Mathematical Proceedings of the Cambridge Philosophical Society

http://journals.cambridge.org/PSP

Additional services for **Mathematical Proceedings of the Cambridge Philosophical Society:**

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u>

A canonical operad pair

Richard Steiner

Mathematical Proceedings of the Cambridge Philosophical Society / Volume 86 / Issue 03 / November 1979, pp 443 - 449 DOI: 10.1017/S0305004100056292, Published online: 24 October 2008

Link to this article: http://journals.cambridge.org/abstract_S0305004100056292

How to cite this article:

Richard Steiner (1979). A canonical operad pair. Mathematical Proceedings of the Cambridge Philosophical Society, 86, pp 443-449 doi:10.1017/S0305004100056292

Request Permissions : Click here

Math. Proc. Camb. Phil. Soc. (1979), **86, 443** With 1 text-figure Printed in Great Britain

A canonical operad pair

By RICHARD STEINER University of Warwick, Coventry

(Received 12 March 1979)

1. Introduction. The purpose of this paper is to construct an operad \mathscr{H}_{∞} with the good properties of both the little convex bodies partial operad \mathscr{H}_{∞} and the little cubes operad \mathscr{H}_{∞} used in May's theory of E_{∞} ring spaces or multiplicative infinite loop spaces ((6), chapter VII). In (6) \mathscr{H}_{∞} can then be used instead of \mathscr{H}_{∞} and \mathscr{C}_{∞} , and the theory becomes much simpler; in particular all partial operads can be replaced by genuine ones. The method used here is a modification of that which May suggests on (6), page 170, but cannot carry out.

We shall use various spaces associated to a finite-dimensional real inner product space V. First, let $\mathscr{A}V$ be the space of all topological embeddings of V in itself. Next, for $k = 0, 1, 2, ..., \text{let } \mathscr{D}_{V}(k)$ be the subspace of $(\mathscr{A}V)^{k}$ consisting of k-tuples of embeddings with disjoint images; by convention $\mathscr{D}_{V}(0) = *$, a point. Finally, let F(V, k) be the kth configuration space of V; it consists of k-tuples of distinct points of V, with F(V, 0) = * also.

The pair $(\mathscr{A}, \mathscr{D})$ has a complicated structure: $\mathscr{A}V$ is a monoid under composition, there is a direct product map from $\mathscr{A}V \times \mathscr{A}W$ to $\mathscr{A}(V \oplus W)$ inducing a map from $\mathscr{D}_{V}(k) \times \mathscr{D}_{W}(l)$ to $\mathscr{D}_{V \oplus W}(kl)$, and so on. We shall sum this up by saying that $(\mathscr{A}, \mathscr{D})$ is an object in a category Φ , to be defined in Section 2 below.

The symmetric group Σ_k acts on F(V, k) and $\mathcal{D}_V(k)$; in Section 3 we shall construct a Σ_k -equivariant map

$$\theta: F(V,k) \to \mathscr{D}_V(k).$$

For $(v_1, ..., v_k)$ a point of F(V, k) we shall have

$$\theta(v_1,\ldots,v_k)=(c_1,\ldots,c_k),$$

where c_r embeds V onto some open ball with centre v_r in an orientation-preserving way; the complete definition of θ does not add anything important to this information.

We can now state the main theorem of this paper.

THEOREM. There is an object $(\mathcal{E}, \mathcal{H})$ of the category Φ , a morphism $\pi: (\mathcal{E}, \mathcal{H}) \to (\mathcal{A}, \mathcal{D})$, and maps $\phi: F(V, k) \to \mathcal{H}_{V}(k)$ making $F(V, k) \Sigma_{k}$ -equivariantly homotopy equivalent to $\mathcal{H}_{V}(k)$ such that

$$\pi\phi = \theta \colon F(V,k) \to \mathscr{D}_V(k).$$

The proof is given in Section 4.

The difference from the programme suggested on (6), page 170 is that $\mathscr{E}V$ is not a subspace of $\mathscr{A}V$. This does not affect the applications to iterated loop space theory; see Section 5.

