
2. The J-homomorphism and quadratic forms. 

Having defined the Burnside ring of finite G-sets in the previous 

chapter we go on to study finite G-sets which arise from G-modules 

over finite fields and G-invariant quadratic forms on such modules. 

This will later be used to study permutation representations. In this 

chapter G will always denote a finite group. 

2.1. The J-homomorphism. 

We consider torsion G-modules M, i. e. finite abelian groups M together 

with a left G-action by group automorphisms. Forgetting the group 

structure on M yields a finite G-set and therefore an element J(M) in 

the Burnside ring A(G). Since THJ(M) = ]MHI we have 

(2.1.1) J(M ~9 N) : J(M) J(N) 

for two torsion G-modules M and N. But J(M) is in general not a unit 

in A(G) so that J does not immediately extend to a homomorphism from a 

suitable Grothendieck group. On the category of torsion modules with 

torsion prime to [G[ taking H-fixed points is an exact functor so that 

J(M) = J(N) J(P) for an exact sequence O---~ P ---) M ---) N ) O of such 

modules. 

Pror~osition 2.1.2. 

Let M be a torsion G-module with q = [M~ prime t~o ~G| . Then 

J(M) E A(G) [q-1] (i-~- q made invertible) is a unit. 

Proof. 

Using ~ of 1.2.2 we see that ~ J(M) is certainly a unit in ~Z[q-l] . 

We have to show:the inverse is contained in A(G)[q-I]. Note that by 
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1.2.3 the cokernel of ~ [q-l] is a finite group because q is prime 

to IG~ . The next algebraic lemma implies the result. 

Lemma 2.1.3. 

Let R be a subrinq of the commutative ring S. Assume that R C S is an 

inteqral extension (~.~. S/R is a finite qroup) . Then R ~: R ~ S~ 

Proof. 

Clearly R~c S ~. Given x E R ~ S ~. Suppose y e S satisfies xy = i. Since 

n n-i 
S )R is integral we have y + alY + ... + a n = O for suitable aieR. 

n-i n-i 
Multiplying this equation by x we obtain y + a I + ... + anX = O, 

hence y ~ R. 

Let Tq(G) be the Grothendieck group with respect to exact sequences 

of q-torsion G-modules. Let R(G;F) be the Grothendieck group of 

finitely generated FG-modules, F a field. Then 2.1.2 implies 

Proposition 2.1.4. 

Let q b_ee prime t__oo ~G~ . The assiqnment M ~--~ J(M) induces a homo- 

morphism J : Tq(G) } A(G)[q-I] ~. I__ff F is a finite field of charac- 

teristic q then we obtain a homomorphism J : R(G;F) ) A(G)[q -I]. 

We call this homomorphism the J-homomorphism. The relation to the J- 

homomorphism of algebraic topology will become clear later. 

2.2. Quadratic forms on torsion qroups. Gau5 sums. 

Let M be a finite abelian group. 

Definition 2.2.1. 

A quadratic form on M is a map q : M ) Q/Z such that 
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2 
i) q is quadratic, i. e. q(am) : a q(m) for a • Z and m ~M. 

ii) the map b : M x M - ~ Q/Z, 

b(m,n) : q(m+n) - q(m) - q(n) is biadditive. 

If moreover M is a ZG-module we call q G-invariant if for g ~ G and 

mEM the relation q(gm) : q(m) holds. The form is called non-degenerate 

if b ~ : M-----> Hom(M,Q/Z) : m ~ ) b(m,-) is an isomorphism. 

We shall only consider non-degenerate forms. Let e : Q/Z ----~ { ~be 

the standard character e(x mod Z) : exp(2 ~ix). 

Definition 2.2.2. 

Let (M,q) be a quadratic torsion form. The associated (quadratic) Gau5 

sum is 

G (M,q): m E Meq (m) . 

(We use the letter G despite of its use for groups.) 

We now list some formal properties of Gau~ sums. If (Ml,ql) and (M2,q2) 

are quadratic torsion forms we have the orthogonal sum 

(Ml,ql) .L (M2,q2) :: (M,q) 

which is (M 1 ~ M2, q) with 

q(ml,m 2) : ql(ml) + q2(m2). 

