
5. The Burnside-Ring of a Compact Lie Group. 

5.1. Euler Characteristic. 

We collect the properties of the Euler-CharacteristJc that we shall 

need in the sequel and indicate proofs when appropriate references 

cannot be given. 

Let R be a commutative ring and let A be an associative R-algebra 

with identity (e.g. A = R; A = RIG], G a finite group). In general, an 

Euler-Poincar~ map is a map from a certain category of A-modules to an 

abeiian group which is additive on certain exact sequences. We consider 

the following sufficiently general situation: 

Let GrR(A) be the abelian group (Grothendieck group) with generators 

M] where M is a left A-module which is finitely generated and 

projective as an R-module, with relations [M] = [M'] + [M'~ for each 

exact sequence O--~ M'---%M--) M"--90 of such modules. Let Gr(A) be the 

Grothendieck group of finitely generated left A-modules and the ana- 

logous relations for exact sequences. A ring R is called regular if it 

is noetherian and every finitely generated R-module has a finite 

resolution by finitely generated projective R-modules. 

Proposition 5.1.1. 

Let R be a regular ring and A a__nn R-algebra which is finitel~ generated 

and projective as an R-module. Then the forgetful map GrR(A) ---~ Gr(A) 

is an isomorphism. 

Proof. 

Swan-Evans [458] , p. 2. (The symbol G o is used in ~$8] where we use 

Gr. Since we do not need G I and use G to denote groups we have chosen 

this non-standard notation.) 



83 

Remark. 

In the case of the group ring A = S [ ~] , S a commutative ring, we 

denote GrS(A) by R(~,S). Tensor product over S induces a multiplication 

and R(~,S) becomes a commutative ring the representation ring of 

over S. 

We call the assignment Mi ) [M] ~ GrR(A) a universal Euler-Charac- 

teristic for the modules under consideration, because any map MJ--} e(M), 

e(M)6 B, B an abelian group, such that e(M) = e(M') + e(M") whenever 

O---9 M' ) M --%M"---9 0, is induced from a unique homomorphism 

h : GrR(A) ) B, e(M) = h[M] . (Similar definition for Gr(A).) If 

R = A is a field then M~---->dim R M @ Z is such a universal map, 

establishing Gr(R) ~ Z. If R = A = Z then M~+ rank(M)= dimQ(M~zQ)~ Z 

is a universal Euler-Characteristic. (by 5.1.1GrZ(z) = Gr(Z)). 

If M : 0--3 M o ) Mi--9 ... --~Mn--90 is a complex of A-modules 

which are finitely generated and projective as R-modules then we 

define 

n i 
(5.1.2) Z(M') = ~ i-o (-I) [Mi] 6 GrR(A) 

to be the Euler-Characteristic of the complex. We use the same termino- 

logy in case of Gr(A). If submodules of finitely A-modules are again 

finitely generated then for the homology groups Hi(M • ) of a complex 

(H,(M)) := (M Gr(A) . 

If O ~-)M'--~ M ---} M"--~ O 1s an exact sequence of complexes then 

(5.1.4) X(M,) = 9((M',) + X(M"o) 

when everything is defined. If one works with GrR(A) then one has to 
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use hereditary ~n~s , i.e. submodules of projective modules are pro- 

jective (see Cartan-Eilenberg [~g] , p. 14 for this notion). Examples 

are Dedekind rin~s R, i. e. integral domains in which all ideals are 

projective (see Swan-Evans ~S83 , p. 212 for various characterisations 

of Dedekind rings). 

We now consider the special cases that are relevant for topology. 

Let (Y,A) be a pair of spaces such that the (singular) homology groups 

with integral coefficients H. (Y,A) are finitely generated and zero for 
i 

large i. Then, by abuse of language, we define the Euler-Characteristic 

(Y,A) of the pair (Y,A) to be the integer 

(5.1.5.) X(Y'A) = [ i~ o (-I)i rank Hi(Y,A) 

with the usual convention ~(Y) = Z (Y,~). Standard properties are 

(see Dold [~] , p. 105): 

Proposition 5.1.6. 

(i) If two of the numbers 

SO is the third, and 

X Y), (A) and (Y,A) are defined then 

Z(Y) = X (A) + X (Y,A). 

(ii) If (Y;YI,Y2) is an excisxve triad and if two of the numbers 

~(YI u Y2 ), X (YI ~ Y2 )' X (YI) + X (Y 2) are defined then so is 

the third, and 

(YI) + 9((Y 2) = ~6 (YI u Y2 ) + 96 (YI n Y2 ) " 

(iii) If (Y,A) is a relative CW-complex with Y-A containin~ man~ cells 

then ~ (Y,A) is defined and 

i 
(Y,A) = ~ (-I) i2j 0 ni 
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where n. is the number of i-cells in Y - A. 
l 

If F is a field we can consider 

(5.1.7) ~((Y,A;F) = ~ i~ o (-I)i dimF Hi(Y'A;F) ' 

if this number is defined. Then 5.1.6 also holds with this type of 

Euler-Characteristic. 

Proposition 5.1.8. 

(i) If F has characteristic zero then ~ (Y,A) is defined if and only 

if ~ (Y,A;F) is defined and X (Y,A) = X (Y,A;F). 

(ii) If ~ (Y,A) is defined and (Y,A) has finitely 9enerated integral 

homology then ~ (Y,A;F) is defined for any field and ~ (Y,A) = 

X (Y,A;F). 

Proof. This is a simple application of the universal coefficient formula. 

(See Dold [~5~ , p. 156). 

One can also define the Euler-Characteristic using various types of 

cohomology (singular-, Alexander-Spanier-, sheaf-, etc.) and use the 

universal coefficient formulas to see that homology and cohomology 

gives the same result under suitable finiteness conditions. 

Proposition 5.1.9. 

Let p : E --~ B be a Serre-fibration with typical fibre F. If ~ (B) and 

(F) are defined and the local coefficient system (H~(p-lb;Q)) is 

trivial then ~ (E) is defined and 

(E) = X (F) ~ (B). 



86 

Proof. 

Use the existence of the Serre spectral sequence; apply the K~nneth- 

formula to the E2-term; use 5.1.3 (see Spanier [@52~ , p. 481). 

We actually need a more general result where fibrations are replaced 

by relative fibrations and the coefficient system may be non-trivial. 

This will be done in the next section when a suitable class of spaces 

with Euler-Characteristic (the Euclidean neighbourhoods retracts) has 

been described. A really general and satisfactory treatment of the 

Euler-Characteristic (and its generalization: the Lefschetz number) does 

not seem to exist. 

5.2. Euclidean nei~hbourhood retracts. 

We single out a convenient class of G-spaces X such that for all fixed 

point sets and other related spaces the Euler-Characteristic is defined. 

Let G be compact Lie group. We define a G-ENR (Euclidean Nei~hbour- 

hood Retract) to be a G-space X which is (G-homeomorphic to) a G-retract 

of some open G-subset in a G-module V. 

Proposition 5.2.1. 

If X is a G-ENR and i : X--) W a G-embeddin~ into a G-module W then iX 

is a G-retract of a neighbourhood. 

Proof. As in Dold [~5] , p. 81, using the Tietze-Gleason extension 

theorem (Bredon [9~ ! , p. 36; Palais [~I~] , p. 19). 

Proposition 5.2.2. 

differentiable G-manifold with a finite number of orbit types is a 

G-ENR. 
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Proof. 

Embed the manifold differentiably into a G-module (Wasserman 

where it is a retract of a G-invariant neighbourhood. 

[ Gs] ) 

If we have no group G acting we simply talk about ENR's. The 

following basic result of Borsuk shows that being an ENR is a local 

property. Recall that a space X is called locally contractible if 

every neighbourhood V of every point x & X contains a neighbourhood W 

of x such that W c V is nullhomotopic fixing x. It is easy to see that 

an ENR is locally contractible (Dold [75] , p. 81). A space is 

locally n-connected if every neighbourhood V of every point x contains 

a neighbourhood W such that any map S j ---9 W, j $ n, is nullhomotopic 

in V. 

Proposition 5.2.3. 

If X c ~n i__ss locally (n-1)-connected and locally compact then X is an 

ENR. 

Proof. 

Dold [}S] , IV 8.12, and 8.13 exercise 4. 

Remarks 5.2.4. 

A basic theorem of point set topology says that a separable metric 

space of (covering) dimension ~ n can be embedded in~2n+1; see 

Hurewicz-Wallman [~8] for the notion of dimension and this theorem. 

Hence a space is an ENR if and only if it is locally compact, separable 

metric, finite-dimensional and locally contractible. Using a local 

Hurewicz-theorem (RauBen ~13~ ) one can express the local contractibi- 

lity in terms of homology conditions. 
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Proposition 5.2.5. 

Let X be a G-ENR. Then the orbit space X/G is an ENR. 

Proof. 
i r 

Let X ) U --~ X be a presentation of X as a neighbourhood retract 

(i.e. U open G-subset in a G-module, ri = id). We pass to orbit spaces. 

A retract of an ENR is an ENR. Hence we have to prove the Proposition 

for X a differentiable G-manifold (and then apply it to the manifold U). 

-I 
Let p : X --~X/G be the quotient map. Given x & V C X/G, V open, p V 

contains a G-invariant tubular neighbourhood W of the orbit p-lx. Hence 

pW is contractible. Therefore X/G is locally contractible. Moreover X/G 

is locally compact (Bredon [3~] , p. 38), separable metric (Palais 

Z%] , 1.1.12) and dim X/G $ dim X (use Hurewicz-Wallman £38J ). 

Now apply 5.2.3, and 5.2.4. 

Using 5.2.3 and the following result of Jaworowski we see that being 

a G-ENR is a local property too. 

Proposition 5.2.6. 

Let X be a G-space which is separable metric and finite-dimensional. 

Then X is a G-ENR if and only if X i__ss locally compact, has a finite 

number of orbit types, and for every isotropy group H < G the fixed 

point set X H is an ENR. 

Proof. 

Jaworowski [-I02] . 

Corollary 5.2.7. 

If x is a G-ENR then X(H ) is a G-ENR for every H < G. 



89 

Proposition 5.2.8. 

If X is a compact ENR then the Euler-Characteristic (X) is defined. 

Proof. 

X is a retract of a space K which may be given as a finite union of 

cubes in a Euclidean space. Hence H.X is a direct summand in H.K, which 
1 1 

is finitely generated and zero for large i. 

Proposition 5.2.9. 

Let E ---~ B be a fibre bundle with typical fibre F. If F and B are 

ENR's then E is an ENR. 

Proof. 

Apply 5.2.3. 

We now come to the generalization of 5.1.9. 

Proposition 5.2.10. 

Let F : (X,A) --- 9 (Y,B) be a continuous map between compact ENR's such 

that F(X- A) = Y~ B. Suppose the induced map f : X ~ A --~ Y - B is a 

fibration with typical fibre Z ~ compact ENR. Then 

~((X,A) : )6(Z) X (Y,B) . 

The Euler-Characteristic Xc(X ~ A) of X~ A computed with Alexander- 

Spanier cohomology with compact support and coefficients in a field 

exists and ~(X,A) = ~c(X w A). 

Proof. 

Since the integral homology groups are finitely generated, we can 

compute the Euler-Characteristic using any field of coefficients and 
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homology or cohomology. We use cohomology with Z/2-coefficients. Since 

ENR's are locally contractible, 5.2.3, we can use singular or Alexander- 

Spanier cohomology (Spanier ~152] , 6.9.6.). Using Alexander-Spanier 

cohomology with compact support we have by Spanier [ ~ , LI~2] 6.6.11, 

that 

Hi(X,A) = Hi(x ". A) 

and similarly for (Y,B). The fibration f : X~ A ---9 Y`` B gives us a 

Leray spectral sequence with E2-term 

EP,q = HP(y,. B; Hq(z)) 
2 c c 

where the coefficients are Hq(Z) considered as a local coefficient 
c 

system on Y w B (Borel [/SJ , XVI. 4.3; [17] ). If this local 

coefficient system is trivial then our assertion follows as in 5.1.9. 

If it is non-trivial then the following ad hoc argument of Becker and 

Gottlieb reduces it to the case of a trivial coefficient system: 

Since Hq(z) is a finite group (Z/2coefficients!) a finite covering of 
c 

Y \ B will make the coefficient system trivial. The relation 

X(U') = N ~ (U) for a finite covering U'--) U of degree N (which 

will be proved in 5.3) and the result for trivial coefficients implies 

X (X~A) = X (Z) X (Y~B). 
c c 

Problem 5.2.11. 

Give a satisfactory and general (not just for ENR's) proof for 5.2.10 

and its generalization to Lefschetz numbers (compare Dold [~'] ). 

Proposition 5.2.11. 

Finite G-CW-complexes are G-ENR's. 
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Proof. 

See Illman [~O0] for the notion of G-CW-complexes. 

Use 5.2.3, 5.2.6. 

5.3. E~uivariant Euler-Characteristic. 

If G is a compact Lie group and X is a G-space then the G-action on X 

induces a G-action on the cohomology groups Hi(X;M) where M is an R- 

module. If G o is the component of the identity of G then G O acts 

trivially on Hi(X;M) so that Hi(X;M) becomes an R [G/Gel -module. If 

HW(X;M) = (Hi(X;M))i~ ° is R-finite, i. e. zero for large i and finitely 

generated as R-module, then we define the equivariant Euler-Characte- 

ristic of the G-space X to be the element 

(5.3.1) XG(X;R) = Z i~o (-I) i Hi(X;R) 6 Gr(R[G/Go]). 

