((G/Hi+l)q. 

One verifies ds + sd = id using that pr pr is multiplication by 

[G/HI . A similar proof works for the second chain complex. (Compare 

also section 6.) 

We apply the foregoing in the following situation. We put 

G % 
tG~ (G/H x X) = t~H (X) for G-spaces X. The restriction t~ (X) >t (X) 

becomes injective when localized at q(H,p) and the image is equal to 

the kernel of 

19~ G (G/H x X) > G (G/H 2 x X) . pr o - pr : t ~ q t ~ q 

We denote this kernel by t H (X) inv the invariant elements. q • 

Let FH be the family of all subgroups subconjugate to H and let F'H be 

the family of those K 6FH with q(K,p) / q(H,p). Then we have a natural 

transformation of homology theories 

(7.5.2) r H : t G (X) } t H (X) inv 
(P) ~- (p) 

inv ) t H ~ [FH,F'H] (X)(p) 

where the first map is restriction and the second comes from the exact 

homology sequence of the pair FH,F'H. (Note that EFH is H-contractible 

by 7.2.4) 

Theorem 7.5.3. (a) (rH) q is a_nn isomorphism. 

(b) r H i__ss split surjective. 

(c) The product of the maps r H 

inv r : (r H) : t G (X) > I]" t H [FH,F'H] (X) (p) 
(p) (H) ~ ~ (p) 
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is injective and a_nn ~somorphism if only a finite number of factors on 

the riqht are non-zero. 

Proof. (a) From 7.4.3 we know that 

t H [?H,F'H] (X) inv 
* (P) 

inv t H [FH,F'H] (X)(p) 

because the isomorphism holds without "inv" and localization is exact. 

G (X)q H (x)inv What re- We have for any space X the isomorphism t~ : t~ q . 

H t H [FH F'H] (X)q is an isomor- mains to be shown is that t~ (X)q ) ~ , 

phism or, equivalently, that t H ~ [F'H ] (X) q is zero. Because of the 

H (G/K x X)q : 0 additivity of the theory it is enough to show that t~ 

for KE F'H. This follows from the homology version of 7.1.3 because 

i(K)q(H,p) : O. 

(b) In view of (a) r H is up to isomorphism obtained from tensoring the 

canonical map A(G) (p) > A(G)q with t G ~ (X). This canonical map is 

split surjective, because q has an associated idempotent e(q)~ A(G)(p) 

• and e(q) A(G) (p) : i(G)q. 

(c) The analogous assertion is true if we localize at maximal ideals 

of i (G) . 

Remark 7.5.3. Let G be a finite group. Let p be a prime number or O. 

k 
Write IGI = p m with m prime to p if p ~ O. Write ~G I : m is case p:O. 

G 
If we can divide by m in the groups t~ (X,A) then the map r in 7.5.3 

is an isomorphism without localization at (p). In particular if we 

invert the order of the group, then the homology theory splits into 

summands 

t% [FH,F'H] (X) NH/H 

where FH (resp. F'H) is the family of all (resp. all proper) subgroups 
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of G and the NH/H means the ordinary invariants under the NH/H-action. 

Remark 7.5.4. We have seen that A(G) may contain many idempotents even 

without localization. Such idempotents split off direct factors from 

equivariant homology theories and these direct factors may be described 

using families. This is quite analogous to the considerations above. 

For details see tom Dieck [~] 

7.6. Transfer and Mackey structure. 

We have to describe examples of homology theories which satisfy the 

axioms of 7.4. We use some homotopy theory which is developed in the 

next chapter which should be consulted for notation and some details. 

The application of the Burnside ring to equivariant (co-)homology and 

(co-) homotopy makes use of the Lefschetz fixed point index and fixed 

point transfer developed by Dold [~] , [~] in the non-equivariant 

case. We refer to these papers for details and further information. We 

recall the results that we need in a slightly different set up. 

Let G be a compact Lie group. A G-map p : E ) B is called G-ENR B 

(= euclidean G-neiqhbourhood retract over B) if there exists a real 

G-module V with G-invariant inner product, an open G-subset U < B x V, 

and G-maps i : E 9 U, r : U ) E over B with ri = id(E). Let 

(B x V) c be the Thom space of the trivial bundle B x V } B. Note 

that (B x V) c is canonically G-homeomorphic to the smashed product 

B+^ V c where B + is B with a separate base point added. 

