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0. Introduction

Morin[M] gave a local normal form for singular maps having almost maximal

rank, where almost maximal means maximal minus 1. The aim of the present paper

is to give a global version of his normal form. We concentrate here on the case of

Σ",",!-singular maps. (For the definition see [Bo], [A–G–V], [G–G] and also here

below.) The case of Σ",! singular maps was considered by Haefliger in [Ha], see also

[Sz1] and [Sz2]. For the motivation in finding such a global normal form see [Sz1],

[Sz2], and the final remarks in this paper.

In order to formulate the result we recall some definitions and well-known facts,

and also fix the notation.

Given a smooth map f : MnUNn+k of a smooth manifold Mn into a smooth

manifold Nn+k of codimension k" 0, we shall denote by Σi( f ) the set of points of the

source manifold Mn, where the kernel of the differential df is i dimensional, i.e.

Σi( f )¯²x `Mn r rank df(x)¯n®i´.

The points of Σi( f ) will be called the Σi-singular points of f.

For generic maps Σi( f ) is a submanifold of Mn and one can also define Σi,j( f ) as the

set of Σj singular points of the restriction of f to Σi( f ), i.e.

Σi,j( f )¯Σj( f rΣi( f )).

The points if Σi,j( f ) will be called the Σi,j-singular points of f.

Again for generic maps Σi,j( f ) is a submanifold in Mn and one can define

Σi,j,k( f )¯Σk( f rΣi,j( f )) etc. In this paper we shall not need more complicated

singularities than those of type Σ",". One has dimΣ"( f )¯n®(k­1), dimΣ","( f )¯
n®2(k­1), (see for example [A–G–V]).

In the next definition we describe the type of maps we shall deal with in this paper

(see also Remark 3 in Section 5).

Definition. Let Mn and Nn+k be smooth (not necessarily compact) manifolds of

dimensions n and n­k respectively and let f : MnUNn+k be a proper smooth map.

We shall say that f is a simple Σ","-singular map if

(a) f has only Σ",! and Σ"," singular points (it may not have them at all) ;

(b) the line bundle formed by the kernels of the differentials of f is a trivial bundle

over Σ","( f ) ;

(c) the Σ"," singular points are not multiple (i.e. x `Σ","( f )3 f−"( f(x))¯²x´) ;
(d) the map is generic in the sense that at each Σ","-singular point Morin’s local
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normal form holds. (This is equivalent to some transversality condition for the 3-jet

of the map.)

From now on the codimension k will be fixed and we shall consider throughout this

paper simple Σ","-singular maps of codimension k. Actually we shall consider these

maps only in a tubular neighbourhood of the submanifold Σ","( f ), and by a global

description of the map f we mean a description of its restriction to such a

neighbourhood. (Perhaps it would be more correct to call the description we are going

to give not global but semi-global.)

Notation. Let us denote by Σ4 ","( f )ZN the image of Σ","( f ) under f and let T and

Th denote some tubular neighbourhoods of Σ","( f ) in M and Σ4 ","( f ) in N respectively

such that f maps T into Th . So we have a commutative square

(*)

f|Σ
1,1( f )

Σ
1,1( f )

T

Σ
1,1( f ),˜

T
f|T

π π̃

˜

where the vertical arrows are vector bundle projections with fibres R#k+# and R$k+#

respectively, and the bottom horizontal arrow is a diffeomorphism (due to conditions

(a) and (c)).

By giving a global description of simple Σ","-singular maps we mean that:

(a) we show that there is a ‘universal square’ of the type (n) (in the precise sense

given in the theorem below), and

(b) we give a concrete construction of this universal square.

1. Formulation of the theorem

T 1. There exist

(i) a space B,

(ii) vector bundles ξUB and ξh UB with fibres R#k+# and R$k+# respectively and

(iii) a (nonlinear) fibrewise map Φ : ξU ξh such that for any simple Σ"," map f of

codimension k the square (n) fits into the following commutative cube :

1

Φ

f|Σ
1,1( f )

Σ
1,1( f )

T

Σ
1,1( f )˜

T
f|T ˜

j j̃

ξ ξ̃

B B   .
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This means that there are fibrewise maps j : TU ξ and jh : Th U ξh which are linear

isomorphisms on each fibre and Φa j¯ jh a ( f r
T
).

More interesting than the mere existence of the universal mapping Φ : ξU ξh is that

it can be constructed in very concrete terms, as follows: the space B is the

Grassmann manifold BO(k), which is the base space of the universal k dimensional

vector bundle γ
k
. Let us denote by εi the i dimensional trivial vector bundle. Then

the bundles ξ and ξh are 2γ
k
G ε# and 3γ

k
G ε# respectively.

