Lecture Notes in Mathematics

Edited by A. Dold and B. Eckmann

766

Tammo tom Dieck

Transformation Groups and Representation Theory

Springer-Verlag Berlin Heidelberg New York 1979

Author

T. tom Dieck Mathematisches Institut Bunsenstraße 3–5 D-3400 Göttingen

AMS Subject Classifications (1970): 20C10, 20C15, 20D15, 55-02, 55B25, 55E50, 57-02, 57D85, 57E15, 57E25

ISBN 3-540-09720-1 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-09720-1 Springer-Verlag New York Heidelberg Berlin

Library of Congress Cataloging in Publication Data Dieck, Tammo tom. Transformation groups and representation theory. (Lecture notes in mathematics; 766) Bibliography: p. Includes index. 1. Topological transformation groups. 2. Representations of groups. I. Title. II. Series: Lecture notes in mathematics (Berlin); 766. QA3.L28 no. 766 [QA613.7] 510'.8s [514'.223] 79-24606 ISBN 0-387-09720-1

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1979 Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210

Preface

These are extended lecture notes for a course on transformation groups which I gave at the Mathematical Institute at Göttingen during the summer term 1978.

The purpose of these notes is to give an introduction to that part of the theory of transformation groups which centers around the Burnside ring and the topology of group representations. It is assumed that the reader is acquainted with the basic material in algebraic topology, representation theory, and transformation groups. Nevertheless we have presented some elementary topics in detail.

Section 11 contains joint work with Henning Hauschild.

My thanks are due to Christian Okonek who read part of the manuscript and made many valuable suggestions and to Margret Rose Schneider who typed the manuscript.

<u>Contents</u>

1.	The Burnside ring of finite G-sets	1
1.1.	Finite G-sets	1
1.2.	The Burnside ring A(G)	1
1.3.	Congruences between fixed point numbers	4
1.4.	Idempotent elements	7
1.5.	Units	8
1.6.	Prime ideals	9
1.7.	An example: The alternating group A ₅	10
1.8.	Comments	11
1.9.	Exercises	12
2.	The J-homomorphism and quadratic forms	14
2.1.	The J-homomorphism	14
2.2.	Quadratic forms on torsion groups. Gauß sums	15
2.3.	The quadratic J-homomorphism	22
2.4.	Comments	25
2.5.	Exercises	25
3.	λ -rings	27
3.1.	Definitions	27
3.2.	Examples	31
3.3	γ -operations	33
3.4.	Adams operations	35
3.5.	Adams operations on representation rings	38
3.7.	The Bott cannibalistic class Θ_k	40
3.8.	p-adic y -rings	41

3.9.	The operation ${\bf g}_k$	47
3.10.	Oriented y -rings	49
3.11.	The action of \boldsymbol{g}_k on scalar \boldsymbol{y} -rings	53
3.12.	The connection between $\boldsymbol{\Theta}_k$ and $~\boldsymbol{g}_k$	57
3.13.	Decomposition of p-adic γ -rings	59
3.14.	The exponential isomorphism ${\ {f S}}_k$	61
3.15.	Thom-isomorphism and the maps Θ_k, Θ_k^{or}	67
3.16.	Comments	68
3.17.	Exercises	69
4.	Permutation representations	70
4.1.	p-adic completion	70
4.2.	Permutation representations over ${ t F}_{ extsf{q}}$	71
4.3.	Representations of 2-groups over F_3	74
4.4.	Permutation representations over Q	80
4.5.	Comments	81
5.	The Burnside ring of a compact Lie group	82
5.1.	Euler Characteristics	82
5.2.	Euclidean neighbourhood retracts	86
5.3.	Equivariant Euler-Characteristic	91
5.4.	Universal Euler-Characteristic for G-spaces	98
5.5.	The Burnside ring of a compact Lie group	103
5.6.	The space of subgroups	107
5.7.	The prime ideal spectrum of A(G)	111
5.8.	Relations between Euler-Characteristics	118
5.9.	Finiteness theorems	121
5.10.	Finite extensions of the torus	131
5.11.	Idempotent elements	137
5.12.	Fundorial properties	143
5.13.	Multiplicative induction and symmetric powers	149

5.14.	An example: The group SO(3).	155
5.15.	Comments	156
5.16.	Exercises	157
6.	Induction theory	159
6.1.	Mackey functors	159
6.2.	Frobenius functors and Green functors	165
6.3.	Hyperelementary induction	168
6.4.	Comments	171
6.5.	Exercises	171
7.	Equivariant homology and cohomology	172
7.1.	A general localization theorem	172
7.2.	Classifying spaces for families of isotropy groups	175
7.3.	Adjacent families	177
7.4.	Localization and orbit families	180
7.5.	Localization and splitting of equivariant homology	185
7.6.	Transfer and Mackey structure	188
7.7.	Localization of equivariant K-theory	193
7.8.	Localization of the Burnside ring	198
7.9.	Comments	200
8.	Equivariant homotopy theory	201
8.1.	Generalities	201
8.2.	Homotopy equivalences	205
8.3.	Obstruction theory	210
8.4.	The equivariant Hopf theorem	212
8.5.	Geometric modules over the Burnside ring	214
8.6.	Prime ideals of equivariant cohomotopy rings	221
8.7.	Comments	226
8.8.	Exercises	227

VII

9.	Homotopy equivalent group representations	228
9.1.	Notations and results	228
9.2.	Dimension of fixed point sets	230
9.3.	The Schur index	237
9.4.	The groups i(G) and iO(G)	241
9.5.	Construction of homotopy equivalences	249
9.6.	Homotopy equivalences for p-groups	252
9.7.	Equivariant K-theory and fixed point degrees	254
9.8.	Exercises	259
10.	Geometric modules over the Burnside ring	260
10.1.	Local J-groups	260
10.2.	Projective modules	261
10.3.	The Picard group and invertible modules	267
10.4.	Comments	277

11.	Homotopy equivalent stable G-vector bundles	278
11.1.	Introduction and results about local J-groups	278
11.2.	Mapping degrees. Orientations.	281
11.3.	Maps between representations and vector bundles	283
11.4.	Local J-groups at p	286
11.5.	Local J-groups away from p	291
11.6.	Projective modules	293
References		296

309

Notation