Obviously one has 

(2.2.3) G(M,q) = G(MI,ql) G(M2,q2). 
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Definition 2.2.4. 

A quadratic torsion form (M,q) is called split or metabolic if there 

exists a subgroup N CM such that for all n~ N q(n) : 0 and moreover 

N ~ := {n I b(n,N) : O] equals N. We then call N a metabolizer of 

(M,q) . 

Proposition 2.2.5. 

I__ff (M,q) i_ss split with metabolizer N then G(M,q) : INf. 

Proof. 

Since q is non-degenerate the map 

M } Hom(M,Q/Z) > Hom(N,Q/Z) 

is surjective with kernel N By assumption N : N . The induced map 

: N x M/N ) Q/Z is non-degenerate. Therefore ~NI = IM/N I , 

IMI : [NI 2. For m EM we have 

n E N eq(m+n) = eq(m) ~ n EN eb(m'n) 

If m~N then n J ~ eb(m,n) is a non-trivial character of N. The sum 

above is therefore zero in this case. There remains the sum for m = 0 

which is equal to IN I 

If (M,q) is torsion form, then (M,q) • (M,-q) is always split, with 

metabolizer the diagonal of M ~ M. On the set KQ+(Q,Z) of isomorphism 

classes of quadratic torsion forms one has the relation of Witt 

equivalence: (Ml,q I) ~ (M2,q 2) if and only if there exist split forms 

(Vi,r i) such that (Ml,ql) ~ (Vl,q]) ~ (M2,q2) ~(V2,q2). The set of Witt 

equivalence classes WQ(Q/Z) becomes an abelian group, the group struc- 

ture being induced from orthogonal sum. From 2.2.5 we see that the 
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assignment (M,q) I ) G(M,q)/ ~--M~ induces a homomorphism 

(2.2.6) ~ : WQ(Q/Z) -- ~ C ~ 

In particular we have 

(2.2.7) Io(M,q)l 2 : IM I 

for any torsion form and ~ (M,q) is a root of unity. 

For the convenience of the reader we now collect the relevant material 

about Witt groups. The general reference will be Milnor-Husenmoller 

~I~] Let W(R) be the Witt ring of symmetric inner product spaces 

( ~I~] , p. 14) and WQ(R) the Witt algebra of quadratic forms 

( [113] , p. 112) for a commutative ring R. If we assign to a quadra- 

tic form its associated bilinear form we obtain a homomorphism 

a : WQ(R) > W(R) 

which is an isomorphism if 2 is a unit in R. There is an exact sequence 

( [~I~] , p. 9O) 

(2.2.8) 0 ) W(Z)--9 W(Q) ----)W(Q/Z) ----) O 

where W(Q/Z) is the Witt group of symmetric bilinear forms on torsion 

groups. Moreover 

W(Q/Z) ~ ~p W(Z [p-1] /Z) 

because a torsion form is uniquely the orthoqonal sum of its restric- 

tions to the p-primary parts. Moreover one has an isomorphism 
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(2.2.9) W(Fp) ~ W(Z [p-1] /Z) 

viewing a form over the ring Fp : Z/pZ as a torsion form. The ring 

W(Fp) is computed in [19~] , p. 87. One has W(Z) : Z by the signa- 

ture homomorphism and the signature splits W(Z)---9 W(Q). 

In the diagram 

) WQ(Z) ~ WQ(Q) 9 WQ(Q/Z) --) 0 

) w ( z )  .~, w(Q) - - - ~  W(Q/Z) ~ o 

the map a(Q) is an isomorphism and s o  is a(Z [p-1] /Z) for p odd. The 

map a(Z) is injective with cokernel of order 8 ( [9~] , p.24). The 

map 

WQ(Z [2 -i] /z) ------) w(z [2 -i] /z) 

is surjective and the source is isomorphic to Z/8Z x Z/2Z. A torsion 

form of order 8 in the Witt group is 

q : Z/2Z .... ) Q/Z 

1 
q(O) = O, q(1) = ~ . 

The value ~ (Z/2Z,q) of 2.2.6 is in this case 

tive 8-th root unity. 