Before giving the description of the map Φ : ξU ξh we first recall Morin’s normal

form for Σ","-maps.

Let φ : (R#k+#, 0)U (R$k+#, 0) be the map given by the following formulas:

Writing the coordinates in R#k+# as (t
"
, t

#
,… , t

#k+"
, x) and in R$k+# as (y

"
, y

#
,… ,

y
#k+"

, z
"
,… , z

k
, z

k+"
) then

y
i
aφ¯ t

i
, i¯ 1,… , 2k­1,

z
"
aφ¯ xt

"
­x#[t

#
,

]

z
k
aφ¯ xt

#k−"
­x#[t

#k
,

z
k+"

aφ¯ xt
#k+"

­x$,

or equivalently

φ(t
"
, t

#
,… , t

#k+"
, x)¯ (t

"
,… , t

#k+"
, xt

"
­x#t

#
,… , xt

#k−"
­x#t

#k
, xt

#k+"
­x$).

T (Morin [M]). If g : MnUNn+k is a generic Σ","-singular map then for any

p `Σ","(g) there exist neighbourhoods of p `Mn and g(p) `Nn+k with local coordinates

(t
"
, t

#
,… , t

#k+"
, x,u

"
,u

#
,… ,u

n−#k−#
)

and

(y
"
, y

#
,… , y

#k+"
, z

"
, z

#
,… , z

"
,… , z

k+"
,u

"
,u

#
,… ,u

n−#k−#
)

in which the map g has the form φ¬1, where 1 is the identity map of the space Rn−#k−#

with the coordinates (u
"
,u

#
,… ,u

n−#k−#
).

Now we define a 2k­2 and a 3k­2 dimensional representation of the group O(k),

closely related to the above map φ, as follows. We decompose the space R#k+# with

coordinates t
"
, t

#
,… , t

#k+"
, x as

R#k+#¯Rk

"
GRk

#
GR#,

where R# is the coordinate space ²(t
#k+"

, x)´ (i.e. on R# all the other coordinates are

zero), Rk

"
is the ‘odd’ coordinate space ²(t

"
, t

$
,… , t

#k−"
)´ and Rk

#
is the ‘even’

coordinate space ²(t
#
, t

%
,… , t

#k
)´.

Similarly we decompose the space R$k+#¯²(y
"
,… , y

#k+"
, z

"
,… , z

k
, z

k+"
)´ as:

R$k+#¯Rh k
"
GRh k

#
GRh k

$
GRh #,

where Rh #¯²(y
#k+"

, z
k+"

)´, Rh k
"
¯²(y

"
, y

$
,… , y

#k−"
)´, Rh k

#
¯²(y

#
, y

%
,… , y

#k
)´ and Rh k

$
¯

²(z
"
, z

#
,… , z

k
)´.

Given an orthogonal k¬k matrix A `O(k), let us denote by α(A) the map R#k+#U
R#k+# acting on Rk

"
and on Rk

#
as A and as the identity on R# (i.e. α(A) is the

blockdiagonal matrix ©A,A, 1, 1ª). Denote by β(A) the map R$k+#UR$k+# acting on

the spaces Rh k
"
, Rh k

#
, Rh k

$
as A and as the identity on Rh #, (i.e. β(A)¯©A,A,A, 1, 1ª).
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Then α : O(k)UO(2k­2), AUα(A) and β : O(k)UO(3k­2), AUβ(A) are rep-

resentations of the group O(k) of dimensions 2k­2 and 3k­2 respectively.

Now the description of the map Φ : ξU ξh is the following: let us consider the map

id¬φ : EO(k)¬R#k+#UEO(k)¬R$k+#. Here EO(k) is the usual contractible space with

free O(k) action, id is its identity map and φ is the Morin map we have just described.

The map id¬φ is O(k)-equivariant with respect to the diagonal actions. (The actions

on the euclidean factors are defined by the representations α and β respectively.)

Factoring out by the O(k) actions, we obtain the induced map of quotient spaces

denoted Φ, i.e.

Φ¯ id¬
O(k)

φ.

Note that the total space of the bundle ξ¯ 2γ
k
G ε# coincides with the quotient

space EO(k)¬
O(k)

R#k+#, and the total space of ξh ¯ 3γ
k
G ε# is the space EO(k)¬

O(k)

R$k+#, therefore the map Φ we have just defined is indeed a map from the bundle ξ

into ξh as promised.

The theorem can be reformulated briefly as follows:

T 1«. Let f be a simple Σ","-singular map, and let T and Th be as above (the

tubular neighbourhoods of the set of Σ","-singular points and its image respectively). Then

the map

f rT : TUTh ,

is a ‘bundle of mappings with fibre φ : R#k+#UR$k+#, and with structure group GEO(k)’.

