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A canonical operad pair
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University of Warwick, Coventry
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1. Introduction. The purpose of this paper is to construct an operad J ^ with the
good properties of both the little convex bodies partial operad Jf^ and the little cubes
operad #„ used in May's theory of EK ring spaces or multiplicative infinite loop spaces
((6), chapter VII). In (6) J^, can then be used instead of CriT^ and #<„, and the theory
becomes much simpler; in particular all partial operads can be replaced by genuine
ones. The method used here is a modification of that which May suggests on (6), page
170, but cannot carry out.

We shall use various spaces associated to a finite-dimensional real inner product
space V. First, let stfV be the space of all topological embeddings of V in itself. Next,
for k = 0, 1, 2, ..., let @F{k) be the subspace of (s/V)k consisting of ^-tuples of embed-
dings with disjoint images; by convention @v(0) = *, a point. Finally, let F(V, k) be
the fcth configuration space of V; it consists of &-tuples of distinct points of V, with
F(V,0) = *also.

The pair (s/, S>) has a complicated structure: s/V is a monoid under composition,
there is a direct product map from J/VXS/W to s/(V@W) inducing a map from
@y(k) x S!w(l) to @v<BW{kl), and so on. We shall sum this up by saying that (s&', Si) is
an object in a category O, to be defined in Section 2 below.

The symmetric group Y.k acts on F( V, k) and 2v(k); in Section 3 we shall construct a
map

For (vlt ...,vk) a point of F(V,k) we shall have

d(vlt...,vk) = (cx ck),

where cr embeds V onto some open ball with centre vr in an orientation-preserving way;
the complete definition of 6 does not add anything important to this information.

We can now state the main theorem of this paper.

THEOREM. There is an object (io, 34?) of the category $ , a morphismn: (S, 3ff) -*• (s/, Q)),
and maps (f>:F(V,k)->Jfp(k) making F(V,k) T,k-equivariantly homotopy equivalent
to J4?v(k) such that

The proof is given in Section 4.
The difference from the programme suggested on (6), page 170 is that $ V is not a

subspace of s/V. This does not affect the applications to iterated loop space theory;
see Section 5.
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2. The category <J>. Let J+ be the category of finite-dimensional real inner product
spaces and isometric linear isomorphisms. An object (s/, 3>) of <D then consists of the
following:

(a) a continuous functor sf from ./* to topological monoids;
(b) subfunctors ^ <_>(&) of s/( - )k for k = 0, 1, 2, ..., with 2>v(0) = * for all V;
(c) a continuous commutative and associative natural transformation

of functors from f+ x J+ to topological monoids.
The following axioms must hold:
(1) the maps Ch->c x 1: s/V-*-s/{V®{0}) = stfV are identity maps;
(2) the mapsci->cx 1:JS/V->S/(V®W) are closed inclusions;
(3) the spaces 3)v{k) are invariant under the action of Sfc on (s/V)k;
(4) le^F(l)forall F;
(5) if (cr: 1 < r s; k) e@v(k) and (drs: 1 ^ s s$ jr) eS>y(jr) for 1 < r < jfc, then

(crdrs: 1 < r < *, 1 $ s < j r )e^F(j1+ ... +jr);

(6) if (cr: 1 < r ^ k)<=@v(k) and (d8:1 < s < Z)6^(Z), then

The morphisms of O are natural transformations of s/ inducing natural trans-
formations of the î (_)(&) and preserving all the structure.

Given (a) and (c), the axioms (1) and (2) say that s/ is an ̂ ,-monoid in the sense of
(5), 1-1. By the method described in (6), I I , one can extend jtf, and with it the 3)(_)(k),
to the category J of finite- or countable-dimensional real inner product spaces and
linear isometries (which need not be surjective). First, if / : V-> W is an isometry
between finite-dimensional spaces, then W is an orthogonal direct sum,

W=fV@X

say, and/induces an isomorphism/': V^-fV. We define s?f:sfV->s/W by

(jtff) (c) = (s/f) (c) x 1 for

For a countable-dimensional space V we then set

where W runs through the finite-dimensional subspaces of V. Similarly we extend the
(̂_)(/fc) and the direct product natural transformation of (c) by colimits. Axioms (1 )-(6)

still hold for these extended structures.
It is easy to see that the pair (s/, Qi) of Section 1, consisting of embeddings and

embeddings with disjoint images, is an object of <I>. We use composition to make s#V
a monoid; if/: V-*• W is an isometric isomorphism, then (s/f)(c) = fcf-1 for ces/V;
the natural transformation of (c) is given by the direct product of functions; and the
axioms are easily verified.