! 
(l+i) , a primi- 

From the quoted results one sees already that ~ (M,q) has order 2 l, 
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O (i ~ 3. For the actual computation of ~ see [91Z] , Appendix 4, or 

Lang [1G8] , IV 93. 

We now study more closely the case of quadratic forms on F -modules 
P 

(alias torsion form). We assume that p is an odd prime. 

If (M,q) is given then for a 6 Fp, a # O 

(2.2.10) q-I (a2b) : aq-l(b) 

and the sets q-l(a2b) and q-l(b) have the same eardinality. Therefore 

-i 
(2.2.11) G(M,q) : Z b mod p q (b) exp(2 ~rib/p) 

= P + Q ~ + N ~ 

where 

-i Q = q (b) for any non-zero square b in F 
P 

-I 
N = q (c) for any non-square c in F 

P 

p : q-i (O) 

and 

-i- ~ : ~ = [ exp(2~ ib/p) 

summed over the non-zero squares in F . We write 2.2.11 as 
P 

(2.2.12) G(M,q) : P - N + (Q-N) ~( , 

and we are going to compute P - N and Q - N. 
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We use the following notations: 

1 + 2 ~ = g = Z a mod p exp(2 T/ia2/p) 

(p~) Legendre symbol 

D(q) E Fp/F$ determinant of the form q. 

Proposition 2.2.13. 

Let (M,q) be a form with IMI = pn. Then 

G(M,q) : (Dp_~) gn 

Proof. 

Both expressions behave multiplicatively with respect to orthogonal 

sum. A form over Fp, p odd, is an orthogonal sum of one-dimensional 

forms. Therefore it suffices to consider the case n = i. But then the 

equality is a simple calculation (see Lang ~Oa] , QS 1 on p. 85). 

From 2.2.12 and 2.2.13 we obtain 

(2.2.14) p N ÷ (Q N) (½(g l) ) : 

where P also denotes the cardinality of the set P, etc. We now use the 

fact that the absolute value of g is ~-~ . Comparing coefficients 

gives 

Proposition 2.2.15. 

I_~f n = 2k, then Q - N = O and P - N = (Dp_~)g2k 

If n = 2k+l, then 2(P-N) = Q-N and P-N = (Dp_~)g2k. 
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Remark. 

1 1 n 
Using P + ~(p-l)Q + ~(p-l)N : p and 2.2.15 one can solve for P,Q, 

and N thus obtaining the number of solutions of q(x) = b. 

Finally we recall the elementary computation (Lang [108] , p. 77) 

(2.2.16) g2 = (~)p. 

2.3. The quadratic J-homomorphism. 

We use equivariant GauB sums to describe certain refinements of the 

construction in 2.1. 

Let M be a ZG-module which is finite as an abelian group and let (M,q) 

be a G-invariant quadratic form on M as in 2.2. Since q:M > Q/Z is 

G-invariant the sets 

-i 
q (x), x ~ Q/Z 

are finite G-sets. We consider the equivariant GauB sum 

(2.3.1) G(M,q) : ~ x ~ Q/Z q-l(x)e(x) " 

(This is essentially a finite sum). We think of G(M,q) as an element 

in 

A(G) [{] : A(G) ® Z Z[{] C A(C) x Z ¢ 

where ~ is a root of unity that generates eqM. For an orthogonal sum 

we have 
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(2.3.2) G((MI,q I) • (M2,q2)) : G(MI,ql)G(M2,q2) 

If we forget the G-action, i. e. put lq-l(x) I E Z in 2.3.1, then we 

obtain the Gau5 sum G(M,q) of 2.2. Since b~: M --> Hom(M,Q/Z) is an 

ZG-isomorphism by assumption, q induces on each fixed point set M H a 

quadratic form called qH. Therefore 

(2.3.3) G(M,q) H = G(MH,q H) 

with the obvious meanings of the symbols. 

As in 2.2.12 we can write 

G(M,q) = P - N +(Q-N) 

where now P,N, and Q are finite G-sets. Here again we work with F G- 
P 

modules, p odd, for simplicity. We describe these G-sets through its 

fixed point numbers, using 2.2.13. We obtain 

Proposition 2.3.4. 

