COHOMOLOGY OPERATIONS

LECTURES BY
N. E. Steenrod

WRITTEN AND REVISED BY
D. B. A. Epstein

PRINCETON, NEW JERSEY
PRINCETON UNIVERSITY PRESS
1962



Copyright © 1962, by Princeton University Press
All Rights Reserved
L. C. Card 62-19961

Printed in the United States of America



PREFACE

Speaking roughly, cohamology operations are algebraic operations on
the cohamology groups of spaces which commte with the homomorphisms in-
duced by continuous mappings. They are used to decide questions about the
existence of continuous mappings which cannot be settled by examining
cohomology groups alone.

For example, the extension problem is basic in topology. If spaces
X,Y, a subspace AC X, and a mapping h: A —> Y are given, then the
problem is to decide whether h 1s extendable to & mapping f: X —> Y.
The problem can be represented by the diagram

/’ “E fg
Y

where g 1is the inclusion mapping. Passing to cohomology yields an alg'e-

it
[a g

braic problem
H (X)
A

* N % *

g X ge = h

B () H (D)

If f exists, then ¢ = £ solves the algebraic problem. In general the
algebraic problem is weaker than the geometric problem. However the more
algebraic structure which we can cram into the cohomology groups, and which
9 must preserve, the more nearly will the algebraic problem spproximate
the geametric. For example, ¢ is not only an additive homomorphism of
groups, but must be a homomorphism of the ring structures based on the cup

product. Even more, ¢ must commute with all cohomology operations.



In these lectures, we present the reduced power operations (the

squares Sqi and pth 1

powers P~ where 1 - 0,1,..., and p 1is a prime).
These are constructed, and their main properties are derived in Chapters V,
VII and VIII. These chapters are independent of the others and may be read
first. Chapter I presents the squares axiomatically, all of their main
properties are assumed. In Chapters II, III, and IV, further properties
are developed, and the principal applications are made. Chapter VI contains
axioms for the P‘,L ( p>2), and applications of these. Chapter VIIT
contains a proof that the squares and pth powers are characterized by some
of the axioms assumed in I and VI.

The method of constructing the reduced powers, given in VII, is new
and, we believe, more perspicuous. The derivation of Adem's relations in
VIIT is considerably simpler than the published version. The uniqueness
proof of VIII is also simpler. In spite of these improvements, the con-
struction of the reduced powers and proofs of properties constitute a
lengthy and heavy piece of work. For this reason, we have adopted the axio-
matic approach so that the reader will arrive quickly at the easier and more
interesting parts.

The appendix, due to Epstein, presents purely algebraic proofs of
propositions whose proofs, in the text, are mixed algebraic and geometric.

The reader should regard these lectures as an introduction to co-
homology operations. There are a number of important topics which we have
not included and which the reader might well study next. First, there is
an alternate approach to cohomology operations based on the complexes
K(m,n) of Eilenberg-MacLane [Ann. of Math., 58 (1953), 55-106; 60 (195L),
49-139; 60 (1954), 513-555]. This approach has been developed extensively
by H. Cartan [Seminar 1954/55]1. A very important application of the squares
has been made by J. F. Adams to the computation of the stable homotopy
groups of spheres [Comment. Math. Helv. 32 (1958), 180-214]., Finally, we
do not consider secondary cohomology operations. J. F. Adams has used these
most successfully in settling the question of existence of mappings of
spheres of Hopf invariant 1 [Ann. of Math., 72 (1960), 20-104; and Seminar,
H. Cartan 1958/59].

Princeton, New Jersey, May, 1962. D. B. A. E.
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CHAPTER I.

Axiomatic Development of the Steenrod Algebra @(2)

In §1?, axioms are given for Steenrod squares. (The existence and
uniqueness theorems are postponed to the final chapters.) In §2, the ef-
fect of squares in projective spaces is discussed, and it is proved that
any suspension of a Hopf map is essential. 1In §3, the algebra of the squares
@(2) is defined and the vector space basis of Adem [1] and Cartan [2] is
obtained. In §4%, it is shown that the indecomposable elements of the
algebra @(2) are represented by elements of the form Sqej: Some geo-
metric applications of this fact are given. In §5, the Hopf invariant of

2n-1

maps S —> 8" 1is defined. The existence theorem for maps of even

Hopf invariant when n 1s even, and some non-existence theorems, are given.

Unless otherwise stated, all homology and cohomology groups in
this chapter will have coefficients Zz.

§1. Axioms.
We now give axioms for the squares Sqi- The existence and unique--
ness theorems will be postponed to the final chapters.
1) For all integers i > 0 and q > 0, there is a natural transformation
of functors which is a homomorphism
sot: ®HYx,8) —> E*Nx,0) , n>o.

2) s¢° - 1.

3 If dimx = n, Sqg™ = x°.
¥ If i>dimx, Sqlx = o.

5) Cartan formula

k
sa¥(xy) - Z salx . sg¥ Yy
i=0

1
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We recsll that if x e HP(X,A) and y ¢ HY{(X,B), then xy ¢
E**9(X,AuB). This 1s true in general in simplicial cohamology, but same
candition of niceness on the subspaces A and B 1is necessary in singu-
lar cohomology.

6) Sq1 1s the Bockstein homomorphism B of the coefficient sequence

0—>Z2——>Zh——>Z2—>O.

7) Adem relations. If 0 < a < 2b, then
Sq®sq® - 2[3/21 2:;33) 8q®*P-Jggd |

3=0
The binomial coefficient is, of course, taken mod 2. )
The first five axioms imply the last two, as will be proved in the
final chapter
1.1 LEMMA. The following two forms of the Cartan formula are
equivalent in the presence of Axiom 1):
satxy) - Iy sadx . sy
salxxy) - I salx x sgt-Jy
PROOF. Iet p: XxY—>X and q: X xY—> Y be the pro-
Jectlons. If the first férmule holds, then
sat(x x y) = Sq"((x x 1) . (1 x y))
Zj qu(x x 1) . Sqi'j(1 X y)
z; s (60 . s’ I(ay)
= I p'sa’x . q*seldy
= Z; (Sadxx 1) . (1 x sq'7Iy)
= I sa¥x x sa' Yy .
Iet d: X —> X x X be the diagonal. If the second formls
holds, then

sal(xy) - sqld*(x x Y = dsdxxy
- 'y sa'x x sqiy - Z salx . sqi-dy .
1.2 LEMMA., Axioms 1), 2) and 5) imply:
If s: HY(A) —> HI*'(X,A) 1is the coboundary map, then

58t = sq's .

PROOF. We will show that 5 1s essentially equivalent to a x-
product with a 1-'dimensional class., Then the Cartan formula applies to give
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the desired result. (This method can be used for any cohomology operation
whose behaviour under x-products is known.)

Let Y be the union of X and I x A, with A CX identified
with (0} x A. Let B=1[1/2,1]xA CY and Z =X UI[o0,1/2lxA CY,
and let A' = (1} x A and A" = B n Z. We then have the following comm-
tative diagram.

H(a) = BT x 4) = 8lan) L Hiar ) > Hi(ATA")
8 1 51 sl sl 61

B (x,0) = B (v, 1xa) =5 ®HY'(7,A1) <— HAT(y,Arz) =5 B (B,A10A")

The isomorphisms in the lower line are due to homotopy equivalence, the
5 lemma, and excision. In order to prove SSqi = Sqia on Hq(A), it
is sufficient to prove it on Hq(A'u Z). Looking at the last square on the
right of the diagram, we see that it is sufficient to prove it on
B(ar v AM).
So we have to prove that sfsq:L = Sqia where
5: HI(I x A) >Hq“(IxA,IxA) .
et 0 and T be the cohomology classes in H(1) corresponding to the
points O and 1. ILet I be the generator of H (I,1).
Starting with &(7 xu) = I x u, and applying the Cartan for-
mula, we obtaln
sals(T x w

Sqi(Ixu) = SquxSqiu = IxSqiu
5(TxSqiu) =5Sqi(Txu) .

it

1

Similarly, 5(0 x u) -I x u leads to Sqis(d x w) = 8847(3 x w) .
§2. Projective Spaces.
Let HY(X) denote the reduced cchomology group (mod 2).

2.1. IEMMA. Let SX denote the suspension of X, and let
s: HYX) —> H¥'(SX) denote the suspension isomorphism. Then, from
Axioms 1), 2) and 5), it follows that sSql = Sqls .

PROOF. Iet CX and C'X be two cones on X. Then SX = CX v C'X,
where CX n C'X = X. The suspension isomorphism is defined by the follow-
ing commutative diagram of reduced cohomology groups
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B —2 5 B (x)

N

8 ~ ~ |
v

_I'_Iq'“ (CX,X) <_eﬁ%s_iﬂ Eq"" (SX,C'X)

The two vertical maps are isomorphisms because CX and C'X are contrac-

tible. The lemma follows from Axiom 1) and 1.2.

2.2 LEMMA. If X = Uli{=1Ai, where each Ai is open and contrac-
tible in X, then the product of any k positive-dimensional cohocmology

classes of X 1s zero.

PROOF. Since Ai is contractible in X, inclusion induces the
zero homomorphism HI(X) —> Hq(Ai) for q > 0. Hence Hq(X,Ai)—> 14(x)
is an epimorphism for each q > 0 and for each 1. If uy has positive
dimension and uy e H*(X) for 1< i<k, then, for each i, there is
an element vy € H*(X,Ai) which maps onto uy . Now VyVp eee Vp €
H*(X,U Ai) = 0 and the homomorphism H*(X,U Ai) —_ H*(X) maps V,V,...
Vi onto UylUyeoelly. (Apply the theorem on the invariance of the cup-product
under the inclusion (X34,...,8) C (X;Ab“"Ak)‘) The lemma follows.

By 2.2, cup-products are zero in SX.

2.3. THEOREM. The n-fold suspension of the Hopf map s3 —_ Sg

is essential.

PROOF. let X = P2(C), the complex projective plane. One sees
by Poincaré duality, that if x is the non-zero element of HE(X) , then

x2 1is the non-zero element of Hh(X)

4 to 82 by means of

X 1is constructed by attaching the L-cell e
the Hopf map f: s3 —_— s2. So 8™ 1is constructed by attaching the
(n+h)-cell s%* to s™2 . 952 by means of the map SPf: S™3 ——
s™2, Now

qu(snx) = sn(Sq2x) by 2.1
- s(x®) by Axiom 3)
4 0 since s 1s an isomorphism,
So s 1is the non-zero element of Hn+2(snx) and qu(snx) is

the non-zero element of Hmh(SnX) . Now suppose the map sir  is
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inessential. Then 8% ~ s™2 , s™* 1et r: 8% —> s™? be this
homotopy equivalence followed by the obvious retraction. Iet u be the
non-zero element of Hn+2( Sn+2) . Then Sqau = 0. So
o = r(%®w = saf(r+w) = 5a%(s™ 4 o.

This is a contradiction.

We can prove in a similar manner that any suspension of the other
Hopf maps is essential.

Axioms 3), 4) and 5) enable us to compute Sqi on a part of the
cohomology ring.

2.k, IEMMA. Axioms 2), 3), 4) and 5) imply that if dimu = 1,
then sqlu¥ - <§_{>uk+i .

PROOF. The lemma follows from Axioms 2) and 4) if k = o, If
k> 0, then by induction on Kk,
Sqiuk _ Sqi(u.uk'1) - Sqou.Sqiuk'1 N Sq1u.Sqi'1uk'1

()« (i )] et = ()t

2.5. LEMMA. If dimu =2 and Sq'u = Bu = O
s?luy - <1i<>uk+1 and st . o.

, then

PROOF. This follows by induction, as in the previous lemma.
This following lemma is extremely useful in calculating binomial
coefficients mod p.
m 1
2,6. IEMMA. Iet p be a prime and let a = z a;p”  and

m
i
b = Zi=obip (0 < ay,b; <pP). Then
) =M ()
= mod p.
( a I 1=0\ 84

PROOF. (li’ > - p‘p‘:)';::%’i“l (0 <1< p)

0 mod p.

Therefore, in the polynomlal ring Z/[x], we have (1 + NP -1 4 %P,
i i

It follows by induction on 1 that (1 + x)P = 1 + xP . Therefore
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i i
b, p m b:p
(1+x)b=(1+x)i =H (1+x)1
i=0
m 1 by m ®1 /by apt
= H (1 + xP) = H z ( s )x .
i=0 i=0 8=0
i
Ta,p
The coefficient of x> = X +  in the usual expansion of (1 + x)P is

m b
(g ) . But, from the above expansion, we see that it is H i-0 < ai ) .

The lemme follows.

2.7. ILEMMA., If dimu =1, then

k
Sqi<u2k> = u 2 if 1 =0

= 0 if 14 o,ak
k41
= u? if 1 = 2%

PROOF. This is immediate from 2.4 and 2.6.

§3. Definitions. The Basis of Admissible Monomials.

