
9. Homotopy Equivalent Group Representations. 

We are concerned in this section with the homotopy theory of group 

representations. If G is a compact Lie group and E and F are orthogonal 

real representations so that the unit spheres S(E) and S(F) are pre- 

served by the G-action, we ask: When does there exist a G-map 

f : S(E)----> S(F) which has a G-homotopy inverse? 

It turns out that homotopy equivalences between different represen- 

tations can essentially only occur for finite groups. Therefore 

we shall only consider finite groups and restrict our attention to 

stable homotopy equivalences. Later we shall deal with the unstable 

situation and compact Lie groups. 

9.1. Notations and results. 

Let G be a finite group. If V is a (real or complex) G-module we denote 

by S(V) its unit sphere with respect to some G-invariant inner product. 

Two real G-modules V and W are called homotopy equivalent if the G- 

spaces S(V) and S(W) are G-homotopy equivalent. If V and W (resp. V I 

and W I) are homotopy equivalent, then V ~ V I and W ~ W I are homotopy 

equivalent because S(V ~ V I) is G-homeomorphic to the join S(V) ~ S(V I) 

and we can use the join of the individual homotopy equivalences. Two 

real G-modules V and W are called stably homotopy equivalent if for 

some real G-module U the modules V ~ U and W ~ U are homotopy equi- 

valent. Let R(G) resp. RO(G) denote the Grothendieck ring of complex 

resp. real G-modules (identified with the corresponding character ring). 

Elements x &RO(G) are formal differences x = V-W of real G-modules V 

and W. The x = V-W such that V and W are stably homotopy equivalent 

form, by the remark above about joins, an additive subgroup of RO(G), 

denoted ROh(G). If we deal with complex G-modules we call V and W 

oriented homotopy equivalent if there exists a G-homotopy equivalence 
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f : S(V)----~ S(W) such that for each subgroup H of G the induced map 

fH : S(v)H___} S(w)H on the H-fixed point sets has degree one with 

H H 
respect to the coherent orientations that S(V) and S(W) inherit from 

the complex structure on V H and W H. We let Rh(G) be the additive sub- 

group of R(G) consisting of x = V-W such that V and W are oriented 

stably homotopy equivalent. 

If S(V ~ U) and S(W ~ U) are G-homotopy equivalent then the H-fixed 

H 
p o i n t s  a r e  h o m o t o p y  e q u i v a l e n t .  I n  p a r t i c u l a r  t h e  s p h e r e s  S ( V )  a n d  

S(W) H t h e n  h a v e  t h e  s a m e  d i m e n s i o n  ( o r  a r e  b o t h  e m p t y ) .  L e t  R o ( G )  b e  

t h e  a d d i t i v e  s u b g r o u p  o f  t h e  V-W s u c h  t h a t  f o r  a l l  s u b g r o u p s  H < G we  

h a v e  d i m  V H = d i m  W H L e t  RO (G) b e  t h e  a n a l o g o u s  s u b g r o u p  o f  RO(G) 
o 

S i n c e  R h c R ° a n d  RO h c RO ° we  i n t r o d u c e  t h e  g r o u p s  

( £ , 1 . 1 )  j (G) = R o(G)/R h(G) , jO(G) = RO o(G)/RO h(G) . 

If G has order g = ~G~ then G-modules are realisable over the field 

Q(u) where u is a primitive g-th root of unity. The Galois group ~ of 

Q(u) over Q acts on R(G) and RO(G) via its action on character value 

(see 3.5). Actually r acts on the set 

Irr (G,C) resp. Irr (G,~) 

of complex resp. real irreducible G-modules. Let ZIP] be the integral 

group ring of ~ and I(~) its augmentation ideal. Then we have 

Proposition 9.1.2• The followin~ equalities hold 

R (G) = I(p)R(G), RO (G) = I(F)RO(G). 
o o 

The need for the following objects will become clear in a moment: 
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(9.1.3) RI(G) = I(r')Ro(G), ROI(G) = I( [~ )ROo(G) 

i(G) = Ro(G)/R I (G) , iO(G) = ROo(G)/RO I (G) 

We shall obtain the following results. 

Theorem 9.1.4. For all finite ~roup§ G we have 

R I (G) c Rh(G) and RO I (G) C ROh(G). 

Using this theorem we can consider the canonical quotient maps 

(9.1.5) t(G) : i(G) j(G), tO(G) : iO(G) jO(G). 

Theorem 9.1.5. Let G be a p-group. Then t(G) and tO(G) are isomorphisms, 

The plan of the demonstration of 9.1.4 and 9.1.6 is as follows: We 

begin with a recollection of some representation theory in 9.2, proving 

9.1.2 and giving a detailed analysis of i(G) and iO(G). In 9.3 we shall 

prove 9.1.4 and in 9.6 we shall prove 9.1.6 using the functorial pro- 

perties of 9.1.5. In subsequent section we discuss various extensions and re- 

finements: Nilpotent and hyperelementary groups; maps between unstable 

modules; connections with the Burnside ring and rational characters. 

9.2. Dimension of fixed point sets. 

The number of irreducible complex representations of G equals the 

number of conjugacy classes of elements of G (see Serre ~%~, Th~or~me 

7), in symbols 

IIrr (G,C) I = IConj (G) I 

Let [' = ~ (m) be the Galois group of Q(u) over Q where u is a primitive 
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m-th root of unity and m is a multiple of IGI • The group p may be 

identified with the group of units in the ring Z/m. The group P acts 

on Irr(G,C). Let X = X(G) = Irr(G,C)/ ~ be the orbit set of this action 

(it is independent of m). Then the elements 

x A = )- y , A ~ X(G) 
yeA 

form a Z-basis of the invariants 

P 
(9.2.1) R(G) 

P 
The rational representation ring R(G;Q) is contained in R(G) as a 

subgroup of maximal rank but in general different from it. There exists 

an integer n A (the Schur-index, see 9. 3. ) such that nAx A is repre- 

sented by an irreducible rational representation (Serre Ill'I, 12.) Hence 

(9.2.2) IX(G)I = Rank Z R(G;Q) 

and this rank is equal to the number of conjugacy classes of cyclic 

subgroups (Serre [I~, Th~or~me 29). Let ~(G) be the set of conjugacy 

classes of cyclic subgroups of G and let C(~(G),Z) be the ring of 

functions ~(G) ----)Z. We obtain an additive map 

(9.2.3) 
d : R(G) ------) C( ~ (G),Z) 

C 
d(x) (C) = dim C x . 