If R = ~, the complex numbers, then XG(X;~) E R(G), where R(G) denotes 

the complex representation ring. We use similar definitions for pairs 

of G-spaces and homology. Actually for general spaces one has to speci- 

fy the cohomology theory. For simplicity we make the folbwing 

Assumption 5.3.2: 

X is a G-ENR. Cohomology is Alexander-Spanier cohemology with compact 

support (in this case isomorphic to sheaf- or presheaf cohomology with 

compact support; see Spanier [15~] , Chapter 6; Bredon [~] , 

Chapter III). 

Our task in this section is the computation of (5.3.1) in case R is 

the field of rational numbers. The computation will be in terms of 

non-equivariant Euler-Characteristics. The reader should convince him- 

self that most of the results to follow are obvious if a finite group 

acts simplicially on a finite complex. In this case one can compute on 
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Proposition 5.3.3. 

Let G be a p-group acting freely on X. Suppose HW(X;Fp) is F -finite. 
_ _  - -  p 

Then ~ (X/G;Fp) is defined and 

~(X;Fp) = IGI X (X/G;Fp). 

(Recall 5.3.2 and that ~ is defined using cohomolog[ with compact 

support.) 

Proof. 

If H 4 G then G/H acts freely on the G/H-ENR (by 5.2.5, 5.2.6) X/H. 

Hence using induction on the order of G it is sufficient to prove the 

Proposition for G = Z/p. We use the following fact: 

(5.3.4) Hi(X;Fp) ~ Hi(X/G;A) 

where A is the local coefficient system (= locally constant sheaf, 

Spanier ~52] , P. 360) with stalks H°( ~-I (x) ;Fp) ~ Fp [G], ~: X~ X/G 

the quotient map. In our case the group action on Hi(X;Fp) corresponds 

via 5.3.4 to the group action on the coefficient system, which is a 

system of Fp[G]-modules (fore ver~ication see Floyd [~5] ,III. I 

Since an Fp[G]-module always contains non-trivial G-fixed submodules if 

G is a p-group (e.g. by I. 3. ) we can find a filtration 

A = AI~ A 2 ) ... 9A k = O of the coefficient system such that Ai/Ai+ I is 

the constant system. The Cartan spectral sequence of a covering 

(Bredon [75] , p. 154) shows Hi(X/G;Fp) to be finite dimensional. 

From the additivity of the Euler-Characteristic X (X/G;A i) = 

(X/G;Ai+ I) + ~ (X/G;Ai/Ai+ I) we obtain the result. 
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Proposition 5.3.4. 

Let the finite grou~ G act freely on X. Suppose H~(X;Z) i__ss Z-finite. 

Then ~ (X/G;Q) is defined and 

)~G(X;Q) = X (X/G;Q).Q [G] 6 R(G;Q) 

(Here Q [G] denotes the regular representation of G over Q.) 

Proof. 

Two elements of R(G;Q) are equal if their characters are equal. Thus 

the assertion of the Propositbn is equivalent to: 

(5.3.5) ~(.(X) = I GI X (X/G), 

(5.3.6) ~G(X) (g) = O for g # I. 

(Note that ~G(X) (g) is the Lefschetz-number 

L(g,X) = ~ i~o(-1) i (Trace (g,Hi(X;Q)) 

for the action of g; and under reasonable circumstances the Lefschetz- 

number of a map without fixed points should be zero.) 

We first prove 5.3.5 and 5.3.6 for cyclic groups. Since H~(X;Z) is 

finite the universal coefficient formula for cohomology with compact 

support (Spanier DT2] , p. 338) shows 

(5.3.7) X (X;Q) = X (X;Fp). 

The Cartan spectral sequence of a covering shows that H~(X/G;Z) is Z- 

finite. Hence we obtain from 5.3.3 and 5.3.7, using induction on IGI , 
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that 5.3.5 is true for cyclic G. 

The existence of the transfer for finite groups implies the iso- 

morphism (Bredon [37] ,III 7.2) 

(5.3.8) Hi(X,Q) G ~ Hi(X/G;Q) 

Since for any character ~ of G dim 

from 5.3.5 and 5.3.8 

G -I 
= I GI ~ ~(g) we obtain 

(5.3.9) ~ g~=1 • G (X) (g) = O . 

Using this we prove 5.3.6 for cyclic groups by induction over the group 

order: We start with 

Hi(x,{) ~ Hi(X/G;A) 

where A again is the local coefficient system with typical stalk ~[G]. 

Let g be a generator of G. We decompose the coefficient system A 

according to the irreducible ~ [G] -modules 

A = ~ Aj , o ~ j~ m = ~GI 

where g acts on Aj through multiplication with ~J = exp(2~ij/m). The 

equalities 

Tr(gk,Hi(X;{)) = ~ j Tr(g k,Hi(x/G;Aj)) 

= Z j { jk dim Hi(X/G;Aj) 

yield for the Lefschetz-number 
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L(gk,x) = Z j ~ jk ~ (X/G;Aj). 

But L(gk,x) G Z is obtained from L(g,X) for (k,m) = ] by applying a 

Galois automorphism of Q(~ ) over Q. Therefore L(gk,x) = L(g,X) for 

(k,m) = I. From 5.3.9 we obtain 

(5.3.10) o = Z L(gk,x) + [ L(gk,X) 
(k,m)=1 (k,m)~1 

By the inductive assumption the second sum in 5.3.10 is zero, and since 

the summan~of the first sum are all equal we see that L(g,X) = O. This 

proves 5.3.6 in general. Again using 5.3.8 and 5.3.9 we obtain 5.3.5 

for general G. 

We have actually proved in 5.3.4 a special case of the Lefschetz 

fixed point theorem. 

Proposition 5.3.11. 

Let X be a compact G-ENR where G is a cyclic group with generator g. 

Then the Lefschetz number 

L(g,X) = ~ i~,o (-I) i Trace (g,Hi(X;Q)) 

i__ss equal to the Euler-Characteristic ~(xg). 

Proof. 

Let X I = X g, X2,...,X r be the orbit bundles of X. Then H~(Xi,Z) 

(cohomology with compact support) is Z-finite and L(g,Xj) = O for j > I 

by 5.3.4. Hence 

L(g,X) = ~j L(g,Xj) = L(g,X I) 
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and clearly L(g,X I) = X (xg) • 

Corollary 5.3.12. 

Let G be a finite group and let X be a compact G-ENR. Then 

Z(x/G) = IGI -I [ g~G X (xg) • 

Proof. 

From Hi(X/G) ~ Hi(x) G and dim Hi(x) 

the result follows, using 5.3.11. 

G = IG~-I ~ gEG Trace (g,Hi(X)) 

We can now compute the equivariant Euler-Characteristic ~G(X). 

Theorem 5.3.13. 

Let G be a compact Lie group and X be a compact G-ENR. Then 

~('G (x) = ~- (H) ~" (X(H)/G) ~ G (G/H) 

where the sum is taken over those isotropy types (H) of X such that 

NH/H is finite. 

Proof. 

By additivity of the Euler-Characteristic 

~ G (x) = ~" H) )(]G(X(H) )" 

Thus we have to show: ~G(X(H) = O if NH/H is infinite and 

(5.3.14) L(g,X(H )) = ~, X(H)/G) L(g,G/H) 

otherwise (g~ G). Let C be the closed subgroup of G generated by g. 
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Since L(g,Y) only depends on the image of g in the group of components 

of C we can find an element h~ C of finite order such that L(g,Y)=L(h,Y) 

for all Y. We fix h with this property. Since X is a compact G-ENR we 

can find compact G-ENR's Y) Z in X such that Y~ Z = X(H ) . The proof of 

5.3.11 shows 

L(h,X(H )) = 9(. (X(H)h). 

Using the fibre bundle 

G/H ---) X(H ) > X(H)/G 

and 5.2.10 we obtain 

~(,(X(H) h) = ~ (X(H)/G) ~(~ (G/Hh). 

Again by 5.3.11 ~ (G/H h) = L(g,G/H), so we see that 5.3.14 is true in 

general. But ~(G/H h) = 0 if NH/H is infinite because NH/H acts freely 

on G/H h . 

Remark 5.3.15. 

If G is finite then ~G(G/H) is just the permutation representation 

associated to the G-set G/H. In general ~G(G/H) & R(G/Go;Q) where G O 

is the component of the identity of G. We would like to see that this 

is actually a permutation representation. 

Problem 5.3.16. 

What are the most general assumptions on the spaces which imply the 

decomposition formula 5.3.13? A similar formula holds for the equi- 

variant Lefschetz number of a G-map f : X--) X between compact G-ENR's. 

Also this should be generalized to more general spaces. 
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5.4. Universal Euler-Characteristic for G-spaces. 

The classical computation of the Euler-Characteristic from a cell de- 

composition of a space indicates that suitable axioms (like 5.16 (i), 

(ii)) determine the Euler-Characteristic uniquely. This is carried out 

in Watts ~ 3  . We present a similar argument for G-spaces without 

insisting on a minimal set of axioms. 

An Euler Characteristic for finite G-CW-complexes consists of an 

abelian group A and map b which associates to each finite CW-complex X 

an element b(X) ~ A such that: 

(i) If X and Y are G-homotopy-equivalent then b(X) = b(Y). 

(ii) If X and Y are subcomplexes of Z then 

b(X) + b(Y) = b(Xw Y) + b(X~ Y). 

Given such an Euler-Characteristic b we show 

Proposition 5.4.1. 

Let X be a finite G-CW-complex. Then 

where 

b(X) = )- (H) n H b(G/H) 

nH ~ i%o "[-I)i = n(H,i) 

n(H,i) the number of i-cells of type (H), and the sum is taken over 

conjugacy classes of subgroups of G. 

Proof. 

Induction on the number of cells and dimension. Let Z = X u (G/H x e n) be 

obtained from X by attaching an n-cell of type (H). Let Y = G/H × Dn(I/2) 
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e n be the closed cell in G/H x of radius I/2. If we remove Y from Z 

then the resulting space is G-homotopy-equivalent to X. Therefore 

b(Z) = b(X) + b(G/H x D n) b(G/Hx sn-1). 

One shows by induction 

b(G/H x S n) = I + (-I) n+1 b(G/H) ; 

namely if D+ and D_ are the upper and lower hemisphere of S n respective- 

ly then 

b(G/H x S n) = b(G/H x D+) + b(G/H x D_) - b(G/Hx S n-l) 

= 2b(G/H) - (I+(-I) n) b(G/H) 

= I + (-I) n+1 b(G/H). 

Put together we obtain 

b(Z) = b(X) + (-I) n b(G/H), 

the induction step. 

An Euler-Characteristic (U(G),u) for finite G-CW-complexes is 

called universal, if every Euler-Characteristic (A,b) as above is 

obtained from (U(G),u) by composing with a unique homomorphism 

U(G) -----) A. As usual for universal objects uniqueness up to isomorphism 

follows. 

From 5.4.1 we obtain existence: 
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(5.4.2) U(G) free abelian group with basis 

[G/HI , (H) 6 C(G). 

u(X) = ~ (H) n(H) [G/HI . 

Instead of u(X) we also write IX] , in accordance with the notation 

[G/HI for the basis elements. We now aim at another characterisation 

of U(G) which is not based an CW-complex and which shows that b(X) in 

5.4.1 is independent of the cell decomposition. 

Proposition 5.4.3. 

We have IX] = [Y] in U(G) if and only if for all H < G 

~(xH/~H)= X (YH/NH) - 

Proof. 

IX] = ~ ~[Y] . We consider the Suppose mapping 

b H : Z ~--9 ~(zH/NH) 

from finite G-CW-complexes into Z. This mapping satisfies (i) and (ii) 

in the definition of an Euler-Characteristic for finite G-CW-complexes. 

From the universal property of U(G) we obtain bH(X) = bH(Y). For the 

converse be have to show that the totallity of maps b H : U(G) --~ Z 

defines an injective map U(G) ----~ ~(H)Z. Let 0 # x = ~ a H [G/HI ~ U(G). 

Let H be maximal such that a H # O. Then 

bH(X) = a H ~ ((G/HH)/NH) = a H # O. 

We now redefine the group U(G). 
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Definition and Proposition 5.4.4. 

On the set of compact G-ENR introduce the equivalence relation: 

X~Y <=> for all H < G the equality x(xH/NH) = ~ (yH/NH) holds. Let 

U(G) be the set of equivalence classes and let IX] E U(G) be the class 

of X. Disjoint union induces on U(G) the structure of an abelian group. 

This group is free abelian with basis [G/HI , H @ C(G). We have 

(5.4.5) [X] = ~ (H) ~c (X(H)/G) [G/H] 

Proof. 

We have to show that inverses exist for addition. Let K be a compact 

ENR with trivial G-action and ~ (K) = -I. Then [X] + [Kx HI = 0 in 

U(G) because ~(X H) + ~((K ~ H) H) = 0 for all H < G. As in the proof 

of 5.4.3 one shows that the [G/HI are linearly independent. We show 

that the [G/H] span U(G) by proving 5.4.5. By additivity of the Euler- 

Characteristic we have 

z(xK/NK) = ~(H) ~c(X(H) K/NK)" 

Now X(H) --- ) X(H)/G is a fibre bundle with fibre G/H and as G-space 

X(H ) has the form G/H XNHX H (see Bredon , p. 88). Hence 

X(H)K /NK -- 9 X(H)/G is a fibre bundle with fibre G/HK/NK. From 

we obtain 

~c(X(H)K/NK) = 96((G/HK)/NK) ~ c(X(H)/G). 