3. The map 8: F(V, k)->@v(k). In this section, as in Section 1, V is a finite-dimen-
sional real inner product space, F( V, k) is the kth configuration space of V, and S>r(k)
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is the space of fc-tuples of embeddings of V in V with disjoint images. We construct a
Efc-equivariant map 6: F(V, k)^-@v{k) as follows.

Given (vv ..., vk) in F( V, k), let p be

(taken asooif k = 1), sop is in (0, oo] and depends continuously on (»1, ...,vk). Define a
continuous function e : V -*-V by

px
e% = n lor xe K.

||
Then ^(Vj, ...,ffc) is to be (cv ...,ck) where cr: F-> V is given by

cr(x) = vr + epx for z e F .

It is obvious that \\epx\\ < p, so cr(x) is within p of vT for all x. Since distinct vr are at
least 2/9 apart, the cr must have disjoint images.

To justify this construction, we must show that the cr are embeddings, or equival-
ently that ep is an embedding. For use in the next section we give a more general
result.

LEMMA. Let a and b be non-negative real numbers with a + b = 1 and define/: V-+Vby

f(x) = aepx + bx for xeV.

Then f is a distance-reducing embedding.
Here distance-reducing means that ||/(x)— f(y)\\ < \\x — y\\ for x and y in V.

Proof. We use differential calculus. By computation,/is differentiable everywhere,
and

{ ( ^ \ if (x,y) = 0,

= a I —^r-jj I + b \y if x and y are linearly dependent.
L Vp + IMI/ J

So Df(x) is diagonalizable with respect to an orthonormal base and its eigenvalues lie in
(0,1]. Since Df(x) is everywhere non-singular,/ is an embedding by Rolle's theorem;
since ||Z)/(a;)|| < 1 everywhere,/is distance-reducing by the mean-value theorem. This
completes the proof.

4. Proof of the theorem. Let V be a finite-dimensional real inner product space. Then
SV is to be the space of maps

h:[0, l]->st?V

such that h(t) is a distance-reducing embedding for all t and such that h(l) is the iden-
tity. For k ^ 1, ?fv(k) is to be the space of fc-tuples (hlt ...,hk)in (£V)k such that the
hr(0) have disjoint images. The various products in <?F are to be induced by the
corresponding products in s/V; it is then easy to see that (<?, Jf?) is an object of <t>. And
n: #V->s/V is to be given by

n(h) = A(0);

it is easy to see that n: (S, tf) -*• (si', Q)) is a morphism of <5.
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I t remains to show that F(V, k) is Zfc-equivariantly homotopy equivalent to Jfv(k)
by a map <j>: F{ V, k) -»- Jtf*v(k) such that n<f> = 6. All the constructions in what follows
are easily checked to be equivariant and we shall not mention the point again. I t may
help the reader to think of J^r(k) as the mapping path space of 6, although this is not
quite correct.

We define <j> as follows. Given {vlt..., vk) in F(V, k), letp be

Jmin{| |wr-«J:r * s}e(0,co],

as in Section 3. Then (̂Wj, ...,vk)is to be (hv ...,hk), where

hr(t)(x) = (l-t)(vr + epx) + tx for 0 ̂  t < 1 and xeV

(ep is as in Section 3). From the Lemma we see that the hr(t) are distance-reducing
embeddings; and the definition of ep shows that \\ep x\\ < p for all x, hence that the hr(0)
have disjoint images. It follows that (^ hk) is in 3^v{k). And it is obvious that
7T<f) = 6.

The map homotopy inverse to <j> will be i/r: 3^v(k)^-F{V, k), given by

Clearly \jf(j) = 1. To construct a homotopy from 1 to <pi/r, let (ht hk) be a typical

point of 3Fv{k). Write vr for hr(0) (0) and l e tpe (0, oo] be

imin{||wr-»J|:r #«}.

Then the homotopy H: 3^v(k) x [0,1] ->«3f v(k) from 1 to <j>\Jr is to be given by

H(h1,...,hk;T) = (H1(T),...,Hk(T)) for Te[0,lJ,
where the value of Hr(r) (I) at a point x of V is as indicated by Figure 1.

