2. The J-homomorphism and quadratic forms.

Having defined the Burnside ring of finite G-sets in the previous chapter we go on to study finite G-sets which arise from G-modules over finite fields and G-invariant quadratic forms on such modules. This will later be used to study permutation representations. In this chapter G will always denote a finite group.
2.1. The J-homomorphism.

We consider torsion G-modules M, i. e. finite abelian groups M together with a left G-action by group automorphisms. Forgetting the group structure on M yields a finite $G-s e t$ and therefore an element $J(M)$ in the Burnside ring $A(G)$. Since $\varphi_{H} J(M)=\left|M^{H}\right|$ we have

$$
\begin{equation*}
J(M \oplus N)=J(M) J(N) \tag{2.1.1}
\end{equation*}
$$

for two torsion G-modules M and N. But $J(M)$ is in general not a unit in $A(G)$ so that J does not immediately extend to a homomorphism from a suitable Grothendieck group. On the category of torsion modules with torsion prime to $|G|$ taking H-fixed points is an exact functor so that $J(M)=J(N) J(P)$ for an exact sequence $O \longrightarrow P \longrightarrow M \longrightarrow N \longrightarrow O$ of such modules.

Proposition 2.1.2.
Let M be a torsion G-module with $q=|M|$ prime to $|G|$. Then $J(M) \in A(G)\left[q^{-1}\right]$ (i.e. q made invertible) is a unit.

Proof.
Using φ of 1.2 .2 we see that $\varphi J(M)$ is certainly a unit in $\pi z\left[q^{-1}\right]$. We have to show: the inverse is contained in $A(G)\left[q^{-1}\right]$. Note that by
1.2.3 the cokernel of $\varphi\left[q^{-1}\right]$ is a finite group because q is prime to $|G|$. The next algebraic lemma implies the result.

Lemma 2.1.3.
Let R be a subring of the commutative ring S. Assume that $R C S$ is an inteqral extension (e.g. S / R is a finite group). Then $R^{*}=R \cap S^{*}$.

Proof.

Clearly $R^{*} \subset S^{*}$. Given $x \in R \cap S^{*}$. Suppose $y \in S$ satisfies $x y=1$. Since $S \supset R$ is integral we have $y^{n}+a_{1} y^{n-1}+\ldots+a_{n}=0$ for suitable $a_{i} \in R$. Multiplying this equation by x^{n-1} we obtain $y+a_{1}+\ldots+a_{n} x^{n-1}=0$, hence $y \in R$.

Let $T_{q}(G)$ be the Grothendieck group with respect to exact sequences of q-torsion G-modules. Let $R(G ; F)$ be the Grothendieck group of finitely generated FG-modules, F a field. Then 2.1.2 implies

Proposition 2.1.4.

Let q be prime to $|G|$. The assignment $M \mapsto J(M)$ induces a homomorphism $J: T_{q}(G) \longrightarrow A(G)\left[q^{-1}\right]^{*}$. If F is a finite field of characteristic q then we obtain a homomorphism $J: R(G ; F) \longrightarrow A(G)\left[q^{-1}\right]^{*}$.

We call this homomorphism the J-homomorphism. The relation to the Jhomomorphism of algebraic topology will become clear later.
2.2. Quadratic forms on torsion groups. Gauß sums.

Let M be a finite abelian group.

Definition 2.2.1.
A quadratic form on M is a map $q: M \longrightarrow Q / Z$ such that
i) q is quadratic, i. e. $q(a m)=a^{2} q(m)$ for $a \in Z$ and $m \in M$.
ii) the $\operatorname{map} b: M \times M \longrightarrow Q / Z$,

$$
b(m, n)=q(m+n)-q(m)-q(n) \text { is biadditive. }
$$

If moreover M is a $Z G-m o d u l e$ we call $q G$-invariant if for $g \in G$ and $m \in M$ the relation $q(g m)=q(m)$ holds. The form is called non-deqenerate if $b^{*}: M \longrightarrow \operatorname{Hom}(M, Q / Z): m \longmapsto b(m,-)$ is an isomorphism.

We shall only consider non-degenerate forms. Let $e: Q / Z \longrightarrow \mathbb{C}^{*}$ be the standard character $e(x \bmod Z)=\exp (2 \pi i x)$.

