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Abstract

The Grothendieck construction is a process to form a single category from a diagram of small categories.
In this paper, we extend the definition of the Grothendieck construction to diagrams of small categories
enriched over a symmetric monoidal category satisfying certain conditions. Symmetric monoidal categories
satisfying the conditions in this paper include the category of k-modules over a commutative ring k, the
category of chain complexes, the category of simplicial sets, the category of topological spaces, and the
category of modern spectra. In particular, we obtain a generalization of the orbit category construction
in [CM06]. We also extend the notion of graded categories and show that the Grothendieck construction
takes values in the category of graded categories. Our definition of graded category does not require any
coproduct decompositions and generalizes k-linear graded categories indexed by small categories defined in
[Low08].

There are two popular ways to construct functors from the category of graded categories to the category
of oplax functors. One of them is the smash product construction defined and studied in [CM06, Asaa, Asab]
for k-linear categories and the other one is the fiber functor. We construct extensions of these functors for
enriched categories and show that they are “right adjoint” to the Grothendieck construction in suitable
senses.

As a byproduct, we obtain a new short description of small enriched categories.
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1 Introduction

1.1 The Grothendieck Construction

Given a diagram of small categories
X : I −→ Categories

indexed by a small category I, there is a way to form a single category Gr(X), called the Grothendieck con-
struction on X . The construction first appeared in §8 of Exposé VI in [SGA71]. It can be used to prove an
equivalence of categories of prestacks and fibered categories

Gr : Prestacks(I)←→ Fibered(I) : Γ, (1)

where Prestacks(I) is the category of lax presheaves (contravariant lax functors satisfying certain conditions)

X : Iop −→ Categories

and Fibered(I) is the category of fibered categories

π : E −→ I

over I, which is a full subcategory of the category of prefibered categories Prefibered(I) over I. See [Hol, Vis],
for example.

It was Quillen who first realized the usefulness of (pre)fibered categories in homotopy theory. In particular,
he proved famous Theorem A and B for the classifying spaces of small categories in [Qui73]. The Grothendieck
construction was used implicitly in the proofs of these theorems. Subsequently, the classifying space of the
Grothendieck construction of a diagram of categories was studied by Thomason [Tho79] who found a description
in terms of the homotopy colimit construction of Bousfield and Kan [BK72]

BGr(X) ≃ hocolim
I

B ◦X, (2)

where
B : Categories −→ Spaces

is the classifying space functor described, for example, in [Seg68].
Since then the Grothendieck construction has been one of the most indispensable tools in homotopy theory

of classifying spaces, as is exposed by Dwyer [DH01]. The work of Quillen [Qui78] suggests the usefulness of
the classifying space techniques in combinatorics in which posets are one of the central objects of study. When
the indexing category I is a poset and the functor X takes values in the category of posets, the Grothendieck
construction of X is called the poset limit of X . Thomason’s homotopy colimit description (2) has been proved
to be useful in topological combinatorics. See [WZŽ99], for example.

When G is a group regarded as a category with a single object, giving a functor

X : G −→ Categories

is equivalent to giving a category X equipped with a left action of G. The Grothendieck construction has been
used implicitly in this context. One of the most fundamental examples is the semidirect product of groups.
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The translation groupoid G ⋉ X for an action of a topological group G on a space X used in the study of
orbifolds [Moe02] is another example. When X takes values in posets, Borcherds [Bor98] called the Grothendieck
construction the homotopy quotient ofX by G. This terminology is based on Thomason’s homotopy equivalence
(2)

BGr(X) ≃ hocolim
G

BX = EG×G BX

and the fact that the Borel construction EG ×G BX is regarded as a “homotopy theoretic quotient” of BX
under the action of G.

Algebraists have been studying group actions on k-linear categories

X : G −→ k-Categories

and several “quotient category” constructions are known in relation to covering theory of k-linear categories.
It turns out that some of them [CM06, Asaa, Asab] are equivalent to a k-linear version of the Grothendieck
construction. More general diagrams of k-linear categories are considered by Gerstenhaber and Schack in their
study of deformation theory. In particular, the Grothendieck construction was used in [GS83a] in a process of
assembling a diagram A of k-linear category into an algebra A!.

Thomason’s theorem also suggests the Grothendieck construction can be regarded as a kind of colimit con-
struction. It is also stated in Thomason’s paper that the construction can be naturally extended to oplax
functors. (See Definition 2.42 for oplax functors.) In fact, category theorists studied the Grothendieck con-
struction as a model of 2-colimits in the bicategory of small categories. It was proved by J. Gray [Gra69] (also
stated in [Tho79]) that the Grothendieck construction regarded as a functor

Gr :
←−−−−
Oplax(I,Categories) −→ Categories

is left adjoint to the diagonal (constant) functor

∆ : Categories −→
←−−−−
Oplax(I,Categories),

where
←−−−−
Oplax(I,Categories) is the 2-category of oplax functors.

The original motivation for the Grothendieck construction in [SGA71] and the equivalence (1) suggest,
however, we should regard Gr as a functor

Gr :
←−−−−
Oplax(I,Categories) −→

←−−−−−−−−
Categories ↓ I,

where
←−−−−−−−−
Categories ↓ I is a 2-category of comma categories over I whose morphisms are relaxed by taking “left

natural transformations” into account. See §2.4 for precise definitions.
On the other hand, the orbit category construction in [CM06, Asaa] gives rise to a functor

Gr :
←−−−−
Funct(G, k-Categories) −→ k-

←−−−−−−−−
CategoriesG,

where k-
←−−−−−−−−
CategoriesG is the 2-category of G-graded k-linear categories. In a recent paper [Asab] Asashiba

proved that this functor induces an equivalence of 2-categories

Gr :
←−−−−
Funct(G, k-Categories)←→ k-

←−−−−−−−−
CategoriesG : Γ. (3)

As is suggested by the similarity between this equivalence and (1), we should regard the orbit category con-
struction as a k-linear version of the Grothendieck construction.

This ubiquity of the Grothendieck construction suggests us to work in a more general framework. For
example, when we study the derived category of a k-linear category equipped with a group action, it would be
useful if we have a general theory of the Grothendieck construction for dg categories, i.e. categories enriched
over the category of chain complexes, which can be regarded as a model for enhanced triangulated categories
according to Bondal and Kapranov [BK90]. Another important model of enhanced triangulated categories is
the notion of stable quasicategory (stable (∞, 1)-category) by Lurie [Lur], which is closely related to stable
simplicial categories appeared in a work of Toën and Vezzosi [TV04], i.e. categories enriched over the category
of simplicial sets.
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1.2 Gradings of Categories

In order to fully understand the meaning of the above similarities and attack the problem of extending the
Grothendieck construction to general enriched categories, we should find a unified way to handle the comma

category
←−−−−−−−−
Categories ↓ I and the category k-

←−−−−−−−−
CategoriesG of G-graded k-linear categories. It is immediate

to extend the definition of the Grothendieck construction to diagrams of enriched categories, as we will see in
§3.1. The problem is to find the right co-domain category of the Grothendieck construction for general enriched
categories.

The notion of group graded k-linear categories has been used as a natural “many objectification” of that of
group graded k-algebras. They are often defined in terms of coproduct decompositions, i.e. a k-linear category A
graded by a group G is a k-linear category whose module A(x, y) of morphisms has a coproduct decomposition

A(x, y) =
⊕

g∈G

Ag(x, y)

for each pair of objects x, y satisfying certain compatibility conditions.
For a (non-enriched) small category X , we may also define a G-grading as a coproduct decomposition

MorX(x, y) =
∐

g∈G

MorgX(x, y)

of the set of morphisms for each x, y, which satisfies the analogous compatibility conditions for group graded k-
linear categories. This coproduct approach can be extended to categories graded by a small category, including
k-linear categories. See, for example, [Low08].

Notice, however, that in the case of group graded small (non-enriched) categories, a G-grading on a category
X can be defined simply as a functor

p : X −→ G.

All the necessary compatibility conditions are encoded into the functoriality of p. And this definition of grading
is close to the co-domain in (1). It is desirable to redefine graded categories without referring to coproduct
decompositions in order to find a correct co-domain of the Grothendieck construction, although the idea of
describing a G-graded category as a k-linear functor from A to k[G] fails immediately.

In fact such an approach has already appeared in a classical work on group graded algebras by Cohen and
Montgomery [CM84]. When translated into the language of comodules, their observation can be stated as
follows.

Lemma 1.1. Let A be an algebra over a commutative ring k and G be a group. Then there is a one-to-one
correspondence between gradings of A by G and comodule algebra structure on A over k[G].

We pursue this observation and define graded k-linear categories as follows.

Definition 1.2. Let I be a small category. An I-grading on a k-linear category A is a structure of comodule
category on A over the coalgebra category I ⊗ k generated by I.

Undefined terminologies appearing in the above “definition” will be explained in §2. This definition extends
immediately to categories enriched over more general symmetric monoidal categories. A precise definition and
basic properties of graded categories will be given in §3.2 in the general context of categories enriched over a
symmetric monoidal category.

It turns out this comodule approach of Cohen and Montgomery is appropriate for generalizing the Grothendieck
construction and gradings for enriched categories. The Grothendieck construction should be regarded as a pro-
cess of forming a comodule category from a diagram of categories.

As a byproduct, we also obtain a simple characterization of categories enriched over a symmetric monoidal
category in terms of comodules.

Definition 1.3. Let V be a symmetric monoidal category satisfying a certain mild condition and S be a
set. A category enriched over V with the set of objects S is a monoid object in the monoidal category of
S-S-bicomodules.

The definition of S-S-bicomodule and the monoidal structure on the category of S-S-bicomodules will be
given in §A.1, including related definitions.
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1.3 Aim and Scope

The aim of this article, therefore, is the following:

• We define a grading of an enriched category by a small category I in terms of comodule structures over a
coalgebra category and investigate basic properties of the 2-category of I-graded categories.

• We extend the definition of the Grothendieck construction to enriched categories as a 2-functor

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -

←−−−−−−−−
CategoriesI ,

where
←−−−−
Oplax(I,V -Categories) is the 2-category of oplax functors and left transformations from I to

V -enriched categories and V -
←−−−−−−−−
CategoriesI is the 2-category of left I-graded categories.

• We show that Gr has a right adjoint

←−
Γ : V -

←−−−−−−−−
CategoriesI −→

←−−−−
Oplax(I,V -Categories).

We also study right versions. In particular we define 2-functors

Gr :
−−→
Lax(Iop ,V -Categories) −→ V -

−−−−−−−−→
CategoriesI

−→
Γ : V -

−−−−−−−−→
CategoriesI −→

−−→
Lax(Iop ,V -Categories).

• We extend the notion of (pre)fibered and (pre)cofibered categories by Grothendieck and graded (pre)fibered
categories by Lowen [Low08] to enriched graded (pre)fibered and (pre)cofibered categories. We define 2-
functors

Γcof : Precofibered(I) −→ V -
←−−−−−−−−
CategoriesI

Γfib : Prefibered(I) −→ V -
−−−−−−−−→
CategoriesI

and investigate their relations to
←−
Γ and

−→
Γ .

1.4 Organization

The paper is written as follows:

• We set up a categorical framework in §2. After a brief summary on monoidal categories in §2.1, we define
and study comonoids and comodules over them in §2.2. We describe the standard definition of enriched
categories in §2.3. 2-categorical notions used in this paper are recalled in §2.4. We introduce notions of
coalgebra categories and comodule categories over a coalgebra category and investigate their properties
in §2.5.

• The Grothendieck construction for diagrams of enriched categories is defined in §3. The construction is
given in §3.1. We introduce the 2-category of graded categories in §3.2 and the Grothendieck construction
is extended into a 2-functor taking values in the 2-category of graded categories in §3.3.

• §4 is devoted to definitions of taking “fibers” of graded enriched categories. We define three ways to take
fibers over an object in the grading category in §4.1. The notions of prefibered, precofibered, fibered, and
cofibered categories are extended to enriched categories in §4.2.

• In §5, we prove several properties of the Grothendieck construction. We show that the comma category
constructions defined in the previous section can be regarded as an extension of the smash product
construction and prove that it is right adjoint to the Grothendieck construction. A main result is Theorem

5.1. We also study relations between
←−
Γ and Γcof in §5.2.

• We include four appendices. We define categories enriched over a symmetric monoidal category in terms
of comodules in §A.1. §A.2 is an enriched version of a well-known fact that the Grothendieck construction
can be regarded as a 2-colimit. We specialize the contents of §3 to the case of categories enriched over a
symmetric monoidal category whose unit object is terminal and the tensor product is given by the product
in §A.3. Constructions corresponding to those in §5 are described in §A.4.
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2 Categorical Preliminaries

2.1 Monoidal Categories

Throughout this paper, we fix a symmetric monoidal category V and work in V . Before we begin our discussion,
let us briefly summarize basic definitions and properties of monoidal categories. A convenient summary is the
appendix of [Pfe], for example.

Definition 2.1. Let V be a category. A monoidal structure on V is a collection of the following data:

(1) an object 1 of V ,

(• ⊗ •) a (covariant) functor
⊗ : V × V −→ V ,

(• ⊗ • ⊗ •) a natural isomorphism

aA,B,C : A⊗ (B ⊗ C) −→ (A⊗B)⊗ C

called the associator,

(1 ⊗ •) a natural isomorphism
ℓA : 1⊗A −→ A,

(• ⊗ 1) a natural isomorphism
rA : A⊗ 1 −→ A.

They are required to satisfy the following three conditions:

(• ⊗ • ⊗ • ⊗ •) For any objects A,B,C,D in V , the following diagram is commutative

A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D) A⊗ ((B ⊗ C)⊗D)

((A ⊗B)⊗ C)⊗D (A⊗ (B ⊗ C)) ⊗D

''OOOOOOOOOOOOOOOO

1⊗a

wwoooooooooooooooo

a

���
�
�
�
�
�
�

a

���
�
�
�
�
�
�

a

oo a⊗1

(• ⊗ • ⊗ 1) For any objects A,B in V , the following diagram is commutative

A⊗ (B ⊗ 1) A⊗B

(A⊗B)⊗ 1

//1⊗r

��

a

::tttttttttttt

r

(1 ⊗ 1) ℓ1 = r1 : 1⊗ 1 −→ 1.
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Remark 2.2. The commutativity of the following diagrams follows from the above axioms, according to [Kel64].

(1 ⊗ • ⊗ •) For any objects A,B in V , the following diagram is commutative

1⊗ (A⊗B) A⊗B

(1 ⊗A)⊗B.

//ℓ

��

a

::tttttttttttt
ℓ

(• ⊗ 1⊗ •) For any objects A,B in V , the following diagram is commutative

A⊗ (1⊗B) A⊗B

(A⊗ 1)⊗B.

//1⊗ℓ

��

a

::tttttttttttt
r⊗1

Our primary examples are the category Sets of sets, the category k-Mod of k-modules over a commutative
ring k, the category C(k) of chain complexes over k, the category Spaces of topological spaces, the category

Sets∆op

of simplicial sets, and the category Categories of small categories. We may also consider one of models
of modern category Spectra of spectra (in the sense of algebraic topology) [EKMM97, HSS00, MM02]. All
these categories have coproducts.

Definition 2.3. We say a monoidal category (V ,⊗, 1) is a monoidal category with coproducts if V is closed
under coproducts and ⊗ distributes with respect to coproducts.

k-Mod and C(k) are different from Sets, Spaces, and Categories.

Definition 2.4. A monoidal category (V ,⊗, 1) is an additive monoidal category if

1. V has a structure of additive category, i.e. it has a 0-object, has finite coproducts, the set of morphisms
MorV (A,B) from A to B has a structure of Abelian group, and the composition of morphisms is bilinear.

2. V is a monoidal category with finite coproducts,

3. the monoidal structure

⊗ : MorV (A,B)×MorV (C,D) −→ MorV (A⊗ C,B ⊗D)

is bilinear.

An additive monoidal category V is called an Abelian monoidal category if it is an Abelian category.

Example 2.5. k-Mod and C(k) are Abelian monoidal categories.

The remaining examples but Spectra have the following structure.

Definition 2.6. We say a monoidal category is of product type if the unit object 1 is terminal and ⊗ is given
by the categorical product.

Example 2.7. Sets, Spaces, Sets∆op

, and Categories are of product type.

The category Spectra of spectra is neither Abelian nor of product type. But it can be fit into our work by
replacing isomorphisms by weak equivalences. See Remark 2.22.

All of our monoidal categories are symmetric.

7



Definition 2.8. Let V be a monoidal category. A switching operation on V is a natural transformation

tA,B : A⊗B −→ B ⊗A,

i.e. the diagram

A⊗B B ⊗A

C ⊗D D ⊗ C

//tA,B

��
f⊗g

��
g⊗f

//tC,D

is commutative for any morphisms f and g.

Definition 2.9. A monoidal category V with a switching operation t is called a symmetric monoidal category
if

1. tA,B ◦ tB,A = 1 for any objects A,B.

2. The following diagram is commutative for any triple of objects A,B,C:

A⊗ (B ⊗ C)

(B ⊗ C)⊗A (A⊗B)⊗ C

B ⊗ (C ⊗A) (B ⊗A)⊗ C

B ⊗ (A⊗ C)

zztttttt
ttttttt

tA,B⊗C

$$JJ
JJJJJJJJ

JJJ

aA,B,C

��

tA,B⊗1

OO

aB,C,A

zzttt
tttttttttt

aB,A,C

ddJJJJJJJJJJJJJ
1⊗tA,C

We often have a left adjoint to the “underlying set” functor.

Definition 2.10. Let (V ,⊗, 1) be a monoidal category. The functor

MorV (1,−) : V −→ Sets

is called the “underlying set” functor.

For example, the forgetful functor from k-Mod to Sets can be expressed as Mork-Mod(k,−) and k is the
unit object in k-Mod. In this case we have a left adjoint

(−)⊗ k : Sets −→ k-Mod

which assigns to each set S the free module generated by S.
We require this property as a fundamental assumption on our symmetric monoidal category V .

Assumption 2.11. In the rest of this paper, we assume V is a symmetric monoidal category with coproducts
satisfying the following conditions.

1. V is closed under finite limits.

2. The “underlying set” functor
MorV (1,−) : V −→ Sets

has a left adjoint
(−)⊗ 1 : Sets −→ V .

8



Example 2.12. The categories Sets, Sets∆op

, Spaces, k-Mod, C(k), Categories and Spectra all satisfy
the above conditions.

A monoidal category can be regarded as a 2-category with a single object. When we talk about functors
between monoidal categories, we need a notion of lax monoidal functor.

Definition 2.13. Let (C,⊗, 1C) and (D,⊗, 1D) be monoidal categories.