This shows that both sides of 5.4.5 describe the same element in U(G). 

Definition and Proposition 5.4.6. 

Cartesian product o_~f representatives induces a multiplication o_nn U(G). 

Addition and multiplication make U(G) into a commutative rin@ with 

identity. This rin 9 is called the Euler-rin~ of the compact Lie group G. 
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Proof. 

We need only show that multiplication is well-defined, i. e. we have 

K to show that the numbers ~ (XMY) /NK) can be computed from the 

X (xH/NH), ~(yH/NH) or, equivalently, from the ~ c(XH/NH), 

c(YH/NH). We begin with 

Z((X× Y)K/NK) = ~- (H) ~c (x x Y(H))K/NK). 

The map 

(X x Y (H))K/NK ~ Y(H)/G 

is a fibre bundle with fibre 

(X K W G/HK)/NK. 

Now we use the fact that G/H K consists of a finite number of NK-orbits 

(Bredon [9~ , p. 87), say 

G/H K = Z U NK/U 

as NK-space. Using this information and 5.2.10 we obtain 

( (X ~ ) K/NK) = ~ l~ /G) ~f. (xK/u) ~c Y(H) U c(Y(H) " 

Finally, using 

~ (xK/u)= ~ (H) ~cCX(H)/G) ~$((G/HK)/u)' 

we see that ~((X ×Y)K/NK) can be computed from the I$c(XH/NH), 

~c (YH/NH) " 
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We show in the next section that for finite G U(G) is the Burnside 

ring of G. For non-finite G U(G) contains nilpotent elements. In order 

to obtain the product structure one has to compute [G/HI [G/K] 

Proposition 5.4.7. 

Suppose NH/H is not finite. Then [G/H] ~ U(G) i__ss nilpotent. 

Proof. 

By the descending chain condition for subgroups of G the spaces G/H k, 

k ~ I, altogether only contain a finite number of isotropy groups. If 

[G/HI k = Z (K) aK [G/K] with a K ~ O and (K) maximal with this property 

then [G/HI k+1 does not contain [G/K] with a non-zero coefficients: 

Expanding [G/H] k+l then G/K could only occur from the expansion of 

a K [G/H] [G/K]. But (G/HwG/K) K = G/HK~ NK/K and therefore 

c((G/H~ G/K)K/NK) = X (G/H K) = O because NH/H acts freely on G/H K 

and ~ (NH/H) is zero if NH/H is not finite (e.g. because a circle 

group acts freely on NH/H). 

5.5. The Burnside tin 9 of a compact Lie 9roup. 

Let G be a compact Lie group. On the set of compact G-ENR's consider 

the equivalence relation: X ~ Y <=> for all H < G the Euler-Charac- 

teristics ~(X H) and ~ (yH) are equal. Let A(G) be the set of equi- 

valence classes and let [X] ~ A(G) be the class of X. Disjoint union 

and cartesian product induce composition laws addition and multipli- 

cation, respectively, on A(G). It is easy to see that A(G) with these 

composition laws is a commutative ring with identity. We call A(G) 

the Burnside rin 9 of G. We will show in a moment that this definition 

is consistent with the earlier one of section I. (for finite G). 

Let ~(G) be the set of conjugacy classes (H) such that NH/H is 

finite. 
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Proposition 5.5.1. 

Additively, A(G) is the free abelian group o__nn [G/HI , (H) ~ ~(G). For 

compact G-ENR X we have the relation 

[x] = Z (H)~ #(G) z (x(~)/G) [G/~] 

The assignment X }--9 ~ (X H) induces a ring homomorphism ~H : A(G)---) Z. 

Proof. (Compare 5.4.4). 

The last assertion is obvious from the definition. The [G/HI, (H)~ ~(G), 

are linearly independent: Given x = ~ a H [G/~ e A(G). Choose (H) 

maximal such that a H # O. Then 

~H x : a H ~ (G/H H) = a H I NH/H I # O 

and therefore x # O. 

Given a comapct G-ENR X. Then 

~6(xK) = ~ (H) ~(~ (X(H)K) = ~-- ~(~(G/H K) X (X(H)/G). 

The summands with NH/H not finite vanish, because NH/H then acts freely 

on G/H K so that ~ (G/H K) : O. This computation shows that Ix] and 

Z ~ (X(H)/G) [G/HI have the same image under ~ K' (K) ~ ~ (G), hence 

are equal in A(G). 

The map 

v : ~(G)----} A(G) : [x]-------~ [x] 

is a well-defined ring homomorphism. By 5.5.1 and 5.4.4 it is surjec- 

tive, and bijective for finite G. In particular we have 
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Proposition 5.5.2. 

For finite G the rings U(G), A(G), and the Burnside ring of finite G- 

sets are canonically isomorphic. 

Proposition 5.5.3. 

The kernel of v : U(G)-- 

elements) of U(G). 

A(G) is the nilradical (= set of nilpotent 

Proof. 

Since the ~H : A(G) ---~ Z detect the elements of A(G) the ring A(G) 

cannot have nilpotent elements (different from zero). Now use 5.4.4, 

5.4.7, and 5.5.1. 

Remark 5.5.4. 

The previous Proposition implies in particular that U(G) and A(G) have 

the same prime ideal spectrum. 

Remark 5.5.5. 

In contrast to the situation in section I with our new definition of 

A(G) also the negatives of all elements are represented by geometric 

objects. 

We now give some immediate applications of the geometric definition 

of A(G). 

Recall that we have in 5.3 associated with every compact G-ENR X 

the equivariant Euler-Characteristic 

~G (x) = ~ i~ o (-I)i Hi(X;Q) 6 R(G;Q). 
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Proposition 5.5.6. 

The assignment X ~----~ ~G(X) induces a ring homomorphism 

~G : A(G) 9 R(G;Q). 

Proof. In order to show ~G is well-defined we have to show that the 

character ~G(X) can be computed from Euler-Characteristics of fixed 

point sets. But this is the content, of 5.3.11, and the same Proposition 

shows that )~G respects addition and multiplication. 

Remark 5.5.7. 

The homomorphism ~ G generalizes the permutation representation of 

finite G-sets. 

We have mentioned in 1.5 the construction of units of A(G) using 

representations. We can now make this precise. 

The homomorphisms ~H : A(G) --) Z combine to an injective (by 

definition A(G)) ring homomorphism 

(5.5.8) ~ : A(G) .... ) ~(H) Z 

where the product is taken over the set C(G) of conjugacy classes of 

closed subgroups of G. We use ~ to identify elements of A(G) with 

functions C(G) ---9 Z (see 5.6 for an elaboration of this point of 

view). 

Proposition 5.5.9. 

dim V H 
Let V be a real representation o_ff G. Then u(V) : (H) ~--~ (-I) 

is a unit of A(G). The assignment V! )u(V) induces a hcmomorphism 

u : R(G;IR) ) A(G) ~'. 
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(Here R(G;~) i__ss the real representatio n rin~ of G, also denoted RO(G).) 

Proof. 

Let S(V) be the unit sphere in V. Then 

dim V H 
(S(V) H) = I - (-I) 

Hence I - [SV] G A(G) represents the function u. 

Proposition 5.5.10. 

The multiplication table of the [G/HI 

coefficient, i.e. if 

A(G) has non-negative 

[G/HI [G/K] = ~ (L)nL [G/L] 

then n L ~ O. 

Proof. 

We have n L = ~ ((G/H × G/K)(L)/G). 

Moreover 

(G/H M G/K(L)/G ~ (G/H × G/K)L/NL 

C (G/H X G/K)L/NL . 

But by Bredon [B~] , II. 5.7, the space G/H L consists of finitely 

many NL/L-orbits. Since NL/L is finite the set (G/H × G/K) (L)/G is 

finite and its Euler-Characteristic therefore non-negative. 

5.6. The space of sub@roups. 

We recall some notions from point set topology. Let E be a metric space 

with bounded metric d. Let F(E) be the set of non-empty subsets of E. 
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On F(E) one has the Hausdorff metric h defined by 

with 

h(A,B) = max(r(A,B), r(B,A)) 

r(A,B) = sup(d(x,B) I x 6 A). 

If E is complete then F(E) is complete. If E is compact then F(E) is 

compact. 

The convergence of a sequence X. to the limit X can be expressed 
1 

as follows: For any [ > 0 there exists n such that for n > n : 
o o 

(a) for x & X there exists y ~ X with d(x,y) < [ 
n 

(b) for x ~ X there exists y ~ X with d(x,y)< 6 
n 

If Y is the closure of U X then X is the intersection of the 
n p ~ o n+p 

Y . 
n 

We want to use this metric on the set S(G) of closed subgroups of 

the compact Lie group G. 

Proposition 5.6.1. 

(i) S(G) is a closed (hence compact) subset of F(G). 

-I 
(ii) The action G x S(G)--) S(G) : (g,H) ~---) gHg is continuous. The 

quotient space C(G) is a countable, hence a totally disconnected, com- 

pact Hausdorff space. 

(iii) ~(G) C C(G) is a closed subspace. 

Proof. 

(i) We start with a bi-invariant metric d on G. Let X = lim H., 
1 

H i 6 S ( G ) .  G i v e n  x , y  ~ X, [ > O,  c h o o s e  n o s u c h  t h a t  f o r  n ) n o t h e r e  

-1 
exists x n, Yn ~ Hn with d(x,x n) < [/2, d(y,y n) < ~/2. Then d(xy , 

-I x y - l ~  XnY n ) < [ If xy -I ~ X then X u { would satisfy conditions 
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(a), (b) above, a contradiction. 

(ii) Let lim gi = g in G and lim H i = H in S(G). Using 

d(gnXngn I, gxg -I) ~ 2d(g,gn) + d(x,x n) , which follows from the triangle 

-I 
inequality and bi-invariance, one shows that gHg is precisely the set 

gnHngn 1 of points satisfying (a) and (b) above for the sequence . The 

space C(G) is countable: see Palais [42~] , 1.7.27. 

(iii) We show that So(G) = {HINH/H finite I is closed in S(G). Let 

H = lim H i , Hi~ S(G). By a theorem of Montgomery and Zippin (Bredon 

[3~] , p. 87) there exists an E > O such that any subgroup in the 

-neighbourhood of H is conjugate to a subgroup of H. Hence the H i 

are eventually conjugate to subgroup of H. But if K ~ S (G) and K < H 
o 

then H ~ So(G); this follows e.g. from Bredon [33] , II. 5.7, because 

G/H K consists of finitely many NK/K-orbits hence is a finite set with 

free NH/H-action. 

We now show that convergence in S(G) and C(G) is equivalent in the 

following sense. 

Proposition 5.6.2. 

_ _  and K ~ S(G) n ~ n o , Let (H) = lim (H i ) i_nn C(G). There exists an n O n ' 

such that (K n) = (Hn), K n < H, lim K n = H. 

Proof. 

By the theorem of Montgomery and Zippin (Bredon [~] , II. 5.6) we can 

find for each ~ > O an integer no( ~ ) such that for n > no(E ) there 

-I 
exists an u n with d(Un,1) < ~ and UnHnU n < H. Therefore we can find 

a sequence gn ~ G converging to I such that for almost all n 

-I 
gnHngn < H. 

In view of the preceding Proposition it is interesting to know which 

compact Lie groups G are limits of a sequence of proper subgroups. 
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Proposition 5.6.3. 

G is a limit of proper subgroups if and onl~ if G is not semi-simple. 

Proof. 

Suppose G = lim H n, H # G. Let G ° be the component of I of G and put 
n 

K = G ° G ° H . Then lim K = so that without loss of generality we 
n n n 

can assume that G is connected. By passing to a subsequence we can 

assume that the components H ° converge to H and therefore must have 
n 

eventually the same dimension as H. But then the H ° are conjugate to H 
n 

and by conjugating the whole sequence we arrive at the situation: 

L ° G = lim L n, n =: L for all n, L ~ G. Since L ~ L n we must have L 4 G 

and G/L is the limit of finite subgroups Ln/L. We now invoke the theorem 

of Jordan (Wolf [~&~] ) which says that there exists an in- 

teger j such that any finite subgroup of G/L has a normal abelian sub- 

group of index less than j. Choose such a large abelian normal subgroup 

A n in Ln/L. The limit A of the A n is then an abeli~n normal subgroup of 

index less than j in G/L. Since G/L is connected we must have G/L = A 

a torus and therefore G is not semi-simple. 

Conversely if G is not semi-simple we can find a normal subgroup L 

of G ° such that G°/L is a non-trivial torus (Hochschild [~ ~] , XIII 

Theorem 1.3). By Lie algebra considerations (e.g. Helgason ~G] , II. 

Proposition 6.6) the group L is a characteristic subgroup of G ° and 

therefore a normal subgroup of G. Therefore G/L =: P is a finite ex- 

tension of a torus 

I ) T ----) P > F ) I, 

T a torus, F finite. If we show that P is a limit of proper subgroups 

then G is a limit of proper subgroups. We shall show in section 5.10 %~qat 

the finite subgroups of P are, in particular we shall see that P is a 
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Proposition 5.6.4. 