Definition 2.2.2.
Let (M, q) be a quadratic torsion form. The associated (quadratic) Gauß sum is

$$
G(M, q)=\sum_{m \in M} \mathrm{eq}(\mathrm{~m})
$$

(We use the letter G despite of its use for groups.)

We now list some formal properties of Gauß sums. If (M_{1}, q_{1}) and (M_{2}, q_{2}) are quadratic torsion forms we have the orthogonal sum

$$
\left(M_{1}, q_{1}\right) \perp\left(M_{2}, q_{2}\right)=:(M, q)
$$

which is $\left(M_{1} \oplus M_{2}, q\right)$ with

$$
q\left(m_{1}, m_{2}\right)=q_{1}\left(m_{1}\right)+q_{2}\left(m_{2}\right)
$$

Obviously one has
(2.2.3)

$$
G(M, q)=G\left(M_{1}, q_{1}\right) G\left(M_{2}, q_{2}\right)
$$

Definition 2.2.4.

A quadratic torsion form (M, q) is called split or metabolic if there exists a subgroup $N C M$ such that for all $n \in N \quad q(n)=O$ and moreover $N^{\perp}:=\{n \mid b(n, N)=0\}$ equals N. We then call N a metabolizer of (M, q) .

Proposition 2.2.5.

If (M, q) is split with metabolizer N then $G(M, q)=|N|$.

Proof.
Since q is non-degenerate the map

$$
M \longrightarrow \operatorname{Hom}(M, Q / Z) \longrightarrow \operatorname{Hom}(N, Q / Z)
$$

is surjective with kernel N^{\perp}. By assumption $N=N^{\perp}$. The induced map $\overline{\mathrm{b}}: \mathrm{N} \times \mathrm{M} / \mathrm{N} \longrightarrow Q / Z$ is non-degenerate. Therefore $|\mathrm{N}|=|\mathrm{M} / \mathrm{N}|$, $|M|=|N|^{2}$. For $m \in M$ we have

$$
\sum_{n \in N^{e q}(m+n)}=e q(m) \quad \sum_{n \in N^{e b}(m, n)} .
$$

If $m \notin N$ then $n \longmapsto e b(m, n)$ is a non-trivial character of N. The sum above is therefore zero in this case. There remains the sum for $m=0$ which is equal to $|N|$.

If (M, q) is torsion form, then $(M, q) \perp(M,-q)$ is always split, with metabolizer the diagonal of $M \oplus M$. On the set $K Q^{+}(Q, Z)$ of isomorphism classes of quadratic torsion forms one has the relation of Witt equivalence: $\left(M_{1}, q_{1}\right) \sim\left(M_{2}, q_{2}\right)$ if and only if there exist split forms $\left(V_{i}, r_{i}\right)$ such that $\left(M_{1}, q_{1}\right) \perp\left(V_{1}, q_{1}\right) \cong\left(M_{2}, q_{2}\right) \perp\left(V_{2}, q_{2}\right)$. The set of witt equivalence classes $W Q(Q / Z)$ becomes an abelian group, the group structure being induced from orthogonal sum. From 2.2.5 we see that the
assignment $(M, q) \longmapsto G(M, q) / \sqrt{|M|}$ induces a homomorphism
(2.2.6)
$\gamma: W Q(Q / Z) \longrightarrow \mathbb{C}^{*}$.

In particular we have
(2.2.7)

$$
|G(M, q)|^{2}=|M|
$$

for any torsion form and $\varnothing(M, q)$ is a root of unity.

For the convenience of the reader we now collect the relevant material about Witt groups. The general reference will be Milnor-Husenmoller
[117] . Let $W(R)$ be the Witt ring of symmetric inner product spaces ([117] , p. 14) and $W Q(R)$ the witt algebra of quadratic forms ([117] , p. 112) for a commutative ring R. If we assign to a quadratic form its associated bilinear form we obtain a homomorphism

$$
a: W Q(R) \longrightarrow W(R)
$$

which is an isomorphism if 2 is a unit in R. There is an exact sequence ($[117]$, p. 90)
(2.2.8) $\mathrm{O} \longrightarrow \mathrm{W}(\mathrm{Z}) \longrightarrow \mathrm{W}(\mathrm{Q}) \longrightarrow \mathrm{W}(\mathrm{Q} / \mathrm{Z}) \longrightarrow \mathrm{O}$
where $W(Q / Z)$ is the Witt group of symmetric bilinear forms on torsion groups. Moreover