Since dim V H = ~HI -I ~ heH V(h) and the left hand side is Galois 

invariant we see that I( P )R(G) ~ R (G) < kernel d. Hence we obtain a 
o 

surjection 

(9.2.4) R(G)[~ := R(G)/I(P)R(G) .... ~ R(G)/Ker d 
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which is compatible with the restriction to subgroups. 

Proposition 9.2.5. The map 9.2.4 i__{s injective, i. e. 

I(P )R(G) = Ro(G) = {V-W Idim V C = dim W C, C < G cyclic } 

Proof. We show that 

R(G) p .... ~ ~-C R(C)I" 

is injective, where C runs through the cyclic subgroups of C and the 

map is restriction. The group R(G)~ is free abelian, a basis consisting 

of representatives for the ~ -orbits Irr(G,C)/ r . The assignement 

x I ~ ----} ~GU ~ x induces a homomorphism t : R(G) p ---~ R(G) which, 

composed with R(G)---~ R(G)p , is multiplication by IF~ Hence t is 

injective. Since R(G) --9 ~R(C) is injective the map above must be 

injective. We now have a commutative diagram 

R(G) ) I[ R (C) 

I I 

I I 

R(G)/Ker d -----~ ~ R ( C ) / K e r  d 

and it remains to be shown that for cyclic C the map R(C) ---~ R(C)/Ker d 

is injective which is easily done by the reader. 

Exactly the same argument shows 

Proposition 9.2.6. For every finite group G 

I( P )RO(G) = ROo(G ) = {V-Wldim V C : dim W C, C < G cyclic} 
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We therefore obtain from 9.2.3 and its real analog injective maps 

(9.2.7) d : R(G) r -----9 C( ~ (G) ,Z) 

dO : RO (G)[, -----} C( ~ (G),Z) 

with image group of maximal rank, i. e. the cokernel is a finite group. 

We want to compute the order of the cokernel. It would be interesting 

to know'the actual structure of the cokernel. 

We begin with a series of reductions. Let VI,...,V r be a system of 

representatives of Irr(G,C)/ U and H1,...,H r a system of representatives 

for ~ (G). Then 

(9.2.8) ICok dl = det(aij) 

aij = dim Fix (Hj,Vi). 

Using iHi dim V H = ~ h&H V(h) we obtain 

(9.2.9) ICokd] l jl = Idet(Zh H. Vi(h))1" 
3 

Let H denote the set of generators of the cyclic group H. 

Lemma 9.2.10. We have 

det( 7 Vi(h)) = det(Z h~H ~ Vi(h)) 
-- h ~ H  

3 3 

Proof. Choose an indexing such that (Hi) ~ (H k) implies k ~ i. Put 

~ Vi(h). Then b ~ = ~ Vi(h) and bij = ~ h eH ij h&H 3 

bij = bij + ~ i< j el bil 
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where e I = I or O, indep3ndent of i. Subtracting suitable "earlier" 

columns from "later" one's we can transform the matrix (bij) into 

(bij)- 

We now observe that we can identify ~ = Z/m ~ in such a way that 

~v(g) = v(g ~) 

so that ~ acts on each set Hj. We choose for each j an element gj E Hj 

and let ~j be the isotropy group of the ~ -action at gj. Then 

(9.2.11) bij = i rj ~ K Vi(gj) • 

Hence, if we put IV = 

9.2.11 

V, then we obtain from 9.2.10 and 

(9.2.12 det(bij) ~j I [~j I = det(IVi(gj))" 

In order to compute this determinant we make the following remark: Let 

W be a complex vector space with hermitian form <-,- > and orthogonal 

= ~ ek, I < i ~ r, then basis el,...,e r. Given a I Cik _ . 

(9.2.13) det < ai,a j ~ = (det Cik)) 2 ~j < ej,ej > 

We shall compute det2(IV(gj)) in this way. Consider IV i as function on 

G. Put 

G = Ci u ... u C r 

where g ~ Cj if and only if g generates a group conjugate to Hj. Then 

IVj belongs to the space of functions which are constant along the sets 
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C.. Denote the characteristic function of C. with the same letter. Then 
3 3 

(9.2.14) IV i = Z ~ IVi(g j) Cj 

We use the standard hermitian form on the space of functions G----) C. 

Then {Cj,Cj > = ~Cj ~ . Using 9.2.13 we get 

(9.2.15) (~j Cj ) det 2 (IVi(gj)) = det ~ IVi,IV j > 

The orthogonality relations for characters yield 

(9.2.16) <IVi,IVj> = G I rl Iril &ij 

where ~ i is the isotropy group of the ~ -action on Irr(G,C) at V i. 

Collecting our results we obtain 

ICok d I = ~ j l H j l  -1 I det(bij) I 

= ][j(IHjl ][~ jl) -I Idet IVi(gj)l 

= Tfj(IHjl IPjlICj[I/2) -I Idet <IVi,IVj> I 

(9.2.9) 

(9.2.12) 

(9.2.15) 

,I P I r/21GIr/2 ~.1i ~ J I 1/2 
1/2 

IT 0Hj~ I ~ j l  ICjl  ) 
(9.2.16) 

If we note that 

finally obtain 

I P j l  IH~ "] = ] P] and ICjj = IH;i iG/NHj ) we 

Proposition 9.2.17. 