If X is a compact G-ENR then the mapping C(G)-- 

is continuous (Z carries the discrete topology). 

Z : (H) ~----) ~(X H) 

Proof. 

Let (H) = lim (H(i)). By 5.6.2 we can assume H(i) < H and H = lim H(i). 

We can and do assume H = G (otherwise consider the H-space X). We choose 

a bi-invariant metric on X. Put ~ = min h(K,G) where (K) runs through 

the finite set of orbit-types of X unequal to G. Since (L) < (K) im- 

plies h(L,G) ~ h(K,G) we have: h(L,G)< ~ implies (L) ~ (K) for all 

isotropy types of X except possibly (G). Thus if h(H(i),G) < E then 

X H(i) = U X H(i) .H(i) = X G 
(K) = X(G) 

5.7. The prime ideal spectrum of A(G). 

Recall the ring homomorphisms ~H : A(G)----) Z (see 5.5). If (p) C Z 

is a prime ideal then 

-I 
q(H,p) := ~ H (p) C A(G) 

is a prime ideal of A(G). We show that all prime ideals of A(G) arise 

in this way. 

Proposition 5.7.1. 

Given H 4 K < G. Assume that K/H is a__nn extension of a torus by a finite 

p-group (K/H a torus if p = o). Then q(H,p) = q(K,P). 

Proof. 

For a certain L we have H 4 L 4 K, L/H is a torus, and K/L a finite p- 

group. Let X be a compact G-ENR. The group K/L acts on M L with fixed 



112 

point set M K. Hence ~ (M K) ~ ~ (M L) mod p and 

an easy application of Theorem 5.3. 

~(M L) = ~6(M H) by 

Theorem 5.7.2. 

Every prime ideal q of A(G) has the form q(H,p) for a suitable 

(H) ~ ~(G). Given q there exists a unique (K) e ~(G) with q = q(K,p) 

and ~K(G/K) ~ O(p) where p is the characteristic of A(G)/q. 

Proof. 

We closely follow Dress [~ ! Let 

Then T(q) is not empty because (G) ~ ~(G) and [G/G] = I ~ q. Let (H) 

be minimal in T(q); this exists because compact Lie groups satisfy the 

descending condition. We claim that for any x ~ A(G) we have a relation 

of the type 

(5.7.3) EGJH] x = [GJH] + i [GI ] 

where the sum is over (K) < (H), (K) # (H). To see this we take x = [X~ 

look at the orbits of G/H X X and see from 5.5.1 that a relation must 

hold as claimed with some constant c instead of ~H(X) : We then 

determine c if we apply ~ H to both sides of this equation. (This uses 

H(G/H) ~ O, i.e. (H) ~ ~(G).) But 5.7.3 implies [G/H 3 x ~ ~H(X)[G/~ 

mod q (by minimality of G/H) and dividing by [G/HI ~ q we get 

x ~ ~H(X) mod q or q = q(H,p) with p the characteristic of A(G)/q. 

If K is any subgroup of G with q = q(K,p) and ~K(G/K) ~ O mod p 

for p = char A(G)/q then for an (H) as in the beginning of the proof 

K(G/K) ~ ~ H(G/K) ~ O mod p. In particular G/H K is not empty; and 
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similarly G/K H is not empty. This can only happen if (H) = (K). 

Proposition 5.7.4. 

Every homomorphism f : A(G) ---- 9 R into an integral domain R has 

the form f(x) = ~K(X]'] for a suitable K < G. 

Proof. 

The kernel of f is a prime ideal q(K,p). Therefore 

f : A(G)---9 A(G)/q(K,p) -----9 R must be the map x ~--> ~K(X)'1, 

because there is a unique isomorphism A(G)/q(K,p) Z Z/(p). 

Proposition 5.7.5. 

(i) If q(K,o) = q(L,o) and (K) ~ ¢ then (up to conjugation) L 4 K and 

K/L is a torus. 

(ii) Given L < G there exists K E ~ such that L 4 K and K/L is a torus. 

Moreover we have in this case ~L = ~K" 

Proof. 

(i) Since q(K,o) = q(L,o) by 5.7.2 ~K = ~ L" From 

(G/K L) = qn(G/K) = ~ K(G/K) = INK/K I ~ O, we see that G/E L is 

non-empty and hence (L) < (K). We take L < K. Let T be a maximal torus 

in NL/L and let P be its inverse image in NL. By 5.7.1 q(P,o) = q(L,o). 

We show (P) ~ ~; then by 5.7.2 (P) = (K). Assume (P) ~ ~. Then NP/P 

contains a non-trivial maximal torus S. We let Q be its inverse image 

in NP. We claim that L is still normal in Q. Let q & Q induce the 

conjugation automorphism c on P. Since Q/P is a torus, c is homo- 
q q 

topic to an inner automorphism, hence (e.g. by Conner-Floyd [~] , 

38.1) an inner automorphism itself and preserves the normal subgroup L. 

From the exact sequence 

0 ~ P/L ---9 Q/L -----} S -----)0 
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and P/L = T we conclude that Q/L is a torus and hence T is not a maxi- 

mal torus. 

(ii) Use the proof of (i) and 5.7.1. 

As a corollary of 5.6.4 and 5.7.5 we obtain 

Corollary 5.7.6. 

Let C(~(G),Z) be the ring of continuous (= locally constant, i__nn this 

case) functions. Then 

(5.7.7) ~ : A(G) .... 9 C(~(G),Z) 

(x) : (H) ~------~ ~H(X), is defined and an in~ective ring homomor- 

phism. 

The possible equalities q(H,p) = q(K,p) are not so easy to describe. 

We show that in a certain sense 5.7.1 is the only reason for such 

equalities. Given K < G. If NK/K is not finite or INK/KI ~ O mod p 

we find a subgroup K ~ P with q(K,p) = q(P,p) as follows: Either by the 

procedure in the proof of 5.7.5 we let P be the inverse image in NK of 

a maximal torus in NK/K or we let P be the inverse image in NK of a 

Sylow p-group of NK/K. Then (P) 6 ~but it may happen that INP/PI~ O 

mod p. In this case we can iterate the procedure. Either we arrive after 

a finite number of steps at a group Q with I NQ/QI~ O mod p, or we get 

a sequence 

Po = K 4 PI ~ P2 ~ P3 ~ "'" 

of groups with q(Pi,p) = q(Pi_1,p) and INPi/Pil ~ O mod p for i ) I. 

Let in this case Q be the closure in G of U Pi (this is the limit in 

the space of subgroups, see 5.6). By continuity 5.6.4 we still have 
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q(Q,p) = q(K,p). Now again we can apply our construction to Q if 

INQ/Q I ~ O mod p. Sooner or later we arrive at the defining group L 

of the prime ideal with INL/LI ~ O mod p. 

That an infinite chain as above can actually occur is shown by the 

group G = 0(2). The groups Zn @ are 0(2), SO(2) and the dihedral groups 

D m. We have ND m = D2m. Hence 

q(Dm,2) = q(Dn,2) if n = 23m. 

For finite G the situation is more tractable. 

Proposition 5.7.8. 

Suppose q(H,p) = q(K,p), H @ @, K ~ ~, INH/HI ~ O mod p, IK/Kol ~ O(p) 

where K 0 i__ss th__~e component of the identity i_nn K, and p # O. Then up t__oo 

conjugation K ~ H and H/K is a finite p-group. 

Proof. 

Choose P such that NK > P > K and P/K a Sylow p-group of NK/K. We claim 

that NP ~ NK. Take a ~ NP and let K a be the a-conjugate of K. Then 

K/(Kn K a) < P/K a, hence K/(K~ K a) is a finite p-group. On the other 

hand K,K a, and P have the same component K ° of the identity, hence 

K/(Kn K a) is a quotient of K/K ° which has order prime to p by assumption. 

Therefore K = K n K a = K a and a ~ NK. But then INP/P I ~ O mod p, because 

P/K was a Sylow p-group of NK/K. Now 5.7.1 and 5.7.2 imply (P) = (H) 

and hence the assertion. 

In particular if G is finite and INH/H I~ O mod p then there exists 

a unique smallest normal subgroup Hp of H such that H/Hp is a p-group 

and we have (with these notations) 
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Proposition 5.7.9. 

q(H,p) = q(K,p) if and only if (Hp) ~ (K) ~ (H). 

We shall see later that the cokernel of 5.7.7 is a torsion group of 

bounded exponent. We now make some remarks on the topology of Spec A(G), 

the prime ideal spectrum of A(G) with the Zariski topology. 

Proposition 5.7.10. 

The map 

q : ~(G) ~ Spec Z ----9 Spec A(G) 

(H), (p) } ~ q(H,p) 

i__{s continuous, closed and surjective. 

Proof. 

An element x ~ C(~(G),Z) =: C, being a locally constant function, is 

an integral linear combination of idempotent functions. Therefore this 

ring is integral over any subring. By an elementary result of commuta- 

tive algebra (Atiyah-Mac Donald [~12 , p. 67, Exercise I) the 

mapping 

Spec ~ : Spec C ) Spec A(G) 

is closed (and surjective by 5.7.2). Hence the Proposition follows 

from the next Lemma. 

Lemma 5.7.11. 

Let X be a compact, totally disconnected space. Then 

(x,(p)) ~ ) {f If(x) ~ (p) 
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defines a homeomorphism 

F : X x Spex Z Spec C(X,Z). 

Proof. 

We ask the reader to recall the topology on Spec (Bourbaki [53] , Ch. 

II). Certainly { f I f(x) & (p)~ is a prime ideal in C(X,Z) for any x 

and (p), so that F is defined. To define an inverse, let k : Z--# C(X,Z) 

take n to the constant function k : x I ) n. This induces a continuous 
n 

map k ~ : Spec C(X,Z) ) Spec Z. Given b 6 Spec C(X,Z), let p be the 

element generating k ~ b. Then we claim that P = ~ f@ b f-1 (p) consists 

of a single element of X. For if p ~ 0 and P is empty, then for each 

x @ X there is a function gx 6 b with gx(X) ~ (p). Since kp ~ b, for 

f~l each x 6 X there is an fx ~ b with fx(X) = I, i.e. the sets (I) 

form a closed-open cover of X. Choose a finite subcover 

U. = f-1 (I), I ~ i ~< n. 
1 x. 

l 

Then one shows by induction on i that the characteristic function 

K(V i) of V i = U i u ... u U i is in b and in particular k I & b, a 

contradiction. For p = O, the same type of argument shows that k m with 

m = l.c.m. (gx (xi)) is in b, contradic~ng k ~ b = (o). But if x,y~P, 
1 

choose feb with f(x) @ (p), and choose a closed-open U with x & U, 

y~ U. Then setting 

fl = f K(U) +(I-K(U)) 

f2 = f(1-k(u)) + K(U) 

we have flf2 = f 6 b. Since f2(x) = I, f2 ~ b, hence fl 6 b, but 

f1(y) = I, hence y ~ P. Now we have a map d : Spec C(X,Z) .__)X taking 

b to the unique element P, and the maps F and d x k are clearly 
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inverse. 

k W For the continuity of d x we need only show d continuous. But for 

a closed -open V c X, d -I (V) = { b I K(V) ~ b I , which is open, while 

such V form a base of the topology of X. 

It remains to be seen that F itself is continuous. But if 

U = { b I f ~ b} is a basic open set for some f ~ C(X,Z), and q ~ U, 

then writing q as F(x, (p)) we have f(x) = m ~ (p), and V = f-1 (m) is 

closed-open in X containing x. Thus q~ F(V ~ [(p) I m ~ (p)I ) ~ U. 

5.8. Relations between Euler-Characteristics. 

We have described the Burnside ring of finite G-sets using congruences 

among fixed point sets (see 1.3). We generalize this description to 

compact Lie groups. The geometric interpretation of the Burnside ring 

then shows that we obtain a complete set of congruences that hold 

among the Euler characteristics of fixed point sets. We have already 

used the classical relations: 

(5.8.1) ~(X) ~ ~(X P) mod p, P a p-group 

(5.8.2) ~(X) = ~ (X T) , T a torus. 

Using 5.8.2 we have shown in 5.7 that is suffices to consider sub- 

groups H with finite index in their normalizer. Therefore we pose 

the problem: Describe the image of 

%0 : A(G) + c(#(G),z) =: c 

The next Proposition shows that this can be done by using congruences. 
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Proposition 5.8.3. 

C is a free abelian group with basis x H = J NH/HI -I ~) (G/H) , (H) @ O(G) . 

Proof. 

A priori the x H are only contained in C (~) Q. But since NH/H acts free- 

ly on every fixed point set G/H K, K) ~ ~(G), we see that the numbers 

(G/H K) are divisible by JNH/HJ, and therefore x H @ C. The elements 

x H are linearly independent over Z because the G/H are. We have to 

show that each x E C is an integral linear combination of the x H. Since 

x is continuous it attains only a finite number of values. Let (HI),.., 

(H k) be the maximal elements of ~(G) such that x(H i) # O. Consider 

x - ~ I ~ iS k x(Hi)XH =: y ~ C. If y(K) ~ O then (K) is strictly 
1 

smaller than one of the (Hi). Induction, using the descending chain 

condition for subgroups, gives the result. 