1. A lax monoidal functor is a triple (F, µ, η), where

• F : C → D is a functor,

• µx,y : F (x) ⊗ F (y)→ F (x⊗ y) is a natural transformation,

• η : 1D → F (1C) is a morphism in D,

which make the following diagrams commutative:

(a)

(F (x) ⊗ F (y))⊗ F (z)

F (x⊗ y)⊗ F (z) F (x) ⊗ (F (y)⊗ F (z))

F ((x⊗ y)⊗ z) F (x) ⊗ F (y ⊗ z)

F (x⊗ (y ⊗ z))

uullllllllllllllll
µ⊗1

))RRRRRRRRRRRRRRRR

a

��

µ

��
1⊗µ

))RRRRRRRRRRRRRRRR

F (a)
uullllllllllllllll

µ

(b)

1D ⊗ F (x) F (1C)⊗ F (x)

F (x) F (1C ⊗ x)
��

//

��
oo

(c)

F (x) ⊗ 1D F (x)⊗ F (1C)

F (x) F (x⊗ 1C)

//

�� ��
oo

2. An oplax monoidal functor is a triple (F, µ, η), where

(a) F : C → D is a functor;

(b) µx,y : F (x⊗ y)→ F (x) ⊗ F (y) is a natural transformation;

(c) η : F (1C)→ 1D is a morphism in D,

which make the following diagrams are commutative:

9



(a)

(F (x) ⊗ F (y))⊗ F (z)

F (x⊗ y)⊗ F (z) F (x) ⊗ (F (y)⊗ F (z))

F ((x⊗ y)⊗ z) F (x) ⊗ F (y ⊗ z)

F (x⊗ (y ⊗ z))

))RRRRRRRRRRRRRRRR

a

55llllllllllllllll

µ⊗1

OO

µ

))RRRRRRRRRRRRRRRR

F (a)

OO

1⊗µ

55llllllllllllllll
µ

(b)

1D ⊗ F (x) F (1C)⊗ F (x)

F (x) F (1C ⊗ x)
��

oo

oo

OO

(c)

F (x) ⊗ 1D F (x)⊗ F (1C)

F (x) F (x⊗ 1C)
��

oo

oo

OO

2.2 Comonoids, Comodules, and Coproduct Decompositions

In this section, we introduce and study the notion of comonoids in a symmetric monoidal category and comodules
over them, which play central roles in this paper.

Let V be a symmetric monoidal category satisfying the conditions in Assumption 2.11.

Definition 2.14. A comonoid object in V is an object C equipped with morphisms

∆ : C −→ C ⊗ C

ε : C −→ 1

making the following diagrams commutative

C

1⊗ C C ⊗ C C ⊗ 1
��
∆

zztttttttttt
∼=

$$JJJJJJJJJJ
∼=

oo ε⊗1 //1⊗ε

C C ⊗ C

(C ⊗ C)⊗ C

C ⊗ C C ⊗ (C ⊗ C),

//∆

��

∆

��

∆⊗1

//1⊗∆

OO

a

10



where a is the associator in V .
The morphisms ∆ and ε are called the coproduct and the counit of C, respectively.
Morphisms of comonoids are defined in an obvious way. The category of comonoids in V is denoted by

Comonoids(V ).

Example 2.15. When 1 is terminal and ⊗ is the product, i.e. when V is of product type (Definition 2.6), any
object in V has a canonical comonoid structure.

A typical example of such a monoidal category is the category of sets. Under our assumption on V (As-
sumption 2.11), we can compare the category of sets and V by the “free object” functor

(−)⊗ 1 : Sets −→ V ,

which is left adjoint to the underlying set functor.

Lemma 2.16. (−)⊗ 1 is an oplax monoidal functor.

Proof. We need to define a natural transformation

θ : ((−)× (−))⊗ 1 =⇒ ((−)⊗ 1)⊗ ((−)⊗ 1).

For sets S, T , consider the composition

S × T −→ MorV (1, S ⊗ 1)×MorV (1, T ⊗ 1)
⊗
−→ MorV (1⊗ 1, (S ⊗ 1)⊗ (T ⊗ 1))
∼=
−→ MorV (1, (S ⊗ 1)⊗ (T ⊗ 1)).

By taking the adjoint, we obtain

θS,T : (S × T )⊗ 1 −→ (S ⊗ 1)⊗ (T ⊗ 1).

By taking the left adjoint to the map
11 : {∗} −→ MorV (1, 1)

representing the identity morphism on the unit object, we obtain

η : {∗} ⊗ 1 −→ 1.

It is straightforward to check that θ and η satisfy the condition for an oplax monoidal functor.

Example 2.17. For any set S, S ⊗ 1 has a comonoid structure defined as follows. We have

θ : (S × S)⊗ 1 −→ (S ⊗ 1)⊗ (S ⊗ 1)

by the above Lemma. By composing with

∆⊗ 1 : S ⊗ 1 −→ (S × S)⊗ 1,

we obtain a coproduct
∆ : S ⊗ 1 −→ (S ⊗ 1)⊗ (S ⊗ 1).

The counit is defined by

ε : S ⊗ 1 −→ {∗} ⊗ 1
η
−→ 1.

Definition 2.18. Let C be a comonoid in V . A right coaction of C on an object M in V is a morphism

µ : M −→M ⊗ C

11



making the following diagrams commutative

M

M ⊗ 1 M ⊗ C
��
µ

zztttt
ttt

tt
tt∼=

oo 1⊗ε,

M M ⊗ C

M ⊗ (C ⊗ C)

M ⊗ C (M ⊗ C)⊗ C.

//µ

��

µ

��

1⊗∆

��

a

//µ⊗1

An objectM equipped with a right coaction of C is called a right C-comodule. Morphisms of right comodules
are defined in an obvious way.

Left coactions are defined analogously. An object M equipped with both right coaction µR and left coaction
µL is called a C-C-bimodule if the following diagram is commutative.

M C ⊗M

M ⊗ C C ⊗ (M ⊗ C)

(C ⊗M)⊗ C

//µL

��

µR

��

1⊗µL

$$JJJJJJJJJJJJJJ

µL⊗1

zzttttttttttttt

a

The categories of right C-comodules, left C-comodules, and C-C-bimodules are denoted by Comod-C,
C-Comod, and C-Comod-C, respectively.

Example 2.19. Suppose V is of product type. By Example 2.15, any object C can be regarded as a comonoid
and any morphism

f : M −→ C

is a morphism of comonoids. Define

µ : M
∆
−→M ⊗M

1⊗f
−→M ⊗ C,

then µ is a coaction of C on M .
Conversely any coaction µ is determined by the composition

π : M
µ
−→M ⊗ C

pr2−→ C,

since the composition of µ and the first projection is always the identity morphism by the counit condition.

The following is a direct extension of an observation (Lemma 1.1) by Cohen and Montgomery in [CM84].

Lemma 2.20. Suppose V = k-Mod for a commutative ring k. Let M be an object of V and S be a set. Then
there is a one-to-one correspondence between right S⊗1-comodule structures on M and coproduct decompositions
on M indexed by S

M ∼=
⊕

s∈S

M s.

12



Proof. Suppose we have a coproduct decomposition

M ∼=
⊕

s∈S

M s.

Define
µ : M −→M ⊗ (S ⊗ 1)

on each component M s by the composition

M s ∼=
←−M s ⊗ 1

1⊗s
−→M s ⊗ (S ⊗ 1).

The coassociativity follows from the commutativity of the following diagram

M s M s ⊗ 1 M s ⊗ (S ⊗ 1)

M s ⊗ 1 (M s ⊗ 1)⊗ 1 (M s ⊗ 1)⊗ (S ⊗ 1)

M s ⊗ (1⊗ 1) (M s ⊗ (S ⊗ 1))⊗ 1 (M s ⊗ (S ⊗ 1))⊗ (S ⊗ 1)

M s ⊗ ((S ⊗ 1)⊗ 1) M s ⊗ ((S ⊗ 1)⊗ (S ⊗ 1)).

//

�� ��

//1⊗s

��
//

�� ��
(1⊗s)⊗1

//(1⊗1)⊗s

��
(1⊗s)⊗1

**TTTTTTTTTTTTTTTTT
1⊗(s⊗1)

//(1⊗1)⊗s

�� ��
//1⊗(1⊗s)

The counitality is obvious.
Conversely suppose we have a comodule structure

µ : M −→M ⊗ (S ⊗ 1).

For each s ∈ S, define a morphism
ps : M −→M

by the composition

M M ⊗ (S ⊗ 1)

⊕

t∈S

M ⊗ (t⊗ 1)

M ⊗ (s⊗ 1)

M M.

//µ //∼=

��

projection

��

∼=

//ps

By the coassociativity of µ and the fact that the coproduct on S ⊗ 1 is given by the diagonal on S, we have

ps ◦ pt =

{

ps, s = t

0, s 6= t.

By the definition of ps and the counitality of µ,

∑

s∈S

ps = 1M

13



and we have a coproduct decomposition

M ∼=
⊕

s∈S

Im ps.

The above discussion is based on the fact that k-Mod is Abelian. Even when V is not Abelian, we often
obtain a coproduct decomposition from a comodule structure. Suppose V is a product type monoidal category.
In such a monoidal category, a coaction

µ : M −→M ⊗ (S ⊗ 1)

defines and is defined by a morphism

π : M
µ
−→M ⊗ (S ⊗ 1) −→ S ⊗ 1

by Example 2.19.

Example 2.21. Let V be the category Spaces of topological spaces. This is a product type monoidal category
and thus any object C is a comonoid and a coaction of C on another object M determines and is determined
by a morphism

p : M −→ C

When C has a discrete topology, i.e. C = S ⊗ 1 for a set S, such a continuous map induces a coproduct
decomposition

M ∼=
∐

s∈S

M s

by M s = p−1(s). We have analogous decompositions when V is the category of sets, of simplicial sets, or of
small categories.

Remark 2.22. When V is one of models of symmetric monoidal category of spectra, we do not have such a
correspondence between comodule structures and coproduct decompositions. However, we can obtain analogous
coproduct decomposition from a comodule structure by replacing isomorphisms by weak equivalences.

The following operation plays an important role.

Definition 2.23. Let C be a comonoid in V and M and N be a right and a left C-comodules. Define the
cotensor product M2CN of M and N over C by the following equalizer diagram

M2CN // M ⊗N
µM⊗1N//

1M⊗µN

// M ⊗ C ⊗N.

We need the following condition on C.

Definition 2.24. An object C in V is called flat if C ⊗ (−) preserves equalizers.

Remark 2.25. Since V is symmetric, if C is flat, (−)⊗ C also preserves equalizers.

The condition that C⊗ (−) preserves equalizers is satisfied when V is Sets, Spaces, Sets∆op

for any C and
when V is k-Mod and C is flat. In particular, when V = k-Mod and C = S ⊗ 1, the free k-module generated
by a set S, the condition is satisfied.

Lemma 2.26. Let C be a flat comonoid object in V . For C-C-bicomodules M and N , M2CN has a structure
of C-C-bicomodule under which the canonical morphism

M2CN −→M ⊗N

is a morphism of bicomodules. Furthermore 2C defines a monoidal structure on C-Comod-C. The unit object
is C.

14



Proof. For C-C-bicomodules

µLM : M −→ C ⊗M,

µRM : M −→M ⊗ C,

µLN : N −→ C ⊗N,

µRN : N −→ N ⊗ C,

we need to define a bimodule structure on M2CN .
Since C ⊗ (−) preserves equalizers, we can define a left coaction

µLM2C1 : M2CN −→ C ⊗ (M2CN)

by the following diagram

M2CN //

��

M ⊗N

µL
M⊗1N

��

µR
M⊗1N //

1M⊗µ
L
N

// M ⊗ C ⊗N

µL
M⊗1C⊗1N

��
C ⊗ (M2CN) // C ⊗M ⊗N

1⊗µR
M⊗1N//

1⊗1M⊗µ
L
N

// C ⊗M ⊗ C ⊗N.

The right comodule structure is defined analogously.
The associator of⊗ defines an associator for 2C and (C-Comod-C,2C , C) becomes a monoidal category.

We also need to compare comodules over different comonoids.

Definition 2.27. Let C andD be comonoids in V andM andN be right comodules over C andD, respectively.
A morphism of right comodules from M to N

f : M −→ N

is a pair f = (f0, f1) morphisms

f0 : C −→ D

f1 : M −→M,

where f0 is a morphism of comonoids and f1 makes the following diagram commutative

M M ⊗ C

N N ⊗D.
���
�
�
�
�
�
�
�
�

f1

//

���
�
�
�
�
�
�
�

f1⊗f0

//

Morphisms of left comodules and bicomodules are defined analogously.

2.3 Enriched Categories

In this section, we collect the standard definitions concerning categories enriched over a symmetric monoidal
category. We can use the language developed in §2.2 to define (small) enriched categories and related notions in
a very compact way, as is shown in §A.1. We have chosen to use the traditional definitions for the convenience
of the reader. Our reference is Kelly’s book [Kel82]. The reader is encouraged to compare definitions in this
section and the corresponding definitions in §A.1.

Definition 2.28. A category enriched over V , or simply a V -category A consists of

• a class of objects A0;

• for two objects a, b in A, an object A(a, b) in V ;

15



• for three objects a, b, c in A, a morphism

◦ : A(b, c)⊗A(a, b) −→ A(a, c)

in V ;

• for an object a in A, a morphism in V

1a : 1 −→ A(a, a)

satisfying the following conditions:

1. for any objects a, b, c, d, the following diagram is commutative

(A(c, d) ⊗A(b, c))⊗A(a, b) A(c, d) ⊗ (A(b, c)⊗A(a, b))

A(b, d)⊗A(a, b) A(c, d)⊗A(a, c)

A(a, d)

��

◦⊗1

//a

��

1⊗◦

$$JJJJJJJJJJJJ

◦

zztttttttttttt

◦

2. for any objects a, b, the following diagram is commutative

A(b, b)⊗A(a, b) A(a, b) A(a, b)⊗A(a, a)

1⊗ A(a, b) A(a, b)⊗ 1

//◦ oo ◦
OO ::tttttttttttttt

OOddJJJJJJJJJJJJJJ

where 1 is the unit object in V .

Any enriched category has its underlying category.

Definition 2.29. Let A be a V -category. Define an ordinary category A as follows. Objects are the same as
objects in A. The set of morphisms from a ∈ A0 to b ∈ A0 is defined by

MorA(a, b) = MorV (1, A(a, b)).

The composition is given by

MorA(b, c)×MorA(a, b) = MorV (1, A(b, c))×MorV (1, A(a, b))

−→ MorV (1⊗ 1, A(b, c)⊗A(a, b))
∼=
←− MorV (1, A(b, c)⊗A(a, b))

−→ MorV (1, A(a, c))

= MorA(a, c).

When it is obvious from the context, a V -category and its underlying category are denoted by the same
symbol.

Definition 2.30. Let A be a V -category. For a morphism in the underlying category f ∈ MorA(a, b), define
morphisms in V

f∗ : A(c, a) −→ A(c, b),

f∗ : A(b, c) −→ A(a, c)

by the following compositions

f∗ : A(c, a) ∼= 1⊗A(c, a)
f⊗1
−→ A(a, b)⊗A(c, a)

◦
−→ A(c, b),

f∗ : A(b, c) ∼= A(b, c)⊗ 1
1⊗f
−→ A(b, c)⊗A(a, b)

◦
−→ A(a, c).
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The following is the standard description of V -functors.

Definition 2.31. Let A and B be small V -categories. A V -functor f from A to B consists of a map

f0 : A0 −→ B0

and a morphism
f1 : A(a, b) −→ B(f(a), f(b))

in V for each pair a, b of objects in A, satisfying the following conditions:

1. the following diagram is commutative

A(b, c)⊗A(a, b) A(a, c)

B(f(b), f(c))⊗B(f(a), f(b)) B(f(a), f(c)),

//

�� ��
//

2. and the following diagram is commutative

1 A(a, a)

B(f(a), f(a)).

//

��?
??

??
??

??
??

���
�
�
�
�
�
�
�

Definition 2.32. The category of small V -categories and V -functors is denoted by V -Categories.

The monoidal structure on V -Categories (Lemma A.10) can be described as follows.

Lemma 2.33. For small V -categories A and B, define a V -category A⊗B by

(A⊗B)0 = A0 ×B0

and
(A⊗B)((a, b), (a′, b′)) = A(a, a′)⊗B(b, b′).

Define a V -category 1 with a single object ∗ by 1(∗, ∗) = 1.
If V is symmetric monoidal, (V -Categories,⊗, 1) forms a symmetric monoidal category whose associator

is defined by that of V .

Example 2.34. When V is the category of k-modules for a commutative ring k, V -categories are called k-linear
categories and the category of small k-linear categories is denoted by k-Categories. When V is the category of
(unbounded) chain complexes over a fixed commutative ring k, V -categories are called dg (differential graded)
categories over k.

When V is the category of simplicial sets, topological spaces, or spectra (in the sense of algebraic topology),
V -categories are called simplicial categories, topological categories, or spectral categories.

Example 2.35. Consider the case when V is the category Categories of small categories. Categories-
enriched categories are usually called (strict) 2-categories. Categories-functors are called 2-functors. See §2.4
for more details on 2-categories.

The following is the standard definition of V -natural transformation.

Definition 2.36. Let
f, g : A −→ B

be V -functors. A V -natural transformation ϕ from f to g, denoted by

ϕ : f =⇒ g
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consists of a family of morphisms in V

ϕ(a) : 1 −→ B(f(a), g(a))

indexed by objects in A making the following diagram commutative for any pair of objects in A:

A(a, a′)

A(a, a′)⊗ 1 1⊗A(a, a′)

B(g(a), g(a′))⊗B(f(a), g(a)) B(f(a′), g(a′))⊗B((f(a), f(a′)))

B(f(a), g(a′))

))RRRRRRRRRRRRRRRRRR

ℓ−1

uullllllllllllllllll

r−1

��

g⊗ϕ(a)

��

ϕ(a′)⊗f

))RRRRRRRRRRRRRRRRR

◦

uulllllllllllllllll

◦

The composition of V -natural transformations is defined in an obvious way.

Definition 2.37. Let
f, g, h : A −→ B

be V -functors and

f
ϕ +3 g

ψ +3 h

be V -natural transformations. The composition

ψ ◦ ϕ : f =⇒ h

is defined by

(ψ ◦ ϕ)(a) : 1
∼=
−→ 1⊗ 1

ψ(a)⊗ϕ(a)
−→ B(g(a), h(a))⊗B(f(a), g(a))

◦
−→ B(f(a), h(a)).

2.4 The Language of 2-Categories

We need the language of 2-categories in order to fully understand the role and meanings of the Grothendieck
construction. Our reference is [Str72].

Definition 2.38. A (strict) 2-category C is a category enriched over the category of small categories. In other
words, for each pair of objects x and y in C, C(x, y) is a category. Objects in C(x, y) are called 1-morphisms
and morphisms in C(x, y) are called 2-morphisms.

