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PREFACE

Speaking roughly, cohomology operations are algebraic operations on

the cohomology groups of spaces which commute with the homomorphisms in­

duced by continuous mappings. They are used to decide questions about the

existence of continuous mappings which Camlot be settled by examining

cohomology groups alone.

For example, the extension problem is basic in topology. If spaces

X,Y, a subspace A C X, and a mapping h: A --~ Y are given, then the

problem is to decide whether h is extendable to a. mapping f: X --;> Y.

The problem can be represented by the diagram

X

g/' "~"~I
7 '~

A >Y
h

fg h

where g 1s the inclusion mapping. Passing to cohomology yields an alge­

braic problem

If f eXists, then cp = r* solves the algebraic problem. In general the

algebraic problem is weaker than the geometric problem. However the more

algebraic structure which we can cram into the cohomology groups, and which

cp must preserve, the more nearly will t~e algebraic problem approximate

the geometric. For example, cp is not only an additive homomorphism of

groups, but must be a homomorphism of the ring structures based on the cup

product. Even more, q> must commute with all cohomology operations.



In these lectures, we present the reduced power operations (the

squares Sqi and pth powers pi where i = 0,1, ... , and p is a prime).

These are constructed, and their main properties are derived in Chapters V,

VII and VIII. These chapters are independent of the others and may be read

first. Chapter I presents the squares axiomatically, all of their main

properties are assumed. In Chapters II, III, and IV, further properties

are developed, and the principal applications are made. Chapter VI contains

axioms for the pi p > 2), and applications of these. Chapter VIII

contains a proof that the squares and pth powers are characterized by some

of the axioms assumed in I and VI.

The method of" constructing the reduced powers, given in VII, is new

and, we believe, more perspicuous. The derivation of Adem's relations in

VIII is considerably simpler than the pUblished version. The uniqueness

proof of VIII is also simpler. In spite of these improvements, the con­

struction of the reduced powers and proofs of properties constitute a

lengthy and heavy piece of" work. For this reason, we have adopted the axio­

matic approach so that the reader will arrive quickly at the easier and more

interesting parts.

The appendix, due to Epstein, presents purely algebraic proof"s of

propositions whose proofs, in the text, are mixed algebraic and geometric.

The reader should regard these lectures as an introduction to co­

homology operations. There are a number of important topics which we have

not included and which the reader might well study next. First, there is

an alternate approach to cohomology operations based on the complexes

K(~,n) of Eilenberg-MacLane [Ann. of Math., 58 (1953), 55-106; 60 (1954),

49- 1 39; 60 (1954), 513-555]. This approach has been developed extensively

by H. Cartan [Seminar 1954/55]. A very important application of the squares

has been made by J. F. Adams to the computation of the stable homotopy

groups of spheres [Comment. Math. Helv. 32 (1958), 180-214]. Finally, we

do not consider secondary cohomology operations. J. F. Adams has used these

most successfully in settling the question of existence of mappings of

spheres of Hopf invariant 1 [Ann. of Math., 72 (1960), 20-104; and Seminar,

H. Cartan 1958/59].

Princeton, New Jersey, May, 1962.
N. E. S.
D. B. A. E.
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CHAPTER I.

Axiomatic Development of the Steenrod Algebra <t (2)

In §1, axioms are given for Steenrod squares. (The existence and

uniqueness theorems are postponed to the final chapters.) In §2, the ef­

fect of squares in projective spaces is discussed, and it is proved that

any suspension of a Hopf map is essential. In §3, the algebra of the squares

«(2) is defined and the vector space basis of Adem [1] and Cartan [2] is

obtained.

algebra

In §4, it is shown that the indecomposable elements of the
2i

«(2) are represented by elements of the form Sq. Some geo-

metric applications of this fact are given. In §5, the Hopf invariant of

maps S2n-1__> Sn is defined. The existence theorem for maps of even

Hopf invariant when n is even, and some non-existence theorems, are given.

Unless otherwise stated, all homology and cohomology groups in

this chapter will have coefficients Z2.

§1. Axioms.

We now give axioms for the squares Sqi . The existence and unique-'

ness theorems will be postponed to the final chapters.

1) For all integers i L 0 and q L 0, there is a natural transformation

of functors which is a homomorphism

Sqi: Hn(X,A) -~ Hn+i(X,A)

2) SqO 1.

3) If dim x n, Sqnx x 2

4) If i > dim x, Sqix 0.

5) 'Carten formula

n L o.

k
= I 1=0 Sqix • Sqk-iy

1
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We recall that if x € HPeX,A) and y € #(X,B), then xy €

H:?+q(X,A"B). This is true in general in simplicial cohomology, but some

condition of niceness on the subspaces A and B is necessary in singu­

lar cohomology.

6) Sq1 is the Bocksteln homomorphism ~ of the coefficient sequence

o -) Z2 -) Z4 -> Z2 -) 0 •

7) Adem relations. If 0 < a < 2b, then

Sq&Sqb = \' [&/2] ( b-l -J) Sqa+b-jSqj •
Lj=o a-2j

The binomial coefficient is, of course, taken mod 2.

The first five axioms imply the last two, as will be proved 1n the

final chapter

1 • 1 LEMMA. The following two forms of the Cartan formula are

~uivalent in the presence ot Axiom 1):

Sqi(xy) E. SqJx • Sql-Jy
J

Sqi(x x y) = L
j

Sqix x gql-jy •

PROOF. Let p: X x y -) X and q: X x Y -:> Y be the pro­

jections. If the first formula holds, then

Sql(x x y) Sqt(X x 1) • (1 X y»)
L

j
Sqj(x x 1) • Sqi-J(1 X y)

E
j

SqJ(p*x) Sqi-j(q*y)

Lo p*Sqix • q*Sqi-Jy
J

= L
j

(SqJx x 1) • (1 x Sqi-jy)

= Lj Sqjx x Sqi-jy •

Let d: X -) X x X be the diagonal. If the second formula

holds, then

Sqi(xy) Sqid*(x x y) = d*Sqi(x x y}

d*I:
j

Sqix x Sqi-Jy I:
j

Sqix • Sqi-jy •

1 .2 LEMMA. Axioms 1), 2) and 5) imply:

If 8: Jtl(A) -) Jtl+1 (X,A) is the coboundary map, then

aSqi Sqia •

PROOF. We will show that 8 is essentially equivalent to a x·

p~oduct with a l-dimensional class. Then the Cartan formula applies to give
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the desired result. (This method can be used for any cohomology operation

whose behaviour under x-products is mown.)

Let Y be the union of X and I x A, with A ( X identified

with ( o) x A. Let B = [1/2, 1 ] xA C Y and Z = X U [0, 1/ 2] xA C Y,

and let A I = (1) x A and A" = B n Z.. We then have the following connnu-

<~ 1fl(A' uZ) ---:> ~(A'uA")

a1 a1
<- Jtl+l (Y,A'uZ) ~> :Efl+l (B,AI UA")

tative diagram.

!fleA) ~ ~ Jtl(r x A) ......=:-> ~(A')

a1 a1 a1
1tl+1 (X,A) ~~ !fl+l(y,IxA) ~~ lfl+l(y,AI)

The isomorphi·sms in the lower line are due to homotopy equivalence, the

5 lemma, and excision. In order to prove 8Sqi = Sqi8 on :EflCA), it

is sufficient to prove it on Jtl(Al u Z). Looking at the last square on the

right of the diagram, we see that it is sufficient to prove it on

1fi(A' u A").

So we have to prove that 8Sqi = Sqia where

8: ~(! x A) --> Jtl+l (I x A,! x A) •

Let 0 and f be the cohomology classes in 1f(1) corresponding to the

points ° and 1. Let I be the generator of H1 (I,!) ..

Starting with 8 (;- x u)

mula, we obtain

Sqi8 (i x u)

I x u, and applying the Cartan for-

Sq°I x sqiu

asqi( i' x u)

Similarly, 8(0 x u) -1 x u leads to Sqi8 (O x u)

§2. Projective Spaces.

Let ~(X) denote the reduced cohomology group (mod 2).

2. 1. LEMMA. Let SX denote the suspension of X, and let

s: ~(X) -:> If!+1 (SX) denote the suspension isomorphism. Then, from

Axioms 1), 2) and 5), it follows that SSqi Sqis .

PROOF. Let ex and Ctx be two cones on X. Then SX = ex u C'X,
where ex n C'X = X. The suspension isomorphism is def'ined by the follow­
ing commutative diagram of reduced cohomology groups
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!fl(X) s
) !fl+ 1 (SX)

51 ~
A

~I
'V

!fl+1(CX,X) < excision !fl+1 (SX,C'X)
~

The two vertical maps are isomorphisms because ex and C·X are contrac­

tible. The lemma follows from Axiom ,) and 1.2.

2.2

tible in X,

kLEMMA. If X = Ui=,Ai , where each Ai is open and contrac-

then the product of any k positive-dimensional cohomology

classes of X is zero.

PROOF. Since Ai is contractible in X, inclusion induces the

zero homomorphism !fleX) -) :Efl(Ai ) for q > o. Hence Ifl(X,Ai )-> H'i(X)

is an epimorphism for each q > 0 and for each i. If ui has positive

*dimension and u i € H (X) for , SiS. k, then, for each i, there is

*an element vi € H (X,Ai ) which maps onto ui . Now v,v
2

••• vk E

* * *H (X,U Ai) 0 and the homomorphism H (X,U Ai) -) H (X) maps v,v2 •••

vk onto ti, u2 •••uk. (Apply the theorem on the invariance of the cup-product

under the inclusion (X;0, ••. ,0) C (X;A1, ••. ,Ak).) The lemma follows.

By 2.2, cup-products are zero in SX.

2.3. THEOREM. The n-fold suspension of the Hopf map S3 -) S2

is essential.

PROOF. Let X = p2(C), the complex projective plane. One sees

by Poincare duality, that if x is the non-zero element of H2 (X), then

x2 is the non-zero element of H4(X) .

X is constructed by attaching the 4-cell e4 to S2 by means of

the Hopf map f: S3 -) S2. So SnX is cODstruc~ed by attaching the

(0+4) -cell Sne 4 to Sn+2 SDS2 by means of the map Snf : Sn+ 3 _)

Sn+2. Now

sn(Sq2X) by 2.'
sn(x2

) by Axiom 3)

* 0 since s 1s an isomorphism.

So snx is the non-zero element of Hn+ 2 (SnX) and Sq2(s~) is

the non-zero element of Hn+4(Snx). Now suppose the map Snf is
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inessential. Then SnX ~ Sn+2 v Sn+4. Let r: sDx --) Sn+2 be this

homotopy equivalence followed by the obvious retraction. Let u be the

non-zero element of Ifl+2( sn+2) e Then Sq2u 0 e. So

o r*{ Sq2u) Sq2(r*u) Sq2( snx) '* o.

This is a contradiction.

We can prove in a similar manner that any suspension of the other

Hopf maps is essential.

Axioms 3), 4) and 5) enable us to compute Sqi on a part of the

cohomology ring.

2.4.

then Sqiuk

LEMMA. Axioms 2), 3), 4) and 5) imply that if dim u

( ~ ) uk
+

1 .

1 ,

PROOF. The lennna follows from Axioms 2) and 4) if k o. If

k > 0, then by induction on k,

Sqiuk = Sqi(u.uk- 1 )

dimu=2 and

and Sq2i+l (uk) O.

~u 0, then

PROOF. This follows by induction, as in the previous lennna.

This following lemma is extremely useful in calculating binomial

coefficients mod p.

LEMMA. Let p be a prime and let a2.6.

I
m •

b = b.p~
i=O ~

( b
a

) == m (b. )
IT 1=0 a~ mod p.

Lm .
a.p1.

i=O ~
and

PROOF. ( 1) p(p-1) ••• (p-i+1)
1.2 ••• i

o mod p.

(0 < i < p)

Therefore, in the polynomial ring Zp[X] , we have
i

It follows by induction on i that (1 + x)p

= 1 + xP •

Therefore
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Eb.pi
(1 + x) J.

m i b.II (1 + xP ) ~
1=0

la.pi
The coefficient of xa = x 1 in the usual expansion of (1 + x)b is

( ~ ). But, from the above expansion, we see that it is II ~=o ( :~ ) •

The lermna follows.

2.7. IEMMA. If dim u = 1, then

Sqi(u2) 2k
if i = 0u

0 if 1:/. O,2k

2k+1
if i = 2k .u

PROOF. This is irmned1ate from 2. 4 and 2.6.

§3. Definitions. The Basis of Admissible Monomials.

'We now define the Steenrod algebra mod 2, et( 2). Let M = (Mi )

be a sequence of R-modules, where R is a commutative ring and i L o.

Then M is called a graded module. We say the elements of Mi have de­

gree or dimension 1. A homomorphism f: A -) B of graded modules 1s

a sequence of homomor~h1sms f i : Ai -) Bi • If M and N are graded

modules, we define the graded module M ~ N by (M ~ N) r L.i Mi @ Nr - i ·

A graded R-module A is called a. graded algebra if there is a homomorphism

q>: A@A-)Aandaunitelementl(whichisobviouslyofdegreeo).

The algebra is said to be a.ssociative if commutativity holds in the diagram.

Let B be a graded module. Let T: A@B-)BQbAbethemapdefined

by T(a ~ b) = (-1 )pq(b Qb a), where p = dim a and q = dim b. We say

the a.lgebra is corrmutative if the diagram
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is commutative. A homomorphism f: A -) B of algebras, is a homomorphism

of modules, which commutes with the multiplication, i.e., fepA = (PB(f ~ f),

and such that f( 1) = 1. Let M be a. graded module and A a. graded algebra

M is called an A-module, if there is a. map t: A ~ M -:;> M, which respects

the unit of A, and such that the following diagram is cormnutative

lQbV:>AQbM

Jt
___V:.--_:> M

A~A~M

~ cp ~

A0M

If B 1s a graded algebra, then A ~ B is given a graded algebra struc­

ture by the multiplica.tion A ~ B Qb A i) B 1 ~ T qp 1 :> A ~ A ~ B ~ B~>

A ~ B. If N is a B-module, then M ~ N 1s an A ~ B-module by the map-

ping

The ground ring R may be regarded as a graded module H, such that

Hi = ° if i > o. We say a graded algebra is sUpplented if there 1s an

algebra homomorphism e: A -~ R. let M be a graded R-module. Let

Mr be the tensor product of M with itself r times, and let reM)

I :.0fil (r.f = R). r(M) is called the tensor algebra of M. The multipli­

cation r (M) ~ r (M) -) r (M) is induced by the canonical isomorphisms

Mr ~ MS ~ Mr +s .

We define Ci (2), the Steenrod algebra mod 2, to be the graded

associative algebra generated by the sqi, SUbject to the Adem relations

(§ 1, Axiom 7). In detail, the construction is as follows. Let M be

the graded Z2-module, with Mi ~ Z2 for a.ll i > o. We denote the gen­

erator of Mi by SQ.i, so that dim Sqi i. Ci (2) "is the quotient of

r (M) by relations of the form

Sqa 0 Sqb _ I:. ( b-l- j ) Sqa+b-j ~ Sqj when a < 2b .
J a-2j

We write Sq0 = 1 in (1,( 2) •

SqI

Given a sequence or non-negative integers I = (i,,12, ... ,ik), k

1s called the length of I. We write k = f (I). We define the moment of

I by meT} = I:~=lSiB' A sequence I is called admissible if both

1s - 1 L 2is for k 2 s 2. 2, and i k 2 1. We write

1, i 2 i kSqSq .•• Sq.
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rr r is admissible, we call SqI admissible. We also call SqO admis­

sible. We shall also speak of the moment of SqI .

3. 1. THEOREM. The admissible monomials form a vector space basis

for Ci( 2) •

PROOF. We rirst show that any inadmissible monomial is the sum of

monomials of smaller moment, and hence that the admissible monomials span

d(2). Let I (il, .. ~,ik) be an inadmissible sequence with no zeros.

For some r, n = i r < 2ir + 1 2m. So, by the Adem relations,

where A. j E Z2. It is easy to verify that each monomial on the right has

smaller moment than SqI (separate arguments are needed for the cases

j = 0 and j > 0). By induction on the moment, it follows that every

monomial is a sum of admissible monomials.

We still need to show that the admissible monomials are linearly

independent. Let P be co-dimensional real projective space. Then H*(P)

is the polynomial ring Z2[u], where dim u = 1. Let pn be the n-fold

Cartesian product of P with itself. Let w = u x u .•• x U E If-(pll). The

following proposition will complete the proof of 3.1.

3 • 2 • PROPOSITION. The mapping C1 ( 2) -) H* (pll), defined by

evaluation on w, sends the admissible monomials of degree S n into

J.inearly independent elements.

PROOF. The proposition is proved by induction on n. For n 1,

it follows from 2.4.

Suppose L: aISqlw 0, where the sum is taken over admissible

monomials SqI of a fixed degree q, where q S n. We wish to prove that

a I = 0 for each I. This is done by a decreasing induction on the length

1(1). Suppose that a1 = 0 for .~(1) > m. The above relation takes the

form

( 1 ) o

The Kfumeth theorem asserts that
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Let g denote the projection into the summand with s = 2m• Let w

u x w', where w' E Hn- 1 (pn-,). Then, by 1.1,

( 2)

where J S I means ° S jr S. i r for all r. Let J m be the sequence

(2m- 1, •.• ,21,2°). We assert that

~
0

2m 1-J
u x Sq m w'

if £(1) < m ,

if leI) = m .

o.(4)

J k-l k-2Recall that, by 2.7, Sq u = 0 unless J has the form (2 ,2 , ..• ,

1 0 J 2m
2 ,2) or is such a sequence interspersed with zeros. And Sq u = u

if J J m or is obtained from J m by interspersing zeros. In the last

case I(J) > m. To prove 3), we refer to 2). If leI) < m, then J S I

implies that I(J) < m, and so g Sqiw = o. If leI) = m, then

g(SqJu x SqI-Jw' ) = 0 unless J = Jm S I. This proves (3).

If we apply g to (1) and use (3), we find

2m I-Jm
u x L1(I)=m aISq Wi

It is readily verified that, as I ranges over all admissible sequences

of length m and degree q, I - J m will range over all admissible

sequences of length sm and degree q - 2
m

+l; and the correspondence is

one-to-one. Since mL 1, we have q - 2
m

+ 1 S. n - 1. So the inductive

hypothesis on n implies that each coefficient in (4) is zero. Thus

aI = 0 for leI) = ~.

This completes the proof of the proposition and hence of the

theorem 3 •1 •

3.3. COROLLARY. The mapping <t(2) -> H* Cpn) given by

SqI __) Sqlw is a monomorphism in degrees S. n.

EXERCISE. Find the basis of admissible monomials for (112.

We note that, if I is an admissible sequence of length k, then

d S I k-l 2keg q L 2 + ••• + 1 = - 1, so that the exercise is a finite problem.
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§4. Indecomposable Elements.

Much of the material in this section is due to Adem [4].

Let A be an associative graded algebra. Let ~ be the ideal

of A consisting of elements of positive degree. The set of decomposable

elements of A is the image under cp: A ~ A -~ A of A~!. This image

is a two-sided ideal in A. 'Q(A) = Mq> (A ~!) is called the set of

indecomposable elements of A. A is called cormected if Ao = R, the

ground ring.

4. 1. LEMMA. In a gra.ded connected algebra over a field, any set

B of generators of A, contains a subset B1 , whose image in Q(A) forms

a vector space basis. Any such B1 is minimal and generates A.

PROOF. Any set of generators of A spans Q(A). Let B, be any

subset of B whose image in Q(A) is a basis. Let g € A be the element

of smallest degree, which is not in the algebra. A' {1 ,B, ) .

So

generated by

is decomposable.
, "

ai,ai € ! ·where

which 1s a contradiction.

such that g - gl

Therefore

and g - g'

AI.are in

g - g' € cp (£ 6?> ~)

There is an element g' € AI

4.2. LEMMA. Sqi is decomposable if and only if 1 is not a

power of 2.

PROOF. Writing the Adem relations in the form

(b~l) Sq8+b Sq8Sqb + rj>o( b~~;3 ) Sq8+b-jSqj

where 0 < 8 < 2b, one sees that if (b~l) = 1, then Sq8.+b is decam-
kposable. Suppose i is not a power of 2. Then 1 == a + 2, where 0 <

8 < 2k • Put b = 2k • Then b - 1 = 1 +•.•• + 2k- 1 • By 2.6 (b~l)!! 1.

So, if i is not a power of 2, sqi 1s decomposable.
k 2k 2k -1 J.Now let 1 = 2. Suppose Sq = Lj =1 mj Sq • Then, using the

notation of §2 and §3, we have by 2.1,

o .

This is a. contradiction and the lenma is proved.



4.3. THEOREM.

§ 4- • INDECOMPOSABLE ELEMENTS

k
The elements Sq2 generate Ci( 2) as an algebra

PROOF.

PROOF. This follows from 4. 1 and 4-.2.
2k

We note that the elemen~s Sq do not generate 4(2) freely.

In fact, by the Adem relations,

4.4. THEOREM. let X be a space and let x2
=1= 0, where x €

IfleXiZ2 ) • Then Sq2\ ~ 0 for some i such that 0 < 21 ~ q.

2 2J jo =1= x = Sqqx = I: (monomials in Sq )x where 2 S q

throughout the sunnnation. The theorem follows.

A polynanial ring in one variable x 1s truncated if xn = 0 for

some n ~ 2.

*4.5. THEOREM. If H (X;"Z2) is a polynomial ring or a truncated

polynomial ring on a generator x of dimension q, and x 2
.;. 0, then

q = 2k for some k.

H*(X)
1

PROOF. Since is a polynomial ring, Ifl+2 (X) = 0 for

2
1 < q. 21

o < 2i < q.
k

o < Therefore Sq x = 0 for By 4.4, Sq2 x J= 0

fOl? sane k such that o < 2
k ~ q. So q = 2

k •

REMARKS. J. F. Adams has shown (3) that the only possible values

for k are 0, 1 ,2,3 • His methods entail a. much deeper analysis of the

algebra (t, ( 2) •

Examples of spaces which satisfy the hypotheses of the theorem are

i) Real projective space of any dimension, with q = 1;

11) Complex projective space of any dimension, with q = 2;

iii) Quaternionic projective ·space of any dimension, with q = 4;

iv) The Cayley projective plane With, q = 8.

4.6. THEOREM. Let M be a cormected compaet 2n-manifold, such

that lfl(M) = 0 for 1 ~ q < n, and with Jf'(M) = Z2. Then n 1s a

power of 2.

PROOF. H2n-q{M) = 0 for 1 ~ q < n, and, if u is the generator

of 'lfl(M), u 2 1s the generator of H2n{M). We now apply 4.5.
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§ 5. The Ropf Invariant.

Let f: S2n-1 -:> Sn (n > 1). Let X be the adjunction space

obtained by attaching a 2n-cell e 2n to Sn by the mapping f. Then

Hn{X;Z) ~ Z and H2n{X;Z) ~ Z, while for other positive dimensions

the cohomology groups are zero. Let x E Hn(X;Z) and y E H2n(X;Z) be

generators. Then x 2
= h(f).y for some integer h(f) called the Hopf in­

variant of .f. It is defined up to sign. A homotopy of f leaves the

homotopy type of X unchanged, and so the Ropf invariant is an invariant

of the homotopy class of f.

Somet:i1nes the double covering S1
-) S' is assigned the Hopf

invariant 1. In this case, the adjunction space is the projective plane.

5.'. THEOREM. If there exists a map f: S2n-, -) Sn of odd

Hopf invariant, then n is a power of 2.

* *PROOF. Let T}: H (X;Z) -) H (X;Z2) be the map induced by the

coefficient homomorphism Z -) Z2. This map is a ring homomorphism.

Hence (T}X) 2 l1Y, since h(f) - (mod 2). By 4.5, n is a power

of 2.

REMARKS.

for then x 2
i)

2-x

We easily see that, if n is odd, then h(f)

and so 2x
2

0 (integer coefficients).

0,

2) The following are the standard maps of Hopf invariant one, and their

adjunction space:

S3 _) 32

37 _) 34

S'5 _) S8

complex projective plane;

quaternionic projective plane;

Cayley projective plane.

5. 2 • THEOREM. (Hopf [5). If n is even, there are maps

f: S2n-1 __;> Sn with any even Hopf invariant.

PROOF. Let S, ,S2 and S be (n-1) -spheres and f: 31 x 3 2 -)8

We say f has degree (a,e) if flS, x P2 has de~ee a and flp, x 82

has degree r3, where (p, ,P2) € 8 1 x 32 . The degree of f is independent

of the choice of (P"P2) ·

Let Ei be the n- cell such that Si = bd Ei (i = 1,2). Now

bd(E
1

x E
2

) (E, x 3
2

) U (Sl x E
2

) is a (2n-l)-sphere and
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(E, x 82) n (8, x E2 )

s' E u E where
+ -

Let S t be the suspension of S.

are n-cells and E+ n E = S.

Then

Given a mapping f: S, x S2 -) S, we extend f to a mapping

C(f) : (E1 x 32) U (3, x E
2

) -) E UE- Sf
+

in such a way that O(f)(E, x 32) C E and C(f)(3, x E2 ) C E . G(f) is+
a map 32n- 1 _) Su.

5 • 2 will follow from two lemmas.

5.3. LEMMA. h(G(f» = a~.

PROOF. Throughout this proof integral coefficients will be used.

Let X be the adjunction space (E, x E2) uC(f) S'. The attaching map

O(f) gives rise to a map g: (El x E2 ,E, X 32 ,S, x E2 ) ---) (X,E+,E_).

Let x be a generator of :Efl(:{CjZ). We define x+ and x_ to be the in­

verse images of x under the isomorphisms Hn(X,E_) -) Hn(X) and

Ifl(X,E+) -) !fleX) respectively. Now we have a map (X,0,0) -) (X,E+,E_)

This gives'rise to a commutative diagram

Hn(X) ~ Hn(X)- ) H2n(X)

" "Hn(X,E+) ~ Hn(X,E_) __) H2n(X,SI) .

The vertical maps are isomorphisms. Therefore the cup-product x+ u x_

has image x2 under the map H2n(X,Sf} ""-) H2n(X). We have the following

commutative dia~am

Hn(X,E_)

1
-=-> H

n
(E+,3)
A

°1 ~
Hn-~(3)

I ~

Hn(X) <--------

I ~
v

Hn(St) <~ HneS ' ,E_)

Z
__a ) Z

By the diagram g*x+ O'W+,J where w+ generates Hn(E,x E2 ,S,x E2).

By a similar diagram, we see that g*x = f3w _, where w_ generates

Hn(E,x E2 ,E,x S2)·
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let Pi: E, X E2 -) Ei (i = 1 ,2). We define the generators

n * *xi E H (El ,Si) by p,x, = w+ and P2x2 w_ Now

* *w+ u w_ p,x, u P2x2 (x, X 1) u (1 x x2) (x, x x2) •

Hence g*x+ v g*x_ = o:~(x1 x x 2 ) and (x, x x 2 ) generates

H2n(E, x E2,E, x S2 v S, x E2) •

Now g: (E, X E2 ,E, x 82 v S, x E2) ---) (X,S') 1s a relative

homeomorphism and therefore induces an isomorphism of cohomology groups.

So we have the isomorphisms

jfn(X) <~ Ifn(X,Sl) --7> Ifn(E, x E2 ,E, x S2 u S, x E2) •

Under these isomorphisms x 2
€ H2n(X) corresponds to x+ v x_ E H2n(X,S')

and to af3(x, x x 2). Let y be the genera.tor of H2n(X) which corresponds

to x, x x2 • Then x2 ~y.

This proves the lemma.

5.4. LEMMA. There is a. mapping f: 8n- 1 x Sn-, -~ SO-1 of

type (2,-1), if n is even.

PROOF. If x,y € sn-1, let D(x) be the equa.toria.l plane in

Euclidean n-space RO, having x as a pole. Let f{x,Y) be the image of

y lUlder the reflec.tion through D(x). If we represent x and y by

vectors (x" ••• ,xn) and (y" ••• 'Yn) in Hn, the mapping f is given

by

If we fix x = (1,0, ••. ,0), then f(x,y) (-Y"Y2' •.. 'Yn).

This map has degree -1. If we fix y = (1,0, •.• ,0), then

f{x,y)

g maps the plane Xl = 0 into a point.

and for x, < o. g can be factored into

first map has degree 2 since n· is even.

It is qne-to-one for x, > 0

Sn-l _~ pn-1 _~ 8n - 1 • The

The second has degree 1.

Therefore g has degr'ee 2 and the lemma. is proved.

beWe can now complete the proof of 5.2.

f Sn-l _=". Sn-,any map of degree A and 2: ~

Then g = r.(f, x f 2) has de~ee (2A,-~),

By 5.3, the Hopf invariant of C(g)is -2A~.

Let f,: Sn-1 _) Sn-1

be any map of de~ee ~.

where f is the map of 5.4.
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REMARK. Suppose we have a real division algebra of finite dimen­

sion n > 1, with a two-sided unit and the multiplication map

15

m: Rn x Rn -) Rn •

Let Sn-1 be the sphere with centre at 0, passing through the unit. Then

we have a map

Sn-1 x Sn-1 ....!!L> Rn -{oJ .2:..-> Sn-1 (r = radial projection from 0)

which is of degree (1,1) since Sn-l contains the unit. By 5.3, we ob­

tain a map of Hopf invariant one, S2n-1 -) Sn. According to Adams [3],

n = 2,4 or 8.
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CHAPTER II.

The Dual of the Algebra <t (2)

In § 1 it is proved that the Steenrod algebra (i ( 2) is a Hopf alge

bra. The structure o:r the dual Hopf algebra is obtained in § 2. In § 3 it

is proved that the algebra (l (2) is nilpotent. In §4 the canonical anti­

automorphism c o:r a Hopf algebra 1s briefly discussed. In §5 various

constructions with modules over the algebra <t(2) are described.

§1. The Algebra <t(2) is a Hopf Algebr~.

1 .1. THEOREM. The map of generators

extends to a homomorphism of algebras 'iT: <t (2) -:;> <t (2) 60 <t (2) •

PROOF. Let ~ be the free associative algebra generated by the

Sqi (1 > 0). We have an epimorphism m: ~ -><t (writing (1(2) = (l),

with kernel generated by the Adem relations. The map '" o:r generators

extends naturally to an algebra homomorphism .1: ~ -:> (1 ~ (i,. We have

to shoW' that 1. vanishes on ker m.