I Cok d I = 
T~ INHjl 

gr IHjl 

I/2 I/2 
][ I pJl 

~- I /~ 11/2 
fi 
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It is not obvious a priori that the right hand side of 9.2.17 is an 

integer. In certain cases the formula simplifies. The r -factors dis- 

appear for abelian groups G. 

Proposition 9.2.18. Let G be a p-group, p ~ 2. Then Irr(G,C) and 

Conj(G) are isomorphic ~ -sets. 

Proof. Let V I and V 2 be the permutation representations associated to 

the P -sets Irr(G,C) and Conj(G), respectively. We show that V I and V 2 

are isomorphic ~-representa~ons. Since in our case P is cyclic and 

for such groups A(P ) ----~ R( r ) is injective we conclude that the P- 

sets in question are isomorphic. The isomorphism of V I and V 2 is given 

by identifying linear combination of elements of Irr(G,C) as usual with 

functions Conj(G) ---~ C. The formula 3.5.1 for the action of the Adams 

operations on characters shows that this is an isomorphism of ~- 

modules. 

! If ~ j denotes the isotropy group of the conjugacy class of gj and 

ZH. the centralizer of H in G then 
3 3 

(9.2.19) I t ' l l  I Z H j l =  IN jl I P j l  • 

Using 9.2.17 - 19 we obtain 

Proposition 9.2.20. Let G be a p-group, p ~ 2 a prime. Then the order 

of the cokernel of d is 

- 1 / 2  
~j INHj/Hjl IZHjl 

Let c : R(G;Q) ----) C( ~ (G),Z) be the ring homomorphism which 

associates with each Q [G] -module V the function c(V) such that 
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c(V) (C) is the value of the character V at a generator of C. This is 

an inclusion of maximal rank. One would like to compute the cokernel; 

this would give congruences expressing conditions for functions to be 

a rational characters. Arguments as in the proof of 9.2.17 allow to 

compute the order of cokernel c. Let n i be the Schur index of V i. 

112 
Propositione 9.2.21. I Cok c I = ~ j nj I NHj I 

Proof. ICok c~ = i det Wi(gj) ~ where Wj = nj l~J~ -I IVj is the 

irreducible rational representation belonging to Vj. Now use the cal- 

culations above. 

Problem 9.2.22. Compute the groups Cok c and Cok d. (The results of 

section 10 should be helpful.) 

9.3. The Schur index. 

We collect the classical results about the Schur index with emphasis on 

p-groups. We always work with subfields of the complex numbers. General 

references for the following are: Lang ~0~], Ch XVII; Curtis-Reiner 

[~8] , § 70; Roquette D~S~. 

Let k ~ C be a field. The group algebra k [G] is semi-simple and de- 

composes into a product of simple algebras A. 1 

k [G] = A I ~) .... ~) A r 

The corresponding decomposition I = e1+...+e r yields the indecomposible 

central idempotents e i of k [G] . By the theorem of Wedderburn each A i 

is isomorphic to a full matrix algebra 

A i = Mni (D i) 
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over a division algebra D i. If V i is a minimal left ideal of A i, then 

V i is an irreducible k [G] -module and every irreducible k [G] -module 

is isomorphic to one of this form. The endomorphismring of V i is a 

division algebra, and in fact 

D i = HOmk[G] (Vi,V i) 

The degree of D i over its center K i is a square m~ where m i = [Ei,Ki] 

and E. is a maximal field contained in K.. The integer m. is called 
1 1 1 

the Schur index of V. or A.. 
l l 

If V is an irreducible k(G)-module we let 

A V = A = image (k(G) --- ) Hom k (V,V)) 

be the k-algebra generated by maps lg : v ~----) gv. Then V is a faith- 

full irreducible A-module and since A is semisimple (being a quotient 

of k [G] ) A must be simple. Hence A = Mn(D) for some division algebra 

D whose center contains k. 

If A is a simple algebra with center k then an extension field E of 

k is called a splitting field for A if A ~k E is a full matrix algebra 

over E. If A is a matrix algebra over the division algebra D then E is 

a splitting field if and only if E is a splitting field for A. If [D:kl 

is finite then a maximal subfield E of D is a splitting field for D 

and [D : k I = [E : k ] 2. If L is any other splitting field for D which 

is a finite algebraic extension of k then [E : k] divides [L : k ] . 

Applying these results to the algebra A = A V above, assuming that k 

is the center of A (= center of D), then for any splitting field F of 

D one has 
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A ~D k F --- Mmn (F) 

where m 2 = [D : k] , n 2 = [A : D] . If U is an irreducible F(G)-module 

given by a minimal left ideal A ~k F then 

V ~k F ---m U 

which shows that mU is realisable over k. If tU is realisable over k 

then mlt. 

If U is an irreducible ~ [G] -module we let Ak, U be the k-algebra 

spanned by the ig ~ Hom~(U,U) which is a simple k-algebra. The center 

of this algebra is k( ~U ), this meaning k with character values 

u(g) adjoined. The representation U is realisable over F m k(~u ) 

if and only if F is a splitting field for Ak, U. The Schur index of 

Ak, U is the minimal value m such that mU is realisable over k(~u ) and 

there exists an extension F of degree m of k(~u ) such that U is reali- 

sable over F. We therefore call m = mk(U) the Schur index of U with 

respect t_~o k. 

We call E a splitting field for G if every irreducible ~ [G] -module 

is realisable over E. If k is given one can always find a finite alge- 

braic extension E of k which is a splitting field for G. By a famous 

theorem of Brauer E = Q(u) is a splitting field for G if u is a primi- 

tive m-th root of unity and m is the last common multiple of the orders 

of elements in G. 