$$
\mathrm{W}(\mathrm{Q} / \mathrm{Z}) \cong \oplus_{\mathrm{p}} \mathrm{~W}\left(\mathrm{Z}\left[\mathrm{p}^{-1}\right] / \mathrm{Z}\right)
$$

because a torsion form is uniquely the orthogonal sum of its restrictions to the p-primary parts. Moreover one has an isomorphism
(2.2.9)

$$
W\left(F_{p}\right) \cong W\left(Z\left[p^{-1}\right] / Z\right)
$$

viewing a form over the ring $F_{p}=Z / p Z$ as a torsion form. The ring $W\left(F_{p}\right)$ is computed in $[117], p .87$. One has $W(Z)=Z$ by the signature homomorphism and the signature splits $W(Z) \rightarrow W(Q)$.

In the diagram

the map $a(Q)$ is an isomorphism and so is $a\left(Z\left[p^{-1}\right] / Z\right)$ for p odd. The map $a(Z)$ is injective with cokernel of order 8 (117], p.24). The map

$$
W Q\left(Z\left[2^{-1}\right] / Z\right) \longrightarrow W\left(Z\left[2^{-1}\right] / Z\right)
$$

is surjective and the source is isomorphic to $Z / 8 Z \times \mathrm{Z} / 2 \mathrm{Z}$. A torsion form of order 8 in the witt group is

$$
\begin{aligned}
& q: Z / 2 Z \cdots Q / Z \\
& q(0)=0, \quad q(1)=\frac{1}{4}
\end{aligned}
$$

The value $\gamma(z / 2 Z, q)$ of 2.2 .6 is in this case $\underset{\sqrt{2}}{\frac{1}{2}}(1+i)$, a primitive $8-$ th root unity.

From the quoted results one sees already that $\gamma(M, q)$ has order 2^{i},
$0 \leqslant i \leqslant 3$. For the actual computation of x see [117], Appendix 4, or Lang [108], IV $\$ 3$.

We now study more closely the case of quadratic forms on F_{p}-modules (alias torsion form). We assume that p is an odd prime.

If (M, q) is given then for $a \in F_{p}, a \neq 0$

$$
\begin{equation*}
q^{-1}\left(a^{2} b\right)=a q^{-1}(b) \tag{2.2.10}
\end{equation*}
$$

and the sets $q^{-1}\left(a^{2} b\right)$ and $q^{-1}(b)$ have the same cardinality. Therefore

$$
\begin{align*}
G(M, q) & =\sum_{b \bmod p} q^{-1}(b) \exp (2 \pi i b / p) \tag{2.2.11}\\
& =P+Q \alpha+N \beta
\end{align*}
$$

where

$$
\begin{aligned}
& Q=q^{-1}(b) \text { for any non-zero square } b \text { in } F_{p} \\
& N=q^{-1}(c) \text { for any non-square } c \text { in } F p \\
& P=q^{-1}(0)
\end{aligned}
$$

and

$$
-1-\beta=\alpha=\sum \exp (2 \pi i b / p)
$$

summed over the non-zero squares in F_{p}. We write 2.2.11 as

$$
G(M, q)=P-N+(Q-N) \propto,
$$

and we are going to compute $\mathrm{P}-\mathrm{N}$ and Q - N .

We use the following notations:

$$
\begin{aligned}
& 1+2 \alpha=g=\Sigma \text { a mod } p \exp \left(2 \pi i a^{2} / p\right) \\
& \left(\frac{x}{p}\right) \text { Legendre symbol } \\
& D(q) \in F_{p} / F_{p}^{2} \text { determinant of the form } q .
\end{aligned}
$$

Proposition 2.2.13.

Let (M, q) be a form with $|M|=p^{n}$. Then

$$
G(M, q)=\left(\frac{D(q)}{p}\right) g^{n}
$$

Proof.

Both expressions behave multiplicatively with respect to orthogonal sum. A form over $F_{p} p$ odd, is an orthogonal sum of one-dimensional forms. Therefore it suffices to consider the case $n=1$. But then the equality is a simple calculation (see Lang [108], QS 1 on p. 85).