We have a map of modules

given by a(u ® v) u x v. By the Kiinneth relations for a field, this

is an isomorphism. Let P be co-dimensional real projective space. Let

X = pn = P x ... x P. Then, using the notation o:r Chapter I §3, the evalua-

*tion map on w, w: <t-) H (X), is a monomorphism in degpees ~ n by

I 3.3. There:rore the map w ® w: (l ® Ci-:> H* (X) ~ H* (X) is a monomor­

phism in 9-e~ees ~ n.

16
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We have the diagpam

(t®(t w ~ 1,1 > H* (X) ® H* (X) __ct_> H* (X x X)
l:::::

~1 I 1,1x w

Ci (1) > (i,

17

We now prove that this diagram is connnutative. H* (X) ® H* (X) is an (i, ® Ci

module and hence, using the map .1, is an ~ -module. Using the isomor-

phism 0:, this gives R* (X x X) the structure of a.ri ~ -module. However,

H* (X x X) has its usual structure as an ~ -module via (1). These two

~ -modules are identical, :ror

L Sqiu x Sqk-iv

a«L Sqi ~ Sqk-i)(u ~ v))

O:(lSqk . u ® v) •

Since the two .!!-modules are identical, the diagram above is commutative.

Now, if m E (t , deg m ~ n, and mm = 0, then, since the dia­

gpam is commutative and w ® w is a monomorphism in dimensions ~ n,.lm o.

This completes the proof of the theorem.

Let A be an augmented gpaded algebra over a cOImllutative ring

R with a unit. We say A is a Rapf algebra if:

1) There is a "diagonal map" of algebras

t: A -> A ~ A;

2) The compositions

A~>

are both the identity .

We say t is associative if the diagpam

A· t :> A®A

t I I t ®
1

'\/ 1 ® 'If
'\/

A®A :> Af&A®A
_._.....~....-- .~.............. " .... -~ . : ' .
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1s commutative. We say t is commutative if the dia.gram

A

is commutative. (Bee I §3 for the definition of T.)

1.2. THEOREM. 6(2) 1s a. Hopf algebra, with the commutative and

associative diagonal map t of 1.1.

PROOF. The map V is a map of algebras by 1. 1 • Since et( 2)

is connected, we have the unique augmentation £: 6(2) -~ Z2. In the

diagram

all the maps are homomorphisms of algebras. The compositions are both the

identity on the generators of (t" and they are therefore the identity on

all of ct. Using the fact that V is an algebra homomorphism, we see that

v is conunutative and associative by checking on the generators. This com­

pletes the proof.

Let A be a Hopf algebra with diagonal map t: A -~ A ~ A.

Let M be an A-module. Then M~ M is an A ~ A -module. The map t

defines an A-module structure on M~ M. Let m: M~ M -:;> M be a

nmltiplicatlon in M. We say that M is an algebra over the Ropf algebra.

A, if m is a homomorphism. of A-modules.

1.3. PROPOSITION. If X is any space, H*(X;Z2) is an algebra

over the Ropf a.lgebra (f,( 2) •

PROOF. This results immediately from the Cartan formula, since

v is a homomorphism of algebras.

Let X be a. graded A-module, where A is a Ropf algebra over a
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ground ring R, with an a.ssociative diagonal map t. Let reX) be the

tensor algebra of X over R. It is obvious that the usual multiplication

m: r(X) 6"D reX) -~ reX) is an A-homomorphism. Therefore reX) is an

algebra over the Hopf algebra A.

§2. The Structure of the Dual Algebra

If X is a gr-aded module over a field R, we say that X is of

finite type if Xn is finite dimensional for each n. We define the dual

X* of X, to be the graded tllodule with X: = HO!n(~,R). If X and Y

are of finite type, then we have a canonical isomorphism (X ® y)* ~

X* ~ y* defined by (f ~ g) (a ~ b) = (-1 )pqfa 6"D gb, p = deg a, q = deg g.

If A is a Hopf algebra of finite type, with multiplication ~

and diagonal V, we easily verify that A* is also a Hopf algebra, with

multiplication v* and diagonal ~*.

I (k-l k-2 )For k> 0, let Mk = Sq, where I = 2 ,2 , .•. ,2,1.

*Mk is an admissible monomial in 6,. Let ~k E« be the dual of Mk

with respect to the basis of admissible monomials 1n (i. Then < ~k,Mk >
and < ~k,m > = 0 if m is admissible and m = Mk • Mk has

degree 2k _ 1 and therefore ~k has degree 2 k _ 1.

1Let P be co-dimensional real projective space. Let x € H (PjZ2)

be the generator. Let pO = P x P ••• x P. In W(p!1;Z2) we have

the element x, x x2 x •••x~, where each Xi = x. The following theorem,

together with I 3.3, will enable us to find the structure of (1*.

By induction on n, we shall define xCI) E H*(pIl) and ~(I) € «*,

We put xCI)

are defined when I has length less than

If

~i. SUppose xCI) and ~(I)

n. Now.suppose I = (i1 , ••• ,1n).

~(I) ~(i,) ~(i2, ••. ,in).and

is a sequence of non-negative integers.
2i

x and ~(I)

(i, ,. • · ,in)

we put xCI)

where I

I = (i),

2 .. 1. THEOREM. If a € «, then

a(x, x ..•x ~) ~.f{I) =n < ~ (1) ,a > xCI)

(The stumnation is finite, since < ~ (I) ,0: > = 0 unless ~ (I) and a

have the same dimension.)
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We prove the theorem by induction on n.

The formula is therefore true for

If ex is ad­
2k

x byI2.7.

PROOF.

missible, then ax o unless a = Mk , and

n = 1, when a is admissible. Since

each element in Ci is the sum of admissible monomials, the theorem is

true for n::'.
We now assume the theorem is true for integers less than n. Let

I rrLi a1 @ (Xi. By 1 • 3 and '. 1 •

~ t "( )£..i aix, x ai x2 x ..• x ~

~ (.) I ( • .) n (I)
~i,I < e 1, ,ai > < ~ 1 2 ,···,1n ,ai > x

Li,I < e(i,) ~ e(i2 , .•• ,in),a{ ~ o:~ > xCI)

l:I < ~(il) ~ ~(i2,···,in),va > xCI)

LI(I)=n < ;(1),0: > xCI).

The last line follows since v* is the multiplication in (1*. This com­

pletes the proof of the theorem.

We can now find the structure of Ci* as an algebra.

Let (1' be the polynomial algebra over Z2' generated by the

elements ~1'~2' •••• Since V is commutative, the multiplication v* in

(1* is commutative. So we have a homomorphism of algebras (1' --:> 6*,

defined in the·obvious way.

2.2. THEOREM. (Milnor [1]). The map (j,f -:;> 6* is an isomor-

phism.

PROOF. We first show that «' --:;> Ci * is an epimorphism.

Suppose < ~(I),a > :: 0 for all choices of I. By 2.', we then have

a(x, x... x xn ) = 0 for all n. But, by I 3.3, this shows that a = o.

So the annihilator of Im( Ci' --) Ci*) is zero. Therefore 6' --:> (i *

is an epimorphism.

Iwhere~IWe write

We now show that the map ct' -) (i* is an iSQ.'l1orphism by show­

ing that in each dimension the ranks of (i1 and ct * as vector spaces

over Z2 are the same. We have only to show that the ranks of (f, 1 and (J,

are the same in each dimension.
i, 1 2

~, ~2



§ 2. THE STRUCTURE OF THE DUAL ALGEBRA 21

The monomials ~I in (1,' thus correspond in a one-to-one way with

sequences of non-negative integers (i"i2 , ••• ,in ,0, •••• ). The admissible
I' . ., .' .'monomials Sq € (i correspond to sequences of J..ntegers (l,,12 , •• ,ln ,0, •• ), , ,

where i k L 2ik+1 and in 2 1. It remains only to set up a one-to-one

correspondence between sequences of non-negative integers I and admissible
I

~I Itsequences I such that and Sq have the sarne degree.

Let I k be the sequence which is zero everywhere except for a 1

in the kth place. Let
, k-l k-2 )I k (2,2, ... 2,1,0,0, ••••.

We construct a map from the set of sequences I to the set of sequences
, ,

I by insisting that I k be sent to l k and that the map be additive

(with respect to coordinatewise addition). Then if

I
,

( i 1 ' • • • , in' 0 , • • .) --:> I
, I

(i" •.• ,in,O, ..•. )

~I and Sql' have the same de~ee and we have

i~ i k + 2ik+1 + ••• + 2
n -

k in'
,

Solving for i k in terms of i k , we obtain

,
Therefore every admissible sequence I is the image of a unique sequence

I of non-negative integers. Thus the correspondence is one-to-one.

This completes the proof of the theorem.

We now find./ the diagonal in (1 * .

2.3.THEOREM. (Milnor [1]). The diagonal map cp*: «* -> a,*® (t*

is given by
*q> ~k

PROOF. Let 0: "f3 € Ci. We have to show that

That is, we have to show

We shall prove this by using 2. 1 •

Let x be the generator of H' (PjZ2)' Let d: P -) pn be the
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*d (x, x .•.x~) •

a.d*{x, x x ~)

d*a{x, x x xn)

d* (I:t (I) =n < ~ (I) ,a > x( I)

~ ( ) n(I)= ~f(I)=n < ~ I ,0: > X

i, in. .
n(I) = 2 + ••• + 2 lf I = (1" ... , in). If we cyclically per-

I, we de not alter < ~(I),o: > xn(I). Since n = 21 , the numbermute

where

So

diagonal, where n = 2
i . Then

2i
x

2i
a·x

of different sequences, obtainable by cyclic permutation from one particu­

lar sequence I, is some power of 2, say 2 j (I). If j(I) > 0, the

terms in the summation corresponding to cyclic permutations of I will

cancel out mod 2. So we are left with terms for which j (I) = o. That Is,

m = 1 1 1 2 = = in· For such sequences I, ~ (I) 21... ~m and

n(I) 2m+1 . Therefore
21 1 2m+1

Lm< ~2 a >ax = m ' x

Now Lk < ~k,exf3 > 2k
af3.x byx 2.1

a·t3x

a Li < ~i,t3 > 2i
X

I:. m < 2i
< ~i,t3 >

2m+1
~m ,ex > x

~,

Equating coefficients of we see that

which proves our theorem.

Let A be a Hopf algebra of finite type over a field, with diago­

nal: 'IIr. An ideal M is called a Hopf ideal, if ",(M) C M ~ A + A ~ M.

If M is a Hopf ideal, then AIM has an induced Hopf a.lgebra structure

(assuming 1 ~ M). If A* is the dual or A and Mt the dual of A/M,

then Mt 1s the Hopf sUbalgebra of A* which annihilates M. Conversely,

if Mt is a. Hopf subalgebra of A*, then the dual algebra to Mt 1s the
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quotient of A by the Hopt ideal M which annihilates Mt

In the algebra «(2)*, let M(j1, ••• ,jk' ••• ) be the ideal gen-
n jk

erated by the elements ~k' where n = 2 (k = 1,2, ••• ).

3.1. LEMMA. If jk-l ~ jk + 1 for all k, then M is a Hopf

ideal.

~ 2i .n nPROOF. ~*S~ {~*Sk)n = ~=o ~k-i ~ ei if n 1s a power

ot 2. By induction on i~ jk-i ~ jk + i. Therefore, if i < k,

t~::in £ M, where n = 2
jk

• In the term of the summation where i k,
n jk

we have sk € M where n = 2 • This proves 3. 1 •

Let Mh be the ideal of the sequence (h,h-l, ••• ,1,O,O ••• ). Let

(i h be the Hopf subalgebra. of (i which annihilates Mh • Since (i *IMh

is finite, so is (J, h.

23

(S~~ gJ) • tSqi

L
j

(~~Sqj)(eJSqi-j)

~~Sqi . gJSq0

PROOF. The proof 1s by induction on i. It 1s Obvious for 1 O.

We must show that e~eJ. SQ.1 = 0 if r = max(1, 2h - k+1) and J is

arbitrary• Now

q>*(e~ ~ ~J)

by our induction hypothesis. Now

Also deg Sqi

of the lermna.

i < 2h . Therefore g~Sqi O. This completes the proof

1
REMARK. Actually the elements Sq2 (1 < h) generate (i,h' but

we sha1.l not prove this.

3.3. COROLLARY. C1 1s the union of the sequence «h (h= 1 ,2, ••• )

e~ch a finite Hopf subalgebra of (i.
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3.4. LEMMA. If £ € 6*, then

• SqJ if I = 2J

° otherwise.

PROOF. ~2 • SqI V*(~ ~ g) • SqI

(£ ~ ~) tSqI

~ ~ ~ • ~+S=I SqR ~ SqS

LR+S=I (~SqR)(~SqS) •

If we interchange ~ and S, we do not alter (gSqR) (~SqS). Therefore the

terms of the swmnation cancel mod 2, unless R = S = J, when I = 2J. Now

if x € Z2' then x2
= x. Theref"ore (ESqJ) 2 ~SqJ. The lenrna follows

If A is any commutative algebra over Z2 and A: A --? A is

defined by Xx = x
2

, then xis a map of algebras. Moreover, X com­

mutes with maps of algebras. Hence if A is a Hopf algebra, X is a map

of Hopf algebras.

Then :\.: (i,* -> «* doubles degvees. A- is a monomorphism,

since the elements ~2I as I varies, are linearly independent.

Let * 6,->(1 be the dual map. Then A.* is an epimorphism:\. :

of Ropf algebras. Since A. doubles degrees and misses odd degrees, x*

divides even degrees by two and sends elements of odd degree to zero.

if I = 2J

° otherwise.

The kernel of x* is the ideal generated by Sq'.

PROOF.

~ • SqJ

o

if I = 2J

otherwise.

r, :\.*m is a sum of admissible monomials can-

So, if x*m = 0, I r is not divisible by 2 for

bas a factor Sq2i+l • Now we have the Adem rela-

This proves the first part of the proposition.
I, I

Let m Sq + ••• + Sq n be a sum of admissible monomials. Then,

if I r 2Jr for some
J rtaining the term Sq •
I

any r; that is, Sq r

tion Sq2i+1 •
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So, Sq2i+l E (Sq'} and therefore m € {Sq'} if l*m = o. So, ker ~* C

(Sql}. On the other hand, since A*Sql = 0, we also have {Sq') C ker A*.

This completes the proof of the proposition.

3 .6. COROLLARY. If Sh is the ideal of (i generated by Sqn

for n = 2°,21 , ••• , 2h - 1 , then (A*)h: Ci --:> Ci has kernel Sh' and so

Sh is a Hopf ideal. The map (A*)h is given as follows:

-) 0 otherwise.

This map induces an isomorphism of Hopf algebras (if ~ --) (t,

PROOF. This follows by induction on h.

EXERCISE. Let [(i" Ci] be the ideal of (i generated by all the

cormnutators a:~ - ~a (a:, f3 € (i). [Ci, (i] is a Hopf ideal and (if [ (i, , Ci ]

is a divided polynomial algebra on one generator; i.e.,

SqiSqj (i j j) Sqi+j

(Hint: Prove the dual proposition in (i *.)

§4. The Conjugation c

Let A be a connected Hopf algebra over a field with associative

diagonal 'if and multiplication q>. We. define a map c: A --:> A by in-
, "

duction on dimension. Let C(1) = 1. If tx = x ~ 1 + L Xi ~ xi + 1 ~ X,
, " .

we define cx = -x - Li ( CXi )xi . Let A be the opposite Hopf algebra.
I

That is, A = A as a graded vector space, and the multiplication q>'
,

and diagonal t are defined by commutativity of the diagram

For the proof or the following theorem we refer the reader to the

final chapter of "On the Structure of Hopf Algebras," by Moore and Milnor,

to appear in Transactions of the A. M. S.
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t
4.1. THEOREM. The map c: A -:> A is an isomorphism of Hopf

algebras. If A has either a cormnutative diagonal or a commutative multi­

plication, then c2
= ,.

The motivation for the definition of c is as follows. If G is

a compact connected Lie group and K is a field, then ~(G;K) is a Ropf

algebra over K with d1agona1 t induced by the diagonal G ---) G x G

and the multiplication cp induced by the multiplication in G. The map

c is induced by thernap g_::>g-l of G. We easily see that cp(c~l)t

is induced by the map g -:> " and that the formula above for c is

therefore satisfied. In this case 4.' is obvious.

In «, we have

c{Sq1
) Sq' ;

c(Sq2) Sq2 + SqlSq' Sq2;

c(Sq.3) Sq3 + Sq'Sq2 + Sq2Sq' = Sq2Sq' ;

c(Sq4) Sq4 + Sq'Sq3 + Sq2Sq2 + Sq2Sq'Sq'

Sq4 + Sq3Sq1 ;

etc.

§ 5 • Unstable Ci -modules

I i k i,
We define the~ of Sq Sq ••• Sq to be (ik-2ik_1 ) +

(ik_1 -21k_2 ) + ••• + (12-2i,) + 1,. The excess is non-negative for an ad­

missible monomial. Let x ~ 1fleX). If SqIx =1= 0, then i k ~ n + i, +

••• + 1k- 1 by Axiom 4), I §1. We define B(n) to be the subspace of Ci

sparmed by all monomials SqI which can be factored into the form
im, Sq m2, where m, and m2 are monomials and i > n + deg m2 • It is

obvious that B(n) is a left ideal which annihilates all cohomology classel

of dimensions .s n. Any admissible monomial of excess greater than n is j

B(n), since the excess is i k - eik_1 + ••• + 1,).

5.1. LEMMA. B(n) is the vector space spanned by all admissible

monomials of excess greater than n.

PROOF. We shall show that, on applying an Adem relation to a

monomial in B(n) we obtain a swn of monanials in B(n). By repeated
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application of Adem relations, we then express the monomial as a. sum of

admissible monomials in B(n). Any admissible monomial in B(n) has excess

greater than n and so the ~emma will follow.

Suppose then that in the monomial m,Sq~2' i > n + deg m2 ,

Applying an Adem relation to either m, or m2, we get a. sum of monomials

b 'of the same form. If i < 2b, and m2 = Sq m2 , then

tn., SqiSqbm2' \' [i/2J (b-l-t) m Sqi+b-tSqtm'
L t = 0 i-2t 1 2

Now , ,
i + b - t > i > n + deg m2 n + deg m2 + b > n + deg m2 + t.

, a
If a < 2i, and m, = m, Sq, then

, a i I [a/ 2] (i~1-t) I a+i- t tm, Sq Sq-m2 = a-2t m, Sq Sq m2 •
t = 0

Now

a + i - t > n + deg m2 + a - t L n + deg m2 + t = n + deg( Sqt m2) •

The lemma follows.

Suppose X is an (i -module. We say X is an unstable (t, -module,

if B(n)~ = 0 for all n L o. This is equivalent to the assertion

Sqix = 0 if i > dim x. The category of unstable a-modules and (i -

maps is a subcategory of the category of (i-modules and Ci -maps. This

category is closed if one takes:

,) Submodules

2) Quotient modl.\les

3) Direct sums

4) Tensor products over Z2'

Only the last needs proof, If X and Y are (i-modules, then X ~y

is an (i-module through the diagonal map. So

Sqi(x ~ '1) = I: Sqjx ~ Sqi- j y

If i > dim x + dim '1, then either j > dim x or i-j > dim '1, and so

Sqi(x ~ '1) = O.

Let F(n) be the «-module defined by: F(n) i is the image of

<! i-n in a/B(n). Then it is easy to see that F(n) 1s an unstable (f,­

module. F{n) is ca.lled the free unstable (i -module on one n-dimensional
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genera.tor. A free unstable (i-module is the direct sum of free unstable

a-modules on one generator.

5.2. PROPOSITION. Any Wlstable <t,-module is the quotient of a

free unsta.ble (!, -module ..

PROOF. The proof is the same a.s the standard proof for modules.

5.3- lEMMA. Let X be an unstable (t,-module and reX) its

tensor algebra (see end of § 1). Let D be the ideal of reX) generat~d

by all elements of the forms x S y - (-1)lllI'l.y ~ X 'and Sq~ - x ~ x

(m = dim y, n = dim x) for all x,y E X. Then D is an (t,-ideal. Hence

r (X) /D ls an (i -algebra.

PROOF.. If i > 2k and dim x = k, then

o.

If i = 2k,

Sqi(SqkX -' x @ x)

If i < 2k,

Sqi(SqkX - x ~ x)

Now Sqi+k-tSqtx = 0 if i + k - t> k + t, ,le., if i > 2t. Cancel­

ling mod 2,

So

if i is Odd,

if 1 is even.

SqicsqkX - x ~ x)

Sqi{SqkX - x @ x)

o if i is odd,

Sqk+i/ 2Sqi/ 2x _ Sqi/2x 101. Sqi/2x · f . ·
'01 ~ ~ ~s even,

Sqk+i/2y _ Y @ y •.

Also

Sqi(X1 ~ x 2 - x2 ~ Xl) = ~j (Sqjx1 ~ Sqi-j
x2 - Sqi-j

x2 ~ Sqjx1) •

Finally, we must show that, if r is a relation, and a~ € r(X),

then Sqi(a r 13) is in the ideal.

i( ) '>'_ h s tSq a r ~ = ~+s+t=i Sq a . Sq r • Sq 13.
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Since Sqsr is in the ideal, so ~s Sqi(a r ~).

5.4. DEFINITION. If x,r (X) and D are as in 5.3, then the

quotient algebra r (X) ID is denoted by U(X) and is called the free

(t -algebra generated by X. Let M be a free unstable (i-module. Then

U(M) 1s called a completely free (i -algebra.

Let K(G,n) denote the Eilenberg-MacLane complex of the group G

in dimension n. The cohomology H* (K(Z2,n) ;Z2) has been computed by

J. P. Serre, Comment. Math. Helv. 27(1953), 198-232. His result can be

*restated: H (K(Z2,n) jZ2) is the completely free Cf,( 2) -a.lgebra on a single

generator of dimension n:

*The analogous result holds for H (K(~,n);zp)' using computations of

H. Cartan, Proc. Nat. Acad. Sci. 40 (1954), 704-707.
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CHAPTER III.

Embedd1ngs of Spaces in Spheres.

In this chapter, we prove the non-embedding theorems of Thorn and

Hopf. Thorn's theorem refers to an embedding of a compact space in a sphere

and Hopf's theorem to anembeddlngof an (n-l)-manifold in an n-sphere. In
v

order to make duality work, we use eech cohomology throughout this chapter.

§1. Thorn's Theorem.

In this section, it is shown that if Y is a proper closed con­

nected subspace of so, then

c(Sqi): Hn- 2i CY;Z2) ---~ Hn- i (Y;Z2)' i> 0,

is zero. (See II §4 for the definition of c.)

1.1. LEMMA. All cup-products in H*(Sn,y) are zero.

.*u v ~ vu v V

U v V

PROOF. Let 1*: H*(Sn,y) -:;> H*(Sn). Let u,v € H*(S,y). Then

i*u U v 0 unless u,v € HO{Sn,Y). In this case

€ H2n(Sn,Y). But, by duality, H2n(Sn1y) ~ H_n(Sn - Y) o.

1.2. LEMMA. let X be a compact Hausdorff space, and let {Ui },

i € I, be a family of pairwise disj oint open subsets of X with union U.

Then the maps

Hq(X,X - Ui ) -:;> Hq(X,X - u)

~ve a representation of Hq{X,X - U) as a direct sum.

PROOF. Suppose first that I is finite. For any subspace Y of

X, let Y denote its closure and Y its boundary. Let V be the dis­

joint topologica.l union of the spaces Oil and let W C V be the union

of the spaces O'i. Then (V,W) is a compact pair. The following diagr'aIn

30
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(Oi' lIi ) --7;> (V,W)

J J
(X,X - U1 ) <-- (X,X - U) ..

31

Moreover, the vertical maps are relative homeomorphisms. We therefore get

So commutative diagrsm

This 1n turn gives rise to a commutative diagram

IIi 1fl(Ui ,U1 ) <~ lfl(V,W)
1:\ A.
I~ I~

~ ~(X,X - U1 ) -7;> :Ef1(X,X - u) •

So the lemma is proved when I is fin1te.

If I is infinite, we obtain the result by the continuity of

eech theory, taking limits over finite subsets of I.

1 .3. LEMMA. If e is any cohomology operation of one variable,

such that

then

e: ~(X) -) lfl(X) (0 < q < n)

e: :gQ.(Sn,Y) -7;> :tfl(Sn,Y) is zero. (Note that the

only axiom 9 needs to satisf'y is naturality with respect to mappings of

spaces. 9 need not be a homomorphism.)

PROOF. For any cohomology operation 9, with image in a. positive

dimension, e (0) = o. The proof is as follows. Let X be any space, and

let P be a point. Then we have the commutative diagram

~(P) --7;> 1fl(X)

te t 9

lfl(p) --:;> :Efl(X)

induced by the map X -7;> P. Since n > 0, :Efl(P) = 0, and so 9(0)

0, where ° E ~(X).

So 1.2 shows that we have only to prove 9: Jtl(Sn,Sn - Ui ) -)

Jf!(Sn1Sn - Ui ) is zero, in order to prove our lemma. Now, we have the
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commutative diagram

ilcsn,sn - U
i

) _9_) :Efl(Sn,Sn - U
1

)

~* lj*
° = 1fl(Sn)

Since U1 is connected, we have by Alexander duality, Hn - 1 CSn - U1) = °
and 1fl(Sn - U1) = o. Therefore the vertical map on the right of the

diagram is an isomorphism. This proves the lerrma.

Let U be any neighbourhood of Y. Then there is a connected

subcomplex K of Sn, which 1s 8, compact n-manifold with boundary L,

such that K C U and Y C K - L. We can construct K from the simplicial

structure of sn, by taking a fine subdivision. We can assume K is

connected, since Y 1s connected. The set of such manifolds K, and the

inclusion maps between them form an inverse system with limit Y. There­

fore H* (Y) is the direct limit of the groups H* (K) .

Let F be a field. We have the cup-product pairing

HP(K,L;F) ~ ~-P{K;F) ---) HDCK,L;F) ~ F.

Lefschetz duality tells us that the induced map

a: HP(KiF) -) Hom (Jil-P~K,L;F) ,F)

1s an isomorphism. Let x E lfl(K;Z2). We define a homomorphism

~-q-i(K,LjZ2) -) ~(K,L;Z2) ~ Z2

by the formula y -) Sqiy u x" Let Qix be the element of 1fi+i (K;Z2)

such that ct(Qix } is the homomorphism. Then

Qi is a homomorphism Qi: Ifl(K;Z2) -) :tfl+i (K;Z2).

1.4. PROPOSITION" Qi = c(Sqi) as a homomorphism Jtl(K;Z2)-)

~+i(K;Z2). (Bee II §4 for the definition of c.)

PROOF. We shall use Z2 coefficients throughout this proof.

The proof is by induction on i. Obviously QO = 1. Therefore

QO = c(Sq0). For any x € :Efl(K) and y € Ifl-q-i(K,L), we have, by

definition,
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Sqiy u X + L~-l Sqjy u Sqi-jx + Y u Sqix
J=l

Sqi(y u x) E 1fl(K,L)

We have the connnutatlve diagr'am

Ifl-i(K,L) S9i
:> Hn(K,L)

~

I~I~
Sgi

Hn:-i(Sn,Sn - lnt K) :> Hn(Sn,Sn _ lnt K)

The vertical maps are excision isomorphisms. By 1. 3, we have

Sqi(y u x) = 0 if i > o. Therefore, from the computation above,

_ E. Qj • Sqi- j _ Sqi
J

- E
j

C(Sqj) • Sqi-j - Sqi by our induction hypothesis

C(Sq.i) by the definition of c.

1 ."5. THEOREM. If the compact space Y can be embedded in Sn,

then, for each i > 0, we have that

is zero. Equivalently, if a compact space Y is such that, for SOIne r

and i>O,

is not zero, then Y is not embeddable in Sr+2i.

33

PROOF. Suppose Y can be embedded in Sn. We construct a mani­

fold K as described above. Let y € Hi ( Sn, Sn - lnt K). Then Sqiy =

2
0 by I §1 Axiom 3 and 1.1. We have the commutative diagramy =

Hi(K,L)
Sgi

:> H2i (K,L)

I~ I~
Hi(~,Sn - Tnt K)

Sq.i
:> H2i (Sn,Sn - rnt K)

The vertical maps are excision isomorphisms. Since the lower horizontal

map is zero, so is the upper one.



III. EMBEDDINGS OF SPACES IN SPHERES

Let x € 1fl-21 (K) and y € Hi(K,L). Then

Y \J Qix = Sqiy u x = 0 •

By dual1ty Qlx = 0, since the above equation is true for all y.

1 .6. LEMMA. Let x be a 1-dimensional cohomology class mod 2.

Then QkX = 0 unless k has the form 2
h - 1; if k = 2h - 1, then

k 2h
Q--X = x •

PROOF. This is proved by induction on k. It is obvious for

k = o. If k > 0, we have

o = ~=o QiSqk-ix = Qkx + Qk-'x2
•

let m: H* (X) Qg H* (X) -) H* (X) be the cup-product, and let

t: (i( 2) -) (j, (2) ~ «( 2) be the diagonal. Then

C(Sqk-')X2

m[v(cSqk-') • x ~ xl by II 1.3

m[ (c x c)Tt Sqk-l x ~ xl by II §4

m[~ cSqi x cSqk-l-,. x ~ xl

~k-l Q1 Qk-i-l
~i=O x. x

The swmnation cancels out in pairs (mod 2), except for the middle term, if

any. The middle term occurs when 1 = k - i - 1, and, by induction, is

equal to x
2m

• x
2m

if i = 2m - 1 and is zero otherwise. So Qk-1 x2
2m+ 1 1

x if k = 2
m+ - 1 and is zero otherwise. This proves the lennna.

,
Let x be the generator of H (Pn;Z2).PROOF.

1.7. THEOREM. If 1 < 2h ~ n < 2h+1
, then rea.l projective n­

space Pn cannot be embedded in a sphere of dImension less than 2h+
1

•

h
Then Q2 -'x

h
x 2 ./= o. By 1.5, the theorem follows.