We now define the Steenrod algebra mod 2, @®@(2). et M = (Mi)
be a sequence of R-modules, where R 1s a commutative ring and 1 > o.
Then M 1s called a graded module. We say the elements of My have de-
gree or dimension 1. A homomorphism f: A —> B of graded modules is
a sequence of homomorphisms fi: Ai _ Bi' If M and N are graded
modules, we define thé graded module M® N by (M@N), = Z‘.i M ®@N, ;.
A graded R-module A 1s called a graded algebra if there is a homomorphism
¢t A®A —> A and a unit element 1 (which is obviously of degree 0).
The algebra is said to be agsociative if commutativity holds in the diagram,

AQARA —2B' s a0

1®9 P

v v
A@A —2 5 3

Iet B be a graded module. ILet T: A® B—> B® A be the map defined
by Ma®b) = (-1)PAb ®a), where p-dima and q = dim b. We say
the algebra is commutative if the diagram

A@A L S agaA

N
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is commtative. A homomorphism f: A —> B of algebras, is a homomorphism
of modules, which commites with the multiplication, i.e., fo, = og(f @ f),
end such that f(1) = 1. Let M be a graded module and A a graded algebra
M is called an A-module, if there is a map v¥: A @ M —> M, which respects
the unit of A, and such that the following diagram is commutatlive

AeagM —BY¥ 5 agN
Josn v
AgM —Y > M
If B is a graded algebra, then A ® B 1is given a graded algebra struc-
ture by the multiplication ABe@A®B ~8L®1 5 s oprpBeB 2L,
A®B., If N is a B-module, then M® N is an A ® B-module by the map-

i
e AeBeMeN 8T81 . rougBeN —L8L, MgN.
The ground ring R may be regarded as a graded module R, such that
Ry =0 1if i > 0. We say a graded algebra 1s sugmented if there is an
algebra homomorphism e€: A —> R. ILet M be a graded R-module. ILet
M’ be the tensor product of M with itself r times, and let TI(M) =

M (Mo = R). r(M) is called the tensor algebra of M. The multipli-

— N=0
cation r(M) @ (M) —> r(M) is induced by the canonical isomorphisms

M @ M ~ MTHS,

We define @ (2), the Steenrod algebra mod 2, to be the graded
associative algebra generated by the Sqi, subject to the Adem relations
(§ 1, Axiom 7). In detail, the construction is as follows. Let M be
the graded Z,-module, with M; =~ 2z, for all 1 > 0. We denote the gen-
erator of M, by Sq¥, so that aim Sq¢* = 1. @(2) ‘is the quotient of
T(M) by relations of the form

5¢® ® 5a° - I (Ej‘233> 5P @ sqd  when a <.
We write S =1 in  @(2).

Given a sequencé of non-negative integers I = (11,12, .. .,ik) , k
is called the length of I. We write k = ¢(I). We define the moment of
I by m(I) = Z'.ls{=1sis. A sequence I 1is called admissible if both
iy 22i; for k>s>2, and 1, > 1. We write

1, 1 1
sal = sq¢'sq?...sqk
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If I 1is admissible, we call SqI admissible. We also call Sqo admis-
sible. We shall also speak of the moment of SqI .

3.1. THEOREM. The admissible monomials form a vector space basis
for @(2).

PROOF. We first show that any inadmissible monomial is the sum of
monomials of smaller moment, and hence that the admissible monomials span
@(2). Let I = (i,,. .s,ik) be an inadmissible sequence with no zeros.

For some r, n=1,<2i,, = 2m. So, by the Adem relations,
sa’ - sq'sa"sa"sq” - 2, 2 8qMsq™™ Isqlsg

where j e Z,. It 1s easy to verify that each monomial on the right has
smaller moment than SqI (separate arguments are needed for the cases

j =0 and J > 0). By induction on the moment, it follows that every
monomial is a sum of admissible monomials.

We still need to show that the admissible monomials are linearly
independent. lLet P be «o-dimensional real projective space. Then H*( P)
is the polynomial ring Z2[u], where dimu = 1. Let P® be the n-fold
Cartesian product of P with itself. let W = U X U...X U € Hn(Pn). The

following proposition will complete the proof of 3.1.

3.2. PROPOSITION. The mapping @(2) —> H (P%), defined by
evaluation on w, sends the admissible monomials of degree < n into

linearly independent elements.

PROOF. The proposition is proved by induction on n. For n =1,
it follows from 2.4.

Suppose I a.ISqu = 0, where the sum is taken over admissible
monomials SqI of a fixed degree q, where q < n. We wish to prove that
ar =0 for each I. This is done by a decreasing induction on the length
2(I). Suppose that ar =0 for ¢(I) > m. The above relation takes the
form

(1) Z0(1)em aISqu+ Zo(T)<m aISqu - 0 .

The Kinneth theorem asserts that
Hq+n(Pn) ~ Zs HS(P) ® Hq-v-n-s(Pn-‘l)
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ILet g denote the projection into the summand with s = M, et w =

uxw', where w' ¢ H'(PP'). Then, by 1.1,

(2) Squ = SqI(u x w') = ZJgI Sun X SqI'Jw' ,

where J < I means O < J, <1, forall r. Let J, be the sequence

(2 '1,...,21,20). We assert that

0 if &H(I) <m,
I
(3) 23 Sq W= m I-J
1.1'2 X Sq Moy if &(I) =m .
J k-1 k-2
Recall that, by 2.7, Sq°u = 0 unless J has the form (2 ,2% °,...,

m
2! ,20) or is such a sequence interspersed with zeros. And Sun = u2

if J = Jm or is obtained from Jm by interspersing zeros. In the last
case {(J) > m. To prove 3), we refer to 2). If £(I) <m, then J I
implies that £(J) <m, and so g Sqiw = 0. If £(I) =m, then
g(Sun x SqI_Jw') =0 unless J =J < I. This proves (3).

If we apply g€ to (1) and use (3), we find
(%) u"am X ZI(I) o aISqI_Jm w' = o,
It is readily verified that, as I ranges over all admissible sequences
of length m and degree q, I - Jm will range over all admissible
sequences of length < m and degree q - 2™1; and the correspondence is
one-to-one. Since m> 1, we have q - 2™ 1 <1n-1. 8o the inductive
hypothesis on n implies that each coefficient in (4) is zero. Thus
ar =0 for £(I) = m.

This completes the proof of the proposition and hence of the
theorem 3.1.

3.3. COROLLARY. The mapplng @&(2) —> H*(Pn) glven by
SqI > Squ is a monomorphism in degrees < n.

EXERCISE. Find the basis of admissible monomials for Lo
We note that, if I 1is an admissible sequence of length k, then
deg sqt > oKl e 2K 1, so that the exercise is a finite problem.
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§4. Indecomposable Elements.

Much of the material in this section is due to Adem [4].

Iet A be an associative graded algebra. Iet A be the ideal
of A consisting of elements of positive degree. The set of decomposable
elements of A is the image under ¢: A A—> A of A®A. This image
is a two-sided ideal in A. Q(&) = A/9 (A®A) 1s called the gset of
indecomposable elements of A. A 1is called connected 1if Ao = R, the
ground ring.

4.1, LEMMA. In a graded connected algebra over a field, any set
B of generators of A, contains a subset B,, whose image in Q(A) forms
& vector space basis. Any such B, 1s minimal and generates A.

PROOF. Any set of generators of A spans Q(A). let B, be any
subset of B whose image in Q(A) 1is a basis. Iet g ¢ A be the element
of smallest degree, which is not in the algebra A' generated by {1 ,B,] .
There is an element g' ¢ A' such that g - g' is decaomposable. So
g-g co(A@A) and g-g' = Za a.;'_, where a.j'_,a;'_ ¢ A. But ai

and a;_ are in A'. Therefore g ¢ A', which is a contradiction.

L.2. IEMMA. Sq 1is decompossble if and only if i is not a

power of 2.
PROOF. Writing the Adem relations in the form
b-1 a+b aa.b b-1-j a+b-ja.J
<a>sq = 8478 +2‘-]>0 a-2;])sq 3q

where 0 < a < 2b, one sees that if (b;1> = 1, then qu‘*"b is decom-
k

posable. Suppose 1 1is not a power of 2. Then 1 = a + 2%, where 0 <
a < 2K, put b=25 Then b-1=14.004 ak". By 2.6 (b;) = 1,
So, if 1 1is not a power of 2, Sqi is decomposable.

k_
Now let 1 = 2K. Suppose quk = Zi" mJSqJ. Then, using the

notation of §2 and §3, we have by 2.7,
k+1 k k k
u? = 8¢° T my quua = 0.

This is a contradiction and the lemma is proved.
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h.3; THEOREM. The elements S»qgK generate @(2) as an algebra
PROOF. This follows from 4.1 and 4.2,
We note that the elements Sq2k do not generate @®@(2) freely.
In fact, by the Adem relations,

sasa® - sa%sa’ - (sq'sePsq’ .

4.4, THEOREM. Iet X be a space and let xeaﬁ 0, where x ¢
i
Hq(x;ze). Then Sq° x # O for some i such that o < 2% <q.

J
PROOF. 04 x° = 5% = £ (monomials in Sq°")x where 24 <q
throughout the summation. The theorem follows.

A polynomial ring in one varisble x 4is truncated if x" = 0 for

some n > 2.

4.5, THEOREM. If H*(X;'Zz) 1s a polynomial ring or a truncated
polynomial ring on a generator x of dimension q, and x2 4 0, then
q = oK for some k.

* +21
PROOF. Since H (Xi is a polynomial ring, e (x) = 0k for
0o<2l <q. Therefore Sq®x =0 for o< 2l <q. By .k, S x4 0

for some k such that 0<2k5q. So q=2k.

REMARKS. J. F. Adams has shown [3] that the only possible values
for k are 0,1,2,3. His methods entail a much deeper analysis of the
algebra @(2).

Examples of spaces which satisfy the hypotheses of the theorem are

i) Real projective space of any dimension, with q = 1;

11) Complex projective space of any dimension, with gq = 2;

iii) Quaternionic projeqtive ‘space of any dimension, with q = 4;

iv) The Cayley projective plane with, q = 8.

k.6, THEOREM. Iet M be a connected compact 2n-manifold, such
that HY(M) =0 for 1<q<n, andwith H'(M) =2,. Then n isa

power of 2.

PROOF. HZ™%(M) =0 for 1<q<n, and, if u is the generator
of 'Hn(M), w? is the generator of Hzn(M) . We now apply L.5.
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§5. The Hopf Invariant.

et f£: 8077 5 8% (n> 1). Let X be the adjunction space
obtained by attaching a 2n-cell eer1 to g% by the mapping f. Then
HYX;2) ~ 2 and Hzn(X;Z) ~ Z, while for other positive dimensions
the cohomology groups are zero. let X e HYX;Z) and ¥ e H2n(X;Z) be
generators. Then x2 = h(f).y for some integer h(f) called the Hopf in-
variant of f. It is defined up to sign. A homotopy of f 1leaves the
homotopy type of X unchanged, and so the Hopf invariant is an invariant
of the homotopy class of f.

Sometimes the double covering S1 —_— s is assigned the Hopf

invariant 1. In this case, the adjunction space is the projective plane.

2n-1

5.1, THEOREM. If there exists amap f: S —> 8% of odd

Hopf invariant, then n is a power of 2.

PROOF. Let n: H (X;2) —> H (X;Z,) be the map induced by the
coefficient homomorphism Z ——> Z,-. This map is a ring homomorphism.
Hence (nx)2 = 1y, since h(f) = 1 (mod 2). By 4.5, n is a power
of 2.

REMARKS. 1) We easily see that, if n 1is odd, then h(f) = o,
for then x2 = -x2 and so 2x2 = 0 (integer coefficients).
2) The following are the standard maps of Hopf invarient one, and their

ad junction space:

33 - 82 complex projective plane;
S.7 —_— Sh quaternionic projective plane;
515 —_ 58 Cayley projective plane.

5.2, THEOREM. (Hopf [5]). If n 1is even, there are maps

I

£ g2n! —> S with any even Hopf invariant.

PROOF. ILet 5,,5, and S be (n-1)-spheres and f: 3; x 8, —>5
We say f has degree (a,B) if f|S, x p, has degree o and flp, x 8,
hag degree B, where (p1 ,pg) €38, X 3,. The degree of f ;s independent
of the choice of (p1 ,pe)

Let E; be the n- cell such that B3, = bd E; (1 =1,2). Now

bd(E, x E;) = (B, x3,) U (81 X Ee) is a (2n-1)-sphere and
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(B, x 8,) n (38, xE)) = S, x8,. Let 8' be the suspension of S. Then
8' = E, vE_ where E_ and E_ are n-cells and E_ N E_ = 8.
Given a mapping f: S1 X 8y, —> S, we extend f to a mapping
C(f): (B, x 8y) U (S, xE,) —> E_UE_ = 8
in such a way that C(:f)(E1 x 8,) C E, and C(r) (S, x E2) CE_. C(f) 1is
amap 87T — g,

5.2 will follow from two lemmas.
5.3. LEMMA. h(C(f)) = aB.

PROOF. Throughout this proof integral coefficients will be used.
Iet X be the adjunction space (E1 X Ee) Ye(£) S'. The attaching map
C(f) gives rise to amap g: (E; x E,,E; x 5,,8; x E;) —> (X,E_,E)).
Let x be a generator of Hn(X;Z) . We define X, and X_ to be the in-
verse images of x under the isomorphisms Hn(X,E_) —> HYX) and
H'(X,E,) —> HX) respectively. Now we have a map (X,9,9) —> (X,E,E))

This gives rise to a commutative diagram

BX) ® HYX) — > HY(X)

AN N\

! l
HY(X,E,) ® HYX,E)) —> H(X,8") .

The vertical maps are isomorphisms. Therefore the cup-product x L
has image x2 under the map Han(X ,3) —> Han(X) . We have the following

commutative diagram

*
H(X) < = B(X,E) B— HYE,x E,,5,x Ey)
| - b |-
HY(8') <= HY($',E)) > HYE,,8) & HY(E,x p,,8;x B,)
o 2~

*
(s —E— Hn‘1(s1>/<\p2)

~ | ~
z —2— 7
*
By the diagram gx = ow _, where w_ generates Hn(E1x E;,8% Ee)'
By a similar diagram, we see that g*x_ = Bw_, where w_ generates

HYE,x E,,E,x S,).
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let pyt By xE, —> E; (1= 1,2). We define the generators

and p;xz = w_ . Now

*
Xq € Hn(Ei,Si) by DX, = W,

W,uW_ = pa:x1 up*,:,x2 = (x; x 1) vt xx) = (x, X Xp) .
Hence g*x,_ v g¥x_ = o8(x; x xe) and (x, x xe) generates
H™E, x Eyp,E; x S, v 8, x Ep) .

Now g: (E; x E,,E, x 8, v 8; x E;)) —> (X,8') 1s a relative
homeomorphism and therefore induces an isomorphism of cohomology groups.
So we have the isomorphisms

EX) <5 BX,81) 5> BNE, x By xS, v 8y x By .
Under these isomorphisms x° e Hzn(x) corresponds to X, v X_ e Hen(X,S')
and to' ap(x, x x,). Let y be the generator of H2n(x) which corresponds
to x; x X,. Then x° = opy.