Here G acts on R#k+# by the above representation α and on R$k+# by β.

In order to give a precise meaning to this brief formulation we define the notion

of ‘bundle of maps’ with a given map as fibre and with a given structure group.

Definition. Let G be a topological group, let PUB be a principal G-bundle, let X

and Xh be G-spaces and let φ : XUXh be a G-equivariant map. Then the map

id
P
¬φ : P¬XUP¬Xh

is G-equivariant if we let the group G act on X¬P and Xh ¬P by the diagonal actions.

The induced map of the quotient spaces

Φ : P¬
G

XUP¬
G

Xh

will be called the canonical bundle map with fibre φ associated to the principal

bundle PUB. A map f : VUVh will be called a bundle of maps with fibre φ and

structure group G if there exist :

(a) a principal G-bundle PUB, and

(b) homeomorphisms H : VUP¬
G

X, Hh : Vh UP¬
G

Xh such that ΦaH¯Hh a f.

A second reformulation of the theorem which we shall use is :

T 1§. Let f, T and Th be as in Theorem 1. Then

(i) there are local coordinate systems (U
"
,α

"
),… , (U

r
,α

r
) in T, where ²U

"
,U

#
,… ,U

r
´

is an open covering of T, α
i
is a diffeomorphism of U

i
onto Rn and

(ii) there are local coordinate systems (Uh
"
,αh

"
), (Uh

#
,αh

#
),… , (Uh

r
,αh

r
), where ²Uh

"
,… ,Uh

r
´

is an open covering of Th , αh
i
is a diffeomorphism of Uh

i
onto Rn+k and the following

conditions are satisfied :

(a) f(U
i
)ZUh

i
,
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(b) αh
i
a ( f rU

i
) aα−"

i
has the normal form given by Morin,

(c) these local coordinates define vector-bundle structures on T and Th with

structure groups α(O(k))¯²©A,A, 1, 1ª rA `O(k)´ and β(O(k))¯²©A,A,A,

1, 1ª rA `O(k)´ respectively.

Here condition (c) means the following: decompositions of Rn and Rn+k are fixed

into the products Rn¯R#k+#¬Rn−#k−# and Rn+k¯R$k+#¬Rn−#k−# respectively. For

any u `Rn−#k−# the products R#k+#¬²u´ and R$k+#¬²u´ can be identified with R#k+#

and R$k+# respectively. Now the requirement is that the restrictions of the transition

maps α
i
aα−"

j
and αh

i
aαh −"

j
to R#k+#¬²u´ and R$k+#¬²u´ are block diagonal matrices of

the forms ©A,A, 1, 1ª and ©A,A,A, 1, 1ª respectively, where A `O(k).

2. Preparations for the proof

Definition. Let us denote by Diff (Rm, 0) the germ of diffeomorphisms of Rm at the

origin. An automorphism of the map φ is a pair (a, b) where

a `Diff (R#k+#, 0), b `Diff (R$k+#, 0),

and φa a¯ b aφ. An automorphism (a, b) will be called reduced if the differential

da(0) keeps the orientation of the line ker dφ at any point. We shall denote by ! the

group of reduced automorphisms of φ. Therefore

!ZDiff (R#k+")¬Diff (R$k+#)

!¯²(a, b) `Diff (R#k+")¬Diff (R$k+#) rdarker df keeps the orientation´

and the index of ! in the whole automorphism group Autφ is 2.

Notice that for any A `O(k) the pair (α(A),β(A)) is a reduced automorphism of φ.

Remark 1. Let H be any subgroup of the reduced automorphism group !. Then

analogues of the bundles ξ, ξh and of the map Φ can be defined as follows:

ξ
H

¯EH¬
H

R#k+#, ξh
H

¯EH¬
H

R$k+#, and Φ
H

¯ id¬
H

φ.

Remark 2. Let us define the group G as follows: G¯²(α(A),β(A)) rA `O(k)´.
Obviously G is a subgroup of the reduced automorphism group ! and it is

isomorphic to the orthogonal group O(k). Then Φ
G

¯Φ.

Let us denote by p
"
and p

#
the projections of Diff (R#k+#, 0)¬Diff (R$k+#, 0) onto the

first and second factors respectively.

L 1. The projection p
#
restricted to the group of reduced automorphisms of φ is

monomorphic.

Proof. The set of non-multiple points of φ in R#k+# forms a dense subset, because

the codimension of φ is positive. Suppose then that θ `! is an automorphism of the

form θ¯ (a, id), where a `Diff (R#k+#, 0) and id `Diff (R$k+#, 0) is the identity. Then

φa a¯φ. If x is a non-multiple point of φ, i.e. φ−"(φ(x))¯²x´, then φ(a(x))¯φ(x)

implies a(x)¯ x, i.e. a is fixed on the set of non-multiple points of φ. Since this set

is dense and a is continuous the map a is the identity.