1 • 7 was first proved for regular differentiable embeddings by

using Stiefei-Whitney classes.
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§2. Hapf's Theorem.

let M be a closed (n-l)-manifold embedded in Sn. Applying

Alexander duality with coefficients Z2 and then with coefficients Z,

we find that M is orientable and that M separates Sn into two open

sets with closures A and B such that A v B = Sn. By duality no proper

closed subset of M can separate Sn, and so A n B = M. Applying

duality to A and then to B, we see that

(r ~ n-1)

for any ring of coefficients. We have the following theorem due to Hopf.

2. 1. THEOREM. Under the above hypotheses, the inclusion maps

i: MeA and j: M C B induce a representation of Ifl(M) as a direct

sum

~(M) = i*~(A} + j*~(B) for 0 < q < n-1.

Here i * and j * are monomorphisms. Using a field of coefficients F ,

and the identification lfl-1 (M) = F, cup-products 1n M give an isomor­

phism

PROOF. The first statement follows innnediately from the Mayer-

Vietoris sequence. Since :Efl-1 (A) = Ifl-'(B) = 0, cup-products in

A or B with values in dimension (n-1) are zero. The rest of the

theorem follows by Poincare duality.

2.2. COROLLARY. If n ~ 2, then real projective n-space carmot

be embedded in Sn+1 •

2.3. LEMMA. Let x E: HrCM;Z2) and let r ... k = n - 1, then

SqkX o.

PROOF. Let x = i*a ... j*b, where a € :Er(A) and b € Hr(B).

The lennna follows by naturality since :Efl-1 (A) lfl-1 (B) o.

Let Qk = c(Sqk) as in §1.

action of the Steenrod. algebra C1 ( 2)

is determined by the following theorem.

Let x € ~(A;Z2).

*on H (B;Z2) is !mown.

Suppose the

Then SqkX
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2.4. THEOREM. Let s = n - 1 - r - k and let y € HS (B;Z2),

x € 1f(A;Z2)j then

.* 1< .*1 Sq--X u J Y =

PROOF. The theorem is proved by induction on k. It is obvious

for k = o.

formula

By 2.3,

o

Sqk(i*X v j*y) = 0 if k > o. So by the Cartan

~k Sqrni*x u Sqk-mj*y
In=O

~:6 i*x U QrnSqk-mj*y + i*SqkX u j*y

by our induction hypothesis

i*x u j*Qky + i*SqlSc v j*y

by the definition of Qk in II §4 •

.* k .*J. Sq-~ v J y.
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CHAPTER IV.

The Cohomology of Classical Groups and Stiefel Manifolds.

In this ehapter, we find the cohomology rings of the real, complex

and quaternionic Stiefel manifolds. We also obtain the Pontrjagin rings

of the orthogonal, unitary and symplectic groups and of the special orthogo­

nal and special unitary groups. The method 1s to obtain a cellular de­

composition of the Stiefel manifolds (following [,] and [2]). We then find

the action of the Steenrod algebra Cl( 2) in the cohomology rings of the

real Stiefel manifolds. Using this information, we obtain an upper bound

on the possible number of linearly independent vector fields on a sphere.

§, • Definitions.

Let F = Fd be the real or complex numbers or the quaternions,

according as d = ',2 or 4. Let V = Fn be the n-dimensional vector space

over F, consisting of column vectors with entries in F. We write scalars

on the right. Let ui be the column vector with in the i th row and

zero elsewhere. Let x L:i ui ~i E V, where Xi € F and let y

L:i uiYi. We define the scalar product < x,y > ~ xiYi where Xi

is the conjugate of xi. Then < x,y"A > < x,y >"A if "A E F; < x,y, + y i>
< x,y, > + < x'Y2 >; < Xl + x 2,y > < x"y> + < x 2,y >; and

< x,y > <Y;X> We embed Fn in ~+, by putting the last coordi-

nate equal to zero.

Let G(n) be the group of transformations of V which preserve

scalar products. T·hat is, A E G(n) if and only if < Ax,Ay > < x,y >
for all x,y E V. If A is represented by the n x n-mat.rix [aij ] mul­

tiplying column vectors on the left, then A E G(n) if' and only if

ItA = I. G(n) is the orthogonal, unitary or symplectic group according
37
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as d = 1,2 or 4. We have an embedding G(n) C G(n + 1) induced by the

embedding ~ C Fn+1 • The matrix A € G{n) corresponds to the matrix

fAO 0,)'~ 'J € G(n + 1)

We write G(O) = I.

The Stiefel manifold G(n,k) is the manifold of left coaets

G(n) /G(k). Let G ~ (n,k) be the manifold of (n-k) -frames in n-space. The.

mapping G(n) -:;> G' (n,k), which selects the last (n-k) columns of a

matrix as the (n-k) vectors of an (n-k)-frame, induces a map G(n,k)-)

G' (n,k) which is obviously onto. If two matrices A and B in G(n)

have the same last (n-k) colunms, then A- 1B € G(k). Therefore the map

G(n,k) -) G' (n,k) is a homeomorphism, and we can identify the two spaces.

Now G'(n,n-l) is the manifold of unit vectors in V. Therefore

1 .1. G(n,n-1) is homeomorphic to Snd-1 C V = ?l by the map

which selects the last column of a matrix.

1 .2. Derin!tion of q>. let Snd-l be the sphere of unit vectors

in V = Fn . Then Sd-l 1s the sphere of scalars of unit norm in F. We

construct a mapping

cp: Snd-l x Sd-l -) G(n)

by letting q>(x,~) be the transformation which keeps y fixed if < x,y >
= 0, and which sends x to Xl.. That is

cp(x,~)y

q>(x,l.)ij

X(l.-l) < x,Y > + Y or

Xi (1.-1)X j + 0ij in matrix notation.

If m < n we have an inclusion Smd-l -) snd-l, induced by the

'inclusion ~ -:;>?1. This induces a further inclusion

Smd-l x Sd-1 _) Snd-l x Sd-l .

The following diagraam is obviously commutative

Smd-l x Sd-l __) SOO-1 X Sd-l

I ~v
G(m)

I ~
v

----) G(n) .
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1 .3. Defin!tion of 9c.n. Let ~ be the quotient space of Snd-l x

Sd-l induced by (I). It is the set of pairs (x,A-) € SOO-1 X Sd-l under

the identifications (x,"-) (xv ,v -1 AV) where v € Sd-l and (x,l)

(y,l). That these are the only identifications is easily seen by looking

at the fixed point set of q>(X,A). lBt Qo be a single point. We embed

Qo in ~ Cn ~ 1) by sending Qo to the equivalence class of (X,l).

If n > m ~ 1, we have an embedding ~ -~ ~ induced by

8md- 1 x Sd-l -~ 800- 1 X Sd-l By the cormnutativity of the previous dia-

gram, we have another commutative diagram

~-~ ~

~ ~
G(m) --~ G(n)

whenever n > m~ o.

~ is a compact Hausdorff space and so the vertical maps are em­

beddings. We identify ~ with its embedded image in G{n) (n L m) .

Under the identification Qo becomes the identity of G(n).

Let E(n-1)d be the ball consisting of all vectors x E Snd-1 C V

= F
n, with ~ real and ~ 2 o. Then xn is determined by xl'··· '~-1.

let f
n

: E(n-l)d -:;> Snd-l be the inclusion map. Let g: (~-1 ,Sd-2)

-~ (Sd-l, 1) be the usual relative homeomorphism (S-1 m). Let

~: ~d-l _) ~ (n L 1)

be the composition

~d-l ~ E(n-1)d x Ed - 1 f n x g:> Snd-l x Sd-l _:;> ~

Let SOO-2 be the boundary of End- 1 •

1.4. lEMMA. The map ~ defines a relative homeomorphism

~: (~-1 ,SOO-2) _:> (~, ~-1) if n L 1. Therefore ~ is a OW com-

plex with a. O-cell Qo and with an (md-1) -cell for each m such that

1 ~ m ~ n.

PROOF. (rn x g)Snd-2 consists of points of the form (x,>..) €

Snd-l x Sd-l h ( nd-2)w ere ~ = 0 or "- = 1. Therefore h S C ~-1 •

nd-lIn any equivalence class {(x, 'k)} E S we can choose a representative

(x, A) so that xn is rea.l and xn L o. Moreover J if A =/. 1 and ~ > 0,
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this representative is unique. This proves that ~: (~d-1 ,Snd-2) -)

('tn,'tn-l) is a relative homeomorphism.

The rest of the lemma follows by induction on n.

1 .5. DEFINITION. Let IJ. be the multiplication in G(n). Let

1(: G(n) -) G(n,k) be the standard projection. A normal cell of G(n,k)

is a map (or the image of a map) of the form

i,d-l i r d-l h h
E x ••. x E x ••. x ) Q

i
x ••• x Q

i
~> G(n,k)

1 r

where n 2 i 1 > i 2 >...> l r > k. We denote such a cell by (i" ••. ,irln,k)

or simply by (i" •.. ,ir ) if this will cause no confusion. The cells of

~ (other than Qo)' described in 1.4, may be identif"ied with the normal

cells (mln,o) where n L m > o. We denote such a cell of ~ by (m).

By ~ we shall also denote the action of G(n) by left translation

on G(n,k) (n ~ k Z. 0).

§ 2 • The Cellular Structure of the Stiefel Manifolds.

In this section we shall prove the following pivotal theorem.

2.1. THEOREM. G(n,k) is a OW complex, whose cells are the normal

cells (see 1.5) and the a-cell n(I). The map

~: ~ x G(n-' ,k) -) G(n,k) (k < n)

is cellular and induces an epimorphism of chain complexes.

Before proving the theorem, we state and prove a corollary.

2.2. COROLLARY. If m ~ n and ! ~ k, then the induced map

G(m,!) -) G(n,k) is cellular. This map sends the normal cell

(i" ..• ,ir'm,!) to the normal cell (i" •.. ,irln,k)

(1 1 ,· •• ,ir _,ln,k) if d = 1 and i r - 1 > k L i r =

degenerately otherwise.

if i r > k; to

1 > 1 0; and

PROOF. This follows immediately from 2.1 and the definition 1.5

of normal cells.

We now begin the proof of 2. 1 •

Let us denote by 0:: (~'~-1) -) (Snd-l ,~) the composition

(~'~-1) -!-> (G(n,n - l),G(n - l,n - ,» ---) (Snd-1,~)
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where the map on the right is the homeomorphism of ,. 1.

4

2 • 3 • IEWJA. The map a:

homeomorphism.

is a relative

PROOF. a: ~ -?;> Snd-l sends {(x,1\.)} (x E: Snd-1,1\. E: Sd-1) to

x(A. - 1)~ + un by 1.2. The inverse image of ~ under 0: is ~_"

for if x(1\. - ')~ + un = un' then A or :xn = o.

Suppose we are given y E: Snd-1 C V Fn such that y I:~. We

must show that there is exactly one element (X,A) E ·Snd-1 x Sd-1 with

xn real and Xu > 0, and A /:= 1, such that X(A - 1)~ = Y - ~ •

In the real d-dimensional space F, (Yn - 1) lies in the closed

ball bounded by the sphere of scalars of the form (A. - 1), where I1\. I = 1.

Moreover, (Yn -1) :/= o. So, projecting from the origin in the real d­

dimensional space F , we can solve uniquely the equation X~ (A. - 1)

(Yn - 1), for xn real, xn > 0, IAI = 1 and A* 1. Knowing A and

xn ' Xi is determined uniquely for 1 SiS n-l. We now have X(A - 1)Xn
Y -~, ~ real, IAI = 1 and A:I= 1.

We have to check that < X,X > = 1. On evaluating the scalar pro­

duct of each side of the above equation with itself, we find

-) 2< x,X > (2 - A - A. xn 2 - Yn - Yn ·

Also, we mow that X~(A - 1) = (Yn - 1) • Hence

- 2 -) 2< x,X > (2 - A - A)~ = (2 - A. - A Xn .

Since IAI = 1 and A:I= 1, we have (2 - A - 1) J= o. Since also, xn 1= 0,

we deduce that < x,x > = 1.

2. 4. PROPOSITION. If n > k ~ 0, then

IJ.: (<in x d(n - 1 ,k) '~-1 x G(n - 1 ,k») -) (G(n,k) ,G(n - , ,k) )

is a relative homeomorphism and maps ~ x G(n - 1,k) onto G(n,k).

PROOF. The inverse image of G(n - , ,k} is ~-1 x G(n 1 ,k).

To see this, let A E: ~,B E G(n - 1) and suppose ABG(k) C G(n - 1).

Then A E: G(n - 1). On projecting into GCn,n - 1), we see by 2.3 that

~ n G(n - 1) = ~-1 • Therefore A E: ~-1.

t.l is one-to-one on (~- ~-1) x G(o - 1,k). To see this, let
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A, C E,~ - Qn-l' and let B,D € G(n - 1) and suppose that ABaCk)

CDG(k). Then AG(n - 1) CG(n - 1). On projecting into GCo,n - 1),

we see by 2.3 that A = C. Therefore BG(k) ro(k).

~ maps ~ x G(n-1,k) onto G(n,k). To see this, let A E G(n). By 2.3,

there is an element C € ~ such that CG(n - 1) = AG(n - 1). Therefore

there is an element D € G(n -,) such that A = CD.

2.5_ LEMMA. Let x E Snd-1 C V = ~ be a unit vector, let

~ E Sd-l C F be a unit scalar and let A € G(n). Then A cp(X,l)A- 1

cp(Ax,~). (Bee 1.2 for definition of cp.)

PROOF. By definition, cp(Ax,l) is the transformation which keeps

y fixed if < Ax,y > = 0 and which sends Ax to Ax:)... The lemms. fol-

lows.

2.6. PROPOSITION. ~(~ x~) = ~(~ X ~_,) C G(m) for m ~ 1.

PROOF. We shall reduce the case where m is arbitrary to the case

where m = 2, We therefore begin by checking the proposition for m = 1

and m = 2.

If m = 1, then Q, = G( '). We see this from 2.4 by putting

n = 1 and k = o. The proposition follows since G(l) = J.1(Q, x ~) C

~(Q1 X Q,) C G( 1) (recall from 1.3 that ~ is the identity element).

If m = 2, then f.!(Q2 x Q,) = G(2). We see this from 2.4, by

putting n = 2 and k = 0, and recalling that Q, G( 1) from the pre-

vious paragraaph. So

The proposition follows.

Now let x,ye Smd-l C V = ~ and let l,v E Sd-l'C F be arbi­

trary elements. Then cp(x,~) and cp(y,v) are arbitrary elements of ~.

We must show that q>{X,A)cp(y,V) ~ ~~-1'

Let W be a 2-dimensional subspace of V containing x and y.

Using the inclusion Fr C Fr +, of § 1, we have the sequence

CW n ~ = W
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of vector spaces over F, increasing by at most one dimension at a time.

We choose an integer r, such that 1 ~ r < m and W n Fr is 1-dimension­

al. Let A € F(m) map W onto F2 so that A(W n Fr ) = F'. Let

Ax = x' E F2 and Ay y' E F~ Then, by 2.5,

Since the proposition is true for m = 2,

Therefore

A ~(x,~)~(y,v)A-l ~(x"~')~(Y1'v,)

where x, E S2d-1 C F2 , y, E Sd-1 C F', A"V, E Sd-1 C F. Again using

2.5, we see that

(» -1) -, )
~ x,~ ~(y,v = ~(A xl'~1 ~(A Y"v, •

By our choice of A, A-'Yl € W n Fr ~ Ftt-l. Therefore

This completes the proof of the proposition.

PROOF of 2.1. We denote 2.1 when n = m by 2.1(m). We shall

prove 2.1 and the following two statements together by induction on n.

2.7(n). Let n ~ i" ••• ,ir > o. Then ~(Qi •.. Qi) is contained
1 r

in the (~=l(isd - l»-skeleton of G(n,k).

2. B(n) • J.,l: ~ x G(n,k) -) G(n,k) is cellular.

J.,l: ~-1 x G(n - , ,k) -) G(n - 1,k) is cellular.

G(n,k) therefore has a OW structure such that the

When n = k, all the assertions are obvious, for then G(n,k) is

the point 1(1). Suppose n> k and that 2.,(n - 1), 2.7(n - ,) and

2.8(n - 1) are true.

By 2.8(n 1),

By 2.4 and 2.1(n - 1),

map 1-1: ~ x G(n - 1,k) -7;> G(n,k) is cellular. By 2.4, 1.4 and

2.'(n-1), the cells of G(n,k) other than those in G(n - 1,k), are of

the form ~«n) x (i" ••. ,ir » where n - , L 1 1 >...> l r > k. Now

~«n) x (1" ••• ,1r » (n,i" ••• ,ir ) by 1.5, and this is a normal cell

of G(n,k). Therefore ~ induces an epimorphism of chain complexes and

2.1(n) follows.



44 IV• COHOMOIDGY OF CLASSICAL GROUPS

1t(Ql ••• Qi ) C G(n - 1,k}. Therefore by
2 r

is contained in the (L.~=2(isd - 1»-skeleton

We now prove 2.7(n). By 2.5, if A E G(n), then ~ V.
Therefore Qj~ = ~Qj (0 S j < m). So, by 2.6 and 2.7(n - 1), we can

assume without loss of generality that in the hypotheses of 2.7(n), n =

i, > i 2 > i r > k. Now

2 • 7(n - 1), 1t ( Qi · .. Qi )
2 r

of G(n - 1,k). By 2.1(n),

1.1: ~ x G(n - 1,k) -) G(n,k)

is cellular. Since ~ has dimension (nd-1), 2.7(n) follows.

We now prove 2.8(n). Since Qo is the identity, Il is cellular

on Qo x G(n, k). By 2. 1 (n), Il is cellular on ~ x G(n - 1,k). We have

only to check that \.l is cellular on cells of the form (t) x (n,i" •.. ,ir )

where n 2. t > 0 and n> 1, •.• > it > k (see 2.1(n». Now

Il«t) x (n,i" .•• ,ir » C 1t(Qt~Qi ••• Qi) and our assertion follows from
r

2.7(n). Ttds completes our proof of 2.1,2.7 and 2.8.

§ 3. The Pontr,jagin Rings of the Groups G(n).

3. 1 • Throughout the remainder of this chapter, all chain and co­

chain complexes and all homology and cohomology ~oups will be taken with

coefficients R, where R is a commutative ring with a unit if d = 2

or 4, and R = Z2 if d = 1.

The aim of this section is to find the Pontrjagin rings of the

orthogonal group O(n), the unitary groups U(n) and the symplectic group

Sp(n) (i.e., G(n) in the cases d = 1,2 and 4 respectively). That is,

we want a description of the map

H*(G(n);R) ~ ~(G(n);R) ---) ~(G(n);R)

induced by the multiplication G(n) x G(n) ---~ G(n) .

3.2. IEMMA. If d 1, ~ is the disj oint union of the point

Qo and the real projective space pn-l. The embedding of ~-1 in ~

(n 2. 2) corresponds to the usual embedding of pn-2 in pn-l. Q, = G( 1)

consists of two points, the 1 x 1 matrices I and -I. (~- Qo) consists

entirely of matrices of determinant -1.

If d = 2, ~ is the suspension of the complex projective space

Cpn- 1
, with the two suspension points identified. The embedding of Qn-l
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in ~ (n L 2) corresponds to the usual embedding of CpIl-2 in Cpn-l.
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PROOF. By' .3, if d = 1 or 2, ~ is the set of pairs

(X,A) € Snd-l x Sd-l c?1 x F under the identifications (xv,).,) (x,).,)

if v € Sd-1 C F, and (X,l) (y,1) if Y € Snd-l C~. The second

part of the lemma follows.

If d = 1, then for any pair (x,).,), if ).,:/= 1 then)., = -1.

The space ~ therefore reduces to the disjoint union of Qo and the set

of points (X,-l) under the identifications (x,-l) (-x,-l)

So, if d =', Q, consists of two points and so does G(l).

Since Q1 C G(l), Q, = G(l) and (Q1 - Qo) is the matrix (-I) E G(l).

This matrix has determinant -1. By cormectedness, all matrices in

(~ - Qo) therefore have determinant -1. (All matrices in C(n) have

determinant .±'.) This completes the proof of the lemma.

The boundary of each cell in ~ is algebraically zero. If d = 2

or 4, this follows from 1.4 for dimensional reasons. If d = 1, it fol­

lows from 3.1 and 3.2.

By 2.1 IJ: Gtn x G(n - 1,k) -) G(n,k) is an epimorphism of chain

complexes. By induction on n, the boundaries of the cells of G(n,k) are

algebraically zero. Therefore there are no boundaries in G(n,k) and all

chains are cycles.

3.3. DEFINITION. If (i" •.. ,irln,k) is a normal cell (see 1 .5),

we denote its homology class by [l" .•• ,irln,k) or [i" ... ,irJ. We

denote by (i" •.• ,irln,k) or {i" •.. ,ir }, the cohomology class of

G(n,k) which assigns the value to the normal cell (i" ... ,ir ) and

zero to all other cells. We call these homology and cohomology classes

normal classes. We .denote the homology class of 1t(I) by.1.. We denote

by l' , the cohomology class which assigns the value to 7( ( I) and the

value 0 to all other cells. We call 1. and i" unit classes.

The following lennna is an 1mmediate consequence of 2.1.

3.4. LEMMA. ~(G(n,k) ;R) is the free R-module on the unit class

1.. and on the normal classes [i1 , ••• ,irln,k]. If n S m and k ~ I, we

!lava a map G(n,k) -) G(n,l) which sends [i" •.. ,ir'n,k] to
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if i > 1; to [i" ••• ,ir _1 Im,ll if d = 1 and

1 > k = 0; and to zero otherwise. The map

~*: I4(~ x G(n - , ,k) jR) -:> I4(G(n,k) ;R)

is an epimorphism.

3.5. THEOREM. The pontrjagin ring of G(n) is the commutative,

associative algebra over R with unit element 1 and generated by the

normal classes [1) of dimension (id - 1), where n L i > 0, subject to

the relations

[ j] [ i ] if 1 :1= j

1 if d = 1

[i) [i) = 0 if i > 1 or d > 1 •

[ill [i2 1••• [ir l.

PROOF.. let 1 S j < i. We have the diagram

Eid- 1 x Ejd-l -!-> Ejd-l X Eid- 1 -!-> Ejd-l X E1d- 1

1h1 X
hj

Q
i

x Q
j

_ ......~--:> G(n) <--~-

Here v(x,y) (y,x), hi and h j are the maps of 1.4, ~ 1s the mul­

tiplication and e is defined as follows. Let Eid- 1 E(i-1)d x Ed - 1 ,

where E{i-1)d C Sid-l C V = Fi is the set of all unit vectors x with

xn real and ~ ~ o. E(i-l)d is invariant under G(j) since j < i.

We define e(x,y"Y2)' where x E Ejd-" y, E E(i-1)d and Y2 € Ed- 1, to

be (x,(hj x)-1 y"y2). This definition 1s meaningful since hjx € Qj C G(j).

By 2.5 and the definition of hi' the diagram is commutative.

We now find the degree of the maps V and 9 • If d = 2 or 4,

both factors have odd dimension, and so t has degree -1. If d = " we

are working mod 2 and. signs don't matter. Also, e has degree (_1)d. To

see this, let f: Ejd-1 x I -> Ejd-1 be a. contraction of Ejd-1 onto

a point z. This gives a homotopy of e

(X,y"Y2,t) ---~ (X,(hj f(x,t)-1 Y"Y2)

which shows that e is homotopic to the map

(X'Y1'Y2) ---:> (x,hj (z)-1 Y"Y2)
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by a homotopy which is a homeomorphism at each time t. Therefore 9 has

the same degree as h j (z). Each element of U(n) or Sp(n) has degree 1,

since these groups are connected. If d = 1, hj(z) has degree -1 by 1.14­

and 3. 2 • So e has degree ( -1 ) d .

Since the normal cell (i) C Qi' and, by 2.6, %Qi = QiQi-l'

we have (i) (1) C Q,iQi-1. If 1 > 1, then by 2.1, QiQi-l is contained

in the skeleton of G(n) of dimension (2i - 1) d - 2 which is less than

2(ld - 1). 'Therefore [i][1] is zero for dimensional reasons, if 1 > 1

If i = 1, then (i) (1) C Q" which has dimension d..: 1. If d > 1,

then [ 1 ] [ 1 ] is zero for dimensional reasons.

If d = 1, then by 3. 2 there are two O-cells, namely the 1 x 1

matrices I and -I. (1) is the O-cell -I. Therefore [1][1] 1.

In order to complete the proof of 3.5, it only remains to be shown

that the classes 1 and [1,] [i2 ] ••• rir ], where n L 1 1 > 1 2 ••• > 11' > 0

form a free basis for Hx.(G(n);R). This follows from 3.4, since the defi­

nition 1.5 of normal cells shows that

The map ~: G(n) x G(n,k) -) G(n,k) gives H* (G(n,k) ;R) the

structure of a module over Pontrjagin ring H:..(G(n) jR) •

3.6. THEOREM. H...(G(n,k);R) is a·module over H..(G(n);R) on So

single generator 1 (n > k L 1). The defining relations for this module

are
[i) .!. = 0 ifkLi)O if d 1= 1

[i] .!. = 0 if k L i > 1 if d = 1

[ 1 ] .!. 1.. if d = 1

The normal class [i"i2,···,ir 'n,k] [i, ] [1
2

] ... (ir ] .!.

PROOF. This follows irmnediately from 3.4 and 3.5 •

§4. The Cohomology Rings H* (G(n,k) jR) •

We begin this section by reminding the rea.der of our assumption·3. 1

on R.

'We shall compute the cohomology ring of G(n~k) by induction on n

and by use of the monomorphism (see 3.4)
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* * *~: H (G(n,k) ;R) -) H (Q..n x G(n - 1 ,k) ;R) where n > k.

If d = 1, we write O(n,k) G(n,k); if d = 2, U(n,k) = G(n,k);

if d = 4, Sp(n,k) G(n,k).

4.1. NOTATION. We extend the notation of 3.3 as follows. Let

i" •.. ,ir be a set of integers all greater than k, where k ~ 0 if

d = 2 or 4, and k ~ 1 if d = 1. let {i" .•. ,ir } be the zero cohomolo­

gy class of G(n,k) if is > n for some s such that 1 ~ s ~ r, or

if is = it where , ~ s < t ~ r. Otherwise let {il, ••• ,ir } denote the

product of the normal class of G(n,k) obtained on permuting i" •.• ,ir ,

and the sign of the permutation. (Recall that (ir ) is a cell of dimension

(ird - 1), which is odd if d = 2 or 4" while if d = 1, our ring 1s Z2.

Therefore this notation is consistent with the usual convention for sign­

changing.) Curly brackets with a space between them { }, should be inter­

preted as f. We also use the symbols (b) and f, where 0 < b ~ n to

* *denote the images of these classes under the map H (G(n) jR) -) H (~;R).

4.2. LEMMA. a) Let n L k ~ 1. Under the monomorphism (see 3.4)

* *~*: H (O(n,k);Z2) ---) H (~x O(n - 1,k);Z2)'

we have, in the notation of 4.1,

f x (b1 " ••• , brl + (1) x {b" ••• , b r }

+ ~=,(bi) x (b" ••. ,bi_l,bl+1,···,brl.

b) Let n ~ k > O. Let d = 2 or 4. Under the monomorphism

* * *~ H (G(n,k);R) ---> H (~x G(n - 1,k);R)

we have, in the notation of 4.1,

PROOF. Without loss of generality, we may assume that n L b 1 >
> br > k, since interchanging two adjacent b's multiplies both sides of

the equation by -1, and if two of the b' s are equal, both sides of the

equation are zero.
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We prove the theorem by evaluating both sides of the equation on

cells of ~ x G(n - 1 , k). The value of the left-hand side is calculated

with the help of 3.5 and 3.6. When evaluating the right hand side, we must

use the sign change < c, x c2 ,h, x h2 > (-1)pq < c1,j1 > < c2 ,h2 >,

where c, € HP(X), h, € HP(X), c2 € ~(y) and h2 € Hq(Y).

4.3. LEMMA. If d = 2 or 4, cup products of positive dimensional

classes in ~ are zero. If d 1, and n L aLb> 0, then f(a} = 0

and (a}{b) fa + b - 1}.

PROOF. For d 2 or 4, 1.4 shows that ~ has only odd dimension-

al cohomology. Since the product of two odd dimensional classes is zero,

the lermna follows for d = 2 or 4.

When d = 1, ~ is the disj oint union of Qo and pn-l by 3.2.

Since {a} is the generator or' Ifl-l(pn-l ;Z2)' the formula (a}{b)

*(a + b - ,) follows. The unit element in H (~;Z2) is f + (1), since

this assigns the value 1 to each O-cell in ~. Therefore

The lemma follows.

(i + (1) {a} (a} {a} ( 1) •

4.4. lEMMA. Let n L k L 1. In H*(O(n,k) ;Z2)' we have

+ L.~=: 1 {b1 ' • • • , b i + a - 1, ••• , b r}

where a > k and b i > k for all i.

PROOF. The theorem is true for n = k, since then all terms in

the formula are zero (see 4.1). For n > k, it follows by induction on TI,

using 4.2 a) and 4.3.

Let A(n,k) be the commutative associative algebra on the gener-

ators fb} of dimension b - 1 where n ~ b > k, sUbject to the rela-

tiona (b) (b) (2b - 1) if 2b - 1 S n and (bl{b) o if 2b-l > n.

*4.5 THEOREM. Let n L k L 1. Then H (O(n,k);Z2) ~ A(n,k). If

n S m and k S I, we have a map O(n,k) -) Oem,!) which induces a map

* *H (OCm,t) ;Z2) -) H (O(n,k) ;Z2). Under this map, (b) -) 0 if b > n

and (b) -) (b) if b S n.
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*PROOF. From 3.4, we see that H (O(n,k);Z2) has a vector space

basis consisting of the normal classes (b1 , ••• ,br ), with n> b, > •..

> br > k. 4.4 shows by induction on r, that the normal classes (b), with

*n ~ k, generate H (O(n,k);Z2). Also. from 4.4, we see that

{b} u {b} (b , b) + (2b - 1)

Referring to our notation 4. 1, we see that there is an epimorphism

*A(n,k) ---> H (0(n,k);Z2) •

Suppose we have an element Q E A, whose image in H*(O(n,k);Z2)

is zero. Q can be expressed as the sum of terms of the form {b,} {b
2

} •••

(br ), where n ~ b, > ••• > br > k.. By induction on r, we see from 4.4

that

{b1}(b2} ••• (br } {b1 , ••• ,br } + terms like

with s < r. In Q, if we collect the terms where

apply this formula, we see that Q = o.