Now let X be a compact G-ENR. For (H) ~ ~(G) we consider the NH/H- 

space X H. Since NH/H is a finite group we obtain as in I .3 

n6NH/H ~(~NH/H (XH) (n) ~_ 0 mod JNH/H 

and this congruence can be rewritten in the form, using 5.3., 

(5.8.4) ~(K) n(H,K) ~ (X K) ~ 0 mod JNH/H J , 

where the sum is taken over conjugacy classes (K) of K < G such that 

K P H and K/H is cyclic; the n(H,K) are integers such that n(H,H) = I. 

Proposition 5.8.5. 

The congruences 5.8.4 are a complete set of congruences for the image 

of ~ : A(G) -----) C, i.e. z ~ C is contained in ~ A(G) if and onl Z if 

for all (H) & ~(S) 
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~(K) n(H,K) zCH) _= O mod INH/H[, 

with the summation convention as for 5.8.4. 

Proof. 

Write z according to 5.8.3 as integral linear combination z = Z n K x K 

and suppose that z satisfies the congruences. If we can show that n K 

is divisible by INK/K I then z ~ ~ A(G). Choose (H) maximal with 

n(H ) ~ O. Consider the congruence belonging to H. The only term which 

is non-zero is n(H,H) z(H) = n H which has to be zero mod ~NH/H I. There- 

fore n H x H G ~ A(G). Apply the same argument to z - n H x H etc. 

Induction on the "length" of z in terms of the x K gives that z ~ ~A(G). 

Proposition 5.8.5 tells you which congruences hold among the Euler- 

Characteristics of fixed point sets X H if X is a compact G-ENR. One 

would like to know the most general class of spaces for which such 

congruences hold. We must ensure that the results of 5.3 are applicable: 

The equivariant Euler-Characteristics ~CNH/H(XH) should be defined 

and the decomposition formula 5.3 should hold. 

Remark 5.8.6. 

A different proof for 5.8.5 in the more general context of certain 

modules over A(G) was given in tom Dieck - Petrie ~¢93 

Remark 5.8.7. 

As in 1.2.4 one shows that ~ : A(G) ----~ C can be recovered from the 

ring structure of A(G) : namely ~ is the inclusion of A(G) into the 

integral closure in its total quotient ring. 
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5.9. Finiteness theorems. 

We collect some finiteness theorems for compact Lie groups. 

Proposition 5.9.1. 

Let M be a compact differentiable G-manifold. Then ~{ has only a finite 

number of orbit-types. 

Proof. 

Induct over dim M. An equivariant tubular neighbourhood U of an orbit 

X cM is a G-vector bundle hence has only isotropy groups appearing on 

X or on the unit sphere of a fibre. By induction U has finite orbit 

type. (See Palais ~2~ 3 , 1.7.25 for more details.) 

Proposition 5.9.2. 

Let G be a compact Lie group. There are only a finite number of conju- 

gacy classes of subgroups which are normalizers of connected subgroups. 

Proof. 

(Bredon [Z~] , VII Lemma 3.2) Let L be the Lie algebra of G, E its 

exterior algebra, and P(E) the projective space of E. If h is a linear 

subspace of L with basis hl,...,h k then h I ̂  ... ^h k determines a point 

ph of P(E which is independent of the choice of the basis. The adjoint 

action of G on L induces an action of G on P(E). A subgroup N of G 

leaves h invariant if and only if ph is fixed under N. If H is a sub- 

group with Lie algebra h then: 

-I 
gHg = H <=> ad(g)h = h <=7 g(ph) = ph . 

Thus NH = Gph. Now apply 5.9.1. 
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Proposition 5.9.3. 

A compact Lie group G contains only a finite number of conjugacy classes 

(K) where K is the centralizer of a closed subgroup. 

Proof. 

Let G act on M = G via conjugation. If H < G then ~{H is the centralizer 

ZH. Apply 5.9.1. 

We now come to a classical theorem of Jordan. Let ~(G) be the set 

of finite subgroups of G. 

Theorem 5.9.4. 

There exists an inte@er j, depending only on the dimension and the 

number of components of G, with the following properties: For each 

H e ~(G) there exists an abelian normal subgroup A H of H such that 

IH/AHI < j. Moreover the A H can be chosen such that H< K implies A H <A~. 

Proof. 

(Boothby and Wang [2~] . Wolf ~3] .) Given integers k and d there 

are only a finite number of groups G with IG/Go! = k and dim G = d, up 

to isomorphism (see 5.9.5). These groups can therefore be embedded into 

a fixed O(n) . Hence it suffices to prove the theorem for G = O(n) . A 

simply proof may be found for instance in Wolf ~&9] , p. 1OO - 103. 

Theorem 5.9.5. 

There exist only a finite number of non-isomorphic compact Lie groups 

of a given dimension and number of components. 

Proof. 

This depends on various classical results. We only describe the ingre- 

dients. 
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We begin with connected groups G. Then G is of the form 

G = (T x H)Io 

where T is a torus, H is compact semi-simple, D is a finite central 

subgroup of T x H such that Dn T and D n H are trivial (Hochschild [~] 

XIII Theorem 1.3). Therefore the projection of D into H is injective 

with image contained in the center ZH of H. This center ZH is finite 

by a theorem of Weyl (Helgason [~g] , II. 6.9.). Hence given T and H 

there only a finite number of G's. By the classification theorem for 

semi-simple groups there are only a finite number of H's (Bourbaki 

[~] ). This establishes the theorem for connected groups. 

For the general case one has to study finite extensions 

I -----~ G O - > G ----3 E ----) I 

where G is connected and E is finite. By the general theory of group 
o 

extensions and the finiteness of the cohomology of finite groups 

(Mac Lane ~112] , IV) one sees that the following has to be proved: 

There are only a finite number of conjugacy classes of homomorphisms 

E > Aut(Go)/In(G o) into the group of automorphisms modulo inner 

automorphisms. In case G is a torus the required finiteness follows 
o 

from the Jordan-Zassenhaus theorem (Curtis-Reiner [~8] , §79) and the 

general case is easily reduced to this case. 

Theorem 5.9.6. 

Let G be a compact connected Lie group. Then there exist only finitely 

many conjugacy classes of connected subgroups of maximal rank. 
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Proof. 

Borel - de Siebenthal [29] 

We now consider solvable groups. A compact Lie group is called 

solvable if it is an extension of a torus by a finite solvable group. 

The derived ~roup G (I) of G is the closure of the subgroup generated 

by commutators. We put inductively G (n) = (G(n-1)) (I) . A group H is 

(I) 
called perfect if H = H . If I----) A --9 B ---> C ---->I is an exact se- 

quence of compact Lie groups, then B is solvable if and only if A and 

C' are solvable. A compact Lie group G is solvable if and only if there 

exists an integer n such that G (n) = {I~ . We list the following 

elementary facts. 

Proposition 5.9.7. 

a) Any subgroup H of G has a unique minimal normal subgroup H a _ _  

that H/H a is solvable. 

b) For each H there exists an integer n such that H (n) = H a . 

c) H a is a perfect characteristic subgroup of H. 

d) H = H a if and onl Z if H i_~s perfect. 

e) (H) = (K) ~ (H a ) = (Ka) . 

f) K ~ H, H/K solvable ~ K = H . a a 

such 

Proof. 

a): If K ~ H, L 4 H and H/K, H/L are solvable then K, L 4 H and H/Kn L 

is solvable. By the descending chain condition for subgroups there is a 

minimal group as stated, b) , c) and d) : Since H/H (I) is abelian, by in- 

duction H/H (k) is solvable hence H (k) > H a (k)/H a , for all k, and H is 

solvable. If H (k) # H then H (k) has a non-trivial abelian quotient, a 

hence H (k) # H (k+1) . By the descending chain condition there is an n 

such that H (n) = H (n+1) and for this n necessarily H (n) = H and H (n) 
a 

is perfect. The H (n) are characteristic subgroups. 
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e) and f) are obvious. 

Theorem 5.9.8. 

Let G be a compact Lie group. There exists an integer n such that for 

all H <G we have H (n) = H . a 

Proof. 

Note that H (n) = H a if and only if (H/Ha) (n) is the trivial group. 

Therefore we consider pairs H,K such that H ~ K < G and K/H is solvable. 

We show that there is an integer n such that for all such pairs (K/H) (n) 

is the trivial group. Let us call the smallest integer k such that 

L (k) = I for a solvable group L the length I(L) of L. 

Take a pair K,H as above. Since K/H is solvable we have an exact se- 

quence 

I --3 T ----~ K/H > F -----9 1 

where T is a torus and F is finite solvable. We have 

1(K/H) ,.< I(T) + I(T) = I + I(F) . 

So we need only show that the length of finite solvable subquotients 

is bounded. Let generally K ° denote the component of I of K. Then 

K/H ---9 F induces a surjection p : K/KO--9 F. We show in a moment that 

there exists an integer b(G) such that for any K < G there exists an 

abelian normal subgroup A K of K/K ° such that IK/K o : A K I < b(G) . Let be 

F ° be a pA K. Then F/F ° has order less than b(G) . But I(F) ~ I(F o) + 

I(F/F O) = I + I(F/F o) because F O is abelian. But I(F/F O) is bounded 

because only a finite number of groups occur. 
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The existence of the integer b(G) is proved by induction over dim G 

and I G : Go[. Given G, the bound exists for the finite subgroups of G 

by Theorem 5.9.4. Let K be a subgroup of positive dimension. Consider 

K ° < K < NK < NK o. 

Then K/K ° is a finite subgroup of NKo/K ° =: U, and dim U < dim G. By 

5.9.2. only a finite number of U occur up to isomorphism. This gives 

by induction the required finiteness. 

We put WH = NH/H. 

Theorem 5.9.9. 

There exists an integer b such that for each closed subgroup H of G 

the index IWH : (WH)ol is less than b. 

Proof. 

The proof proceeds in three steps: We first reduce to the case that WH 

is finite; then we reduce to the case that H is finite; and finally we 

show that for finite H with finite WH the order of WH is uniformly 

bounded. 

The group Aut H/In H of automorphism modulo inner automorphisms is 

discrete. Conjugation induces an injective homomorphism 

NH/ZH • H .... ) Aut H/In H 

where ZH is the centralizer of H. Hence NH/ZH.H being compact and dis- 

crete is finite. Hence 



127 

Lemma 5.9.10. 

WH is finite if and only if ZH/ZHm H is finite. 

Lemma 5.9.11. 

For any H < G the group ZH.H has finite index in its normalizer. 

This follows from the previous Lemma and the relations Z(ZH'H) < ZH < ZH.H. 

If n E G normalizes H then also ZH and hence ZH.H. We therefore have 

NH/ZH-H < N(ZH.H)/ZH.H . 

Using Lemma 5.9.11 and the existence of an upper bound for the set 

F(G) := {IWH| I H < G, WH finite ] 

we obtain 

Lemma 5.9.12. 

There exists an integer c such that for all H <G we have INH/ZH'HI< c. 

Now we obtain the first reduction of our problem. From the exact 

sequence 

I----) ZH/ZH n H -----> WH ----~ NH/ZH.H ----9 I 

we see that WH/(WH) ° ---@ NH/ZH.H has the kernel which is a quotient of 

ZH/(ZH) . Now Proposition 5.9.3 and Lemma 5.9.12 show that 
o 

is bounded. 

{IwHI(WM)oi i ~ < G ] 
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We show by induction over IG/Gol and dim G that F(G) has an upper 

bound a = a(G/G o, dim G) . For finite G we can take a = ~G~. Suppose 

that an upper bound a(K/Ko, dim K) is given for all K with dim K< dim G. 

Let T(G) = {H < G I WH finite ] . Suppose HG T(G) is not finite. We con- 

sider the projection 

p : NH o ~ NHo/H ° =: U . 

Let V be the normalizer of H/H ° in U. Then WH = V/(H/H o) and therefore 

H/H o E T(U) . Since dim U < dim G we obtain by induction hypothesis 

~WH~ $ a(U/Uo, dim U) . We show that the possible values for IU/Uol are 

finite: This follows from 5.9.2. Hence for a given G the possible 

iU/Uo~ are bounded, say JU/UoJ ~ m(G) . We have 

IU/U O ! ~< IG/GoI m(G o) 

By the classification theory of compact connected Lie groups there are 

only a finite number in each dimension. Hence there exists a bound for 

iU/Uoi depending only on ~G/Gol and dim G. This proves the induction 

step as far as the non-finite H in T(G) are concerned. 

For the remaining:case we use 5~9.4. and 5.Q.6. 

If H ET(G) is finite then also K = NH is finite and by Lemma 5.9.11 

K6 T(G). We choose j = j((G/Gol , dim G) and AH, A K according to 5.9.4. 

We have 

JK/HJ -< JK/A K J.JAK/H,, AKJ ,< j JAK/H nAK]. 

Hence it suffices to find a bound for the IAK/Hn AKi. Consider the 

exact sequence I .... ~ A H .... ) H --3 S --~ I. The conjugation c(a) with 
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a(: A K is trivial on A H, because A K > AH, and hence c(a) induces an 

automorphism of S. Since ISI ~ j this automorphism has order at most 

J = j!, i. e. c(a r) is the identity on S and A H for a suitable r ~ J. 