This proves the lemma.

5.4, LEMMA. There is & mapping f: S%7' x 8% —s 8" of
type (2,-1), if n 1is even.

PROOF. If x,y ¢ %', 1let D(x) be the equatorial plane in
Euclidean n-space Rn, having x as a pole. Iet f(x,y) be the image of
y under the reflection through D(x). If we represent x and y by
vectors (x,,...,%x;,) and (y,,...,5,) in R", the mapping f is given
by

f(x,y) = vy - (22;_:1 xiyi) X.

If we fix x = (1,0,...,0), then f£(x,y) = (-3;,¥p,-++,¥,)-
This map has degree -1. If we fix y = (1,0,...,0), then

f(x,y) = (1 - 2x$,-2x1x2,...,-2x1xn) = g(x) .
g maps the plane x, = 0 into a point. It is gne-to-one for x, > 0
and for x, < 0. g can be factored into s —— PP — g™, The
first map has degree 2 since n - 1s even. The second has degree 1.
Therefore g has degree 2 and the lemma is proved.

We can now complete the proof of 5.2. Iet f,: sl 5 8 pe
any map of degree * and f,: ! gttt
Then g = f.(f; x f,) has degree (2x,-#), where f 1is the map of 5.k.
By 5.3, the Hopf invariant of C(g)is -2iu.

be any map of degree u.
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REMARK. Suppose we have a real division algebra of finite dimen-
sion n> 1, with a two-sided unit and the multiplication map

m: R x R —> R,
Let S%' be the sphere with centre at 0, passing through the unit. Then
we have a map
gty g7 My B (o) £ s (r - radial projection from 0)

which is of degree (1,1) since %1 contains the unit. By 5.3, we ob-
tain a map of Hopf invariant one, gan-l s gn, According to Adams [3],

n = 2,4 or 8.
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CHAPTER II.

The Dual of the Algebra @ (2)

In §1 it is proved that the Steenrod algebra @(2) is a Hopf alge
bra. The structure of the dual Hopf algebra is obtained in §2. In §3 it
is proved that the algebra @ (2) 1is nilpotent. In §4 the canonical anti-
automorphism c¢ of a Hopf algebra is briefly discussed. In §5 various

constructions with modules over the algebra @(2) are described.

§1. The Algebra @(2) is a Hopf Algebra.

1.1. THEOREM. The map of generators
Wsd® - ¥ sql @ sg¥t

extends to a homomorphism of algebras v: Q@G(2) —> Q@G(2) @ @(2).

PROOF. Iet @ be the free associative algebra generated by the
Sq1 (1 > 0). We have an epimorphism o: @ —> @ (writing @(2) = @),
with kernel generated by the Adem relations. The map ¢ of generators
extends naturally to an algebra homomorphism ¥y: @ —> @® @ . We have
to show that y vanishes on ker .

We have a map of modules

a: H(X) @ B (Y) —> H (X x ¥)

given by @(u® v) = u x v. By the Kinneth relations for a field, this
is an isomorphism. ILet P be «-~dimensional real projective space. ILet
X =P" =P x...x P. Then, using the notation of Chepter I §3, the evalua-
tion map on w, w: @—> H*(X) , 1s a monomorphism In degrees < n by
T 3.3, Therefore the map weogw: @ 3 @—> H*(X) ® H*(X) is a monomor-
phism in degrees < n.

16
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We have the diagram

Ge@ L8V B (X) @ H (X) —%—> H (X x X)
0 AN

v WX W
a = > @

We now prove that this diagram is commitative. (X ® H*(X) isan @ ®Q

module and hence, using the map y, is an @& -module. Using the isomor-

phism «, this gives H*(X x X) the structure of an @ -module. However,

H*(X x X) has its usual structure as an @ -module via. . These two

@ -modules are identical, for

(asqu) (u x v) z Sqiu X qu'iv

a((Z sat @ sa¥ Y (u @ v))

= a(Xqu LU V).

Since the two @ -modules are identical, the diagram above is commutative.

Now, if me@® , degm<n, and am = 0, then, since the dia-
gram is commutative and w ® w 1s & monomorphism in dimensions < n, ym =

This completes the proof of the theorem.

Iet A be an augmented graded algebra over a commutative ring
R with a unit. We say A 1is a Hopf algebra if:
1) There is a "diagonal map" of algsbras
y: A—> A®A;
2) The compositions

A®R
1®V-' x

A—Y>aren

N A

R®A
are both the identity.

We say v 1is associative if the diagram

A- —-—Y—> AgA

0.
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is commtative. We say ¥ is commtative if the diagram

A®A >A®A

is commitative. (See I §3 for the definition of T.)

1.2, THEOREM. @(2) 4is a Hopf algebra, with the commtative and

associative diagonal map v of 1.1,

PROOF. The mep ¢ 1is a map of algebras by 1.1. Since @(2)
is connected, we have the unique augmentation e: @(2) —> Za‘ In the

diagram
ao® 2z,

R
N

Z,® @

21l the maps are homomorphisms of algebras. The compositions are both the
identity on the generators of @, and they are therefore the identity on
all of @. Using the fact that ¢ 1is an algebra homomorphism, we see that
v 1s commtative and associative by checking on the generators. This com-
pletes the proof.

Iet A be a Hopf algebra with diagonal map ¢v: A —> A @ A.
Iet M be an A-module. Then M®M is an A ® A -module. The map ¥
defines an A-module structure on M@ M. Iet m: MM —> M be a
multiplication in M. We say that M is an algebra over the Hopf algebra
A

, i1f m 1is a homomorphism of A-modules.

1.3. PROPOSITION. If X is any space, H (X;2Z,) 1is an algebra
over the Hopf algebra @Q(2).

PROOF. This results immedlately from the Cartan formula, since
¥ 1s a homomorphism of algebras.

Iet X be a graded A-module, where A 1is a Hopf algebra over a
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ground ring R, with an assoclative dlagonsal map ¥. ILet r(X) be the
tensor algebra of X over R. It is obvious that the usual multiplication
m: r(X) @ r(X) —> r(X) is an A-homomorphism. Therefore T(X) is an
algebra over the Hopf algebra A.

§2. The Structure of the Dual Algebra

If X 1is a graded module over a field R, we say that X is of
finite type if X, is finite dimensional for each n. We define the dual
X* of X, to be the graded module with x; = Hom(xn,R) . If X and Y
are of finite type, then we have a canonical isomorphism (X ® '

x* @Y defined by (F@ g(a®b) = (-1)Pfa @ gb, p - deg &, q = deg &

If A is a Hopf algebra of finite type, with multiplication o
and diagonal ¢, we easlly verify that A* is also a Hopf algebra, with
multiplication w*_ and diagonal o¥.

For k>0, let M, - SqI, where I = (2K77 oK

) gy

2,1).
M, is en admissible monomial in @. ILet & ¢ @ be the dusl of M,
with respect to the basis of admissible monomials in ®@. Then < gk,Mk >
= 1 end <g,m> = 0 if m Iis admissible and m = M. M, has
degree 2. 1 and therefore Ex has degree ok, 1.

Iet P be «-dimensional real projective space. Iet X e H1(P;Ze)
be the generator. et P = PxP ...x P. In Hn(Pn;ZQ) we have
the element =x, x X, X...x X, where each Xx; = x. The following theorem,

together with I 3.3, will enable us to find the structure of G,*.

By induction on n, we shall define x(I) ¢ H (P and ¢(I) ¢ @,

where I = (i, ,...,in) is a sequence of non-negative integers. If

i
I=(1), we put x(I) = x2° and e(I) = ¢;. Suppose x(I) and ¢(I)
are defined when I has length less than n. Now.suppose I = (i,,...,in).
We put x(I) = =x(i,) xx(iz,...,in) and &(I) = &(i,) g(ig,...,in).

2,1, THEOREM. If a ¢ @, then

a(x1 XeoooX Xn) = Zl(I)=n < E(I) @ > X(I) .

(The summation is finite, since < ¢(I),@> = 0 unless ¢(I) and «
have the same dimension.)
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PROOF. We prove the theorem by induction on n. If o is ad-
missible, then ox = 0 unless a = M, and Mx = xzk by I 2.7.
The formula is therefore true for n = 1, when o is admissible. Since
each element in @ is the sum of admissible monomials, the theorem is
true for n = 1.

We now assume the theorem is true for integers less than n. Ilet

"
Vo = Z‘,iaie’oti. By 1.3 and 1.1,

21 c:zj’_x1 X a;(xe XoaoX Jg,l)

. "
= zi,I < g(l,),ai' > < t(i,,.. 0,1, > x(I)

a(X; X...x X))

= I 7 < i) @ 8(dy,...,1),0 @) > X(D)
= Ip < &1 ® e(d,,..0,1p) v > x(T)

= Iy < HDLa> x(D).

The last line follows since w* is the multiplication in a*. This com-
pletes the proof of the theorem.

We can now find the structure of e as an algebra.

Iet @' be the polynomial algebra over 22, generated by the
elements &, ,&5,.... Since ¢ 1is commtative, the multiplication +* in
@* is commtative. So we have a homomorphism of algebras @' —> @,
defined in the obvious way.

2.2, THEOREM. (Milnor [1]). The map @ —> @ 1is an isomor-
phism.

PROOF. We first show that @' —> @% is an epimorphism.
Suppose < t(I),a > = 0 for all choices of I. By 2.1, we then have
o(X) X...X xn) = 0 for all n. But, by I 3.3, this shows that o = 0.

So the annihilator of Im( @ —> @) 4is zero. Therefore @ —> @~
is an epimorphism.

We now show that the map (i' —_ a* is an isomorphism by show-
ing that in each dimension the ranks of Ct' and @° as vector spaces
over Z, are the same. We have only to show that the ranks of @' and @
are the same in each dimension.

I 1 1z in

We write & = &, &,°... &, , where I = (i;,i,,...,1,,0,...
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The monomials gI in (i,' thus correspond in a one-to-one way with
sequences of non-negative integers (i,,1,,... s1ps0,0en .). The admissible
t 1
monomials SqI e @ correspond to sequences of integers ( 11' ,ié yeoydns0,..)
1 1 1
where 1, > 21, , and 1,> 1. It remains only to set up a one-to-one
correspondence between sequences of non-negative integers I and admissible

T ana SqI' have the same degree.

sequences I' such that ¢
Iet Ik be the sequence which is zero everywhere except for a 1

in the K* place. ILet

I, = (2K, 2%2 21,0,0,....).

k I R At B

We construct a map from the set of sequences I to the set of sequences
I' by insisting that I, be sent to Il'c and that the map be additive
(with respect to coordinatewise addition). Then if

1

' !
I = (11""’in:°"") —> I = (11,...,in,0,....)
gI and SqI' have the same degree and we have
! n-k
1k = ik + 211{4_1 Fooot 2 in.

Solving for ik in terms of ik, we obtain

1
1 = iy -2y, .

Therefore every admissible sequence I' is the image of a unique sequence
I of non-negative integers. Thus the correspondence is one-to-one.

This completes the proof of the theorem.
We now find.the diagonal in @ .

2.3.THEOREM. (Milnor [1]). The diagonal map o*: @* — @' @~

is given by 1
*

2
Ot = Lo tpg @ -
PROOF. let a,8 ¢ @. We have to show that
* 21
<O EL,AB®P> = Tt  ®E,2@B8> .
That is, we have to show
o1
< 8,® > = Iy < fp 3,0> < 8y, .

We shall prove this by using 2.1.
Let X be the generator of H (P;Z,). lLet d: P —> P be the
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diagonal, where n = 2l. Then
i
x2 - d*(x1 XeuoX X))
i
So : a-x®> = a-d*(x, x...x x,)

- d"‘az(x1 Xoo X Xp)
= (Zy(1yan < BD,@ > x(D))

= Z!(I):n < &(I) ,a > Xn(I)

where n(I) = 211+...+ 2in if I = (4y,..., ). If we cyclically per-
mute I, we dc not alter < &(I),x> xn(I) . Since n = ai, the number
of different sequences, obtainasble by cyclic pernmtation from one particu-
lar sequence I, is some power of 2, say EJ(I). If 3j(I) > o, the
terms in the summation corresponding to cyclic permutations of I will
cancel out mod 2. So we are left with terms for which Jj(I) i+ 0. That is,

m=1, =i, = ... = in‘ For such sequences I, &(I) = g; and
() = 2™ hererore . .
i +
x? - Zm<g§,a>x2m .
2k
Now T, < &, > X = 0B.X by 2.1
k k
= Qa-°BX
21
= Zi < gi’B > X
21 21'£l+i
= I n <t ,a><t,B>x
2k
Equating coefficients of x° , we see that
21
<40 > = Log g <t 0> < 8y,B>

which proves our theorem.

§3. Idesls

Iet A be a Hopf algebra of finite type over a field, with diago-
nal ¢. An ideal M 1is called a Hopf ideal, if (M) C M® A + A ® M.
If M 1is a Hopf ideal, then A/M has an induced Hopf algebra structure
(assuming 1 ¢ M). If A° 1is the dual of A and M' the dual of A/M,
then M'r is the Hopf subalgebra of A* which annihilates M. Conversely,
if M' 1is a Hopf subalgebra of A°, then the dual algebra to M' 1is the
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quotient of A by the Hopf ideal M which annihilates M'

In the algebra @(2)", 1let M(g,,...,jk,...) be the ideal gen-

2 kK

erated by the elements gﬁ, vhere n (kx = 1,2,...).

3.1, LEMMA, If Jk—1 < jk +1 for all k, then M is a Hopf
ideal.

i
2=,
PROOF . ¢*£§ = (m*gk)n = Z‘I.f=o gk—in ® gril if n 1s a power
of 2, By induction on i, g £ 3+ 1. Therefore, if 1 < k,
i J
gi_j'_n e M, where n =2 kK 1n the term of the summation where 1 = k,
J
we have gﬁ ¢ M where n =2 k. This proves 3.1.