(al ,···,as)

r is greatest, and

4.6. LEMMA. *If d = 2 or 4, then in H (G(n,k);R),

where a > k, and b i > k for all i.

PROOF. For n = k, the theorem is true since then both sides of

the equation are zero. For n > k, it follows by induction using 4.2 b)

and 4.3.

Let r(n,k) be the exterior algebra over H, generated by elements

{b} of dimension bd - 1 (d = 2 or 4), with n L b > k.

4.1. THEOREM. H*(G(n,k);R) ~ r(n,k) for d = 2 or 4. If

n ~ m and k ~ 1., we have a map G(n,k) -) G(m,l) which induces a. map

H*(G(m,l) jR) -) H*(G(n,k) jR). Under this map {b} -) 0 if b > n and

(b) -) {b) if b ~ n.

PROOF. This follows from 4.6 in the same way that 4.5 follows 4.4.

§5. The Pontr,1ag1n Rings of 80(0) and SU(n).

8O(n) and SU(n) are the subgroups of O(n) and U(n) respectively,

consisting of matrices with deteI'lllinarrt 1. The compositions
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SO(n) -L> O(n) .-!L> O(n,l) and SU(n) -L> U(n) -2!-> U(n,')
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are both homeomorphisms. The reason for this is that both in real and in

complex n-spa.ce, there is exactly one way of completing an (n-l)-frame to

an n-frame with deterni1nant 1. We shall identify 8O(n) with 0(n,1) and

SU(n) with U(n,1).

5.1. THEOREM. The Pontrjagin ring ~(SO(n);Z2) is the exterior

algebra on the normal classes [b) of ~.(O(n,1) jZ2) (see 3.3).

PROOF. The normal cell (i1 , ••• ,ir ) of O(n) consists of matrices

of determinant (_l)r (see 1.4, 1.5 and 3.2). Therefore SO(n), as a sub­

space of O(n), consists of the normal cells (i" ... ,i2r) where n ~ i, >
... > i 2r > o. By 3.5, the normal class of such a cell is [11 ][1][12][1]

... [i2r ][1]. Therefore by 3.5, the image of H*(SO(n)jZ2) -) ~(O(n);Z2)

is the exterior algebra on the elements [b) [1] with b > 1. Mapping into

I4.(O(n,l) iZ2 ), [b] (1) becomes [b], by 3.6.

5.2. THEOREM. Let [b] € H*(U(n,')jR) = ~(SU(n);R) be a nor­

mal class (n L b > 1). The Pontrjagin ring H*(SU(n) jR) is the exterior

algebra over R generated by the classes [b] of dimension 2b - 1.

PROOF. By 3.6, we lmow that H, (U(n, 1) jR) = o. Therefore

H'(SU(n);R) o. The composition

* * * i* *H (U(n,l) jR) -~-) H (U(n) jR) --) H (SU{n) ;R)

is the identity.

Therefore i*£bl

From 4.7, we lrnow that J{* (b) (b) where n > b > ,.
= {b) where n ~ b > 1. Moreover H' (SU(n) jR) = 0,

so i*{') o. By 4.6 and induction on r, this shows that i*£b" •.• ,brl

*= 0 if b i = 1 for same i and that otherwise i (b" ... ,br )

{b" ••• ,br }. The dual map i*: If.c. (SU(n) iR) -;> Rw. (U(n) jR) therefore satis-

fies 1*[b) [b] where n ~ b > 1. Since i* is a monomorphism of

Pontrjagin rings, the theorem follows.

'We now investigate the embedding Sp(n) C U(2n). Let V be quater­

nionic n-space and let W be complex 2n-space. let us write every quater­

nion q = q, + iq, + jq3 + kq4' where q, ,Q2,q3 and q4 are real, as

(Q, + iq2) + j(q3 - iq4)· Then a column vector (xl' ... '~) € V becomes
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a column vector (Y,' ... 'Y2n) € W, by writing xi = jY2i-l + Y2i. This

gives an identification of V and W as complex vector spaces. The iden-

tification preserves the scalar product of a vector with itself (but not

with another vector). Therefore every element of Sp(n) preserves scalar

products in W, and we have an embedding Sp(n) -> U(2n). We also have

maps Sp(n) -) V and U(2n) -) W obtained by taking the last column

of a matrix, or, equivalently, by taking the image of the vector (0, ... )0,1)

under an element of Sp(n) or U(2n). The diagr-am

Sp(n) --) V

~ t
U(2n) ---:> W

is comrrutative. On identifying unit vectors in V and W with 4n-1S ,

we obtain the following commutative diagram

5.3. Sp(n) ---) Sp(O,n-l)

I
II

34n- 1

'Jj II
U( 2n) --) U( 2n, 2n-1) .

5.4. THEOREM. The embedding Sp(n) -) U(2n) induces an epimor­

phism H* (U( 2n) ;R) -) H* (Sp(n) ;R) given by {2b} -) {b} and {2b - 1)

-) 0, where n L b > o. (Recall that {b} has dimension 2b - 1 or

4b - 1, according as it denotes a normal class of U(2n) or Sp(n).)

PROOF. The proof is by induction on n. If we take Sp(o) U(o)

to be the identity transformation, the theorem is obviously true.

The following diagram. is commutative

Sp(n - 1) --) U(2n - 2)

Therefore the diagram

t
Sp(n)

t
---) U(2n)

H*(Sp(n - 1) (-- H*(U(2n - 2))

l' 'I
H*(Sp(n) (-- H*(U(2n)
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and

is commutative. By 4.7, the left hand vertical map sends (b) to (b) if

o < b ~ n-1 and to zero if b > n-1. Also by 4. 7, the right hand vertical

map sends {b} to {b} if 0 < b S 2n-2 and to zero if b > 2n-2. By our

induction hypothesis and the commutativity of the diagram, the theorem is

true for classes {b) € H2b- 1(U(2n), where b ~ 2n-2, and we have only

to check the theorem for ( 2n-1 } and {2n}. For dimensional reasons,

{2n-l} € ~n-3(U(2n» goes into the subalgebra of H*(Sp(n» generated by

elements of the form {m} € H4m- 1 (Sp(n» where 0 < m < n. But by 4.7,

*this sUbalgebra is sent monomorphically into H (Sp(n-1». By the commuta-

tivity of the above diagram, we see that {2n-l} goes into zero in H*(Sp(n)

To find the image of {2n} E ~n-l(u(2n) in ~n-1(sp(n», we

use 4.1 and the diagram 5.3. Since both en) E ~n-l(Sp(n» and (2n) €

H4n- 1(U(2n» are images of the fundamental class in ~n-l(S4n-1), (2n)

is sent to {n} and the theorem is proved.

§6. Cohomology Operations in Stiefel Manifolds.

We can compute cohomology operations in the Stiefel manifolds as

follows. From 4.5 and 4.7, we need only know their action in SO(n)

O(n,l), U(n) and Sp(n). We have the monomorphisms

~*: H*(O(n,l) ;Z2) ---) H*(~ x O(n-l,1);Z2)

* *Il*: H (U(n) ;R) --) H (~ x U(n-1 ,1) ;R)" •

By induction on n, we can determine cohomology operations, if we lmow

them in ~ and their behaviour under cross products. By 3.2 if d = 2,

~ has the homotopy type of SCpn-1 v 31
, so we need only mow the opera­

tions in Cpn-l and their behaviour under cross products (see I 2.1).

To find the operations in Sp(n) we use 5. 4 and our knowledge of

their action in U(2n).

The only explici t computation of operations which we shall carry

out, is the effect of Sqi on H*(O(n,k);Z2) for k L 1.

Using the notation 4.1, we have

6.1. THEOREM. Sqi{b) *in H (O(n,k);Z2)

(n L b > k ~ 1). The Cartan formula then gives the action on the other

cohomology classes.
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PROOF. Under the monomorphism

* *~*: H (O(n,k);Z2) ---) H (~x O(n-l,k);Z2) ,

the image of (b) 1s f x (b) + (b) x {} (see 4.2 a».

By I 2.4 and 3.2, Sql{b} • (bi1) {b + 1 - 1} and Sqj, = 0

if i > o. The theorem follows.

We shall obtain another description of the Ci (2) -module structure

in terms of the definitions in II §5.

A stunted projective space ~ is the space obtained from the real

projective n-space pn by collapsing the (r-l)-skeleton pr-l to a point.

We have a map pn -)~, which induces a monomorphism

* n * nH (Pr ;Z2) ---~ H (P ;Z2) ·

Let Ws be the non-zero element of HS(P~;Z2) for r S s S n. Then, by

naturalityand I 2.4,

Sqi w (~) wS +1 if s + isns

Sqi w = 0 if s + i > ns

if d = 1, ~/Qk
n-1

(n L k L 1). The mapPk

and

By 3.2;

~ -> O{n,k) induces a map

p~-l ~/Qk -) O(n,k)

We claim that this map is a homeomorphism into. We prove this claim by in­

duction on n. It is true for n = k. Suppose x,y € ~/Qk have the

same image in O(n,k). By our induction hypothesis we can assume x €

~ - ~-1 • Our claim then follows by 2. 3.

By 2.1, a normal cell (l" ... ,irln,k) has dimension greater than

2k if r L 2. Therefore the 2k-skeleton of O(n,k) is p~k if n > 2k.

. n-1If n S 2k, the n-skeleton of O(n,k) ~s Pk ·

6.2. THEOREM. If k L 1,

algebra gsnerated by H*(~-l ;Z2} •

then H*(O(n,k) ;Z2) is the free

(See II 5.4 for the definition.)

6,-

PROOF. Let us take A(n,k) to be the same algebra as the one

defined just before 4.5. The free «(2)-algebra on H*(p~-l ;Z2) is iso­

morphic to A(n,k) as an algebra, if we let wb and (b + 1) correspond

(n > b L k). This is because Sqb \1h = w2b if 2b ~ n and zero otherwise
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We have only to check that the structure on A(n,k) as an (1(2)­

module, induced by this isomorphism, is the same as the natural structure

*on H (O(n,k);Z2). In fact by the Cartan formula, we need only check on

the generators (b). Now

(b) w and Sqi{b + 1}i b+i

unless b + i L n, when both equations have zero right hand side. The

theorem follows.

§ 1 • Vector Fields on Spheres.

By a vector field on a sphere Sn-1 we mean a continuous field

of tangent vectors, one at each point of _ Sn-1. A set of k vectors on

Sn-1 are independent if, at each point of" sn-1, the k vectors are

linearly independent. For each positive integer n, let ken) be the larg­

est integer such that sn-1 has ken) independent vector fields. The com­

plete determination of the function ken) has been achieved recently by

J. F. Adams [3]. Writing n in the form

n 24a+~(2S + 1)

where a,~ and s are integers L 0 and ~ = 0,1 ,2,or 3, then

ken) 2~ + 8a - 1

Thus k( n) = 0 if" n is odd; and, for small even n, we have

n 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,

k(n) 1 , 3, 1 , 1, 1, 3 , 1, 8, 1, 3, 1, 1, 1, 3 , 1, 9,

The- existence of ken) independent fields was proved by Hurwitz and Radon

[5] • The complete proof of these results is beyond the scope of these

notes. However we shall establish an upper bound on ken) which is a step

toward the complete result and which gives the least upper bound for n < 16.

1.1 THEOREM. (Whitehead and Steenrod [4).) If n == 2m( 2s + 1),

then ken) < 2m.

In order to prove this theorem, we first prove a lenuna.

1.2. LEMMA. Let n ~(2s + 1). If 0 < j < 2
m, then

(n-a-1) • 0 mod 2. Also (n-~-l) !! 1 mod 2 if s ~ 1.
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PROOF. n - 1 2
m - 1 + s.2m+ 1

1 + 2' + •.• + 2m- 1 + S·2m+1.

then the coefficient of

then the coefficient of

1.

,.
== 0

1s2r in (n - 1 - j)

By I 2.6, (n-1-')
2
m in (n - 2m - 1) is

isin jzero, while the coefficient of

mod 2. If j

So (n-~:-,) _

If

PROOF of 7. 1. Given k vectors v1' •.• , vk ' which are linearly in­

dependent, we can find an orthonormal basis for the space spanned by v1' ...

vk · We simply define by induction u 1 = v l' U i = projection of vi onto

the space orthogonal to u l ' •• ·,U i -1. We put wi = uil Ilii I. The same for­

mulas enable us to deduce the existence of a field of k-frames from the

existence of k linearly independent vector fields on anymanifold with a

Riemannian metric.

The k-frames tangent to a point of 3n- 1 C Rn (Rn is Euclidean

n-space), correspond in a one-to-one way with the (k+1)-frames at the

origin of Rn . (We simply use the last vector to specify the point on

Sn-1.) The existence of a field of k-frames on an (n-l)-sphere is the

same as the existence of a cross-section to the fibre bundle

O(n,n-k-l) ---) 0(n,n-1) 8n- 1

(see 1.1). Actually we do not use the fact that this is a fibre bundle.

Suppose that in contradiction to the theorem there are 2
m linearly

independent fields on 3n- 1 and n = 2m( 2s + ,). Then s ~ 1. There must

be a cross-section A to the fibre bundle

1f: 0(n,n-2m
-l) --) O(n,n-l) 3n- 1

Therefore we must have maps

* 1f* * m A* *H (0(n,n-1);Z2) ---) H (0(n,n-2 -1);Z2) ---) H (0(n,n-1);Z2)

whose composition is the identity. By 4.5 n*(nl (n). Therefore

A*[n} {n}. Now

*in H (0(n,n-1) :Z2)

By 6. 1 and 7. 2

en) is the only non-zero positive dimensional term

H*(Sn-l;Z2). Therefore· X*{bJ 0 if n> b.

(nJ.
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Applying ~* to both sides we have a contradiction, which proves the

theorem.
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CHAPTER v.

Equivariant Cohomology.

In §1 we define the equivariant cohomology of a chain complex with

a group action and show that the cohomology group is left fixed by iImer

automorphisms of the group. In §2 we give the basic theorem about the con­

sti"'uction of a chain map with a prescribed acyclic carrier, and we define

the cohomology groups of a group. In §3 we define a generalized form of

the cohomology of a group, in which a topological space also plays a role.

In §4 we show that a number of alternative ways of defining products in

cohomology groups all lead to the same result. In §5 we find the cohomology of

of the cyclic graoups and in §6 we consider the restriction map from the

cohomology of the symmetric group to the cohomology of the cyclic group.

In § 7 we use the transfer to obtain more accurate inf'ormation concerning

the restriction map.

§ 1. Chain Complexes with a Group Action.

1 • 1. DEFINITIONS. The category of pairs is the category whose

objects are pairs (p ,A), where p is a group and A is a left p-module.

A map f: (p ,A) --> ('It ,B) consists of homomorphisms f 1 : p --) 'It and

f 2 : B -> A such that

for all ex E p, b € B. The category of algebraic triples is the category

whose objects are triples (p,A,K) where p and A are as above and K

is a chain complex on which p acts from the left. A map f: (p,A,K) --:;>

(~,B,L) consists of a map (p,A) ---) ('It,B) in the category of pairs and

a chain map

and k € K.

r#: K -) L such that

We say that f, and f 2

58

f#(ak) f,(ex)f,(k) for all a € p

are equivariant (i .e., commute with
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the gr-oup action) _

Let C* (K;A) = Hom (K,A) be the complex of equivariant cochains
p p

on K with values in A. A map f: (p,A,K) -) (",B,L) induces a map

r': C:<L;B) --:> C;<K;A)

via the composition

59

f f
K -L) L _) B _2_) A •

Let H* (K;A) be the homology of the complex C* (K;A) _
p p

1 .2_ lEMMA. C* (KjA) and H* (K;A) are contravariant functors from
p p

the category of algebraic triples.

1 .3_ DEFINITION. An automorphism of an algebraic triple ( p ,A,K)

is a map (p,A,K) --) (p,A,K) with an inverse. The inner automorphism of

(p,A,K) determined by "1 € P 1s defined by

f
1
(a)

If j( is a normal SUbgroup of p, then an imler automorphslm of ( p ,A,K)

induces an automorphism of (1t,A,K)_

We repeat all the definitions in 1.3 in the case of a pair {p ,A} ,

by suppressing all mention of K.

by 1.2.

.An automorphism of (p ,A,K) induces an automorphism of H* (K;A}
p

1.4. LEMMA. An inner automorphism of the algebraic triple (p,A,K)

induces the identity map on H*(K;A).
p

PROOF. The induced map is the identity on the cochain level.

1.5. LEMMA. Let (p,A,K) be an algebraic triple. Let 7t be a

normal SUbgroup of p and let 7 € p. let g: (1t,A,K) -) (1r,A,K) be

the automorphism determined by 1 _ Then the image

*is pointwise invariant under the automorphism g.

PROOF. let f: (p,A,K) -) (p,A,K) be the imler automorphism

determined by 1- Then by 1.2, the following diagram is commutative



60 V. EQUIVARIANT COHOMOIOGY

* f* *H (K;A) --:> H (KjA)

p 1 p1
* * *Hjf(K;A) -g--;> Hjf(K;A)

Further, 1.4 shows that f* = ,.

§ 2. Cohomology of Groups.

A !~9gular cell complex K is a cell complex with the property that

the closure of each cell is a finite subcomplex homeomorphic to a closed

ball. If K is infinite, we give it the weak topology - that is, a set

is open if and only if its intersection with every finite subcomplex is

open, (i.e., K is a OW complex). Let K and L be cell complexes. A

carrier from K to L is a function C which assigns to each cell ~ £ K

a sUbcomplex C(~) of L such that a face of ~ is sent to a subcomplex

of C(~). An acyclic carrier is one such that C(~) is acyclic for each

~ £ K. Let p and jf be groups which act on K and L respectively

(consistently with their cell structures), and let h: p -) 1C be a homo-

morphism. An equivariant carrier is one such that C( aT) h(a) O(T)

for all a £ p and ~ € K. Let q>: K --:> L be a chain map: we say

q> is carried by C if q>(T) is a chain in C(T) for all T € K.

2.1. REMARK. Let K and L be OW complexes. We give K x L

the product cell structure and the ow topology. The chain complex of

K x L is the tensor product of the chain complex of K and the chain com­

plex of L. If K and L are both regular complexes, then K x L is a

regular complex. (According to Dowker el], the product topology on K x L

defines a space which is homotopy equivalent to the OW complex K x L.)

Let K' be a p-subcomplex of a p-free cell complex and suppose

we have an equivariant chain map Kt --:> L. Suppose we have an equivariant

acyclic carrier from K to L which carries q>IK'.

2.2. LEMMA. We can extend q> to an equivariant chain map

<:p: K --:> L carried by C. If q>o and cp 1 are any two such extensions

carried by C, then there is an equivariant homotopy 10K --) L between

<:Po and q>,. (p acts on I 0 K by leaving I fixed and acting as before

. ' '-: \-: : '.': ~}~/ '. > ~';, ," (.:..,: .~ ; ., -.l
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on K.)

61

PROOF. We arrange a p-basis for the cells of K - K' in order

of increasing dimension. We must define q> so that cpo ocp. Since

C(T) is acyclic for each If, we can do this inductively. The second part

of the lemma follows from the first, since I x K is a p-free complex

(see 2.1), and we can define a carrier from I x K to L by first pro­

jecting onto K and then applying C.

2.3. LEMMA. Given a group 1f, we can always construct a 7t-free

acyclic simplicial complex W.

PROOF. We give 1t the discrete topology and form the infinite

repeated join

This repeated join is a simplicial complex. Taking the join of a complex

with a point gives us a contractible space. Any cyc~e in W must lie in

a finite repeated join WI. Such a cycle is homologous to zero in W' * ~.

Therefore W is acyclic.

We make 1t act on W as follows: 1t acts by left multiplication

on each factor 11: of the join and we extend the action linearly. This

action is obvious free and the lemma is proved.

Suppose we have a homomorphism n --) p and W is an acyclic

1t-free complex and V an acyclic p-free complex. Then we have an equi­

variant acyclic carrier:from W to V: for each cell 't' E W, we define

C(,.) V. By 2.2 we can find an equivariant chain map W--) V, and

all such chain maps are equivariantly homotopic.

Therefore a map of pairs f: (n,A) --;> (p,B) as in 1.1 leads to

a map of algebraic triples (tt,A,W) --) (pJB,V) which is determined up to

equivariant homotopy of the chain map W --:> V. By'. 2 we obtain a well­

defined induced homomorphism

In the class of 1t-free acyclic complexes, any two complexes are

equivariantly homotopy equivalent, and any two equivariant chain maps going

from one such complex to another are equivariantly homotopic. Therefore the
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*gt'oups H
1t

(W;A) 1 as W varies over the class, are all isomorphio to eaoh

other and the isanorphisms are unique and transitive. We oan therefore

* *identify all these oohomology gI'oups and write H (1t ;A) instead of H
1t

(W;A)

2.4. LEMMA. H* ( 1t ;A) is a oontravariant funotor from the oategory

of pairs (see 1.1).

§ 3. Proper maps.

Suppose we have a continuous map f: K --;> L between two CW com­

plexes. A carrier C for f is a carrier from K to L such that

f( 1') C C( 1') ·for all cells 1" £ K. The minimal carrier of f is the car­

rier which assigns to each cell 1" £ K the smallest suboamplex of L con­

taining f(1"). Every carrier of f contains the rn1n1ma.l carrier. We say

f 1s proper if the minimal carrier is cyclic. If 'If acts on K, pacts

on L, h: j( -) p is a homomorphism and f is equivariant, then the

minimal carrier is also equivariant.

3. 1 • LEMMA. let K and L be finite regular cell complexes.

Let 1t act on K and p act on L, let h: 1t --) p be a homomorphism

and let f: K --:> L be a continuous equivariant map. Then f can be

factored into proper equivariant maps

K -'-:> K' -:> L' _1_~ L

where K' and L' are barycentric subdivisions of K and L.

PROOF. The first barycentric subdivision of a regular cell complex

is a simplicial cell complex, as we see by induction on the dimension. Let

L' be the nth barycentric SUbdivision of L for n L 1. Let Ui be the

open star of the i th vertex Xi of L'. Then (Ui ) is an open covering of

L. We can choose a barycentric subdivision K' of K such that eaoh sim­

plex 1" of K' 1s conta.ined in a set of the form f-' (Ui ) . Then the mini­

mal carrier of T consists of simplexes all of which have Xi as a vertex.

Therefore f: K' --;>. L' 1s proper. The identity maps K --:> K' and

L' --> L are obviously proper. The maps are all equivar1ant. This proves

the lemma.

Note that we were able to choose L' to be any barycentric
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subdivision of L. Note also that any subdivision finer than K' would do

equally well in the place of K'. Lemma 3. 1 is true but more difficult to

prove if the words "finite" and "barycentric" are deleted from its statement

3.2. DEFINITION. The category of geometric triples is defined in

the same way as the category of algebraic triples (see 1.1), except that we

replace the chain complex K by a finite regular cell complex K and equi­

variant chain maps f:/l by equivariant continuous maps. We say a map of

geometric triples ( 3C ,A,K) -:> (p,B,L) is~ if the continuous map

K -:> L is proper.

Let f: (1t,A,K) -:> (p,B,L) be a map of geometric triples. Let

W be a 1t-free acyclic complex and V a. p-free acyclic complex (these

exist by 2.3). We wish to construct a map

where the action of

f* :

a(w,k} (~,ak)

* *H
p

(V x L;B) -:> H",CW x K;A)

1t on W x K is the diagonal action - that is

for all a E 1t, W E W and k E K - and similarly for

the action of p on V x L.

If f is proper, let its minimal carrier be C. Then we have the

acyclic equivariant carrier from W x K to V x L which assigns V x C( 1')

to any cell _of the form w x l' E W x K. By 2.2 this gives us an equivariant

chain map f,: W (8) K -:> V (8) L which is determined up to equivariant

homotopy. If f is not proper we c&.~ factorize it into proper maps

(.,A,K) -:> (:IC,A,K') -:> (p,B,L ' ) -:> (p,B,L)

and define f, as the composition of three chain maps

W (8) K -:> W ~ K' -:> V OJ) L' -:> V OJ) L.

For a proper map of geometric triples (1t,A,K) -:> (p,B,L) we now

have two different constructions of an equivariant chain map W 6i' K -:>

V OJ) L. The first is obtained directly and the second is obtained by fac­

torizing into three maps. The results differ by at most an equivariant

homotopy. It is easy to see that the definition of f, does not depend,

up to equivariant homotopy, on the number of times we subdivide K and L

in 3.1. It easily follows that if

(~,AJK) -f-) (p,B,L) ~> (a,C,M)
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are maps of geometric triples and if U is an acyclic equivariant a-complex,

then ~f#: W~ K -) U l&l M is equivariantly homotopic to (gf)H. let­

ting L = I x K, it follows that if h,k: K --) Mare equivariantly

homotopic as continuous maps, then hI: and k# are equivariantly homotopic

as chain maps from W~ K to U ~ M.

Therefore a map of geometric triples ( 1{,A, K) --) (p,B ,L) gives

rise to a map of algebraic triples (1r ,A,W l&l K) --) (p ,B,V l&l L). As in

2.4 we show that H:(W l&l KjA) does not depend on the choice of W. We

have therefore proved

3.3 LEMMA. H:CW x K;A) is a contravariant functor from the cate­

gory of geometric triples. Induced maps are independent of equiva:riant

homotopies of the variable K.

3.4 If 1r is a normal subgroup of p, A is a p-module

and K is a finite regular cell complex on which p acts, then pacts

on the geometric triple (1r ,A,K) by the same formulas as in 1.3. Therefore

*p acts on H
7C

(W x KjA) by 3.3. This action commutes with equivariant maps

*of the variable K. If Jl' = p, then p acts trivially on H1(W x K;A)

by 1.4. If K has trivial 1(-action, then the action of "E: P on

*H
7C

(W x KjA) can be found by extending the automorphism of (1t,A) induced

by , (see 1.3) to a map of the algebraic triple (7C,A,W) into itself.

Using the identity map on K, this gives a map of (1C,A,W (8) K) into itself,

*which induces the automorphism of H
1t

(W x KjA) .

* *If K is a point then H1{(W x KjA) is just H (1C;A) and 3.3 re-

duces to 2.4.

§4. Products.

Let K be a 1C-free OW complex and L a OW complex on which p

acts, and suppose we have a, homomorphism 1r -> p and a continuous equi­

variant map f: K --) L. By an increasing induction on the dimension of

the cells which form a TC-basis for K, we can construct an equivariant

homotopy I x K --) L, which starts by being f and ends as a cellular

map. This gives rise to an equivariant chain map f#: K --) L, which is

determined up to equivariant homotopy. We can insist that, during the
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homotopy, the image of each cell in K stays within the minimal carrier of

f. Then f# is carried by the minimal carrier.

Now f induces a map g: K/:It --) Lip. The map f# induces a

chain map K/1C --) Lip. This chain map will do for g# since the equi­

variant homotopy I x K ---) L induces a homotopy I x K/:It ---) Lip which

starts by being g and ends as a cellular map.

Let K and L be regular cell complexes with group action as above

and let f be proper. Then we can choose f:/l : K --) L in a different

way to that above. We can simply apply 2. 2 using the minimal carrier of f .

However our previous choice of f# was also carried by the minimal carrier.

Therefore the two procedures lead to the same result (up to equivariant

homotopy) •

Let W be a 1C-free regular cell complex and let L = W/:It. Let 1C

act on W x W by tOhe diagonal action. The diagonal d: W--) W x W is

an equivariant proper map. By the discussion above we have

4.1. LEMMA. Any equivariant diagonal approximation in W induces

a chain map L --) L@Lwhichishomotopictoadiagonalapproximation

in L. If W is acyclic, then any equivariant chain map W--) W@W

will induce a map L --) L ® L which is homotopic to a diagonal approxi­

mation.

Let (:It,A,M) and (p,B,N)- be algebraic triples (see '.1). Then

we have a triple (:It x p,A ~ B,M @ N). We have a map

defined in an obvious way. This gives us a cross-product or external ­

product pairing

Let W be an acyclic :It-free complex and let V be an acyclic

p-free complex. Let (:It,A,K) and (p,B,L) be geometric triples. Then the

c~oss-product above gives us a map

* * *H
1t

(W x K;A)@H
p
(VxL;B)-)H1tXp (WxKxVxLjA@B).

Now the algebraic triples (ff X P, A ® B, W <8> K ® V (8) L) and

(:It X P, A ~ B, W ® V (8) K ~ L) are isomorphic via the map which interchanges
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V and K (with a sign change). Here the action of 7C x p on

W ~ K ~ V ~ L is given by

for all a E 7C, ~ €p , W E W, k E K, v E V and 1. E L. The action of

JC x p on W 18 V ~ K ® L is given by

Therefore we have an isomorphism between

* *H7Cxp (W x K x V x .L;A ~ B) and H7Cxp (W x V x K x L;A 18 B). Since W x V is

a (1Cxp)-free acyclic complex, we see that, composing this isomorphism with

the cross-product above, we have introduced a cross-product

(4.2) * * *H (W x K;A) ~ H (V x L;B) -~ H...x (W x V x K x LjA ~ B)7C P n P

defined on the functor of 3.3. The image of u ~ v is denoted by u x v.

We have a diagonal map of geanetria triples

d: (7C,A ~ B,K) ---~ (7C x 7C,A ~ B,K x K),

where 7C acts on A ~ B in the first triple by the diagonal action.

Hence we have a map (see 3. 3)

where ~X7C acts on W x W x K x K by

(a,~){v"V2,kl,k2) (av,,~v2,ak,,~k2)

for all a,~ E tt, v, ,v2 E W and ~1 ,k2 E K. Combining d* with the crOBS­

product of 4.2, we have the cup-product pairing

(4.3)

If tt is the trivial group, this is the usual cup-product in K. If K is

a point, then this is the usual cup-product in the cohomology of a group.

4.4. REMARK. Let W and L be a.s in 4.1. We can compute cup­

products in L by constructing an equivariant diagonal approximation in

W. This is particularly useful when L is not a regular cell complex.

§5. The Cyclic Group.