RICHARD STEINER

2. The category Φ . Let \mathscr{I}_* be the category of finite-dimensional real inner product spaces and isometric linear isomorphisms. An object $(\mathscr{A}, \mathscr{D})$ of Φ then consists of the following:

(a) a continuous functor \mathscr{A} from \mathscr{I}_* to topological monoids;

(b) subfunctors $\mathscr{D}_{(-)}(k)$ of $\mathscr{A}(-)^k$ for k = 0, 1, 2, ..., with $\mathscr{D}_V(0) = *$ for all V;

(c) a continuous commutative and associative natural transformation

 $(c, d) \mapsto c \times d \colon \mathscr{A}V \times \mathscr{A}W \to \mathscr{A}(V \oplus W)$

of functors from $\mathscr{I}_* \times \mathscr{I}_*$ to topological monoids.

The following axioms must hold:

(1) the maps $c \mapsto c \times 1$: $\mathscr{A}V \to \mathscr{A}(V \oplus \{0\}) = \mathscr{A}V$ are identity maps;

- (2) the maps $c \mapsto c \times 1$: $\mathscr{A}V \to \mathscr{A}(V \oplus W)$ are closed inclusions;
- (3) the spaces $\mathscr{D}_{V}(k)$ are invariant under the action of Σ_{k} on $(\mathscr{A}V)^{k}$;
- (4) $1 \in \mathscr{D}_V(1)$ for all V;

(5) if
$$(c_r: 1 \leq r \leq k) \in \mathscr{D}_V(k)$$
 and $(d_{rs}: 1 \leq s \leq j_r) \in \mathscr{D}_V(j_r)$ for $1 \leq r \leq k$, then

$$(c_r d_{rs}: 1 \leq r \leq k, 1 \leq s \leq j_r) \in \mathscr{D}_V(j_1 + \ldots + j_r);$$

(6) if $(c_r: 1 \leq r \leq k) \in \mathscr{D}_V(k)$ and $(d_s: 1 \leq s \leq l) \in \mathscr{D}_W(l)$, then

$$(c_r \times d_s: 1 \leq r \leq k, 1 \leq s \leq l) \in \mathcal{D}_{V \oplus W}(kl).$$

The morphisms of Φ are natural transformations of \mathscr{A} inducing natural transformations of the $\mathscr{D}_{(-)}(k)$ and preserving all the structure.

Given (a) and (c), the axioms (1) and (2) say that \mathscr{A} is an \mathscr{I}_{*} -monoid in the sense of (5), 1.1. By the method described in (6), I.1, one can extend \mathscr{A} , and with it the $\mathscr{D}_{(-)}(k)$, to the category \mathscr{I} of finite- or countable-dimensional real inner product spaces and linear isometries (which need not be surjective). First, if $f: V \to W$ is an isometry between finite-dimensional spaces, then W is an orthogonal direct sum,

 $W = fV \oplus X$

say, and f induces an isomorphism $f': V \to fV$. We define $\mathscr{A}f: \mathscr{A}V \to \mathscr{A}W$ by

$$(\mathscr{A}f)(c) = (\mathscr{A}f')(c) \times 1 \text{ for } c \in \mathscr{A}V.$$

For a countable-dimensional space V we then set

$$\mathscr{A}V = \operatorname{colim}_W \mathscr{A}W,$$

where W runs through the finite-dimensional subspaces of V. Similarly we extend the $\mathcal{D}_{(-)}(k)$ and the direct product natural transformation of (c) by colimits. Axioms (1)-(6) still hold for these extended structures.

It is easy to see that the pair $(\mathscr{A}, \mathscr{D})$ of Section 1, consisting of embeddings and embeddings with disjoint images, is an object of Φ . We use composition to make $\mathscr{A}V$ a monoid; if $f: V \to W$ is an isometric isomorphism, then $(\mathscr{A}f)(c) = fcf^{-1}$ for $c \in \mathscr{A}V$; the natural transformation of (c) is given by the direct product of functions; and the axioms are easily verified.

3. The map $\theta: F(V, k) \to \mathscr{D}_{V}(k)$. In this section, as in Section 1, V is a finite-dimensional real inner product space, F(V, k) is the kth configuration space of V, and $\mathscr{D}_{V}(k)$

444

is the space of k-tuples of embeddings of V in V with disjoint images. We construct a Σ_k -equivariant map $\theta: F(V, k) \to \mathscr{D}_V(k)$ as follows.

Given $(v_1, ..., v_k)$ in F(V, k), let ρ be

$$\frac{1}{2}\min\{\|v_r - v_s\|: r \neq s\}$$

(taken as ∞ if k = 1), so ρ is in $(0, \infty]$ and depends continuously on (v_1, \ldots, v_k) . Define a continuous function $e_{\rho}: V \to V$ by

$$e_{
ho}x = rac{
ho x}{
ho + \|x\|} \quad ext{for} \quad x \in V.$$

Then $\theta(v_1, \ldots, v_k)$ is to be (c_1, \ldots, c_k) where $c_r: V \to V$ is given by

$$c_r(x) = v_r + e_\rho x$$
 for $x \in V$.