Iet M, be the ideal of the sequence (h,h-1 1,0,0...). Let

geeeyly,

@, be the Hopf subalgebrs of @ which annihilates M,. Since a*/Mh
is finite, so is @,.

3.2.1EMMA. Sq’ ¢ @, for 1 < 2N

PROOF. The proof is by induction on i. It is obvious for i = oO.

We mst show that t0t7. s¢t - o ir r - max(1,2"%') ana 7 1s

arbitrary. Now

J') i i

o (e @ ¢7) . 5q (Lot . ¥sq

% (8ad) (¢7s™)
epsat . ¢7sq°

by our induction hypothesis. Now
deg gi - r(ak_ ,) Z 2h-k+1(2k_ 1) - 2h+]_ 2h-k+, Z 2h.

Also deg Sqt = 1 < 2. Therefore giSqi = 0. This completes the proof
of the lemma.

i
REMARK., Actually the elements Sq2 (i < h) generate Gh, but
we shall not prove this.

3.3. COROLLARY. @ is the union of the sequence ah {h=1,2,...)
each a finite Hopf subalgebra of @ .
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3.4, IEMMA. If ¢ e @, then

2.5 - ¢t .8 if T -2
= 0 otherwise.
PROOF. 2.5 - Ve . os!

(¢ ®¢) . \lquI

£E®¢ . Ipig 1 sa® @ sq°
Tp,s.r (2807 (e5q%) .

If we interchange R and 8, we do not alter (§SqR)(§SqS) . Therefore the

terms of the summation cancel mod 2, unless R =8 =J, when I = 2J. Now

if x e Z,, then x° = x. Therefore (§SqJ)2 = ;SqJ. The lenmma follows

If A 1s eny commutative algebra over 27, and i: A—> A 1is
defined by Aix = x2, then A 1is a map of algebras. Moreover, 1 com-
mutes with maps of algebras. Hence if A 1is a Hopf algebra, A 1is & map
of Hopf algebras.

Then r»: @ —> @ doubles degrees. A 1is a monomorphism,
since the elements geI as I varies, are linearly independent.

Let 2¥: @ —>@ be the dusl mep. Then A* is an epimorphism
of Hopf algebras. Since ) doubles degrees and misses odd degrees, 2*

divides even degrees by two and sends elements of odd degree to zero.

3.5. PROPOSITION. r*(sq®) = s 1if T -2
= 0 otherwise.

The kernel of A* 1s the ideal generated by Sq1 .

I
>
ve
2
H

PROOF. ¢ . (A"sqD)

= ¢2 .80 -¢.8q if T =27

= 0 otherwise.

This proves the first part of the proposition.
I

I
Iet m=3Sq 1+...+ Sq % pe a sum of admissible monomials. Then,

if I, = 2J, for some r, »*m is a sum of admissible monomials con-

J
taining the term 3q r, So, if Yo = 0, I, is not divisible by 2 for

r
I
any r; that is, Sq T has a factor Sq21+1 . Now we have the Adem rela-

tion ’l
1 2i 2i-1 21i+1 2i+1
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So, Sqe:'.”'1 ¢ (8q') and therefore m ¢ {sqa'} if 2*m = 0. So, ker \* C
{sq'}. On the other hand, since »*sq' = 0, we also have {sq') C ker A%,
This completes the proof of the proposition.

3.6. COROLLARY., If Sh is the ideal of @ generated by Sqn

for n=20,21,...,2h-1,

then (x*)h: @ —>@ has kernel 8,, and so
S, 1s a Hopf ideal. The map ()»*)h is given as follows:

saf —> 8¢ i T - 2B
—> 0 otherwise.

This map induces an isomorphism of Hopf algebras @/ S, —> e .
PROOF. This follows by induction on h.

EXERCISE. Iet [@,@) be the ideal of & generated by all the
commtators op - pa (@, ¢ @). [@,@] is a Hopf ideal and @R/[@,Q]
is a divided polynomial algebra on one generator; i.e.,

sqlsed - (1 3 ,j) sqitd

(Hint: Prove the dual proposition in @ *.)

§4. The Conjugation ¢

Iet A be a connected Hopf algebra over a field with associative
diagonal ¥ and multiplication ¢. We.define a map c¢: A —> A by in-
duction on dimension. Let c¢(1) =1, If X = X® 1 + Z‘.xj'_ ex; +18®x,
we define ¢x = -X - Z‘.i(cx;)x;.l_. et A' be the opposite Hopf algebra.
That is, A' = A as a graded vector space, and the multiplication ¢!
and diagonal w' are defined by commtativity of the diagram

A®A

A T A
w\ /op'
AgA

For the proof of the following theorem we refer the reader to the
final chapter of "On the Structure of Hopf Algebras," by Moore and Milnor,
to appear in Transactions of the A. M. S.
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4.1, THEOREM. The map c: A —> A' is an isomorphism of Hopf
algebras. If A has either a commutative diagonal or a commtative multi-
plication, then c® = 1.

The motivation for the definition of ¢ 1s as follows. If G is
a compact connected Lie group and XK 1is a fleld, then H,(G;K) is a Hopf
algebra over K with diagonal ¢ induced by the dlagonal G —> G x G
and the multiplication ¢ 1induced by the multiplication in G. The map
¢ is induced by the map g —> 3'1 of G. We easily see that o(c ® 1)¥
is induced by the map g —> 1, and that the formula above for c¢ 1is
therefore satisfied. In this case 4.1 1s obvious.

In @, we have

e(q') = sq's

c(8a®) = 8a® + s'sq' - s

c(3a® = 843+ a'sq® + sa®3q' - sg%sq’;

c(sa™) = sa* + Sa'se® + sa®sq® + sq®sq'sq’
- sq" + sa’sq’ '

ete.

§5. Unstable @ -modules

1 1
We define the excess of Sa7 = Sq K... 8q ' tobve (i-21, ) +

(11{_1 -aik_z) Foees 4 (12-211) + 1,. The excess is non-negative for an ad-
missible monomiel. Let x ¢ HY(X). If Sa'x # o0, then i, <n+ i, «
eee+ 1, by Axiom 4), T §1. We define B(n) to be the subspace of @&
spanned by all monomials SqI which can be factored into the form

m, Sqima, where m, and m, are monomials and i > n + deg m,. It is
obvious that B(n) is a left ideal which annihilates all cohomology classe:
of dimensions < n. Any admissible monomial of excess greater than n 1is i
B(n), since the excess is 1, - (i, +...+ 1,).

5.1, LEMMA. B(n) 1s the vector space spanned by all admissible
monomials of excess greater than n.

PROOF. We shall show that, on applying an Adem relation to a
monomial in B(n) we obtain & sum of monomials in B(n). By repeated
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application of Adem relations, we then express the monomlal as & sum of
edmissible monomials in B(n). Any admissible monomial in B(n) has excess
greater than n and so the lemma will follow.

Suppose then that in the monomial m, Sqim2 , 1> n+ deg m,.

Applying an Adem relation to elther m, or m, we get a sum of monomials

29
of the same form. If i< 2b, and m, = qum;, then

[i/21
1ob ' b-1-t 14b-tq t !
6, 8q75q"my = Zt=o 1-21;)”113‘31 Sqm,
Now

1+b-t>1i>n+degm, = n+degm;+b>n+degm;+t.

If a<ei, and m = mSq%, then
' (a/2] /i o4\ 1y asi-to t
l:'113(18.&11]112 = zt,o a-2t m,sq* Sqm2 .
Now

a+i-t>n+degm2+a-t2n+degm2+t=n+deg(3qtm2).

The lemma follows.

Suppose X 1is an @ -module. We say X 1is an unstable @ -module,
if B(n)X, = 0 for all n> 0. This is equivalent to the assertion
qux = 0 if 1> dim x. The category of unsteble @ -modules and @& -
maps is a subcategory of the category of @-modules and @ -maps. This
category is closed if one takes:

1) Submodules

2) Quotient modules

3) Direct sums

L) Tensor products over 22.

Only the last needs proof. If X and Y are @ -modules, then X ® Y
is an @-module through the diagonal map. So

salxey) -Zsaxe sqi-dy
If i>dimx +dimy, theneither j> dimx or 1i-j> dimy, and so
satxey) = o.
Let F(n) be the @ -module defined by: F(n); 1is the image of

@;, 1in @/B(n). Then it is easy to see that F(n) is an unsteble @ -
module. F(n) 1is called the free unstable @ -module on one n-dimensional
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generator. A free unstable @-module is the direct sum of free unstable

@ -modules on one generator.

5.2. PROPOSITION. Any unstable @®@-module is the quotient of a
free unstable @-module,

PROOF'. The proof is the same as the standard proof for modules.

5.3. LEMMA. ILet X be an unstable @-module and ©(X) its
tensor algebra (see end of §1). ILet D be the ideal of Tr(X) generated
by all elements of the forms x®y - (-N™y @ x and sSg™ - x®x
(m=dimy, n=dimx) for all x,y ¢e X. Then D is an @-ideal. Hence
r(X)/D is an @-algebra.

PROOF. If 1> 2k and dim x = k, then
sal(sac¥ - x@x) = selsd® - z Sadx @ 8¢179x - o.

If i = 2k,
sal(sa’x - x@x - 5% - 5% @ 3% - WK -yey.
If i< 2k,

[i/2]
sat(sd®x - x@x - Z o k1ot ) sal**Psqtx - Z sa¥x @ saldx.

t =
Now Sqi*¥Psq®x - o0 if 1+ k-t>k+t, le., if 1> 2t. Cancel-
ling mod 2,
0 if 1 is odd,
i 1-3
LSrx @3 'x = 1/2 1/2
57 "x @ 3q7 "x if i 1is even.
So
sat(s -xe@ex) = O if 1 1is odd,

sal(sd’x - x @ ) qu+i/ 2Sq1/ % - Sqi/ k@ Sqi/2x if i is even,

= 2
% - yey..

Also

1'jx2 ® qux1) .

i -
Sq(x, @ Xy, - X, @ X)) = 23 (Sq“jx1 @Sqi jx2 - Sq
Finally, we must show that, if r 1is a relation, and aB ¢ T'(X),
then Sqi(a r B) is in the ideal.

Sqi(a rp) = z.i'x~v-s+t=i tha - 8% . Sth.
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Since Sq°r 1is in the ideal, so is Sqi(ot r B).

5.4, DEFINITION. If X,r(X) and D are as in 5.3, then the
quotient algebre TI'(X)/D 1is denoted by U(X) and is called the free
@ -algebra generated by X. Let M be a free unstable @-module. Then
U(M) 1is called a completely free @ -algebra.

Iet K(G,n) denote the Eilenberg-MacLane complex of the group G
in dimension n. The cohomology H' (X( Z,,n);Z,) has been computed by
J. P. Serre, Comment. Math. Helv. 27(1953), 198-232. His result can be
restated: H*(K(Zg,n);zi,) is the completely free @(2)-algebra on a single
generator of dimension n:

H (K(Z,,0)32,) = U(G/B(n)).

The analogous result holds for H*(K( Zp,n) ;Zp), using computations of
H. Cartan, Proc. Nat. Acad. Sci. 40 (1954), TO0L-TOT.
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CHAPTER III.

BEmbeddings of Spaces in Spheres.

In this chapter, we prove the non-embedding theorems of Thom and
Hopf. Thom's theorem refers to an embedding of a compact space in a sphere
and Hopf's theorem to anembeddingof an (n-1)-menifold in an n-sphere. In
order to meke duality work, we use éech cohomology throughout this chapter.

§1. Thom's Theorem.

In this section, it is shown that if Y 1is a proper closed con-
nected subspace of Sn, then
o(sady: B (y;2,) —> B l(v;2,), i>o0,
is zero. (See II §4 for the definition of c¢.)

1.1, LEMMA. All cup-products in H*(Sn,Y) are zero.

PROOF. Let 1*: H'(SP,Y) —> H'(S%. Let u,v ¢ H'(S,Y). Then
wuv = uuvi®™ = 1"uuv = 0 unless u,v e Hn(sn,Y). In this case

uvv e BNSYY). But, by duality, ENS%Y) ~ H_(s" -1 - o.

1.2, IEMMA. Iet X be a compact Hausdorff space, and let {Ui},
i eI, be a famlly of pairwise disjoint open subsets of X with union U.
Then the maps
HY(X,X - U;) —> HYX,X - 1)

give a representation of HYX,X - U) as a direct sum.

PROOF. Suppose first that I is finite. For any subspace Y of
X, let ¥ denote its closure and Y its boundery. Let V be the dis-
Jjoint topologlcal union of the spaces ﬁi, and let WCV be the union

of the spaces Ui' Then (V,W) is & compact pair. The following diagram
30
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is commtative

(0, 0,) —>  (V,W)
d J
(X,X - Uy) < (X,X - U)

Moreover, the vertical maps are relative homeomorphisms. We therefore get

s commitative diagram

H(0,,0,) < HY(V,W)

N N

- -
H(X,X - 1)) > HU(X,X - 1)

This in turn gives rise to a commtative diagram

n; BY(T,,0,) = wv,w
~ N
1= |~
% (XX -U) — BH(XX -1 .
So the lemma is proved when I is finite.
If I is infinite, we obtain the result by the continulity of

Gech theory, taking limits over finite subsets of I.

1.3. LEMMA, If e is any cohomology operation of one variable,
such that
o: HY(X) —> HYX) (0 <q<n)
then o: HYS®,Y) —> HYS™,Y) is zero. (Note that the
only axiom 6 needs to satisfy is naturality with respect to mappings of
spaces. 8 need not be & homomorphism.)

