2. The J-homomorphism and quadratic forms.

Having defined the Burnside ring of finite G-sets in the previous chapter we go on to study finite G-sets which arise from G-modules over finite fields and G-invariant quadratic forms on such modules. This will later be used to study permutation representations. In this chapter G will always denote a finite group.

2.1. The J-homomorphism.

We consider torsion G-modules M, i. e. finite abelian groups M together with a left G-action by group automorphisms. Forgetting the group structure on M yields a finite G-set and therefore an element J(M) in the Burnside ring A(G). Since $\varphi_H J(M) = |M^H|$ we have

$$(2.1.1) J(M \oplus N) = J(M) J(N)$$

for two torsion G-modules M and N. But J(M) is in general not a unit in A(G) so that J does not immediately extend to a homomorphism from a suitable Grothendieck group. On the category of torsion modules with torsion prime to |G| taking H-fixed points is an exact functor so that J(M) = J(N) J(P) for an exact sequence $O \longrightarrow P \longrightarrow M \longrightarrow N \longrightarrow O$ of such modules.

Proposition 2.1.2.

Let M be a torsion G-module with q = |M| prime to IG1. Then J(M) ϵ A(G) $[q^{-1}]$ (i.e. q made invertible) is a unit.

Proof.

Using φ of 1.2.2 we see that $\varphi J(M)$ is certainly a unit in $\Re Z[q^{-1}]$. We have to show: the inverse is contained in A(G)[q^{-1}]. Note that by 1.2.3 the cokernel of $\varphi[q^{-1}]$ is a finite group because q is prime to |G|. The next algebraic lemma implies the result.

Lemma 2.1.3.

Let R be a subring of the commutative ring S. Assume that R < S is an integral extension (e.g. S/R is a finite group). Then $R^* = R \land S^*$.

Proof.

Clearly $R^* \leq S^*$. Given $x \in R \land S^*$. Suppose $y \in S$ satisfies xy = 1. Since S > R is integral we have $y^n + a_1 y^{n-1} + \ldots + a_n = 0$ for suitable $a_i \in R$. Multiplying this equation by x^{n-1} we obtain $y + a_1 + \ldots + a_n x^{n-1} = 0$, hence $y \in R$.

Let $T_q(G)$ be the Grothendieck group with respect to exact sequences of q-torsion G-modules. Let R(G;F) be the Grothendieck group of finitely generated FG-modules, F a field. Then 2.1.2 implies

Proposition 2.1.4.

Let q be prime to [G]. The assignment $M \mapsto J(M)$ induces a homomorphism J : $T_q(G) \longrightarrow A(G)[q^{-1}]^*$. If F is a finite field of characteristic q then we obtain a homomorphism J : $R(G;F) \longrightarrow A(G)[q^{-1}]^*$.

We call this homomorphism the J-homomorphism. The relation to the Jhomomorphism of algebraic topology will become clear later.

2.2. Quadratic forms on torsion groups. Gauß sums.

Let M be a finite abelian group.

Definition 2.2.1.

A quadratic form on M is a map $q : M \longrightarrow Q/Z$ such that

i) q is quadratic, i. e.
$$q(am) = a^2 q(m)$$
 for $a \in Z$ and $m \in M$.

ii) the map b : M x M
$$\longrightarrow Q/Z$$
,
b(m,n) = q(m+n) - q(m) - q(n) is biadditive.

If moreover M is a ZG-module we call q G-<u>invariant</u> if for $g \in G$ and m \in M the relation q(gm) = q(m) holds. The form is called <u>non-degenerate</u> if b^{*}: M \longrightarrow Hom(M,Q/Z) : m \longmapsto b(m,-) is an isomorphism.

We shall only consider non-degenerate forms. Let $e : Q/Z \longrightarrow \mathfrak{C}^*$ be the standard character $e(x \mod Z) = \exp(2 \pi i x)$.

Definition 2.2.2.

Let (M,q) be a quadratic torsion form. The <u>associated</u> (<u>quadratic</u>) <u>Gauß</u> sum is

$$G(M,q) = \sum_{m \in M} eq(m).$$

(We use the letter G despite of its use for groups.)

We now list some formal properties of Gauß sums. If (M_1,q_1) and (M_2,q_2) are quadratic torsion forms we have the <u>orthogonal</u> <u>sum</u>

$$(M_1,q_1) \perp (M_2,q_2) =: (M,q)$$

which is $(M_1 \oplus M_2, q)$ with

$$q(m_1, m_2) = q_1(m_1) + q_2(m_2)$$
.