Let V be an irreducible k [G] -module. Let E be a splitting field 

for G which is a finite Galois extension of k. Then V ~k E splits 

V ~k E = m(U I ~ ... ~ U t) 
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where the U i are irreducible E [G] -modules. Moreover U i ~ E ~ is an 

irreducible C [G] -module and m = mk(U i ~ E C) for i = 1,...,t. The 

UI,...,U t form an orbit under the action of the Galois group GaI(E : k) 

on the irreducible E [G] -modules. The number t above equals k(X i) :k 

where X I is the character of U I. 

For later reference we now collect what happens for p-groups. We 

follow Roquette ~3~. 

Proposition 9.3.1. Let G be a p-group. Then for each irreducible ~[G]- 

module V: 

i) If p # 2 then mQ(V) = I. 

ii) If p = 2 then mQ(V) = m/R(V) i_~s I o__rr 2. 

Proof. Roquette ~9] shows i) and mQ(V) = I or 2. We make the additional 

remark that mQ = ~R" (This was communicated by J. Tornehave.) Roquette 

shows that in the case mQ(V) = 2 the division algebra associated to 

AQ, v (in the notation above) is the ordinary quaternionic extension of 

its center Q(XV ) • Since AQ,V ~ Q(~V) ~ ~ ~,V and~ does not split 

the quaternionic extension of Q(~V ) we must have that ~R,V is a matrix 

algebra over the quaternions, hence ~R(V) = 2. Clearly mQ(V) = I implies 

m mCv) = 1 .  

Corollary 9.3.2. Let G be a p-group. Then: 

C 
i) If p # 2 then R(G,Q) ~ R(G) 

ii) For arbitrary p R(G,Q) = RO(G) P . 

Proposition 9.3.3. (Tornehave) Let V be an irreducible complex repre- 

sentation of a 2-group G with dim V H even for every subgroup H of G. 

Then V is quaternionic. 
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Proof. (Tornehave) Let ~ be the character of V and let ind~ I H be the 

character induced from the trivial character of H. Then by Frobenius 

reciprocity (Serre ~], 7.2) and the orthogonality relations 

< ~ , Ind G I H > = dim V H 

So the assumption on V means that ~ has even multiplicity in every 

virtual permutation character. By Segal's theorem (section 4) we find 

that <~ , ~ > is even whenever ~ is the character of a Q [G] -module. 

There is a unique irreducible Q [G] -module whose character ~ satis- 

fies <~ , ~ > ~ O. The even integer m = < ~ , ~ > is the Schur-index 

mQ(~ ). But mQ(~) = ~R(~), and if this number is even V must be 

quaternionic. 

9.4. The groups i(G) and iO(G) 

The proof of the main theorem 9.1.6 will use induction over the order 

of the group. In this section we prepare this induction by presenting 

the relevant algebraic facts about i(G) and iO(G), in particular for 

p-groups. 

For each orbit A~ X = Irr(G,f)/~ we let F(A) be the free abelian 

group on its element. Then (additively) R(G) = ~ A~X F(A) and if we 

put Fo(A) = Ro(G) n F(A) then Ro(G) = ~A~X Fo(A)" Moreover 

Fo(A ) = { ~aeA na a i [ na = O}. 

Since ~ is abelian the isotropy group of the ~ -action on A at a E A 

is independent of a & A. Therefore we call this isotropy group ~A" We 

put FI(A) = I(C )Fo(A) and obtain RI(A) = ~)AEX FI (A) and 
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i(G) = ~)A~X Fo(A)/E1 (A) 

The map 

[~/ PA ----~ Fo(A)/FI (A) : ~ ~---} (I- Z)V 

for V~ A is independent of V and is seen to be an isomorphism. Thus 

we obtain a canonical isomorphism 

(9.4.1) i(G) = ~)AeX ~/ PA 

which we sometimes regard as an identification. 

We need some functional properties of this map. The group P= P(m) 

is not uniquely determined by G because m could be any multiple of IGI. 

If we are dealing with several groups we want m to be a multiple of 

all their orders. For a more functorial treatment one should use in- 

stead of ~ a profinite group, e. g. the Galois group of the field 

generated by all roots of unity over Q. This point of view is not so 

important for us. Nevertheless ? /CA is, by elementary Galois-theory, 

in a canonical way independent of m. 

The restriction of the group action to a subgroup H induces a homo- 

morphism 

res H : i(G)---} i(H). 

We need a description of res H in terms of the isomorphism 9.4.1. If 

V & A 6 X(G) then res H V splits into irreducible H-modules, say 
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t n(t) 
res H V = ~ ( ~ ~ ) 

i=I j =I Wi~ 

where the index i collects all those summands which belong to the 

same C-orbit, A(i) say, of Irr(H,C). Then res H is the direct sum of 

the maps 

t 

(9.4.2) [~/ PA ----) ~ P/ PA(i)  
i=1 

F-- ) (n(1) ,..., n(t)) 

This is easy to verify. 

The computation of i(G) above can be done in a completely analogous 

manner for iO(G). We obtain an isomorphism as in 9.4.1. 

We now come to another description of i(G) and iO(G), valid for p- 

groups. We need an elementary Lemma. Let a cyclic group P act on a 

free abelian group A as a group of automorphism. Let Ko e r be a 

of this group. Put A C = A/(I- ~o)A, (I ~o )i for i ~ I generator - Ai_ I , 

i(A) = Ao/A I. 

Lemma 9.4.3. The following sequence is exact 

[1 
0 ----} A ---9 A ------) i(A) -----~ 0 . 

P 1 - ~ o  

Proof. Suppose a(-A P maps to zero in A r . Then a = (I-~o)b and there- 

fore }ll~a = ~'G P ~ a = ~ ~(I- ~o)b = O. Since A is free we must 

have a = o, hence the map A F---) A[, is injective. By definition 

A~ ----9 i(A) is surjective (and well-defined). If a is in the kernel 

of this map then (I-~o)a = (I- ~o)2b and therefore the element 



244 

c = a-(l- ~,o)b, which represents the same element as a in ArT, satis- 

fies c = ~o c and therefore lies in A P because ~o is a generator. 

