
ii. Homotopy-equivalent stable G-vector bundles. ~) 

The aim of this section is to extend some of the previous results and 

techniques from representations to vector bundles. The group G will 

always denote a finite p-group and we are concerned with the question: 

When are the sphere bundles of two G-vector bundles stably G-fibre- 

homotopy equivalent? 

11.1. Introduction and results about local J-groups. 

One of the basic questions in the homotopy theory of vector bundles is 

the followinq: Given two vector bundles over a space X, when are the 

associated sphere bundles fibre-homotopy-equivalent~ 

The question has been answered, for stable bundles, by Adams in his 

series of papers on the groups J(X) [~] , together with the affir- 

mative solution of his famous conjecture (Quillen [128] , Sullivan 

~5~] , Becker-Gottlieb [9~] ) . 

We shall extend some of these results to G-vector bundles. We con- 

sider G-vector bundles over finite G-CW-complexes. If p : E > X is 

such a bundle we can choose a G-invariant Riemannian metric on E and 

consider the unit-sphere bundle S(E) ~ X. If V is a real G-module 

we also let V denote the product bundle V x X )X. If Pi: Ei ~ X 

are G-vector bundles a stable map f : S(E I) > S(E 2) shall be a 

fibrewise G-map S(E 1 ~ V) > S(E 2 ~ V) for some G-module V. Two G- 

vector bundles Pi : Ei > X over X are called stably-homotopy-equi- 

valent, notation E IN E2, if for some G-module V there exists a G-fibre- 

homotopy-equivalence f : S(E 1 ~ V) > S(E 2 ~ V). If E and F are G- 

vector bundles over X then S(E O F) is G-homeomorphic over X to the 

fibrewise join S(E) ~ S(F) . Using this it is easy to see that E l~ E 2, 

F I~ F 2 implies E 1 • F 1 ~ E 2 • F 2. Let KOG(X) be the Grothendieck ring 

~) 
This section contains joint work with H. Hauschild. 
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of real G-vector bundles over X. Then the previous remark shows that 

(11 .1 .1)  TOG(X) = {E  1 - E 2 6 KOG(X) I E1--E 2 ] 

is well-defined and an additive subgroup of KOG(X). We pose the problem: 

Describe TOG(X) as a subgroup of KOG(X). The solution uses the compu- 

tation of the J-groups 

(11 .1 .2)  JOG(X) : KOG(X)/TOG(X) . 

We now introduce some intermediate J-groups where homotopy-equiva- 

lence is replaced by weaker conditions. Note that a G-fibre-bomotopy- 

equivalence f : S(E 1 ~ V) ) S(E 2 ~ V) induces an ordinary fibre- 

homotopy-equivalence fH for all H-fixed point bundles (H< G a subgroup 

of G). We therefore consider the following local condition: Two G-vector 

bundles E and F are called stably locally homotopy-equivalent, notation 

E ~ loc F, if for every H• G there exists a G-module V and fibrewise 

G-maps f : S(E ~ V) ) S(F G V) and g : S(F ~ V) ) S(E ~ V) such 

H 
that fH and g are ordinary fibre-homotopy-equivalences. As before it 

is seen that 

(11 .1 .3)  TO l°c (X) = {E 1 - E 2 ~KOG(X) I E 1 ~loc E2 } 

is well-defined and an additive subgroup of KOG(X). We study this 

subgroup via a computation of 

(11 .1 .4 )  j_loc /TO l°c (X) 
o G (X) : KO G (X) G " 

The introduction of these local J-groups may seem artificial at 

first sight. We offer some justification. Obviously we have a surjective 

bomomorphism JOG(X) } JO~ °c (X) . If X is a point one obtains from 
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Atiyah-Tall D~] and tom Dieck [~Z] that ~is map is not an iso- 

morphism: For p-groups it measures the difference between G-homotopy- 

equivalence and G-maps of degree one. It turns out that a computation 

of 11.1.4 will yield the main part of 11.1.2. Moreover JO~ °c (X) is 

actually computable using the action of the Adams operations on KOG(X) 

in the same way as the non equivariant J-groups are computed. So also 

from this point of view 11.1.3 is just the correct object to consider. 