If p,i, and r are as above, if p is a proper map and B locally compact 

and paracompact there exists a G-invariant continous function 

~ : B ) ]O, ~[ such that for all b ~B we have ~ (b)< d(ip-l)b), 

[b] x V % U), where d denotes the metric derived from the inner 

product on V. 
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For such maps we call transfer map associated to the data p,i, and r 

any pointed G-map 

h : (B x V) e ) (E x v) C 

with the following properties 

(7.6.1) The inverse image of E x {o~ under h is iE. 

(7.6.2) For u = (b,v) % U and 2d(v,Pr2iru) < 9(b) the map h has the 

form 

h(u) : (ru, v - pr 2 iru). 

°(X;Y) denote the direct If X and Y are pointed G-spaces we let ~ G 
o 

limit over pointed G-homotopy sets [vC^ X, vC^ Y] using suspensions 
G 

over all (complex) G-modules; see chapter 8. Using suspension isomor- 

phisms we extend this functor to functors ~ ~ (X:Y) graded over 
G 

in the real representation ring RO(G) of G. We get a cohomology theory 

in the variable X and a homology theory in the variable Y. 

Proposition 7.6.3. Let p : E ) B be G-ENR B with retract represen- 

tation i,r as above. Let p b__ee proper and B locally compact and para- 

compact. Then transfer maps h exist and their pointed G-homotopy class 

0 + + 
i_ss uniquely determined b__z 7.6.1 and 7.6.2. The stable p e~G(B ~E ) o_ff 

h i__ss independent of the retract representation i,r. 

Proof. A proof may be extracted from Dold [?~] 

sider a somewhat simpler situation.) 

(Note that we con- 

Example 7.6.4. Let p : E ) B be a submersion between compact diffe- 

rentiable G-manifolds. Let j : E ) V be an equivariant embedding 
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into a G-module V. Then i = (p,j) : E --~ B x V is an embedding over 

B. A retract representation may be obtained from a tubular neighbour- 

hood U of i. Hence p is G-ENR B. 

If tG(-) is a cohomology theory for G-spaces which has suspension iso- 

morphisms for all G-modules (or all complex G-modules, etc.) then a 

transfer map h or ~ as is in 7.6.3 induces a homomorphism 

(7.6.5) p: : t G (E) > t G (B) 

G 
called transfer. Similarly for homology theories t~ we get a transfer 

! t G (7.6.6) p : (B) > t G (E) 

The composition P! p is in the case of a multiplicative cohomology 

theory multiplication with the Lefschetz-Dold index Ip 6t~(B) (see 

o for the map Dold [~] ). In particular we have the index I(X) ~ 
G 

o 
X > Point, where X is a compact G-ENR and ~ o : colim [vC,v c ] are 

G 
G 

the coefficients of equivariant stable cohomology in dimension zero. As 

O 
usual ~ G is a commutative ring with unit. In the next chapter we shall 

prove the following basic result. 

Theorem 7.6.7. The assiqnment induces a map I G : A(G) 

map is an isomorphism o__ff rinqs. 

o This 

We now collect the formal properties of the transfer which are used to 

establish the axiomZused in the localization theorems in 7.4 and 7.5. 

We call a G-ENR B p : E ~ B with p proper and B locally compact and 

paracompact a transfer situation. If P is a point we abbreviate 

°(B) ; this is a commutative ring, with unit if B : C + (B;P+) = ~ G 

O(B +)_module structure (B +^ X) carries a ~ G The cohomology group t G 
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°(B+ ) which is natural in X. The definition runs as follows: If a 6 ~ G 

B + V c B + is represented by a : vC^ B + ) V c let a I : vC^ > A be 

given as (v,b) ! > (a(v,b),b). Then the action of a is the map 

+ ~ e(vCa B+^ X) tG(B ^ X) : t G 
c 

tG(V ^ B+A X) : t (B + X) 
(al^ id)*~ 

where the isomorphisms are suspensions. Similarly for homology. The 

next proposition collects what we need about the transfer and this mo- 

dule structure. 

Proposition 7.6.8. Let h : E' ) E and f : E )B be transfer 

situations. 

(a) fh is a transfer situation and h ! f  ! : ( f h )  ! f ! h !  : ( f h )  ! 

(b) Let E 1 ) E 

B 1 > B 

be a pull-back and B 1 locally compact and paracompact. Then fl is a 

transfer situation and 

f, , ~- = ! ~f! ~ ~- f{' (fl) ~ = . 

G (B +^ X) and a & ~o°(B +) we have G (E+^ X) > t~ G (c) For f : t~ 

fw (f a-s) : a-f~_(s). 