Let W be too unit sphere the space of infinitely many canplex
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variab;Les. That is, every point in W has the form (zo,z" •.. ,zr'o, .•• )

where E Zizi = ,. We give W the weak topology. Alternatively W may

be described as the OW complex obtained by taking the illlion of the sequence

8 1 C 83 C S5 C

Let n be any integer greater than one. Let T: W --;> W be the trans­

formation defined by

where A = e 21Ci /n • T obviously acts freely and generates a cyclic group

1C o:f order n.

We now construct an equivariant cell decomposition for W, which

makes W a regular cell complex. We do this in the obvious way :for S1
,

.-n-lso as to get n o-cells eo,Teo' ••• '~-- eo' and n 1-cel1s,

e"Te" ••• ,TD-'e,. Let oe, (T-1)eo • Now we proceed by induction.

S2r+1 S2r-l * g' (where * means join). Here S' can be identified

with the set of points (O, •.• ,o,zr'O' ••• ) such that zrzr = ,. We con­

struct a cell decomposition for S2r+, by taking its (2r-l)-skeleton to

be the cell decomposition for S2r-l already defined by our induction. We

let the 2r-cel1s of S2r+l be of the form S2r-, * Tieo = T1e 2n and we

2' i ilet the (2r+l)-cells be of the form S r- * T e, T e 2r+1 . We then

have n cells in each dimension.

Let N = , + T + ••• + rfl-1 and 6. = T - 1 be elements in the

group ring of 1C. Choosing the orientation of the join correctly, we obtain

i
oT e 2r Ne

2r
_

1

and iT 6.e2r

Therefore the cell complex is 7t-equivariant and is regular.

\"' i jLet n LO~ i,S J( n TxT be an element in the group ring

Z( 1C x 1C). Z( 1C x 1C) acts on W ~ W in the obvious way. Z( 1C) acts on

W ® W via the map Z( 1t) -;> Z( 1C x 1C) induced by the diagonal 1C -) 1C X 1t

5.1. LEMMA. The equivariant map d: W--) W ~ W defined by

d ~i \"'i-1
e 2i Lj=O e 2j ~ e 2i- 2j + Lj=O n e 2j +1 ~ e2i-2j-~

is a chain map.
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PROOF. In Z( 'It x 1() we have the relations

TxT - 1x1 1X~ + ~T

(TxT)n - n = NX1 - 1xN

'x1 + TxT + ••• + ~-'xTO-'

lxT + TxT2 + ••• + Tn -'Xl

fxN + n{6Xl)

NXl - n( 1X~) •

Using these relations the lemma ~ollows by a straightforward calculation.

Let L = W/1t. Since W is contractible and covers L n times,

L is an Eilenberg-MacIane space of type K(Zn,1). L has one cell, also

denoted by e i , 1n each dimension. We have oe2r = ne2r_1 and de2r+, = 0

in L. Let wr be the cochaln dual to ere Then Hr(L;~) is cyclic of

order n and 1s generated by wr - Let f3: 1fl(L;Zn) -> lfl+l (L;Zn) be

the Bockstein operator associated with the exact coefficient sequence

5.2_ THEOREM. f3w, -w2 ; ~w2 o. If n is odd, w2
0",

w2r
(w

2
)r and w2r+1

(w
2
)rw, • If n = 2, then wr

(w,)r _

PROOF. Since de2 = ne, ,

f3w1 e 2 -(1/n)w1 . oe2 -w, e, -1.

Therefore f3w, -w2 • Since f32 = 0, f3w2 o.

By 4.4 we can compute cup-products in L by using the diagonal of

5.1. In L we therefore have the induced diagonal approximation

d ~i + n{n-1)/2 ~i-le 21 ~j=O e 2j ~ e 21- 2j ~j=O e 2j +, ~ e2i- 2j:,

_ ~2i+l
de2i+, - ~j=O e j ® e2i- j + 1 •

The theorem follows.

*5.3. COROILARY. If n is odd, H (L; Zn) is the tensor product

of the exterior algebra on w, and the polynomial algebra on t3w, -W2-

*If n = 2, r3w1 = w2 and H (L;Z?) is the polynomial algebra on "W, .

§ 6. The Symmetric Group.

Throughout this section we assume that p is an odd prime. Let

S(p) be the symmetric group of permutations of p symbols. We regard
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S(p) as acting on the finite field ~.

It - I" t" :r ~_. Then kP- 1mu ~p ~ca lve group 0 _p

Let k be a generator of the

1. Let T be the cyclic permu-

tation T{i) = i + 1. It is easy to see that any element of S(p) which

connnutes with T is a power of T. We define ,. E S{p) by"i Id.

Then

So "Tr-1
= Tk • , is an odd permutation as we see by letting , act on

(O,l , k, •• _, kP- 1 ) •

Let n be the cyclic group generated by T, and let p be its

normalizer. Then ,,€ p. Moreover,

suppose 0: € P and <tI'a-1 = Tj •

"-iaro:-',,i

p is generated by ,

Then j 0- for some

-i ~ i, T" T.

and T. For

i. Therefore

S(p)-module which is Zp as an abelian gpoup,

as follows. If q is even, let z(q) bep

If q is odd, let S(p) act on z(q) by the
P

Now T is an even permutation. Therefore Z(q)
p

Therefore ,,-10: commutes with T and is thus a power of T.

Let ~q} be the

and ,:ith action from S(p)

the trivial S(p)-module.

sign of the permutation.

is a trivial n-module and so if K has trivial n-action

The following two lemmas will be important in Chapter VII. Let K

be a finite regular cell complex with trivial n-action.

6.1. LEMMA. Let q be even, let r > 0 and let u € Hr(K;Zp).

Then w2i x U E H;i+r(W x K;Z~q» is invariant under "E p if and only

if i = m(p-1) for some m, and w2i- 1 x U E H;i+r-,(W x K;z~q») is

invariant if and only if i = m(p-1) for some m. (See 3.4 for the defi­

nition of the action of ".)

6.2. LEMMA. Let q be odd, let r ~ 0 and let U E HrCK;Zp).

Then w2i x U E H;i+r (W x K;~q) } is invariant under "I E p, if and only

if i = m(p-1} /2 for scme odd nwnber m, and w21-1 x U E H2i
:

r - 1 (W x K;Z~q))

is invariant if and only if" 1 = m(p-l }/2 for some odd ntunber m.

PROOF. Since "I is an.odd permutation, the map g: (:rr,z~q}) -?
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induced by 1, is given as rollows (see 1.3 and 3.4)

g2: Z(q) -) z{q) 1s -1 ir q is odd and +1 ir q 1s even;p p

g1(T) rT1- 1 = Tk•

With W as in §5, we must construct ~: W -:;> W which is s,-equivari-
. . k-l j

ant. Let ~e2i = 12-e2i and let ~e2i+l = k?- Ej=o T e 2i+1 • (In

these formulas we regard k as an integer, 1 < k < p.) We extend Sj: to

be a g,-equivariant map. We easily check that S, 1s a chain map by using

the following formulas. Let N and ~ be the elements of Z(7f) described

in §5. Then

Let a be an r-ce1l of K and let u denote a cochain represen­

tative for the class u E If(K;~). Then

g#(W2i x u~.(e2i x a) g2[(w2i • Sf e 21){u • a)]

g2rk?-(u • a)]

{
~(u • a) if q 1s even

-~(u · a) if q 1s odd.

Therefore
if q is even

if q is odd.

Also

g#(W2i+ 1 x u).(e21+ 1 x 0)

Therefore

(_1)r S2[ (w2i+1 • ~e2i+1) (u • a)]

r . k-l j
(-1) g2[w2i+1 • ~ ~j=O T e 2i+,](u

(_1)1' g2(~~:~ ~)(u • a)

(_1)1' g2(~+')(u • a)

{

(-1) r ~+ 1 if q 1s even

(_1)1'+1 ~+1 if q 1s odd.

_ { ~+1(W2i+l x u) if q 1s even
- . i+1

-~ (w2i+ 1 X u) if q is odd.

• a)

For wr x u to be invariant under "1, it 1s necessary and suffi-

cient that g* (wI' X u) - (wr x u) = o. The lemmas follow since 12- = 1 ,

if and only if Ifp-l, and any non-zero element of Zp has an inverse.
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§ 7• The Transfer.

71

In this section, we shall use the same s:y:mbol for a cohomology class

and one of its cocycle representatives.

Let n be a sUbgroup of rinite index in p. Let K be a. p-complex

and A a p-module. Then we have the inclusion

1: C:(K;A) ---) C:<KJA)

inducing a. map

i*: H:(K;A) -;> H:CKJA)

We define the transfer

* *T: C~(KJA) ---) Cp(K;A)

*as follows: if u € C1t (K;A) and C E K, then

~ -1
C = La £ pin au • a c,

where a ranges over a set of left coset representatives {ail - that is

U1ai ~ P and a1 ~ n aj~ = m if i:J j. We check immediately that

the definition of 't' is independent of the choice of coset representatives.

If ~ € P, then

-1 ) ~ -1 -1
~ (-ru· ~c = ~ ~ c¥lu. a i ~c = TU

since, for any fixed ~, the set (13-1(
1) is a set of left coset repre­

sentatlves for 1f 1n p. Therefore TU E C* (K;A) • It is inmediate that
p

't' is a chain map. Therefore T induces a map

which is natural for equlvar1a.nt maps of p-complexes K.

Let [p:2t) denote the index of 7( in p - that is, the number of

elements in the set (ail.

7.1. LEMMA. The composition

* i * T *C (KjA) -) C.. (KjA) -) C (KiA)
p '" " p

is multiplication by [p:1t).

PROOF. If U E C* (KjA) I then
p

TIl • C = I1. a1u • ai' c ;. u. c [P:1£] u·c.
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Let a be a sUbgroup of p. Let z range over a set of represen­

tatives of double cosets aztt of 0 and tt in p. We write z~

~ n (Z-'C1Z) and C1
Z

ZttZ- 1 n o. Let adz be the restriction to ztt

of the inner automorphism of p induced by z. Then adz: z~ --;> C1
Z

is

an isomorphism. We also denote by adz the homomorphism

* *C tt(K;A) ---) Co (KjA)
z z

given by adzu. c z(u • z-'c) where c € K.

The remainder of this section is pot required elsewhere in these

notes.

7.2. LEMMA. The following diagram is commutative

*I:z Co (KjA)
z

12 adz
-------~

___T ~ C:(K;A) --!--> C:<K;A)

ILTZ

PROOF. Let Yz range over a set of left coset representatives of

az in o. By Uy and ;. we shall mean taking unions or sums over y z'

while keeping z fixed. Now

Ztt.

Therefore

and so

C1Ztt

p

We easily check that the last is a disjoint union. Hence the elements yzz

range over a set of representatives of left cosets of tt in p.

*Suppose u € Ctt(K;A) and c € K. Then

LZ ; Yz[adzeizu) · y;'cJ

12z ; YzZ[izU(z-l y ;'c»)

Lz,y Yzx[u · (Yzz)-lc]

This proves the lennna.
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Now take a = 1C. Then -1
Z~ = 1C n z ttZ and

-1
z~z n n. Let

m = [p:1C).

7.3. lEMMA. If P is a prime not dividing m, then the composi-

tion
H* (K;A) ...1..-) H:(K;A) ....!-) H* (K;A)

p ~, p

*is an isomorphism of the p-primary part of H
p

(K;A) •

PROOF. By 7.', Ifi = rn. Also multiplication by m is an isomor­

phism on the p-prima.ry part of an abelian group_

7.4. lEMMA.

for all Z E p,

If u 1s the image of some v E H* (K;A)
p

then

pSu = o.

i of some

*Let u E Hn(K;A) and suppose

then u is the image under

o.such that pSv

i un z

11( u for all Z E P •
Z

PROOF. Suppose that adz 1 1C U 1
1C

u for all Z E p. We
z Z

choose m l so that mm' = 1 modulo pS. Then by 7.2

i'l'U

where the sum ranges over a set of representatives of double cosets

1CZ1C in p.

From the first paragraph of the proof of 7. 2 , we see that as y z

runs through a set of left coset representatives of 1tz in tt, and z

runs through a set of representatives of double cosets 1tzn, the elements

Yzz form a set of left coset representatives of 1C in p. Let mz = [n:1C z ]

Then L.z mz = m. Hence

iTU

by 7.1

mu •

Therefore, on putting v = Tm'u, we obtain the first assertion of the lemma.

The second assertion follows directly from the definitions. This

proves the lemma.



74

prime to

H* (K;A).
p
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7.5. LEMMA. Let 1C be a normal sUbgroup of p, and let p be

[ p : 1C) • Then 1'i ,1s an isomorphism of the p-primary part of

*If u is in the p-primary part of H1( (K;A) , it is in the image

* *Hp·(K;A) -) H:rc.(KjA), if and only if adz-u = U for all Z E p.

PROOF. This is inmediate from 7.3 and 7.4.

7.6. LEMMA. If m = r p , , then m Ifl( p jA) = 0 for q > o.

PROOF. Ist K be a p-free acyclic complex, and let 1C = ,. We

apply 7.1 and use the fact that #(K;A) = 0 if q > o. The lermna folloW's.

7 • 7• LEMMA. Let 1C be a SyloW' p-subgroup of p (p finite).

Then H* (1CjA) is a p-group in positive dimensions and 1: H* (pjA) -)

H* ( 1C ;A) maps the p-primary part of H* ( p jA) isomorphically onto the sub-

group of those elements u such that adz i 1C U
Z

PROOF. We note that l1Cl = pB and m

By 7.6, p SH*(1CjA) 0 in positive dimensions.

i
tC

u for each Z E p.
Z

[p:1C] is prime to p.

So #( 7C jA) is a p-group

for q > o. The rest of the lemma. follows from 7.4 and 7.3.

7•8. PROPOSITION. Let U be a cyclic group of order p, and let

7C be a Sylow p-subgroup of p. Let C1 be the normalizer of

Then the monomorphic images of the p-pri.rna.ry parts of H* ( p ;A)

u in p.

and H* (a jA)

(in positive dimensions) coincide. The image is the SUbgroup of those

elements of H* ( 1C ;A) which are invariant under C1 •

PROOF. Since lu I = p, we have

= J(

if z 4 a and

if Z E a.

Therefore i
1C

= i 7t 0 in positive dimensions, if z 4 a. Therefore
z z

by 7. 7 the conditiona for an element to be in the p-pri.rna.ry part of

Im( H* ( p ;A) ) ~e the same as the conditions for it to be in the p-primary

part of Im(H* (a ;A) ) • If Z E: a, then

adz: H*(u;A) -) H*(1t;A)

is the automorphism induced by z-1 (see 1.3 and the definition of adz).
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This proves the proposition.

7.9. IEMMA. Jf(2t ;A) is isomorphic to the subgroup of invariant

elements of A under 2t. This isomorphism is natural for maps of ( 1t ,A)

(see 1.1).

PROOF. This follows immediately from the definition of H* ( 1t ;A) ,

since an acyclic 1t-free oomplex must be connected.

75

7.10. COROLLARY. If 1t C p and A is a p-module, then the in-

duced map If (p;A) -:> Jf (1t ;A) has an image consisting of thos~ elements

of A which are invariant under p.
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CHAPTER VI.

Axiomatic'Development of the Algebra <i,(p) •

In § 1 we give the axioms for the pi . In § 2 we define the

Steenrod algebra (i(p) and show it is a Ropf algebra. In §3 we obtain

the structure of the dual Ropf algebra. The proofs are very similar to

those in the mod 2 case. In §5 we obtain some results about the homotopy

groups of spheres and in § 6 we derive the Wang sequence .

§1. Axioms.

Let p be an odd prime and let

be the Bockstein coboundary operator associated with the exact coefficient

sequence

o -) Z -) Z 2 -) Z -) o.
p p p

We assume as lmown that (3 is natural for mappings of spaces, that (32 0

and that

(3 (xy) «(3X)Y + (-1)q x«(3y) where q dim x.

We have the following axioms

, ) For all integers i ~ 0 and q L 0 there is a natural transformation

of functors which is a homomorphism

2)

3)

4)

5)

pO = 1.

If dim x = 2k,

If 2k > dim x,

Cartan formula.

then pIsc = xp •

then pkx o.

L. pix.pk-iy .
~
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6) Adem relations. If a < pb then

77

pB.pb

If a ~ b then

+

~[a/p) (_1)a+t (P-1) (b-t)-l) pa+b-tpt
t=o a-pt

~[a/p) (_1)a+t «P-1) (b-t)) ~ pa+b-tpt
t=o a-pt

~[(a-l)/p] (_1)a+t-l (P-l)(b-t)-,) pa+b-t~ pt
t=o a-pt-l

We shall prove the axioms in Chapters VII and VIII and we shall

show that the other axioms imply Axiom 6). As in Chapter I, we can show

that, in the presence of Axiom 1), the Cartan formula above is equivalent

to

We can also show that pi connnutes with suspension and with

as in I 1.2 and I 2.1. Similarly t30

is the suspension.

-o~ and ~s -s13, where s

§2. Definition and Properties of (1 (p) ·

We define the Steenrod algebra «(p) to be the graded associative

algebra generated by the elements pi of degree 2i(p-l) and ~ of de­

gree 1, sUbject to ~2 = 0, the Adem relations and to pO = 1. A monomial

in a(p) can be written in the form

where E1

where

0,' and si 1,2,3 .... We denote this monomial by pI,

A sequence I is called admissible if si ~ pSi+l + ci for each i ~ 1.

The corresponding pI , and also pO , will be called admissible monomials.

We define the moment of I to be ~ i(si + ci). Let the degree of I be

the degree of pI, which we deDote by d(I).

2.1. PROPOSITION. Each element of «(p) is a lineal" combination

of admissible monomials.
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PROOF. As in I 3.', we see by a straightforward computation that

the Adem relations express any inadmissible monomial as the sum of monomials

of smaller moment. The proposition then follows by induction on the moment.

We shall investigate (I,(p) by letting it operate on a product of

lens spaces. We first prove some lenmas

2. 2. LEMMA. let x and y be mod p cohomology classes in any

spa.ce such that dim x = 1 and dim y = 2. Then Axioms 2) ,3) ,4) and 5)

imply that pix = ° unless i = 0 and

piyk ( ~ ) yk+i(?-1)

PROOF. For k = 1, the result follows from § 1 Axioms 4),3) and

2). For k > 1, it follows by induction on k and the Cartan formula.

2.3.
k

that pi(yP)

i = pk.

PROOF.

LEMMA. If Y is as in 2.2 then Axioms 2) ,3) ,4) and 5) imply
k ~1

is yP if i = 0; zero if 1 ~ o,pk; and yP 1f

This follows immediately from 2.2 and I 2. 6.

Let u be a cohomology class of dimens10n q. Let I be a sequence

of the form (co,So,E"S" .•. ,Sr,Er,O ..• ). Then we have the formulas

Let

~(u x v)

pk(u x v)

pI(uv)

pr(u x v)

Let L and Wi E

~u x v + (-1)q u x ~v,

L piu x pk-iv ,
~__ (_1)q·d(J) FKu.pJvA+J=I
Lx+J=I (_1)q·d(J) pKu x pJv

Hi(L;~) be a.s 1n V §5. Let X = Lx ..•xL = L2n •

where x = w1 and y -w2 •

2.4. PROPOSITION. The elements pI~ are linearly independent,

where I ranges over all admissible sequences (£0,s"£,, ..• ,si'£1'0, .•• )

of degree ~ n.

PROOF. Let J k
J'

k

( k-l k-2 1 ° )o,p ,D,p , .•. ,o,p ,o,p ,0, •..

( k-l k-2 1 0 )o,p ,O,P , ••. ,o,p ,o,p ,1,0, ••••

and
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Recall that ~x = y and ~y = 0 (see V 5.2). Therefore, by 2.3, pIx = 0

unless I is J~ with a number of pairs of adjacent zeros inserted, or
J' k

I = (0,0, ... ): P kX = yP and pOx = x. Also by 2.3, ply = 0

unless H is Jk with a number of pairs of zeros inserted, or
J k _ k 0 I

I = (o,o, .•. ): P -7 = yP and P y = y. We note that P (xxy) °
if there 1s more than one non-zero E i in I.

We prove the lennna by induction on n. It is obvious for n = 1,

since the only monomials of degree ~ 1 are pO and 13.

ISuppose I: alP ~ = a (ar £ Zp)' where the sum is taken over

admissible sequences I of a fixed degree q, where q ~ n. We wish to

prove that each a1 = o. This is done by a decreasing induction on the

length 1(1). Suppose that aI = 0 for leI) > 2m+l.

The K"tinneth theorem asserts that

~+3n(L2n) ~ L
s

t HS(L) 0 Ht(L) ~ ~+3n-s-t(L2n-2) .,
Let Sm be the projection onto the factor with s = pm and t 1. Let

hm be the projection onto the factor with s = 2 and t = pm .

(1) pIu _ = pI(YXX~ __ l) E (-1) deL) pJy x PKx x pL.·_
1-n .--n ~+K+L=I ~

Let I be admissible. We assert tha.t

( 2) if leI) < 2m+l, then ~pIUn = 0, and

if leI) 2m+l, then I > J' and
- m

hmPI~ (_1)i y x yprn x pI-J~ u
n-1 '

i = deg (I - J~) •

(3) if 1(1) < 2m,

if t(I) = 2m,

SmPIUn

where We also assert that

then 8mPI ~ = 0 and

then I L. Jm and

(_1)i vpm x x x pI-Jm u__
oJ -n-l '

where i = deg (I - J m).

To prove (2) and (3), ve refer to the first paragraph of this proof.

We note that a sequence obtained from J~ by inserting zeros has length

greater than 2m+1, and a sequence obtained from J m by inserting zeros

has length greater than 2m. Therefore (2) and (3) follow from (1).

We can now apply (2) and (3) to our decreasing induction on f(I).

Since aI = 0 for leI) > 2m+1, we see by applying (2) to our relation that
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o.

if! 'V ( )i pI-JrhY x y x ~£(I)=2m+l -1 a I un_1 = o.

As I ranges over all admissible sequences of length (2m+1) and degpee q,
I

1- J m ranges over all admissible sequences of length ~ 2m and degree

q - 2pm + 1. By our induction on n, we have aI = 0 when £(1) = 2m+1 .

Now applying (3) to our relation, we see that

pffi ~ () i pI-Jmy x x x ~£(I)=2m -1 a I ~-1

As I ranges over all admissible sequences of length 2m and degree q,

I - Jm ranges over all admissible sequences of length ~ 2m and degree

q - 2pm + 2. By our induction on n, we have aI = 0 when 1(1) = 2m.

This completes the proof of the proposition.

Combining 2.1 and e:.4 we obtain

2.5. THEOREM. The admissible monomials form a basis for Ci(p).

2.6. COROLLARY. The mapping (t(p) -) H*(L2n) given by evalua-

tion on un' is a monomorphism in degrees S. n.

2.7. THEOREM. Any ~ (k I pi) is decomposable. Therefore (t(p)

and PPi ( 2)is generated by ~ i = 0,1, , ...•

PROOF. By the Adem relations, pa+b is decomposable if a < pb

and (p-l~b-') ~ ° mod p. Let

a + b k 1 m
ko + k, P + ••• + ktnp

where 0 ~ ki < P and ktn I o. Let b = pm. Then

(p-l)b - 1

Now

a = k - b

So by I 2.6,

(pm_ 1) + (p_2)pm

(p-l)(l + p' + ••• + pm-l) + (p_2)pm .

The theorem follows from I 4. 1 •

*2.8. LEMMA. Let X be any space such that H (X;~) is a poly-

nomial ring on one generator of dimension 2k (possibly truncated by xt = 0
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where t > p). Then k has the form k = mpj where m divides (p-1).

PROOF. By § 1 Axiom 3), P~ == xp /: o. Therefore by f.7,
i

/: 0 pi ~ k.
i 2pi(p_1).pp x for some Now dim (PP x) 2k + Since

i
axS Zp)pp x (a € :for some integer s, we see that

2k + 2pi(p_1 ) 2ks. Therefore pi(p_l ) k( 8-1) • The lemma follows.

81

2.9. Theorem. If K is a CW complex with a finite n-skeleton

for each n, and H* (K;Z) is a polynomial ring on one generator of dimen­

sion 2k (possibly truncated by x t
== 0 where t> 3), then k = lor 2.

PROOF. We have a connnutative diagram

c* (KjZ) ~Z ;> C* (KjZ)

t t
C* (K;Z) 0: *

~ Zp > C (K;Zp)

where the vertical map on the right is the coefficient homomorphism, and

the lower horizontal map makes the diagram commutative.

By the universal coefficient theorem for C* (KjZ) ® Zp' we have

an exact sequence

*
0-) H'lCK;Z) ® Zp ~> :EflCK;Zp} -) Tor(ffl-'(K;Z),Zp) -) o.

Since H*(K;Z) is free, the third term is zero. Therefore using the com­

mutative diagram above, we see that the coefficient homomorphism

:Ef!(K;Z) -) Ifl(KjZp) induces an isomorphism

H'l(K;Z) ® Zp ~ lfl(K;~) .

Since the coefficient homomorphism !s a map of coefficient rings, this iso­

morphism gives an isomE>rphisrn of rings.

*Therefore H (K;~) 1s a polynomial ring on one generator x of

dimension 2k (possibly truncated by xt
= 0, where t> 3). Since

x 3 /: 0, we see from 2.8 for p == 3 that k = m3 i , where m = 1 or 2.

Since x 2 I: 0, we see from I 4.5 that k = 2j . Therefore k == 1 or 2.

2.10 THEOREM. The map of generators v(pk) = ~ pi ® pk-i and

t(~) 'J' ~ 1 + 1 18l t3 extends to a map of algebras

v: Ci (p) -) Ci (p) ~ (i, (p) •
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PROOF. The proof is the same a.s that of II'. ,. We merely substi­

tute L 2n for the n-fold Cartesian product of infinite dimensional real

projective space, and Bubstitute l.lu for w.

2.11. THEOREM. «(p) is a Hopf algebra. with a ccmnutative and

associative diagonal map.

PROOF. As in II 1.2.

= o.

'T
i

_
1 for 1 L 1,

for i L 0,
i-1

yP for i L "
for i ~ 0,

xCi)

T(i)1 ,~o

~1'

x,

T{O)

~ (i)

x(o)

y(i)

§3. The Structure of the Dual Algebra.:

Let Ci (p) * be the dual of Ct (p) • (ft, (p) is of finite tn>e by

2.5.) Then (i(p)* is a commutative associative Hopf algebra with an as­
J

sociative diagonal map. let ~k be the dual of Mk = P k and let Tk be
J'

the dual of M~ P k in the basis of admissible monomials. (Jk and

J~ are as in 2.4.) Then ~k has degree 2(pk_ 1) and T k bas degree

2pk_ 1. Since Tk; has an odd degt'ee, Tk
2

We define

where x and yare the classes in H* (L;~) described before 2.4. Let

I = (1" ... ,in) be a sequence of non-negative integers. We define

'T(I) 'T(i 1) ••• 'T(im) E ct (p) *

~(I) aC 1 ,) ••• E(~) E (i(p)*

xCI) x(i,) x•.. x x(im) E H*(Lm;~)

y(I) y(i1) x oo.x y(im) E H* (Lm;~)

Let g(I) be the minimum number of transpositions needed to transfer all

zeros in I to the right of I.

The following lennna will enable us to determine the structure of

Cl (p) * .

3.1. LEMMA. Let a £ ct (p). Then

a(x, Xo.oX xn x Y, x ••• x 1m} Lr J(-l)g(I)<'T(I)aeJ),a> xCI) x y(J)
J •
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where the summation ranges over terms where I has length n and J has·

length m. (The summation is finite since we get a zero contribution un­

less -r(I)~(J) and a have the Bante degree.)

(n,m)

or M'
k

PROOF. We prove the formula by induction. It is true for

( 0 , 1 ) or ( 1 ,0), since non- zero terms occur only when a = Mk

by 2.2, 2.3 and V 5.2.

Now suppose the lennna is true for (0 ,m-1 ). Ist .a
By the Cartan formula

Es j JI < ~(j),a~ > < E{J'),a~ >y{J), ,
where J = (j,JI)

E < ~(j) @ ~(J'),a~ ~ a~ >y(J)

E < ~ (j) e ~ (J .) ,ta )y(J)

E < t*(~(j) ~ ~(J'»,a )y(J)

L: < ~ (J) ,a >y(J)

This proves the lemma. for (0 ,m) •

Suppose the lennna has been proved for (n-1 ,m). By the Cartan

Es,i,I',J (_1)1 < T(l) ,ak) < T(lt)~(J),a; >x(I) x y(J)

where I (i,I') and 1 = deg a~ + g(I')

L: (_1)8 < T(i) 0 T(I')E(J),as' x as" > xCI) x y(J)s,I,J

where 5 deg a~ + g(I') + deg a~ (deg T(II)E(J».

We must compute 5 mod 2 for the non-zero terms of the surn. Now, if a

term of the surn is non-zero, then T(l) and a~ have the same degree, and

T(l') E(J) and a; have the same degree. Since E(J) has even degree, we

have mod 2

5 = deg -r(I') + g(I') + deg -rei) °deg T(I')

Since the number of non-zero terms in It is congruent mod 2 to deg ,.(I'),
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we see that if i 0,

deg T(l') + g(l') g(I)

If i ~ 0 then deg T(i) and 8 g(l' } g(I). This proves

that the eXpression above is

L (_l)g(I) < V*(T(i) ~ T(I')~(J),a > xCI) x y(J)

L (_l)g(I) < ~(I)~(J),a > xCI) x y(J)

This proves the lennna.

Let (j,' denote the free, graded, commutative algebra over zp

generated by TO,T" ... and e"~2' .... As is welllmown, (if is a ten­

sor product

of an exterior algebra and a polynomial algebra (recall that

2 *degr'ee and so "i 0). Since ct I is free and e.t(p)

1"1 has odd

is commutative,

the map of the generators of <t I into (i (p) * extends in just one way to

a homomorphism of algebras (il --) (i (p) * .

3.2. THEOREM. The map (it --) (j,(p)* is an isomorphism.

PROOF. We first show that ft' --) <i,(p) * is an epimorphism.

Suppose < T(I)~(J),a > a for all choices of I and J. By 3.1,

is an isomorphism, by

and (i (p)* as vectorshowing that in each dimension, the ranks of (1,1

for all choices of m and n. But, 2.6 shows that in this case a = o.