C. For any subgroup σ of the group ! we have p
#
(σ)Eσ.
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3. Proof of the theorem

In [Sz3] we have shown that the local coordinate systems can be chosen to satisfy

(a) and (b) of Theorem 1§. This implies that the following weaker form of (c) is also

satisfied: (c
weak

) the restrictions of the transition maps α
i
aα−"

j
and αh

i
aαh −"

j
to the

spaces R#k+#¬²u´ and R$k+#¬²u´ respectively form a pair that defines an

automorphism of the map φ : R#k+#UR$k+#.

L 2. If f : MnUNn+k is a simple Σ","-singular map then the local coordinate

systems above can be chosen in such a way that the above defined automorphisms of φ are

reduced.

Proof of Lemma 2. Suppose the transition map α
j
aα−"

i
changes the orientation of

ker df. Then we can change the signs of the variables x, t
"
, t

$
,… , t

#k−"
in the source and

of y
"
, y

$
,… , y

#k−"
, z

k+"
to get coordinate systems satisfying the requirement. More

precisely: we start with sets of local coordinate systems ²(U
"
,α

"
),… , (U

r
,α

r
)´ and

²(Uh
"
,αh

"
),… ,Uh

r
,αh

r
)´ satisfying (a) and (b) in Theorem 1§, and take the first pair (U

"
,

α
"
), (Uh

"
,αh

"
), then we take the second pair and check whether the transition map

α
"
aα−"

#
keeps the orientation of the kernel or not. If it does then we do not change

anything, but go to the third pair of local coordinates. If it does change the

orientation of ker df then we replace (U
#
,α

#
) and (Uh

#
,αh

#
) by (U

#
,α!

#
) and (Uh

#
,αh !

#
)

respectively, where α!

#
is the composition of α

#
with the map s : RnURn given by

s(t
"
, t

#
,… , t

#k+"
, x,u

"
,u

#
,… ,u

n−#k−#
)

¯ (®t
"
, t

#
,®t

$
,… ,®t

#k−"
, t

#k
, t

#k+"
,®x,u

"
,u

#
,… ,u

n−#k−#
)

and αh !
#

is the composition of αh
#

with the map sh : Rn+kURn+k given by

sh (y
"
, y

#
,… , y

#k+"
, z

"
, z

#
,… , z

k+"
,u

"
,u

#
,… ,u

n−#k−#
)

¯ (®y
"
, y

#
,®y

$
,… ,®y

#k−"
, y

#k
, y

#k+"
, z

"
, z

#
,… ,®z

k+"
,u

"
,u

#
,… ,u

n−#k−#
).

Then we go to the third pair of local coordinate systems and do the same alteration

if necessary, etc. I

Now a theorem of Ja$ nich and Wall (see [J] and [W]) says that the automorphism

group of a finitely determined stable germ has a maximal compact subgroup,

moreover any compact subgroup is contained in a maximal one, and finally a

maximal compact subgroup is homotopically equivalent to the whole automorphism

group in a suitable sense, in particular any fibre bundle whose structure group is the

whole automorphism group can be reduced to any maximal compact subgroup. It is

not hard to see that these claims also remain true for the index 2 subgroup of reduced

automorphisms.

This means that the coordinate systems (U
i
,α

i
) and (Uh

i
,αh

i
) can be chosen in such

a way that the transition maps α
i
aα−"

j
and αh

i
aαh −"

j
restricted to R#k+#¬²u´ and

R$k+#¬²u´ respectively give a pair of diffeomorphisms forming an element of any

given maximal compact subgroup σ of !.

Therefore in order to prove the theorem it remains to show that the structure

group σ can be further reduced to the group G¯²(α(A),β(A)) rA `O(k)´. Let us

choose σ as a maximal compact subgroup containing G.

L 3. G itself is a maximal compact subgroup of the group of reduced

automorphisms of the Morin map φ : R#k+#UR$k+#, i.e. σ¯G.
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Proof. It is enough to show that the inclusion GZσ is a homotopy equivalence. (A

compact Lie group σ cannot be homotopy equivalent to a proper subgroup G.

Indeed, since their top dimensional homology groups are isomorphic they have the

same dimension. Therefore, the space σ}G is 0-dimensional. Because of the

isomorphism on the 0-dimensional homologies this space consists of one single point

and so σ¯G.)

Now in order to show that the inclusion map GZσ is a homotopy equivalence it

is enough to show that it induces a homotopy equivalence of the classifying spaces

i : BGUBσ, since GFΩBGFΩBσFσ, where F means ‘homotopically equivalent’.