From 2.2.12 and 2.2.13 we obtain
(2.2.14)

$$
P-N+(Q-N)\left(\frac{1}{2}(g-1)\right)=\left(\frac{D(q)}{p}\right) g^{n}
$$

where P also denotes the cardinality of the set P, etc. We now use the fact that the absolute value of g is $\sqrt{\vec{p}}$. Comparing coefficients gives

Proposition 2.2.15.
If $n=2 k$, then $Q-N=0$ and $p-N=\left(\frac{D(\sigma)}{p}\right) g^{2 k}$.
If $n=2 k+1$, then $2(P-N)=Q-N$ and $P-N=\left(\frac{D(q)}{p}\right) g^{2 k}$.

Remark.
Using $P+\frac{1}{2}(p-1) Q+\frac{1}{2}(p-1) N=p^{n}$ and 2.2 .15 one can solve for P, Q, and N thus obtaining the number of solutions of $q(x)=b$.

Finally we recall the elementary computation (Lang [108], p. 77)
(2.2.16)

$$
g^{2}=\left(\frac{-1}{p}\right) p
$$

2.3. The quadratic J-homomorphism.

We use equivariant Gauß sums to describe certain refinements of the construction in 2.1 .

Let M be a $Z G-m o d u l e$ which is finite as an abelian group and let (M,q) be a G-invariant quadratic form on M as in 2.2 . Since $q: M \longrightarrow Q / Z$ is G-invariant the sets

$$
q^{-1}(x), x \in Q / Z
$$

are finite G-sets. We consider the equivariant Gauß sum
(2.3.1)

$$
G(M, q)=\sum_{x \in Q / Z} q^{-1}(x) e(x)
$$

(This is essentially a finite sum). We think of $G(M, q)$ as an element in

$$
\mathrm{A}(\mathrm{G})[\geqq]=\mathrm{A}(\mathrm{G}) \otimes_{\mathrm{Z}} \mathrm{Z}[〕] \quad c^{[} A(\mathrm{G}) \mathrm{x}_{\mathrm{Z}} \mathbb{C}
$$

where ζ is a root of unity that generates eqM. For an orthogonal sum we have
(2.3.2)

$$
G\left(\left(M_{1}, q_{1}\right) \perp\left(M_{2}, q_{2}\right)\right)=G\left(M_{1}, q_{1}\right) G\left(M_{2}, q_{2}\right)
$$

If we forget the G-action, i. e. put $\left|q^{-1}(x)\right| \in Z$ in 2.3 .1 , then we obtain the Gauß sum $G(M, q)$ of 2.2. Since $b^{*}: M \longrightarrow \operatorname{Hom}(M, Q / Z)$ is an ZG-isomorphism by assumption, q induces on each fixed point set M^{H} a quadratic form called q^{H}. Therefore

$$
\begin{equation*}
\mathrm{G}(\mathrm{M}, \mathrm{q})^{\mathrm{H}}=\mathrm{G}\left(\mathrm{M}^{\mathrm{H}}, \mathrm{q}^{\mathrm{H}}\right) \tag{2.3.3}
\end{equation*}
$$

with the obvious meanings of the symbols.

As in 2.2 .12 we can write

$$
G(M, q)=P-N+(Q-N) \alpha
$$

where now P, N, and Q are finite G-sets. Here again we work with $F_{p} G-$ modules, p odd, for simplicity. We describe these G-sets through its fixed point numbers, using 2.2.13. We obtain

Proposition 2.3.4.

Let p be an odd prime and q a G-invariant quadratic form on the $F_{p} G-$ module M. Then the elements $P-N$ and $Q-N$ of the Burnside ring $A(G)$ have the following fixed point functions:

$$
\begin{aligned}
& P-N:(H) \longmapsto\left(\frac{D\left(q^{H}\right)}{p}\right) p_{*}\left[\frac{1}{2} \operatorname{dim} M^{H}\right] \\
& Q-N:(H) \longmapsto\left(1-(-1)^{\operatorname{dim}^{H}}\right)\left(\frac{D\left(q^{H}\right)}{p}\right) p_{*}\left[\frac{1}{2} \operatorname{dim} M^{H}\right]
\end{aligned}
$$

with $p_{*}=\left(\frac{-1}{p}\right) p$.

Here $[x]$ is the greatest integer m such that $m \leqslant x$ and dim is the dimension as F_{p} vector space. (If $M^{H}=\{0\}$, then $P=1, Q=N=0$.)