Now we note that our group r can be taken to be cyclic if G is a 

p-group (p~2) and P/ { +I } is also cyclic for p = 2. Therefore the 

Lemma yields 

Proposition 9.4.4. Let G be a p-group. The following sequences are 

exact: 

P 
(I) O ---9 RO(G) ------9 RO(G)p ---9 iO(G) -- ) 0 

s k 

and similar sequences with RO replaced by RSO or the augmentation 

ideals IO and ISO. 

(2) (For p # 2) 

O----~ R(G) .... 9 R(G) .... 9 i(G) ------} O 
P 

s k 

and similarly for the augmentation ideal I(G) instead of R(G). 

For the rest of this section G will be a p-group. 

Let V be an irreducible G-module with kernel H. We call V primitive 

if G/H is a cyclic, dihedral, or generalized quaternion group, and im- 

primitive otherwise. Let X' (G) be the set of P-orbits of imprimitive 

G-modules. Let i' (G) be the subgroup of i(G) that corresponds to 

(~ AE X' (G) P / PA under the isomorphism 9.4.1. We define analogously 

iO' (G) C iO(G). The importance of the primitive modules comes from the 

following variant of Blichfeldt's theorem which we state for later use 

as a Lemma. 
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Let V be an irreducible complex G-module which is isomorphic to its 

dual V~ Then there exists a conjugate linear map J : V --gV with 

either j2 = id (V of real type) or j2 = -id (V of quaternionic type). 

Lemma 9.4.5. An imprimitive G-module V of real (resp. quaternionic) 

type is induced from a real (resp. quaternionic) module of a proper 

subgroup. 

Proof. We give a proof in the quaternionic case. (The real case is 

analogous.) Assume that V as a quaternionic G-module is not induced 

from a proper subgroup. We may assume that V is faithful and want to 

show that G is cyclic or generalized quaternion, in this case. Let K 

be a maximal normal abelian subgroup of G. If the restriction res K V 

would contain two non-isomorphic irreducible quaternionic modules then 

V would not be irreducible. (See Curtis-Reiner [~81 , § 49 - 50, and 

note that the considerations apply to quaternionic modules.) Therefore 

+ ... + V with some irreducible quaternionic K-module V . res K V ~ V ° o o 

Since V is faithful and K is abelian we must have that K is cyclic 
o 

and di~ V ° = I 0H = quaternions). Since K was a maximal abelian 

normal subgroup, G/K acts via conjugation faithfully on K. The module 

V ° is a complex K-module of the form W o • Wo M" If g% G \ K and k ~K is a 

-I 
generator then gkg # k. Therefore conjugation by g interchanges W o 

and W ~ and acts as gkg -I = k -I because V is a faithful K-module. This 
o o 

implies that the order of G/K is at most 2 and therefore that G is either 

cyclic (G = K) or dihedral or generalized quaternion. But a dihedral 

group has no quaternionic irreducible modules. 

Let res : i(G) ----~ ~H i(H) be the product of the restriction maps 

res H where H runs through the maximal proper subgroups of G. We also 

let res be the restriction of this map to i' (G). We have a similar map 

in the real case. 
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Proposition 9.4.6. The map 

res : iO' (G) .... 9 ~H iO (H) 

i__ss injective. The map 

res : i' (G) .... ) I~ H i(H) 

is injective if G has odd order. 

The rest of this section is concerned with the proof of this Propo- 

sition. The essential fact is isolated in Lemma 9.4.7 which implies 

the Proposition easily if we use the isomorphism 9.4.1 and the commuta- 

tive diagram 

i' (G) 

-w 

"4, 

ITA~ X' (G) ~/ PA 

res 

res 

W- H i (H) 

I 
4. 

~H ~'D E X(H) P/  PD) 

where the description of the bottom map is given in 9.4.2. Similarly 

in the real case. 

Now suppose x = (~A ~ 'n/ CA [ A &X' (G)) is given. 

Lemma 9.4~8. Assume p ~ 2 in the complex case. For each AE X' (G) there 

exists a maximal proper subgroup H of G and a C 6X(H) such that the 

followin~ holds: 

i) For A } B EX' (G) the C-component o_~f res H KB E ~'DE X(H) ['/[~D 

is zero. 
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ii) : C/ r A .... ~ ~D EX(H) ~/ PD ~ U/ [~C 
res H Pr C 

i__{s in~ective. 

Proof. We begin with the complex case and allow also p = 2 in the 

following recollection of representation theory. 

Let VEA ~X' (G). Since V is imprimitive we have dim C V > I. By the 

theorem of Blichfeldt (Serre ~%~] , 8.5) we can find a proper subgroup 

H of G such that V is induced from an irreducible H-module W, notation: 

V = ind~ W. By transitivity of induction we can moreover assume that H 

is a maximal proper subgroup of G. Then H is normal in G with index p. 

We choose H and W E C E X(H) with these properties to prove the assertion 

of the Lemma. 

We have a splitting res H V z W I ~ ... • Wp with W I = W, say, and the 

W i are pairwise non-isomorphic (Serre ~%] , 7.4). If U is irreducible 

and W is a direct summand of res H U, then by Frobenius reciprocity 

0 # <res H U,W>H = <U, ind G W > = <U,V> 

and hence U ~ V. This proves i). We note that V ~ ind~ W i. For the 

proof of ii) we consider several cases. 

First case. The W. belong to different F -orbits. Since induction is 
l 

c o m p a t i b l e  w i t h  t h e  P - a c t i o n  we o b t a i n  PC c PA" But  i f  ~ ~ P V 

then 

W I • ... ~) Wp ~ ~W I ~) ... ~9 ~ Wp 

and therefore ~W i = W i for all i because the W i belong to different 
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-orbits. Hence also PA c PC and the map ~ is the identity in this 

case. 