Let p be an odd prime and q a G-invariant quadratic form on the F G- 
P 

module M. Then the elements P - N and Q - N of the Burnside rinq A(G) 

have the followinq fixed point functions: 

P - N : (H) i 

I M H [ ~ dim ] 

) ( p ) P~ 

Q - N : (H) ! } (I-(-i) 
dim MH) (D~q~) 

p 

[ ½ dim M H ] 

with p = (J) p. 
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Here Ix] is the greatest integer m such that m ~ x and dim is the 

dimension as Fp vector space. (If M H : { o ] , then P = i, Q : N = o.) 

This proposition shows that the equivariant Gau5 sum of (M]q) only 

depends on the underlying F G-module and the determinant function, i.e. 
P 

the determinants D(q H) of all fixed point forms. If KQ(G:Fp) denotes 

the Grothendieck group of quadratic forms on F G-module (with ortho- 
P 

gonal sum as addition) we consider the quotient group which only 

records the isomorphism type of the underlying module and the deter- 

minant. We denote this group RO' (G,Fp). We have natural homomorphisms 

(2.3.5) 

r : RO' (G,Fp) ) RO(G,Fp) 

d : RO' (G, Fp) ------) ~(H) Z4~ 

Here r associates to the class of (M,q) the underlying F G-module M 
P 

and RO(G,Fp) is simply the image of r in the representation ring 

R(G,Fp). Hence r is surjective by definition, Moreover d associates 

D(mH) Z ~ 1+I -i] The homomor- to (M,q) the function (H) ~--~ ( P ) ~ = , . 

phism 

(r,d) : RO' (G,Fp) .... -> RO(G,Fp) x ~(H) Z 

is injective, by definition. Hence additively the torsion of RO' (G,Fp) 

contains only elements of order two and the torsion subgroup is mapped 

injectively under d. 

The assignment 

(M,q) ;--- ) P - N 



induces a well-defined map 

(2.3.6) JQ : RO' (G,Fp) 
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A(G) [p-1 ] 

which is not homomorphic from addition to multiplication. We call JQ 

the quadratic J-homomorphism. 

2.4. Comments. 

The construction in 2.1 and 2.3 are taken from Segal [1~&] . For the 

localization sequence for Witt groups see Pardon [d~5] , and, in the 

equivariant case, Dress [~I] . The use of equivariant Witt groups in 

topology is explained in Alexander-Conner-Hamrick [3] , where the 

reader will find many computations. For quadratic forms on torsion see 

e. g. Wall ~%] , Brumfiel -Morgan [~] , and Alexander-Hamrick- 

Vick [~] For 2.2.15 and the remark following it see Siegel [450] 

p. 344. Proposition 2.3.4 is related to recent work of Tornehave ~0] 

(see Madsen [113]I 

2.5. Exercises. 

I. Let n be a natural number. Let S be a finite G-set. Let n S be the 

function (H) ~ ) n ~SH~ Show that n S E A(G). 

2. It is seen from 2.3.4 that JQ is not additive. Verify the following 

formula for the deviation from additivity 

JQ((MI,q I) ~ (M2,q 2)) = d(MI,M2)JQ(MI,ql)JQ(M2,q2) 

where 

d(MI,M 2) = (l+(pw-i) 1 (d(Ml)-l) (d(M2)-l)) 

dim M H 
with d(M) : (H) ~---9 (-I) (Compare 1.5.3) 
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3. Let F be a field of characteristic not 2 and let G be a group of 

order prime to char(F). Show that my G-invariant quadratic form over F 

is an orthogonal sum of indecomposable quadratic modules (M,q). If (M,q) 

is indecomposable then either M is irreducible and isomorphic to its 

dual M ~ or M = N ~ N ~, N ~ N ~, N irreducible, and q is hyperbolic. 

4. Extend 2.3.4 to general quadratic forms on torsion groups. 

5. Since the signature of x~ WQ(Z) is divisible by 8 the signature ho- 

momorphism WQ(Q) ) z/8z factors over WQ(Q/Z). Compute it! (Compare 

the formula of Milgram in Milnor-Husemoller [~] , p. 127.) 