It is obvious that $||e_{\rho}x|| < \rho$, so $c_r(x)$ is within ρ of v_r for all x. Since distinct v_r are at least 2ρ apart, the c_r must have disjoint images.

To justify this construction, we must show that the c_r are embeddings, or equivalently that e_{ρ} is an embedding. For use in the next section we give a more general result.

LEMMA. Let a and b be non-negative real numbers with a + b = 1 and define $f: V \to V$ by

 $f(x) = ae_{\rho}x + bx \quad for \quad x \in V.$

Then f is a distance-reducing embedding.

Here distance-reducing means that $||f(x) - f(y)|| \le ||x - y||$ for x and y in V.

Proof. We use differential calculus. By computation, f is differentiable everywhere, and

$$Df(x)(y) = \left[a\left(\frac{\rho}{\rho + \|x\|}\right) + b\right]y \quad \text{if} \quad \langle x, y \rangle = 0,$$
$$= \left[a\left(\frac{\rho}{\rho + \|x\|}\right)^2 + b\right]y \quad \text{if} \quad x \text{ and } y \text{ are linearly dependent.}$$

So Df(x) is diagonalizable with respect to an orthonormal base and its eigenvalues lie in (0, 1]. Since Df(x) is everywhere non-singular, f is an embedding by Rolle's theorem; since $||Df(x)|| \leq 1$ everywhere, f is distance-reducing by the mean-value theorem. This completes the proof.

4. Proof of the theorem. Let V be a finite-dimensional real inner product space. Then $\mathscr{E}V$ is to be the space of maps

$$h: [0, 1] \rightarrow \mathscr{A} V$$

such that h(t) is a distance-reducing embedding for all t and such that h(1) is the identity. For $k \ge 1$, $\mathscr{H}_V(k)$ is to be the space of k-tuples (h_1, \ldots, h_k) in $(\mathscr{C}V)^k$ such that the $h_r(0)$ have disjoint images. The various products in $\mathscr{C}V$ are to be induced by the corresponding products in $\mathscr{A}V$; it is then easy to see that $(\mathscr{C}, \mathscr{H})$ is an object of Φ . And $\pi: \mathscr{C}V \to \mathscr{A}V$ is to be given by

$$\pi(h)=h(0);$$

it is easy to see that $\pi: (\mathscr{E}, \mathscr{H}) \to (\mathscr{A}, \mathscr{D})$ is a morphism of Φ .

RICHARD STEINER

It remains to show that F(V, k) is Σ_k -equivariantly homotopy equivalent to $\mathscr{H}_V(k)$ by a map $\phi: F(V, k) \to \mathscr{H}_V(k)$ such that $\pi \phi = \theta$. All the constructions in what follows are easily checked to be equivariant and we shall not mention the point again. It may help the reader to think of $\mathscr{H}_V(k)$ as the mapping path space of θ , although this is not quite correct.

We define ϕ as follows. Given $(v_1, ..., v_k)$ in F(V, k), let ρ be

$$\frac{1}{2}\min\{\|v_r - v_s\| : r \neq s\} \in (0,\infty],$$

as in Section 3. Then $\phi(v_1, ..., v_k)$ is to be $(h_1, ..., h_k)$, where

$$h_r(t)(x) = (1-t)(v_r + e_\rho x) + tx$$
 for $0 \le t \le 1$ and $x \in V$

 $(e_{\rho} \text{ is as in Section 3})$. From the Lemma we see that the $h_{r}(t)$ are distance-reducing embeddings; and the definition of e_{ρ} shows that $||e_{\rho}x|| < \rho$ for all x, hence that the $h_{r}(0)$ have disjoint images. It follows that (h_{1}, \ldots, h_{k}) is in $\mathscr{H}_{V}(k)$. And it is obvious that $\pi \phi = \theta$.