The group of such automorphisms modulo the subgroups of inner auto- 

morphisms by elements of A H is isomorphic to HI(S;AH ) , with S acting 

on A H by conjugation. Since this group is annihilated by ISJ we see 

that c(a s) is an inner automorphism by an element of A H for a suitable 

s :6 JIS~ jJ. In other words: a s h -I E ZH. Hence it is sufficient to 

find a bound for the order of 

A K~ ZH/H ~A K~ ZH 

Let U I = A Kn ZH. By Borel-Serre [29] , Th~or~me I, U I is contained 

in the normalizer NT of a maximal torus of G. Put U = UI~ T. Then 

IUI/Ui$ iG/GollWGol where wG ° denotes the Weyl group of G O . We estimate 

the order of U. Since U is abelian we have U < ZU. Moreover H < ZU by 

definition of ZH. Since U is contained in the center C = CZU of ZU. The 

inclusion H < ZU implies C< NH. Hence C is finite. 

We proceed to show that for the order of a finite center C(G) of G 

there exists a bound depending only on IG/Gol and dim G. We let G/G o 

act by conjugation on C(G O) Then C(G)n G O is the fixed point set of 

this action. We have C(G o) = A x TI, where A is a finite abelian group 

and T I is a torus. The group A is the center of a semisimple group and 

therefore IAI is bounded by a constant c depending only on dim G. The 

exact cohomology sequence associated to the universal covering 

0-----) W" I TI -----> V ------) TI ------> 0 

shows, that the fixed point set of the action of G/G o on T I = C(Go) ° 

is isomorphic to HI(G/Go , ~ITI ) , hence its order is bounded by a 
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constant d depending only on ~G/Gol and the rank of T I . Hence 

IC(G)f .'4 IG/Gol cd . 

Finally we show that for the possible groups ZU the order ~ZU/(ZU)ol 

is bounded. U is contained in a maximal torus of G. Therefore ZU is a 

subgroup of maximal rank and (ZU) ° a connected subgroup of maximal rank. 

By Theorem 5.9.6 there exist only finitely many conjugacy classes of 

connected subgroups of maximal rank. We have 

izu/(ZU)ol ~ IG/Col I No(ZU)o/(Zm) o I • 

There are only finitely many possibilities for normalizers No(ZU) ° in 

G O of (ZU) o. 

This finishes the proof of Theorem 5.9.9. 

The last Theorem together with Proposition 5.8.3 gives the following 

result. 

Proposition 5.9.13. 

Let n be the least common multiple of the numbers INH/H i where (H) 6 ~(G). 

Then the cokernel of A(G) ---~C(~(G),Z) i__ss annihilated by n. 
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5.10. Finite extensions of the torus. 

We have seen earlier that the appearance of infinitely many elements in 

~(G) is connected with subgroups of G which are not semi-simple. The 

typical situation is given, when G itself is an extension of a torus T 

by a finite group F 

P 
(5.10.1) a --)T ) G ----9 F > I. 

In particular if we are given a homomorphism h = F--->Aut(T) = GL(n,Z), 

n = dim T, we can form the semi-direct product of T with F and h as 

twisting, call this G h. Note that h is an integral representation of F. 

It would be interesting to know what the Burnside ring A(G h) can say 

about the integral representation (or vice versa). We are going to make 

a few elementary remarks concerning the Burnside ring A(G) for groups G 

as in 5.10.1. 

Given G as in 5.10.1 let h : F---9 Aut (T) be the homomorphism in- 

duced by conjugation. We call a pair (F',T') with F' < F, T'< T and T' 

invariant under F' admissible, and call H< G an (F',T')-subgroup if 

p(H) = F' and HnT = T' 

Let ~ ~ H2(F,T) be the class given by 5.10.1. We have maps 

H 2 H 2 , ) k~ : (F' ,T) ---~ (F' ,T/T 

H 2 ___ H 2 i ~ : (F,T) ~ (F' ,T) 

Elementary diagram chasing then tells us 

Proposition 5.10.2. 

A__nn (F',T')-subgroup exists in G if and only if .~- ~ Ker (k~ i ~) . 
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Now choose any section s : F > G to p and parametrize G as F x T 

-I 
via g F----~ (pg,spg "g) . The multiplication in G takes the form 

(5.10.3) (f,t) (f',t') : (ff',,(t) f' + t' + ~(f,f')) 

g-1 -I 
where (t)f = tg for g ~ p (f) and 

-I 
/~(f,f') = s(ff') s(f)s(f') . 

We always assume s(1) = I from now on. 

Proposition 5.10.3. 

If H is an (F',T')-subgroup of G, and s is a section with s(F') < H, then 

I-I correspondence between the (F',T')-subgroups of G and the crossed 

homomorphisms ~ : F' --@ T/T' is established by associating t__oo H' the 

crossed homomorphism 

~(f') = k(s(f,)-lh(f,)) 

for h(f') any element of H',~ p-1 (f,) . 

We leave the proof as an exerclse. We denote the group described in 

5.10.3 by (F',T', ~). If G is a semi-direct product then ~ = O and 

(F',T')-subgroups always exist; in this case it is advisable to choose 

s as a homomorphism. 

We now describe the effect of conjugation. For conjugation by ele- 

ments of T, note that in our parametrization 

-I 
(1,t) (f',t') (1,t) = (f',t' + (t)f' -t) 

Thus denoting by d t : F'----) T the principal crossed homomorphism 
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dt(f') = (t)f'-t, the result of conjugating (F',T', ~ ) by (1,t) is 

(F',T', ~') with ~' (f') = ~ (f') + k(dt(f')) . 

Proposition 5.10.4. 

Given a choice of H and s as in 5.10.3. There is a I-I correspondence 

between classes of (F',T')-sub@roups under conjugation by elements of 

T and the elements of HI(F',T/T') . 

Proposition 5.10.5. 

I_~f H <G is an (F',T')-subgroup then 

NHn T/H ~T = Fix(F',T/T') 

Proofs are again left as exercises. 

Proposition 5.10.6. 

I_~f H is an (F',T')-subgroup then the followin@ are equivalent: 

i) H E ~ (G) . 

ii) Fix(F',T/T') is finite 

iii) T' contains the zero-component o_~f Fix(F',T) . 

Proof. 

The equivalence i) ~> ii) follows immediately from 5.10.5. The equi- 

valence i) <=> iii) is elementary Lie group theory and will be left 

to the reader. 

From 5.10.2. and 5.10.6 one obtains 

Proposition 5.10.7. 

~(G) is infinite if and only if the action of F o__nn T is non-trivial. 
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This can be used to give an analogous result for an arbitrary com- 

pact Lie group. 

Proposition 5.10.8. 

Let G be a compact Lie group. Then ~(G) is finite if and onl[ if the 

action of the Weyl group o__nn the maximal torus is trivial. 

Proof. 

If the action is trivial then G o can have no semi-simple component. 

Hence G is of type 5.10.1 and 5.10.6 says that ~(G) is finite. 

Now assume that in 

O --9 T ---9 NT ---9 WT ---9 1 , 

T a maximal torus, the action of the Weyl group WT on T is non-trivial. 

By 5.10.7 ~(NT) is infinite. We show that an infinite number of ele- 

ments of ~(NT) are contained in ~(G). We know that NT = lim H i , H i # NT. 

By continuity our assertion follows with the help of the next Lemma. 

Lemma 5.10.9. 

Let H< K < G. Then (H) 6 ~(G) if and only if (H) E ~(K) and G/K H is finite. 

Proof. 

If (H) E~(G) then, of course, (H) ~ ~(K) and G/K H ~ finite because it 

consists of a finite number of NH/H-orbits. For the other direction, 

note that H < NKH < NGH yields a fibre bundle NKH/H -- ~ NGH/H ---)NGH/NKH- 

But the inclusion NGH ) G induces an injective man 

NGH/NKH = NGH/NGH,~ K ~--~ G/K H 

Thus if (H) 6 ~(K) and G/K H is finite, both base and fibre are finite. 
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We now report briefly about cyclic extensions of a torus (see Gordon 

Lg~J ). 

Proposition 5.10.10. 

If G is an extension of T by F and F'< F is cyclic, then any two 

subgroups of G are conjugate under an element of T. 

(F',T') 

Proof. 

If F' is cyclic and Fix(F',T/T') 

use 5.10.4. 

is finite, then H I (F',T/T') = O. Now 

If f is cyclic of order n with generator f and M is any F-module then 

H2(F,M) ~ Fix(F,M)/N~M 

n-1 , , Tr H2 
where N~-M = ~_ ~m) f i. Since for an r-torus ~ = we have '~F,Trj 

i=o 

H3(F,Z r) this group is finite. Thus NmT r contains the zero-component of 

Fix(F,T r) . On the other hand, if ~ : I ---9 Tr is any path from O to t, 
n-1 n-1 

then ~ (~)fi is a path in N~T r from O to ~ (t) fi, so that N~T r is 
i=o i=o 

connected. Hence for any torus T r, NgeT r is precisely Fix(F,T r) 
o" 

The isomorphism H2(F,T) m Fix(F,T)/N~T means that the extension G is 

characterized by a component of Fix(F,T). Now note that it is no essen- 

tial restriction to assume N T = O. For if L is any compact Lie group 

and (ZL) ° the zero-component of its center, then L ---> L/(ZL) o induces 

an isomorphism of rings 

A(L/(ZL) o) =~ A(L) 

Now choose any element s(f) ~ p-1(f) and construct a section s by 
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putting s(f i) = s(fi) , O & i < n. Then since s(f)-Is(f)ns(f) = s(f) n, 

= s(f) n ~ Fix(F,T), and ~ is the image of [G] 6 H2(F,T) in 

Fix(F,T) = Fix(F,T)/N~T. If now (F',T') is an admissible pair then 

there exists an (F',T') subgroup H with NH/H finite if and only if both 

the zero-component and the ~-component of Fix(F',T') are in T' 

Suppose ~ £ Fix(F,T), latter being discrete, and let T' be the 

(finite) subgroup generated by ~ . Then T/T' inherits an F-operation. 

With these notations one has 

Theorem 5.10.11. 

If G is the extension of T by F defined b~ ~, and G' is the semi-direct 

product of T/T' and F in the action above, then A(G) ~ A(G') . 

Proof. 

There exists a map t : G ---~ G' making the following diagram commutative 

T .... ,~ G ------~ F 

k t 

T/T' .... 9 G'-------) F 

id 

By the analysis of (F',T')-subgroups of G given above it is seen that t 

induces the required isomorphism. 
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5.11. Idempotent elements. 

In section 1.4 we have described the idempotents of A(G) for finite G. 

We generalize this to compact Lie group, using results of 5.9. and 5.6. 

Let S = S(G) be the space of closed subgroups of G and cS the quo- 

tient space under the conjugation action (see 5.6). Let H (I) be the 

commutator subgroup of H and H the smallest normal subgroup of H such a 

that H/H a is solvable (see 5.9.8). Let P be the space of perfect sub- 

groups in S 

Proposition 5.11.1. 

(I) 
The maps H ~--% H and H ~---)H a are continuous maps S --~ S. The 

space P is closed in S. 

Proof. 

In view of the compactness of S and 5.9.8 we need only show that 

H;---~ H (I) is continuous. Let HI,H2,... be a sequence of subgroups 

converging to H. Without loss of genrality we can assume that the H i 

are conjugate to subgroups of H. ~oreover by 5.6.2 we can find a se- 

-I 
quence gi ~ G converging to I such that K i = giHigi is contained in H. 

We show that lim K! I~" " exists and is equal to H [1)J " Fix ~ > o and choose 

n such that in the Hausdorff metric d(Ki,H) < £ for i ~ n. Let ckK be 

the closed subspace of a group K consisting of elements which are pro- 

a most k commutators. Then d(Ki,H) < ~ implies d(ckKi,ckH) < 4kg duct of 

Choose k such that d(ckH,H (I)) < £ . Then for i ~ n we have 

d(ckKi,H (I)) < (4k+I)E and afortiori d(K~1)'H(1))l < (4k+I) £ 

As a corollary we obtain 
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Proposition 5.11.2. 

__ . = ~ H~ Given a perfect subgroup H of G Then {K I K a H~ and {K I Ka 

are closed subsets of S. 

In 5.7 we obtained the closed quotient map 

q : S x Spec Z ---) SpecA(G) : (H),(p) ~------> q(H,p) 

Let r be the composition 

S x Spec Z _____9 S --> P ----) cP 
pr a c 

where pr is the projection, a the map aH = Ha, and c the map cH = (H) 

into the space cP of conjugacy classes of perfect subgroups. Then r is 

continuous by 5.11.1. 

Proposition 5.11.3. 

The map r factors over q inducin~ a continuous surjective map 

s : Spec A(G) ---# cP. 

Proof. 

Suppose q(H,p~) = q(K,P2). Since p is the residue characteristic of 

q(H,p) we must have Pl = P2" Put p = PI" Let (H ~) be the unique conju- 

gacy class such that q(H,p) = q(H~,p) and NH~/H m is finite (see 5.7.2). 

By 5.7 we can find a countable transfinite sequence H ~ H 1 4 H2...H A ~ H ~ 

such that Hi+I/H i is solvable and Hj is the limit of the preceeding 

subgroups if j is a limit ordinal. It follows from Proposition 5.11.1 

that H a = (H ~)a" 

The space cP being a countable compact metric space is totally dis- 
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connected. Hence we get a unique continuous map e which makes the 

following diagram commutative 

cP 

// 

l< / 

Spec A(G) 

\ -\ 

" \  

9 ~ Spec A(G) 

Here ~ is the projection onto the space of components. 