We now state our results on the computation of the local J-groups 

11.1.4. It is expedient to consider the localizations 

( 1 1 . 1 . 5 )  JOG l°c (X)q : KOG(X) - loc q/TO G (X) q 

where the index q indicates that we have localized at the rational 

prime q. 

Given q let r(1) ..... r(n) be a set of integers (depending on q and 

p) generating the q-adic units (modulo ! 1 if q = 2) and generating the 

units Z/IGIZ ~of the integers modulo iGl. If q : p then we take n = 1 

and r = r(1) = 3 if p = 2, and r a generator of Z/p2Z ~if p ~ 2. Our 

main result is the 

Theorem 11.1.6. Let G be a finite p-group. Then To~°C(X)q i__%s generated 

as abelian group bv elements of the form x - ~ r(i)x, x E KOG(X) q 

r 
i = 1 ..... n, where ~ denotes the r-th Adams o~eration. 

The proof naturally splits into two parts. First we consider the case 

p = q. Here we prove an equivariant analogue of the Adams conjecture 

by elementary methods. We use the device of Becker-Gottlieb [19] but 

apply it to the universal example: orthogonal representations. We thus 

generalize the method which Adams [~] used for two-dimensional 
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bundles. Moreover the main theorem of Atiyah-Tall ~] on p-adic A - 

rings is used as well as the completion theorem of Atiyah-Segal [IZ] 

The second part of the proof is essentially concerned with the situation 

where the order of the group is invertible. Here we can use the locali- 

zation and splitting theorems of section 8 to decompose K-theory into 

simpler pieces for which the problem can easily be solved. We should 

point out that our exposition contains a computation of the non-equi- 

variant J-groups which seems somewhat simpler than other published 

versions: We neither need Quillens computations nor infinite loop 

spaces. 

11.2 Mappin~ deqrees. Orientations. 

This section contains some technical preparation. In particular we 

show that it suffices to consider orientable bundles. 

An n-dimensional real G-vector bundle E > X is called orientable 

if the n-th exterior power An E is isomorphic to X x R > X with 

trivial G-action on ~. Bundles E 1 and E 2 of dimension n are said to 

have the same orientation behavieur if A n E 1 and A n E 2 are iso- 

morphic G-bundles. We put 

(11.2.1) KSOG(X) = {E 1 E 2 ~ KOG(X) } E i orientable } 

By a theorem of Dold [~I] a fibrewise map S(E) > S(F) is a 

fibre homotopy equivalence if and only if it is a homotopy equivalence 

on each fibre, i. e. has degree ~ 1 on each fibre. It is therefore 

reasonable to ask for the existence of fibrewise G-maps with prescribed 

degree on the fibres. 

Let S ¢ Z be a set of prime numbers. If E and F are G-vector bundles 

over X we write 
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11.2.2) E1 "~S E2 

if there exists a stable map f : S(E) 

to all elements of S. We write 

> S(F) with fibre degree prime 

(11.2.3) E ~ F if E ~ F and F ~ E. 
S S S 

We put 

(11.2.4) TOG,s(X) : {E - F ~KOG(×) f E~S ~ } 

(Ii.2.5) JOG,s (X) : KO G(X)/TOG,s(X) 

If S is the set of all primes then E ~S F means that there exist stable 

maps S(E) > S(F) and S(F) > S(E) of degree ! ] on the fibres. 

Lemma 11.2.6. Suppose there exists a fibrewise G-map f: S(E) 

of odd deqree. Then 

> s (F) 

E - F ~ KSOG(X). 

Proof. Since Stiefel-Whitney classes are modulo 2 fibre-homotopy in- 

variant we have Wl(E) : w1(F). If w](E) # O and An E is the deter- 

n 
minant bundle of E we have a fibrewise G-map S(E ~ A E) > 

S(F ~ An E) of odd degree. We can therefore assume without loss of 

generality that E and F are orientable as bundles without group action. 