Therefore (t I --) a, (p) * is an epimorphism.

We now show that the map Ct 1 -) (!, (p) *

spaces over ~ are the same. We have only to show that the ranks of (i 1

and (i, (p) are the same in each degree.

We write ~I 'fOCO ~,rl 1',E1 ••• ~krk TkEk where

I (Eo,r"E" ... ,rk,Ek,O, ... ) and Ei 0 or 1, r i ~ o. The

monomials ~I, which form ~ basis of «I, correspond in a one-to-one way

with such sequences I. The admissible monomials pI I E: (I, correspond to

sequences of integers I' (Eo,s" ... ,sk,Ek,O, ... ) where si ~ pSi+' + E1
for each i, and Ei 0 or .1. It remains to ~et up a one-to-one
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correspondence between the sequences I and If, preserving the degrees

of the corresponding monomials.

Let Rk be the sequence with zeros everywhere except for in

the 2k-th place. Let Qk be the sequence with zeros everywhere except in

the (2k+1)-th place. Let

( k-1 k-2 1 0 )Rk O,p ,O,p , ... ,o,p ,O,p ,0, ...

( k-1 k-2 1 0 )Q,k 0 , p ,°,p , . · . ,0 , p , 0 , P ,1, a , . . . ·

The map from sequences I to sequences I' can now be defined by extending

the map already defined on Rk and Qk to be additive (with respect to

coordinates). Then if

I ( € ~ , s 1 ,E { , • • • , Sk' Ek' 0 , • . .) ,

we have E!
~

Ei and

Solving for r i in terms of si' we see that

Therefore, given an admissible sequence If , we obtain a unique sequence

I with Ei ° or

degrees shows that

deg gI

and r i ~ 0, and vice versa. A computation of

deg pI'

This completes the proof of the theorem.

3.3. THEOREM. The diagonal map q>* : <it * --) (t * ® ct*. is given'

by
pi* k

q> ~k ~i=O ~k-i ® ~i and

*. k pi
q> Tk T k ® 1 + Li=O gk-i ® 't'.

l

PROOF. Let a, t3 € <t. We have to show that

That is, we have to show

i
L < ~~_i,a > < ~i,t3 >, and
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Let X and y have the same meaning as in 3.'. In the same way

as in II 2.3, we prove that

NWpi ~ pi pa+i
~J Laa < ~a ' ct > y

Now

Equating coefficients of powers of y, we see that (1) holds. It remains

to prove (~). Now

a~x by 3.1

i
a[< ~O'~ > X + Li < Ti'~ > yp )

a
< ~O'~ >< ~o,a >x + La < eo'~ >< Tala >yP

i a+i
+ Li a < '1'i,f3 > < ~~ ,0: > yp,

Equating coefficients of powers of y, we obtain (2).

This proves the theorem.

§4. Ideals.

Let Mk be the ideal of Cf, * generated by

pk pk-l P
~1 ' ~2 , .•• ,ek'tk+',Tk+1'···'tk+i'Tk+i'····

Then Mk is a Hopf ideal by 3. 3 • Therefore (!,* /Mk is a fin! te Hopf

algebra. Its dual is a Hopf subalgebra Ci k C Ci. Arguing as in II 3.2
1 k-l

(with minor embellishments), we see that ~,P, ... ,pP are all elements

of (f,k" It follows that

4. 1 THEOREM. Ci is the union of the sequence (i k of finite Hopf

sUbalgebras.

If A is any connnutative algebra over Z and 1\.: A --) A isp
defined by AX = xP 1 then A is a map of algebras. Moreover 1\. com-

mutes with maps of algebras. Hence if 'A is a Hopf algebra, A is a

map of Hopf algebras.
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Then A,: (i (p) * -) <t (p) * multiplies degrees by p. The kernel

of A, is the ideal generated by TO,T 1 , ••••

4.2. lEMMA. If x E (1,* and pI E el, then xp.pI x·pJ if

I pJ, and xp.pI 0 otherwise. (Notice that if I pJ, neither

pI nor pJ can contain t3 as a factor.)

PROOF. Without loss of generality, we can suppose x is a monomial

in ~1'~2' ••• and TO,T 1 , •••• Let xp.pI I: 0: then x can contain no

factor of the form T i ,

We have

since T. 2
1

o. Therefore x has even dimension

"'* (x ~ .•. ~ x) •.pI

(x @ ••• ~ x) · ",pI

J 1 JL. (x (8) ••• (8) x) (P ® ••• ~ p P)

where the summation is over all sequences J 1 ' ••• ,Jp such that

J 1 + ••• + J p = I. So

J 1 (x pJp)L (x p ) •••

If, in some term of the sum, two of the J i ' s are not equal, then cyclic

permutation gives p equal terms of the sum. These cancel out mod p. So,

if xPpI I: 0, I pJ and xppI (x pJ)p = x pJ. This proves

the lennna..

Let (i t be the Hopf subalgebra of (t(p) generated by pj

( j 1 , 2 ••• ). Let A-*: (i (p) -) (i (p) be the map dual to A, •

4.3. PROPOSITION. *A, is a map of Hopf algebras, which divides

* pI pJA- if I = pJ

* pI
'" 0 otherwise

PROOF. Using 4.2, we see that we have only

nel of * isA- contained in the ideal generated by

*degrees by p. The image of A, is (i', and its kernel is the ideal

generated by P1 and t3 •

to check tha.t the ker­

t3 and P1
• Applying

the formulas for ",* to a linear combination of admissible monomials, we

see that we have only to prove that pk is in the ideal generated by p',
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if k is not a multiple of p. By the Adem relations

Therefore pk is in the ideal generated by p 1 if k is not a multiple

of p.

This proposition has been used by Wall [2] and Novikov [1].

4.4. PROPOSITION. If we abellanize (i.(p), we obtain a Ropf alge­

bra, which is the tensor product of E(I3), the exterior algebra on 13,

and: the divided polynomial ring on P1
, p2

••• , i. e . ,

[(1,,41.

PROOF. let I be the ideal generated by all commutators 1n (f, (.p) •

let A = (I,/I. Then A and A (8) A are connnutative algebras. Consider

the composition

This is an algebra homomorphism into a commutative algebra and is therefore

zero on I. Therefore

t( I) C (f, @ I + I 0 ct

and' I is a Hopf ideal. Therefore A is a Hopf algebra. A* consists of

all elements x E (!,* such that tx is symmetric. Therefore '1"0' e1 E A* .
Suppose that L: aJlJ

E A* (aJ E ~) ~ Then L: 8tp*eJ is symmetric

Let J (cO,r1,c" ..• ,rk,ck'o, ... ). ~e collect terms in ~*eJ of the

form l, n ~ l' and en ~ elm, where m and n are maximal. A short

calculation shows that these terms are

n c , r 2 ,p € 2 rk € k ~k ( ) 1-1
II ~ TO 11 '1 ••• lk-l Tk_1 where n L, r i + £1 P

pr2 prk m k
and l, ... lk-1 ~ e, where m I:, r i .

We note that L: (ri + €i)pi-l L I: r i , and that we have equality only if

£1 = 0 for iLl and r i = 0 for i L 2.
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In L aJ~J we select those terms for which L~ (ri + €i)pi-l is

maximal. By synnnetry, we must have £i = 0 for i ~ 1 and r i = 0

for i ~ 2. Such terms are in the algebra gener~ted by "0 and ~1" An

induction on r.~ (ri + Ei )pi-l therefore shows that A* is the subaglebra

generated by ~o and ~1"

Dualizing, we see tha.t A has the structure described in the

proposition.

§ 5. Homotopy Groups of Spheres.

If G is an abelian group, we let Gp be the subgroup of elements

whose orders are powers of the prime p. If G is finitely generated then

G can be expressed as the direct sum

where. F is a free group. In this case we can talk of the p-primary part

of an element of G, by which we mean the component in Gp .'

5.1. THEOREM. 1£i(S3) is finite for i>3.

1t
i

(03)p = { ~_ if 1 < 2p ,
W _p if i = 2p •

let f: S2p -~ S3 represent an element of

p-primary part and let E be a (2p+ 1) -cell.

1t2P{S3) with a non-zero

3Then, if L = S uf E,

p': H3(L;~} -~ H2P+'(LiZp)

is an isomorphism. (When p=2, replace p' bySq2, see I 2.3).

5.2. COROLLARY. Let g: Sn+2p -:> Sn+3 be the n-fold suspension

of f, and let M = SnL • Then

p': Hn+3(M;Zp) _) Hn+2p+l (M;~)

is an isomorphism. Therefore

PROOF of 5.2, As p' connnutes with suspension, the first part follows.

Since M is formed by attaching a ( ~p+n+' ) -cel~ to Sn+3 with the map g,

the second part follows by taking f to be the generator of 1t2p(S3)p.
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In fact the following stronger result can be deduced from 5. 1 by

using [3] Chapter XI, Theorem 8.3 and Corollary 13. 3 •

5. 3 . COROLLARY. If p is an odd prime, then

if i < 2p J

if i = 2p .

The remainder of this section will be concerned with the proof of

5. 1. We shall rely heavily on Serre' s mod e theory. We refer the reader

to [3] Chapter X or to [4].

We would like to compute the homotopy gr'oups of S3 by applying

the (mod e) Hurewicz theorem. But the Hurewicz theorem in dimension n

only applies to spaces that are (n-l) -connected (mod e). So 1C
3

(S3) ~ Z

is an obstacle to this program. We therefore construct a space X which

has the same homotopy groups as S3 except that 1C
3

(X) 0, and then

a.pply the Hurewicz theorem to X. The definition of X, which is rather

long, follows.

5.4. DEFINITION. Let 1C be an abelian gI'oup and let n ~ 2 be

an integer. K( 1C ,n) will denote any space whose homotopy gr'oups are all

zero except for 1Cn which is isomorphic to 1C. SUch a space is called

an Eilenberg-MacLane space.

5.5 THEOREM. For any abelian group 1C and any integer n L :2,

there exists a OW-complex which is a K(1C,n).

REMARK. We can easily show by obstruction theory that all such

OW-complexes are homotopy equivalent.

PROOF. Let

between the Xi'S.

each relation

n' be genera.ted by elements Xi with relations

We take a bouquet of n-spheres, one for each Xi.

on the

r j = a 1j x, + a:2j x:2 + ••• + amj Xm
where each a is an integer, we map an n-sphere into the bouquet with

degree 0:1 j on the n-sphere corresponding to x" with degJ?ee O::2j

n-sphere corresponding_ to x2 and so on. We attach one (n+ 1) -cell to the

bouqu,et for each relation r j with this map. We now till successively the
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homotopy groups in dimensions n+1, n+2, etc., by attaching cells of dimen-

sions n+2, n+3, etc.

Computing the nth homology group by using the cell structure, we

see that H.n ~ 7(. By the Hurewicz theorem we have constructed a K( 1f ,n) ..

5.6. If K is a path-connected topological space with base-point

x, let PK be the paths in K starting at x and let OK be the loops

in K based on x. We have the standard fibration p: PK --) K obtained

by sending a path in K to its end-point. The fibre is OK. (See [3]

Chapter III.) Note that PK is contractible.. By the homotopy exact

sequence for a fibration, ~:

MacLane space of type K(~,n),

11:i (K) ~ 11:i _
1

(OK) .. If K is an Eilenberg-

then this shows that nK 1s an Ei1enberg-

MacLane space of type K(~,n-l).

Let K == K(Z,3) be a OW-complex. Let S3 -) K be a map which

represents a generator of 1\'3 (K) ~ z. let p: X -) 33 be the fibration

induced by the standard fibration over K. We have the connnutative diagram

x ---) PK

Ip Ip
'V '\/

83 ;> K

where the vertical maps are f1brations with fibre OK, which is a K(Z,2).

By the homotopy exact sequences of the fibrations, 7(3(X) 0 and

p*: 7(i(X) ~ 7(i(S3) for i ~ 3.

We now find ~ (X) and apply the Hurewicz theorem (mod e) to X

to find the first non-vanishing higher homotopy group (mod e) of 33 . The

usual method of finding the homology of a fibre space 1s by using a spectral

sequence. In this simple case (base space $. sphere), the spectral sequence

reduces to the Wang sequence.

5. 7 . THEOREM. Let X -) Sn be a fibration with fibre F . Then

we have an exact sequence (Wang's sequence)

Hi(X;A) _;> Hi(FjA) --f!.-> Hi - n+1 (F;A) _;> Hi + 1 (XjA)

where A is a commutative ring with a unit. Moreover, e is a derivation:

that is, if x € Hi(F;A), and y E: Hj(F;A), then
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9(xy) = ex-y + (_1)(n-1)i x.ay_

PROOF. We refer the reader to [5] p. 471 for a proof by spectral

sequences or to the next section of this chapter for a proof not using

spectral sequences.

5.8. LEMMA. If k > 0, then H2k(X;Z)

H2k_1 (X;Z) o.

PROOF. We have the fibration X -) 83 with fibre OK which is

a K(Z,2). Now complex projective space of infinite dimension is also a

K(Z,2) and therefore H* (oK) is a polynomial ring on a two-dimensional

generator u. We have the exact sequence (see 5.7)

In order to find H* (X; Z), we need only find the derivation e.

Now since X 1s 3-cormected, R1{X) = 0 for i ~ 3. Hence

eu = + 1. Changing the sign of u, we can ensure that au = 1 • Since

B is a derivation, Bun = n un- 1 by induction on n. Therefore

o and H2k+ 1 (X;Z) = Zk.

Let us first consider the class e of abelian groups which are

finitely generated. By the (mod e) Hurewlcz Theorem, the homotopy groups

of simply connected finite complexes are finitely generated. Therefore

"1(33) 1s finitely generated for all i, and so 1(i(X) 1s finitely gen­

erated for all i. Hence Hi (X;Z) is finitely generated for all 1. By

the universal coefficient theorem we deduce the lemma.

We now take the class e of finite abelian groups and deduce from

the lemma that ~i(X) ~ ~1(33) is finite for all i > 3.

Taking the class e to consist of all finite abelian groups with

orders prime to p, we deduce that

if i < 2p ,
if i = 2p

This proves the first part of 5.1.

Let f: S2p -~ 83 be as in the statement of 5.1. Let L be

S3 with a ( 2p+ 1) -cell adj oined with the map f • We can extend the map
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83 -) K(Z,3) which we have been using to a map L -) K(Z,3) since

1t2p(K(Z,3» o. let Y -;> L be the fibration induced by the standard

fibration over K(Z,3). By the cell structure of L, we have

1t1 (L,S3) = 0 for 1 < 2p+1 and

1t2P+1 (L,S3) Z.

Moreover the boundary map

~2P+l(L,S3) ---~ 1t2p{S3)

maps the generator of the group on the left onto the element of 3t2P{S3)

represented by f. By the homotopy exact sequence for {L,S3} we deduce

that

By the (mod

By the same reasoning which gave us the homotopy groups of X in terms of

those of S3, we find that

1(i(y) = 0 for 1 < 4, 1(1(83) ~ 1ti (Y) for 4 ~ i < 2p,

Jt2p (Y)p = o.

Hurewicz Theorem, Hi{y;Zp) 0 for 0 < i ~ 2p.

5.9. DEFINITION. Suppose we have a fibration p: E -:> B with

fiber F over b E B. Then we have the maps

*:Efl(B,b) ~> Ifl(E,F) <_0_ Ffl- 1 (F) .

We say x E lfl-1 {F) is transgressive if ax E Im p*. If our coefficients

are ~, then a transgraess1ve element is mapped into a transgressive

element by any element of the Steenrod algebra mod p.

We show that in the fibration Y -:> L with fibre nK, the gen­
2erating class u E H (OK;~) is transgressive. From the exact sequences

for the pair (Y,nK) and since Y 1s 3-cormected we have the. diagram
p

1(3(L,x) <--;;--- 7C
3

(Y,OK) _::to:s_:> 1t
2

(OK) =ts Z

l~ 1 1~
p*

H
3

(L,x) <-- H
3

(Y,OK;Z) ~:> H
2

(Ok;Z)

where the vertical maps are Hurewicz homomorphisms and x is the base-point
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2in L. By the universal coefficient theorem, U E H (nK;Zp) is trans-

gressive. Let it correspond to v E H3(L;Zp). By 5.9, p'u = uP is

transgressive. Since Hi(y;Zp) 0 for 0 < i' ~ 2p, the map

0: H2P(nK,;Zp) -) H2P+' (Y,nK;Zp)

~s a monomorphism. Hence BUP p*P'v is non-zero. Hence p'v is non-

zero. This completes the proof of 5.'.

§ 6. The Wang Sequence.

In this section we shall prove 5.7 without using spectral sequences

We restrict ourselves to fibrations which have the covering homotopy pro­

perty for all spaces (not just for triangulable spaces). (See [3] Chapter

III.)

6.1 THEOREM. Let p: E -) X x I be a fibration. Let Et be

the fibre space over X obtained by restricting E to X x {t} where

tEl. Then Eo and E1 are fibre homotopy equivalent fibre spaces over

x.

PROOF. Let p xl: Eo x I -) X x I. Lifting this homotopy to

the identity on Eo x (o}, we obtain a map Eo x {1} --) E,. So we have

a fibre-preserving map f: Eo --:> E, and similarly a fibre-preserving

map g: E, --> Eo' We must prove that gf is fibre homotopy equiva.lent

to the identity and similarly for fg.

We have the map

p X tt X 1: Eo x I x I ---> X x (o} x I

We lift this map to E on

EO x «( 0 } x I u I x {o } u {1} x I) ,

X x I •

by the constant lifting on I x {oj and using the constructions described

above on (o) x I and {1} x I. By the covering homotopy property we can

extend the lifting to Eo x I x I. The homotopy between gf and the iden­

tityare found by looking at the lifting restricted to Eo x I x {l}.

This proves the theorem.
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6.2. COROLLARY. Let f: X I --:> X be a map which can be contrac-

ted to a point x by a homotopy keeping f(p) x fixed. Suppose we

have a fibration over X with fibre F over x. Then the induced fibra­

tion E ' --;> X' is fibre homotopy equivalent to the trivial fibration

XI x F --;> X'. The fibre homotopy equivalence maps F, the fibre over p,

into F by a map which is homotopic to the identity.

PROOF. We have a map X' x I --:> X such that XI x 1 u P x I is

sent to x. Let E be the induced fibration over X' x I. The corollary

follows from 6.1.

Now suppose we have a fibration X --;> Sn. By 6.2 if we restrict

the fibre space to any proper sUbspace of we have a fibration which

n E

is fibre homotopy equivalent to the trivial fibration. Let Sn = E u E
+

Sn-l. Let F be the fibre over a base-point x € Sn-1.where E
+

Let X+ be the part of the fibre space over E+ and X the part over

E. Then we have the cornrrru.tative dia~am

(E+ x F ,Sn-,x F) ---> (X,X_) <--- (X,F)

t t t
(E+,Sn-,) :> (Sn,E_) (__ (Sn,x)

Using excision and 6.2 we easily deduce the isomorphisms

H*(E+,Sn-l) 0 H*(F) ~ H*(E+ x F,Sn-,x F) ~ H*{X,X_) ~ H*(X,F) .

Hence Hk(X,F) ~ Hk-n(F). Under this isomorphism the cohomology sequence

of (X,F) becomes

Hk(X) _) Hk(F) ~> Hk- n+1 (F) _:> Hk+1 eX) ..

This is the Wang sequence.. We have yet to prove that e is a derivation.

We have the commutative diagram

Hk(F) Hk(x_) ---;> Hk (sn-l x F) :> Hk(x x F) ~ Hk(F)

IB IB IB
'V 'V 'V

Hk+ 1 (X,F) ~ Hk+ 1 (X X ) ~ Hk+1 (E x F,Sn-l x F) ~ Hk+ 1 - n (F), - +

The composition on the top line is the identity by the last sentence in the

statement of 6.2. Hence x € Hk(F) goes to

u x ex + 1 X X € ~(Sn-lx F)
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where u generates lfl- 1 (8n- 1
). Therefore if y E H* (F), xy goes to

u x (ex·y + (_l)(n-l)k x·ey) + 1 X xy E H*(SO-l x F) •

This shows that

B(xy)

and completes the proof of 5. 7 .

ex.y + (_1)(n-1)k x.ey
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CHAPTER VII.

Construction of the Reduced Powers

In §1 we explain how the reduced powers are a fairly natural gen­

eralization of products in cohomology groups. In §2 we define the external

reduced power map P in general situation and prove sane of its properties.

In §3 we specialize to the case of the cyclic group of permutations of p

factors, where p is a prime and the coefficient group ~. In §4 we use

the transfer to prove SOOle further properties of the reduced powers. In §,

we determine the reduced power of degree zero. In §6 we define pi and

Sqi and prove all the axioms in Chapters VI and I except for the Adem re­

lations, which will be proved in Chapter VIII.

§ 1 • Intuitive Ideas behind the Construction.

Let K be a finite regular cell complex and let ~ be the n-fold

Cartesian product. let Sen) be the symmetric group on n elements acting

as permutations of the factors of ~. Let 1f be a SUbgroup of' S(n) and

let W be a 1f-free acyclic complex. W x ~ is a 1f-free complex via the

diagonal action.

Apart from these definitions, an understanding of this section is

not logically necessary for the understanding of what fOllows. In places

this section is deliberately vague.

Let L be another finite regular cell complex. Let u € H*(K)

and v € H* (L). Then we have the cross-product u x v € H* (K x L). If

K = L and d: K -) K x K is the diagonal we define the cup-product

d* (u x v) ,.

The cup-product is called an internal operation since all the cohomology

classes exist in a single space K; the cross-product is called an external
97
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operation. The advantage of the cross-product is that its definition re­

quires no choice, even on the cochain level. On the other hand, the cup­

product requires a diagonal approximation d,: K --;> K ~ K. Many diffi­

culties experienced with the cup-product in the past arose from the great

variety 0.1' choices of d" any particular choice giving rise to artificial­

looting formulas. Moreover, the properties of the cup-product such as the

associative and commutative laws follow easily from the corresponding pro­

perties for the cross-product by applying the diagonal. The properties for

the cross-products themselves are easy to prove.

Similarly we shall obtain the (internal) reduced powers as images,

under an analogue of the diagonal mapping, of a certain external operation

P. We shall prove many of the properties of the .( internal) reduced powers

by proving the corresponding properties for the external operation.

Let W x Kn = (W x Kn) /1t and let j be the composition (which
1C

is an embedding)

Kn -:> W x Kn -:> w x
1C
~

The map W x Kn --) W/1C is a fibration with fibre Kn • Given a cohomolo-
fl'

gy class u on K, we have a class u x ••• x u on ~. Under suitable

coOOitions we can extend this class in one and only one way to a class Pu

in the total space W x ~ so that P is natural with respect to maps of
1t

the variable K, PO 0 and

j*Pu = u x .•• x u.

For the nth power in the sense of cup-products, we have

un = d*(u x ••• xu).

To define reduced nth powers, we replace Kn by W~ ~ and u x .•• x u

by Pu. We replace d: K -) Kn by

1 X d:
1C

n
W x7( K --;> W x7( K •

Now W x
1C

K W/1C X K. Hence

(1 X7( d)*Pu € H*(W/1C x K) •

If we are working with a field of coefficients, we can expand in H* (W/ 1C x K)

by the Kiinneth theorem. The coefficients of the expansion of (1 x d)*Pu
7(

which lie in H*(K) are the internal reduced nth powers.
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In subsequent sections we replace cohomology classes on W x~ Kn

by equivariant cohomology classes on W x KO-.

§2. Construction.
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Let K be a finite regular cell complex. Suppose we are given a

q-cocycle u on K with values in an abelian group G. We regard G as

a complex with all components Gr = 0 except in dimension zero Go G.

Then we have a chain map u: K --) G which lowers degrees by q. Let

Gn(q) be the S(n)-complex defined as follows. It is zero in non-zero

dimensions and is the n-fold tensor product Gn in dimension zero. We let

ex E S(n) act on Gn by the product of the sign of ex and the permutation

of the factors of Gn if q is odd. If q 1s even we let ex permute the

factors of Gn with no sign change. Then un: Kn -) Gn(q) is an equi­

variant chain map which lowers degrees by nq.

Let e: W-) Z be the augmentation on W. Then e 0 , : W ® r
--) ~ is an equivarlant chain map (using the diagonal action on W ~ Kn ).

Therefore the composition

is an equivariant chain map which lowers degraees by nq. In other words,

we have an equivariant nq-cocycle on W ~ KG, which we denote by

We now prove that if we vary u by a cohomology, then Pu varies

by an equivariant cohomology.

2. 1" LEMMA. There exists an equivariant map h: I ® W--) In ~ W

such that h(O ® w) on ® w and h(1 ~ w) ln~ w, for all w € W.

PROOF. h is equivariant on 6 ~ W and ,. ® W. We have the equi­

variant acyclic carrier W ® In. The lemma follows from V 2. 2.

2.2. LEMMA. If u and v are cohomologous q-cocycles on K with

values in G, then Pu and Pv are cohomologous nq-cocycles in

C:(W ~ Kn ; Gn(q))_ that is, they are equivariantly cohomologous.

PROOF. Now u cohomologous to v means that there is a chain homotopy

of u into v, that is a chain map D: I ® K --) G lowering degrees
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by q, such that D(a ~ 1") = u(-r) and D(l ~ -r) = v(-r) for all l' E K.

By 2.1 we have the following composition of equivariant chain maps
n

I ~ W ~ If ~1 ;> In ~ W ~ ~ 1@~1 ;> In ~ ~ shuf;> (I ~ K) n ~> Gne q) .

The map shuf denotes the shuffling of the two sets of n factors with the

usual sign convention. This composition gives the equiva.r1ant homotopy of

Fu into Pv which shows they are equivariantly cohomologous.

~he lemma shows that F induces a map (not a homomorphism in gen-

eral)
P: #(KjG) -;> Jt,:q(W ~ ~;Gn(q».

Let w be a O-dimensional cell of W. We have a map j: J!!1-;>
W ~ x.n defined by j (x) = w ~ x for all x € KD-. If L is another

finite regular cell complex and f: K -) L is a continuous map, then by

V 3 .3 the equivariant continuous map :fl: ~ -) Ln induces a map

(fl)*: H:(W x Ln;Gn(q» -) H:(W x ~;Gn(q».

2 • 3• LEMMA. 1 ) j *Pu is the n-fold cross-product u x ••• x U £

lflq(x.n;Gn ) •

2) We have a commutative diagI'Bm

#(L;G)

f*
H'l(K;G)

-_P_;> ~q(W x Ln;Gn(q»

~rt}*
-_P-:> ~q(W x Kn;GnCq» •

PROOF. 1) follows inmediately by the deflnitions on the cochB.ln

level of P and of cross-products.

We reduce the proof of 2) to the case where r is proper by using

V 3. 1 and V 3.3. Let C be the minimal carrier of f • Then the carrier from

~ to Ln which sends a, x ••• x an to C(a,) x ••• x C(an) is an

acyclic equlvarla.nt carrier for fl. Therefore, if f,: K -;> L 1s a

chain approximation to f, we can use 1 (8) (f,)n as our equivar1a.nt map

W ~ Kn -;> W~ Ln. We have a commutative diagram

W t8l x.n e ~, »x.n (#u}n »Gn(q)

I, t8l (f#}n I(f,)n
v .'V n

W~Ln € ~ 1 ;> Ln U ;> Gn(q).

The lemma follows.
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2.4 • REMARK. If n = p and G = Zp a.nd 1t is the subgroup of

S(p) which permutes the factors of KP cyclically, then P is character­

ized by the properties in 2.3 and the fact that PO = o. (This can be proved

by the methods of VIII § 3 • )

Let 1( C p C Sen) and let V and W be respectively a p-free and

a 1t-free acyclic complex.

2.5. IEMMA. The following diagram 1s conmutative

If-q{W x KnjGn(q»
~>1f A

~(K;G) I
;> ~q(V x Kn;Gn(q»

where the map on the right 1s induced as in V 3.3. It follows that P is

independent of the choice of W.

PROOF. Ist s,: W-) V be an equivariant chain map. The dia-

gram

is commutative. The lemma follows.

let U E Jtl(KiG) and v E F(LiF) where K and L are finite

regular cell complexes and G and F are abelian groups. We have

Pu E: Jt,:q(W' x Kn;Gn(q» and Pv E ~(W x Lnj~(r». By V 4.2, we have a

cross-product

Pu x Pv E: Jt,:q;n;;(W x W x Kn x Ln ; Gn(q) ~ Fn(r»

where 1f x 1f acts on W x W x ~ x Ln by the formula

for all a,f3 E 1(, v, ,v
2

E W, X E ~ and y € Ln. We also have

u x v € lfl+r(K x LiG ~ F) and

P(u xv) ~ If~q+r) (V x (K x L)n; (G 0 F)n(q + r»

where V is a n-free acyclic complex.

We have a map of geometric tripl~s

A: (1f,(G ~ F)n(q + r),(K x L)~---> (1f x 1f,Gn(q) ~ Fn(r),KD x Ln)
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defined as follows: A1 : 1r -) 3t X 3t is such that A1(a)

all a £ 7f;

(a,a) for

is the obvious isomorphism which shuffles the two sets of n variables; the

map (K x L)n --) :£t1 x Ln unshuffles the two sets of n variables. By

V 3. 3 we have a map

A,*: H:X1t (W x VI x ~ x Ln;an(q) ~ Fn(r» -) H:(V x(K x L)n;(G Q?) F)n(q + r)

(_1)n(n-1)qr/2p (U x v).

PROOF. According to 2.5 we may take V to be an arbitrary 1t-free

acyclic complex. Let V = W x W with the dia.gonal action. We have the

commutative diagram of equivariant chain maps

1~~#
(W ~ W) ~ (K ~ L)n --) W ~ VI ~ ~ ~ Ln

€~1 I I €~~1~1
'V 'V

A.#(K ~ L)n __) ~ ~ Ln

(~)nt t u~n
(G ® F)n(q + r) _f..l_> Gn(q) I&' Fn(r)

where f..l 1s (_1)n(n-l)rq /2 times the inverse of A
2

• The left side of

the diagram gives P(u x v) and the right side gives Pu x Pv. This proves

the lemma.

§3. Cyclic Reduced Powers.