The category obtained from a 2-category C by forgetting 2-morphisms is denoted by sk1 C.

Example 2.39. V -categories, V -functors, and V -natural transformations form a 2-category V -Categories.

Example 2.40. Any category can be regarded as a 2-category whose 2-morphisms are identities.

Example 2.41. Let B be a V -category. Define a 2-category V -
←−−−−−−−−
Categories ↓ B as follows. Objects are

V -functors
π : E −→ B.

A left morphism from π : E → B to π′ : E′ → B is a pair (F, ϕ) of a V -functor

F : E −→ E′

and a V -natural transformation
ϕ : π′ ◦ F =⇒ π.
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For left morphisms
(F, ϕ), (G,ψ) : π −→ π′,

a 2-morphism from (F, ϕ) to (G,ψ) is a V -natural transformation

ξ : F =⇒ G

making the following diagram commutative

π′ ◦ F

ϕ
�'

FF
FF

FF
FF

FF
FF

FF
FF

π′◦ξ +3 π′ ◦G

ψ
w� xx

xx
xx

xx

xx
xx

xx
xx

π

By reversing the direction of ϕ in left morphisms, we obtain right morphisms and another 2-category

V -
−−−−−−−−→
Categories ↓ B with the same objects.

We can define and discuss “functors” between 2-categories. One of them is 2-functors in Example 2.35.
However, we often encounter “functors up to natural transformations”. The notion of lax functor was introduced
by Street in [Str72] in order to describe such “functors”. For the Grothendieck construction, we need oplax
functors from ordinary categories to 2-categories.

Definition 2.42. Let I be a category and C be a 2-category. An oplax functor from I to C consists of the
following:

• a morphism of quivers
F : I −→ sk1 C,

• for each object i ∈ I0, a 2-morphism
ηi : F (1i) =⇒ 1F (i),

• for each pair of composable morphisms i
u
−→ i′

u′

−→ i′′, a 2-morphism

θu′,u : F (u′ ◦ u) =⇒ F (u′) ◦ F (u),

satisfying the following conditions:

1. For any morphism u : i→ j in I, the following diagram of 2-morphisms are commutative

F (u) ◦ 1F (i) F (u) ◦ F (1i)ks

F (u) F (u ◦ 1i)

KS

F (1j) ◦ F (u) +3 1F (j) ◦ F (u)

F (1j ◦ u)

KS

F (u)

2. For each sequence a
u
−→ b

v
−→ c

w
−→ d in I, the following diagram of natural transformations is commu-

tative
F (w ◦ v ◦ u)

��

+3 F (w ◦ v) ◦ F (u)

��
F (w) ◦ F (v ◦ u) +3 F (w) ◦ F (v) ◦ F (u).
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Remark 2.43. There seem to be confusions on these terminologies. Our oplax functors are called lax functors
by Goerss and Jardine [GJ99]. Lax functors in the sense of Street are required to “compose” functors

θu′,u : F (u′) ◦ F (u) =⇒ F (u′ ◦ u),

with respect to compositions of morphisms in I. We follow the original terminology in [Str72]. A precise
definition of lax functor can be found in this paper of Street’s.

Definition 2.44. Let I and C be as above. Let

X,Y : I −→ C

be oplax functors. A left transformation from X to Y consists of

• a family of 1-morphisms
F (i) : X(i) −→ Y (i)

indexed by objects i ∈ I0,

• a family of 2-morphisms ϕ(u) indexed by morphisms in I with

X(i)
F (i) //

X(u)

��

Y (i)

Y (u)

��

ϕ(u)

x� xx
xx

xx
xx

xx
xx

xx
xx

X(j)
F (j)

// Y (j)

if u : i→ j in I,

satisfying the following conditions:

1. For any object i ∈ I0, the following diagram is commutative

Y (1i) ◦ F (i) +3

��

F (i) ◦X(1i)

��
1Y (i) ◦ F (i) F (i) ◦ 1X(i)

2. For composable morphisms i
u
−→ j

v
−→ k in I, the following diagram is commutative

Y (v ◦ u) ◦ F (k) +3

��

Y (u) ◦ Y (v) ◦ F (k) +3 Y (u) ◦ F (j) ◦X(v)

��
F (k) ◦X(v ◦ u) +3 F (k) ◦X(v) ◦X(u).

We denote
(F, ϕ) : X −→ Y.

For left transformations

X
(F,ϕ)
−→ Y

(G,ψ)
−→ Z,

the composition (G ◦ F, ψ ◦ ϕ) : X → Z is defined by

(G ◦ F )(i) = G(i) ◦ F (i)

for i ∈ I0 and, for u : i→ j in I,

(ψ ◦ ϕ)(u) : Z(u) ◦ (G ◦ F )(i) =⇒ (G ◦ F )(j) ◦X(u)

is defined by the composition

Z(u) ◦ (G ◦ F )(i) = Z(u) ◦G(i) ◦ F (i)

=⇒ G(j) ◦ Y (u) ◦ F (i)

=⇒ G(j) ◦ F (j) ◦X(u)

= (G ◦ F )(j) ◦X(u).
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The reader might have noticed that the natural transformation ϕ(u) in the above definition goes in a wrong
direction with respect to F . But it is in the right direction with respect to u.

Definition 2.45. Let X and Y be as above. A right transformation from X to Y consists of a family of functors

F (i) : X(i) −→ Y (i)

indexed by i ∈ I0 and a family of 2-morphisms ϕ(u)

X(i)
F (i) //

X(u)

��

Y (i)

Y (u)

��
X(j)

ϕ(u)
8@

xxxxxxxx

xxxxxxxx

F (j)
// Y (j)

in C satisfying conditions analogous to those of left transformations.

We may dualize and define left and right transformations for lax functors.

Definition 2.46. Let I and C be as above. Let

X,Y : I −→ C

be lax functors. A left transformation of lax functors from X to Y consists of

• a family of 1-morphisms
F (i) : X(i) −→ Y (i)

indexed by i ∈ I0,

• a family of 2-morphisms
ϕ(u) : Y (u) ◦ F (i) =⇒ F (j) ◦X(u)

for u : i→ j,

satisfying the following conditions:

1. For any object i ∈ I0, the following diagram is commutative

Y (1i) ◦ F (i) +3

��

F (i) ◦X(1i)

1Y (i) ◦ F (i)

KS

F (i) ◦ 1X(i)

KS

2. For composable morphisms i
u
−→ j

v
−→ k in I, the following diagram is commutative

Y (v) ◦ F (j) ◦X(u)

��

Y (v) ◦ Y (u) ◦ F (i) +3ks Y (v ◦ u) ◦ F (i)

��
F (k) ◦X(v) ◦X(u) +3 F (k) ◦X(v ◦ u).

Right transformations of lax functors are defined by reversing the direction of ϕ(u) and by changing the
conditions accordingly.

We have 2-morphisms.

Definition 2.47. Let
X,Y : I −→ C

be oplax functors and
(F, ϕ), (G,ψ) : X −→ Y
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be left transformations of oplax functors. A morphism of left transformations from (F, ϕ) to (G,ψ) is a collection
of 2-morphisms in C

θ(i) : F (i) =⇒ G(i)

indexed by i ∈ I0 making the following diagram commutative

Y (u) ◦ F (i)

ϕ(u)

��

θ(i) +3 Y (u) ◦G(i)

ψ(u)

��
F (j) ◦X(u)

θ(j)
+3 G(j) ◦X(u)

for each morphism u : i→ j in I.
The composition of morphisms of left transformations is defined by the composition of 2-morphisms in C.

Morphisms between right transformations are defined by reversing arrows appropriately. We also have lax
versions of left and right transformations.

Oplax functors and lax functors form 2-categories but there are two variations.

Definition 2.48. Let I be a small category and C be a 2-category.
The 2-category consisting of oplax functors from I to C, left transformations, and morphisms of left trans-

formations is denoted by
←−−−−
Oplax(I,C). By using right transformations instead of left transformations, we also

obtain a 2-category, which is denoted by
−−−−→
Oplax(I,C).

Lax functors, left transformations, morphisms of left transformations form a 2-category and it is denoted by
←−−
Lax(I,C). The 2-category obtained by replacing left transformations by right transformations is denoted by
−−→
Lax(I,C).

By restricting objects to strict functors, we obtain the full 2-subcategories
←−−−−
Funct(I,C) and

−−−−→
Funct(I,C)

whose 1-morphisms are left and right transformations, respectively.

We have the following diagonal functor.

Definition 2.49. Define a functor
∆ : C −→

←−−−−
Oplax(I,C)

by
∆(X)(i) = X

on objects.

It is useful to have an explicit description of a morphism of oplax functors from F to ∆(A).

Lemma 2.50. Let A be an object of a 2-category C and X : I → C be an oplax functor. A morphism of oplax
functors

(F, ϕ) : X −→ ∆(A)

consists of

• a family of 1-morphisms
F (i) : X(i)→ A

indexed by objects in I, and

• a family of 2-isomorphisms
ϕ(u) : F (i) =⇒ F (j) ◦X(u)

indexed by morphisms in I,

satisfying the following conditions:

1. For each object i ∈ I0,
ηi ◦ ϕ(1i) = 1F (i).
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2. The following diagram of 2-morphisms is commutative

F (k)

��

+3 F (k) ◦X(v)

��
F (k) ◦X(v ◦ u) +3 F (k) ◦X(v) ◦X(u).

Proof. A direct translation of definition.

Example 2.51. Let G be a group. Consider the case C = k-Categories. A strict functor

X : G −→ k-Categories

is given by a k-linear category X equipped with an action of G. For a k-linear category Y , a morphism of oplax
functors

F : X −→ ∆(Y )

is given by a functor
F (∗) : X(∗) = X −→ ∆(Y )(∗) = Y

and a a family of natural transformations

ϕ(α) : F (∗) =⇒ F (∗) ◦X(α)

indexed by α ∈ G making the following diagram commutative

F (∗)

��

+3 F (∗) ◦X(β)

��
F (∗) ◦X(αβ) +3 F (∗) ◦X(α) ◦X(β).

This is nothing but the definition of right G-invariant functor in [Asaa].

2.5 Comodule Categories

We have seen in §2.2 that we often obtain a coproduct decomposition from a comodule structure, extending the
idea of a characterization of group graded algebras by Cohen and Montgomery [CM84].

The notion of group graded algebras has been extended to group graded k-linear categories and to k-linear
categories graded by a small category. See [CM06, Asaa, Low08], for example. In order to extend their
definitions to V -categories graded by a small category I, we introduce and investigate “many objectifications”
of comodules.

Recall from Lemma 2.33 that the category of V -categories has a symmetric monoidal structure.

Definition 2.52. A coalgebra V -category is a comonoid object in the monoidal category of V -categories.

Remark 2.53. In other words, a coalgebra V -category is a V -category C equipped with a family of morphisms

∆a,b : C(a, b) −→ C(a, b)⊗ C(a, b)

εa,b : C(a, b) −→ 1

indexed by pairs of objects a, b ∈ C0 satisfying the following conditions:

1. ∆a,b is compatible with compositions, i.e. the following diagram is commutative

C(b, c)⊗ C(a, b) C(a, c)

(C(b, c)⊗ C(b, c))⊗ (C(a, b)⊗ C(a, b))

(C(b, c)⊗ C(a, b))⊗ (C(b, c)⊗ C(a, b)) C(a, c)⊗ C(a, c),

//◦

��
∆b,c⊗∆a,b

��

∆a,c

��
T

//◦⊗◦
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where T is an appropriate composition of associators and a symmetry operator. (Recall that we assume
V is symmetric monoidal.)

2. ∆a,a preserves identity morphisms, i.e. the following diagram is commutative for each object a ∈ C0

1 1⊗ 1

C(a, a) C(a, a)⊗ C(a, a),
��

1a

oo ∼=

��
1a⊗1a

//∆a,a

3. εa,b is a counit for ∆a,b, i.e. the following diagram is commutative

C(a, b)

1⊗ C(a, b) C(a, b)⊗ C(a, b) C(a, b)⊗ 1
��
∆a,b

wwooooooooooooo
∼=

''OOOOOOOOOOOOO
∼=

ooεa,b⊗1 //1⊗εa,b

4. ∆a,b is coassociative, i.e. the following diagram is commutative

C(a, b) C(a, b)⊗ C(a, b)

C(a, b)⊗ (C(a, b)⊗ C(a, b))

C(a, b)⊗ C(a, b) (C(a, b)⊗ C(a, b))⊗ C(a, b).

//∆a,b

��

∆a,b

��
1⊗∆a,b

��
∼=

//∆a,b⊗1

Another way of saying this is that a coalgebra V -category is a category enriched over the category of comonoid
objects in V .

Example 2.54. Let I be a small category. Then we have a V -category I⊗1 by Lemma A.13. Each (I⊗1)(i, j)
has a structure of comonoid by Example 2.17. The comonoid structure is compatible with the compositions of
morphisms and preserves identities. Thus I ⊗ 1 is a coalgebra category.

Example 2.55. When V is of product type, any object C has a canonical comonoid structure by Example
2.15. The assumption that the unit object 1 is terminal guarantees the existence of counit morphisms

εa,b : C(a, b) −→ 1

and we have a coalgebra structure on C.

Definition 2.56. Let C be a coalgebra V -category. When a V -category X is equipped with a right comodule
structure over C

µ : X −→ X ⊗ C,

it is called a right comodule category over C. Left comodule categories are defined analogously.

It is convenient to have a more concrete description.

Lemma 2.57. Let C be a coalgebra V -category and X be a V -category. A right comodule structure on X

consists of

• a map
p : X0 −→ C0

between objects, and
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• a collection of morphisms
µx,y : X(x, y) −→ X(x, y)⊗ C(p(x), p(y))

indexed by pairs of objects in X

satisfying the following conditions:

1. The following diagram is commutative

X(y, z)⊗X(x, y) X(x, z)

X(y, z)⊗ (C(p(y), p(z)))⊗ (X(x, y)⊗ C(p(x), p(y)))

(X(y, z)⊗X(x, y))⊗ (C(p(y), p(z))⊗ C(p(x), p(y))) X(x, z)⊗ C(p(x), p(z)),

//◦

���
�
�
�
�
�
�

µy,z⊗µx,y

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

µx,z

���
�
�
�
�
�
�

T

//◦⊗◦

where T is an appropriate composition of associators and a symmetry operator.

2. The following diagram is commutative for each object x ∈ X0

1 1⊗ 1

X(x, x) X(x, x)⊗ C(p(x), p(x)).
���
�
�
�
�
�
�
�

1x

oo ∼=

���
�
�
�
�
�
�

1x⊗1p(x)

//µx,x

3. The following diagram is commutative

X(x, y)

X(x, y)⊗ 1 X(x, y)⊗ C(p(x), p(y))
��
µx,y

uulllllllllllllll
∼=

oo1⊗εx,y.

4. µx,y is coassociative in the sense that the following diagram is commutative

X(x, y) X(x, y)⊗ C(p(x), p(y))

(X(x, y)⊗ C(p(x), p(y)) ⊗ C(p(x), p(y)

X(x, y)⊗ C(p(x), p(y)) X(x, y)⊗ (C(p(x), p(y)) ⊗ C(p(x), p(y))).

//µx,y

��

µx,y

��
µx,y⊗1

��
∼=

//1⊗∆x,y

Proof. A functor µ : X → X ⊗ C defines a map

µ : X0 −→ X0 × C0.

Define p = pr2 ◦µ : X0 → C0. Then the counit condition implies

µ(x) = (x, p(x))

for x ∈ C0 and for each pair of objects x, y ∈ X0 we obtain

µx,y : X(x, y) −→ X(x, y)⊗ C(p(x), p(y)).

It is easy to verify that the conditions on µ for comodule structure corresponds to conditions in this Lemma.
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Example 2.58. Suppose V is of product type. By Example 2.55, any V -category has a canonical coalgebra
structure and any V -functor

p : X −→ C

is compatible with coproducts and counits. The composition

X(x, y)
∆
−→ X(x, y)⊗X(x, y)

1×p
−→ X(x, y)⊗ C(p(x), p(y))

makes X into a comodule over C.

Note that right comodules over a comonoid object in a symmetric monoidal category, in general, form a
category in an obvious way (Definition 2.27). Namely by requiring a morphism to make the diagram commutative

M N

M ⊗ C N ⊗ C.

//

�� ��
//

In the case of comodule categories, we should relax the commutativity of this diagram in the following way.

Definition 2.59. Let C be a coalgebra V -category and (X,µ) and (X ′, µ′) be right comodule categories over
C. A left morphism of right comodule categories from (X,µ) to (X ′, µ′) is a pair (F, ϕ) of a V -functor

F : X −→ X ′

and a V -natural transformation

X

µ

��

F // X ′

µ′

��

ϕ

u} ssssssssss

ssssssssss

X ⊗ C
F⊗1

// X ′ ⊗ C.

The composition of left morphisms are defined by the following diagram

X

µ

��

F // X ′

µ′

��u} ss
sss

sss
ss

sss
sss

sss
s

F ′ // X ′′

µ′′

��t| rrrrrrrrrr

rrrrrrrrrr

X ⊗ C
F⊗1

// X ′ ⊗ C
F ′⊗1

// X ′′ ⊗ C.

For left morphisms
(F, ϕ), (G,ψ) : (X,µ) −→ (X ′, µ′),

a 2-morphism from (F, ϕ) to (G,ψ) is a V -natural transformation

ξ : F =⇒ G

making the following diagram commutative

µ′ ◦ F
ϕ +3

µ′◦ξ

��

(F ⊗ 1) ◦ µ

(ξ⊗1)◦µ

��
µ′ ◦G

ψ +3 (G⊗ 1) ◦ µ

The composition of 2-morphisms are given by the composition of V -natural transformations.
Right morphisms for right comodules are defined analogously by reversing the direction of ⇒. For left

comodules, we also define left and right morphisms analogously.
The 2-categories of right comodule categories over C and left morphisms, of right comodules categories and

right morphisms, of left comodule categories and left morphisms, and of left comodule categories and right

morphisms are denoted by
←−−−−−
Comod-C,

−−−−−→
Comod-C, C-

←−−−−−
Comod, and C-

−−−−−→
Comod, respectively. 2-categories of

bicomodule categories C-
←−−−−−
Comod-C and C-

−−−−−→
Comod-C are defined similarly.

26



Remark 2.60. The above definition can be generalized to comodules over a comonoid object in a symmetric
monoidal 2-category.