The map homotopy inverse to ϕ will be $\psi: \mathscr{H}_{V}(k) \to F(V, k)$, given by

$$\psi(h_1, \dots, h_k) = (h_1(0)(0), \dots, h_k(0)(0)).$$

Clearly $\psi \phi = 1$. To construct a homotopy from 1 to $\phi \psi$, let (h_1, \ldots, h_k) be a typical point of $\mathscr{H}_V(k)$. Write v_r for $h_r(0)$ (0) and let $\rho \in (0, \infty]$ be

$$\frac{1}{2}\min\{\|v_r - v_s\| : r \neq s\}.$$

Then the homotopy $H: \mathscr{H}_{V}(k) \times [0, 1] \to \mathscr{H}_{V}(k)$ from 1 to $\phi \psi$ is to be given by

$$H(h_1, ..., h_k; \tau) = (H_1(\tau), ..., H_k(\tau)) \text{ for } \tau \in [0, 1],$$

where the value of $H_r(\tau)(t)$ at a point x of V is as indicated by Figure 1.

To be more precise, Figure 1 shows the value of $H_r(\tau)(t)$ for τ or t equal to 0 or 1 or $\tau = \frac{1}{2}$ or $\tau + t = 1$; two formulae are given for diagonal points, which agree because $h_r(1)$ is the identity, and the several formulae given for each vertex are also easily seen to agree. The trapezium on the left is filled in by an expression of the form

$$h_r(\lambda_{\tau,t}) \left(\alpha_{\tau,t} e_{\rho} x + (1 - \alpha_{\tau,t}) x \right),$$

where λ and α are continuous functions from the trapezium to [0, 1] taking the values given by the figure on the boundary; such functions exist because [0, 1] is contractible. Similarly the triangle on the left is filled in by an expression of the form

$$\alpha_{\tau,t} e_{\rho} x + (1 - \alpha_{\tau,t}) x$$

with α a continuous function from the triangle to [0, 1], the trapezium on the right by an expression of the form

$$\alpha_{\tau,t} e_{\rho} x + (1 - \alpha_{\tau,t}) x + \kappa_{\tau,t}$$

with α a continuous function from the trapezium to [0, 1] and κ a continuous function from the trapezium to V (note that V is contractible), and the triangle on the right by an expression of the form

$$h_r(\lambda_{\tau,t})(e_\rho x) + \kappa_{\tau,t}$$

with λ a continuous function from the triangle to [0, 1] and κ a continuous function from the triangle to V.

446

Now the Lemma in Section 3 shows that $H_r(\tau)(t)$ is always a distance-reducing embedding. For $\tau \ge \frac{1}{2}$ we have $||H_r(\tau)(0)(x) - v_r|| < \rho$ for all x, since $||e_\rho x|| < \rho$ and $h_r(2\tau - 1)$ is distance-reducing, so the $H_r(\tau)(0)$ for fixed $\tau \ge \frac{1}{2}$ have disjoint images. The same holds for $\tau \le \frac{1}{2}$, because the $h_r(0)$ have disjoint images. Therefore the k-tuple $(H_1(\tau), \ldots, H_k(\tau))$ is in $\mathscr{H}_V(k)$ for all τ and gives a homotopy from (h_1, \ldots, h_k) to $\phi \psi(h_1, \ldots, h_k)$.

This completes the proof.

5. Applications to iterated loop spaces. This section gives the properties which \mathscr{H}_{V} shares with the little cubes operad or the little convex bodies operad. The results are analogous to those in (6), VII·1-2. Some of them are extended from infinite loop spaces to finitely many times iterated loop spaces.

PROPOSITION 1. The functor $V \to \mathcal{H}_V$ is a functor from \mathscr{I} to operads. If V is infinitedimensional, then \mathcal{H}_V is an E_{∞} operad.

Proof. Given the definition of an operad ((3), 1·1 or (6), VI·1·2), one easily verifies the first statement. As for the second, the action of Σ_k on $\mathscr{H}_V(k)$ is clearly free; and $\mathscr{H}_V(k)$ is aspherical because

$$\mathscr{H}_{V}(k) = \operatorname{colim}_{W}\mathscr{H}_{W}(k)$$

RICHARD STEINER

with W running through the finite subspaces of V and the maps involved being closed inclusions (Axiom (2)), so that

$$\pi_q \mathscr{H}_V(k) \cong \operatorname{colim}_W \pi_q \mathscr{H}_W(k) \cong \operatorname{colim}_W \pi_q F(W, k) = 0,$$

since F(W, k) is $(\dim (W) - 2)$ -connected ((3), 4.5).