Now let n = p, a prime, and let G = Zp. Then aP(q) is isomor­

phic to zp as an abelian group. S(p) acts on Zp = aP(q) by the sign

of the permutation if q is odd, and trivially if q is even. In the no-

tation of V §6, aP(q) z(~) .

Let 1t C S(p) be the cyclic group of order p, generated by the

permutation T which sends i to

tation is (_1)p-1. Since (_1)p-l

n:-module.

(i + 1) mod. p.

1 (mod p),

The sign of this permu­

z(q) is a trivial
p



§ 3 • CYCLIC REDUCED POWERS

3.1. LEMMA. Let K be a finite regular cell complex with no 11:­

action. Then
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H:<W x K;Zp) ~ H*Pil/1£ x K;Zp)

and this isomorphism is natural for maps of K.

Let d: K -) K;P be the diagonal map. Then d is equivariant,

if S(p) acts on KP by permuting its factors. By V 3.3 we have an in­

duced map

d*: H* (W x KP z(q) -) H* CW x KeZ(q»
1C ' P 7f ' P

Since z(~) is a trivial tt-module, we can replace z(~) by ~. So, if

U E Ifl(K;Zp)' we have by 3.1 and the Kiinneth formula

*3.2. DEFINITION. d Pu = ~ wk x Dku

where 'Wk E HkCW/7t;Zp) are the elements of V 5.2, and this defines

Dk : :Efl{K;~) -) flPq-k(K;Zp).

(Note that we have not yet shown that Dk is a homomorphism.)

Let f: K -7> L be a continuous map between two finite regular

cell complexes with no ~oup action.

3.3. LEMMA. For each k,

PROOF. We have df = fPd. Hence the following diagram is com­

mutative (by V 3.3)

d*
H~q(W x LP jZp) ---> H~q{W x L;Zp)

I (fP) * If*

V./ * 'V
H;q(W x KP;Zp) _d__:> H~(W x K;Zp)

Applying the commutative diagram of 2.3 to the left and the isomorphsims of

3. 1 to the right of this diagram, the lemma follows.

3.4. LEMMA.

PROOF. Let 'W be a O-cell of W. Let d#: K -) KP be a

diagonal approximation. We have a cormnutative diagram

K --l.-> W ® K

d.Jl I t 1@i.JL
V'V 'V p1f"

KP-j-> W®K
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where jx
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w ~ x. Now

I6 U j*(~ wk x Dku)

j*d* Pu

d*j* Pu

d*(u x x u) by 2.3

3.5. IEMMA. Let U E #(K;~) and let p > 2. If q is even

DjU = 0 unless j = 2m(p-1) or 2m(p-l)- 1 for some non-nega.tive

integer m. If q is odd, DjU = 0 unless j (2m+l)(p-l) or

(2m+1)(p-l)- 1 for some non-negative integer m.

PROOF. With notation as in V §6, let 7* be the automorphism of

H*(W x L;Z(~» induced by ., E P as inV3.4, where L 1s a finite regular

cell complex on which p acts. Let V be a p-free acyclic canplex. By

2.5, V 3.3 and V 3.4 we have the corrnnutat1ve diagram

*--",7__;:. H~(W x K;Z(~»

*7 =1 ~ H~(V x K;Z(~»

1
The lenuna follows from V 6. 1 and V 6. 2.

§ 4. The Transfer.

We have defined the transfer in V § 7• Let d* : H* (W x KP; Zp) -~

H* (W x K;~) the map induced by the diagonal d: K -) KP.

4. 1 LEMMA. Let 1': H* (W QS) KP.; Zp} -) H: (W ® KP;~) denote the

*transfer. Then d ~ = o.

PROOF. We have a conmutative diagram
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Since W is acyclic and ~(W;~) -:> If (w;~) is onto,

i* ~(W ~ K;~) -:> Ifcw ~ K;Zp)

is also onto. By V 7. 1 "1* = o. The lemma follows.

4.2. LEMMA. If !( is the group of cyclic perlmltations and

P: 1fl(K;~) -) 1t~(W x KP;~) then d*P is a homomorphism.
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PROOF. Let u and. v be q-cocycles on K. Then P(v+u) - Pu - Pv

is given by the chain map

W ~ # e~1:> KP (u+v)p- uP- vP :> Zp •

According to 4.1, we need only show that this cocycle is in the image of the

transfer. It will be sufficient to show that (u+v)p- uP- vP is in the

image of a" cocycle under

since € ~ 1 is an equivariant map.

Now (u+v)p- uP- vP is the surn of all monomials which contain k

factors u and (p-k) factors v, where 1 S. k .5. p-l. Now 1t' permutes

such factors freely. let us choose a basis consisting of monomials whose

pernmtations under 3t give each monomial exactly once. Let z be the sum

of the monomials in the basis. Then TZ = (u+v)p- uP- vp . Also z is

a cocycle in ~ since each monomial is a cocycle. The lemma follows.

4.3. COROLLARY. For each k,

is a homomorphism.

4.4. LEMMA. If u E :Efl(K;~) then Dku = 0 for k > (p-l)q

and D(p_l )qU = aqu where aq f: ~ is a constant which is independent of

u and K.

PROOF. Let tl be the q-skeleton of K. Then

is a monomorphism for r < q. By 3.3 we can therefore assume that K is

q-dimens100al. Let % f: :Efl( sqj~) be the class dual to sq. There is a
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map f: K -> sq such that f*U
Q

= u: we let f(~-1) be a point and

map each q-cell of Kinta sq with degree given by v, a cocycle repre­

sentative for u. By 3.3 we can assume that K = sq and u == u
O

• The

second part of the lemma follows. If k > (p-l )q, then the only possibili­

ty remaining for Dku to be non-zero and k > (p-1)q is that k = pq

and q > o. Let j : s --) sq be the inclusion of a point s in sq.

Then j* is an isomorphism in dimension zero and j*u o.

This proves the lemma.

o

by 3.3

by 4.3.

4.5. LEMMA. Let f3 be the Bockstein operator associated with the

exact sequence

*Then f3d Pu o for p > 2 or q even.

*PROOF. Since f3d *d f3, 4. 1 shows that we have only to prove

that f3Pu is in the image of the transfer. Let v be an integral cochain

on K represented u E ~(K;Zp). Then oV = pz where z is an inte­

gral (q+l)-cocycle, and z represents f3u E W+1 (K;Zp). The cochain vP

is an integral cochain on :£eP whose cohomology;. class we denote by

{vp) E H~q(KP;Zp). Let E ~ 1: W ~ KP -) KP. Then

Since T commutes with (e ® 1)*, it will be sufficient to show that

f3(vP} is in the image of or.

L:p-l (_l)qs VS (8V)Vp - S- 1
s=O

P Ep-l (_l)qS VS z vp - s- 1
s=O

p EaE~ (_l)qs(p-l) a(zvp - 1 )

p or( zvp - 1 )

since either p-1 or q is even. Since v is a mod p cocycle, zvP- 1

is a mod p cocycle" The above argument shows that T ( zvP- 1) represents
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t3{vp}, and the proof of the lermna is complete.
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4.6. COROLLARY. If P > 2 or q = dim u is even then ~Dou 0,

~D2ku = D2k_1u,t3D2k_,u = o.

PROOF. By 3.2 and 4.5

FromV 5. 2 , = 0 (j ~ 0) • Hence

= 0

The. lemma follows by comparing coefficients of wk.

If P

4.7. LEMMA.

D2k(U x v)

2, Dk(u x v)

Let u £ Hr(K;Zp) and v £ HS(L;Zp). If p > 2 then

(_1)p(p-1)rs/2 E~ D. u x Dnk-
2J

• v
J=O 2J c.

k
}:j=O Dju x Dk_jV.

form

PROOF. The map of' geometric triples ~, used in 2.6, takes the

X: (1f,~,(K x L)P) -) (1C x u,Zp,KP x LP).

We have a cormnutative diagpam of maps of geometric triples

where d is induced by the diagonal on K x L, d, by the diagonal on u

and d t by combining the diagonals on K and L.

Let W be a u-f'ree acyclic complex. Then W x W is a (:rr X tt)­

free acyclic complex. From the above dia.gram and V 3.3 we have a c01lU11\lta­

tive diagram

H:CW x (K x L)P;~) <-- H:x:rr( (W x W) x (KP x rfJ) ;~)

I d* I (d l )*
~ ~

H:(W x K x L;~) <--- H:x:rr(W x W x K x L;~)

According to V 4.2, Pu x Pv is an element in the group on the up­

per right of the diagram. We have
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* *H
1tX3C

(W x W x K x L;~) ~ H (W/tt X W/tt X K x L;Zp) •

It is easy to see that under this isomorphsim we have by 3.2

~ ()l(pr-j) D .
~j,l -1 WjVI x DjU x tV.

~ wk x Dk(uxv). The lemma follows fran 2.6 and V 5.2.Also d*P(uxv)

* ~) l(pr-j)(d') (Pu x Pv) = ~j,l (-1 Wj X Vi X Dju X Dtv.

Applying (d, )* to each side of this equation, and using the commutative

diagram, we obtain

d*A*(Pu x Pv)

§5. Determination of Dq (p_l).

We know from 4.4 that for each q there is a constant Sq E: Zp'

such that

5.1. LEMMA. aq = (_l)r af where r = p(p-l)q(q-1)/4.

PROOF. The lemma is proved by induction on q. It is true for

q = 0 by 4.4.

Let u E !fl-l (K;Zp) be non-zero and let v be a generator of

H' (S1 ;Zp). Then u x v E ffl(K X S1 ;~) is non-zero. By 4.4 Djv = 0

unless j = p-l. By 4.7

)p(p-1)(q-l)/2Dq(p_1)(u x v) (-1 DCq_1)(p_1)u x Dp_1v

(_1)P(p-1)(q-1)/2 &q_l&1(u X v) •

Hence &q = (_1)p(p-l)(q-1)/2 &q-1&1" The lellllll8. fOllows by induction.

In order to complete the determination of Dq(p_l)' we must find

a,. This is done by appealing directly to the definition in the case of

S' •

Suppose K is a finite regular cell c'omplex and U E ffl{K;~).

Then Lj wj x Dju is represented by the composition

W x K~> W x KP~> KP uP;> ZP ,

where d:/f is a diagonal approximation. By V 2.2 any two equivariant chain

maps W ~ K -;> KP, carried by the diagonal carrier, are equivariantly

homotopic.
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Hence, in order to find D 1 on a 1-dimensional class, we need onlyp-
find an equ1var1ant chain map

cp: 'W ~ 3' -) (3' )p'

carried by the diagonal carrier. We make S1 into a regular complex by

creaking 1t into two intervals J 1 and J 2 such that oJ1 A - B and

~J2 = A-B. Then the fundamental homology class of S
1 is J 1 - J 2.

Let W be the complex of V § 5 • We define

s(eo ~A) = AP m(eo ~ B) = BP

for j > o.

In fact cp 1s uniquely determined thus far by the carrier. We need only

extend the definition of q> to an equivar1ant chain map

q): W ~ I -;> IP

where ~l = B - A, and this will give a fornro.la W~ S' by taking first

J 1 I and then J 2 = I.

We define
ao f30 a l ~1 ct. f3.

= i! LCA IB )(IA IB ) ... (IA 1 IB ~)

where the summation extends over all sequences (a, t3) such that

~ 0 (a. + f3.) = p - 21 -'; and
J= J J . ao t30 a. f3.

cp(e21+1 ~ I) = i! L(IA IS ) .•• (IA 1 IB 1)

where the sUD'J11lB,tion extends over all sequences (ct, ~) such that

~=o (ctj + t3j ) = P - 21 - 2.

The problem now is to show that cp is a chain map. We do this by

using a contracting hanotopy in rP • Let s be the contracting homotopy

1n I given by sA = 0, sB = I, sl

the aug;nentatlon

o. Then if e: I -;> A is

so + dS 1 - e.

We define a contracting homotopy S in rP by the usual formula

S =

Then

oS + So = ,p - eP .

The following formulas will help us to evaluate S. Let C be any
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chain in I r :for some r ~ o. Then we easily see that

(i) S(AP) = 0 (ii) S(BP) ~:6 Ar IBP-r-l

(iii) S(AkrC) = 0 (k ~ 0) (iv) S(BtAsIC) ~:6 Ar IBt -r - 1 ASIC

(t ~ 1, s ~ 0).

We shall prove the :following formulas

a) (I)(e2i+1 ® I) S(j) 0(e2i+1 ~ I)

b) cp{e2i ® I) Scp 0(82i ® I)

c) cp(ei @ A) = 0 Scp d(ei ® A) i:f i > 0

cp(ei ® B) = 0 S(j) d(e1 ® B) i:f i > °
Let 6. = T - 1, where T is the element of 1C which sends i to

i + 1 (mod p). Then

Scp(6.{e2i @ I»
S6.q>{e2i ® I)

a ~ a ~ a. ~

i! S L (A °IB o)(IA 'IB ') ..• (IA lIB 1~

By (iii), terms with (3i ° make no contribution. I:f (31 > 0, let,
(3i (3i- 1 • Then by (iii) the above expression is equal to

a (3 a. (3 a.~!

1! S L(3 > ° (BA °IS O)(IA ~IB 1) ••• (IA ~IB~)
i

By (iv) this expression is equal to
ao (30 a (3, a. f3!

i! ~f3. > ° (IA IE )(IA'IB ) ... (IA lIB 1)
~

This summation extends over all sequences (a,(3) such that L (aj + ~j)

p - 2i - 1 and ~i > o. Therefore the expression is equal to (j)(e2i+ 1 ® I)

This proves a).

To prove b) we note that if i = 0 then

Scp d(eo ® I) Scp(eo ® B - eo ® A)

S(BP - AP)

L ArIBP-r-,

cp(eo ® I)

Let N 1 + T + ••• + TP-'. If i > 0 then

&p o(e~t 01> I) ScpN(e21 _1 6i' I) SNcp(e2i_, ® I)

ao f30 a. f3.
(i-1)! SN L (IA IS ) ... (IA 1-'IB 1-')



§5. DETERMINATION OF Dq (p_1)

By (iii) the only terms which make a contribution are those which begin

with B. The expression 1s therefore equal to

1 ~· a. 1 ~. 1 a j 2 ~. 2
(1-1)! S r(a,~) r j :6 ~~1 (BrIA J+ IS J+ )(IA + IB J+ ) •••

ex. 1 13. 1 ex. ~j-r
.... (IA J- IB J- )(IA JIB )

111

_where the SUbscripts k in ak and ~k are taken mod i. By (iv) this 1s

equal to

~j t t a. ~.+1) a. ~.-r
(i-1)! L(a,~) E3:ci ~=1 ~:~ (A IBr

- -')(IA J+'IB J ••• (IA JIB J )

(i - l)l ~:6 ~(e2i ~ I)/i!

<p(e2i 9 I) ·

This proves b). Formula c) folloW's from the defln1tion of ~ .

From a), b) and c) we see that if c is a chain in W 0 I and

dim c L 1, then <pc = Scp oc.

5.2. LEMMA. <p 1s a chain map.

PROOF. We prove this by induction on the dimension. It is irmnedi­

ate in dimension o. In dirnensiop. 1 we have

<po(e, (g) A) <p~(eo 9 A)

l\cp(eo ® A)

AAP

o •

Also dCP(e, ~ A) = o. Similarly cpo(e, ® B)

oq>(eo 0 I) = 0 ~:6 ArIBP-r-, BP - AP

. This proves the lemma in dimension 1.

If dim c ~ 2, then

= 0 = o~(el 0 B).

cpo(eo ® I) .

oq>C = o~oc = (1 - So) <poe = <poc

since the induction hypothesis tells us that d~OC = cpooc o. This

proves the lemna.

Let m = (p-l)/2 if P > 2.

( -1 ) m ml if p > 2. a 1 if P = 2.
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PROOF. Let u be the cocycle of S1 which has value 1 on J 1

and 0 on J 2. Then u generates H1(S1;Zp). We have

a, ,
and

(Wp_1 ~ Dp_,U) (ep_, ~ (J, - J 2»

If p = 2 then

~(el ~ (J, - J 2»

Therefore a, , •

If P > 2, then (p-1) is even and

Therefore a,
~(ep_1 ~ (J, - J 2») = m! (J,p - J 2P).

m! uP • J,p (_1)P(P-')/2 m! This proves the lermna.

Combining 5. 1 and 5.3 we obtain

5.4 THEOREM.

where a =q

Let q > 0 and let U E H
q

K; Z ).p

if P = 2 and

a = (_l)mq (q+l)/2(ml)q if p > 2.
q

§6. The Reduced Powers pi and Sqi .

6. 1. DEFINITION. Let K be a finite regular cell complex and let

u € ~(K;Zp). If p> 2, let m = (p-1)/2. we define

piu = (_l)r (m!)q D Cq-2i) (p_l)u

where r i + m(q2 + q)/2. If P = 2, we define

iSq U = Dq_iu

Restricting ourselves fo~ the moment (in VIII §2 the restrictions

are removed) to the absolute cohomology of finite regular cell complexes we

have

6.2. THEOREM. The pi satisfy all the axioms in VI §, (except

for the Adem relations which will be proved in Chapter VIII) .

We divide the proof into a number of lemmas.

6.3. LEMJ.\1A. (-1 )m+1 mod p.
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PROOF. By Wilson's Theorem, (p-l) ! -1 • Therefore

Then by 6.1

1 • 2 (P;1) • (P; 1) ••• (p-1)

1.2 (~)[-~] ••• (-2)(-1)

(m!)2 (_1)m •

-1 - (p-1) !

-

-

The lennna follows.

6.4. LEMMA. pO
= 1.

PROOF. Let dim u = q.

POu (_1)r(m!)-q Dq{p_l)u

where n = m(q2 + q)/2. By 5.4, pOu = u.

6.5. LEMMA. Cartan Formula. If u E Hr(K) and v E Ifl(L) then

Pk( ) ~ pS ptv •u x v = ~s+t=k U x

PROOF.

pSu x ptv = (_1)n(mI)-r-q D(q_2S) (p_l)u x D(r_2t)(p_1)v

where n = S + t + m[q2 + q + r 2
+ rl/2. Therefore

(_l)n(mI)-r-
q

~s+t=k D(q_2S) (p_l)u x D(r_2t)(p_l)v

( )mrq +n( I ) -r-q D ()
-1 m. (r+q-2k)(p-l) u x v

by 4.7, 4.4 and 3.5.

Now mrq + n = k + m[(r + q)2 + (r + q) ]/2. The lemma follows by 6.1.

6.6. LEMMA. If dim u == 2k, then pku = up.

PROOF. pku (_1)r(ml)-2k Dou

where r = k + m(4k2 + 2k)/2 - k(rn + 1) mod 2. By 6.3

(mI)-2k _ (_l)k(m+l) mod p.

The lemma follows from 3.4.

Combining the lemmas we obtain 6.2.

Restricting ourselves for the moment (in VIII §2 the restrictions

are removed) to absolute cohomology of finite regular cell complexes we have

6.7. THEOREM. The Sqi satisfy the axioms of I §1 (except for the
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Adem relations which we prove in Chapter VIII).

PROOF. The proof of Axioms ,) -5) is very similar to the proof of

6. 2, except that we do not have to worry about coefficients in Zp' We

have only to prove that ~ = Sq
1

• Now if dim u = 2q then by 4. 6

t3D2qu

In order to complete the proof of the theorem we prove the following lenma..

6.8. LEMMA. If P = 2 let R be a sum of compositions of the

form ~ or Sqi (1 0,1,2, •.• ). If P is an odd prime, let R be a

swn of compositions of cohomology operations of the form ~ or pi • Let

n
j

be a sequence of integers strictly increa.sing with j, and let Ru = 0

for any cohomology class of dimension n j . Then Ru 1s zero for all coho­

mology classes.

PROOF. ret R be zero on classes of dimension r. We shall prove

that Ru 0 for all classes of dimension (r-1). ret v E H1(S';Zp)

be the generator. Then the only cohomology opera.tion, amongst those in the

statement of the lemma, which 1s non-zero is the identity (pO or Sq0).

By the Cartan formula

R(u x v) = Ru x v •

Since dim (u x v) ::: r, we have Ru x v ::: 0 and hence Ru o. This

proves the lennna and also completes the proof of 6.7.
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CHAPTER VIII.

The Relations of Adem and The Uniqueness Theorem.

In § 1 we shall prove that the operations pi and sqi defined

in Chapter VIr satisfy the Adem relations. In §2 we shall show how to ex­

tend the domain of definition of the reduced powers so that they operate in

relative Cohomology and in the eech and singular theories. In §3 we prove

that the reduced powers are uniquely determined by the first five axioms.

§ 1 • The Adem Relations.

Let S(p2) be the symmetric group on p2 elements, namely the

ordered pairs (i,j) with i,j € Zp' arranged in a matrix with

the i th row and jth column. Let a(i,j) (i + ',J) and let

(i,j) in

~(i,j)

~ x p is

(i,j + 1). Then a~ = r3a, a generates a cyclic subgroup 2t of order

p, f3 generates a cyclic sUbgroup p of order p, and a

a sUb~oup of S(p2) of order p2.

Let W be a ~-free acyclic complex and let p act on W through

the isomorphism sending (3 into Ct. Then W~ W is a (~xp) -free

acyclic complex by letting ~ act on the first factor and p on the second.

Let z~q) denote the SCp2)-module which is ~ as an abelian

group, and where a permutation acts by its sign if q is odd and trivially

otherwise. Let R be any SUbgroup of S(p2). Let V be an R-free

cyclic complex. By VII §2 we have a map

pt: JfJ(KiZ
p

) _) HP=qCV x KP2;~q».

If R · b f then Z< q) . t· i I R d 1 .1.S a su ~oup 0 a, p 1.S a ~ r1.V a -mo u e, S:l.nce

either p = 2 or R contains only even permutations.

Let W, = W with 1t acting and let W2 = \f with p a.cting. Then

115
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an action of 1( x p on W, x (W2 x KP)P can be defined by

(0:, (3) (x X (Y, X z,) x .•. x (Yp x Zp»

= ax x (~YO:(')x ~Za(l» x ..• x (~~(p) x ~Zo:(p»

for all a € ~, ~ € P, X E W" Yi € W2 ' zi € KP (we regard both ~ and

p as groups of cyclic permutations of p elements). We define an action

of ~ x p on W, x W2P x (KP)P by

(a,(3) (x x y, x .•. x Yp x z, x .•. x zp)

= ax x ~Ya(l) x .•• x ~Yo:(p) x ~za(1) x..• x ~za(p)

where the variables have the same meaning as in the previous equation.

Now W, x w2P is a (1C x p)-free acyclic complex. Therefore we have

the isomorphisms

2
where ~ x p acts on KP

~ H:xp(W, x W2
P x (KP)P;Zp)

~ H:xp(W, x(W2 x KP)P;Zp)

~ H*(W, X 1C(W2 x pKP)P;Zp) ,

(KP)P by

(a,~)(z, x ...x Zp)

We therefore have an isomorphism

'* '* p P '* p2d2 : H (W1 x 1C(W2 x pK) ;Zp) -) H (W, X 1CW2 x pK ;Zp)

which is induced by the diagonal d2: W2 -) W2P •

1 • 1. LEMMA. The following diagram is commutative

HPq(K;Zp)

IpI
2 'V 2

HP q(W x W x KP .Z ), 1C 2 p , P

I (d') *
'V

2 '* 2
HP q(W1/1CXW2/pxK;~) <~ HP q(W,/1CX(W2XpKP)

p2 _~
where d I: K-) K , d: K-) Ie

* 2_d__) HP q(W, /1CXW
2

/pxK;Zp)
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PROOF. The commutativity of the lower two squares follows since

the maps of cohomology groups are induced by continuous maps which commute.

The upper right hand square commutes because of VIr 2.3. The upper left

hand square cormnutes on the cochain level.

REM.ARK. To be quite rigorous one should point out that P was only

defined on finite regular cell complexes (Chapter VII §2), while W2 x
p

KP

is certainly not finite, and may not be regular. We can ensure that

W2 x
p

KP is regular by replacing W2 by its first derived. To make

W2 x
p

KP finite, we insist that W
2

should have a finite n-skeleton for

each n (for example the complex of V § 5) , and then replace W2 by its

n-skeleton for some n much larger than p2q •

By the ~tinneth theorem we can write

(d')*P'u :: Lj,k wj x 'Wk x Dj,kU ·

1 . 2 • COROLLARY. LJo k wJ" x wk x D. kU
, J ,

PROOF. From 1.1 we see that (d')*pt * *(d2 x d) PdP.

1 .3. LEMMA. If u € lfl(K;Z ), thenp

Dj,kU (_1)jk+P{p-1)q/2 D .u
k,J

PROOF. Let A. € S(p2) be the element such that A.(i,j) (j ,i)

*Let A. denote the automorphisms induced by A. on the cohomology level

(see V 3.4). Let V be an S(p2)-free acyclic complex. Let a = ~ x p.

In order to determine tne upper map

chain map

*A. , we have by V 3.4 to construct a
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such that l#a = ~AI and A*~ = all where a gsnerates ~ and acts

on the first factor and ~ generates p and acts on the second factor.

Such a map is given by

where dim v 1 = j and dim v2 = k. Now l transposes a p x p matrix and

therefore it is a permutation with sign (-1 )p(p-l) /2. By V' 1.2,

*A (W j x Wk x Dj,kU) is r~presented by the (~xp)-equlva.riant cocy~le

l# ~ 1 Wj ~ Wk~ Dj,kU , (_1)P(p-l)q/2
W X W x K ;> W~ W~ K - - - ,.. Zp :> Zp.

This cocycle is equal to

(_1)jk+P(p-l)q/2 w
k
~ wj ~Dj.kU •

By the cormnutative diagram the lemma follows.

The proof of the Adem relations will be slightly simplified by the

following conventions.

1.4. CONVENTION. (j) = 0 if r < 0 or j < 0; (~) = 1 if

r L 0; wr E If(7t;~) is zero if I' < 0; Sqj and pj are zero for j < 0

All summations run fran -00 to +00 unless otherwise stated.

By V 5.2 and I 2.4wehave aqjWr = <j)Wr + j and this now holds for

all integers r and j • By V 5.2 and VI 2. 2 we have

(j)W2r+2j (p-l) •

o. By the Cartan formula, V '.2 and VI 2.2,

(r-
j
l)

w2r+2j (p-1)-1

1.5. THEOREM. The Sqi defined in VII 6.1 satisfy the Adem rela-

tions.

P~OOF. If dim u = q, we have

d*Pu = L
1

wq_
i

x Sqiu .

By 1 .2, 1. 4 and the Cartan formula we have
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k 1Li,k w2q_k x Sq (wq_i x Sq u)

~_ (q-i) ~j 1
~,k,j j w2q_k x wq_i + j X Sq Sq u •

Therefore

D2q_k ,2q_fU

By 1.3,

D2q_k,2q_tU

Therefore

L
1

( q-i ) aqk+f-i-q aqiuq-t+1

Let q 25 - 1 + c and let I.

~ ( q-r ) Sqk+l-r-q Sqru •
-r q-k+r

q + c. The non-negative integers

s, k and c are now arb1trary" Then

( q-i) (2S-'+(C-1») {o, if i I c by 1~4 and I 2.6,
q-f+i . (1-c) = if 1 = c.

( 2
S
-1+c-r) ( x ) (X)k-2r. since y = x-y.·

Now suppose that k < 2c. The binomial coefficient just examined is zero

unless 2r ~ k. Therefore it is zero unless c - r > o. By I 2.6 this bi­

nomial coefficient 1s equal to (Ck:;~) for 2
s > k and r ~ o. Substi­

tuting in (1) we have that if k < 2s ,2C and dim u = q = 2s _1 + c,

then (2) Sqk SqCu = Lr (C~~~) Sqk+c-r Sqru . By VIr 6.8 the theorem 1s

proved.

1 .6. THEOREM. The pi defined in VII 6. 1 satisfy the Adem rela-

tions.

PROOF" By VIr 3" 5 1 VII 4. 4 and VII 6. 1, we have I witing 2m. p-1

and v(q) (ml)-q(_1)m(q2+Q)/2,

* 1 . i 1
v(q) d Pu = 11.{-1) W(q_2i)2m x p~u + 11.(-1) W(q-2i)2m-l x ~P-u ·

By 1.2 we have

~Cpq)vCq)Cd')*P'u Lk,iC-1)i+k WCpq-2k)2m x pkCWCq_2i)2m x piu)

~_ ( ) i+k k( i )
+ ~,i -1 WCpq-2k)2m x P W(q-21)2m-1 x SP u

l'_ ( ) i+k k( i )
+ ~,i -1 WCpq-2k)2m-l x ~p W(q_2i)2m x P u

\'" ( ) 1+k \ k( i )
+ ~k,l·1 W(pq_2~2m_1 x ~P W(q-2i)2m-l x ~p u •



120 VIII. RELATIONS OF ADEM, AND UNIQUENESS

By the Cartan formula and 1 .4 we have

pk(W(q_2i)2m x piu) Lj «Q-ji)m)W(Q_2i+2j)2m x pk-j plu

L (Q-2i)m-,) !3pk -j ~piu .
- j j WCq-2i+2j)2m-l x ~

Therefore if a = pq-2k and b = q-2i+2j, and the summations range

over i,j,k, we have

(1) v(pq)v(Q) D2am,2bmU Li ,j,k(-l)i+k«Q-ji)m)pk- j piu

() ( ) ( ) D ~e e (-1 ) i+k «Q-21.
J

e

• )m-l )pk- j tJ.piu2 v pq v q 2am,2bm-l u ~1.,J,k ~

Now v (q) 4 _ 1 (mod p) by VIr 6.3 and therefore v (pq) v (q) has

an inverse.

1 .8. LEMMA. The first Adem relation is satisfied.

PROOF. Let a = pq - 2k and b = pq - 2!. By 1 .2 and (1) we

have

( 4)

Let q = 2(1 + ••• + pS-l) + 2c and let 1

and k are now arbitrary. Then

c + mq. The integers s,c

( q-2i)~)
mq-I+1.

«p-l)(l+ ... +pS-l) + (p-l)(C-i))
(i-c)

{
0, if i ~ c by I 2.6 and 1.4

if i = c.
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Also

«q-2r)rn)
mq-k+r « q-2r)m)

k-pr since (;)

(
pS-l+(P-l)(C-r))

k - pr ·

Now suppose that k < pc. The binomial coefficient just examined is zero

q

r < c. By I 2.6 this binomial

pS > k and r ~ o.for

Therefore it is zero lli~less

coefficient is equal to (p-l)(C-r)-,)
k - pr

Substituting in (4) we have that if pS > k < pc and dim u

2(1+ ••• +pS-l)+ 2c then

unless pr ~ k.