Second case. There exists ~o ~ ~ with ~o Wi ~ Wj for a pair i ~ j. 

Then V = ~ ° V and therefore Ko ~ ['V permutes WI,...,W p. This has to 

be a cyclic permutation. Hence ~ o p 6 PC and PA / PC has exponent p. 

From 9.4.2 we see that ~ is given by 9 (~) = ~ p If p is odd, ~ is 

cyclic of order (p-1)p k for a suitable k and ~ must be injective (p#2). 

If p = 2 then 

= Z/2 x Z/2 k for a suitable k. If Z/2 c PA this means V = V ~. Then 

either WI = W[, W2 = W~ or W I = W2, W2 = W~ . In the first case ~ 

is still injective, reasoning as for p # 2. By 9.4.5 we can avoid the 

= W: . If Z/2 is not contained in ~A then this factor of case W I 

is contained in the kernel of 

We now turn to real G-modules. Then P/ P A is always cyclic. If 

res H V splits into p non-isomorphic irreducible real H-modules the same 

proof as above works. We look at the irreducible real G-modules accord- 

ing to their endomorphism ring which is ~, ~, or ~. The cases End(V) = 

~, ~ can only occur for 2-groups (Serre ~] , p. 122). 

End(V) = C. Then V is obtained by restriction of scalars from a 

complex G-module U with U ~ U , notation: rU = V. Then 

res H V = res H rU = r res H U = rU I (9 ... ~ rUp 

A relation U i = Uj would imply U = U ~t. Hence the U I ..... Up,U~ ..... U~ 

are all distinct and therefore rU. = V. are distinct real G-modules. 
1 1 

If V i is a direct summand in res H V' for an irreducible real G-module 

V' then Frobenius reciprocity again would imply that V' = V. 
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End(V) = ~. Then the complexification cV of V is irreducible. Since 

dim C V > I we have res H cV = W I ~ W 2 for a suitable subgroup H of 

index 2 in G. We must have (W I • W2)~ = W 1 ~ W 2 and therefore W I = W I t 

W 2 = W 2 or W I = W 2 , W 2 = W . By 9.4.5 we can avoid the second case, 

hence we still have W i = cV i with irreducible V i and VI,V 2 are not 

isomorphic. 

End(V) = ~. Then V is obtained by restriction of scalars from an 

irreducible quaternionic G-module U, notation: rU = V. Again by 9.4.5 

we can assume that res H U splits into two non-isomorphic H-modules for 

suitable H and therefore res H V splits into two non-isomorphic irre- 

ducible H-modules. 

9.5. Construction of homotopy-equivalences. 

We prove Theorem 9.1.4, namely the inclusions 

R I (G) C Rh(G) , RO I (G) < ROh(G) . 

We begin with an example due to Ted Petrie. 

Let G be the cyclic group of order n with generator g. Let V a be 

the C [G] -module ~ with g acting as multiplication with exp(2 ~ia/n). 

Let a and b be integers, relatively prime and prime to n. Choose 

integers p,q such that -ap + bq = I. The map 

(9.5.1) f : V a V b ..... ~ v I ~ V ab 

(x,y) i. ~ (xpgq, x b + ya) 

is a G-map. We claim that f has degree one. Consider the value (I,O). 
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It is easy to see that f(x,y) = (I,O) implies (x,y) = ((-I) q, (-I)P) • 

One calculates the jacobian point to be a 2 2 b2q2. p + If this would be 

zero then we would obtain, using -ap + bq = I, that -2abpq = I which is 

impossible because a,b,p,q are integers. Since f is a proper map it 

induces a map of degree one between the one-point compactifications. 

Also a G-map between unit spheres 

h : S(V a • V b) ) S(V I • V ab) 

h(x,y) = f(x,y)/IL f(x,y)ll 

is induced. We can see that h has degree one: The radial extension of h 

to a map h I : V a ~ V b-----) V I ~ V ab has the same degree as h, and h I is 

properly homotopic to f. Since h is a G-map between free G-spaces which 

is an ordinary homotopy equivalence, it is a G-homotopy equivalence by 

Proposition 8.2.1. 

Now given E-F E RI (G) for a cyclic group G. Then E-F is an integral 

linear combination of elements (I- ~a) (I- ~b)u where a and b are prime 

to IGI • If (a,b) = I then the example of Petrie above shows that 

(I- ~a) (I- ~b)u ~Rh(G) because we actually have constructed an oriented 

homotopy equivalence. If a and b are not relatively prime than we re- 

place b by a suitable b+kn such that (a,b+kn) = I. Hence we have shown 

that RI(G) c Rh(G) for cyclic G. 

We use induced representations to prove the general result. If H ~ G 

ind~ : R(H) --~ R(G) is the homomorphism given by induced represen- and 

tations then 

(9.5.2) indG(Rh(H)) c Rh(G) • 

(9.5.3) indG(Ri(H)) C Ri(G), i = O,1. 
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The relation 9.5.3 follows from the fact that ind~ commutes with the 

['-action; and to prove 9.5.2 we note that 

S(ind~ W) ~ ~gH EG/H S(gH x H W), 

so that homotopy equivalences for H-modules induce homotopy equivalences 

for the induced G-modules by taking suitable maps on the join. By the 

result above for cyclic G and 9.5.2 - 3 we see that R~(G) c Rh(G) 

whenever irreducible G-modules are induced from one-dimensional G- 

modules. This holds for p-groups and more generally for supersolvable 

groups (Serre ~%~, 8.5. Th~or~me 16), and in particular for extensions 

of cyclic groups by p-groups. Now we can apply a general induction 

theorem of Dress ~0] to conclude that RI(G) < Rh(G) for general G (see 

also section 6): The functors R I and R h are compatible with restriction 

and induction (9.5.2 - 3). They are therefore sub-Mackey-functors of 

the representation ring functor. Therefore elements in RI(G) are in- 

duced from hyperelementary subgroups H of G (i. e. O ~ S ~H--)P--90, 

S cyclic, P a p-group). But for such groups H we know already that 

RI(H) c ~(H). This proves Theorem 9.1.4 in the complex case. 