Theorem 5.11.4. 

The map e is a homomorphism. 

Proof. 

Spec A(G) is a quotient of a quasi compact space hence quasi com- 

pact. The space cP is a Hausdorff space. We therefore need only show 

that e is bijective. We already know that e is surjective. 

Given two components B and C of Spec A(G). Choose elements q(H,p) & B, 

q(K,l) E C. Assume that e(B) = e(C), hence 

(H a ) = sq(H,p) = sq(K,l) = (Ka). 

Since H/H a is solvable we can find a finite chain of subgroups 

H = H 1 ~ H 2 ~ ... ~H k = H a 

such that Hi/Hi+ I is a torus or finite cyclic of prime order. By 5.7.1 

q(Hi,P i) = q(Hi+1,Pi) for a suitable prime. If ~(H,p) denotes the 

closure of the point q(H,p) we have 
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q(H,p)~ q(Hi,o) , q(Hi,o) ~ ~(Hi+1,o) # ¢ , 

and therefore q(Ha,O) E B. Similarly q(Ka,O) & C and therefore B = C. 

We now show how Theorem 5.11.4 leads to a description of idempotent 

elements. 

Let U be an open and closed subset of Spec A(G). Then U is a union 

of components and projects into an open and closed subset of cP called 

s(U). Let e(U) be the idempotent element of A(G) which corresponds to 

U (Bourbaki [3~3 , II. 4.3, Proposition 15). Let S(U) = {H <G i ~ H e=1} 

Proposition 5.11.5. 

H ~ S(U) <=> (H a ) E S(U) . 

Proof. 

Since e(U) is idempotent ~H(e(U)) is O or I. We have to recall how 

to pass from U to e(U). Let Z be the complement of U in Spec A(G) . 

Then 

Z = V(A(G) e(U)) = {q ~_ Spec A(G) i q ~ A(G) e(U)} 

Moreover e(Z) : 1-e(U). Suppose ~He(U) = I, then t{H(e(Z)) = O, so 

~H A(G)e(Z) = (0) , which means q(H,o) D A(G)e(Z) , q(H,o)E V(A(G) e(Z))=U 

and therefore (H a ) E s(U). 

Conversely, if (Ha) E s(U), then q(H,o) E U, 

~@H e(U) = I. 

~PH A{G)e(Z) = (0) , 

The idempotent is indecomposable if and only if U is a component. If 

the perfect subgroup H of G is not a limit of perfect subgroups then 
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{q(K,p) I (K a) = (H) ] := U(H) is a component and H yields an indecom- 

posable idempotent e H := e(U(H)) . 

We are now going to show that the topological considerations above 

are necessary in that usually an infinite number of conjugacy classes 

of perfect subgroups exists. Let I --) T --~ G --9 F ---9 1 be an exact 

sequence where T is a torus and F a finite group. Conjugation in G in- 

duces a homomorphism ~ : F ----) Aut(T) which we also interprete as 

action of F on T (compare section 5.10.) Let F U be the kernel of 

Proposition 5.11.6. 

Let G be a finite extension of a torus as above. Then the number of 

conjugacy classes of perfect subgroups of G is finite if and only if 

F/F U is solvable. If F/F U i__ss solvable then the set of perfect subgroups 

is finite. 

Proof. 

A quotient of a perfect group is perfect. Let F/F u be solvable. Let 

H < G be perfect. Then the image under G -----} F ----> F/F u is perfect hence 

trivial. Therefore H is an extension I --~ Hn T --9 H -~ P --) I with 

P < F perfect and trivial action of P on Hn T and T. Let K be the pre- u 

image of P under p : G ---) F. Then H 4 K since T is contained in the 

center of K. The group K/H = T/Hm T is solvable. Hence H = K a. There a 

perfect group comes via the map K ~--) K from a finite set of subgroups. a 

Now let us assume that F/F u is not solvable. Let P <F/F u be a non- 

trivial perfect subgroup. Let H be the pre-image of P under G ----} F/F u 

and Q < F be its group of components. Let T o be the component of I in 

the fixed point set of the Q action on T. Since Q > F u, Q # F u, we 

have T O # T. The group T o is contained in the center of H and H---~ H/T ° 

induces an injective ring homomorphism A(H/T o) ---~ A(H). If A(H/T o) has 
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an infinite number of idempotents then A(H) has an infinite number of 

idempotents, hence an infinite number of conjugacy classes of perfect 

subgroups. The action of Q on H/T ° has zero-dimensional fixed point 

set. Hence we have reduced the problem to the case T o = {I~ . But then 

a subgroup L of H which projects onto P under H ----) Q -~ P has finite 

index in its normalizer. Let L be such a group and consider its derived 

(1) (I) 
group L . Then L also projects onto P because P is perfect. There- 

fore NL(1)/L (I) is finite and L/L (I) < NL(1)/L (I) . But we have shown 

in 5.9.4 that there exists a number b such that for any L < H with 

finite index in its normalizer INL/LI < b. Together with g.@.2 we see 

that there is an integer n such that L/L a is finite of order less than 

b n. Hence if there exists an infinite set of subgroups of H which pro- 

jects onto P and which contains groups of arbitrary large order then 

the set of conjugacy classes of perfect subgroups is infinite. But in- 

finite sequence of subgroups of the required sort is easily constructed, 

using the techniques of 5.10. 
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5.12. Functorial properties. 

If X is a G-space and H •G then X can be considered as H-space. This 

G 
induces the forgetful functor r H : G-Top ----~ H-Top from the category 

of G-spaces to the category of H-spaces. This functor has a left adjoint, 

called extension from H-spaces to G-spaces. On objects it is defined by 

e~(X) = GXHX 

for an H-space X. The adjointness means that for H-spaces X and G-spaces 

Y we have a natural bijection 

MaPG(GXHX,Y) ~ MaPH(X,r~Y) , 

where MaPG is the set of G-maps. If f : X > Y is an H-map then 

f' : GXHX > Y : (g,x)l > gf(x) is the adjoint G-map. 

Proposition 5.12.1. 

The assignment X ~--) GXHX induces an additive homomorphism 

G 
e H : A(H) ) A(G). 

(X a compact H-ENR. ) 

Proof. 

Given K~ G, then GXHX)K ~ ~ ~ G/H K # ~ => (K) < (H). Assume K< H. 

We have to show that X((GXHX)K) can be computed from Euler-Characteri- 

stics of fixed point sets X L. The set G/H K is finite (if K e~(G)) . The 

fibre of (GXHX)K----)G/HK over gH is homeomorphic to X gKg-IA H. Hence 

9t ((GXHX)K) = ~ ~ (xgKg-1~ H) 
gH ~ G/H K 
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If f : H ----9 K is a continuous homomorphism between compact Lie 

groups then a K-space X can be considered via f as an H-space. This 

induces a ring homomorphism 

A(f) f~ : : A(K)----) A(H) 

and A(-) becomes a contravariant functor from compact Lie groups to 

commutative rings. If f : H c K then f is called restriction, also 

K 
denoted r H . 

G 
We want to investigate the various interrelations between the e H 

r~. We need a slightly more general map then the e~. and This is done 

G G 
best by redefining e H and r H using a more general concept than the 

Burnside ring. 

Let S be a closed differentiable G-manifold and let a(S) be the set 

of differentiable G-maps M--3 S which are proper submersions. On a 

(S) we induce the following equivalence relation : p : M ----) S equi- 

valent to q : N 9 S if and only if for all s ~ S and all H < G s the 

equality 

]((p-1 (s)H) = 96 (q-1 (s)H) 

holds. Disjoint union (addition) and fibre product over S (multipli- 

cation) makes the set of equivalence classes into a commutative ring 

with identity, denotes A IS] If S is a point this is the Burnside 

ring; hence we call A IS] the Burnside ring of G-manifolds over S. We 

are going to describe the functorial properties of this ring. 

Let f : T > S be a differentiable G-map. Let p : M---~ S be a 

submersion as above. Then in the pull-back diagram 
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q 

N 9 M 
F 

i 
i 
i 
i 

T ~ S 
f 

the map q is a proper submersion and defines an element in A[T] . The 

assignment p ~---~q induces a ring homomorphism f ~: A[S] ----~A[T] 

We also have covariant maps. Let f : T ----) S be a submersion. Then 

composition with f induces an additive (but not multiplicative) map 

f~ : A[T] ----) A~] . These maps have the following properties. 

Proposition 5.12.2. 

i) f ~is a homomorphism of rinqs. We have (id) ~ = id and (fg)~ = g~f~. 

ii) For any submersion f : T ---9 S the map f~ is well-defined and 

additive. We have (id)~ = id and (fg)~ = f~g~. 

iii) For a~A[S] and b eA[T] we have 

iv) Let 

afw(b) = f (f~(a)b). 

T' ~ S' 
F 

i 
i 
I 
i 

T ) S 
f 

P 

be a pull-back diagram with f and hence F a submersion. Then 

p f = F P . 

fl ~. v) If fo,fl : T ---~ S are G-homotopic then fo = 
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The proofs are straightforward and left to the reader. The connection 

with material at the beginning of this section if obtained using a 

canonical isomorphism A[G/H] ~ A(H) : p : M---9 G/H ~-:) p I(H/H) . 

Proposition 5.12.2 iv) generalizes the main property of Mackey 

functors in the sense of Dress [80] to compact Lie groups. But in 

the case of non-finite Lie groups there exists a double coset formula 

which is a less formal generalization of the Mackey axiom and is more 

accessible to computation. We are going to describe this formula. 

We consider a pull-back diagram 

S > G/L 

k 

GIK ~ GIP 
h 

The problem is to compute k h . We use a decomposition of S into homo- 

geneous spaces but slightly more refined than the decomposition in the 

Burnside ring. As in Section 5.5 we have the decomposition S = U S(H ) 

into the subspaces of a given orbit type. We let S(H), b be the invers 

image in S(H ) of the connected components of S(H)/G. So the index b 

distinguishes the components. Then we still have a decomposition 

S = [ n(H),b [M(H),b ] 

in A(G) with n(H), b := Xc(S(H),b/G) ~ Z and M(H), b an orbit in S(H), b. 

We let k(H), b : M(H), b ----} G/K and h(H), b G/L be the maps which 

are compositions of the inclusion M(H), b C S with the maps k and 

respectively. Then we claim 
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Theorem 5.12.3. 

W_ee hav____ee th___ee equality o_~fmaps 

Z n k h = (H) ,b (H) ,b(h(H) ,b)~ (k(H) ,b ) 

Proof. 

Given an element x in A[G/K] represented by f : M 9 G/K. Then k h~x 

is represented by hF in the pull-back diagram below (where the squares 

and hence also the rectangle are pull-backs). 

> S } G/L 
F h 

i t 

M - - - - - - - )  G/K . . . .  - )  G/P 
f h 

Since pull-backs are transitive the pull-back of f : M > G/K along 

k(H), b is the fibre of F : M ---~ S over M(H), b, say F(H),b:~(H),b~M(H), b 

and this represents k(H),bX. Hence (h(H),b) m (k(H) , b) x is represented 

by the composition 

h(H) ,bF(H) ,b : M(H) ,b ----} M(H) ,b ----~ G/L. 

So we have to show that the following two elements are equal in A[G/L], 

namely [iF] and ~ n(H ) ,b[h(H),bF(H),b ] . This means by definition of 

A[G/L] that we have to show: For each U < L the 

U-fixed points of the fibres over the coset L/L of G/L have the same 

Euler-characteristic. 

The fibre of ~F is the fibre of hf over k(L/L), considered as 
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L-manifold. Since we are now dealing with G-spaces over G/L the whole 

situation can be reconstructed from the fibres over L/L, which we de- 

note by an index zero, using canonical G-diffeomorphisms like 

G XL~M° = M. We have for \7 < L 

o o 
M(H) ,b = G XLM(H ) ,b' S(V) = G XLS(v ) , S(V ) ,b 

o 
= G XLS(v ) ,b 

using the identification S(v)/G = S°(v)/L. 

Let F : ~o _~ S ° be the restriction of the map F : ~ ---> S. As in 

Section 5.5 we have 

(5.12.4) ~((~o)U) = ~ ~c((F-Is~v) ,b)U) 
V,b 

The map 

F-I o sO o 
(S (V) ,b ) ---> (\7) ,b----) S (v) ,b/L 

is a fibre bundle with the fibre F -I o (M(V), b) such that the []-fixed 

points again yield a fibration with typical fibre F -I c U (M(v), b) . Then 

the ((V),b)-summand in (5.12.4) is by Proposition equal to 

o •c(F-1 o U) (S(v) ,b/L ) (M(v) ,b ) X c 

(F-I o U) ~ (S ,b/G) 
= c (Mcv) ,b ) c (V) 

= • c (F-I (MTV) U ,b ) )n(v) ,b 

and this was to be shown. 
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5.13. Multiplicative induction and symmetric powers. 