Obviously one has

(2.2.3)
$$G(M,q) = G(M_1,q_1) G(M_2,q_2).$$

Definition 2.2.4.

A quadratic torsion form (M,q) is called <u>split</u> or <u>metabolic</u> if there exists a subgroup N \subset M such that for all n \in N q(n) = 0 and moreover N^{\perp} := {n {b(n,N) = 0} equals N. We then call N a <u>metabolizer</u> of (M,q).

Proposition 2.2.5.

If (M,q) is split with metabolizer N then G(M,q) = |N|.

Proof.

Since q is non-degenerate the map

$$M \longrightarrow Hom(M, Q/Z) \longrightarrow Hom(N, Q/Z)$$

is surjective with kernel N^{\perp} . By assumption $N = N^{\perp}$. The induced map $\overline{b} : N \ge M/N \longrightarrow Q/Z$ is non-degenerate. Therefore |N| = |M/N|, $|M| = |N|^2$. For $m \in M$ we have

$$\sum_{n \in N} eq(m+n) = eq(m) \sum_{n \in N} eb(m,n)$$

If $m \notin N$ then $n \longmapsto eb(m,n)$ is a non-trivial character of N. The sum above is therefore zero in this case. There remains the sum for m = 0which is equal to |N|.

If (M,q) is torsion form, then $(M,q) \perp (M,-q)$ is always split, with metabolizer the diagonal of $M \oplus M$. On the set $KQ^+(Q,Z)$ of isomorphism classes of quadratic torsion forms one has the relation of <u>Witt</u> <u>equivalence</u>: $(M_1,q_1) \sim (M_2,q_2)$ if and only if there exist split forms (V_1,r_1) such that $(M_1,q_1) \perp (V_1,q_1) \cong (M_2,q_2) \perp (V_2,q_2)$. The set of Witt equivalence classes WQ(Q/Z) becomes an abelian group, the group structure being induced from orthogonal sum. From 2.2.5 we see that the assignment $(M,q) \longrightarrow G(M,q) / \overline{IM}$ induces a homomorphism

In particular we have

$$(2.2.7) \qquad \qquad \left| G(M,q) \right|^2 = |M|$$

for any torsion form and γ (M,q) is a root of unity.

For the convenience of the reader we now collect the relevant material about Witt groups. The general reference will be Milnor-Husenmoller

[117] . Let W(R) be the Witt ring of symmetric inner product spaces
([117] , p. 14) and WQ(R) the Witt algebra of quadratic forms
([117] , p. 112) for a commutative ring R. If we assign to a quadratic form its associated bilinear form we obtain a homomorphism

a : $WQ(R) \longrightarrow W(R)$

which is an isomorphism if 2 is a unit in R. There is an exact sequence ([117] , p. 90)

where W(Q/Z) is the Witt group of symmetric bilinear forms on torsion groups. Moreover

because a torsion form is uniquely the orthogonal sum of its restrictions to the p-primary parts. Moreover one has an isomorphism

(2.2.9)
$$W(F_p) \cong W(Z [p^{-1}] /Z)$$

viewing a form over the ring $F_p = Z/pZ$ as a torsion form. The ring $W(F_p)$ is computed in [117] , p. 87. One has W(Z) = Z by the signature homomorphism and the signature splits $W(Z) \longrightarrow W(Q)$.

In the diagram

the map a(Q) is an isomorphism and so is $a(Z [p^{-1}] / Z)$ for p odd. The map a(Z) is injective with cokernel of order 8 ([117], p.24). The map

$$WQ(Z[2^{-1}]/Z) \longrightarrow W(Z[2^{-1}]/Z)$$

is surjective and the source is isomorphic to $Z/8Z \ge Z/2Z$. A torsion form of order 8 in the Witt group is

 $q: Z/2Z \longrightarrow Q/Z$ $q(0) = 0, q(1) = \frac{1}{4}.$

The value $\mathcal{J}(\mathbb{Z}/2\mathbb{Z},q)$ of 2.2.6 is in this case $\sqrt{\frac{1}{2}}$ (1+i), a primitive 8-th root unity.

From the quoted results one sees already that $\gamma(M,q)$ has order 2^{i} ,

 $0 \le i \le 3$. For the actual computation of y see [117], Appendix 4, or Lang [108], IV §3.