It remains to construct a homotopy inverse j : BσUBG of the map i : BGUBσ.

We shall construct j on each finite dimensional approximation of Bσ. Given a

natural number q let us consider the q times join of σ with itself : Eqσ¯σ nσ n… nσ

provided with the diagonal σ-action. Let Bqσ be the quotient space Eqσ}σ.

According to Milnor’s construction the space Bσ is the limit of the spaces Bqσ :

Bσ¯ lim
qU¢

Bqσ.

Let us denote by ξqσ the space Eqσ¬σ R#k+#, by ξh qσ the space Eqσ¬σ R$k+#, and by

Φq
σ : ξqσ U ξh qσ the map induced by the σ-equivariant map id(Eqσ)¬φ, where id(Eqσ)

denotes the identity of the space Eqσ.

L 4. For any codimension k simple Σ","-singular map g denote by ν(g) and νh (g)
the normal bundles of the submanifold of Σ"," singular points Σ","(g) in the source and

of its image Σ4 ","(g) in the target manifold respectively. Then

(a) there exists a k dimensional vector-bundle ηh over Σ4 ","(g) such that νh (g)E ε#G 3ηh ,
and

(b) if we denote by η the pull-back (g rΣ","(g))*(ηh ) then ν(g)E ε#G 2η.

The proof of this lemma will be given in Section 4.

Key remark. Note that each map Φq
σ itself is a simple Σ","-map. Therefore we can

apply Lemma 4 to the map g¯Φq
σ.

In this case Σ","(g) is the zero section of ξqσ and Σ4 ","(g) is the zero section of ξh qσ.
Therefore the normal bundles ν(g) and νh (g) are the bundles ξqσ and ξh qσ respectively. By

the statement of Lemma 4 there is a bundle map

Bq
σ

ξσ
q˜

BO(k)

3γk ⊕ ε
2

jq

which is an isomorphism on each fibre.

The bundle 3γ
k
G ε# is the same as ξh

G
UBG¯BO(k). (See Remark 1 in Section 2

with H¯G.) In Lemma 5 below we will prove that the maps j
q
can be chosen in such

a way that j
q+"

rBqσ¯ j
q
. Therefore they define a map j : BσUBG, which is similarly

covered by a bundle map ξh σ U ξh
G

that is a linear isomorphism on each fibre.

To finish the proof of the statement G¯σ we show that i and j are each other’s

homotopy inverses.
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Notice that by construction the bundles ξh
G

and ξh σ are the universal 3k­2-

dimensional bundles with structure groups p
#
(G) and p

#
(σ) respectively and

p
#
(G)EG ; p

#
(σ)Eσ by the Corollary in Section 1. Universality of the bundles ξh

G

and ξh σ means in particular that if a bundle (with fibre R$k+#) over a space X can be

induced from ξh
G

or ξh σ by a map XUBG or XUBσ respectively, then the homotopy

class of this map is uniquely defined. The composition j a i induces the bundle ξh
G

from itself (since the map j a i is covered by a mapping of the total space ξh
G

U ξh
G
,

which is a linear isomorphism on each fibre). Since the identity map also obviously

induces the bundle ξh
G

from itself, by the universality of ξh
G

the map j a i is homo-

topic to the identity. Similar reasoning using the universality of the bundle ξh σ
gives i a jF 1. I

L 5. The maps j
q
: BqσUBG can be defined in such a way that j

q+"
rBqσ¯ j

q
and

therefore they define a map j : BσUBG.

Proof. The space Bσ is well-defined only up to homotopy. We shall replace Bσ¯
lim

qU¢ (Bqσ) by the so called telescope construction, a homotopically equivalent

space Bσ« for which we shall obtain a map j« : Bσ«UBG covered by a bundle map of

the bundles.

Let iq : BqσZBq+"σ be the natural inclusion. Let C(iq) be the cylinder of this map.

This cylinder contains both Bqσ and Bq+"σ. Attach C(iq+") to C(iq) by identifying

Bq+"σZC(iq) with Bq+"σZC(iq+"). After having done this for each q we get a

‘telescope’-space homotopically equivalent to Bσ. Now we define the map j on this

telescope space as j
q
on Bqσ and as the homotopy between j

q
and j

q+"
rBqσ on the qth

cylinder. I

It remains to show Lemma 4. We shall do this by performing a rather laborious

analysis of the local normal form and finding some invariantly defined subsets in the

source and their images in the target.