PROOF. For any cohomology operation 6, with image in a positive
dimension, (0) = 0. The proof is as follows. Let X be any space, and
let P be a point. Then we have the commtative diagram

H(P) —> HY(X)
b Lo

HY(P) > HY(X)
induced by the map X —> P. Since n> 0, HYP) = 0, and so 8(0) =

0, where 0 ¢ HY(X).
So 1.2 shows that we have only to prove e: H(s",s" - U;) —>
Hn(sn;sn - U;) 1is zero, in order to prove our lemma. Now, we have the



32 ITI. EMBEDDINGS OF SPACES IN SPHERES

commtative diagram

Hi(s?, s - u) —2— BY(s%,8" - U)

* *
! s
o = H(sH —2 5 wi(sH
Since U; is connected, we have by Alexander duality, (s - u) = o0
and H*(S® - U;) = 0. Therefore the vertical map on the right of the

diagram is an isomorphism. This proves the lemma.

Iet U be any neighbourhood of Y. Then there is a connected
subcomplex K of Sn, which is a compact n-manifold with boundary L,
such that KC U and YC K - L. We can construct K from the simplicial
structure of Sn, by taking a fine subdivision. We can assume K is
connected, since Y 1is connected. The set of such manifolds X, and the
inclusion maps between them form an inverse system with 1limit Y. There-
fore H (Y) dis the direct 1imit of the groups H (K).

Iet F Dbe a field. We have the cup-product pairing

HP(K,L;F) @ B P(K;F) —> HY(K,L;F) =~ F.
Iefschetz duality tells us that the induced map
a: HP(K;F) —> Hom (HYP(K,L;F),F)
is an isomorphism. Iet Xx e Hq(K;ZQ) . We define a homomorphism
B, Lz) — BAK,LiZ,) ~ 2,
by the formula y —> Sqly v x. Iet Qlx be the element of Hq*i(Ksza)
such that a(Qix) is the homomorphism. Then
saly vx = 3y ook

ot 1is a homomorphism qt: Hq(K;Zz) —_ Hq"i(K;ZQ).

1.k, PROPOSITION. Q! = c(Sql) as a homomorphism HI(K;z,) —>
H*L(k;7,). (See II §4 for the definition of c.)

PROOF. We shall use Z2 coefficients throughout this proof.

The proof is by induction on i. Obviously Q° = 1. Therefore
Q% - ¢(s3®). For any x ¢ HY(K) and y Hn"q'i(K,L), we have, by
definition,
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v v @+ 23l QI st 4 sahx

i

= quux+2§ i-j

T sady v s

X +yv Sqix
= sqal(y vx « B(X,D) .
We have the commutative diagram
ik, sat HY(K,L)

N IAS

=~ =

gricgh g | 1ne k) —S9 5 H(SY,S® - Int K)

The vertical maps are excision isomorphisms. By 1.3, we have
Sqi(y uX) = 0 if 1 > 0. Therefore, from the computation above,

Qb - el s? -t

= - Z‘.J c(SqJ) . qu'"j - Sqi by our induction hypothesis

= c(Sqi) by the definition of c¢ .

1.5. THEOREM. If the compact space Y can be embedded in S%,
then, for each 1 > 0, we have that

ot: By — By

is zero. Equivalently, if a campact space Y 1is such that, for some r
and 1> o,

ol: By — iy

is not zero, then Y is not embeddable in 8°+21,

PROOF. Suppose Y can be embedded in s®. We construct a mani-

fold K as described above. Let y ¢ Hi(SP,8% - Int K). Then Saly -
2

¥ = 0 by I §1 Axiom 3 and 1.1. We have the commtative diagram
i
(kL) 5 > BHK,L)
N N
- B

1
B(sh,8? - It k) — B24(s7,8% - Int K) .

The vertical maps are excision isomorphisms. Since the lower horizontal

mep is zero, so is the upper one.
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let x ¢ B (K) and y ¢ EY(K,I). Then
yuQix = Sqiyux = 0.

By duality Qix = 0, since the above equation is true for all y.

1.6. IEMMA. Iet x be a 1-dimensional cohomology class mod 2.

Then Ql&=ounlesskhastheform 2h-1; 1fk=2h-1 then

h ?
= = x2.

PROOF. This is proved by induction on k. It is obvious for
k=0. If k> 0, we have

0 = =0 Qiqu—ix = Ql& + Qk-lxe .

Iet m: H (X) ® H(X) —> H'(X) be the cup-product, and let
¥: @(2) —> @(2) @ @(2) be the diagonal. Then

¥ 1x2 - o(sq€")x?
= mly(eSq Ny L x®x) by II 1.3

= mi(c x ¢)Ty qu'1 . x®x] by II §b

= mlZ esql x csg¥ 1. x @ x)

= Z}f’é Qix . Qk'i'1x .

The summation cancels out in pairs (mod 2), except for the middle term, if

any. The middle term occurs when i = k - i - 1, and, by induction, is
equal to x2'. x2° if 1 =2" -1 and is zero otherwise. So QX 'x2
o1

X if k = A and is zero otherwise. This proves the lemma.

h h+1

£n<g2 , then real projective n-
h+1

1.7. THEOREM. If 1 < 2
space Pn cannot be embedded in a sphere of dimension less than 2

h
PROOF. Let x be the generator of H (P ;Z,). Then Q° ~'x

h
x2 4 0. By 1.5 , the theorem follows.

1.7 was first proved for regular differentiable embeddings by
using Stiefel-Whitney classes.
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§2. Hopf's Theorem.

Iet M be a closed (n-1)-menifold embedded in st Applying
Alexander duality with coefficients Z, and then with coefficients 2,
we find that M 1is orientable and that M separates s® into two open
sets with closures A and B such that 4 o B = 8%, By duality no proper
closed subset of M can separate Sn, and so ANB = M. Applying
duality to A and then to B, we see that

H(A) = HY(B) = 0 (r>n-1)

for any ring of coefficients. We have the following theorem due to Hopf.

2.1, THEOREM. Under the above hypotheses, the inclusion maps
i: MCA and j: MCB induce a representation of HI(M) as a direct
sum

B = 1*53) + 35(B) for 0 < q < n-1.

Here i° and j* are monomorphisms. Using a field of coefficients F,
and the identification H""! (M) = F, cup-products in M give an isomor-
phism

1"8%(a) ~ Hom (3"E*""(B),F) for 0 < q < n-1.

PROOF. The first statement follows immediately from the Mayer-
Vietoris sequence. Since Hn'l(A) = Hn'l(B) = 0, cup-products in
A or B with values in dimension (n-1) are zero. The rest of the
theorem follows by Poinceré duality.

2,2, COROLLARY. If n > 2, then real projective n-space cannot
be embedded in S,

2.3. LEMMA. Let X e H'(M;Z;,) and let r+ k=n -1, then
&l& = 0.

PROOF. Iet x = 1'a + j°b, where a ¢ H'(A) and b ¢ H'(B).
The lemma follows by naturality since 7! (A = Hn"(B) = 0.

Iet Q,k = c(qu) as in §1. Iet X e HI'(A;ZQ). Suppose the
action of the Steenrod algebra @(2) on H (B;Z,) 1is known. Then 5g*x
is determined by the following theorem. .
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2.k, THEOREM. Let s =n-1-r -k and let y e H(B;Z,),
X € HP(A;ZQ); then
5% o 3y = 1*x v Iy .

PROOF. The theorem is proved by induction on k. It is obvious

for k = O.
k,.* *

By 2.3, Sg(ixvjy) = 0 if k> 0. 8o by the Cartan

formila
o - T 8d""x v sy
-1 % —m . * * *

ol %% v @MYy + Mg v 'y

by our induction hypothesis

1*x v 3"y ¢ 1% v 5Ty
by the definition of QX in II §h.

Therefore i*x v j*Ql% = 1*Sq15t v ,j*y.
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CHAPTER IV.

The Cohomology of Classical Groups and Stiefel Manifolds.

In this ehapter, we find the cohomology rings of the real, complex
and quaternionic Stiefel manifolds. We also obtain the Pontrjagin rings
of the orthogonal, unitary and symplectic groups and of the special orthogo-
nal and special unitary groups. The method is to obtain a cellular de-
composition of the Stiefel manifolds (following [1] and [2]). We then find
the action of the Steenrod algebra @(2)in the cohomology rings of the
real Stiefel manifolds. Using this information, we obtain an upper bound
on the possible number of linearly independent vector fields on a sphere.

§1. Definitions.

Iet F = Fd be the real or complex numbers or the quaternions,
according as d = 1,2 or 4. Iet V = F! be the n-dimensional vector space
over F, consisting of column vectors with entries in F. We write scalars

on the right. Let uy be the column vector with 1 in the ith row and

zero elsewhere. Iet X = I; uyX; ¢V, vhere x; ¢ F and let y =

21 u;y;. We define the scalar product < x,y > = 21 iiyi , where ii

is the conjugate of x;. Then < x,y» > = < x,y>r if 2 e F; < X,7,+ T
= <Xy, >+ <X, > <X Xy, T > = KX ¥> + <X, ¥ 5 and

<Xy> = <F;X> . We embed F* in F**' by putting the last coordi-
nate equal to zero.

Let G(n) be the group of transformations of V which preserve
scalar products. That is, A ¢ G(n) if and only if < Ax,Ay > = < X,y >
for all X,y e V. If A 1is represented by the n x n-matrix [aij] mul-
tiplying column vectors on the left, then A ¢ G(n) if and only if

A% - 1. G(n) 1is the orthogonal, unitary or symplectic group according
37
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as d = 1,2 or 4, We have en embedding G(n) C G(n + 1) induced by the
embedding PP C F*'. The matrix A G(n) corresponds to the matrix

e G(n + 1)

We write G(0) = TI.

The Stiefel manifold G(n,k) 1s the manifold of left cosets
G(n) /3(k). Let G'(n,k) be the manifold of (n-k)-framesin n-space. The
mepping G(n) —> G'(n,k), which selects the last (n-k) columns of a
matrix as the (n-k) vectors of an (n-k)-frame, induces a map G(n,k) —>

G'(n,k) which is obviously onto. If two matrices A and B in G{(n)
have the same last (n-k) columns, then A'B ¢ G(k). Therefore the map
G(n,k) —> G'(n,k) 1is a homeomorphism, and we can identify the two spaces.
Now G'(n,n-1) is the manifold of unit vectors in V. Therefore

1.1. G(n,n-1) 1is homeomorphic to gnd-1cy . R by the map
which selects the last column of a matrix.

1.2. Definition of ¢. ILet 894~

in V= F Then 83" 1is the sphere of scalars of unit norm in F. We

be the sphere of unit vectors

construct a mapping
p: 89971 g3 5 a(n)

by letting ¢(x,A) be the transformation which keeps y fixed if < x,y >
= 0, and vhich sends x to x\. That is
p(x,\)y = x(x-1) < X,y> +y or
q)(x,x)ij = xj_(x-ﬂiJ + t’ij in matrix notation.
If m<n we have an inclusion gd-! — gnd-! , 1induced by the
inclusion F® —> F%. This induces a further inclusion

Smd-I < Sd—1 _ s.nd-1 % Sd-1 .
The following diagram is obviously commtative

Smd—l % Sd-1 N Snd-l % Sd-‘l

® 9
v

G(m) —————> G(n)
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1.3, Definition of Q.. ILet Q, be the quotient space of gnd-t o
s4-!  induced by ¢. It is the set of pairs (x,)) ¢ gd-1 o 891 ynder
the identifications (x,A) = (=xv ,v")w) where v ¢ 8377 and (x,1) =
(y,1). That these are the only identifications is easily seen by looking
at the fixed point set of ¢(x,)). Iet Q, be a single point. We embed
Qy in Q’n (n > 1) by sending Q, to the equivalence class of (x,1).

If n>m>» 1, we have an embedding Q —> Q, 1nduced by
gnd-1 o gd-1 5 gnd-1 . gd-1 = po the commtativity of the previous dia-

gram, we have another commtative diagram

W U

G(m) —> G(n)

whenever n > m» O,

Q,m is a compact Hausdorff space and so the vertical maps are em-
beddings. We ldentify Q with its embedded image in G(n) (n > m).
Under the identification Q, becomes the identity of G(n).

let E(n'1)d be the ball consisting of all vectors x e gnd-1 ¢ y
= Fn, with x, real and x, > O. Then x, 1is determined by Xy,...,X, ;.
Lot £: E® N4 _5 g9 pe the inclusion mep. Let g (E27,88°%)
—> (821 ,1) be the usual relative homeomorphism (s = 9). ILet

n: B —»q (1

be the composition
-1 - 4 fhxsg - -
End1 =E(n1)ded1—n————->Snd1de1

—q, .
let S%9°2 pe the boundery of EMT |

1.k, IEMMA. The map hn defines a relative homeomorphism
hy: (gPa-1 gnd-2y (Q,, Q,-;) if n> 1. Therefore Q, 1is a CW com-
plex with a 0-cell Q, and with an (md-1)-cell for each m such that
1< mg<n.

PROOF . (f‘n X g) sPd-2  consists of points of the form (x,)) €

gPd-1 o 831 yhere X, =0 or = 1. Therefore h(Snd'g) C Ry,

In any equivalence class{(x,))) € gnd-1 we can choose a representative

(x,A) so that x, is real and x,> 0. Moreover, if r# 1 and x, >0,
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this representative is unique. This proves that 151: (End'1 ’Snd-z) _—
(Qn,Q,n_1) is a relative homeomorphism.
The rest of the lemma follows by induction on n.

1.5. DEFINITION. Iet ¢ be the multiplication in G(n). Let
x: G(n) —> G(n,k) be the standard projection. A normal cell of G(n,k)
is a map (or the image of a map) of the form

1,d-1 109" hx...xh

E XeooX B > Q  X...x Qy LN G(n,k)
1 T

wvhere n> i, > i, >...> 1, > k. We denote such a cell by (i,,...,i,|n,k)
or simply by (i,,.. "1r) if this will cause no confusion. The cells of
Q, (other than Q,), described in 1.4, may be identified with the normal
cells (m|n,0) where n > m> 0. We denote such a cell of Q, by (m.

By w© we shall also denote the action of G(n) by left translation
on G(n,k) (n > k> 0).

§2. The Cellular Structure of the Stiefel Manifolds.

In this section we shall prove the following pivotal theorem.