Example 2.61. Suppose V is of product type. Recall from Example 2.58 that any V -category C can be
regarded as a coalgebra category and any functor

p : X −→ C

defines a right comodule structure

X
∆
−→ X ⊗X

1⊗p
−→ X ⊗ C

on X . It is easy to see that this correspondence defines a 2-functor

V -
←−−−−−−−−
Categories ↓ C −→

←−−−−−
Comod-C,

where the structure of 2-category on V -
←−−−−−−−−
Categories ↓ C is defined in Example 2.41. Since ⊗ is the direct

product, we can recover p from (1 ⊗ p) ◦ ∆. However, there are differences in 1-morphisms. For example, a
morphism

(F, ϕ) : (X,µ) −→ (X ′, µ′)

of right C-comodule categories is given by a V -functor

F : X −→ X ′

and a family of morphisms
ϕ(x) : (F (x), p(F (x))) −→ (F (x), p(x))

in X ′ ⊗ C. Since ⊗ is the product in V , ϕ(x) is of the form

ϕ(x) = ϕ1(x) ⊗ ϕ2(x) ∈ (X ⊗ C)((F (x), p(F (x))), (F (x), p(x))) = X(F (x), F (x)) ⊗ C(p(F (x)), p(x)).

The 1-morphisms coming from V -
←−−−−−−−−
Categories ↓ C are exactly those morphisms having natural transformations

whose first component is the identity.

Thus we can regard V -
←−−−−−−−−
Categories ↓ C as a 2-subcategory of

←−−−−−
Comod-C.

When V is Abelian, we cannot expect such a simple characterization of comodule categories as above. We
will see in §3.2 that, in this case, the notion of comodules over a free V -category I ⊗ 1 generated by a small
category I corresponds to the notion of graded categories.

3 The Grothendieck Construction

In this section, we define the Grothendieck construction as a 2-functor from the category of oplax functors
from I to the category of comodules over I ⊗ 1. The construction works for lax functors by reversing arrows
appropriately.

3.1 The Grothendieck Construction for Oplax and Lax Functors

The following is our definition of the Grothendieck construction. Recall that V is a symmetric monoidal category
satisfying Assumption 2.11. In particular it is closed under arbitrary coproducts.

Definition 3.1. Let I be a small category. For an oplax functor

X : I −→ V -Categories,

define a V -category Gr(X) as follows: Objects are given by

Gr(X)0 =
∐

i∈I0

X(i)0 × {i}.
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For (x, i), (y, j) ∈ Gr(X)0, define

Gr(X)((x, i), (y, j)) =
⊕

u:i→j

X(j)(X(u)(x), y).

The composition

◦ : Gr(X)((y, j), (z, k))⊗Gr(X)((x, i), (y, j)) −→ Gr(X)((x, i), (z, k))

is given, on each component, by

X(k)(X(v)(y), z)⊗X(j)(X(u)(x), y)
1⊗X(v)
−→ X(k)(X(v)(y), z)⊗X(k)(X(v)(X(u)(x)), X(v)(y))

θ∗v,u
−→ X(k)(X(v)(y), z)⊗X(k)(X(v ◦ u)(x)), X(v)(y))
◦
−→ X(k)(X(v ◦ u)(x), z).

One of the simplest examples is the semidirect product construction for groups.

Example 3.2. Suppose a group G acts on another group H . We regard G as a category with a single object
∗. Then the action defines a functor

H : G −→ Groups ⊂ Categories

by
H(∗) = H

and
H(g) = g· : H −→ H.

The Grothendieck construction of this functor is nothing but the semidirect product.

This example can be extended as follows.

Example 3.3. Let A be a V -category. Suppose a group G acts on A from the left via V -functors. We regard
it as a functor

A : G −→ V -Categories .

The Grothendieck construction of A is called the orbit category by Cibils and Marcos in [CM06] when V is
the category of k-modules.

By definition, objects of Gr(A) can be identified with objects in A

Gr(A)0 = A0 × {∗} ∼= A0.

For x, y ∈ A0, morphisms are given by

Gr(A)(x, y) =
⊕

g∈G

A(gx, y)

and compositions are given, on each component, by

A(gy, z)⊗A(hx, y)
1⊗A(g)
−→ A(gy, z)⊗A(ghx, gy)

◦
−→ A(ghx, z).

It is not difficult to define Gr as a 2-functor

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -Categories.
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Definition 3.4. For a left transformation of oplax functors

(F, ϕ) : X −→ Y,

define
Gr(F, ϕ) : Gr(X) −→ Gr(Y )

by
Gr(F, ϕ)(x, i) = (F (i)(x), i)

for objects and
Gr(F, ϕ) : Gr(X)((x, i), (y, j)) −→ Gr(Y )((F (i)(x), i), (F (j)(y), j))

by the composition

X(j)(X(u)(x), y)
F (j)
−→ Y (j)(F (j)(X(u)(x), F (j)(y)))

ϕ(u)∗

−→ Y (j)(Y (u)(F (i)(x)), F (j)(y))

on each component.

Definition 3.5. For a 2-morphism
θ : (F, ϕ) =⇒ (G,ψ)

in
←−−−−
Oplax(I,V -Categories), define a 2-morphism

Gr(θ) : Gr(F, ϕ) =⇒ Gr(G,ψ)

in V -Categories by

Gr(θ)(x, i) = (θ(i)(x), 1i) : Gr(F, ϕ)(x, i) = (F (i)(x), i) −→ (G(i)(x), i) = Gr(G,ψ)(x, i).

Proposition 3.6. The above constructions define a 2-functor

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -Categories.

We may dualize the above construction to obtain

Gr :
−−→
Lax(Iop ,V -Categories) −→ V -Categories.

We briefly describe the construction.

Definition 3.7. For a lax functor
X : Iop −→ V -Categories,

define a V -category Gr(X) by

Gr(X)0 =
∐

i∈I0

{i} ×X(i)0

and
Gr(X)((i, x), (j, y)) =

⊕

u:i→j

X(i)(x,X(u)(y)).

The composition is given on each component by

X(j)(y,X(v)(z))⊗X(i)(x,X(u)(y))
X(u)⊗1
−→ X(i)(X(u)(y), X(u) ◦X(v)(z))⊗X(i)(x,X(u)(y))
θ∗−→ X(i)(X(u)(y), X(v ◦ u)(z))⊗X(i)(x,X(u)(y))
◦
−→ X(i)(x,X(v ◦ u)(z)).

For a right transformation (F, ϕ) of lax functors

X(j)
F (j) //

X(u)

��

Y (j)

Y (u)

��
X(i)

ϕ(u)
7?

xxxxxxxx

xxxxxxxx

F (i)
// Y (i),
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define
Gr(F, ϕ) : Gr(X) −→ Gr(Y )

by
Gr(F, ϕ)(i, x) = (i, F (i)(x))

for objects and
Gr(F, ϕ) : Gr(X)((i, x), (j, y)) −→ Gr(Y )((i, F (i)(x)), (j, F (j)(y)))

by the composition

X(i)(x,X(u)(y))
F (i)
−→ Y (i)(F (i)(x), F (i)(X(u)(y)))

ϕ(u)∗
−→ Y (i)(F (i)(x), Y (u)(F (j)(y))).

Proposition 3.8. The above constructions define a 2-functor

Gr :
−−→
Lax(Iop ,V -Categories) −→ V -Categories.

The above propositions say the Grothendieck construction is a process to glue V -categories in a given
diagram of V -categories together to form a single V -category. We show in §A.2 that this Gr is left adjoint to
the diagonal functor and Gr(X) can be regarded as a 2-colimit of X . If we regard the Grothendieck construction
in this way, there is no hope to recover the original diagram. Note that the Grothendieck construction is defined
by coproducts and Gr(X) is a V -category whose morphism objects have coproduct decompositions. It turns
out that these coproduct decompositions allow us to construct a diagram of V -categories which is very closely
related to the original diagram X .

We use the notion of graded category, which is the subject of the next section §3.2, in order to make the
above statement precise.

3.2 Graded Categories

Given a group G, the notion of G-graded category was introduced and has been studied for k-linear categories
by extending the notion of G-graded algebras. More generally, k-linear categories graded by a small category
have been defined and used in the deformation theory of k-linear prestacks [Low08, LdB]. In these approaches
graded categories are defined by using coproducts.

We have seen in §2.2 that coproduct decompositions are intimately related to comodule structures over a
“free coalgebra”. This observation allows us to define graded categories without coproduct decompositions.
This viewpoint also suggests us to extend the notion of morphisms by incorporating appropriate natural trans-
formations. Our definition is also suggested by the definition of degree preserving functor by Asashiba [Asab].
Note that morphisms between graded categories defined in [Low08] correspond to strictly degree preserving
functors in [Asab] and our category of I-graded V -categories is larger than Lowen’s.

The following is our definition of V -categories graded by a small category I.

Definition 3.9. Let I be a small category and X be a V -category. An I-grading on X is a right comodule
structure

µ : X −→ X ⊗ (I ⊗ 1)

on X over the coalgebra category I ⊗ 1.

Remark 3.10. We may also use left comodules. Since I ⊗ 1 is a cocommutative coalgebra category, it does
not make any essential difference.

A more concrete description of I-grading can be obtained in many cases.

Lemma 3.11. Suppose V is the category k-Mod for a commutative ring k. Then an I-grading on a V -category
X consists of a map

p : X0 −→ I0

and a family of coproduct decompositions

X(x, y)
∼=
−→

⊕

u:p(x)→p(y) in I

Xu(x, y)

indexed by pairs of objects in X satisfying the following conditions:
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1. For any object x ∈ X0, we have the following diagram

1 X(x, x)

X1p(x)(x, x)

//1x

�� ?�

OO�
�
�
�
�
�
�

2. For objects x, y, z ∈ X0, the following diagram is commutative

X(y, z)⊗X(x, y) X(x, z)

Xu(y, z)⊗Xv(x, y) Xuv(x, z).

//◦

?�

OO�
�
�
�
�
�
�

//
?�

OO�
�
�
�
�
�
�

Proof. This is a direct translation of Lemma 2.20 and Lemma 2.57.

Example 3.12. Let G be a group and consider the case V = k-Mod. The unit object of k-Mod is the ground
ring k and the k-linear category G ⊗ k is nothing but the group algebra k[G] over k regarded as a k-linear
category with a single object.

Since G ⊗ 1 = k[G] has the only object ∗, a G-grading on a k-linear category A is given by a coproduct
decomposition

A(x, y) =
⊕

g∈G

Ag(x, y)

satisfying the condition that the functor p induces

◦ : Ag(y, z)⊗Ah(x, y) −→ Agh(x, z).

and

1 A(x, x)

A1(x, x).

//1x

��

OO�
�
�
�
�
�
�

This is the definition of a G-graded k-linear category in [CM06, Asaa, Asab].

Even if V is not Abelian, we often obtain an analogous coproduct decomposition.

Example 3.13. Let I be a small category. Consider the case that V is the category of sets. Suppose a small
category X has an I-grading. As we have seen in Example 2.61, it is determined by a functor

p : X −→ I.

We have a map of morphism sets

px,y : MorX(x, y) −→ MorI(p(x), p(y))

for each pair of objects x, y ∈ X0. Denote

MoruX(x, y) = p−1
x,y{u}

and we have a coproduct decomposition

MorX(x, y) =
∐

u:p(x)→p(y)

MoruX(x, y).
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The composition of morphisms in X induces a map

MoruX(y, z)×MorvX(x, y) −→ Moruv(x, z).

Conversely, we can recover p from the above coproduct decomposition by using the following composition

MorX(x, y) = X(x, y) ∼=
∐

u:p(x)→p(y)

Xu(x, y) −→
∐

u:p(x)→p(y)

{u} = MorI(p(x), p(y)).

Note that this argument works without a change when V is the category of topological spaces, simplicial
sets, and small categories.

Example 3.14. Suppose V is a stable model category and X is an I-graded V -category. By Remark 2.22, we
have a coproduct decomposition of each X(x, y) up to weak equivalences. In particular, we have

X(x, y) ≃
∨

u:p(x)⊤(y)

Xu(x, y)

when X is an I-graded spectral category in our sense. See [Tab, BM] for spectral categories.

We have also seen in Example 2.61 that, when V is of product type, the comma 2-category V -
←−−−−−−−−
Categories ↓

(I ⊗ 1) can be regarded as a 2-subcategory of the 2-category
←−−−−−
Comod-(I ⊗ 1) of comodules over I ⊗ 1. Thus we

would like to define a 2-category of I-graded categories which generalizes the 2-category of the comma category

V -
←−−−−−−−−
Categories ↓ (I ⊗ 1) when V is of product type and the 2-category of G-graded categories defined by

Asashiba [Asab]. Note that, although we have defined a 2-category of comodule categories in Definition 2.59,
1-morphisms in this 2-category is less restrictive than 1-morphisms of G-graded categories.

Example 3.15. Let G be a group and

µ : A −→ A⊗ k[G]

µ′ : B −→ B ⊗ k[G]

be G-graded k-linear categories regarded as comodules over k[G]. Let

(F, ϕ) : (A, µ) −→ (B,µ′)

be a left morphism of k[G]-comodules. F is a k-linear functor

F : A −→ B

and ϕ is a k-linear natural transformation

A
F //

µ

��

B

µ′

��

ϕ

t| ppppppppppp

ppppppppppp

A⊗ k[G]
F⊗1

// B ⊗ k[G].

Note that µ and µ′ are identity on objects and, for each object a ∈ A0, ϕ(a) can be regarded as an element

ϕ(a) ∈ (B ⊗ k[G])(µ′(F (a)), (1 ⊗ F )(µ(a))) = B(F (a), F (a))⊗ k[G].

The condition that ϕ is a k-linear natural transformation implies that the following diagram is commutative

A(a, a′)

A(a, a′)⊗ 1 1⊗A(a, a′)

(A(a, a′)⊗ k[G])⊗ 1 1⊗B(F (a), F (a′))

(B(F (a), F (a′))⊗ k[G])⊗ (B(F (a), F (a)) ⊗ k[G]) (B(F (a′), F (a′)⊗ k[G])⊗ (B(F (a), F (a′))⊗ k[G])

B(F (a), F (a′))⊗ k[G].

++WWWWWWWWWWWWWWWWWWWWWWWWWWW

ℓ−1

ssggggggggggggggggggggggggggg

r−1

��
µ⊗1

��
1⊗F

��
(F⊗1)⊗ϕ(a)

��
ϕ(a′)⊗µ′

++WWWWWWWWWWWWWWWWWWWWWW

◦
ssgggggggggggggggggggggg

◦
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Suppose ϕ(a) is of the form
ϕ(a) = 1F (a) ⊗ ϕ2(a)

for some ϕ2(a) ∈ G and suppose f ∈ Ah(a, a′) and F (f) ∈ Bh
′

(F (a), F (a′)). Then we have

µ(f) = f ⊗ h

µ′(F (f)) = F (f)⊗ h′

and the commutativity of the diagram implies

F (f)⊗ (hϕ2(a)) = F (f)⊗ (ϕ2(a
′)h′).

In other words, F restricts to

F : Aϕ2(a′)g(a, a′) −→ Bgϕ2(a)(F (a), F (a′)).

This is the definition of degree preserving functor in Definition 4.1(2) in [Asab].

Definition 3.16. Let I be a small category. A left morphism

(F, ϕ) : (X,µ) −→ (X ′, µ′)

in
←−−−−−
Comod-(I ⊗ 1) is called degree-preserving if there exists a family of morphisms in I

ϕ2(x) ∈MorI(p
′(F (x)), p(x)) ⊂ MorI⊗1(p

′(F (x)), p(x)) = MorV (1, (I ⊗ 1)(p′(F (x)), p(x)))

with
ϕ(x) = 1⊗ ϕ2(x).

We define degree preserving right morphisms in the same way.

Remark 3.17. We required that ϕ2(x) is homogeneous in the sense that it belongs to I not in I ⊗ 1.

Definition 3.18. Let I be a small category. The subcategories of the 2-categories
←−−−−−
Comod-(I ⊗ 1) and

−−−−−→
Comod-(I ⊗ 1)consisting of degree preserving (left or right) morphisms are denoted by V -

←−−−−−−−−
CategoriesI and

V -
−−−−−−−−→
CategoriesI and called the 2-categories of left or right I-graded V -categories, respectively.

Remark 3.19. The definition of morphisms of graded categories in [Low08] requires ϕ to be the identity.

3.3 The Grothendieck Construction as a Graded Category

In this section, we extend the Grothendieck construction for oplax functors to a 2-functor

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -

←−−−−−−−−
CategoriesI .

Let us begin with objects.

Definition 3.20. For an oplax functor

X : I −→ V -Categories,

define a V -functor
µX : Gr(X) −→ Gr(X)⊗ (I ⊗ 1)

as follows. On objects,

µX : Gr(X)0 =
∐

i∈I0

X(i)0 × {i} −→ Gr(X)0 ⊗ I0

is defined by
µX(x, i) = (x, i, i).

Define, on each component of morphisms, by

Gr(X)((x, i), (y, j)) (Gr(X)⊗ (I ⊗ 1))((x, i), (y, j))

X(j)(X(u)(x), y) X(j)(X(u)(x), y)⊗ (1⊗ 1) X(j)(X(u)(x), y)⊗ (u⊗ 1).

//µX

?�

OO

//∼= //1⊗u ?�

OO
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Let
(F, ϕ) : X −→ X ′

be a left morphism of oplax functors. Recall that in Definition 3.4, we defined a V -functor

Gr(F, ϕ) : Gr(X) −→ Gr(X ′).

In order to obtain a left morphism in
←−−−−−
Comod-(I ⊗ 1), we need a V -natural transformation

Gr(ϕ) : µX′ ◦Gr(F, ϕ) =⇒ (Gr(F, ϕ) ⊗ 1) ◦ µX .

Definition 3.21. For a left morphism of oplax functors

(F, ϕ) : X −→ X ′,

define a V -natural transformation

Gr(ϕ) : µX′ ◦Gr(F ) =⇒ (Gr(F )⊗ 1) ◦ µX ,

namely a morphism

Gr(ϕ)(x, i) : 1→ (Gr(X ′)⊗ (I ⊗ 1))((µX′ ◦Gr(F ))(x, i), (Gr(F )⊗ 1) ◦ µX(x, i))

= X ′(i)(F (x), F (x)) ⊗ (MorI(i, i)⊗ 1)

by the identity morphism
Gr(ϕ)(x, i) = 1F (x) ⊗ 1i.

Lemma 3.22. The pair (Gr(F, ϕ),Gr(ϕ)) defines a left morphism

(Gr(F, ϕ),Gr(ϕ)) : (Gr(X), µX) −→ (Gr(X ′), µX′)

in V -

←−−−−−−−−
CategoriesI .

Proof. It is easy to check that (Gr(F, ϕ),Gr(ϕ)) is a left morphism in
←−−−−−
Comod-(I ⊗ 1).

For an object (x, i) in Gr(X), define

Gr(ϕ)2(x, i) = 1i : 1 −→ (I ⊗ 1)(i, i).

Then Gr(ϕ)(x, i) = 1F (x) ⊗Gr(ϕ)2(x, i) and we have a degree preserving left morphism.