In the real case we again need only consider groups G which are 

extensions of cyclic groups by p-groups. Using induction we reduce to 

the case of a real faithful /rreducible G-module M which is not induced 

from a proper subgroup. The arguments of Dress [~.I] , P. 318, then show 

that either G is cyclic and di~R M .~ 2 or G is dihedral and di~R M = 2. 

If G is cyclic and di~R M = I then (M being faithful) G = Z/2 and the 

[' -action is trivial. If G is cyclic and di~R M = 2 then M is obtained 

from a complex G-module by restriction of scalars. The restriction is 

compatible with the [~ -action, hence (I- ~) (I- s) M ~ROh(G) follows 

in this case from the analogous statement for complex modules. If G is 

dihedral with generators g,t and relations gn = gtgt = t 2 = I then the 
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possible M have the form: M = {, g acts through multiplication with 

exp(2 Tij/n), (j,n) = I, and t acts as complex conjugation. In this 

case 9.5.1 still works. This finishes the proof in the real case. 

Remark. A different proof for Theorem 9.1.4 will be given in section 

10. This proof uses the Galois invariance of certain stable homotopy 

modules over the Burnside ring. 

9.6. Homotopy equivalences for p-@roups. 

We prove Theorem 9.1.6. This Theorem tells which representations of p- 

groups are (oriented) stably homotopy equivalent. The proof will be 

done by induction over the order of the group. Later we shall present a 

more conceptual proof which also gives better results. We assume in this 

sectbn that 9.1.6 holds for cyclic, dihedral, and quaternionic groups; 

this is essentially classical (see de Rahm ~ZZ] , ) and will be re- 

proved in 9.7 after we have developed some general facts from equivariant 

K-theory. 

Let G be a p-group. Let S(G) be the set of normal subgroups of G. If 

a G-module V is given we write 

V = ~) HGS(G) V(H) 

where V(H) collects the irreducible submodules of V which are lifted 

from faithful irreducible G/H-modules (i. e. have kernel H). 

Lemma 9.6.1. I_~f x = V-W ~ Rh(G) (resp. ROh(G)) then for all HE S(G) w_ee 

have x(H) := V(H) - W(H) E Rh(G) (resp. ROb(G)). (Here G can be an 

arbitrary group.] 
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Proof. Let f : S(V ~ U) > S(W ~ U) be a G-homotopy equivalence. If 

HE S(G) is a maximal proper subgroup of G (among the isotropy groups 

on V) then S(V • U) H = S(V G G V(H) ~ U H) and therefore fH gives a stable 

homotopy equivalence between V(H) and W(H), which is oriented if f was 

oriented. But because Rh(G) is a subgroup of R(H) we can subtract x(H) 

from x and use the same argument for x - x(H). Downward induction over 

the H E S(G) gives the result. 

We let j(K,f) be the j-group built from faithful irreducible K- 

modules, i. e. j(K,f) = Ro(K,f)/Rh(K,f) where Ro(K,f) is the set of 

x = V-W with V and W direct sums of faithful irreducible K-modules and 

Rh(K,f) the subgroup of those x = V-W eRo(K,f) such that V and W are 

oriented stably homotopy equivalent. We have similar groups i(K,f), 

iO(k,f), and jO(K,f). Lemma 9.6.1 tells us that we have a splitting 

(9.6.2) s : j(G) ~ ~H~S(G) j(G/H,f) 

mapping x to (x(H) IH& S(G)). The isomorphism 9.4.1 yields a similar 

splitting for i(G). The map t(G) is compatible with this splitting, it 

is therefore a direct sum of maps 

t(G/H,f) : i(G/H,f) __I~ j(G/H,f) 

It is enough to study the maps t(K,f) and similarly defined maps tO(K,f). 

They are surjective by definition. Our assumption in the beginning of 

this section was that these maps are injective if K is cyclic, or if K 

is a dihedral or generalized quaternion 2-group. By Proposition 9.4 

and induction over the group order, t(G/H,f) and tO(G/H,f) is injective 

if we deal with imprimitive modules (p # 2 in the complex case). By 9.4 

the possible kernel of t(G) for 2-groups G may be described as follows: 

It is generated by elements V-V ~ , where V is an irreducible G-module 
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with V ~ V ~and dim V H s O mod2for all H < G. But by 9.3.3 this case 

cannot occur. This finishes the proof of 9.1.6. 

9.7. E~uivariant K-theory and fixed point de~rees. 

Let V and W be complex G-modules. Let f : vC---} W c be a pointed G-map 

between their one-point-compactifications. In this section G is a com- 

pact Lie group, if not otherwise specified. We apply equivariant com- 

plex K-theory to f and obtain an induced homomorphism 

f~- N : KG(WC) -----9 ~G(V c) 

By the equivariant Bott-isomorphism (Atiyah [I0] ) N KG(VC) is a free 

R(G)-module with generator %(V), the Bott class. Therefore f defines 

an element zf = z ~ R(G) by f ~ A (W) = z A(V). We think of z being a 

character, i. e. a function on G. We want to compute this character. 