(d) For f ~ ~ 3 : tG(B+ ^ X) > t G (E + ~ X) and b E ~ (B +) we have 

f~ (b-x) : f ~(b)-f ~(x) . 

. O(B +) we have ' t G (B+A X) --9 tG (E+^ X) and a ~ ¢0 G (e) For f : 
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f! (a-x) = f~(a) -f! (x) . 

+ ~ °(B+) we have (f) For f! : tG(E ^ X) ) t G (B+~ X) and a 6 ~ G 

f, (f~a.b) : a-fr (b). 

(g) If p : E ) B is a transfer situation and H ~ G a closed subgroup 

then the H-fixed point map pH E H B H : ~ is again a transfer situation 

(for the group NH/H) and (pH)~ = r~, where 

o . H+ H+. 
r : ~ (B+:E+)-- 9 ~ NH/H(B :E ) is induced by restriction to H- 

fixed points. 

(h) If p : E ) B is a transfer situation for the subgroup H of G 

then G x H p : G x H E ) G x H B is a transfer situation for the 

group G and j (~) = (G x H p)~ where 

°(G x H B+;G x H E +) o (B+E+) ) ~ G J : ~ H 

is induced by the functor X ; ) G x H X. 

For the proof of (a) and (b) we refer to the above mentioned work of 

Dold. Using this ~nd our description of transfer maps, (c) to (h) be- 

come fairly routine verifications. 

The applications to the axiomatic treatment in 7.4 is as follows: 

G 
) t%(G/H x X) is the transfer for f : G/H ) res : t~ (x) Point 

and ind : t~G (G/H x X) ) t~(X) is induced by f. The relevant 

properties follow from 7.6.7 and 7.6.8. 

For finite groups there exist important eguivariant homology theories 

which are not stable in the sense that they admit suspension isomor- 

phisms for enough G-modules. Examples are the bordism theories of 
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Conner and Floyd. Nevertheless the methods of 7.4 and 7.5 are appli- 

cable. The relevant axioms can be established by direct geometric 

methods, without using transfer and stable homotopy as above. For 

bordism theories "restriction" is just the usual restriction to a sub- 

group and "induction" is induced by the functor X ~ ) G x H X from 

H-spaces to G-spaces. For an axiomatic treatment along these lines see 

tom Dieck [C0] . The Bredon equivariant homology and cohomology 

(Bredon [3&] , Br~cker [3~] , Illman ) have canonical 

restriction and induction if the coefficient system is a Mackey functor. 

7.7. Localization of equivariant K-theory. 

In order to add some meat to the vegetable soup 7.1 - 7.6 we consider 

equivariant K-theory as an example of the previous general theory. Of 

course, one can treat K-theory more directly, using representation 

theoretic methods. We let KG(X) be the Grothendieck ring of complex 

G-vector bundles over the (compact) G-space X (see Segal [I~] ). 

Let G be a compact Lie group. As in Segal [1%9] we use the 

Definition 7.7.1. A closed subgroup S of G is called Cartan subqroup 

of G if NS/S is finite and S is topologically cyclic (i. e. powers of 

a suitable elements are dense <=) S is the product of a torus and a 

finite cyclic group). A Cartan subgroup is p-reqular if the group of 

components has order prime to p, for a prime number p. 

Let C be the set of conjugacy classes of Cartan subgroups of G and 

C(p) the subset of p-regular groups. We refer to Segal ~ ]  for the 

proof of 

Proposition 7.7.2. The set C is finite. 



194 

If (S) E C(p), P < NS/S a p-Sylow subgroup and Q< NS the pre-image of P 

then INQ/Q I ~ O mod p. Hence Q = QS is the defining group of the prime 

ideal q(S,p). 

By the equivariant Bott-isomorphism the cohomology theory KG(-) has 

suspension isomorphism for complex G-modules. Thus KG(-) becomes and 

A(G)-module and KG(Point) : R(G) becomes an A(G)-algebra. Actually the 

map A(G) ) R(G) which comes from the homotopy considerations of 7.6. 

coincides with the equivariant Euler characteristic of chapter 5. 

If H < G let Hp be the smallest normal subgroup such that H/Hp is a p- 

group. 

Proposition 7.7.3. R(G) 

Cartan subqrou~. 

q(H,p) : 0 if and only i__ff Hp __ _ is a p-reqular 

Proof. Let S ~ G be a topologically cyclic subgroup with generator G. 