Let
(F, ϕ), (G,ψ) : X −→ X ′

be morphisms of oplax functors. For a 2-morphism

θ : (F, ϕ) =⇒ (G,ψ)

in
←−−−−
Oplax(I,V -Categories), we have defined a V -natural transformation

Gr(θ) : Gr(F, ϕ) =⇒ Gr(G,ψ)

in Definition 3.5.

Lemma 3.23. The above constructions define a functor

Gr :
←−−−−
Oplax(I,V -Categories)(X,X ′) −→ (V -

←−−−−−−−−
CategoriesI)(Gr(X),Gr(X ′)).

Proof. We need to check the following:

34



1. For a 2-morphism θ in
←−−−−
Oplax(I,V -Categories), Gr(θ) is a 2-morphism in (I ⊗ 1)-Comod, i.e. it makes

the following diagram commutative

µX′ ◦Gr(F, ϕ)
Gr(ϕ) +3

µX′◦Gr(θ)

��

(F ⊗ 1) ◦ µX

(Gr(θ)⊗1)◦µX

��
µX′ ◦Gr(G,ψ)

Gr(ψ) +3 (G⊗ 1) ◦ µ.

2. Gr(1(F,ϕ)) = 1(Gr(F,ϕ),Gr(ϕ)) for a 1-morphism (F, ϕ) in
←−−−−
Oplax(I,V -Categories).

3. For 2-morphisms

(F0, ϕ0)
θ1 +3 (F1, ϕ1)

θ2 +3 (F2, ϕ2),

we have
Gr(θ2 ◦ θ1) = Gr(θ2) ◦Gr(θ1).

The first and second parts are obvious from the definition of Gr(θ). For the third part, recall that both
compositions θ2 ◦ θ1 and Gr(θ2)◦Gr(θ1) are compositions of natural transformations. The equality follows from
the definition of the composition of natural transformations.

Proposition 3.24. The above constructions make the Grothendieck construction into a 2-functor

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -

←−−−−−−−−
CategoriesI ⊂

←−−−−−
Comod-(I ⊗ 1).

Proof. It remains to prove the following:

1. The following diagram is commutative

←−−−−
Oplax(I,V -Categories)(X ′, X ′′)×

←−−−−
Oplax(I,V -Categories)(X,X ′)

←−−−−
Oplax(I,V -Categories)(X,X ′′)

(V -
←−−−−−−−−
CategoriesI)(Gr(X ′),Gr(X ′′))× (V -

←−−−−−−−−
CategoriesI)(Gr(X),Gr(X ′)) (V -

←−−−−−−−−
CategoriesI)(Gr(X),Gr(X ′′)).

//◦

���
�
�
�
�
�
�
�
�
�

Gr×Gr

���
�
�
�
�
�
�
�
�
�

Gr

//◦

2. The following diagram is commutative

1
←−−−−
Oplax(I,V -Categories)(X,X)

(V -
←−−−−−−−−
CategoriesI)(Gr(X),Gr(X)),

//

''OOOOOOOOOOOOOOOOOO

���
�
�
�
�
�
�

Gr

where 1 in the diagram is the trivial category.

For morphisms of oplax functors

X
(F,ϕ)
−→ X ′

(F ′,ϕ′)
−→ X ′′,

the composition (F ′, ϕ′) ◦ (F, ϕ) is given by

(F ′, ϕ′) ◦ (F, ϕ) = (F ′ ◦ F, ϕ′ ◦ ϕ)

and
Gr((F ′, ϕ′) ◦ (F, ϕ)) = (Gr(F ′ ◦ F, ϕ′ ◦ ϕ),Gr(ϕ′ ◦ ϕ)).

For (x, i) ∈ Gr(X)0,

Gr(F ′ ◦ F, ϕ′ ◦ ϕ)(x, i) = ((F ′ ◦ F )(i)(x), i) = (F ′(i)(F (i)(x)), i) = Gr(F ′)(Gr(F )(x, i)).

For morphisms in Gr(X), the compatibility of the compositions and Gr follows from the definition of morphisms
of oplax functors.

The second part is obvious.
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We also obtain a 2-functor

Gr :
−−→
Lax(Iop ,V -Categories) −→ V -

−−−−−−−−→
CategoriesI .

The details are omitted.

4 Comma Categories and the Smash Product Construction

Given a functor
p : E −→ I

of small categories, the inverse image p−1(x) of x ∈ I0 is a natural candidate for the fiber over x. There are
two more ways to take fibers, which should be regarded as “homotopy fibers”, i.e. comma categories p ↓ x and
x ↓ p, thanks to the work of Quillen [Qui73].

In this section, we extend definitions of these fibers to enriched contexts.

4.1 Fibers of Gradings

As we have seen in §3.2, a correct enriched analogue of a functor

p : E −→ I

is a grading
µ : E −→ E ⊗ (I ⊗ 1).

In this section, we define fibers of a grading.

Definition 4.1. Let I be a small category and

µ : E −→ E ⊗ (I ⊗ 1)

be an I-grading. For each object i ∈ I0, define a V -category E|i by

(E|i)0 = {e ∈ E0 | µ(e) = (e, i)}

and, for e, e′ ∈ (E|i)0, (E|i)(e, e
′) is defined by the following pullback diagram

(E|i)(e, e
′) E(e, e′)

E(e, e′)⊗ 1 E(e, e′)⊗ (I(i, i)⊗ 1).

//

���
�
�
�
�
�
�

���
�
�
�
�
�
�

p

//1⊗1i

The composition is defined by the following diagram

(E|i)(e
′, e′′)⊗ (E|i)(e, e

′) E(e′, e′′)⊗ E(e, e′)

(E|i)(e, e
′′) E(e, e′′)

E(e, e′′)⊗ 1 E(e, e′′)⊗ I(i, i)⊗ 1

E(e′, e′′)⊗ 1⊗ E(e, e′)⊗ 1 E(e′, e′′)⊗ I(i, i)⊗ 1⊗ E(e, e′)⊗ I(i, i)⊗ 1.

//

��

**

��

tthhhhhhhhhhhhhhhhhhhhhhh

//

�� ��
//

//

44hhhhhhhhhhhhhhhhhhhhh

jjVVVVVVVVVVVVVVVVVVVV

The following is an analogue of p ↓ i.
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Definition 4.2. Let
µ : E −→ E ⊗ (I ⊗ 1)

be an I-grading and define
p = pr2 ◦µ0 : E0 −→ E0 × I0 −→ I0.

For each object i ∈ I0, define a V -category µ ↓ i as follows. Objects are defined by

(µ ↓ i)0 =
∐

e∈E0

{e} ×MorI(p(e), i).

For (e, u), (e′, u′) ∈ (µ ↓ i)0, define an object (µ ↓ i)((e, u), (e′, u′)) in V by the following pullback diagram
in V

(µ ↓ i)((e, u), (e′, u′)) E(e, e′)

(E ⊗ (I ⊗ 1))((e, p(e)), (e′, p(e′)))

E(e, e′)⊗ (I ⊗ 1)(p(e), p(e′))

E(e, e′)⊗ 1 E(e, e′)⊗ (I ⊗ 1)(p(e), i).

//

��

��
µ

��
1⊗u′∗

//1⊗u∗

In µ ↓ i, the identity morphisms are defined by

1

(µ ↓ i)((e, u), (e, u)) E(e, e)

E(e, e)⊗ 1 E(e, e)⊗ (I ⊗ 1)(p(e), i).

))
,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

1

""EEEEEEEEEEEEEEEEEEEEEEEE

1e

//

�� ��
u∗◦µ

//u

The composition

(µ ↓ i)((e′, u′), (e′′, u′′))⊗ (µ ↓ i)((e, u), (e′, u′)) −→ (µ ↓ i)((e, u), (e′′, u′′))

is given by the following diagram
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(µ ↓ i)((e′, u′), (e′′, u′′))⊗ (µ ↓ i)((e, u), (e′, u′)) E(e′, e′′)⊗ E(e, e′)

(µ ↓ i)((e′, u′), (e′′, u′′))⊗ (E ⊗ (I ⊗ 1))((e, p(e)), (e′, p(e′))) (E ⊗ (I ⊗ 1))((e′, p(e′)), (e′′, p(e′′)))⊗ (E ⊗ (I ⊗ 1))((e, p(e)), (e′, p(e′))) E(e, e′′)

(E(e′, e′′)⊗ 1)⊗ (µ ↓ i)((e, u), (e′, u′)) (E(e′, e′′)⊗ 1)⊗ (E ⊗ (I ⊗ 1))((e, p(e)), (e′, p(e′))) (E(e′, e′′)⊗ (I ⊗ 1)(p(e′), i))⊗ (E ⊗ (I ⊗ 1))((e, p(e)), (e′, p(e′))) E(e, e′′)⊗ (I ⊗ 1)(p(e), p(e′′))

(E(e′, e′′)⊗ 1)⊗ (E(e, e′)⊗ 1) (E(e′, e′′)⊗ 1)⊗ (E(e, e′)⊗ (I ⊗ 1)(p(e), i))

E(e, e′′)⊗ 1 E(e, e′′)⊗ (I ⊗ 1)(p(e), i).

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

//

ssggggggggggggggggggggggggggggggggggggggggggggggggggg

µ⊗µ

���
�
�
�
�
�
�
�
�
�
�
�
�

◦

//

���
�
�
�
�
�
�
�
�
�
�
�
�

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

◦

���
�
�
�
�
�
�
�
�
�
�
�
�

u′′∗⊗1

���
�
�
�
�
�
�
�
�
�
�
�
�

µ

���
�
�
�
�
�
�
�
�
�
�
�
�

//

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

1⊗u′∗

//(1⊗u′)⊗1

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

◦

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1⊗u′′∗

���
�
�
�
�
�
�
�
�
�
�
�
�

◦

//1⊗(1⊗u)

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

◦

//1⊗u

3
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Definition 4.3. Let
µ : E −→ E ⊗ (I ⊗ 1)

be an I-grading and define
p = pr2 ◦µ : E0 −→ E0 × I0 −→ I0.

For each i ∈ I0, define a V -category i ↓ µ as follows. Objects are defined by

(i ↓ µ)0 =
∐

e∈E0

MorI(i, p(e))× {e}.

Define (i ↓ µ)((e, u), (e′, u′)) by the following pullback diagram

(i ↓ µ)((u, e), (u′, e′)) E(e, e′)

(E ⊗ (I ⊗ 1))((e, p(e)), (e′, p(e′)))

E(e, e′)⊗ (I ⊗ 1)(p(e), p(e′))

E(e, e′)⊗ 1 E(e, e′)⊗ (I ⊗ 1)(i, p(e′)).

//

��

��
µ

��
1⊗u∗

//1⊗u′∗

The identities and compositions are defined analogously to the case of µ ↓ i.

It follows from the fact that µ is a functor satisfying coassociativity and counitality that µ ↓ i is a V -category
for each i ∈ I0.

Remark 4.4. (µ ↓ i)((e, u), (e′, u′)) can be also defined by an equalizer

(µ ↓ i)((e, u), (e′, u′)) // E(e, e′)
u∗◦µ //

u
// E(e, e′)⊗ (I ⊗ 1)(p(e), i)

These “homotopy fibers” define functors on I.

Definition 4.5. Let E be a right I-graded category. Then define

←−
Γ (µ) : I −→ V -Categories

as follows. For i ∈ I0 ←−
Γ (µ)(i) = µ ↓ i.

For a morphism u : i→ i′ in I, define a V -functor

←−
Γ (µ)(u) :

←−
Γ (µ)(i) −→

←−
Γ (µ)(i′)

as follows. For an object (e, v) in
←−
Γ (µ)(i) = µ ↓ i, define

←−
Γ (µ)(u)(e, v) = (e, u ◦ v).

The morphism
←−
Γ (µ)(u) :

←−
Γ (i)((e, v), (e′, v′)) −→

←−
Γ (µ)(i′)((e, u ◦ v), (e′, u ◦ v′))
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is defined by the following commutative diagram

←−
Γ (µ)(i)((e, v), (e′, v′)) E(e, e′)

E(e, e′)⊗ (I ⊗ 1)(p(e), p(e′))

E(e, e′)⊗ 1 E(e, e′)⊗ (I ⊗ 1)(p(e), i)

E(e, e′)⊗ (I ⊗ 1)(p(e), i′).

//

��

��
µ

��
1⊗v′∗

$$JJJJJJJJJJJJJJJJJJJJJJJJJJJ

1⊗(u◦v′)∗

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

1⊗(u◦v)

//1⊗v

**TTTTTTTTTTTTTTTTT

1⊗u∗

Dually, for an I-graded category
µ : E −→ E ⊗ (I ⊗ 1),

define
−→
Γ (µ) : Iop −→ V -Categories

by
−→
Γ (µ)(i) = i ↓ µ

on objects and
−→
Γ (µ)(u)(e, v) = (e, v ◦ u).

for a morphism u : i′ → i.

Lemma 4.6.
←−
Γ (µ) and

−→
Γ (µ) are functors.

Proof. Let us check
←−
Γ (µ) is a functor. The case of

−→
Γ (µ) is analogous. For an identity morphism

1i : i −→ i

in I, the morphism
←−
Γ (µ)(1i) :

←−
Γ (µ)(i)((e, v), (e′, v′)) −→

←−
Γ (µ)(i)((e, v), (e′, v′))

is defined by the following diagram

←−
Γ (µ)(i)((e, v), (e′, v′)) E(e, e′)

E(e, e′)⊗ (I ⊗ 1)(p(e), p(e′))

E(e, e′)⊗ 1 E(e, e′)⊗ (I ⊗ 1)(p(e), i)

E(e, e′)⊗ (I ⊗ 1)(p(e), i).

//

��

��
µ

��
1⊗v′∗

$$JJJJJJJJJJJJJJJJJJJJJJJJJJ

1⊗(1i◦v
′)∗

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

1⊗(1i◦v)

//1⊗v

TTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTT
1⊗(1i)∗=1

It follows that
←−
Γ (µ)(1i) is the identity morphism.

For a composable morphisms
i0

u1−→ i1
u2−→ i2

in I, the composition

←−
Γ (µ)(u2) ◦

←−
Γ (µ)(u1) :

←−
Γ (µ)(i0)((i, v), (i

′, v′)) −→
←−
Γ (µ)(i2)((e, u2 ◦ u1 ◦ v), (e

′, u2 ◦ u1 ◦ v
′))
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satisfies the universality of the pullback and we have

←−
Γ (µ)(u2) ◦

←−
Γ (µ)(u1) =

←−
Γ (µ)(u2 ◦ u1).

Example 4.7. Consider the case I is a group G and V = k-Mod. For a G-graded category

µ : A −→ A⊗ k[G]

we obtain a functor
←−
Γ (µ) : G −→ k-Categories.

Since G has a single object ∗,
←−
Γ (µ) is determined by the k-linear category

←−
Γ (µ)(∗) and an action of G on it.

The k-linear category
←−
Γ (µ)(∗) has objects

←−
Γ (µ)(∗)0 = {(x, g) | x ∈ A0, g ∈MorG(∗, ∗)} = A0 ×G.

The k-module of morphisms
←−
Γ (µ)(∗)((x, g), (y, h)) is given by the pullback diagram

←−
Γ (µ)(∗)((x, g), (y, h)) A(x, y)

A(x, y) ⊗ k[G]

A(x, y) ⊗ 1 A(x, y)⊗ k[G].
��

//

��

µ

��

h∗

//1⊗g

Since µ is G-grading, we have a coproduct decomposition

A(x, y) =
⊕

g∈G

Ag(x, y)

and, for f ∈ Ag(x, y), µ(f) is given by
µ(f) = f ⊗ g.

Thus we have an identification
←−
Γ (µ)(∗)((x, g), (y, h)) ∼= Ah

−1g(x, y)

for g, h ∈ G. The is the smash product construction in [CM06, Asaa, Asab].

Let us extend
←−
Γ and

−→
Γ as 2-functors

←−
Γ : V -

←−−−−−−−−
CategoriesI −→

←−−−−
Oplax(I,V -Categories)

−→
Γ : V -

−−−−−−−−→
CategoriesI −→

−−→
Lax(Iop ,V -Categories).

Definition 4.8. Let
(F, ϕ) : (E, µ) −→ (E′, µ′).

be a morphism in V -
←−−−−−−−−
CategoriesI , i.e. a degree-preserving left morphism in

←−−−−−
Comod-(I ⊗ 1). ϕ can be written

as
ϕ(e) = 1⊗ ϕ2(e)

for ϕ2(e) ∈ MorI(p
′(F (e)), p(e)).

Define a left morphism of oplax functors

(Γ(F, ϕ),Γ(ϕ)) :
←−
Γ (µ) −→

←−
Γ (µ′)
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as follows. For each i ∈ I0, define a V -functor
←−
Γ (F, ϕ)(i) :

←−
Γ (µ)(i) −→

←−
Γ (µ′)(i)

by
←−
Γ (F, ϕ)(i)(e, v) = (F (e), v ◦ ϕ2(e))

for an object (e, v) ∈
←−
Γ (µ)(i)0 and

←−
Γ (F, ϕ)(i) :

←−
Γ (µ)(i)((e, v), (e′, v′)) −→

←−
Γ (µ′)(i)((F (e), v ◦ ϕ2(e)), (F (e′), v′ ◦ ϕ2(e

′)))

is defined by the commutativity of the following diagram

←−
Γ (µ)(i)((e, v), (e′, v′)) E(e, e′) E′(F (e), F (e′))

E(e, e′)⊗ (I ⊗ 1)(p(e), p(e′)) E′(F (e), F (e′))⊗ (I ⊗ 1)(p′(F (e)), p′(F (e′)))

E(e, e′)⊗ 1 E(e, e′)⊗ (I ⊗ 1)(p(e), i) E′(F (e), F (e′))⊗ (I ⊗ 1)(p′(F (e)), p(e′))

E′(F (e), F (e′))⊗ 1 E′(F (e), F (e′))⊗ (I ⊗ 1)(p′(F (e)), i),

//

��

��

µ

//F

��

µ′

��

1⊗v′∗

**VVVVVVVVVVVVVVVVVVVVVVV

F⊗ϕ(i)∗

��

ϕ(i′)∗

��
F

//1⊗v

**VVVVVVVVVVVVVVVVVVVVVVV

F⊗ϕ1(i)
∗

��

1⊗v′∗

//1⊗v◦ϕ1(e)

where the commutativity of the top right hexagon follows from the naturality of ϕ.

For each u : i→ i′ in I and (e, v) ∈
←−
Γ (µ)(i)0, define

←−
Γ (ϕ)(u)(e, v) : 1 −→

←−
Γ (µ′)(i′)((

←−
Γ (µ′)(u) ◦

←−
Γ (F, ϕ))(e, v), (

←−
Γ (F, ϕ)(i′) ◦

←−
Γ (µ)(u))(e, v))

=
←−
Γ (µ′)(i′)((F (e), u ◦ (v ◦ ϕ2(e))), (F (e), (u ◦ v) ◦ ϕ2(e)))

to be the identity.