We now study more closely the case of quadratic forms on ${\rm F}_{\rm p}-{\rm modules}$ (alias torsion form). We assume that p is an <u>odd</u> prime.

If (M,q) is given then for $a \in F_n$, $a \neq 0$

$$(2.2.10) q^{-1}(a^2b) = aq^{-1}(b)$$

and the sets $q^{-1}(a^2b)$ and $q^{-1}(b)$ have the same cardinality. Therefore

(2.2.11)
$$G(M,q) = \sum_{b \mod p} q^{-1}(b) \exp(2\pi ib/p)$$

where

Q =
$$q^{-1}$$
 (b) for any non-zero square b in F_p
N = q^{-1} (c) for any non-square c in F_p
P = q^{-1} (O)

and

 $-1-\beta = \alpha = \sum \exp(2\pi ib/p)$

summed over the non-zero squares in F_p . We write 2.2.11 as

$$(2.2.12) G(M,q) = P - N + (Q-N) \varkappa ,$$

and we are going to compute P - N and Q - N.

We use the following notations:

1 + 2
$$\propto$$
 = g = $\sum_{a \mod p} \exp(2\pi i a^2/p)$
($\frac{x}{p}$) Legendre symbol
D(q) $\in F_p/F_p^2$ determinant of the form q.

<u>Proposition 2.2.13.</u> Let (M,q) be a form with $|M| = p^n$. Then

$$G(M,q) = \left(\frac{D(q)}{p}\right) g^{n}$$
.

Proof.

Both expressions behave multiplicatively with respect to orthogonal sum. A form over F_p , p odd, is an orthogonal sum of one-dimensional forms. Therefore it suffices to consider the case n = 1. But then the equality is a simple calculation (see Lang [108], QS 1 on p. 85).

From 2.2.12 and 2.2.13 we obtain

$$(2.2.14) P - N + (Q-N) \left(\frac{1}{2}(g-1)\right) = \left(\frac{D(q)}{p}\right) g^{n}$$

where P also denotes the cardinality of the set P, etc. We now use the fact that the absolute value of g is \sqrt{p} . Comparing coefficients gives

Proposition 2.2.15. If n = 2k, then Q - N = O and $P - N = \left(\frac{D(q)}{p}\right)g^{2k}$. If n = 2k+1, then 2(P-N) = Q-N and $P-N = \left(\frac{D(q)}{p}\right)g^{2k}$.

<u>Remark.</u> Using P + $\frac{1}{2}(p-1)Q + \frac{1}{2}(p-1)N = p^n$ and 2.2.15 one can solve for P,Q, and N thus obtaining the number of solutions of q(x) = b.

Finally we recall the elementary computation (Lang [108], p. 77)

(2.2.16)
$$g^2 = (\frac{-1}{p})p.$$

2.3. The quadratic J-homomorphism.

We use equivariant Gauß sums to describe certain refinements of the construction in 2.1.

Let M be a ZG-module which is finite as an abelian group and let (M,q)be a G-invariant quadratic form on M as in 2.2. Since $q:M \longrightarrow Q/Z$ is G-invariant the sets

$$q^{-1}(x)$$
, $x \in Q/Z$

are finite G-sets. We consider the equivariant Gauß sum

(2.3.1)
$$G(M,q) = \sum_{x \in Q/Z} q^{-1}(x) e(x)$$
.

(This is essentially a finite sum). We think of G(M,q) as an element in

$$A(G) [\zeta] = A(G) \bigotimes_{Z} Z[\zeta] \subset A(G) \times_{Z} \mathbb{C}$$

where ζ is a root of unity that generates eqM. For an orthogonal sum we have

$$(2.3.2) G((M_1,q_1) \perp (M_2,q_2)) = G(M_1,q_1)G(M_2,q_2)$$

If we forget the G-action, i. e. put $|q^{-1}(x)| \in Z$ in 2.3.1, then we obtain the Gauß sum G(M,q) of 2.2. Since $b^{*}: M \longrightarrow Hom(M,Q/Z)$ is an ZG-isomorphism by assumption, q induces on each fixed point set M^{H} a quadratic form called q^{H} . Therefore

(2.3.3)
$$G(M,q)^{H} = G(M^{H},q^{H})$$

with the obvious meanings of the symbols.

As in 2.2.12 we can write

$$G(M,q) = P - N + (Q-N) \boldsymbol{\alpha}$$

where now P,N, and Q are finite G-sets. Here again we work with F_pG -modules,p odd, for simplicity. We describe these G-sets through its fixed point numbers, using 2.2.13. We obtain

Proposition 2.3.4.