This proposition shows that the equivariant Gauß sum of (M;q) only
 the determinants $D\left(q^{H}\right)$ of all fixed point forms. If $K Q\left(G ; F_{p}\right)$ denotes the Grothendieck group of quadratic forms on $\mathrm{F}_{\mathrm{p}} \mathrm{G}$-module (with orthogonal sum as addition) we consider the quotient group which only records the isomorphism type of the underlying module and the determinant. We denote this group $R O^{\prime}\left(G, F_{p}\right)$. We have natural homomorphisms

$$
\begin{equation*}
r: \operatorname{RO}^{\prime}\left(G, F_{p}\right) \longrightarrow \operatorname{RO}\left(G, F_{p}\right) \tag{2.3.5}
\end{equation*}
$$

$$
d: R O^{\prime}\left(G, F_{p}\right) \longrightarrow \pi_{(H)} Z^{*} .
$$

Here r associates to the class of (M, q) the underlying $F_{p} G$-module M and $R O\left(G, F_{p}\right)$ is simply the image of r in the representation ring $R\left(G, F_{p}\right)$. Hence r is surjective by definition, Moreover d associates to (M, q) the function $(H) \longmapsto\left(\frac{D\left(q^{H}\right)}{p}\right) \in Z^{*}=\{+1,-1\}$. The homomorphism

$$
(r, d): R O^{\prime}\left(G, F_{p}\right) \longrightarrow \operatorname{RO}\left(G, F_{p}\right) \times \pi_{(H)} Z^{*}
$$

is injective, by definition. Hence additively the torsion of RO' (G, F_{p}) contains only elements of order two and the torsion subgroup is mapped injectively under a .

The assignment

$$
(M, q) \longmapsto P-N
$$

induces a well-defined map

$$
\begin{equation*}
J Q: R O^{\prime}\left(G, F_{p}\right) \longrightarrow A(G)\left[p^{-1}\right] \tag{2.3.6}
\end{equation*}
$$

which is not homomorphic from addition to multiplication. We call JQ the quadratic J-homomorphism.

2.4. Comments.

The construction in 2.1 and 2.3 are taken from segal $[146]$. For the localization sequence for witt groups see Pardon [125], and, in the equivariant case, Dress [81]. The use of equivariant witt groups in topology is explained in Alexander-Conner-Hamrick [3], where the reader will find many computations. For quadratic forms on torsion see e. g. Wall [164], Brumfiel -Morgan $[44]$, and Alexander-HamrickVick [4] . For 2.2.15 and the remark following it see siegel [150] p. 344. Proposition 2.3.4 is related to recent work of Tornehave [160] (see Madsen [113]).

2.5. Exercises.

1. Let n be a natural number. Let S be a finite $G-s e t$. Let $n s$ be the function $(H) \longrightarrow n^{\mid} \mid$. Show that $n^{S} \in A(G)$.
2. It is seen from 2.3.4 that $J Q$ is not additive. Verify the following formula for the deviation from additivity

$$
J Q\left(\left(M_{1}, q_{1}\right) \perp\left(M_{2}, q_{2}\right)\right)=d\left(M_{1}, M_{2}\right) J Q\left(M_{1}, q_{1}\right) J Q\left(M_{2}, q_{2}\right)
$$

where

$$
d\left(M_{1}, M_{2}\right)=\left(1+\left(p_{*}-1\right) \frac{1}{4}\left(d\left(M_{1}\right)-1\right)\left(d\left(M_{2}\right)-1\right)\right)
$$

with $d(M):(H) \longmapsto(-1)^{\text {dim } M^{H}}$. (Compare 1.5.3)
3. Let F be a field of characteristic not 2 and let G be a group of order prime to char (F). Show that any G-invariant quadratic form over F is an orthogonal sum of indecomposable quadratic modules (M, q). If (M, q) is indecomposable then either M is irreducible and isomorphic to its dual M^{*} or $M=N \oplus N^{*}, N \neq N^{*}, N$ irreducible, and q is hyperbolic. 4. Extend 2.3.4 to general quadratic forms on torsion groups.
5. Since the signature of $x \in W Q(Z)$ is divisible by 8 the signature homomorphism $W Q(Q) \longrightarrow Z / 8 Z$ factors over $W Q(Q / Z)$. Compute it! (Compare the formula of Milgram in Milnor-Husemoller [117], p. 127.)