To show the determinant bundles are equal in this case we need only 

show that the G-action on each fibre is the same. But g~ G acts as 

identity on the determinant bundle if it preserves the orientation 

and as minus identity otherwise and this distinction is preserved by 

a map of odd degree. 
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Corollary 11.2.7. TOG(X) c To~°C(x) c KSOG(X). 

Let B(G,O(1)) = B be the classifying space for one-dimensional G- 

bundles (tom Dieck ). Then assigning to each bundle E its de- 

terminant bundle induces a split surjective homomorphism 

(11.2.8) det : KOG(X) > IX,BIG 

with kernel KSOG(X); here ~'- ] G denotes the set of G-homotopy classes. 

Using Corollary 11.2.7 we therefore obtain natural splittings 

(i1.2.9) Joe(x) -- Jsoc(×) s [x,B] c ' 

with JSO : KSO/TO; and similarly for the local J-groups. 

11.3..Maps between representations and vector bundles. 

In this section we construct certain equivariant maps between 

orthogonal representations. The construction is a simple application 

of the methods in Becker-Gottlieb [9~] and Meyerhoff-Petrie [~] , 

and is essentially well known. These maps between representations will 

then give us maps between vector bundles. 

Proposition 11.3.1. Le__~t ~ 2n be the standard O(2n)-representation. Let 

k be a positive integer. Then there exist stable O(2n)-maps S~q2n) ---) 

s(~k ~2n) with deqree a divisor of k t for some te~ i__[f k is odd. 

(Otherwise for ~2n ~2n.) 

Remark. ~k ~2n may be a virtual O(2n)-module V - W, of course. The 

Proposition has to be read that there exists stable O(2n)-maps 
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s~2n ~ W) > S(V). We use similar notations for vector bundles. 

Proof. Let T < O(2n) be a maximal torus with normalizer NT. Then 

NT = S X O(2) n, where S is the symmetric group and X means semi- 
n s n s 

direct p r o d u c t  w i t h  r e s p e c t  t o  t h e  p e r m u t a t i o n  a c t i o n  o f  S o n  0 ( 2 )  n 
n 

We first show the existence of an NT-map of the required degree. Let 

H : {(S;X 1 ..... X n) & SnX s O(2)n I s(1) = 1 ] 

One obtains a homomorphism 

h : H > 0(2) : (s;x I ..... Xn) I > x I 

and an associated 2-dimensional H-module V. The group H has finite 

index in NT, namely [NT : HI : n. Therefore one can consider induced 

NT 
representations ind H . One has 

(11.3.2) ind~ T V Z W 

where W is the standard NT-module (restriction of the standard O(2n)- 

module]. See Becker-Gottlieb [I~] for a proof of 11.3.2. If k is odd 

there is an O(2)-map g : S(V) > s(~kv) ; if V = C this is simply the 

k 
map z d ~ z (see Adams [~] ). If k is even then 

k(v) = ~k - A 2 + i, where ~ 2 is the determinant representation 

associated to the standard O(2)-action on ~2 and where ~k is C with 

iO 
z E S 1 = SO(2) acting as multiplication by z k and (O_i) acting as 

conjugation. There exists an O(2)-map g' : S(V) ~ S(~k ) , the map 

z I ) z k as before. Since ~ 2 and ~ have different orientation be- 

haviour there does not exist a stable Z/2-map S( A 2 ) > S~1). But 

A2 ~ A2 and ~ e ~ have the same orientation behaviour and there- 

fore we can find a stable Z/2-map (and hence O(2)-map) 
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S( ~2 @ A2 ) ----9 S~ ~) of degree 2. Put together we see that there 

exists a stable H-map g : S(V ~ V) } s(~k(v ~ V)) whose degree 

divides some power of k. 

Induction ind~ T yields a stable G-map 

(11.3.3) ind NT(g) : S(ind NT V) = S(W) > S(indH NT ~k V). 