4. The proof of Lemma 4

4.1. Sets and bundles in the source manifold of g. Below we give the equations of

certain sets intrinsically associated with the map g in Morin’s normal coordinates. In

this section we shall denote the coordinates u
i
from Section 1 by t

i+#k+"
for i¯ 1,… ,

n®2k®2. The source and target manifolds of g will be denoted by Mn and Nn+k

respectively (like those for f, but f will not occur anymore).

1. The set of singular points

Σ"(g)¯²p `M r rank dg(p)¯n®1´

¯ ²p¯ (t
"
,… , t

n−"
, x) r t

"
­2xt

#
¯…¯ t

#k−"
­2xt

#k
¯ t

#k+"
­3x#¯ 0´.

Since the map g will be fixed from now on it will be omitted from the notation of

the subsets defined here. For example the set Σ"(g) will be denoted simply as Σ".

2. The lines ker dg are the tangent lines of the x-curves (ci t
i
¯ constant).

3. The set of the double points is :

∆¯²p `M r dp« : p1p« and g(p)¯ g(p«)´

¯ ²(t
"
,… , t

n−"
, x) r dx*: x­x*¯®t

"
}t

#
¯®t

$
}t

%

¯…¯®t
#k−"

}t
#k

and ®t
#k+"

¯ x#­xx*­x*#´.
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4. The set of points that are both double and singular is

Σ"f∆¯²p `M r rank dg(p)¯n®1 and dp«1p such that g(p)¯ g(p«)´

¯ ²(t
"
,… , t

n−"
, x) r t

"
¯ t

#
¯…¯ t

#k
¯ 0 and t

#k+"
¯®3x#´.

5. The set of those nonsingular points which have the same image as a singular

point will be denoted by ∆ nΣ".

∆ nΣ"¯²p `M r rank dg(p)¯n

and

dp«1p such that g(p)¯ g(p«) and rank dg(p«)¯n®1´

¯ ²(t
"
,… , t

n−"
, x) r t

"
¯ t

#
¯…¯ t

#k
¯ 0 and t

#k+"
¯®3}4[x#´.

6. The triple points will be denoted by 4. The closure of this set 4 will be denoted

by 4- . It is the union

4- ¯4e(Σ"f∆)e(∆ nΣ")

In the local normal coordinates the set 4- is given by the following equalities and

inequalities :

4- ¯²p `M r dp«,p§ : p«1p§ and p1p«,p§
such that

g(p)¯ g(p«)¯ g(p§) or p `Σ"f∆´

¯ ²(t
"
, t

#
,… , t

n−"
, x) r t

"
¯ t

#
¯…¯ t

#k
¯ 0 and dx*: ®t

#k+"
¯ x#­xx*­x*#´

¯ ²(t
"
, t

#
,… , t

n−"
, x) r t

"
¯ t

#
¯…¯ t

#k
¯ 0 and 3x#%®4t

#k+"
´.

A point (t, x) of 4- belongs to the set 4 if

®(x­x*)1 x, x*

7. The set of Σ"," singular points is :

Σ","¯Σ"(g rΣ")¯²(t
"
,… , t

n−"
, x) r x¯ 0 and t

"
¯ t

#
¯…¯ t

#k
¯ t

#k+"
¯ 0´.

Consequences

(1) Σ"," is an n®2k®2 dimensional closed manifold with local coordinates

(t
#k+#

,… , t
n−"

).

(2) Σ"f∆ is an n®2k®1 dimensional manifold containing Σ",". The normal

bundle of Σ"," in Σ"f∆ is the kernel of the differential dg.

(2«) ∆ nΣ" is also an n®2k®1 dimensional manifold containing Σ",". The two

manifolds ∆ nΣ" and Σ"f∆ are tangent along the manifold Σ"," and have no further

common points.

(3) The set of triple points 4 is a manifold with boundary ∆fΣ".

(4) At every point of 4, ∆ has two branches. These two branches get closer and

closer to each other as the point tends to the boundary and finally they coincide at

the points of the boundary. Let us denote by ξ
"
and ξ

#
the normal bundle of 4 in the

first and the second branch respectively. (These are k dimensional bundles over 4.)

We shall denote by ν
#

the restriction of ξ
"

(or ξ
#
) over Σ",". In Morin’s normal

coordinates the fibres of ν
#

are parallel to the coordinate space (t
"
, t

$
, t

&
,… , t

#k−"
).
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(5) The normal bundle of ∆ in Mn along Σ"," will be denoted by ν
$
. (In Morin’s

normal coordinates the fibres are parallel to the coordinate space (t
#
, t

%
,… , t

#k
).) So we

have the following sequence of embeddings

Σ","Z∆ nΣ"¯ ¦4Z4Z∆ZMn.