2.1, THEOREM. G(n,k) 1is a CW complex, whose cells are the normal
cells (see 1.5) and the 0-cell =(I). The map

B QX G(n-1,k) —> G(n,k) (k < n)

is cellular and induces an epimorphism of chain complexes.

Before proving the theorem, we state and prove a corollary.

2.2, COROLLARY. If m<n and £ < k, then the induced map
G(m,f) —> G(n,k) 1s cellular. This map sends the normal cell
(11,...,1r|m,2) to the normal cell (11,...,irln,k) if 1i,> ks to
(11,0005 qIn,k) if d=1 and 1, >k>1, = 1> = 0; and

degenerately otherwise.

PROOF. This follows immediately from 2.1 and the definition 1.5
of normal cells.

We now begin the proof of 2.1,
Let us denote by o: (Q,Q, ) —> (5", u) the composition

(Q,Q_q) —=> (G(n,n - 1),6(n - 1,0 - 1)) —> (87" u)
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where the map on the right is the homeomorphism of 1.1.

2.3. IEMMA. The map a: (Qn’Qn-1)_"'> (Snd'1,un) is a relative

homeomorphism.

PROOF. a: Q —> S"@7' sends ((x,0)) (x ¢ sta-1 5 ¢ 53y o
x(» - 1):'1n +u, by 1.2. The inverse image of u, under o 1is Q  _,,

for if x(» - )X, +u, = uw,, then » = 1 or x, = 0.
Suppose we are given y e s4-1 ¢y - ¥ such that y 4 u,. We
must show that there is exactly one element (x,\) e g1 o 8471 yitn

x, real and x, > 0, and »#£ 1, such that x(» - VX, = ¥ -u, -

In the real d-dimensional space F, (yn - 1) 1lies in the closed
ball bounded by the sphere of scalars of the form (A - 1), where |A| = 1.
Moreover, (y, -1) # 0. So, projecting from the origin in the real d-
dimensional space F, we can solve uniquely the equation xﬁ()~ - 1) =
(3o - 1, for x, real, x,>0, [ =1 and »4 1. Knowing » and
X, Xyq is determined uniquely for 1 < 1 < n-1. We now have x(» - 1)xn
= ¥y-u, x,real, |» =1 and r 4.

We have to check that < x,x > = 1. On evaluating the scalar pro-

duct of each side of the above equation with itself, we find

<x,x>(2-x-i)xﬁ=2-yn-yn,
Also, we know that xf](x - 1) = (yn - 1) . Hence
<x,x>(2-h-i)x§=(2-x-i)x§.
Since |A] =1 and 2 #£ 1, we have (2 - » - X) £ 0. Since also, xn;é 0,
we deduce that < x,x > = 1.
2.4, PROPOSITION. If n > k > 0, then
B (Q X G(n - 1,k Qg X G(n - 1,k)) —> (G(n,k),G(n - 1,k))
is a relative homeomorphism and maps @, x G(n - 1,k) onto G(n,k).
PROOF. The inverse image of G(n - 1,k) 1s Q, , x G(n - 1,k).
To see this, let A ¢ Q ,B ¢ G(n - 1) and suppose ABG(k) C G(n - 1).
Then A e¢ G(n - 1). On projecting into G(n,n - 1), we see by 2.3 that

nG(n-1) = . Therefore A ¢ .
-1 -1
¢ is one-to-one on (Q,n - Q'n-1) X G(n - 1,k). To see this, let
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A, CeQ,-Q_,, and let B,D e G(n- 1) and suppose that ABG(k) =
CDG(k). Then AG(n - 1) = CG(n - 1). On projecting into G(n,n - 1),
we see by 2.3 that A = C. Therefore BG(k) = DG(k).

§ maps Qn x G(n-1,k) onto G(n,k). To see this, let A e G(n). By 2.3,
there is an element C ¢ Qn such that CG(n - 1) = AG(n - 1). Therefore
there is an element D e G(n - 1) such that A = CD.

2.5. IEMMA. Iet x e 2977 CV - F® be a unit vector, let
'CF be aunit scalar and let A ¢ G(n). Then A q)(x,l)A-1 =
o(Ax,\). (See 1.2 for definition of ¢.)

leSd-

PROOF. By definition, o¢(Ax,A) is the transformation which keeps
y fixed if < Ax,y > = 0 and which sends Ax to Ax)x. The lemma fol-

lows.
2.6. PROPOSITION. u(Q,m X Qm) = u(Qm X Qm—1) CG(m) for m)» 1.

PROOF. We shall reduce the case where m is arbitrary to the case
where m = 2. We therefore begin by checking the proposition for m = 1
and m = 2,

If m=1, then Q; = G(1). We see this fraom 2.4 by putting
n =1 and k= 0. The proposition follows since G(1) = u(Q, x Q) C
B(Q, x Q;) C G(1) (recall from 1.3 that Q, is the identity element).

If m=2, then u(Q, x Q,) = G(2). We see this from 2.4, by
putting n =2 and k = 0, and recalling that Q, = G(1) from the pre-
vious paragraph. So

G(2) = »(Qy x Q) Cu(Q, xQy) CG(2) .
The proposition follows.
Now let X,y ¢ 99T cv - F® and let A,y ¢ STV CF be arbi-
trary elements. Then o¢(x,A) and ¢(y,v) are arbitrary elements of Q-
We must show that o(x,Me(y,v) « QQ ,. ‘

Iet W be a 2-dimensional subspace of V containing x and y.
Using the inclusion FX C F**' of §1, we have the sequence

oCWnF ... CWnF" = W
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of vector spaces over F, increasing by at most one dimension at a time.
We choose an integer r, such that 1 < r<m and Wn F* 1is 1-dimension-
al. Iet A c¢F(m) map W onto F° so that A(WnF') = F'. ILet
Ax = x' ¢F° and Ay = y' e F2 Then, by 2.5,
A o(x,Mo(y,»A™ = o(x',Me(y,v)

Since the proposition is true for m = 2,

o(x',Me(y',v) € QQ, -
Therefore
A o(x,Mo(y,A™ = o(x;,2)e(y,,v,)
vhere x, ¢ 82971 CF?, 3, ¢ 8% ¢ P, a v, « 837V CF . Again using
2.5, we see that

CP(X,X)CP(Y,V) = Q’(A-,x1:x1)q’(A-1y~| )V«,) .

By our choice of A, A”'y, e Wn F' < F*"'. Therefore

(p(X,l)tp(y,V) € Qm Qm..1 4
This campletes the proof of the proposition.

PROOF of 2.1. We denote 2.1 when n =m by 2.1(m). We shall
prove 2.1 and the following two statements together by induction on n.

2.7(n). Let n> i,,-..,1,> 0. Then :t(Q,1 cee Qg ) 1is contained
1 r
in the (2§=1(isd - 1))-skeleton of G(n,k).

2.8(n). Q, x G(n,k) —> G(n,k) is cellular.

When n = k, all the assertions are obvious, for then G(n,k) is
the point =(I). Suppose n > k and that 2.1(n - 1), 2.7(n - 1) and
2.8(n - 1) are true.

By 2.8(n - 1), wu: Qu_q X G(n - 1,k) —> G(n - 1,k) 1is cellular.
By 2.4 and 2.1(n - 1), G(n,k) therefore has a CW structure such that the
map p: Q,n x G(n - 1,k) —> G(n,k) 4is cellular. By 2.4, 1.4 and
2.1(n-1), the cells of G(n,k) other than those in G(n - 1,k), are of
the form u((n) x (i,,...,1,)) where n - 1> i, >..> 1, > k. Now
u((n) x (1,,...,1.)) = (n,i1,...,1r) by 1.5, and this is a normal cell
of G(n,k). Therefore u induces an epimorphism of chain complexes and
2.1(n) follows. A
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We now prove 2.7(n). By 2.5, if A ¢ G(n), then AQm = QA.
Therefore Qij = QmQj (0 < j<m. So, by 2.6 and 2.7(n - 1), we can
assume without loss of generality that in the hypotheses of 2.7(n), n =
i, >4, ... >1,> k. Now n(Qi Qi } CG(n - 1,k). Therefore by

2 r
2.7(n - 1), :t(Qi Qi ) 1is contained in the (Z:_z(isd - 1))-skeleton
2 r -
of G(n - 1,k). By 2.1(n),
B: Qy x G(n - 1,k) —> G(n,k)

is cellular. Since Q, has dimension (nd-1), 2.7(n) follows.

We now prove 2.8(n). Since Qo is the identity, » 1s cellular
on Q, x G(n,k). By 2.1(n), » 1s cellular on Q x G(n - 1,k). We have
only to check that r is cellular on cells of the form (t) x (n,ij,. "’ir)
vhere n>t>0 and n> 1, ... > it> k (see 2.,1(n)). Now
r((t) x (n,11,...,1r)) C x(QthQi Qir) and our assertion follows from
2.7(n). This completes our proof of 2.1, 2.7 and 2.8.

§3. The Pontrjagin Rings of the Groups G(n).

3.1. Throughout the remainder of this chapter, all chain and co-
chain camplexes and all homology and cohomology groups will be taken with
coefficients R, where R 1is a commutative ring with a unit if d = 2
or 4, and R =2, 1f d =1,

The aim of this section is to find the Pontrjagin rings of the
orthogonal group O(n), the unitary groups U(n) and the symplectic group
Sp(n) (i.e., G(n) in the cases d = 1,2 and 4 respectively). That is,

we want a description of the map
H,(G(n) ;R) ® Hy(G(n);R) —> H(G(n);R)

induced by the multiplication G(n) x G{n) —> G(n).

3.2. IEMMA, If d =1, Q‘n is the disjoint union of the point
Qo and the real projective space Pn'1 . The embedding of Q,n_1 in Qn
(n > 2) corresponds to the usual embedding of P2 in PR, Q, = G(1)
consists of two points, the 1 x 1 matrices I and -I. (Q'n - Qo) consists
entirely of matrices of determinant -1.

If 4 =2, Qn is the suspension of the complex projective space
cp?! , Wwith the two suspension points identified. The embedding of Q,n_1
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in Q, (n> 2) corresponds to the usual embedding of cP'? in cP?.

PROOF. By 1.3, if d =1 or 2, Q,n is the set of pairs
(x,M) e grd-1 » §3-" ¢ P x F under the identifications ( Xv LA = (x,))
1 v e 83 CF, and (x,1) = (y,1) if y e 89" ¢ F?. The second

part of the lemma follows.

If d =1, then for any pair (x,r), if r £ 1 then r = -1.
The space Qn therefore reduces to the disjoint union of Qo and the set
of points (x,-1) under the identifications (x,-1) = (-x,-1) .

So, if d =1, Q, consists of two points and so does G(1).
Since Q; C a(1), Q = G(1) and (Q, - Qo) is the matrix (-I) e G(1).
This matrix has determinant -1. By connectedness, all matrices in
(Q, - Q) therefore have determinant -1. (All matrices in O(n) have
determinant «+1.) This completes the proof of the lemma.

The boundary of each cell in Q'n is algebraically zero. If 4 = 2
or 4, +this follows from 1.4 for dimensional reasons. If 4 =1, it fol-
lows from 3.1 and 3.2.

By 2.1 u: @, x G(n - 1,k) —> G(n,k) is an epimorphism of chain
complexes. By induction on n, the boundaries of the cells of G(n,k) are
algebraically zero. Therefore there are no boundaries in G(n,k) and all

chains are cycles.

3.3, DEFINITION. If (11,...,irln,k) is a normal cell (see 1.5),
we denote its hamology class by [11,...,irln,k] or [11""’11-]' We
denote by (i;,...,i,|n,k} or (4i,,...,1,}, the cohomology class of
G{n,k) which assigns the value 1 to the normal cell (1, "”’ir) and
zero to all other cells. We call these homology and cohomology classes
normal classes. We denote the homology class of =(I) by 1. We denote
by 7, the cohomology class which assigns the value 1 to =(I) and the
value O to all other cells. We call 1 and 1 unit classes.

The following lemme is an immediate consequence of 2.1.

3.4, IEMMA. H,(G(n,k);R) is the free R-module on the unit class
1 and on the normal classes [1i,,...,1,In,k]. If n<m and k<, we
have a map G(n,k) —> G(n,?) which sends [i,,...,1.In,k]l to
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(1;,..0,1,0m 0] 4f 1> 25 to [i,,...,1, ;|m,2] if d =1 and
i,.>2>1, = 1>k = 0; and to zero otherwise. The map

Het He(Q x G(n - 1,K);R) —> He(G(n,k) ;R)
is an epimorphism.

3.5. THEOREM. The Pontrjagin ring of G(n) is the commutative,
assoclative algebra over R with unit element 1 and generated by the
normal classes [i] of dimension (id -~ 1), where n > 1 > 0, subject to

the relations

(11 [J) = - [31 (1] 1if 14 3

110 = 1 ird =1
[11 (1) = o ifi>1o0rd>1
The normsl class [i,,1,,...,1,ln,01 = [1,1 [1)...04.0.

PROOF. Iet 1 < J < i. We have the diagram
gld-1  gid-1 ¥y gld-1 | pid-1 8 . pid-1  pld-t

hi X hj hj X h1
Q xQ —F—> G6n) <—+— Q,xq .
1 J J
Here w(x,y) = (y,%), hi and h:j are the meps of 1.4, u is the mul-

tiplication and e is defined as follows. Let EXG™1 . g(i-1d , gd-1
where E(1Md ¢ g1 ¢y _ Bl i the set of all unit vectors x with
x, real and x, > O. E(1'1)d is invariant under G(j) since J < i.

We define 6(x,y,,y,), where x ¢ Ejd", ¥y € g(1-14 apg ¥, € Ed", to
be (x,(hjx)'iyl,ya) . This definition is meaningful since hjx ¢ Q.J CG(j.
By 2.5 and the definition of hi’ the diagram is commutative.