In order to finish the proof we need a stable NT-map 

(11.3.4) h : S(indH NT %u kv) > S ( u2 k (indH NT V) ) 

of suitable degree. For a prime p let (NT/T)p be the Sylow-p-group of 

NT/T and NpT its counter-image in NT. If p is prime to k then 

ind~T(~k V) and ~k(ind~T V) are isomorphic as NpT-modules; this 

follows from two facts: 

(11.3.5) If k is prime to the index [G : HI then in general 

~k c G ~k. 
in H = ind H 

(11.3.6) NT NT 
resNp T ind H is by the double coset formula of representation 

theory a direct sum with summands of the form ind~ pT rest; 

and since T • K the index [NpT : K] is prime to k. 

Using this isomorphism of N T-modules we can find a stable NT-map h 
P P 

in 11.3.4 of degree ~ NT/NDT~ . Since the greatest common divisor of 

all the ~ NT/NpT I with p prime to k involves only prime divisors of k 

we can form a suitable linear combination of the h (in the homotopy 
P 

group of stable maps) to produce an NT-map h whose degree divides a 

power of k. 
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As a consequence of Proposition 11.3.1 we obtain stable maps between 

vector bundles as follows. Let E ) B be a real G-vector bundle of 

dimension n (with Riemannian metric). The associated principal O(2n)- 

bundle P ) B is in fact a (G,O(2n))-bundle (see tom Dieck [SO] ). 

we have the following isomorphisms of G-vector bundles 

lq 2n k E E ~ P Xo(2n ) , ~ = p Xo(2n) ~ k ]R2n. 

Hence we obtain from Proposition 11.3.1. 

Proposition Ii.3.7. Let G be a compact Lie qroup and let E > B be an 

orthoqonal G-vector bundle. Then there exist stable G-maps S(E) } 

s(~k E) i_~f k is odd (S(E • E) ~ S( ~k(E ~ E)) if k is even) o_~f 

fibre-degree dividinq ~ power o__ff k. 

One actually would like to have an information about the degrees on 

fixed point sets. By the methods of Quillen [lZ8] one can prove the 

following equivariant version of the Adams conjecture. 

Theorem 11.3.8. There exist stable G-maps f : S(E) --9 s(~kE) 

that fH has for all H • G ~ degree which divides a power o__~f k. 

t_eo IC I ). 

such 

(k prime 

By the results of section 9 and i0 this is easy to see for bundles 

with finite structure group. 

11.4. Local J-groups at p. 

Let G be a finite p group and let r ~ ~ be a, odd generator of the 

p-adic units (mod ~ 1 if p = 2). Let X be a finite connected G-CW- 
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complex. The main result of this section is 

Theorem 11.4.1. The followinq sequence is exact 

r 
i-~ J 

KO G(X)p ) NO G(X)P ~ JOG l°c(x)p. 

(The map J is the quotient map.) 

The proof cons/sts in a sequence of Propositions. Recall definition 

(2.5) for the next result. Let S be the set of all primes. 

Proposition 11.4.2. The canonical auotient map 

B : JOG l°c (X)p Joc, {p} (X)p 

is an isomorphism. 

Proof. Suppose B(E - F) = O. Then we can find stable G-maps 

f : SE ) SF and g : SF > SE of degree prime to p. By a theorem 

of Adams [~] , we can find a stable map h:S(kE) ) S(kF) 

of degree one, where (k,p) = I. Hence (using induction) there exists 

n 
a stable G-map h' : S(kE) > S(kF) of degree p : IGJ. Since 

(deg(f), deg(h') = 1 a suitable linear combination of f and h' will 

yield a stable G-map v : S(kE) > S(kF) of degree I. The same 

reasoning can be applied to g, and to fixed point mappings. Hence E-F 

__loc 
is zero in uo G (X)p. 

We now have to consider fibrewise localizations of sphere bundles 

in the sense of Sullivan [I~] . In order to talk about something 

definite we use the following construction for such localizations. Let 

E --~ B be an orthogonal G-vector bundle and P ) B be the associated 
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principal (G,O(n))-bundle. Let O(n) act on ~n ~ ~k, k ~ 3, through the 

standard action on ~n. Let S~ n G~k)p be the p-local sphere obtained 

from a telescope-construction applied to a diagram 

S~N n+k) > S OR n+k) > ... 