To be more precise, Figure 1 shows the value of Hr(r) (t) for T or t equal to 0 or 1 or
T = | o r T + ( = 1; two formulae are given for diagonal points, which agree because
hr(l) is the identity, and the several formulae given for each vertex are also easily
seen to agree. The trapezium on the left is filled in by an expression of the form

K(K. t) (<*T. t e
P

 x + (1 ~ ar, t) *).
where A and a are continuous functions from the trapezium to [0, 1] taking the values
given by the figure on the boundary; such functions exist because [0,1] is contractible.
Similarly the triangle on the left is filled in by an expression of the form

ar,tepx+(l-aTtt)x

with a a continuous function from the triangle to [0,1], the trapezium on the right by
an expression of the form

with a a continuous function from the trapezium to [0,1] and K a continuous function
from the trapezium to V (note that V is contractible), and the triangle on the right by
an expression of the form

K(K,t)(e
P

x)+K7,t
with A a continuous function from the triangle to [0,1] and K a continuous function
from the triangle to V.
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= 1

/i,(l)(2re,.Y + (l

hr(tXx)

+ (1-2T)X

\

iir(2tXepx)

a-2t\

\

X

x + (2t~\)x

(\-tXvr +

\epx + (2T-\

epx) + tx

\
[ I ; , -A , (2T-1 ) (0 ) ]

T = I

Fig. 1

Now the Lemma in Section 3 shows that /^.(T) (t) is always a distance-reducing
embedding. For r ^ £ we have | |^.(T) (0) (a;)-wr|| < p for all a;, since ||epa;|| < p and
Ar(2r — 1) is distance-reducing, so the /^.(T) (0) for fixed T ^ \ have disjoint images. The
same holds for T < \, because the hT(0) have disjoint images. Therefore the ifc-tuple
(H^T), ...,Hk(r)) is in JCy(k) for all T and gives a homotopy from (hv...,hk) to

#•(*!,-A).
This completes the proof.

5. Applications to iterated loop spaces. This section gives the properties which J^F

shares with the little cubes operad or the little convex bodies operad. The results are
analogous to those in (6), VII-1-2. Some of them are extended from infinite loop spaces
to finitely many times iterated loop spaces.

PROPOSITION 1. The functor V-*-JFv is a functor from J to operads. If V is infinite-
dimensional, then JFy is an E^ operad.

Proof. Given the definition of an operad ((3), 1-1 or (6), VI-1-2), one easily verifies the
first statement. As for the second, the action of Efc on 3^v (k) is clearly free; and J^v(k)
is aspherical because
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with W running through the finite subspaces of F and the maps involved being closed
inclusions (Axiom (2)), so that

ngJfv(k) £ co\imw7TgJfw(k) ^ colim wngF(W,k) = 0,

since F(W,k) is (dim (W)-2)-connected ((3), 4-5).
Let F be a finite-dimensional vector space and S( V) be its one-point compactifica-

tion. If X is a space with base-point, then write Q.VX for its F-fold loop space (that is,
the function space XS(F)) and 2 F X for its F-fold suspension (that is, the smash product
S( V)AX). Write QX for colim^ QWII

WX where W runs through the finite-dimensional
subspaces of R"5, and write ^ for 3tfv with F = R°°.

PROPOSITION 2. Theoperads Jf?vfor V finite-dimensional act naturally and compatibly
with, suspension on V-fold loop spaces, and J^ acts naturally on the zeroth spaces of
spectra.

Here spectrum is taken in the sense of (6), chapter II: it means a coordinate-free
strict Q-spectrum. The proof is like that of (6), VII-21.

Write Hv and Hm for the monads corresponding to the operads Jfr and 3#% (see (3),
2-4). They behave just like the monads corresponding to the little cubes operads ((3),
4-5); in particular there are canonical maps av: Hv X -> £lv?.v X of .^-spaces for F
finite-dimensional and X a based space, and there is also a canonical map

aa):HnX->QX
of ^o-spaces.

PROPOSITION 3. The map <xv (Vfinite-dimensional) is a homeomorphism for V = {0}
and a group-completion for dim (F) positive. The map a^ is a group-completion.

The case V = {0} is trivial: ^ 0 ) (0) = *, Jf{0)(l) = {1}, and 3f{0)(k) is empty for k ^ 2,
so //{„} X = X. The case when F is positive-dimensional is given by Segal in (8) and, for
dim (F) ^ 2, by Cohen in (2), III-3-3. (To say that a map a: A->B is a group-comple-
tion means at least that B is grouplike and a induces a weak homotopy equivalence of
classifying spaces. For dim (F) ^ 2 and sometimes also for dim (F) = 1 there is an
equivalent homological statement; see (l), 3-2, (4), 1 and (7).) For aB the result is given
by May in (4), 2-2, and there is always an equivalent homological statement.

Write & for the linear isometries operad ((6), 1-1-2).

PROPOSITION 4. With the obvious structure (^ , , JS?) is an Ex operad pair.
This is proved just like (6), VII-2-3.
For S?-> £P a morphism of operads a ^-spectrum is defined as in (6), IV-1-1.

PROPOSITION 5. / / there is a morphism (%', 5?) -> (.3^, £C) of operad pairs, then the
zeroth space of a ^-spectrum is naturally a {$>, ^)-space.

This is proved just like (6), VII-2-4.

I am grateful to Peter May for some comments.
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