The diagram 

A(G) ) R(G) 

~G 

~S I I eg 

Z > e 

is a commutative diagram of ring homomorphisms ( MG equivariant Euler 

characteristic 5. g. G ; e evaluation of characters at g). We view g 

everything as A(G)-module and localize at q : q(H,p). Since elements 

of R(G) are detected by the various e we can find an S with { ~ 0 g q 

if R(G) ~ O. But then Z # O and this implies q(S,p) = q(H,p). Since q q 

S is cyclic there exists a Cartan subgroup T with S 4 T such that T/S 



195 

is torus, by Segal [9~3] , 1.2 and 1.5. Hence q(T,p) : q(S,p). One can 

take a p-regular subgroup T' of T with q(T,p) : q(T',p). The assertion 

then follows from 5. . An analogous argument shows that 

R(G)q(S,p) # 0 for a p-regular Caftan group p. 

From 7.7.3 and 7.6 we obtain natural isomorphisms 

~- ~ KG(X)q(S,p) p ~ o (7.7.4) KG(X) (P) (S) G C(p) 

(7.7.5) KG(X) (o) "-- ~ KG(X)q(S o) 
(S) e C 

- inv 
(7.7.6) KG(X) q(S,p) ~ KQs(X)q(S,p ) 

where QS < NS is the pre-image of a p-Sylow subgroup of NS/S. Moreover 

in 7.7.6 X can be replaced by X(S) : { x I q(Gx, p) : q(S,p)} . 

We are going to study the case of finite groups G more closely. Then S 

is a cyclic group of order prime to p and we have i--~ S--gQS = H--~P---}I 

with a p-group P, hence H is a semi-direct product and a p-hyperelemen- 

tary group. Moreover 

KH(X) q(H,p) = KH(XS)q(H,p) 

One can describe H-equivariant vector bundles over X S. The fibre 

consists of S-modules and these have to be grouped together according 

to the conjugation action of P. 

We specialize further to the case H : S x P. Then naturally 

KH(X s) : R(S) (~ Kp(XS). Moreover A(H) : i(S) ~ A(P) and the following 
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diagram of equivariant Euler characteristics is commutative 

A(S) ) A(H) < A(P) 

R(S) > R(H) < R(P) 

Let S be the cyclic group of order m and generator g. Suppose (m,p) = i. 

Let x denote the irreducible standard representation of G. Then 

R(S) ~ Z [x] /(xm-l) . Let E = { l-x I I 1 ~ i ~ m-i ] be the set of Euler 

classes of non-trivial irreducible S-modules. Let e : R(S) > Z [Um] 

be evaluation of characters at g; here u is a primitive m-th root of 
m 

unity. 

Proposition 7.7.7. The ~ e induces an isomorphism of ring~ 

R(s) [E -I]  z[mlUm] 

Proof. We have to invert the 1 - u~, 1 ~ i ~ m-l. If m = p~(1) ...p~(r) is 

the factorization into prime powers and if u(i) is a primitive p~(i)-th 

root of unity then l-u(i) has norm Pi hence is invertible in Z[m-l,um ]. 

-i 
Moreover we see that m and u are in the image of e. Therefore e is 

m 

surjective. The map e factorizes 

Z [x]/(xm-l) > Z [x]/~m(X) ) Z [Um] 

e I e 2 

where ~m is the m-th cyclotomic polynomial. The map e 2 is an isomorphism. 

If we put xm-i : ~m(X) Pm(X) then ~m and Pm are relatively prime and 

the canonical map 
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z Ix]/(xm-l) > Z [x]/~m ~ Z [x]/P m 

is injective. The prime factors of P divide certain l-x I 1 ~ i ( m-I i m 

and since these elements are to be inverted the P have to be inverted 
m 

too. This can o n l y  h a p p e n  i f  t h e  l o c a l i z a t i o n  E - 1  t r i v i a l i s e s  t h e  

factor Z [x]/P m, so that 

z [x]/(xm-1) [~-i] ) Z [x]/~m E-I 

must be injective and hence ~ is injective too. 

Proposition 7.7.8. The map e induces an isomorphism of rings 

e' : R(S)q(S,p) ) Z(p)[ Um] . 

Proof. We have to invert the image of A(S)\ q(S,p) under 

~S : i(S) ) R(S) . If y~q(S,p) then e ~(s(y) = I ygl = ~ ySI ~ O(p) . 