fl f2 

where the maps f. are the identity on S~R n) in S~9 n ~k) : S ORn)~s~qk). 
1 

Then S I~ n+k)  s t i l l  c a r r i e s  an  O ( n ) - a c t i o n  and  
P 

S~R n+k) 
P Xo(n) p 

is our stable representative for the p-local sphere bundle associated 

to E > B. By abuse of notation we denote this bundle S(E)p. We use 

the fact that S(E) ) B is a G-fibration (G-homotopy lifting property 
P 

for all spaces) if E > B is a numerable bundle. 

Proposition 11.4.3. S u p p o s e  r is odd and prime t__oo p. Let G be a p-qrouD 

agd x a finite G-CW-complex. Then 

(i-~u r) KO G (X)p < TOG,{p } (X)p. 

Proof. By Proposition 11.3.7 there exists a stable G-map 

f : S(E) ) S( ~r E) of degree prime to p. Since G is a p-group we 

have deg fH~ 0 mod p for all H < G. The induced map 

fH H : S(E)p ) S( ~r E) H 
P P 

is therefore a fibrewise map and a homotopy-equivalence on each fibre. 

By a theorem of Dold [~1] fH is a fibre-homotopy-equivalence. By 
P 

8.2.4 f is a G-homotopy-equivalence and by the equivariant analogue 
P 

of Dold [~I] therefore a G-fibre-homotopy-equivalence, 
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with inverse gp : S(u/rE) 

composition 

S(E) say. Since X is compact the 
P P 

S(%urE) -" ) S(~;rE) ) S(E)p, 
i P gp 

where i, a the canonical map into the telescope, has an image which is contained 

in a finite piece of the telescope. Therefore we obtain a stable G-map 

g : S(%VrE) ) S(E) of degree prime to p. This shows E ~{p} u/rE. 

We remark that the proof above actually shows the following 

Proposition 11.4.4. Suppose f : S(E) > S(F) is a stable G-maD such 

that the f~bre deqrees o__ff fH divide ~ power o_ff k. Then there exists a 

stable G-map g : S(F) ) S(E) with the same property. 

Proof of Theorem 11.4.1. By Proposition 11.4.2 and 11.4.3 we know that 

J ~ (I- ~r) is zero. Hence we have to show that the induced map 

Q : KO G (X)p/(l- % ur) > JO l°c (X)p 

is injective. We use the results of Atiyah-Tall [~3 on p-adic A - 

rings which we have presented in section 3. We let A be the p-adic 
P 

completion of the abelian group A. 

Let KSOG(X) be the subgroup of elements of dimension zero. By the 

results of 11.2, in particular Lemma 11.2.6, we need only show that 

the map 

. ~SOG(X) p/(I_ ~r) , > ~SO l°c (X)p 

is injective. 



290 

By Atiyah-Tall [9~] , III. Proposition 3.1, the p-adic and I(G)- 

adic topologies on KOG(Point) coincide. This implies that the p-adic 

and I(G)-adic topologies on KSOG(X) coincide, if X is a finite G-CW- 

complex (use Atiyah-MacDonald [~4] , 10.13). By the version for 

orientable vector bundles of the Atiyah-Segal completion theorem 

[I~] one has an isomorphism 

: ~s0 a (x) p > ~'so (x a)  , 

where X G = EG x G X, EG the universal free G-space. 

We now consider the following diagram whose ingredients we explain 

in a moment. 