The normal bundles of these embeddings restricted to Σ"," will be denoted by

ν
!
, ν

"
, ν

#
, ν

$

respectively and the corresponding coordinate directions are

(x), (t
#k+"

), (t
"
, t

$
,… , t

#k−"
) and (t

#
, t

%
,… , t

#k
)

respectively.

Remarks

(1) The line bundle ν
!

is trivial because it coincides with the bundle ker dg

restricted to Σ",", and g is a simple Σ"," map. (See condition (b) in the definition of

simple Σ"," singular map.)

(2) The bundle ν
"

is the restriction to Σ"," of the normal bundle of the boundary

of 4 in 4, and so this bundle is also trivial. Fix an orientation on the trivial bundle

ker dg. We can choose Morin’s local coordinates (t
"
, t

#
,… , t

#k+"
, x,u

"
,u

#
,… ,u

n−#k−#
) in

a neighbourhood of any point in Σ"," in such a way that the derivative of the

coordinate x in the positive direction of ker dg will be always positive. Such a

coordinate system will be called admissible. (Notice that if for a certain Morin local

coordinate system this does not hold, then we can change the sign of x if we change

the signs of all the t
i
coordinates with odd i as well, and also change the signs of the

corresponding y coordinates and of z
k+"

in the target.)

Now the set Σ"f∆ can be decomposed into the union of Σ"f∆
+

and Σ"f∆
−
,

according to the sign of the x coordinate in an admissible Morin’s local coordinate

system. (This decomposition will help us to show the triviality of a certain line bundle

(named ζ) in the target manifold.)

L 6. The k-dimensional vector bundles ν
#
UΣ"," and ν

$
UΣ"," are isomorphic.

Proof. Let us consider a short nonzero inward normal vector field v of ¦4 in 4 along

Σ",". Given a real number ε such that 0% ε% 1 – and having identified the tubular

neighbourhood of Σ"," in Mn with the corresponding normal bundle – the endpoints

of the vector field εv will be identified with a submanifold of 4 diffeomorphic to Σ",".

Let us denote this submanifold by Σ","εv
. Then the bundles ξ

"
and ξ

#
restricted to Σ","εv

are isomorphic. (Recall that ξ
"
and ξ

#
are the normal bundles of the set of triple points

4 in the first and the second branch of the set of double points respectively.)

Indeed, on decreasing ε continuously from 1 to 0 both restrictions tend to the

bundle ν
#
UΣ",". (Recall that ν

#
was the normal bundle of 4 in the single branch of

the double point-set ∆ over Σ",". As we have mentioned above, the two branches of

∆ coincide over ¦4, so in particular over Σ"," too.)

We can suppose that for ε¯ 1 the restrictions of the bundles ξ
"

and ξ
#

are

orthogonal. Therefore, if we denote by ξv
i

the orthogonal complement of ξ
i
, i¯ 1, 2,

in the normal bundle of 4 in Mn, then we have

ξ
"
rΣ","

v
E ξv

#
rΣ","

v
and ξ

#
rΣ","

v
E ξv

"
rΣ","

v
.
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Now as ε tends to zero the orthogonal complements will tend to the bundle ν
$
.

Therefore ν
#
E ν

$
. I

This implies the first part of Lemma 4 (i.e. ν(g)E ε#G 2ηk).

4.2. Sets and bundles in the target manifold.

1. The restriction of f to Σ"," is a diffeomorphism onto Σ4 ",". In Morin’s normal

coordinates a point (y
"
,… , y

n−"
, z

"
,… , z

k+"
) belongs to Σ4 "," if and only if y

"
¯…¯

y
#k+"

¯ z
"
¯…¯ z

k+"
¯ 0.

2. The image of the set of triple points, which will be denoted by 44 , belongs to the

n®2k dimensional subspace of Rn+k defined by the equations:

y
"
¯ y

#
¯…¯ y

#k
¯ z

"
¯ z

#
¯…¯ z

k
¯ 0

and it forms a topological manifold with non-smooth (‘cuspidal ’) boundary.

3. This cuspidal boundary is the image of the set Σ"f∆ and it is given by the union

of ‘semicubic parabolas’ which have the following parametric equation:

z
k+"

¯®2[x$, y
#k+"

¯®3[x# (and y
"
¯…¯ y

#k
¯ z

"
¯…¯ z

k
¯ 0).

The cuspidal boundary of 44 consists of two n®2k®1 dimensional manifolds with

boundary g(Σ"f∆)
+

and g(Σ"f∆)
−

respectively. Notice that these two manifolds can

not interchange by going to another local coordinate system if we restrict ourselves

to admissible Morin local coordinates. They have the common boundary Σ4 ","¯
g(Σ",") and their tangent spaces coincide at the common boundary.