We now find the degree of the maps ¢ and e. If d =2 or b,
both factors have odd dimension, and so ¥ has degree -1. If d =1, we
are working mod 2 and signs don't matter. Also, e has degree (-1)d. To
see this, let f: B4 1 —> B9 pe a contraction of EIY' onto
g point z. This gives a hamotopy of o

(%,77,¥,8) —> (x,(hyT(x,8) 'y, ,¥,)
which shows that 6 1s homotopic to the map
(X,Y.l :yz) —_ (x,hJ(Z) -13‘1 ,Ya)
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by a homotopy which is & homeomorphism at each time t. Therefore 6 has
the same degree as hj(z). Each element of U(n) or Sp(n) has degree 1,
since these groups are connected. If d =1, hJ(z) has degree -1 by 1.k
and 3.2. So 8 has degree (-1)<.

Since the normal cell (i) C Q;, and, by 2.6, QQ; = Qi 4,
we have (1i)(1) C Q1Q1_1. If 1> 1, then by 2.7, Q1Q1_1 is contained
in the skeleton of G(n) of dimension (21 - 1)d - 2 which is less than
2(id - 1). 'Therefore [1][1] is zero for dimensional reasons, if 1 > 1
If i=1, then (i)(1) C Q,, which has dimension d - 1. If d>1,
then [1]1[1] 41s zero for dimensioneal reasons.

If 4 =1, then by 3.2 there are two O0O-cells, namely the 1 x 1
matrices I and -I. (1) is the O-cell -I. Therefore [11[1] =~ 1 .

In order to camplete the proof of 3.5, it only remains to be shown
that the classes 1 and [1,101,] ... 1],
form a free basis for H,(G(n);R). This follows from 3.4, since the defi-
nition 1.5 of normal cells shows that

[1,104,] ... [4.) = [4,,...,1,]n,0) .

where n» i, > 1,...>1,>0

The mep u: G(n) x G(n,k) —> G(n,k) glves H,(G(n,k);R) the
structure of a module over Pontrjagin ring H,(G(n);R).

3.6. THEOREM. H,(G(n,k);R) 1s a module over H,(G(n);R) on a

single generator 1 (n> k> 1). The defining relations for this module
are
[i1J1 = o ifk>1i>0 if a4 1
(111 = o iIfk>1i>1 if d =1
11 =1 1fda=1.
The normal class [1i,,1,,...,i,|n,k] = [4,]01,] ... (1,01 .

PROOF. This follows immediately from 3.4 and 3.5 .

§4. The Cohomology Rings K (G(n,k);R).

We begin this section by reminding the reader of our assumption 3.1
on R.

We shall compute the cohomology ring of G(n;k) by induction on n
and by use of the monocmorphism (see 3.4)
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w*: H'(G(n,X);R) —> H(Q, x G(n - 1,k);R) where n> k.

If d =1, wewrite O(n,k) = G(n,k); if d =2, U(nk = G(nk);
if 4 = 4, Sp(n,k) = G(n,k)

4.1, NOTATION. We extend the notation of 3.3 as follows. Iet

i,,...,i, be a set of integers all greater then k, where k > 0 if

T
d=2o0rk and k>1 if d=1. Let (4i,,...,1,) be the zero cohomolo-
gy class of G(n,k) if 1 > n for some s such that 1 <s<r, or

if 1, =d; where 1 <s<tgr. Otherwise let ({i,,...,1,] denote the
product of the normal class of G(n,k) obtained on permuting 1000515,

and the sign of the permutation. (Recall that (11,) is a cell of dimension
(1,4 - 1), whichis odd if d = 2 or &, while if d =1, our ring is Z,.
Therefore this notation is consistent with the usual convention for sign-
changing.) Curly brackets with a space between them { }, should be inter-
preted as 7. We also use the symbols (b) and 7, where 0 < b < n to

denote the images of these classes under the map H*(G(n) sR) —> H*(Qn;R) .
4.2, IEMMA. a) Iet n > k > 1. Under the monomorphism (see 3.4)
ks H'(0(n,k)32,) —> H(Q x 0(n - 1,1);2,),
we have, in the notation of 4.1,
W by,...,b) = T x (by,..0,b,) + (1) x (by,...,b)
# T _1(bg) x (b, e0,by_1,b4,0,0-,b,.
b) Iet n>k>0. Let d =2 or 4. Under the monomorphism
w¥: H(G(n,k)R) —> H(Q, x G(n - 1,k)5R) ,
we have, in the notation of 4.1,
* T r+l
wiby,.ee,bpl = T x (by,.eu,by) + 5 (-7 0,) x
X (by,eee,by_1,by 000,00 -
PROOF. Without loss of generality, we may assume that n > b, > ...
> b, >k, since interchanging two adjacent b's multiplies both sides of

the equation by -1, and if two of the b's are equal, both sides of the

equation are zero.
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We prove the theorem by evaluating both sides of the equation on
cells of Q,n x G(n - 1,k). The value of the left-hand side is calculated
with the help of 3.5 and 3.6. When evaluating the right hand side, we must
use the sign change < ¢, x co,hy x by > = (-1)P < ¢ i, > <ey,hy, >,
where ¢, ¢ B2(X), h, e Hy(X), cpe H{(Y) and h, ¢ Hy(Y).

4,3, ILEMMA, If d = 2 or 4, cup products of positive dimensional
classes in Q, are zero. If d =1, and n>a>b> 0, thenT(a} =0

and {a}{b} = (a +Db -1},

PROOF. For d = 2 or 4, 1.4 shows that Q, has only odd dimension-
al cohomology. Since the product of two odd dimensional classes is zero,
the lemma follows for d = 2 or 4.

When d =1, Q is the disjoint union of Q, and P"7' by 3.2.
Since (a} 1s the generator of I-la"(Pn";Zz), the formula (a}{b} =
(a+ b -1} follows. The unit element in H*(Qnsze) is 7 + {1}, since
this assigns the value t to each 0-cell in Q'n Therefore

(T + 1))(a} = (a} = (a0} .

The lemma follows.

b.b. IEMMA. et n>k>1. In H (0(nk);Z,), we have

{a} v {by,...,b.) = {a,b,,...,br] +

r
+ 21=1(b1"“’b1 +a-1,...,b)

where a > k and bi>k for all 1i.

PROOF. The theorem is true for n = k, since then all terms in
the formula are zero (see 4.1). For n > k, it follows by induction on n,
using 4.2 a) and 4.3.

Let A(n,k) be the commtative associative algebra on the gener-
ators {b} of dimension b -1, where n> b > k, subject to the rela-

tions {b}{b) = {2b -1} 1f 2b -1<n and (b}b} = o if 2b-1 > n.

4.5 THEOREM. Iet n> k> 1. Then H (0(n,k);Z,) ~ A(n,k). If
n<{m and k< ¢, we have a map O(n,k) ~—> O(m,f) which induces a map
E*(0(m,4);2,) —> H'(0(n,k);Z,). Under this map, (b} —> 0 if b>n
and {b} —> (b} 1if b < n.



50 IV. COHOMOLOGY OF CLASSICAL GROUP3

PROOF. From 3.4, we see that H*(O(n,k);ze) has a vector space
basis consisting of the normal classes (b;,...,b.}, with n> b, > ...
> b, > k. L.b shows by induction on r, that the normal classes (b}, with
n > k, generate H*(O(n,k);zg). Also from k.4, we see that

{p} v (b} = {b,b] + {2b - 1}
Referring to our notation 4.1, we see that there is an epimorphism
Aln,k) —> H (0(n,k) 52,) .
Suppose we have an element Q ¢ A, whose image in H*(O(n,k);zz)
is zero. Q can be expressed as the sum of terms of the form {(b,}{b,}...

[br}, where n > b, > ... > b, > k. By induction on r, we see from 4.k
that

(o) byl...lb) = (by,...,b,) + terms like {a;,...,8])
with s <r. In Q, if we collect the terms where r 1s greatest, and
apply this formule, we see that Q = 0.

4.6. IEMMA. If d = 2 or &, then in H (G(n,k);R),
(-07a) o (by,...,b) = (8,by,...,b) ,
where a > k, and b; > k for all 1.
PROOF. For n = k, the theorem is true since then both sides of

the equation are zero. For n > k, it follows by induction using 4.2 b)
and k.3.

Iet r(n,k) Dbe the exterior algebra over R, generated by elements

{b} of dimension bd -1 (4 =2or &), withn> b > k.

L.7. THEOREM. H (G(n,k);R) ~ r(n,k) for d = 2 or 4. If
n<{m and k< £, we have a map G(n,k) —> G(m,2) which induces a map
H (G(m,2) 5R) —> H'(G(n,k);R). Under this map (b} —> 0 if b>n and
{b} —> (b} if Db < n.

PROOF. This follows from 4.6 in the same way that 4.5 follows L.k,

§5. The Pontrjagin Rings of S0(n) and SU(n).

SO(n) and SU(n) are the subgroups of O(n) and U(n) respectively,
consisting of matrices with determinant 1. The compositions
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80(n) —+> o(n) %> 0(n,1) and SU(n) -+ U(n) —*> U(n,1)

are both homeomorphisms. The reason for this is that both in real and in
complex n-space, there is exactly one way of completing an (n-1)-frame to
an n-frame with determinant 1. We shall identify 80(n) with O(n,1) and
SU(n) with U(n,1).

5.1. THEOREM. The Pontrjegin ring H,(S0(n);Z,) is the exterior
algebra on the normal classes [bl of H,(0(n,1);2,) (see 3.3).

PROOF. The normal cell (i, ""’ir) of 0(n) consists of matrices
of determinant (-1)¥ (see 1.4, 1.5 and 3.2). Therefore SO(n), as a sub-
spsce of O0O(n), consists of the normal cells (11,...,12r) where n > i, >
«+s > 15, > 0. By 3.5, the normal class of such a cell is [1,1{1][1,][1]
...l1,,1[1]. Therefore by 3.5, the image of H,(S0(n);Z,) —> H, (0(n) 5Z,)
is the exterior algebra on the elements I[bl[1] with b > 1. Mapping into
He(0(n,1)32Z,), [bll1] bvecames [bl, by 3.6.

5.2. THEOREM. Let I[b] e H,(U(n,1);R) = H,(SU(n);R) be a nor-
mal class (n > b > 1). The Pontrjagin ring H,(SU(n);R) is the exterior
algebra over R generated by the classes [bl of dimension 2b - 1.

PROOF. By 3.6, we know that H1(U(n,1);R) = 0. Therefore

H'(SU(n);R) = 0. The composition
*
.

*
H*(U(n,1) ;R) > H (U(n) 5R) ——> H'(SU(n) ;R)

is the identity. From 4.7, we know that = (b} = (b} where n> b > 1.
Therefore 1*{b) = {b} where n> b > 1. Mareover H'(SU(n);R) = 0
so 1*(1) = 0. By 4.6 and induction on r, this shows that 1*(b,,...,b,)

’

=0 if b; =1 for some i and that otherwise i*(b,,...,b)) =
{by,...,b,}. The dual map 1i,: K, (SU(n);R) —> H,(U(n);R) therefore satis-
fies 1,[bl = [b] wvhere n>b > 1. Since i, is a monamorphism of
Pontrjagin rings, the theorem follows.

We now investigate the embedding Sp(n) C U(2n). ILet V be quater-
nionic n-space and let W be complex 2n-space. Ilet us write every quater-
nion gq = q, + iq, + jq3 + kg, , where 9,9,,93 and q, are real, as
(q; + igy) + J(qz - 1q)). Then & column vector (x,,...,X,) ¢ V becomes
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a column vector (yl,...,yzn) e W, by writing x; = Jypq.1 + ¥py - This
gives an identification of V and W as complex vector spaces. The iden-
tification preserves the sealar product of a vector with itself (but not
with another vector). Therefore every element of Sp(n) preserves scalar
products in W, and we have an embedding Sp(n) —> U(2n). We also have
maps Sp(n) —> V and U(2n) —> W obtained by taking the last column
of a matrix, or, equivalently, by taking the image of the vector (0,...,0,1)
under an element of Sp(n) or U(2n). The diagram

Sp(n) >V
! ]
U(2n) > W

is commitative. On identifying unit vectors in V and W with Sl‘n'1 ,
we obtain the following commutative diagram
5.3.

Sp(n) > Sp(n,n-1)
1
Shn-l
f
U(2n) > U(2n,2n-1)

5.4, THEOREM. The embedding Sp(n) —> U(2n) induces an epimor-
phism H (U(2n);R) —> H (Sp(n);R) given by (2b) —> (b} and (2b - 1)
—> 0, where n > b > 0. (Recall that {b} has dimension 2b -1 or

Lb - 1, according as it denotes a normal class of U(2n) or Sp(n).)

PROOF. The proof is by induction on n. If we take Sp(0o) = TU(0)
to be the identity transformation, the theorem is cbviously true.
The following diagram is commutative

Sp(n - 1) —— U(2n - 2)

\Y4 v
Sp(n) ——> U(2n)

Therefore the diagram

B (Sp(n - 1) <—— H(U(2n - 2))
N\ N\

I I

H (Sp(n)) < H (U(2n)
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is commutative. By 4.7, the left hand vertical map sends (b} to (b} if
0<b<n-1 and to zero if b > n-1. Also by 4.7, the right hand vertical
map sends (b} to {b} if 0 < b < 2n-2 and to zero if b > 2n-2. By our
induction hypothesis and the commutativity of the diagram, the theorem is
true for classes ({bl) ¢ Hgb'1(U(2n)), where b < 2n-2, and we have only
to check the theorem for (2n-1} and {2n}. For dimensional reasons,
{2n-1} ¢ th'3 (U(2n)) goes into the subalgebra of H*(Sp(n)) generated by
elements of the form {m} ¢ Hhmq(Sp(n)) where 0 < m < n. But by k.7,
this subalgebra is sent monomorphically into H*(Sp(n-1)). By the commuta-
tivity of the above diagram, we see that {2n-1} goes into zero in H*(Sp(n)
To find the image of (2n) ¢ K™ '(u(2n)) in ™ '(sp(n)), we
use 4.7 and the diagram 5.3. Since both {n} e Hun”(Sp(n)) and (2n} ¢
pn-! (U(2n)) are images of the fundamental class in th-1(shn-1) , {en}

is sent to {n) and the theorem is proved.