Definition 4.9. Let
(F, ϕ), (G,ψ) : (E, µ) −→ (E′, µ′)

be left morphisms of I-graded V -categories. For a 2-morphism

ξ : (F, ϕ) =⇒ (G,ψ)

in V -
←−−−−−−−−
CategoriesI , define a 2-morphism in

←−−−−
Oplax(I,V -Categories)

←−
Γ (ξ) : (

←−
Γ (F, ϕ),

←−
Γ (ϕ)) =⇒ (

←−
Γ (G,ψ),

←−
Γ (ψ)),

i.e. a V -natural transformation
←−
Γ (ξ) :

←−
Γ (F, ϕ) =⇒

←−
Γ (G,ψ)

by the following diagram

1 E′(F (e), G(e))

←−
Γ (µ′)((F (e), v ◦ ϕ2(e)), (G(e), v ◦ ψ2(e)))

E′(F (e), G(e))⊗ (I ⊗ 1)(p′(F (e)), p′(G(e)))

E′(F (e), G(e)) ⊗ 1 E′(F (e), G(e)) ⊗ (I ⊗ 1)(p′(F (e)), i).

**

←−
Γ (ξ)(e,v)

//ξ(e)

��

ξ(e)

��

µ

44jjjjjjjjjjjjjjjjjjj

zzttttttttttttttttttttttttttttt

��

1⊗(v◦ψ2(e))∗

//1⊗v◦ϕ2(e)
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Lemma 4.10. The above constructions define a functor

←−
Γ : V -

←−−−−−−−−
CategoriesI((µ), (µ′)) −→

←−−−−
Oplax(I,V -Categories)(

←−
Γ (µ),

←−
Γ (µ′)).

Proof. By the universality of pullback, the identity natural transformation induces the identity. For composable
2-morphisms

(F0, ϕ0)
ξ1 +3 (F1, ϕ1)

ξ2 +3 (F2, ϕ2),

consider the following diagram

1 E′(F0(e), F2(e))

←−
Γ (E′)((F1(e), v ◦ ϕ12(e)), (F2(e), v ◦ ϕ22(e)))⊗

←−
Γ (E′)((F0(e), v ◦ ϕ02(e)), (F1(e), v ◦ ϕ12(e)))

Γ(E′)((F0(e), v ◦ ϕ02(e)), (F2(e), v ◦ ϕ02(e))) E′(F0(e), F2(e))

E′(F0(e), F2(e))⊗ 1 E′(F0(e), F2(e))⊗ (I ⊗ 1)(p′(F0(e)), i).

//(ξ2◦ξ1)(e)
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←−
Γ (ξ2)(e,v)⊗Γ(ξ1)(e,v)
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�
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//

���
�
�
�
�
�
�
�

//

The commutativity of the diagram and the universality of the pullback implies that

(Γ(ξ2) ◦ Γ(ξ1))(e, v) = Γ(ξ2)(e, v) ◦ Γ(ξ1)(e, v).

It is not hard to see that
←−
Γ preserves the identity left morphisms and compositions of left morphisms.

Proposition 4.11. We obtain a 2-functor

←−
Γ : V -

←−−−−−−−−
CategoriesI −→

←−−−−
Oplax(I,V -Categories).

Proof. Strict 2-categories are categories enriched over Categories. By definition of enriched functors (Definition
2.31), it suffices to prove that the following diagrams are commutative in Categories.

1 V -
←−−−−−−−−
CategoriesI((µ), (µ))

←−−−−
Oplax(I,V -Categories)(

←−
Γ (µ),

←−
Γ (µ))

//1

''OOOOOOOOOOOOOOOOOOO

1

���
�
�
�
�
�
�

←−
Γ

V -
←−−−−−−−−
CategoriesI(µ

′, µ′′)× V -
←−−−−−−−−
CategoriesI(µ, µ

′) V -
←−−−−−−−−
CategoriesI(µ, µ

′′)

←−−−−
Oplax(I,V -Categories)(

←−
Γ (µ′),

←−
Γ (µ′′))×

←−−−−
Oplax(I,V -Categories)(

←−
Γ (µ),

←−
Γ (µ′))

←−−−−
Oplax(I,V -Categories)(

←−
Γ (µ),

←−
Γ (µ′′))

//◦

���
�
�
�
�
�
�
�
�
�
�
�

←−
Γ×
←−
Γ

���
�
�
�
�
�
�
�
�
�
�
�

←−
Γ

//◦

The commutativity of the first diagram is obvious. It is tedious but straightforward to check the commuta-
tivity of the second diagram.

Dually we have

Proposition 4.12. We obtain a 2-functor

−→
Γ : V -

−−−−−−−−→
CategoriesI −→

−−→
Lax(Iop ,V -Categories).
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4.2 Fibered and Cofibered Categories

We have seen in §4.1 that there are three ways to take a fiber over an object i ∈ I0 for an I-graded category

µ : E −→ E ⊗ (I ⊗ 1).

We have also seen that two of them, µ ↓ i and i ↓ µ can be extended to 2-functors

←−
Γ : V -

←−−−−−−−−
CategoriesI −→

←−−−−
Oplax(I,V -Categories),

−→
Γ : V -

−−−−−−−−→
CategoriesI −→

−−→
Lax(Iop ,V -Categories).

In the case of non-enriched categories, we need the notions of fibered and cofibered categories introduced by
Grothendieck in order to extend the remaining construction E|i to a 2-functor. A definition of fibered I-graded
category is introduced for k-linear categories by Lowen [Low08] recently. We reformulate Lowen’s definition in
order to incorporate it into our definition of graded categories.

The idea of Grothendieck is to compare Γcof(µ)(i) and E|i for a given I-graded category

µ : E −→ E ⊗ (I ⊗ 1).

Definition 4.13. Let µ : E → E ⊗ (I ⊗ 1) be an I-graded category. Define

ii : E|i −→ µ ↓ i

as follows. For e ∈ (E|i)0,
ii(e) = (e, 1i).

For e, e′ ∈ (E|i)0,
ii : (E|i)(e, e

′) −→ (µ ↓ i)((e, 1i), (e
′, 1i))

is defined by the following diagram

(E|i)(e, e
′)

(µ ↓ i)((e, 1i), (e
′, 1i)) E(e, e′)

E(e, e′)⊗ 1 E(e, e′)⊗ I(i, i)⊗ 1.

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
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??
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??

''
//
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�
�

µ

//1⊗1i

Similarly we define
ji : E|i −→ i ↓ µ

by
ji(e) = (e, 1i)

on objects.

Lemma 4.14. For each i ∈ I0,

ii : E|i −→ µ ↓ i,

ji : E|i −→ i ↓ µ

are V -functors.

We define prefibered and precofibered categories in terms of these functors.
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Definition 4.15. When ii has a left adjoint

si : µ ↓ i −→ E|i

for each i ∈ I0, µ is called precofibered. The collection {si}i∈I0 is called a precofibered structure on µ.
When ji has a right adjoint

ti : i ↓ µ −→ E|i

for each i ∈ I0, µ is called prefibered. The collection {ti}i∈I0 is called a prefibered structure on µ.

We obtain a lax functor from a prefibered category.

Definition 4.16. Let
µ : E −→ E ⊗ (I ⊗ 1)

be a prefibered category. For i ∈ I0, define

Γfib(µ)(i) = E|i.

For a morphism u : i→ i′ in I, define
Γfib(µ)(u) : E|i′ −→ E|i

by the composition

E|i′
ji′−→ i′ ↓ µ

−→
Γ (µ)(u)
−→ i ↓ µ

ti−→ E|i.

Dually, for a precofibered category
µ : E −→ E ⊗ (I ⊗ 1),

define
Γcof(µ)(i) = E|i

for each i ∈ I0 and define
Γcof(µ)(u) : E|i −→ E|i′

for each u : i→ i′ by the composition

E|i
ii−→ µ ↓ i

←−
Γ (µ)(u)
−→ µ ↓ i′

si′−→ E|i′ .

Lemma 4.17. When µ is prefibered

Γfib(µ) : Iop −→ V -Categories

is a lax functor. When µ is precofibered

Γcof(µ) : I −→ V -Categories

is an oplax functor.

Proof. For a composable morphisms i
u
−→ i′

u′

−→ i′′, we have the following diagram

E|i E|i′
Γfib(µ)(u)oo

ji′

��

E|i′′
Γfib(µ)(u′)oo

ji′′

��
i ↓ µ

ti

OO

i′ ↓ µ
−→
Γ (µ)(u)oo

ti′

OO

i′′ ↓ µ.
−→
Γ (µ)(u′)oo

By definition, we have a natural transformation

εi′ : ji′ ◦ ti′ =⇒ 1i′↓µ

for each i ∈ I0. Define
θu′,u : Γfib(µ)(u) ◦ Γfib(µ)(u′) =⇒ Γfib(µ)(u′ ◦ u)

45



by using εi′

Γfib(µ)(u) ◦ Γfib(µ)(u′) = (ti ◦
−→
Γ (µ)(u) ◦ ji′ ) ◦ (ti′ ◦

−→
Γ (µ)(u) ◦ ji′′ )

=⇒ ti ◦
−→
Γ (µ)(u) ◦

−→
Γ (µ)(u′) ◦ ji′′ = ti ◦

−→
Γ (µ)(u′ ◦ u) ◦ ji′′ = Γfib(µ)(u′ ◦ u).

Then we obtain a lax functor.
Similarly, if µ is precofibered, define

θu′,u : Γcof(µ)(u′ ◦ u) =⇒ Γcof(µ)(u′) ◦ Γcof(µ)(u)

by using
ηi′ : 1E|i′ −→ ii′ ◦ si′ .

And we obtain an oplax functor.

Definition 4.18. We say a prefibered I-graded category µ : E → E ⊗ (I ⊗ 1) is fibered if the above natural
transformations εi′ , hence θu′,u, are isomorphisms. A precofibered category is called cofibered if ηi′ are all
natural isomorphisms.

We would like to define morphisms of prefibered and precofibered categories corresponding to morphisms of
lax and oplax functors under Γfib and Γcof .

Definition 4.19. Let

µ : E −→ E ⊗ (I ⊗ 1)

µ′ : E′ −→ E′ ⊗ (I ⊗ 1)

be prefibered graded categories over I. A morphism of prefibered graded categories from µ to µ′ is a right
morphism

(F, ϕ) : (E, µ) −→ (E′, µ′)

of I-graded categories. 2-morphisms are also 2-morphisms in V -
−−−−−−−−→
CategoriesI .

Definition 4.20. Let
(F, ϕ) : (E, µ) −→ (E′, µ′)

be a morphism of prefibered I-graded categories. Define a right morphism of lax functors

(Γfib(F, ϕ),Γfib(ϕ)) : Γfib(µ) −→ Γfib(µ′)

as follows. For an object i ∈ I0, we need to define a functor

Γfib(F, ϕ)(i) : E|i −→ E′|i.

For e ∈ (E|i)0, we have
ϕ(e) : i = p(e) −→ p′(F (e)).

In other words, (F (e), ϕ(e)) ∈ (i ↓ µ′)0. By applying

t′i : i ↓ µ′ −→ E′|i

we obtain
Γfib(F, ϕ)(i)(e) = t′i(F (e), ϕ(e)) ∈ (E′|i)0.

For a pair of objects e, e′ ∈ (E|i)0, define

(E|i)(e, e
′) −→ (E′|i)(Γfib(F, ϕ)(i)(e),Γfib(F, ϕ)(i)(e′))

by the composition

(E|i)(e, e
′)

F̃
−→ (i ↓ E′)((F (e), ϕ(e)), (F (e′), ϕ(e′)))

t′i−→ (E′|i)(t
′
i(F (e), ϕ(e)), t′i(F (e′), ϕ(e′))),
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where F̃ is defined by the following diagram

E(e, e)

(i ↓ E′)((F (e), ϕ(e)), (F (e′), ϕ(e′))) E′(F (e), F (e′))

E′(F (e), F (e′)) E′(F (e), F (e′))⊗ (I ⊗ 1)(i, p′(F (e′))).

** ,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

F
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F
//
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//

The commutativity of the outside square comes from the naturality of ϕ.
We define Γfib(ϕ) for

E|i′
Γfib(F,ϕ)(i′) //

Γfib(µ)(u)

��

E′|i′

Γfib(µ)(u)

��
E|i

Γfib(F,ϕ)(i)
//

Γfib(ϕ)

3;oooooooooooo

oooooooooooo
E′|i

as follows. The adjunction εi induces
F (ti(e, u)) −→ F (e),

which in turn induces
ji(F (ti(e, u))) −→ (F (e), ϕ(e))

or
F (ti(e, u)) −→ ti(F (e), ϕ(e))

and we obtain a morphism
(F (ti(e, u)), ϕ(ti(e, u))) −→ (t′i(F (e), ϕ(e)), u)

in i ↓ µ′. By applying t′i, we obtain Γfib(ϕ).

For 2-morphisms we define as follows.

Definition 4.21. Let
(F, ϕ), (G,ψ) : (E, µ) −→ (E′, µ′)

be right morphisms of prefibered I-graded categories. For a 2-morphism

ξ : (F, ϕ) =⇒ (G,ψ),

define a morphism of right transformations

Γfib(ξ) : (Γfib(F, ϕ),Γfib(ϕ)) =⇒ (Γfib(G,ψ),Γfib(ψ))

as follows. For i ∈ X0, we need to define a V -natural transformation

Γfib(ξ)(i) : Γfib(F, ϕ)(i) =⇒ Γfib(G,ψ)(i).

For each object e in E|i, we have
ξ(e) : F (e) −→ G(e).

We also have a commutative diagram

x p(e) p′(F (e))

x p(e) p′(G(e))

�
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�
�
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//ϕ(e)
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p′(ξ(e))

//
ψ(e)
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and we have a morphism
ξ(e) : (F (e), ϕ(e)) −→ (G(e), ψ(e))

in i ↓ µ′ and we obtain

Γfib(ξ)(i)(e) ∈ E
′(t′i(F (e), ϕ(e)), t′i(G(e), ψ(e))) = (E′|i)(Γfib(F, ϕ)(i)(e),Γfib(G,ψ)(i)(e)).

It is not difficult to check that Γfib(ξ) satisfies the condition for a morphism of right transformation.

The above definitions can be dualized and we obtain a 2-functor Γcof .

Proposition 4.22. We have 2-functors

Γfib : Prefibered(I) −→
−−→
Lax(Iop ,V -Categories),

Γcof : Precofibered(I) −→
←−−−−
Oplax(I,V -Categories),

whose behaviors on objects are given by Γfib(µ) and Γcof(µ), respectively.

5 The Grothendieck Construction as Left Adjoints

In §3.3, we have seen that the Grothendieck construction defines a 2-functor

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -

←−−−−−−−−
CategoriesI ⊂

←−−−−−
Comod-(I ⊗ 1).

We have constructed 2-functors

←−
Γ : V -

←−−−−−−−−
CategoriesI −→

←−−−−
Funct(I,V -Categories) ⊂

←−−−−
Oplax(I,V -Categories)

and
Γcof : Cofibered(I) −→

←−−−−
Oplax(I,V -Categories)

in §4.

The aim of this section is to show that Gr is left adjoint to
←−
Γ . We also show that a restriction of Gr to

a certain 2-subcategory is left adjoint to Γcof in a weak sense. We, of course, have “lax versions” of these
adjunctions.

By composing the forgetful functor, we obtain

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -Categories,

which is the 2-functor Gr defined in §3.1. We show that this 2-functor also has a right adjoint in §A.2.

5.1 The Grothendieck Construction and Graded Categories

In this section, we prove that
←−
Γ is right adjoint to Gr.

Theorem 5.1. For an oplax functor X : I → V -Categories and an I-graded category µ : E → E ⊗ (I ⊗ 1),
we have an isomorphism of categories

(V -

←−−−−−−−−
CategoriesI)((Gr(X), µX), (E, µ)) ∼=

←−−−−
Oplax(I,V -Categories)(X,

←−
Γ (µ)).

We need to define morphisms

ηX : X −→
←−
Γ (µX),

εµ : Gr(
←−
Γ (µ)) −→ µ,

in
←−−−−
Oplax(I,V -Categories) and V -

←−−−−−−−−
CategoriesI , respectively.

Let us first define ηX . We need to define a family of functors

ηX(i) : X(i) −→
←−
Γ (µX)(i)
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indexed by i ∈ I0 and a family of natural transformations

ηX(u) :
←−
Γ (µX)(u) ◦ ηX(i) =⇒ ηX(j) ◦X(u)

indexed by morphisms u : i→ j in I.

Objects of
←−
Γ (µX)(i) are given by

←−
Γ (µX)(i)0 =

∐

(x,j)∈Gr(X)0

{(x, j)} ×MorI(j, i)

and we have a canonical inclusion

ηX(i) : X(i)0 →֒ X(i)0 × {i} × {1i} ⊂
←−
Γ (µX)(i)0.

For x, x′ ∈ X(i)0,
←−
Γ (µX)(i)(ηX(i)(x), ηX (i)(x′)) =

←−
Γ (µX)((x, i, 1i), (x

′, i, 1i))

is defined by the following pullback diagram

←−
Γ (µX)((x, i, 1i), (x

′, i, 1i)) Gr(X)((x, i), (x′, i))

⊕

u:i→i

X(i)(X(u)(x), x′)⊗ ({u} ⊗ 1)

Gr(X)((x, i), (x′, i))⊗ 1

⊕

u:i→i

X(i)(X(u)(x), x′)⊗ ({u} ⊗ 1)⊗ ({u} ⊗ 1)

⊕

u:i→i

X(i)(X(u)(x), x′)⊗ ({u} ⊗ 1)⊗ 1 Gr(X)((x, i), (x′, i))⊗ (I ⊗ 1)(i, i)

//

��
��

µ

��
//1⊗1i

and we have
←−
Γ (µX)((x, i, 1i), (x

′, i, 1i)) ∼= X(i)(x, x′)× {1i}.

This identification defines a functor
ηX(i) : X(i) −→

←−
Γ (µX)(i)

by the canonical inclusion.
For a morphism u : i→ j and an object x ∈ X(i), we have

←−
Γ (µX)(u) ◦ ηX(i)(x) = (x, i, u)

ηX(j) ◦X(u)(x) = (X(u)(x), j, 1j).