~SOG (X) p/l - ~r) ) ~solOC (X) p 

v ip (~) 

-- ^ > (I+~SOG (X);) r Q KSO G (X) P, ~' 6-r, [~ r 

~SO(XG) p .~ > (I+~SO)X G))f. 
r,p 

The index P indicates that we factor out the image of i- ~ r The 

ring ~SOG(X) p is an orientable p-adic ~ -ring; we therefore have the 

or map 9 or as defined in 3.10.7. The map 5- is induced by ~ r 
r ' r , p  

o n  t h e  q u o t i e n t s .  S i m i l a r l y  ~ i s  i n d u c e d  b y  ~ a n d  Z - r ,  ~ i s  d e f i n e d  

A 
SO as to make (~6) commutative. The inclusion i : ~SOG(X) p ---) ~SOG (X) p 

induces an injeetive map i~ because p-adic completion is exact on 

finitely-generated Zp-modules. Since %-r, P is an isomorphism by 
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3.14.10 we need only demonstrate the existence of a homomorphism 
r 

which makes the diagram commutative. 

Suppose f : S(E) > S(F) is a stable G-map of degree zero. Then 

EG x G S(E) and EG x G S(F) are fibre homotopy equivalent hence have the 

same Stiefel-Whitney classes. We therefore may and will assume that 

they both have a Spin(Sn)-structure and hence a K-theory Thom-class. 

Applying id x G f to these Thom-classes and using 3.15 one obtains 

~r(EG x G E) %ur(z) : z ~r(EG x G F) 

with a suitable z G 1 + ~SO(X G) and this yields the desired factorisa- 

tion. 

11.5. Local J-qroups away from p. 

We now assume that q is a prime different from p and compute the J- 

groups localized at q. 

To begin with let C be a cyclic group and Y a trivial C-space. We 

can compute Jo~°C(y)q~ as follows. 

Since Y is a trivial C-space vector bundles over Y split according 

to the irreducible C-modules (see Segal [I~2] , Remark on p. 133). 

Since C is a cyclic p-group the splitting of vector bundles according 

to the kernels of the irreducible C-modules is preserved by JO l°c- 

equivalence and by Adams operations. Hence it suffices to discuss that 

direct summand of Jo~°C(y)q which comes from C-vector bundles whose 

fibre representations only contain faithful C-modules. We claim that 

forgetting the group action induces an isomorphism of this direct 

summand with JO(Y)q (if q ~ 2) and with J(Y)q (if q = 2 and C non- 
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__loc 
trivial). Moreover oo c (Y)q can be computed as in 11.1.6 in this case. 

We prove all this. 

Let (r,pq) = I. Then there is a stable C map S(E ® V) > s(~rE ®~V) 

of degree t dividing r n, where V is a faithful C-module and E a bundle 

with trivial C-action. As in the proof of 11.4.2 we see that there 

exists a C-map s(ti(E ~ V)) } s(ti(~rE ® ~rv)) for suitable i. Since 

__loc (use also (t,q) = 1 we have that (i- ~r) (E ~ V) is zero in oo C (X)q 

11.4.4). 

Now suppose that E 1 - E 2 maps to zero in JO(Y)q. For each r generating 

the q-adic units there exists an F such that E 1 - E 2 : (i -~r)F, by the 

non-equivariant computation of JO(Y) which is a special case of the 
q 

results in 11.4. Hence also F ~ V - ~rF ® V r in JOc(Y) q. (We can 

actually work with complex vector bundles, because J(Y)q ~ JO(Y)q if 

q ~ 2 and if q : 2 then C is not a 2-group and the faithful represen- 

tations of C are of complex type.) If we choose r such that V r : V 

then we see that E 1 ~ V - E 2 ~ V = (i- ~r) (F ~ V) maps to zero in 

Jo~°C(y)q is of the form as claimed in 11.1.6. In general if E 1 - E 2 = 

= (i- ~S)F 1 then E 1 ~ V - E 2 ~ V s : F 1 ~ V - ~s F] ~ V s 

= (F 1 ~ (V - vS)) + ((F 1 - ~ SF I) ~ V s) shows that F 1 ~ (V - V s) is 

also contained in the subgroup generated by the (I - ~ r(i)) of 11.1.6. 