4. The image of the vector field v under the differential dg will be denoted by η.

This is an inward normal vector field along the boundary Σ4 "," in g(Σ"f∆)
+

(and also

in g(Σ"f∆)
−
). Having identified the normal bundle of Σ4 "," with its tubular

neighbourhood the endpoints of the vector field η will define a submanifold of 44

which we denote by Σ4 ","η .

5. Let ²q
i
´ be a sequence of points of 44 converging to a point q `Σ4 ",". Then the

tangent spaces of 44 at the points q
i
will converge to a well-defined subspace θ

q
of

T
q
Nn+k (dim θ

q
¯n®2k). Let us denote by θ the n®2k dimensional vector bundle

over Σ4 "," formed by the vector spaces θ
q
, q `Σ4 ",". The bundle θ contains the vector

field η.

6. Notice that TΣ4 ","Z θ, where TΣ4 "," is the tangent space of Σ4 ",".
Denote by ζ the orthogonal complement of TΣ4 ","G η in θ.

Notice that the vector field η and the globally defined sets g(Σ"f∆)
+

and g(Σ"f∆)
−

define an orientation of the line bundle ζ and so this line bundle is trivial. (Indeed,

η and θ define at each point p `Σ4 "," a plane, which is divided by the line of η into a

positive half whose germ at p intersects the set Σ"f∆
+

and a negative half. Now ζ

is clearly trivial.)

7. Any interior point Q of 44 has exactly three preimage points

g−"(Q)¯²P
"
(Q),P

#
(Q),P

$
(Q)´.

Let ξPi
"

and ξPi
#

be the fibres of the bundles ξ
"

and ξ
#

at P
i
¯P

i
(Q), i¯ 1, 2, 3.

The six vector spaces ξPi
"
, ξPi

#
, i¯ 1, 2, 3 are mapped by dg pairwise into the same

subspace of T
Q

Nn+k :

dg(ξP"

"
)¯ dg(ξP#

#
) ; dg(ξP"

#
)¯ dg(ξP$

"
) ; dg(ξP$

#
)¯ dg(ξP#

"
).

We obtain three vector spaces in T
Q

Nn+k and we shall denote them by ξhQ
"
, ξhQ

#
, ξhQ

$
.

These vector spaces are k-dimensional and together they span the 3k-dimensional
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normal space of 44 in T
Q

Nn+k. Now let the point Q run over the manifold Σ4 ","η . Then

the points P
"
,P

#
,P

$
will run over three submanifolds of 4 naturally diffeomorphic to

Σ",". Let us consider the restrictions of the bundles ξ
"
and ξ

#
to these submanifolds

and denote them by ξj
i
, where i¯ 1, 2 and j¯ 1, 2, 3. The union of the vector spaces

ξhQ
j

considered for each Q `Σ4 ","η forms a vector bundle ξh
j
, for each j¯ 1, 2, 3. These

three vector bundles ξh
"
, ξh

#
and ξh

$
restricted to Σ4 ","η are isomorphic to each other since

they are isomorphic images of the isomorphic bundles ξj
i
; i¯ 1, 2; j¯ 1, 2, 3.

Therefore the normal bundle of Σ4 ","η (which can be naturally identified with the

normal bundle of Σ4 ",") is isomorphic to the direct sum of the trivial 2-dimensional

bundle (¯ the normal bundle in 44 ) and the direct sum of three isomorphic k-

dimensional bundles (ξh
j
, j¯ 1, 2, 3).

This proves Lemma 4.

5. Final remarks

1. The analogue of Theorem 1 has been proved for Σ",! singular maps in [Sz1] and

[Sz2].

2. Theorem 1 has been formulated with a sketch of the proof in [Sz3].

3. Theorem 1 is one of the main ingredients for the construction of the classifying

space for the cobordism groups of those Σ"," singular maps, which are projections of

immersions (or embeddings) in euclidean spaces of one dimension higher. (It is not

hard to see that for such a map f the kernels of the differentials at the singular points

form a trivial line bundle over the set of singular points, and hence f is simple Σ","-

singular maps if n% 3k.) These latter cobordism groups have been used in the

computations of the cobordism groups of immersions and embeddings in [Sz4] and

[Sz5].

4. If the source and the target manifolds are oriented then the group O(k) can be

replaced by the group SO(k).

5. If we drop condition (b) in the definition of simple Σ","-singular map (see the

Introduction), then the theorem still holds if we replace the group G with its suitable

Z
#

extension.

6. The method of this paper applies more generally than the formulated result.

For example this method works for any Morin singularities. This fact will allow us

to construct models for loop-spaces of Thom spaces, analogous to the ‘James

product’ model for the loop space of a suspension.

I thank Peter Zvengrowski for a careful reading of an earlier version of this paper.
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