Define a morphism in V

ηX(u)(x) : 1 −→
←−
Γ (µX)(j)(

←−
Γ (µX)(u) ◦ ηX(i)(x), ηX (j) ◦X(u)(x)) =

←−
Γ (µX)(j)((x, i, u), (X(u)(x), j, 1j))

by the following diagram

1 X(j)(X(u)(x), X(u)(x)) ⊗ ({u} ⊗ 1)

←−
Γ (µX)(j)((x, i, u), (X(u)(x), j, 1j)) Gr(X)((x, i), (X(u)(x), j))

⊕

v:i→j

X(j)(X(u)(x), X(u)(x)) ⊗ ({v} ⊗ 1)

Gr(X)((x, i), (X(u)(x), j)) ⊗ 1 Gr(X)((x, i), (X(u)(x), j)) ⊗ (I ⊗ 1)(i, j)

//
1X(u)(x)

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

1X(u)(x)

**

ηX (u)(x)

��

//

�� ��
µ

//1⊗u
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Lemma 5.2. The above construction defines a morphism of oplax functors

ηX : X −→
←−
Γ (µX).

Proof. We need to check the following diagrams are commutative.

←−
Γ (µX)(1i) ◦ ηX(i) +3

��

ηX(i) ◦X(1i)

��
1←−

Γ (µX )(i)
◦ ηX(i) ηX(i) ◦ 1X(i)

←−
Γ (µX)(v ◦ u) ◦ ηX(k) +3

��

←−
Γ (µX)(u) ◦

←−
Γ (µX)(v) ◦ ηX(k) +3 ←−Γ (µX)(u) ◦ ηX(j) ◦X(v)

��
ηX(k) ◦X(v ◦ u) +3 ηX(k) ◦X(v) ◦X(u).

The commutativity of these diagrams follows from the commutativity of diagrams of 2-morphisms in Definition
2.42. The details are omitted.

Let us define εµ for an I-graded category (E, µ). We need to define a V -functor

ε′µ : Gr(
←−
Γ (µ)) −→ E

and a V -natural transformation

Gr(
←−
Γ (µ))

µ←−
Γ (µ)//

ε′µ

��

Gr(
←−
Γ (µ))⊗ (I ⊗ 1)

ε′µ⊗1

��
E

µ //

ε′′µ
2:mmmmmmmmmmmmmm

mmmmmmmmmmmmmm
E ⊗ (I ⊗ 1).

Let us denote the map induced by µ on objects by

µ0 = 1E0 × p : E0 −→ E0 × I0.

ε′µ is defines as follows. Objects of Gr(
←−
Γ (µ)) are given by

Gr(
←−
Γ (µ))0 =

∐

i∈I0

←−
Γ (µ)(i)0 × {i} =

∐

i∈I0

{

(e, p(e)
u
−→ i, i)

∣

∣

∣
e ∈ E0, u ∈ I1

}

.

For objects (e, u, i), (e′, u′, i′) in Gr(
←−
Γ (µ)),

Gr(
←−
Γ (µ))((e, u, i), (e′, u′, i′)) =

⊕

v:i→i′

←−
Γ (µ)(i′)(

←−
Γ (µ)(v)(e, u), (e′u′))

and each component
←−
Γ (µ)(i′)((e, v ◦ u), (e′, u′)) is defined by the following pullback diagram

←−
Γ (µ)(i′)((e, v ◦ u), (e′, u′)) E(e, e′)

E(e, e′)⊗ (I ⊗ 1)(p(e), p(e′))

E(e, e′)⊗ 1 E(e, e′)⊗ (I ⊗ 1)(p(e), i′).

//

��

��
µ

��
u′∗

//1⊗(v◦u)
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ε′µ is defined by the top morphism in the above diagram.

For an object (x, u, i) ∈ Gr(
←−
Γ (µ)), define

ε′′µ(x, u, i) : 1→ (I ⊗ 1)(p ◦ ε′µ(x, u, i), p←−Γ (µ)
(x, u, i)) = (I ⊗ 1)(p(e), i)

by
ε′′µ(x, u, i) = u.

It is tedious but elementary to check that ε′′µ is a V -natural transformation and we obtain a morphism
εµ = (ε′µ, ε

′′
µ) in V -CategoriesI .

Lemma 5.3. The pair εµ = (ε′µ, ε
′′
µ) is a morphism in V -

←−−−−−−−−
CategoriesI .

Proof of Theorem 5.1. It remains to check the following diagrams are commutative

Gr

Gr ◦η

�� JJJJJJJJJJJ

JJJJJJJJJJJ
←−
Γ

IIIIIIIIIII

IIIIIIIIIII

η◦
←−
Γ+3 ←−
Γ ◦Gr ◦

←−
Γ

←−
Γ ◦ε

��

Gr ◦
←−
Γ ◦Grε◦Gr

+3 Gr ←−
Γ

For an oplax functor X , consider the composition

Gr(X)
Gr(ηX )
−→ Gr(

←−
Γ (µX))

εGr(X)
−→ Gr(X).

For objects, we have
(x, i) 7−→ (x, 1i, i) 7−→ (x, i).

For objects (x, i), (x′, i′) in Gr(X), we have

Gr(
←−
Γ (µX))(ηX(x, i), ηX(x′, i′)) =

⊕

u:i→i′

←−
Γ (µX)(i′)(

←−
Γ (µX)(u)(x, 1i), (x

′, 1i′))

=
⊕

u:i→i′

←−
Γ (µX)(i′)((x, u), (x′, 1i′))

and each component
←−
Γ (µX)(i′)((x, u), (x′, 1i′)) can be identified with X(i′)(X(u)(x), x′). It follows that the

composition

Gr(X)((x, i), (x′, i′)) −→ Gr(
←−
Γ (µX))(ηX(x, i), ηX(x′, i′)) −→ Gr(X)((x, i), (x, i′))

is the identity.
For an I-graded category µ : E → E ⊗ (I ⊗ 1), consider the composition

←−
Γ (µ)

η←−
Γ (µ)
−→

←−
Γ (Gr(

←−
Γ (µ)))

←−
Γ (εµ)
−→

←−
Γ (µ)

of morphisms of oplax functors. Note that
←−
Γ takes values in strict functors and η←−

Γ (µ)
and
←−
Γ (εµ) are ordinary

natural transformations. Thus it suffices to consider the composition

←−
Γ (µ)(i)

η←−
Γ (µ)
−→

←−
Γ (Gr(

←−
Γ (µ)))(i)

←−
Γ (εµ)
−→

←−
Γ (µ)(i)

of V -functors for each object i ∈ I0.

Objects of
←−
Γ (Gr(

←−
Γ (µ)))(i) are

←−
Γ (Gr(

←−
Γ (µ)))(i)0 =

∐

(e,p(e)
u
−→i,i)∈Gr(

←−
Γ (µ))0

{(e, p(e)
u
−→ i, i)} ×MorI(i, i)

51



and, for (e, u) ∈
←−
Γ (µ)(i)0,

(
←−
Γ (εµ) ◦ η←−Γ (µ)

)(e, u) =
←−
Γ (εµ)((e, u, i), 1i)

= (ε′µ(e, u, i), 1i ◦ ε
′′
µ(e, u, i))

= (e, u).

The composition

←−
Γ (µ)(i)((e, u), (e′, u′))

η←−
Γ (µ)
−→

←−
Γ (Gr(

←−
Γ (µ)))(i)((e, u, i), (e′, u′, i))

←−
Γ (εµ)
−→

←−
Γ (µ)(i)((e, u), (e′, u′))

is easily seen to be the identity, since η is given by the canonical inclusion and ε′ is given by the projection.

5.2 The Smash Product Construction for Precofibered and Prefibered Categories

In this section, we study the relations between
←−
Γ and Γcof and

−→
Γ and Γfib for precofibered and prefibered

categories, respectively. We concentrate on the case of precofibered categories. The case of prefibered categories
is analogous and is left to the reader.

Lemma 5.4. Let µ : E → E ⊗ (I ⊗ 1) be a precofibered I-graded category. The family of functors

ii : Γcof(µ)(i) −→
←−
Γ (µ)(i)

indexed by i ∈ I0 defines a left transformation of oplax functors

i : Γcof(µ) −→
←−
Γ (µ).

Proof. For u : i→ i′ in I, we have the following diagram

Γcof(µ)(i)
←−
Γ (µ)(i)

←−
Γ (µ)(i)

←−
Γ (µ)(i′)

Γcof(µ)(i′)
←−
Γ (µ)(i′)

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Γcof (µ)(u)

//ii

��?
??

??
??

??
??

??

ii

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

←−
Γ (µ)(u)

��
��

��
��

��
��

�

��
��

��
��

��
��

�

���
�
�
�
�
�
�
�
�

←−
Γ (µ)(u)

����
��

��
��

��
��

�

si

??
??

??
??

??
??

?

??
??

??
??

??
??

?

//ii′

Since si′ is left adjoint to ii′ , we have a V -natural transformation

1←−
Γ (µ)(i′)

=⇒ ii′ ◦ si′ ,

which induces a left transformation.

We only need the fact that si′ is left adjoint to ii′ in the above proof and thus a similar argument implies
that we obtain a right transformation from {si}.

Lemma 5.5. The functors

si :
←−
Γ (µ)(i) −→ Γcof(µ)(i)

defines a right transformation of oplax functors from
←−
Γ (µ) to Γcof(µ).
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When the natural transformations εi : si ◦ ii ⇒ 1Γcof (µ)(i) are natural isomorphisms, we obtain a left
transformation.

Corollary 5.6. When µ is precofibered and {εi} are natural isomorphisms, we obtain a left transformation

s :
←−
Γ (µ) −→ Γcof(µ).

Corollary 5.7. Let µ be a precofibered I-graded V -category. If the natural transformations

εi : si ◦ ii =⇒ 1Γcof (µ)(i)

ηi : 1←−
Γ (µ)(i)

=⇒ ii ◦ si

are natural isomorphisms, for any oplax functor X : I → V -Categories, the above left transformations induce
an equivalence of categories

i :
←−−−−
Oplax(I,V -Categories)(X,

←−
Γ (µ))←→

←−−−−
Oplax(I,V -Categories)(X,Γcof(µ)) : s.

Corollary 5.8. Under the assumptions as above, we have an equivalence of categories

V -

←−−−−−−−−
CategoriesI(Gr(X), µ) ≃

←−−−−
Oplax(I,V -Categories)(X,Γcof(µ)).

In other words, under these assumptions, Γcof can be regarded as a right adjoint functor to Gr in a weak
sense.

A Appendices

A.1 Enriched Categories by Comodules

Given a set S, the category of quivers with the set of vertices is the comma category

Quivers(S) = Sets ↓ (S × S).

This category can be made into a monoidal category under the pullback

Y ×S X X

S × S

Y S × S S.

//

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�
�
�
�
�
�
�

���
�
�
�
�
�
�
�

pr1

// //pr2

It is a well-known fact that a category X with the set of objects S is a monoid object in this monoidal category.
See [DS04], for example. This characterization can be generalized to a definition of small enriched categories by
using the notion of bicomodules, which is the subject of this appendix. For the standard definition of enriched
categories, see §2.3.

Our starting point is to regard C-C-bimodules as “quivers enriched over V with vertices given by C”.

Definition A.1. When C = S ⊗ 1 for a set S, C-C-bicomodules are called V -quivers with the set of vertices
S. The category of V -quivers with the set of vertices S is denoted by V -Quivers(S).

Lemma 2.26 allows us to define enriched categories without referring to each object.

Definition A.2. Let C be a flat comonoid object in V . Then a monoid object in the monoidal category
(C-Comod-C,2C , C) is called a category object in V with objects C.
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For a category object M in V with objects C, the right and left coactions are denoted by

s : M −→M ⊗ C

t : M −→ C ⊗M

and called the source and the target.
When C = S ⊗ 1 for a set S, a category object in V with objects S ⊗ 1 is called a category enriched over

V , or simply V -category, with the set of objects S.

We use the following convention for simplicity.

Convention A.3. For a V -category X , the set of objects is denoted by X0. As an object of V , X is denoted
by X1.

We also use traditional notations described in §2.3, when we have a coproduct decomposition

X1 =
⊕

x,y∈X0

X(x, y).

Example A.4. Let V = k-Mod. The canonical natural transformation

θS,T : (S × T )⊗ 1 −→ (S ⊗ 1)⊗ (T ⊗ 1)

is an isomorphism for any S and T .
A category A enriched over k-Mod with the set of objects A0 is a k-module A1 equipped with a bicomodule

structure

s : A1 −→ A1 ⊗ (A0 ⊗ 1),

t : A1 −→ (A0 ⊗ 1)⊗A1

and a monoid structure
◦ : A12A0⊗1A1 −→ A1.

Lemma 2.20 implies that we have a coproduct decomposition

A1
∼=

⊕

(a,b)∈A0×A0

A(a, b)

and
A12A0⊗1A1 =

⊕

a,b,c∈A0

A(b, c)⊗A(a, b).

The monoid structure ◦ induces
◦ : A(b, c)⊗A(a, b) −→ A(a, c).

The unit
ι : A0 ⊗ 1 −→ A1

induces a morphism
1

s
−→ {s} ⊗ 1

ι
−→ A(a, a)

serving as identity morphisms. And we obtain the standard definition of k-linear category.
Note that we the inclusion

A12A0⊗1A1 →֒ A1 ⊗A1

has a canonical retraction
r : A1 ⊗A1 −→ A12A0⊗1A1

and the composition
A1 ⊗A1

r
−→ A12A0⊗1A1

◦
−→ A1

makes A1 into an algebra (possibly without a unit). This is the algebra associated with a k-linear category A,
which is often denoted by Λ(A). See [GS83b, CR05], for example.
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Example A.5. Let Q be a quiver with the set of vertices Q0, i.e. a diagram

Q1

s //

t
// Q0.

We obtain a (Q0 ⊗ 1)-(Q0 ⊗ 1)-bimodule structure on Q1 ⊗ 1 by

Q1 ⊗ 1

(Q1 ×Q1)× 1

(Q1 ⊗ 1)⊗ (Q0 ⊗ 1) (Q1 ⊗ 1)⊗ (Q1 ⊗ 1) (Q0 ⊗ 1)⊗ (Q1 ⊗ 1).

��

∆⊗1

""EEEEEEEEEEEEEEEEEEEEEEEEEE

t

||yy
yy

yy
yy

yy
yy

yy
yy

yy
yy

yy
yy

yy
y

s

��
θ

//t⊗1oo s⊗1

We obtain a functor

(−)⊗ 1 : Quivers(Q0) −→ (Q0 ⊗ 1)-Comod-(Q0 ⊗ 1) = V -Quivers(Q0).

Example A.6. Let V be the category Spaces of topological spaces. As we have seen in Example 2.21, any
object C is a comonoid and a coaction of C on another object M is determined by a morphism.

π : M −→ C.

Thus the category C-Comod-C of bicomodules over C can be identified with the comma category Spaces ↓
C⊗C, since the monoidal structure is given by the product. The corresponding monoidal structure on Spaces ↓
C⊗C is the monoidal structure described at the beginning of this section. A monoid object M in this monoidal
category is, therefore, a topological category with the space of objects C.

When C has a discrete topology, i.e. C = S ⊗ 1 for a set S, we have a coproduct decomposition

M ∼=
∐

(s,t)∈S

M(s, t)

as we have seen in Example 2.21 and we obtain the standard definition of a category enriched over Spaces with
the set of objects S.

Definition A.7. Let A and B be V -categories. A V -functor from A to B is a morphism of bicomodules

f = (f0, f1) : A −→ B

making the following diagrams commutative

A0 ⊗ 1 A1 A12A0A1 A1

B0 ⊗ 1 B1 B12B0B1 B1.
���
�
�
�
�
�
�
�
�
�

f0⊗1

//ι

���
�
�
�
�
�
�
�
�
�

f1

���
�
�
�
�
�
�
�
�
�

f12f1

//◦

���
�
�
�
�
�
�
�
�
�

f1

//ι //◦

The category of V -categories and V -functors is denoted by V -Categories.

A monoidal structure on V -Categories is induced from the following monoidal structure on the category
of bicomodules.
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Definition A.8. For bicomodules M and N over C and D, respectively, define left and right coactions of C⊗D
on M ⊗N by

M ⊗N
µR

M⊗µ
R
N−→ (M ⊗ C)⊗ (N ⊗D) ∼= (M ⊗N)⊗ (C ⊗D),

M ⊗N
µL

M⊗µ
L
N−→ (C ⊗M)⊗ (D ⊗N) ∼= (C ⊗D)⊗ (M ⊗N).

Lemma A.9. The above operation makes the category Bicomodules(V ) of bicomodules in V into a symmetric
monoidal category. The unit is given by

1 −→ 1⊗ 1.

For V -categories A and B, we would like to define a morphism

(A⊗A)2(A0⊗1)⊗(B0⊗1)(B ⊗B) −→ A⊗B.

We have the following diagram

(A⊗B)2(A0⊗1)⊗(B0⊗1)(A⊗B) // (A⊗B)⊗ (A⊗B)

��

s //

t
// (A⊗B)⊗ (A0 ⊗ 1)⊗ (B0 ⊗ 1)⊗ (A⊗B)

��
(A2A0⊗1A)⊗ (B2B0⊗1B) // (A⊗A)⊗ (B ⊗B)

s //

t
// (A⊗ (A0 ⊗ 1)⊗A)⊗ (B ⊗ (B0 ⊗ 1)⊗B).

(4)

Lemma A.10. Suppose the bottom row in the diagram (4) is an equalizer. Then the resulting morphism

(A⊗B)2(A0⊗1)×(B0⊗1)(A⊗ B) −→ (A2A0⊗1A)⊗ (B2B0⊗1B)
◦⊗◦
−→ A⊗B.

defines a structure of monoid on A⊗B.
If the bottom row in (4) is an equalizer for any V -categories A and B, then we obtain a symmetric monoidal

structure on V -Categories.

Remark A.11. The condition for the above Lemma is satisfied when V is the category of k-modules, chain
complexes, topological spaces, simplicial sets, and small categories.

We also have 2-morphisms in V -Categories.

Definition A.12. Let A and B be V -categories and

f, g : A −→ B

be V -functors. A V -natural transformation from f to g

ϕ : f =⇒ g

is a morphism
ϕ : A0 ⊗ 1 −→ B1

satisfying the following conditions:

1. The following diagram is commutative

(A0 ⊗ 1)⊗ (A0 ⊗ 1) A0 ⊗ 1 (A0 ⊗ 1)⊗ (A0 ⊗ 1)

B1 ⊗ (B0 ⊗ 1) B1 B1 ⊗ (B0 ⊗ 1).
��

ϕ⊗f0⊗1

//∆

��

ϕ

oo ∆

��
ϕ⊗g0⊗1

//too s
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2. The following diagram is commutative

A1

A12A0⊗1(A0 ⊗ 1) (A0 ⊗ 1)2A0⊗1A1

B12B0⊗1B1 B12B0⊗1B1

B1

$$JJ
JJ

JJ
JJ

JJ
J

T◦t

zzttt
tt

tt
tt

tt
s

��
g⊗ϕ

��
ϕ⊗f

$$JJJJJJ
JJJJJ

◦
zzttttttttttt

◦

We have seen in Lemma A.5 that the “free object functor”

(−)⊗ 1 : Sets −→ V

can be extended to
(−)⊗ 1 : Quivers −→ V -Quivers .