This settles the case of cyclic p-groups C and trivial C-spaces Y. 

We now prove 11.1.6 in general for q # p. By 7.7 we have a natural 

transformation 

Ko o(x) ~ ~9 (c) K°c (xc) 

where (C) runs over the conjugacy classes of cyclic subgroups of G. 

This transformation has a natural splitting which is compatible with 
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the action of the Adams operations. Let JO~(X) denote the quotient of 

r(i))x as in 11.1.6. Then KOG(X) by the subgroups generated by (i - 

we have the diagram 

KOc~ (X) q 
r & 

Jo~(X)q 

I 
I i(1) 
% 

j_loc 
o G (X)q 

2) 

4) 

) (9 (c) K°c(xC)q 

$ 
> @ (c) J°~(xC)q 

(3) 
$ 
loc C 

(D {C) JOc (X)q 

The maps (1) and (3) are surjective by construction. The map (2) is 

split injective by the splitting theorem just quoted. The map (3) is 

bijective by the proof above. Hence (I) is also injective hence an 

isomorphism. This finishes the proof of Theorem ]i.].6. 

11.6. Projective modules. 

We are going to discuss the difference between JO$ °c and JO G . 

Let E and F be G-vector bundles over Z. Let [S(E),S(F)] be the set of 

G-fibre homotopy classes S(E) ) S(F). Fibrewise suspension defines a 

map IS(E), S(F)] ~ [S(E ~ V), S(F ® V)] . We take the direct limit 

°(E,F) which is the over such suspension maps and call the limit ~G 

set of G-homotopy classes of stable maps S(E) > S(F). We list some 

of the standard properties of this construction. 

( 1 1 . 6 . 1 )  °(E,F) is an abelian group and in fact a module over 
&) G 

°(X) 
&o G 



(11.6.2) A G-map f : Y 

°(E,F) f~: ~G 
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> X induces a homomorphism 

) ~ G(f~'E,f~F). 

(11.6.3) Composition of mappings defines a pairing 

° (F,H) > ¢o° (E,H) °(E,F) x ~G G ~G 

o (X) -bilinear. which is ~ G 

(11.6.4) whitney sum defines a pairing 

°(E 1 ~ E2,F 1 (B F 2) °(EI,F I) x &OG(E2,F 2) ) ~ G G 

O , . 

which is Go G-blllnear. 

(1].6.5) There are canonical isomorphisms of 

o(E E) z ~ G(E ~ F,E ~ F) 
¢~G ' 

o (X) -modules o~ G 

o 
Proposition 11.6.7. Suppose E - F ~ TO~ °c (X) . Then ~ G(E,F) is a 

projective ~ ~(X)-module of rank one and ~ ~(F,E) is its inverse in 

°(X) The module is free if and only if the Picard qroup o__[f ~ G " 

E - F E TOG(X). 

Proof. We have determined the prime ideals q of ~(X) in 

O 

We localize at q and show that (AP~(E,F)q is a free ~G(X)q-module 

" O(x ) of rank one and that ~(E,F) ~ ~(F,E) ) ~ (E • F,F ~ E)= ~G 

induces an isomorphism after localization at q. But by the definition 

of To~°C(x) we have for a given H a stable G-map f : S(E) } S(F) such 

that fH has fibre degree one. Now proceed as in 10.2.6. 

From 11.6.7 we obtain an injective homomorphism 

POx(G) : TO~ Oc (X)/TOG(X) ) Pic ~ ~(X). Note that the source of 

POx(G) is precisely the kernel of JO~ °c ) JO G . The Picard group ~(X) 
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does not change if we divide out the nilradical of ~ ~(X). We have 

seen that ~ ~(X)/Nil only depends on the orbit category of X. In 

particular if all the fixed point sets of X are non-empty and connected 

then we obtain a natural splitting JOG(X) ~ Jo~°C(x) ~ jO(G). 