Let V be a finite-dimensional vector space and S(V) be its one-point compactification. If X is a space with base-point, then write $\Omega^{V}X$ for its V-fold loop space (that is, the function space $X^{S(V)}$) and $\Sigma^{V}X$ for its V-fold suspension (that is, the smash product $S(V) \wedge X$). Write QX for colim_W $\Omega^{W}\Sigma^{W}X$ where W runs through the finite-dimensional subspaces of \mathbb{R}^{∞} , and write \mathscr{H}_{∞} for \mathscr{H}_{V} with $V = \mathbb{R}^{\infty}$.

PROPOSITION 2. The operads \mathcal{H}_{V} for V finite-dimensional act naturally and compatibly with suspension on V-fold loop spaces, and \mathcal{H}_{∞} acts naturally on the zeroth spaces of spectra.

Here spectrum is taken in the sense of (6), chapter II: it means a coordinate-free strict Ω -spectrum. The proof is like that of (6), VII·2·1.

Write H_V and H_{∞} for the monads corresponding to the operads \mathscr{H}_V and \mathscr{H}_{∞} (see (3), 2.4). They behave just like the monads corresponding to the little cubes operads ((3), 4-5); in particular there are canonical maps $\alpha_V: H_V X \to \Omega^V \Sigma^V X$ of \mathscr{H}_V -spaces for V finite-dimensional and X a based space, and there is also a canonical map

$$\alpha_{\infty}: H_{\infty} X \to QX$$

of \mathscr{H}_{∞} -spaces.

PROPOSITION 3. The map α_V (V finite-dimensional) is a homeomorphism for $V = \{0\}$ and a group-completion for dim (V) positive. The map α_{∞} is a group-completion.

The case $V = \{0\}$ is trivial: $\mathscr{H}_{\{0\}}(0) = *, \mathscr{H}_{\{0\}}(1) = \{1\}$, and $\mathscr{H}_{\{0\}}(k)$ is empty for $k \ge 2$, so $H_{\{0\}} X = X$. The case when V is positive-dimensional is given by Segal in (8) and, for dim $(V) \ge 2$, by Cohen in (2), III·3·3. (To say that a map $\alpha: A \to B$ is a group-completion means at least that B is grouplike and α induces a weak homotopy equivalence of classifying spaces. For dim $(V) \ge 2$ and sometimes also for dim (V) = 1 there is an equivalent homological statement; see (1), 3·2, (4), 1 and (7).) For α_{∞} the result is given by May in (4), 2·2, and there is always an equivalent homological statement.

Write \mathscr{L} for the linear isometries operad ((6), I·1·2).

PROPOSITION 4. With the obvious structure $(\mathscr{H}_{\infty}, \mathscr{L})$ is an E_{∞} operad pair. This is proved just like (6), VII·2·3.

For $\mathscr{G} \rightarrow \mathscr{L}$ a morphism of operads a \mathscr{G} -spectrum is defined as in (6), IV 1 · 1.

PROPOSITION 5. If there is a morphism $(\mathcal{C}, \mathcal{G}) \rightarrow (\mathcal{H}_{\infty}, \mathcal{L})$ of operad pairs, then the zeroth space of a \mathcal{G} -spectrum is naturally a $(\mathcal{C}, \mathcal{G})$ -space.

This is proved just like (6), VII.2.4.

I am grateful to Peter May for some comments.

REFERENCES

- (1) ADAMS, J. F. Infinite loop spaces. Annals of Mathematics Studies 90 (Princeton University Press; University of Tokyo Press, 1978).
- (2) COHEN, F. R., LADA, T. J. and MAY, J. P. The homology of iterated loop spaces. Springer Lecture Notes in Mathematics, no. 533 (1976).
- (3) MAY, J. P. The geometry of iterated loop spaces, Springer Lecture Notes in Mathematics, no. 271 (1972).
- (4) MAY, J. P. E_∞ spaces, group completions, and permutative categories. In New developments in topology, ed. G. Segal (Cambridge University Press, 1974), pp. 61–93.
- (5) MAY, J. P. The spectra associated to *I*-monoids. Math. Proc. Cambridge Philos. Soc. 84 (1978), 313-322.
- (6) MAY, J. P. (with contributions by F. QUINN, N. RAY and J. TORNEHAVE). E_{∞} ring spaces and E_{∞} ring spectra. Springer Lecture Notes in Mathematics, no. 577 (1977).
- (7) McDUFF, D. and SEGAL, G. Homology fibrations and the 'group completion' theorem. *Invent. Math.* 31 (1976), 279-284.
- (8) SEGAL, G. Configuration-spaces and iterated loop-spaces. Invent. Math. 21 (1973), 213-222.