Let p be an odd prime and q a G-invariant guadratic form on the F_p Gmodule M. Then the elements P - N and Q - N of the Burnside ring A(G) have the following fixed point functions:

P - N : (H) $\mapsto (\frac{D(q^H)}{p}) p_*$ [$\frac{1}{2} \dim M^H$]

$$Q - N : (H) \longmapsto (1 - (-1)^{\dim M^{H}}) \left(\frac{D(q^{H})}{p}\right) p_{\star}$$

with $p = (\frac{-1}{p})p$.

Here [x] is the greatest integer m such that m \leq x and dim is the dimension as F_n vector space. (If $M^{H} = \{o\}$, then P = 1, Q = N = 0.)

This proposition shows that the equivariant Gauß sum of (M,q) only depends on the underlying F_p G-module and the determinant function, i.e. the determinants $D(q^H)$ of all fixed point forms. If $KQ(G;F_p)$ denotes the Grothendieck group of quadratic forms on F_p G-module (with orthogonal sum as addition) we consider the quotient group which only records the isomorphism type of the underlying module and the determinant. We denote this group RO'(G,F_p). We have natural homomorphisms

$$r : RO'(G, F_p) \longrightarrow RO(G, F_p)$$

(2.3.5)

d : RO'(G,F_p) \longrightarrow $\widehat{\Pi}_{(H)}$ Z^{*}.

Here r associates to the class of (M,q) the underlying F_pG -module M and RO(G, F_p) is simply the image of r in the representation ring R(G, F_p). Hence r is surjective by definition, Moreover d associates to (M,q) the function (H) $\vdash -- \rightarrow (\frac{D(q^H)}{p}) \in \mathbb{Z}^* = \{+1, -1\}$. The homomorphism

$$(r,d)$$
 : RO'(G,F_p) \longrightarrow RO(G,F_p) x π _(H) Z *

is injective, by definition. Hence additively the torsion of RO'(G,F $_p$) contains only elements of order two and the torsion subgroup is mapped injectively under d.

The assignment

$$(M,q) \mapsto P - N$$

induces a well-defined map

$$(2.3.6) JQ : RO'(G, F_p) \longrightarrow A(G) [p^{-1}]$$

which is not homomorphic from addition to multiplication. We call JQ the $\underline{\text{quadratic}}$ J-homomorphism.

2.4. Comments.

The construction in 2.1 and 2.3 are taken from Segal [146]. For the localization sequence for Witt groups see Pardon [125], and, in the equivariant case, Dress [81]. The use of equivariant Witt groups in topology is explained in Alexander-Conner-Hamrick [3], where the reader will find many computations. For quadratic forms on torsion see e. g. Wall [164], Brumfiel -Morgan [44], and Alexander-Hamrick-Vick [4]. For 2.2.15 and the remark following it see Siegel [150] p. 344. Proposition 2.3.4 is related to recent work of Tornehave [160] (see Madsen [113]).

2.5. Exercises.

1. Let n be a natural number. Let S be a finite G-set. Let n^{S} be the function (H) $\longmapsto n^{|S^{H}|}$. Show that $n^{S} \in A(G)$. 2. It is seen from 2.3.4 that JQ is not additive. Verify the following formula for the deviation from additivity

$$JQ((M_{1},q_{1}) \perp (M_{2},q_{2})) = d(M_{1},M_{2})JQ(M_{1},q_{1})JQ(M_{2},q_{2})$$

where

$$d(M_1, M_2) = (1 + (p_{\star} - 1)\frac{1}{4} (d(M_1) - 1) (d(M_2) - 1))$$

with d(M) : (H) (-1) $\dim M^H$. (Compare 1.5.3)

3. Let F be a field of characteristic not 2 and let G be a group of order prime to char(F). Show that any G-invariant quadratic form over F is an orthogonal sum of indecomposable quadratic modules (M,q). If (M,q) is indecomposable then either M is irreducible and isomorphic to its dual M^{*} or M = N \oplus N^{*}, N \neq N^{*}, N irreducible, and q is hyperbolic. 4. Extend 2.3.4 to general quadratic forms on torsion groups. 5. Since the signature of $x \in WQ(Z)$ is divisible by 8 the signature homomorphism $WQ(Q) \longrightarrow Z/8Z$ factors over WQ(Q/Z). Compute it! (Compare the formula of Milgram in Milnor-Husemoller [117], p. 127.)