Let C < G be a topologically cyclic subgroup with generator g (i. e. 

powers of g are dense in C). Consider the following diagram (with KG(V) 

for ~G(VC)) 

K G (W) f~ 9 K G (V) 

r J 
r r 

~c(W C) ~ ~c(V c) 
(fC)~ 

where the vertical maps are given by restriction to C and its fixed 

point sets. Since C acts trivially on V C and W C we have 

(fC)~- ~(W C) = d(fC) A (V C) , 
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d(f C) = degree of fC. We put d(f C) = O if dim W C # dim V C. Moreover 

f r o m  e l e m e n t a r y  p r o p e r t i e s  o f  B o t t - c l a s s e s  we h a v e  

r ~ (W) = ~_i (Wc) A (W C) 

where W C is a complement of W C in W (as C-module) and A -I is the 

alternating sum ~ (_i)i ~ i of the exterior powers. If we put this 

together we obtain 

(9.7.1) -I (Wc) d(fC) = rescZ A -I (Vc) " 

If C is a torus we can solve for rescZ because R(C) has no zero-divi- 

sors. In general we evaluate characters at the generator gE C, ob- 

serving that i _I(Vc) (g) # O. Therefore we obtain the following ex- 

pression for the character z 

Proposition 9.7.2. The character zf has values 

zf(g) = d(f C) ~_i (Wc-Vc) (g) 

where C is the closed subgroup @enerated by g E G. 

Remark 9.7.3. In particular the right hand side of the equation in 

9.7.2 is a character of G. This is in general not obvious and gives 

conditions on the degrees d(fC). We exploit this fact in section 10. 

Corollary 9.7.4. I_~f V-W E Rh(G) then 

g ~-----~ A-I (Wg-Vg) (g) 

is a character of G. (Here Wg := W C) 
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We shall see, especially in section 10, that 9.7.4 is a strong 

condition for V-W to lie in Rh(G), but it is awkward to work with and 

therefore we derive a simpler criterion using the ek-operations of 

section 3. Namely if k & Z and W = ~ukv then we have 

Proposition 9.7.5. The function 

u(g) = k dim Vg 
}k-I (Wg-Vg) (g) 

is a character of G, namely the character of 8k(V). 

Proposition 9.7.6. If V and ~kv are oriented stably homotopy equiva- 

lent then 

e : g ! ) k dim Vg 

ia a character of G. 

Proof. 9.7.4 and 9.7.5. 

We use the last Proposition to do some explicit calculations. Namely 

we prove the results missing in 9.6. 

Proposition 9.7.7. The maps t(K,f) and tO(K,f) are injective if K i_~s 

a__nn arbitrary cyclic group, or if K is a dihedral or generalized 

quaternion 2-group. 

Proof. Cyclic groups. Let K be the cyclic group of order n with gene- 

rator g. Let V be the standard irreducible K-module with g acting as 

multiplication with u n = exp(2 ~i/n). We have i(K,f) ~ Z/n "~, V- ~kv 

corresponding to k mod n. Injectivity of t(K,f) means in this case: 
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kv ~ ~(K) if and only if k ~ I mod n. Proposition 9.7.6 says in V- 

this case: e(1) = k, e(x) = I for x ~ I is a character of K. For any 

character e of a group G we have IGI -I ~ e(x)& Z because this is 
xEG 

the multiplicity of the trivial character in e. Hence [ x~Ge(x)m O modIG| 

In our case this yields k+(n-1) ~ O mod n, i. e. k ~ I mod n as was to 

be shown. 

In the case of real representations we allow also degrees -I. Hence 

we have to see wether e(1) = k, e(x) = -I for x # I defines a character 

of G. This gives k ~ -I mod n, in accordance with iO(K,f) = (Z/n)~/ { ~I]. 

Generalized quaternion groups. Let K be the group of order 2 n+1 given 

by generators A,B and relations BAB -I = A -I, A 2n-I = B 2, n ~ 2. The 

faithful irreducible representations of K are given as follows. We put 

m = 2 n . 

0 l 0 

Vk(m = I l , VkIB) = 1 I 
\ o u -k ) [ ' -I o1 

m 

where I ~ k ~ 2 n-1 -I and k 5 I mod 2. One has ~kv I = V k. Moreover 

i(K,f) m (Z/m)~/ { ~I} , V1-Vk : ) k mod m. Proposition 9.7.6 

says that e(1) = k 2, e(x) = I for x # I, shall be a character of K if 

VI-V k & ~. This implies k2+(2n+1-1) ~ O mod 2 n+1 and hence k~ ~I mod m~ 

q. e. d. 

In the real case the only new condition to be considered is k 2 ~ -I 

mod 2 n+1 which is impossible. Restriction of scalars defines an iso- 

morphism i(K,f) = iO(K,f) and tO(K,f) is injective. 
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Dihedral groups. Let K be the group of order 2 n+1 with generators A,B 

and relations A 2n = ABAB = B 2 = I. The faithful irreducible represen- 

tations are given as folbws. We put m = 2 n. 

Vk(A) = 

fcos 2Tr k/m 2 ~k/m 1 i ] r -s n 
L I I i 
Lsin 2~k/m] [ I COS 2W'k/m ] 

Vk(B) = 

i0 -I] 

where I ~ k ~ 2 n-1 -I and k ~ I mod 2. We have ~kv I = V k and 

i(K,f) ~ (Z/m)~ {~ I] . Proposition 9.7.6 says that e(1) = k 2, 

e(A i) = I for I $ i < m, must be a character if VI-V k ~ R h. One obtains 

k2+(m-1) + km ~ O mod 2m. This gives mod m k~ +I, +I + 2 n-1 and only 

k ~ +I lifts to a solution mod 2m. Whence injectivity of t(K,f). 

Since the faithful irreducible real K-modules have no complex 

structure we use an ad hoc argument. The restriction to the cyclic 

subgroup C generated by A induces an isomorphism iO(H) = iO(C). But 

tO(C) is injective. 
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9.8. Exercises 

i. Show that the functors G J ) j (G), G I )jO(G) are modules over the 

Green functor "rational representation ring". Deduce that they satisfy 

hyperelementary induction. 

2. Let V,W be complex G-modules which are oriented stably homotopy 

equivalent. Show that they are oriented homotopy equivalent. (Does an 

analogous assertion hold for real modules?) 

3. Show by an example that RI(G) = Rh(G) is in general not true for 

non-p-group. 