Let K be a subgroup of finite index in G. Let HomK(G,X), for a K-space 

X, be the space of K-maps G --~'~ X with G-action induced by right trans- 

lation on G'. The functor X ~--) HomK(G,X) from K-spaces to G-spaces 

is right adjoint to the restriction functor and preserves in particular 

products. Explicitely, we have a natural bijection 

MaPG(Y,HOmK(G,X)) ~ MaPK(Y,X), 

where Y is any G-space. Given f : Y ---9 HomK(G,X) in the set on the left 

we compose with the K-map HOmK(G,X) -----~ X : f ~--~ f(1) to obtain the 

corresponding element in the set on the right side. We have chosen K to 

be of finite index in G in order to avoid some technical problems: In 

our case HomK(G,X) as a topological space is simply the product 

'~y~G/K X of JG/K I copies of X. 

Proposition 5.13.1. 

The assignment X ~--~HOmK(G,X) induces a ma~ A(K) ---) A(G) which, in 

~eneral, is not additive but preserves products (X a compact G-ENR) . 

Proof. 

Given H < G we have to compute ~(HOmK(G,x)H) . Since K has finite 

index in G the space G/H is K-homeomorphic to a finite disjoint union 

i K/K(i) of homogeneous spaces. The equalities 

H 
HomK(G,X) = HomG(G/H , HomK(G,X) ] 

= HomK(G/H,X ) 

= H°mK(/L i K/K(i) ,X) 

= ][i H°mK(K/K(i) ,X) 

= 7[ X K(i) 
i 
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show that the Euler-Characteristics in question can be computed from 

Euler-Characteristics of fixed point sets X L, L <K. 

We call X F--9 HomK(G,X) and the map induced on the Burnside ring 

multiplicative induction. 

Proposition 5.13.2. 

Let L be a finite normal subgroup of G. The assignment X ~ X/L in- 

duces a map A(G)----> A(G/L). (X ~ compact G-ENR.) 

Proof. 

Given H < G/L we have to show that ~(X/L H) is determined by Euler- 

Characteristics of fixed point sets of X. Let P be the inverse image 

of H in G. Let B = p-1 (x/LH) where p : X --9 X/L is the quotient map. 

We consider X and B as P-spaces. An Orbit of X isomorphic to P/U is 

contained in B if and only if P : LU. Hence B is a union of orbit 

bundles. From Proposition [B] = [B' 3 in A(P) where B' c X' has a similar 

meaning as B. Now 

9C(X/L H) : 96(B/L) = ~ LI-I 
g~L 

(Bg). 

Here we have used 5.3.12. Hence ~ (X/L H) can be computed from Euler- 

Characteristics as we wanted. We still have to show that X/L is a 

G/L-ENR. By 5.2.6 if suffices to see that all ~/L H = B/L are ENR. But 

B is an ENR by 5.2.6 and hence B/L an ENR by 5.2.5. 

We now discuss symmetric powers. Let $r be the symmetric group on r 

symbols. If X is a G-space then the diagonal action of G on X r and the 

permutation action of S r commute, so we can view X r as (S r x G)-space. 

X r If M is an Sr-space with trivial G-action then M x is an (S r x G)- 

space. Dividing out the Sr-action yields the G-space (M x xr)/Sr , 
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Proposition 5.13.3. 

The assignment (M,X)| ) (M x xr)/Sr induces a map 

A(S r) x A(G).--------) A(G) . 

(M,X compact G-ENR's.) 

Proof. 

We begin by showing that X ~ > X r induces a map w : A(G) ---~ A(S r x G) . 

The standard embedding Sr_ I c S r gives Sr_ I x G as a subgroup of finite 

index in S r x G. Viewing X as an (Sr_ I x G)-space via the projection 

Sr_ I x G ---} G then the (S r x G)-space X r is obtained from X using the 

multiplicative induction corresponding to Sr_ I x G < S r ~ G. Therefore 

w is well-defined by 5.13.1. Now consider the following composition of 

maps 

A(S r) x A(G) 
pxw 

A(S r x G) x A(S r x G) 

A(S r x G) ) A(G) 
m q 

where w is as above, p is induced by the projection S r x G --3 S r, m is 

ring-multiplication, and q is the quotient map of 5.13.2. We check that 

on representatives the above composition is (M,X) ~--) (M x xr)/Sr . 

Let ~ < S r be a subgroup. Then xr/~ is the ~ -symmetric power, 

a G-space if X is a G-space. Note that (Sr/~ x xr)/Sr = xr/ ~ . Hence 

we have 

Corollary 5.13.4. 

X~--~ xr/~ induces a map A(G) ---- >A(G) . 



152 

We are going to analyse the formal properties of the map 5.13.3. We 

write this map 

(5.13.5) A(S r) x A(G) -___~ A(G) : (x,y) ~--~ x.y . 

We recall some constructions with the symmetric group. Let X,Y be 

Sr-, St-spaces, respectively. We write 

(5.13.6) X'Y = Sr+ t x Sr x S t (X x Y) 

using the standard embedding S r x S t c Sr+ t. 

Let S r ~ G be the wreath-product of G with S r. This is the set S r x G r 

with group-law 

(s;g1' .... gr) (t;h1'''''hr) = (st;glh -I 
s 

'''''gr h -I ) 
(I) s (r) 

If M is a G-space then M r becomes an S S G-space with action 
r 

(s;gl '''''gr ) (m1' .... mr) = (gl m -I ''" "'grm -I ) " 
s (I) s (r) 

We consider S r ~ S t as a subgroup of Srt: If M = S t as St-space then 

S r S S t acts as a group of permutations on Mr; now identify M r in a 

sensible way with {1,2 ..... rt ] (The conjugacy class of S r 5 S t in 

Srt is then uniquely determined.) Let X,Y be Sr-, St-spaces respectively. 

We write 

(X x yr) (5.13.7) X~Y = Srt x (S r ~ St ) . 

Proposition 5.13.8. 

The constructions (X,Y) ~ ~ X.Y and (X,Y) I---~ X mY induce maps 
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A(S r) x A(S t) -----} A(Sr+ t) : (x,y) ~----) x • y 

A(S r) x A(S t) ---3 A(Srt) : (x,y) ~--~ x ~-y 

respectively. The graded additive group 

A = (~ r~o A(Sr) 

becomes a graded ring with multiplication b . Moreover one has 

(a+b) ~c = a~c + bwc 

(aob) ~ c = (aw c) o (bmc) 

(a~b) ~ c = a ~ (b ~ c) 

b~1 = b. 

Here I eB(S o) = Z. 

Proof. The formal algebraic properties of these constructions follow by 

considering representatives once we have shown that there are well de- 

fined induced maps 6 and ~ . 

We factorise the required map ~, as 

A(S r) x A(St) A(S r x S t ) x A(S r x S t ) p: 

.... 9 A(S r x S t ) ) A(Sr+t) 

where pl,P2 are the projections, the second map is the multiplication 

in the ring A(S r x S t ) and the third map is the extension homomorphism 

5.12.1. 
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Similarly we factorise the map ~-as 

A(S r) x A(S t) .~ A(S r ] S t ) x A(S r ~ S t ) 
p[xw 

-> A(S r ] S t ) ) A(Srt) 

[ S t ---) S r and where w is induced by where p is the projection S r 

y ~__~ yr (this well-defined!) ; the second map is again multiplication 

and the third extension. 

We return to the map 5.13.5 which, obviously, is additive in the 

first variable, so that we obtain an action A x A(G) --9 A(G). Moreover 

the constructions of 5.13.8 have the following properties. 

Proposition 5.13.9. 

For a 1,a 2 ~ A and b ,&A(G) 

(a I ~ a2) .b = (a Io b) (a 2 o b) 

(a I ~ a2) "b = a1.(a2.b ) 

The interpretation of these formulas is this: a e A induces an operation 

b ~--~ a-b on A(G) . Addition and multiplication in A corresponds to 

pointwise addition and multiplication of operation. Finally , is com- 

position of operations. Hence A is a ring of operations. The operations 

have some obvious naturality properties which we do not write down. The 

proof of the identities is given by looking at representatives. 
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5.14. An example: The Group SO(3). 

Using Wolf [16~] , 2.6., one can see that SO(3) has the following 

conjugacy classes of subgroups: 

so(3) 

s I --- SO(l) 

S ~ NS 1 ~ O(i) 

I = A 5 

O = S 4 

T : A 4 

Dn, n~, 2 

Z/n, n~, i, 

maximal torus 

normalizer of S 1 

icosahedral group 

octahedral group 

tetrahedral group 

dihedral group of order 2n 

cyclic group. 

One has ND n = D2n, n : 2; ND 2 : S4, NA 4 : S 4, NS 4 : S 4, NA 5 : A 5, 

NO(I) = O(i). The cyclic groups do not have finite index in their 

normalizer. 

The ring A(SO(3)) is the set of functions z ~C(~,Z) such that 

i) z(H) arbitrary for H : SO(3), A 5, S 4, NT. 

ii) z (D n) --_-- z (D2n) rood 2, n ~ 2 

iii) z(A 4) _~ z(S 4) rood 2 

iv) z (S) ~ z(S I) mod 2 

v) z(D 2) + 2z(A 4) + 3z(D 4) ~ O mod 6. 

The continuity of z means limj z (D2J n) : z(S). 

If H is a subgroup of SO(3) we denote for simplicity with the same 

symbol the element [G/HI of A(SO(3)). We give the multiplication table 

of the elements H. We put (k,n) for the greatest common divisor and let 

d(k,n ) = i if (k,n) = k and d(k,n ) : O otherwise. 
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(S) 2 : S + D 2 S S I : S I 

S-D k = D k + 2d(2,k)D 2 SI = D 5 + D 3 + D 2 

S.T = D 2 SO : D 4 + D 3 + D 2 

(Sl) 2 = 2S i SlH : O for H ~ S,S I. 

2 
(D k)  = 2D k + 4 d ( 2 , k ) D  2 

DkD n : 2 D ( k , n  ) + 4 d ( 2  ' ( k , n ) ) D 2  

DkO = 2 d ( 4 , k ) D  4 + 2 d ( 3 , k ) D  3 + 2 d ( 2 , k  ) 

DkT = 2 d ( 2 , k ) D  2 

2 
I = I + T + D 5 + D 3 

IT = 2T 

(2-d (4,k))D2 

IO = T + 2D 3 + D 2 

02 = O + D 4 + D 3 + D 2 

OT = T + D 2 

T 2 = 2T 

DkI : 2d(5,k) D 5 + 2d(3,k)D 3 + 2d(2,k)D 2 

The ring A(SO(3)) contains the following idempotent elements 

x = I - T - D 5 - D 3 

y = S + O - D 4 - D 3 

x+y, l-x, l-y, l-x-y. 

5.15. Comments. 

The general theory of the Burnside ring of a compact Lie group is 

based on the authors papers [~] , [~5] , [~ ~] . As far as the 

equivariant Euler characteristic is concerned there has been a parallel 

development in the cohomology of groups, see K. Brown [39] , [~0] , 

[~1] . We have been guided in 5.3 by Brown [3~] . For 5.3.3 see 

Floyd ( [~3] , III ~3). For 5.3.4 see [5~]. 
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It would be desirable to give a unified treatment of the Burnside ring 

and results in Brown [Z~] . Also Bass [IG] is relevant. The universal 

ring for Euler-Characteristic in 5.4 has been introduced by Oliver 

~4g] and has also been used by Becker-Gottlieb 5.5.10 and 5.14 

is due to Schw~nzl [9%0] , 5.7 is an extension of work of Dress [~] 

For general compact groups see Gordon [~@] It would be interesting 

to find a more general class of G-spaces which satisfy the relations 

between Euler-Characteristics 5.8.5; suitable finiteness conditions for 

cohomology should suffice. For 5.9.8 see Zassenhaus [I~I] and Raghunatan 

~50] . The results of 5.10 are based on the thesis of Gordon [~@] ; 

see also Gordon [~] . The reader can see that a purely algebraic de- 

finition of the Burnside ring for finite torus extensions can be given. 

This algebraic definition is then also applicable to other arithmetic 

situations, e.g. representations over p-adic integers. If G acts on a 

disk D such that all D H are either empty or contractible then D repre- 

sents an idempotent in A(G) . Oliver ~18] has shown that essentially 

all idempotents of A(G) arise in this way. For 5.13 I could make us of 

an unpublished manuscript of Rymer [~5~] . For operations in the 

Burnside ring see also Siebeneicher [9~] . 

5.16. Exercises. 

i. Compute the ring U(G) of 5.4 for G : SO(3). 

2. Given a natural number n~ 2. Can U(G) contain elements x such that 

n-i = O? x ~ O, but x n 

3. Show that A(SO(3)) has three idecomposable idempotent elements. 

4. Compute the units of A(SO(3) and compare with the units obtainable 

from 1.5.3. 

5. If G is cyclic then permutation representations given an isomorphism 

A(G) ~ R(G;Q). 
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6. Use 5.13 to define a A -ring structure on A(G) by symmetric powers 

and show that the isomorphism of exercise 5 is compatible with A- 

operations (but don't take exterior powers!). 

7. Let S be any subring of the rationals. Determine the idempotent 

elements of A(G) ~ Z s, in particular for S : Z(p) . 

8. Let S G be the homotopy category of pointed G-CW-complexes. Consider 

the Grothendieck group K(S G) of this category: The universal abelian 

group S G ~K(S G) : X I )IX] , where each cofibration sequence 

A ) X } X/A gives rise to a relation IX] : [A] + [X/£ Show 

that smashed-product (X,Y)~-- 9 X ^ Y makes K(S G) into a commutative 

ring. Show that K(S G) ~ U(G) . 