Hence e induces a surjective map e'. The product of the Euler classes 
m-i 
T6 (l-x l) is a rational representation and therefore equal to ~6s(y) 
i:l 

for a suitable y6A(S). One has lySl = m, so y~q(S,p). Hence the map 

in question is a localization of e in 7.7.7 and therefore injective. 

We now come back to H = S x P. We note that A(P)q(p,p) 

local ring and 

: A(P) (p) is a 

A(H)q(H,p) :~ A(S)q(S,p) ~ A(P)q(p,p) 

and more generally therefore 

S =~ R(S) (~ Kp(X S) (7.7.9) KH(X )q(H,p) q (S,p) (p) 
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Corollary 7.7.10. Let m : [G~. Then we have a canonical isomorphism of 

rings 

Kc(x) [m - 1 ] ~  (D (R(c) [ sc l  ] ® ~<(xC)) Nc/c 
(c) 

where (C) runs throuqh the conjuqacy classes of cyclic subgroups o_~f G, 

and E c ¢ R(C) is the set of Euler classes of non-trivial irreducible 

C-modules. 

7.8. Localization of the Burnside rinq. 

Let FI~ F 2 be families of subgroups of G. We denote by A(G~F I) the 

ideal of A(G) generated by sets (or spaces) X with isotropy groups in 

F 1 and by A(G~FI,F 2) the ideal A(G~F I) modulo the subideal A(G:F2). 

For simplicity let G be a finite group. If (H) E ~(p), i. e. ]NH/H I ~ 0 

mod p let Hp be the smallest normal subgroup such that H/Hp is a p-group. 

Then {KIq(K, p) = q(H,p)] : { KI(Hp),~ (K),4 (H) ] . Call this set Fo(H). 

We put F(H) : { K I(K) ,< (H)~ and F' (H) : F(H)~ Fo(H) . 

The ring A(G)(p) splits into a direct product of rings A(G)q(H,p), 

(H) ~ ~(p), and these factors may also be written as e(H) A(G) (p) where 

e(H) is a suitable indecomposable idempotent element of A(G) (p) - 

Proposition 7.8.1. Taking H -fixed points induces an isomorphism p - -  

A(H;FH,F'H) ~ A(H/Hp) 

Proof. Both groups have as an additive basis the H/K, (Hp) ((K) ((H), 
H 

and H/K p : H/K. 

Proposition 7.8.2. The following groups are canonicall X isomorphic 
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A(G)q (H,p) , A (G; FH) q ( H , p )  ' A ( G ; F H ' F ' H ) q  (H,p)  

and A(G;FH,F'H) (p) . 

Proof. The quotient map A(G;FH) ) A(G;FH,F'H) becomes an isomorphism 

after localization at q(H,p) because the kernel A(G;F'H) is detected 

by fixed point mappings ~L : A(G:F'H) ~ Z with q(L,p) # q(H,p) and 

therefore ZLq(H,p) = O where Z L : Z is an A(G)-module via ~L" For a 

similar reason the inclusion A(G;FH) > A(G) induces an isomorphism 

of its q(H,p)-localizations. The canonical map 

A(G;F,F'H) (p) ) A(G;FH,F'H)q(H,p) is an isomorphism by an argument 

and in the proof of 7. 

The idempotent e(H) is contained in A(G;FH) (p) and multiplication by 

e(H) induces a split surjection A(G)(p) ) A(G;FH,F'H)(p) which 

corresponds to the canonical map A(G) (p) ~ A(G)q(H,p) under the iso- 

morphisms of 7.8.2. By the general theory we have an isomorphism 

(7.8.3) A(G;FH,F'H) (p) : A(H;FH,F'H) inv(p) 

Combining with 7.8.1 we obtain 

Proposition 7.8.4. Takinq H -fixed points for the various p - -  

induces a rinq isomorphism 

(H) ~ ~ (p) 

A (H/Hp) inv 
A(G) (p) ) (H) £ ~(p) (p) 

and the correspondinq map into the product without "inv" is a split 

monomorphism o_ff rinqs. 
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7.9. Comments. 

For localization of equivariant K-theory see Atiyah-Segal and 

Segal ~ ; for equivariant cohomology: Quillen [127] , Hsiang 

for bordism theory tom Dieck [53] , [58] , [59] Wilson ~G~] ; for 

cohomotopy and general theory: Kosniowski ~0~] , tom Dieck [~] , 

[5}~ , [~0] . The presentation in this section is mainly drawn from 

the author's papers and unpublished manuscripts. 