It induces a functor
(−)⊗ 1 : Categories −→ V -Categories.

Lemma A.13. For a small category I with the set of objects I0 and the set of morphisms I1, define a V -category
I ⊗ 1 by (I ⊗ 1)0 = I0 and (I ⊗ 1)1 = I1 ⊗ 1. The structure morphisms are induced by those of I.

Then we obtain a 2-functor

(−)⊗ 1 : Categories −→ V -Categories.

A.2 The Grothendieck Construction as a Left Adjoint to the Diagonal Functor

Recall from Definition 2.49 that we have the diagonal functor

∆ : C −→
←−−−−
Oplax(I,C).

The following adjunction is well-known for non-enriched categories. For example, it can be found in Thoma-
son’s [Tho79]. According to Thomason, it is originally due to J. Gray [Gra69]. For the sake of completeness,
we give a proof of an enriched version of this adjunction.

Theorem A.14. For any oplax functor X : I → V -Categories and a V -category A, we have the following
natural isomorphism of categories

V -Categories(Gr(X), A) ∼=
←−−−−
Oplax(I,V -Categories)(X,∆(A)).

Proof. We need to define morphisms

ηX : X −→ ∆(Gr(X))

εA : Gr(∆(A)) −→ A

in
←−−−−
Oplax(I,V -Categories) and V -Categories, respectively.
For each i ∈ I0,

ηX(i) : X(i) →֒ ∆(Gr(X))(i) = Gr(X).

is given by the canonical inclusion. For a morphism u : i→ j in I, we need to define a V -natural transformation

∆(Gr(X))(u) ◦ ηX(i) =⇒ ηX(j) ◦X(u).
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It is given, for x ∈ X(i)0, by the composition

1
1X(u)(x)
−→ X(j)(X(u)(x), X(u)(x)) →֒ Gr(X)((x, i), (X(u)(x), j)) = Gr(X)(ηX(i)(x), ηX (j)(X(u)(x))).

It is left to the reader to check that these family of morphisms form a V -natural transformation.
The category Gr(∆(A)) has objects

Gr(∆(A))0 =
∐

i∈I0

∆(A)(i)0 × {i} = A0 × I0.

For (a, i), (a′, i′) ∈ Gr(∆(A))0, we obtain a morphism

Gr(∆(A))((a, i), (a′, i′)) =
⊕

u:i→i′

A(a, a′) −→ A(a, a′)⊗ (I ⊗ 1)(i, i′).

or
Gr(∆(A)) −→ A⊗ (I ⊗ 1).

The counit ε of I ⊗ 1 induces

εA : Gr(∆(A)) −→ A⊗ (I ⊗ 1)
1⊗ε
−→ A⊗ 1 ∼= A.

It is elementary to check that ηX and εA give us adjunctions we want. The proof is omitted.

Example A.15. Let G be a group and consider the case A = k-Mod. ∆(A) is k-Mod equipped with the

trivial G-action. Thus
←−−−−
Oplax(G, k-Categories)(X,∆(A)) is the category of right G-invariant functors from X

to k-Mod. (See Example 2.51 for right G-invariant functors).
On the other hand, the category k-Categories(Gr(X), k-Mod) is the category of representations of the

Grothendieck construction of X . Cibils and Marcos [CM06] regard Gr(X) as a version of orbit category. Thus
we can identify the category of right G-invariant functors with the category of representations of the Cibils-
Marcos orbit category. This is observed by Asashiba and stated as Theorem 6.2 in [Asaa].

A.3 The Grothendieck Construction over Product Type Monoidal Categories

In this and next sections, we specialize the constructions in this paper to the case V is a product type symmetric
monoidal category. In this case, we do not need to use comodules.

Throughout this section, V is a product type symmetric monoidal category. Let us modify the Grothendieck
construction as a 2-functor

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -

←−−−−−−−−
Categories ↓ I ⊗ 1.

Definition A.16. For an oplax functor

X : I −→ V -Categories,

define
pX : Gr(X) −→ I ⊗ 1

by
pX(x, i) = i

for objects and

pX : Gr(X)((x, i), (y, j)) =
⊕

u:i→j

X(j)(X(u)(x), y) −→ (I ⊗ 1)(i, j)

is defined by

X(j)(X(u)(x), y) −→ 1
η
−→ {u} ⊗ 1 →֒ MorI(i, j)⊗ 1 = (I ⊗ 1)(i, j)

on each component. Recall that we assume that 1 is a terminal object in V . The morphism η is one of structure
morphisms of the lax monoidal functor (−)⊗ 1.
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Definition A.17. For a morphism of oplax functors

(F, ϕ) : X −→ Y,

define
Gr(F, ϕ) : Gr(X) −→ Gr(Y )

by Definition 3.4.
Define a natural transformation

Gr(ϕ) : pY ◦Gr(F, ϕ) =⇒ pX

by the identity

Gr(ϕ)(i) : pY ◦Gr(F, ϕ)(x, i) = i
1i−→ i = pX(x, i).

Lemma A.18. The pair (Gr(F, ϕ),Gr(ϕ)) is a 1-morphism in V -

←−−−−−−−−
Categories ↓ I ⊗ 1.

Proof. Obvious from the definition.

Definition A.19. For a 2-morphism
θ : (F, ϕ) =⇒ (G,ψ)

in
←−−−−
Oplax(I,V -Categories), define

Gr(θ) : (Gr(F, ϕ),Gr(ϕ)) =⇒ (Gr(G,ψ),Gr(ψ))

in V -
←−−−−−−−−
Categories ↓ I by

Gr(θ)(x, i) = (θ(i)(x), 1i) : Gr(F, ϕ)(x, i) = (F (i)(x), i) −→ (G(i)(x), i) = Gr(G,ψ)(x, i).

This makes the following diagram of natural transformations commutative

pY ◦Gr(F, ϕ)

ϕ
"*LLLLLLLLLL

LLLLLLLLLL

pY ◦Gr(θ) +3 pY ◦Gr(G,ψ)

ψ
t| qqqqqqqqqq

qqqqqqqqqq

pX

since all morphisms in the diagram are identity. And we obtain a 2-morphism

Gr(θ) : (Gr(F, ϕ),Gr(ϕ)) =⇒ (Gr(G,ψ),Gr(ψ)).

Lemma 3.23 can be translated as follows.

Lemma A.20. The above constructions define a functor

Gr :
←−−−−
Oplax(I,V -Categories)(X,X ′) −→ (V -

←−−−−−−−−
Categories ↓ I ⊗ 1)(Gr(X),Gr(X ′)).

And Proposition 3.24 becomes the following form.

Proposition A.21. The Grothendieck construction defines a functor of Categories-enriched categories, i.e.
a 2-functor

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -

←−−−−−−−−
Categories ↓ I ⊗ 1.

A.4 Comma Categories for Enriched Categories

When V is of product type, we can regard the Grothendieck construction as

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -

←−−−−−−−−
Categories ↓ (I ⊗ 1).

In order to define a right adjoint to the Grothendieck construction of this form, we need comma categories for
enriched categories. There seems to be a general theory of comma objects in enriched categories. (See, for
example, [Woo78].) We choose, however, a more down-to-earth approach, which is enough for our purposes.
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Definition A.22. Let V be a monoidal category closed under pullbacks and

p : E −→ B

be a V -functor. For an object x ∈ B0, define a V -category p ↓ x as follows. Objects are given by

(p ↓ x)0 =
∐

e∈E0

{e} ×MorB(p(e), x).

For a pair (e, f), (e′, f ′) ∈ (p ↓ x)0, define an object (p ↓ x)((e, f), (e′, f ′)) in V by the following pullback
diagram in V

(p ↓ x)((e, f), (e′, f ′)) E(e, e′)

B(p(e), p(e′))

1 B(p(e), x).
��

//

��

p

��

f ′∗

//f

The composition

(p ↓ x)((e′, f ′), (e′′, f ′′))⊗ (p ↓ x)((e, f), (e′, f ′)) −→ (p ↓ x)((e, f), (e′′, f ′′))

is defined by the commutativity of the following diagram

(p ↓ x)((e′, f ′), (e′′, f ′′))⊗ (p ↓ x)((e, f), (e′, f ′)) E(e′, e′′)⊗ E(e, e′)

(p ↓ x)((e′, f ′), (e′′, f ′′))⊗B(p(e), p(e′)) B(p(e′), p(e′′))⊗B(p(e), p(e′)) E(e, e′′)

1⊗ (p ↓ x)((e, f), (e′, f ′)) 1⊗ B(p(e), p(e′)) B(p(e′), x) ⊗B(p(e), p(e′)) B(p(e), p(e′′))

1⊗ 1 (p ↓ x)((e, f), (e′, f ′)) B(p(e), p(e′))

1 B(p(e), x).

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

//

ssggggggggggggggggggggggggggggg

p⊗p

���
�
�
�
�
�
�

◦

//

���
�
�
�
�
�
�

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

◦

���
�
�
�
�
�
�

f ′′∗ ⊗1

���
�
�
�
�
�
�

p

���
�
�
�
�
�
�
�

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

//

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

//f ′⊗1

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

◦

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

f ′′∗

���
�
�
�
�
�
�
�

ssggggggggggggggggggggggggggggggggggg

//

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

f ′∗

//f

The identity morphisms are defined by

1

(p ↓ x)((e, f), (e, f)) B(p(e), p(e))

1 B(p(e), x).

'' ++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

1

??
??

??
??

??
??

??
??

??
??

??
??

??

??
??

??
??

??
??

??
??

??
??

??
??

??

//

���
�
�
�
�
�
�
�

���
�
�
�
�
�
�

f∗

//f

If we restrict our attention to 1-morphisms in V -
←−−−−−−−−
CategoriesI , i.e. degree preserving morphisms, we have

an alternative construction for the smash product.

Definition A.23. Let I be a small category and

p : X −→ I ⊗ 1
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a V -functor. Define a functor
←−
Γ (p) : I −→ V -Categories

as follows. For an object i ∈ I0,
←−
Γ (p)(i) = p ↓ i.

For a morphism u : i→ j in I, define a V -functor

←−
Γ (u) = p ↓ u : p ↓ i −→ p ↓ j

as follows. For an object (x, v) in p ↓ i, define

(p ↓ u)(x, f) = (x, u ◦ f).

For morphisms,
p ↓ u : (p ↓ i)((x, f), (x′, f ′)) −→ (p ↓ j)((x, u ◦ f), (x, u ◦ f ′))

is defined by the following commutative diagram

(p ↓ i)((x, f), (x′, f ′)) X(x, x′)

(I ⊗ 1)(p(x), p(x′))

1 (I ⊗ 1)(p(x), i)

(I ⊗ 1)(p(x), j).

//

��

��

p

��

f ′∗

��?
??

??
??

??
??

??
??

??
??

??
??

(u◦f ′)∗

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

u◦f

//f

''OOOOOOOOOOOOOO

u∗

Remark A.24. When p is a graded category defined by a coproduct decompositions, we can define
←−
Γ without

assuming that V is closed under pullbacks.

For an object i ∈ I0, the definition of
←−
Γ (p)(i)0 is the same. For (x, f), (x′, f ′) ∈

←−
Γ (i)0, define an object

←−
Γ (p)(i)((x, f), (x′, f ′)) in V by

←−
Γ (p)(i)((x, f), (x′, f ′)) =

⊕

u:f ′◦u=f

Xu(x, x′).

The composition

←−
Γ (p)(i)((x′, f ′), (x′′, f ′′))⊗

←−
Γ (p)(i)((x, f), (x′, f ′)) −→

←−
Γ (p)(i)((x, f), (x′′, f ′′))

is given by the composition
Xu′(x′, x′′)⊗Xu(x, x′) −→ Xu′◦u(x, x′′)

on each component.
For a morphism u : i→ j in I, define a V -functor

←−
Γ (p)(u) :

←−
Γ (p)(i) −→

←−
Γ (p)(j)

as follows. For an object (x, f) in
←−
Γ (p)(i), define

←−
Γ (p)(u)(x, f) = (x, u ◦ f).

For morphisms, define

←−
Γ (p)(u) :

←−
Γ (p)(i)((x, f), (x′, f ′)) −→

←−
Γ (p)(j)((x, u ◦ f), (x, u ◦ f ′))

by the identity
Xv(x, x′) −→ Xv(x, x′)

on each component.
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It is straightforward to check that the above construction is compatible with the compositions and the
identities.

Lemma A.25. The above construction defines a functor

←−
Γ (p) = p ↓ (−) : I −→ V -Categories.

We would like to extend Γ to a 2-functor

←−
Γ : V -

←−−−−−−−−
Categories ↓ (I ⊗ 1) −→

←−−−−
Oplax(I,V -Categories).

Definition A.26. Let

p : X −→ I ⊗ 1

p′ : X ′ −→ I ⊗ 1

be objects in V -
←−−−−−−−−
Categories ↓ (I ⊗ 1). For a morphism

(F, ϕ) : p −→ p′,

define a morphism of oplax functors

(
←−
Γ (F, ϕ),Γ(ϕ)) :

←−
Γ (p) −→

←−
Γ (p′)

as follows. For i ∈ I0, a V -functor

←−
Γ (F, ϕ)(i) :

←−
Γ (p)(i) = p ↓ i −→ p′ ↓ i =

←−
Γ (p′)(i)

is defined on objects by
←−
Γ (F, ϕ)(i)(x, f) = (F (x), f ◦ ϕ(x))

and on morphisms by the commutativity of the following diagram

(p ↓ i)((x, f), (x′, f ′)) X(x, x′)

(p′ ↓ i)((F (x), f ◦ ϕ(x)), (F (x′), f ′ ◦ ϕ(x′))) X ′(F (x), F (x′))

(I ⊗ 1)(p′ ◦ F (x), p′ ◦ F (x′)) (I ⊗ 1)(p(x), p(x′))

1 (I ⊗ 1)(p′ ◦ F (x), i)

1 (I ⊗ 1)(p(x), i)

//

��

**

��

tthhhhhhhhhhhhhhhhhhhhhhh

F

//

��

��

��

��
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh //

**VVVVVVVVVVVVVVVVVVVVV
(ϕ(x)′)∗

//

For each u : i→ j in I, define a V -natural transformation

←−
Γ (ϕ)(u) :

←−
Γ (p′)(u) ◦

←−
Γ (F, ϕ)(i) =⇒

←−
Γ (F, ϕ)(j) ◦

←−
Γ (p)(u)

to be the identity.

It is straightforward to check that the pair (
←−
Γ (F, ϕ),

←−
Γ (ϕ)) is a morphism of oplax functors. This corre-

spondence extends as follows.

Lemma A.27. The above construction Γ defines a functor

←−
Γ : (V -

←−−−−−−−−
Categories ↓ I ⊗ 1)(p, p′) −→

←−−−−
Oplax(I,V -Categories)(Γ(p),Γ(p′)).

Proof. This follows from Lemma 4.10.
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Proposition 4.11 specializes to the following.

Proposition A.28.
←−
Γ defines a 2-functor

←−
Γ : V -

←−−−−−−−−
Categories ↓ (I ⊗ 1) −→

←−−−−
Oplax(I,V -Categories).

We have seen in Example 2.61 that V -
←−−−−−−−−
CategoriesI can be identified with V -

←−−−−−−−−
Categories ↓ (I ⊗ 1). By

translating
←−
Γ for comma categories into

←−
Γ for comodules, we obtain the following corollary to Theorem 5.1.

Theorem A.29. Let V be a product type symmetric monoidal category. Then the 2-functor

←−
Γ : V -

←−−−−−−−−
Categories ↓ (I ⊗ 1) −→

←−−−−
Oplax(I,V -Categories)

is right adjoint to

Gr :
←−−−−
Oplax(I,V -Categories) −→ V -

←−−−−−−−−
Categories ↓ (I ⊗ 1).
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Mathematics. Birkhäuser Verlag, Basel, 1999.

[Gra69] John W. Gray. The categorical comprehension scheme. In Category Theory, Homology Theory
and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), pages
242–312. Springer, Berlin, 1969.

63



[GS83a] M. Gerstenhaber and S. D. Schack. On the deformation of algebra morphisms and diagrams. Trans.
Amer. Math. Soc., 279(1):1–50, 1983.

[GS83b] Murray Gerstenhaber and Samuel D. Schack. Simplicial cohomology is Hochschild cohomology. J.
Pure Appl. Algebra, 30(2):143–156, 1983.

[Hol] Sharon Hollander. A Homotopy Theory for Stacks, arXiv:math.AT/0110247.

[HSS00] Mark Hovey, Brooke Shipley, and Jeff Smith. Symmetric spectra. J. Amer. Math. Soc., 13(1):149–
208, 2000.

[Kel64] G. M. Kelly. On MacLane’s conditions for coherence of natural associativities, commutativities,
etc. J. Algebra, 1:397–402, 1964.

[Kel82] Gregory Maxwell Kelly. Basic concepts of enriched category theory, volume 64 of London Mathe-
matical Society Lecture Note Series. Cambridge University Press, Cambridge, 1982.

[LdB] Wendy Lowen and Michel Van den Bergh. A Hochschild Cohomology Comparison Theorem for
prestacks, arXiv:0905.2354.

[Low08] Wendy. Lowen. Hochschild cohomology of presheaves as map-graded categories. Int. Math. Res.
Not. IMRN, 2008:Art. ID rnn118, 36, 2008.

[Lur] Jacob Lurie. Derived Algebraic Geometry I: Stable Infinity Categories, arXiv:math.CT/0608228.

[MM02] M. A. Mandell and J. P. May. Equivariant orthogonal spectra and S-modules. Mem. Amer. Math.
Soc., 159(755):x 108, 2002.

[Moe02] Ieke Moerdijk. Orbifolds as groupoids: an introduction. In Orbifolds in mathematics and physics
(Madison, WI, 2001), volume 310 of Contemp. Math., pages 205–222. Amer. Math. Soc., Provi-
dence, RI, 2002, arXiv:math.DG/0203100.

[Pfe] Hendryk Pfeiffer. Tannaka-Krein reconstruction and a characterization of modular tensor categories,
arXiv:0711.1402.

[Qui73] Daniel Quillen. Higher algebraic K-theory. I. In Algebraic K-theory, I: Higher K-theories (Proc.
Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 85–147. Lecture Notes in Math., Vol.
341. Springer, Berlin, 1973.

[Qui78] Daniel Quillen. Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. in
Math., 28(2):101–128, 1978.

[Seg68] Graeme Segal. Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math.,
34:105–112, 1968.

[SGA71] Revêtements étales et groupe fondamental. Springer-Verlag, Berlin, 1971. Séminaire de Géométrie
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