= ~ (_l)r+k «P-l)(c-r)-l) pC+k-r pru .
~ k - pr

By VII 6.8 the lemma is proved.

1 .9. LEMMA. The second Adem relation is satisfied.

PROOF. Let a = (pq - 2k) and b

and (3) we have

(pq - 2£). By 1 •3, (2 )

( 5)

+

let q 2ps + 2c and let I c + mq. The integers s, c and k are

now arbitrary. Then

«q-2i)m:-,)
mq-I+1. «

P_l)(l+ ... +p~-l) + (p-l)(C-i»)
1. - c

{ ~ if i ~ c
if i c

by I 2 • 6 and 1. 4

«q-2r)m)
mq-k+r « q-2r)m)

k-pr «p-l)(pS+c-r))
k - pr

Now suppose that k ~ pc. The binomial coefficient just examined is zero

unless pr ~ k. Therefore it is zero unless r S. c. By I 2.6 this binomial

coefficient is equal to «p-l) (c-r)) for pS,> k and r>_o. We also
k - pr

have

« q-2r)m-,)
mq-k+r « q-2r)m-l)

k-pr-l «
P-l) (ps+c-r)-l)

k-pr-l



122 VIII. RELATIONS OF ADEM, AND UNIQUENESS

This binomial coef'ficient 1s zero unless pr < k. Therefore it is zero

unless c < r. By 12.6 this binomia.l coefficient 1s equal to

«P-l)(c-r)-1) for pS > k and r _> O.
k-pr-1

SUbstituting in (5) we have that if pS > k.s pc and dim u = q

2ps + 2c then

pk~pCu = ~ (_l)r+k «p-l) (c-r») ~pc+k-r pru
-r k-pr

+ ~ (_1)r+k+l «P-l)(c-r)-,) pC+k-r ~pru
La k-pr-l .

By VII 6.8the lemma. is proved.

§ 2. Extensions to Other Cohomology Theol'ies.

We now extend the def1n1tions of pi and Sqi so that they operate

on relative cohomology groups.

2.1. THEOREM. If F is a cohomology opera.tion defined for a.bso­

lute cohomology groups, then there is one and only one cohomology operation

defined on both absolute and relative cohomology ~oups, which coincides

with F on absolute cohomology. Furthermore these extensions to the rela­

tive groups of the reduced power operations SQ.i and pi satisfy all the

axioms (see I §1 and VI §1).

PROOF. If a € K we have a cormnutative diagram

o -~ #(K,a;G) -~ 1fl{K;G) -~ :aQ.(a;G) -~ 0

I F I F
"\I 'V'

o -~ If(K,a';G') -~ Hr(K;G') -~ 1fCa;G'} -~ 0 •
\

By dia.gram chasing we obtain a unique definition for F: :s:Q.('K,a;G) -~

1f(K,a;G'). The definition is natural for maps of pairs where the second

space is a point or is empty.

Let (K,A) be a pa.ir of spaces. Let L be K with the cone on

A attached. By exoision we have an isomorphism

H*(L,CA) -) H*(K,A).

Let c be the cone-point of CA. By the f.1ve lemma. we have an isomorphism
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These constructions and isomorphisms are natural for mappings of

pairs (K,A). Since we have defined F on H*(L,C), we obtain F on

H* (K,A) .

It is innnediate to check that all the axioms listed in I § 1 and

VI § 1 follows from the axioms for absolute cohomology. This proves the

theorem.
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We now have Sqi and pi defined on cohomology graoups of pairs

(K,L) where K 1s a finite regula.r cell complex and L 1s a 8ubcomplex.

2.2. THEOREM. a) There is So unique definition of Sqi and pi

on the singular cohomology groups of an arbitrary pair of spaces, which

coincides with the definition on finite regular cell complexes.

b) There is a. unique definition of Sqi and pi on the eech cohomology

groups of an arbitrary pair of spa.ces, which coincides with the definition

a.lready given on finite regular cell complexes.

The extensions in both a) and b) satisfy all the axioms in I § 1

andVI§1.

PROOF. We shall leave the reader to check that the axioms are

satisfied whenever we extend the definitions of Sqi or pi.

We first extend the definition to pairs (K,L) where L is an

infinite regular cell complex and L a subcomplex. Now ~(K,L;Zp) is

*naturally isomorphic to Hom (Hq(K,L) ,~). Therefore H (K,L;Zp) is the

. *inverse limit of the groups H (Ka,La:;Zp) where Ka: and La: vary over

the finite subcomplexes of K and L. Since the reduced powers are natural

this gives a unique definition on H*(K,L;Zp). A continuous map from one

pair of infinite complexes to another pair maps finite subcomplexes into

subsets of finite subcomplexes. It follows that sqi and pi are natural

on the category of pairs (K,L) where K is a (finite or infinite) regular

cell complex and L is a subcomplex.

Now we extend the definition to pairs (K,L) where K 1s a OW com­

plex and L a subcomplex. According to J. H. C. Whitehead (see [2]), the

pair (K,L) is homotopy equivalent to a pair of simplicial complexes. This
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obviously gives a unique and natural definition for pi or Sqi on

*H (K,L).

We now give the definition on H*(X,y), the singular cohomology

of an arbitrary pair X,Y. Let SX and SY be the geometric realisations

of the singular complexes of the spaces X and Y (see [2]). Then we

have a singular homotopy equivalence

this map is natural for maps of pairs

of CW complexes, we have defined pi

h: (SX,SY) -) (X,Y). Moreover

(X,Y). Since (SX,SY) is a pair

and Sqi in H* (SX,SY) • Since

h*: H* (X,Y) -) H* (SX,SY)

is an isomorphism, this gives a unique and natural extension of pi and

Sqi to singular cohomology graoups. This proves the first part of the

theorem.

We now extend Sqi and pi to eech cohomology. The eech coho-

mology groups of a pair (X,Y) are obtained by ordering the open coverings

of (X,Y) according to whether one covering refines another, taking the

nerves of the coverings, and then taking the direct limit of the cohomology

;groups of the nerves. Since we have introduced Sqi and pi into the

cohomology structure of the nerve of each covering, and Sqi and pi are

natural, this defines Sqi and pi uniquely on H*(X,y). It is easy to

see that Sqi and pi are natural with respect to continuous maps of

pairs (X,Y). This completes the proof of the theorem.

§3. The Uniqueness Theorem.

In this section we shall prove that the Sqi and the pi are

uniquely determined by the axioms 1)-5) in I §1 and 1)-5) in VI §1. We

shall do this by investigating the cyclic product of spaces. We shall use

zp as coefficients throughout this section.

3.1. IEMMA. Let K be a chain complex over Zp. Then K is

homotopically equivalent to the chain complex which is isomorphic to H*(K)

as a graded module and has zero boundary.

PROOF. Let Bq be the boundaries in K and let Dq be a subspace

of Kq which is complementary to the cycles. Then K is isomorphic to the

complex which is Hq (K) + Bq + Dq in dimension q, and whose boundary
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operator is zero on Hq(K) + Bq and maps Dq isomorphicallyonto Bq_1 •

Therefore K is the direct sum of the chain complexes H and (B + D) •

B + D has the contracting homotopy s which is defined to be a map into

D, which is zero on Dq and such that s: Bq -) Dq+ 1 1s the inverse

of the boundary. We extend s to K by letting s(H) o. Let

fJ.: K --) H be the projection and let X: H --) K be the injection.

125

The and by the homotopy s. This proves the lennna.

Let K and L be chain complexes. Let :J( be the cyclic group of

order p acting by cyclic permutations on KP and rP. Let W be a :J(­

free acyclic complex· and let :J( act on W~ KP and W~ LP by the

diagonal action.

3 .2. IEMMA. If f, g: K --:> L are chain homotopic, then

are equivariantly homotopic.

PROOF. By VII 2.1 there is an equivariant map h: I ® W-) rP ® W

such that h(O ~ w) = oP ~ w and h(1 ~ w) ,p ® w. Let

D: I ~ K --:> L be the chain homotopy between f and g. Then we have

the equivariant chain maps

I ~ W ~ KP 1161>1:> IP ~ W ~ KP ~> W~ (I ~ K)P 1oo
P

:> W ~ LP .

The composition is the required equivariant chain homotopy;

3.3. COROLLARY. If f: K --:> L is a homotopy equivalence, then

1 ~ fP is an equivariant homotopy equivalence.

From 3.1 and 3.3, we see that W ~ KP and W ~ H*(K)P are equi­

variantly homotopy equivalent. Therefore Hom1t (W ~ KP,Zp) is homotopy

equivalent to Hom:J(W ~ H*(K)P,~).

We choose a direct sum splitting of H*(K) into components Ai'

each isomorphic to Zp. Then H* (K) Li :, Ai. So

H*(K)P ~=, AiP + ~(:J() ~ B

where B

The action of :J( on AiP is by cyclic permutation and on Zp(1t) ® B by
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the usual action on ~(7C) and the identity on B. So, if H*(K) is of

finite type,

Hom7C (W ~ H* (K)P,~) - ~ Homtr(W ~ AiP ,Zp) + Hom (W ~ ~(tr) ® B, ~) •

We then obtain innnediately

3.4. LEMMA.

writing (W x KP) / tr

Let K be a finite regular cell complex.

W Xu KP,

Then,

Let W/tr x K be embedded in W x
1C

KP by the diagonal map

d: K-) KP.

3.5. REMARK. For any pair of spaces (X ,A) , H* (X), H* (A) and

H* (X,A) are modules over H* (X) in an obvious way. Moreover it is easy

to see that the maps in the cohomology sequence are consistent with the

module structure. If we have a map X -) Y, then the cohomology sequence

of (X,A) gets an H* (Y) structure via the induced map H* (Y) -) H* (X) •

The cohomology sequence of (W xtt KP,wl1C x K) is a module over H*(.)

via the projection W x 1C KP -) Witte The action of a class

u E H* (tt) ·H* (Witt)

is multiplication by u x ,P, where

on K.

We have the maps

is the unit class (or augmentation)

3.6. PROPOSITION. The image of d* is the H*(1C)-module generated

by the image of d*P.

PROOF. By VII 4. 1 1t will be sufficient to show that H: (W x KP; Zp)

is the swn of Im 1', where T is the transfer, and the H* (.) -module gen­

erated by Im P. We see from 3.4 that we need only show

*1) H
1t

(W ~ ~(tt) ® B) C Im T and

2) H* (Witt ~ AiP) is generated a.s an H* (.) -module by the element

Pui , where ui is dual to a generator of Ai.
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PROOF of 1). let

1 € ~ to 1 E Jr. Let

all other elements of tt

~: ~ -:> ~(Jr) be the map which sends

v : ~(.) -:> ~ send 1 € 1t to 1 € ~ and

to zero. ~ induces a map

An equivariant cochain of W~ ~(tt) ~ B 1s determined by its 1m.&ge under

~* . We also have a map

induced by v • Since v~ = 1 , it follows that * *~ v 1.

We must show that any equivariant cocycle U in W~ Zp<.) 6b B 1s

the transfer of a cocycle in W 6b ~ ( 7C) ~ B. Now v *~*u is a cocycle on

* *'W ~ ~(7C) ~ B. In order to prove that 'Tv ~ U = u, we need only show

that ~*<TV*~*U) = ~*u since an equivariant cochain 1s determined by its

image under *A • From the definition of T I 1.

This proves 1).

PROOF of 2). Let 01 = Hom(A1'~) and let ui generate 0i.

The H*(7C)-structure on H:(W x KP) is given by cup-products with elements

v x'P where v E H*(7C) (see 3.5). Therefore H:(W ~ AiP) -= H*(1t) ~ CiP

is a module over H* (tt) generated by 1 x ui
P • Now as in 3.1 we can con­

sider Ai a.s a subspace of Kq for some q. let Lq be a complementary

space to Ai in Kq • We can represent ui as a cochain by insisting that

ui(Lq) = o. Now Pui is defined by the composition
(u. )p

W ~ KP~> KP 1 :> z
P

which is equal to 1 ~ (ui)p.

and the proposition follows.

Therefore l~UP
i This proves 2)

We now define a gra.ded, module S

defined by the formula

Sr = LO ~ j < (p-l)r/p HjeW/-) 0 ar-JeK).

Note that j = pj - (p-1)j < (p-l)(r-j).

3.7. LEMMA. B: Hr (W/7C x K) -:> Jf'+l(W x1f' KP,W/7C x10

maps Sr monomorphically.
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PROOF. By the cohomology exact seuqence, we need only show that

Sr n 1m 1* o. By 3.6 we need only show that Sr n (H*(7C)-module gen-

erated by Im d*P) 0 • Now d*Pu = Eqj~~1) wj x DjU by VII 3.2 and

VII 4.4. By V 5.2 and VII 5.4

*wk d Pu = wk+Q(p_1) x aqu + other terms.

But k + q(p-l) L (p-l)q which proves the lennna.

We now define a modified transfer or' such that the following

diagram is commutative.

Wx
1C

Let :[P be subdivided so that the triangulation is invariant under 1C and

has the diagonal as a subcomplex (subdivide K to get a simplicial complex

an1 then take the Cartesian product of the triangulation as defined in [3]

p. 67). Since H* (W x I{p) H* (KP), we can represent any cohomology class

of W x KP by E ~ u where u is a cocycle on KP. If w € W and

(J € KP, we define

-r ' (E ® u) (w ® 0') ra€1C g(aw) u{aO')

L.et€!t e(w) u(aO')

If 0' € Kd then eta 0' for all a € 1C and so

l' I (E ® u) • (w ® 0') P e(w) u(O') o .

Therefore -rICe ® u) E C:(W x KP,W x Kd). This defines the modified trans­

fer.

Let h: l(P -) K be the projection onto the first factor. Let

0: H*(W/1C X K) -) H*(W x:rr KP,W/rr. x K).

Reca.ll from 3.5 that 0 is a homomorphism of H*(1C)-modules. Let u € ~(K)

3.8. LEMMA. -0(w21_1 x u)

If P 2,

W2i · 1'1(1 x h*U)

Wi +1. -r'(1 x h*u)
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The composition of' the first two maps is equivariantly homotopic to the

identity by V 2.2. Therefore wi • ~'(1 x h*u) is represented by
.q

W @ KP (_1)]. Wi@JhN;> z .
p

Let h#u:

KP - Kd .

u 1tN = O.

#->Zp

Then u" is

Therefore

be written as u' + u"where u' = 0 on Kd and Ull = 0 on

invariant since Kd is fixed under 1( • Therefore

wi · ~'(1 x h*u) is represented by

W8 KP (-1) 1C1wi@J.IN >~.

Now d

Now un IKd = ulK. Theref"ore 5(Wj x u) is given by

(-1)q+jd p w.01"
W~ 1CKP ;> W (g)1C Ie J :> Zp.

o ~ 1 + 1 ® d and we can leave out d ® 1 since wj is a

cocycle. Therefore 8(Wj x u) is represented by

(-l)Q+j(W
j

® u n )(, ® 0) (-1)j(W
j

® 8U") •

Now 8U" o(h#u - u') -out since u is a cocycle. Therefore

We must show that for i even or p = 2, -Wi ® urN and

wi _1 \8) 8U' have the same class in H*(W x
1C

KP,W/1C x K). It is sufficient to

show that these two cocycles have the same value on every relative cycle in

(W x
1C

KP,W/ 1f x K). Such a relative cycle has the form

where

d(Lf:~ e j ~1C Cq _j +i

Therefore for j even or p = 2

Therefore

N Cq _j +i - d Cq_j +i +1 € Kd ·

Now since u' = 0 on Kd we have for i even or p 2
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q i
(Wi ~ u N)(Lj:O e j ~ Cq_ j +i ) = u NCq

(-1)q(8U )Cq+1

-(Wi - 1 ~ au )(~J:~ e j ~ Cq_j +1)

3.9. THEOREM. For a. fixed odd prime p, the axioms , through 5

of VI §1 characterize the operations pi (1 = 0,1,2 •.• ). Precisely, if

Bi (i = 0, 1 ,2 ••• ) is any sequence of cohomology operations satisfying

these axioms then, for ea.ch i, Bi = pi.

PROOF. From the axioms we deduce that

(1) 8pi = pi8 as in I 1.2.

(2) piw1 = 0 from VI 2.2 and so pi ew1u)

Cartan formula.

k i k ·
Li =0(-1) w21 (p-l)+2 p -~

~k-1( )1__ pk-i-l
+ ~i=O -1 -W2(1+1)(p-l)+2

= W2 • pkU ·

(4) By 3.7, 8: Hr(W/n x K) -) ~+'(W X1f KP,W/1C X K) maps

Sr monomorphically.

(5) By 3.8, -8(w2i_1 x u)

k i k-i * /Let 1 = L,i=O( -1 ) Y121 (p-l) +1 x p U E H (W 1C X K). We recall that

8 is an H* (ft) -homomorphism by 3.5. We see that

81 ~=O(-l)i W2i (p-l) 8(w1Pk-iu).

k i k 1Li =O(-l) w2i (p-l) P - (8(W,U» by (1) and (2)

E~=O(-1)i+1W2i(P_1) pk-i(w2• 1'1(1 x h*u» by (5)

by (3)

If q = dim u = 28

1'1(1 x h*u) = q,

or 28+1, we put k = 8+1. Then 2k > q and dim

so pk-r 1 (, x h*u) = 0 and 81 = 0 •
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SUppose (Bi } satisfy the same axioms a.s {pi}. Then we can define

1 ' b~ replacing pi with Bi . As above 81 ' 0 • Therefore

( ~~ (1)1 X (ps-i+1_ Bs- i +1)u)
8 ~=o - w2i (p-1)+1 8(1 - 1') o.

The term i s + 1 is omitted since pO _ BO
1 - 1 O. Now

dim (,. - 1"') 2i(p - 1) + 1 + q + 2(s - i + l)(p - 1)

2(s + l)(p - 1) + q + 1

Therefore

{
2(s + 1)p

2( s + l)p - 1

(p - 1) dim (1 - 1') /p

{
2(s + 1)(p - 1)

2{s + 1)(p - 1)

= 2S(p - 1)

if q = 2s + 1

if q = 2s.

2S(p - 1) + 2(p - 1)

- (p - 1) /p

+ 2 (p - 1) - (p - 1) /p

if q = 2s+1

if q = 2s.

Therefore (p - 1) dim (1 - 1')/P > 2i(p - 1) + 1 = dim w2i (p-1)+1

Therefore (1 - 1 t) € Sr where r = dim (1 - r'). Since 8 (r - '1') = 0,

3. 7 shows that ,. - ,.' = o. Therefore p~ = Biu for 0 ~ i ~ k. If

1 > k then 2i > 2k > dim u and p~ =B~ = o. The theorem is proved.

3. 10 • THEOREM. The axioms 1 through 5 characterize the opera.tions

gqi (1 = 0,',2 ••• ). Precisely if Ri (i = 0,1,2 ••• ) is any sequence of
· icohomology operations satisfying these axioms then, for each i, RJ. ::: Sq

PROOF. From the axioms we deduce

(1) 8Sqi = Sqia as in I 1 .2,.

~ k i k Sqk-l 5'~-1 Sqk-i-l
(2) ~=O Wi Sq - (w1u) = L1=o wi +1 U + ~=O wi + 2 U

w, SqHU.
(3) 8: tr(W/u x K) -~ ~+l(W X 7t KP, W/1f X K) maps Sr mono­

morphica.lly by 3.7.

*(4) 8(1 x u) = w1 T'(l x h u) by 3.8.

Let,. ~=O Wi x Sqk-1. U E H* (W/fC x K) •

We recall that 8 is an H*(7t)-homomorphism by 3.5. Therefore
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define

VIII. RELATIONS OF ADEM, AND UNIQUENESS

~=o wi Sqk-i 5(1 X u)

~=O Wi Sqk-i('w,'1"'{l X h*u»

w, SqkT1 (1 X h*u) •

dimu,weput k=q+l. Then SqkT1 (lXh*u) =. 0 and so 810.

Suppose (Ri ) satisfy the same axioms as (Sqi}. Then we can
. 1

1 1 by replacing Sql with R. As above 51 ' o. Therefore

5(L{=O wi X (SqQ+1-1 - RQ+l-i)u) = 5(, - ,') 0

Now dim (, - 1') 2q + 1 and i ~ q < (2q+l)/2. Hence ., - l' € Sr.

Therefore ., - l' 0 by 3. 7 • Therefore sqiu = Riu for 0 ~ 1 ~ k.

If 1 > k then sqlu :: Riu = o. So the theorem is proved.
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APPENDIX

Algebraic Derivations of Certain Properties of

The Steenrod Algebra

ct, the Steenrod algebra mod p, has been defined in VI § 2 (in I

§2 for p = 2) in a purely algebraic manner as the free associative algebra

~ over ~ generated by the elements pi of degree 2i(p-1) and f3 of

degree 1 (for p 2 by Sqi of degree i) modulo the ideal generated by

f3e, pO _ 1 (Sq°- if P = 2) and the Adem relations. The theorem proved

in this appendix (Theorem 2) is purely algebraic both in hypothesis and con­

clusion. It was proved in Chapters I, II and VI by allowing (J, to

operate on the cohomology groups of certain spaces. The proof to be given

here will be purely algebraic. The only new step is an identity between

binomial coefficients mod p which was proved by D. E. Cohen [1] in a paper

on the Adem relations.

Let P{ ~ 1 ' ~2' • • .) be the polynomial algebra over ~ on generators

~i of degree 2{pi_ 1) (of degree 2i _ 1 if P ~ 2). Let E(TO,T 1, ... )

be the exterior algebra over Zp on generators Ti of degree 2pi_ 1.

Let H = P @ E (H = P if P 2). We shall define a diagonal

"'H: H --) H ® H which will make H a Hopf algebra. In doing so we are

free to choose t H on the generators ~i and Ti and then VH will be

uniquely determined. Let

i
Li ~~-i ® ~i and "'H'fk

The following lemma is easily verified.

LEMMA 1. "'H is associative. H is a commutative associative Hopf

algebra with an associative diagonal. H is of finite type.

From now on we shall give no special discussion of the case p = 2,

since this can be obtained by replacing pi with Sqi and suppressing all

133
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arguments involving ~ or ,.i ·

We define a homomorphism of a.lgebra.s

*1): ~-;;>H

by letting· 1)(pi) be the dual of ~,1 and ~(~) the dual of "0 in the

basis of admissible monomials.

THEOREM 2. The map 1') induces an epimorphism (1 -:> H* which

sends no non-zero sum of admissible monomials to zero.

Theorem 2 has the following corollary.

THEOREM 3. a) 1') induces an isomorphism ft -:> H*. Cl has a

basis consisting of the admissible monomials.

b) Ci is a Hopf a.lgebra with diagonal given by

f3 ~ 1 + 1 ~~.

c) H is the Ropf algebra. dual to ct.

PROOF of THEOREM 3. As 1n VI 2.1 we see that the admissible

monomials span «. They are linearly independent by Theorem 2. Part a)

of the theorem follows. Part b) is proved by shOWing that

* iq>H 1)(P )

*<PH T\( t3)

where <PH is the multiplication in H. Part c) is trivial.

We shall now prove Theorem 2. The first step is to show that " -••

is zero on 13
2 and on the Adem relations. It is easy to see that

fI( ~2) = 0, since if x 1s a monomial in H., then

bY' inspection of the formula for tHx. In order to see that 'I maps each

Adem relation to zero we need a lennna.

LEMMA 4. (Cohen [1) if 0 ~ c < pd then

12. (-1) c+j ( c+d ) «d-j)(P-l) -1) mod p.
J j c-pj

PROOF. The formal power series in a variable t with coefficients
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in ~ rorm a canmutative ring. A power series whose constant coefficient

is non-zero has a unique inverse under multiplication. Let f be the

element of the ring given by

f(t) ({l + t)p-'- t P)C+d/(l + t)C(p-l)+1 .

The lemma will be proved by expanding f( t) in two different ways.

If we apply the binomial theorem to the numerator of f(t) we obtain

f(t) = Ej
( Cjd )(-l)j t Pj (l + t)(d-j)(p-l)-l

Since c - pj < p(d - j) the expansion of (1 + t)(d-j)(p-1)-1 will con-

tain t C- pj only if j < d, in which case the coefficient of t C-pj is

«d-j~~~jl)-l). Therefore the coefficient of t C in f(t) is

E (_1 ) j ( c+d ) ( d - j) (p-1 ) - 1)
j c-pj

On the other band (1 + t)p

(1 + t)p-'- t P

Therefore

1 + t P and so

1 - t( 1 + t)p-1

f(t) (1 - t(l + t)P-')c+d/(l + t)C(p-l)+1

E
j

(-l)j ( Cjd )t j (l + t)(j-C)(p-l)-l

If we expand (1 + t)(j-C)(X:>-l)-l we obtain a term of the form t C- j only.

if j 5..c. let

cient of t C in

~C-j be the coefficient of this term.

ret) 1s

Then the coeffi-

Now "'0 = and the lemma will follow if ~k ° for k > o.

(-(p-l)k - 1) (-(p-l)k - 2) .•.. (-(p-l)k - 1 - k + 1)

k !

~ (p~)

° if k>O byI2.6.

PROPOSITION 5. The homomorphism

relation to zero.

Tp ~ -;> H* sends each Adem
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PROOF. Suppose x € H is a monomial then

This is zero unless x

< pO: ~ P(3'(~1 ~ So + So ~ ~l)j{e~ ~ e,)k >

< pO: ® p(3, Ltn (~ )s,m+Pk ~ e,j+k-m >

0: + (3 j + k(p + 1).

< pO:p(3, ~ ~ ~ ~ >

~j e k
1 s2

Then

and (for dimensional reasons)

( O:~Pk)

Let R(a,b) _papb + L
i

(_l)a+i «b-i)(p~l)-l) pa+b-ipi .
a-pl

Then R(a,b) = 0 in (j, if a < pb. Now 1') R(a,b) could only be non­

zero on monomials of the form E~e~ where a + b = j + k(p+l) and its

value on such monomials is

_(a+b-~(p+1»)
a-pk + L:. (-1) a+i«b-i) (P:-') -1) (a+b-k~p+1))

1 a-pl a+b-l-pk

( 1 )

By Lemma. 4 with d = b - k, c = a - pk and j = i - k, this expres-

sion is zero mod p.

We now have to show that if a S. pb, then 1') sends the following

expression to zero

_ pa(3pb + L:. (_l)a+i«b-i)(p-l») (3 pa+b-i pi
1 a-pi .

+ L: (_1)a+i«b-i)(~-1)-1) pa+b-i (3 pi.
k a-p~-'

Let Q € H* be dual to 1", € H. Then

( 2)

To see this we note that ~(pa(3),~«(3pa) and Q ~(pa-l) are zero except on
a a-1monomials of the form ~ ,1'0 and S1 l' l' and on these monomials the

identity (2) is easy to check.

If a < pb then the expression (1) is sent to zero by 1'), as we

see on using (2) and 1')(R(a,b»

then (1) becomes

o and 1')(R(a-l,b) = o. If a = pb
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Under 11 this becomes - Q 11 ( ppb-l pb). Now

137

11 (R (pb- 1 ,b) ) o .

This proves the proposition.

COROLLARY 6. 11 induces a homomorphism of algebras 11 : «-.-) H*.

As in VI 4.2 we can set up a one-to-one correspondence between

sequences I

i r 0,1,2, ....

by the equations

(cO,i1'Cl, ... ,ik,ek'0, ... ) with Er ° or 1 and

and admissible sequences II (eo,i"e" ... ,ik',ek,o, ... )

Let pI'

~I

Then sI

i r i~ - pl~+l - Er "

e i' e i' ek
~ ° P 1 ~ 1 P k ~ and let

eo i 1 e, i k ck
"0 S, 1", Sk l'k

and pI ' have the same degJ?ee. We order the set of" sequences

{I} leXicographically from the right.

LEMMA 7. < pI',gJ > is zero for I < J and + 1 for I = J.

PROOF. We prove this by induction on the degree of ~J • It is

true in degree 0 •

Case 1). The last non-zero element of I' is i k . Let M' be the

(If k = 1, M

Now < pI' ,eJ >

sequence I t with i k replaced by °.. We have

i k i k and M = (eo ,i"e1 , ••• ,ik_1 + pik ,ek_1 'o .... ) ..

(eo'o, ... ) .. )

< pM' ® lk, ...~J >. By our induction hypothesis we need

only take into account terms of the form ~L ~ e7k where L ~ M in the
Jexpansion of "'Hs . Inspecting the formula for vH we see that

< pI' ,gJ > 0 unless J and I have the same length and jk S. i k .

Since J L I, we can assume that jk = i k and that J and I have the

same length. Therefore in the expansion of VHSJ we need only take into
L ik

account the term s @ s1 where

(If k = 1, L (80'°,....).)
So L L M and we have L = M if and only if J I.. By our induction
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hypothesis the lemma follows in this case.

Case 2). The last non-zero term of If is eke Let M' be the sequence

I' with ek replaced by zero. Then

(If k = 0, M = ( 0 , 0 , ••• ) .)

NoW'

< pl' ,~J > = < pM' ~ ~,tH~J > .
By our induction hypothesis we need only take into account terms of the form

L J
~ ~,.0 where L ~ M in the expansion of tH£. Inspecting the formula

for t H we see that < pI I , t J > = 0 unless J and I have the same

length (and so 8 k = ek = 1). We assume that J and I have the same

length. Then in the expansion of tHtJ we need only take into. account the

term ~L x "0 . where

L (8o,j,,8 1 , ••• ,jk_1,ek_1 ,jk + 1,0, .•• ).

(If k = 0, L (0,0, ••. ).)

So L L M and we have L = M if and only if J::: I. The lemma follows.

We now show that 11 is an epimorphism. On each degree there are

only a finite number of monomials ~J • By a decrea.sing induction on J I

and using Lemma 7, the image of '1 is seen to contain the dual of £J •
I

Moreover 11 does not send the sum of admissible monomials L ~iPIi to

zero, as we see by applying Lemma 7 to the term for which Ii is greatest.

This proves Theorem 2.
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