§6. Cohomology Operations in Stiefel Manifolds.

We can compute cohomology operations in the Stiefel manifolds as
follows. From 4.5 and 4.7, we need only know their action in 80(n) =
0(n,1), U(n) and 3Sp(n). We have the monomorphisms

we: H(0(n,1)352,) —> H (Q x 0(n-1,1)32,)
and p*: H*(U(n) ;R) > H*(Q,n x U(n-1,1);R) .

By induction on n, we can determine cohomology operations, if we know
them in Q,n and their behaviour under cross products. By 3.2 if 4 = 2,
Q'n has the homotopy type of scp?! v 8! , 8o we need only know the opera-
tions in CP™' and their behaviour under cross products (see I 2.1).

To find the operations in Sp(n) we use 5.% and our knowledge of
their action in TU(2n).

The only explicit computation of operations which we shall carry
out, is the effect of Sqi on H*(O(n,k);ze) for k> 1.

Using the notation 4.1, we have

6.1. THEOREM. Sql(b) = ('T)[b + 1) in H(0(n,k);Z,)
(n>b>k>1). The Cartan formula then gives the action on the other

cohomology classes.
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PROOF. Under the monomorphism
wx: H(0(n,k);32,) —> H (Q, x 0(n-1,%);32,) ,
the image of (b} is T x (b} + (b} x { } (see 4.2 a)).

By I 2.4 and 3.2, Sqi{b} = (b_{]) (b+1-1} and quT =0
if i > 0. The theorem follows.

We shall obtain another description of the @ (2)-module structure
in terms of the definitions in II §5.
A stunted projective space P? is the space obtained from the real

projective n-space P by collapsing the (r-1)-skeleton P! toa point.
We have a map g Pg, which induces & monomorphism

% *
H (P];Z,) —> H (P:2,)

s
naturality and I 2.b4,

Iet w_ be the non-zero element of Hs(P?,;ZQ) for r < s <n. Then, by

(1> Ve,g Af s+ignm

and Sq L if s+1i>n

By 3.2; if d =1, Q/Q = Py ' (n>k>1). The map
Q, —> 0(n,k) induces a map

- /e —> o(np .

We claim that this map is a homeomorphism into. We prove this claim by in-
duction on n. It is true for n = k. Suppose X,y ¢ Q,ﬂ/Q,k have the
same image in O(n,k). By our induction hypothesis we can assume X e
Q, - Q. - Our claim then follows by 2.3.

By 2.1, a normal cell (i,,...,i,|n,k) bhas dimension greater than
2k if r» 2. Therefore the 2k-skeleton of O(n,k) 1s PEX if n> 2k

If n< 2k, the n-skeleton of O(n,k) 1s P

6.2. THEOREM. If k> 1, then H (0(n,k);Z,) 1s the free @ -
algebra generated by H*(Pﬁ'1 52,) . (See II 5.4 for the definition.)

PROOF. Let us take A(n,k) to be the same algebra as the one
defined just before 4.5. The free @(2)-algebra on H*(P§'1;Z2) is iso-
morphic to A(n,k) as an algebra, if ve let Wy and (b + '} correspond

(n>b> k). This is because qu W, = Yop if 2b > n and zero otherwise



§7. VECTOR FIELDS ON SPHERES 55

We have only to check that the structure on A(n,k) as an @(2)-
module, induced by this isomorphism, is the same as the natural structure
on H*(O(n,k) 32,). In fact by the Cartan formula, we need only check on
the generators (b}. Now

sqt vy = C{) v,; and Sqltb + 1) = (‘{) {b+1+1}
unless b + 1 > n, when both equations have zero right hand side. The

theorem follows.

§7. Vector Fields on Spheres.

By a vector field on a sphere Sn'1 we mean a continuous field

of tangent vectors, one at each point of . Sn'1 . A set of k vectors on
s are independent if, at each point of 8% , the k vectors are

linearly independent. For each positive integer n, let k(n) be the larg-
est integer such that Sn" has k(n) independent vector fields. The com-
plete determination of the function k(n) has been achieved recently by

J. F. Adams [3]. Writing n in the form

n = 2ua+3(23 + 1)
where o, and s are integers > 0 and B = 0,1,2,or 3, then
k(n) = 2 4 e -1

Thus k(n) = 0 if n 1is odd; and, for small even n, we have
n=2,46,8,10,12,14,16,18,20,22,2k 26,28,30,32,
k(n) =1,3,1,7,1,3,1,8,1,3,1,7,1,3,1, 9,
The existence of k(n) independent fields was proved by Hurwitz and Radon
[5]. The complete proof of these results is beyond the scope of these
notes. However we shall establish an upper bound on k(n) which i‘s a step
toward the complete result and which gives the least upper bound for n < 16.

7.1 THEOREM. (Whitehead and Steenrod [4].) If n = 2™(2s + 1),
then k(n) < 2.

Y

In order to prove this theorem, we first prove a lemma.

7.2, IEMMA. Iet n = 2M(2s +1). If 0< j< 2% then
n-j-1 n-2mo1y
( 3 ) = 0 mod 2. Also ( ol > =1 mod 2 if s> 1.
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m

PROOF. n - 1 = 2 ot

-1 4+ 8- )
=1+21 +...+2m-1+s'2m+1.

If j = 2¥ +22" ¢ 2™ then the coefficient of 2¥ in (n -1 - j) 1is

zero, while the coefficient of 2" in j is 1. By I 2.6, ( -4- 1)

mod 2. If j = 2%, then the coefficient of 2™ in (n - 2% - 1) 1.
-2l

So <n m ) =1
2

PROOF of 7.1. Given k vectors v,,...,v,, which are linearly in-
dependent, we can find an orthonormal basis for the space spanned by v
We simply define by induction u

10"

=V u = projection of vy onto

Vi 1 12
the space orthogonal to u,,.. <y - We put Wy = ui/|ui| . The same for-
mulas enable us to deduce the existence of a field of k-frames from the
existence of k linearly independent vector fields on anymanifold with a
Riemannian metric.

The k-frames tangent to & point of s™! ¢ gD (R® 1is Euclidean
n-space), correspond in a one-to-one way with the (k+1)-frames at the
origin of R, (We simply use the last vector to specify the point on
g1 .} The existence of a field of k-frames on an (n-1)-sphere 1s the

same as the existence of a cross-section to the fibre bundle

0(n,n-k-1) —> 0(n,n-1) = s2°7

(see 1.1). Actually we do not use the fact that this is a fibre bundle.

Suppose that in contradiction to the theorem there are 2™ linearly
independent fields on s*' and n-2%2s + 1). Then s > 1. There must
be a cross-section A to the fibre bundle

s O(n,n—em-1) —> 0(n,n-1) = gn-1

Therefore we must have maps

* »*
H'(0(n,n-1)32,) <> H (0(n,n-2"-1);2,) 2> " (0(n,n-1);2,)

whose composition is the identity. By 4.5 u*{n] = {(n)}. Therefore
A¥{n} = {n}. Now (n)} is the only non-zero positive dimensional term
in H(0(n,n-1):2,) = H (5% ';z,). Therefore- x"(b) = 0 if n> b.

By 6.1 and 7.2

m n
Sq® (n-2™ - (n-gm-‘){n} = (.
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Applying »*  to both sides we have a contradiction, which proves the

theorem.
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CHAPTER V.

Equivariant Cohomology.

In §1 we define the equivariant cohomology of a chain complex with
' a group action and show that the cohomology group is left fixed by inner
automorphisms of the group. In §2 we give the basic theorem about the con-
stiruction of a chain map with a prescribed acyclic carrier, and we define
the cohomology groups of a group. In §3 we define a generalized form of
the cohomology of a group, in which a topologlcal space also plays a role,
In §4 we show that a number of alternstive ways of defining products in
cohomology groups all lead to the same result. In §5 we find the cohomology of
of the cyclic groups and in §6 we consider the restriction map from the
cohomology of the symmetric group to the cohomology of the cyclic group.

In §7 we use the transfer to obtain more accurate information concerning

the restriction map.

§1. Chain Complexes with a Group Action.

1.1, DEFINITIONS. The category of pairs is the category whose

objects are pairs (p,A), where p 1is a group and A is a left p-module.
Amep f: (p,A) —> (n,B) consists of homomorphisms f;@ p—>n and
fo: B-—> A such that

fe(f‘(a)b) = a £,(b)

for all o € p, b€ B . The category of algebraic triples is the category

whose objects are triples (p,A,K) where o and A are as above and X
is a chain complex on which p acts from the left. A map f: (p,A,K) —
(=,B,L) consistg of a map (p,A) —> (n,B) 1n the category of pairs and
a chain map f'#: K—> L such that f#(ak) = f‘1(a)f#(k) for all ae€ p

and k € K. We say that f# and f, are equivariant (i.e., commte with
58
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the group action).
Let C:(K;A) = Homp(K,A) be the complex of equivariant cochains
on K with values in A. A mep f: (p,A,K) —> (x,B,L) induces a map

e cl(1B) — Ch(xsa)
via the composition

k#5115 p25a.
Let H (K;A) be the homology of the complex C) (K:A).

1.2. IEMMA. CZ(K;A) and H:(K;A) are contravariant functors from
the category of algebraic triples.

1.3. DEFINITION. An automorphism of an algebraic triple (p,A,K)
is a map (p,A,K) —> (p,A,K) with an inverse. The imner automorphism of
(p,A,K) determined by v € p 1is defined by

£,(@) = g7, f(a) = y7'a, f() = 7k
If n« 1is a normal subgroup of p, then an inner automorphsim of (p,A,K)
induces an sutomorphism of (=x,A,K).
We repeat all the definitions in t.3 in the case of a pair (p,A),
by suppressing all mention of K.

An automorphism of (p,A,K) induces an automorphism of H:(K;A)
by 1.2.

1.4, LEMMA. An inner automorphism of the algebraic triple (p,A,K)
induces the identity mep on H:(K;A) .

PROOF. The induced map is the identity on the cochain level.

1.5. LEMMA. Ilet (p,A,K) be an algebraic triple. ILet = be a
normal subgroup of p and let y € p. ILet g (x,A,K) —> (x,A,K) be
the automorphism determined by . Then the image

* *
B (K;A) —> H, (K;A)
is pointwise invariant under the automorphism g*.

PROOF. Iet f: (p,A,K) —> (p,A,K) be the inner automorphism
determined by y. Then by 1.2, the following diagram is commtative
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%
B (K:8) —L— B (K;4)

i (K:8) —&> Hi(K:A)

Further, 1.4 shows that f = 1.

§2. Cohomology of Groups.

A regular cell complex K 1is a cell complex with the property that
the closure of each cell is a finite subcomplex homeomorphic to a closed
ball. If K is infinite, we give 1t the weak topology — that is, a set
is open if and only if its intersection with every finite subcomplex is
open, (i.e., K is a CW complex). Iet K and L Dbe cell complexes. A
carrier from K to L 1is a function C which assigns to each cell T € K
a subcomplex C(t) of L such that a face of T 1s sent to a subcomplex
of C(t). An acyclic carrier is one such that C(t) is acyclic for each
T€ K. Let p and =n be groups which act on K and L respectively
(consistently with their cell structures), and let h: o —> = be a homo-

morphism, An equivariant carrier is one such that C(ar) = h(a) C(7)

for all € p and T € K. ILet 9: K—> L be a chain map: we say
¢ 1is carried by C 1if ¢(7) is a chain in C(t) for all T € K.

2.1. REMARK. Iet K and L be CW complexes. We give K x L
the product cell structure and the CW topology. The chain complex of
K x L 1is the tensor product of the chain complex of K and the chain com-
plex of L. If K and L are both regular complexes, then K x L 1is a
regular complex. (According to Dowker [1], the product topology on K x L
defines a space which is homotopy equivalent to the CW complex K x L.)

Let KXK' be a p-subcomplex of a p-free cell complex and suppose
we have an equivariant chain map K' ——> L. Suppose we have an equivariant

acyclic carrier fraom K to L which carries o¢lK'.

2.2, IEMMA. We can extend ¢ to an equivariant chain map
¢: K —> L carried by AC. It 9 and 9, are any two such extensions
carried by C, then there is an equivariant homotopy I @ K —> L between

% and Py (p acts on I ® K by leaving I fixed and acting as before
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on K.)

PROOF. We arrange a p-basis for the cells of K - K' in order
of increasing dimension. We must define ¢ so that ¢3 = J¢. 3ince
C(t) is acyclic for each T, we can do this inductively. The second part
of the lemmsa follows from the first, since I x K 1s a p-free complex
(see 2.1), and we can define a carrier from I x K to L by first pro-

jecting onto K and then applying C.

2.3, LEMMA. Glven a group =, we can always construct a n=-free

acyclic simplicial complex W.

PROOF. We give = the discrete topology and form the infinite

repeated join
W = nxnaxn ...

This repeated join is a simplicial complex. Taking the join of a complex
with a point gives us a contractible space. Any cycle in W must lie in
a finite repeated join W', BSuch a cycle is homologous to zero in W' x =.
Therefore W 1is acyclic.

We make = act on W as follows: = acts by left multiplication
on each factor = of the join and we extend the action linearly. This

action is obvious free and the lemma is proved.

Suppose we have a homomorphism = —> p and W is an acyclic
n-free complex and V an acyclic p-free complex. Then we have an equi-
variant acyclic carrier from W to V: for each cell T € W, we define
C(t) = V. By 2.2 we can find an equivariant chain map W —> V, and
all such chain maps are equivariantly homotopic.

Therefore a map of pairs f: (=x,A) —> (p,B) as in 1.1 leads to
a map of algebraic triples (x,A,W) —> (p,B,V) which is determined up to
equivariant homotopy of the chain map W —> V. By 1.2 we obtain a well-
defined induced homomorphism

*

' E (ViB) —> H (W:A).
In the class of =-free acyclic complexes, any two complexes are

equivariantly homotopy equivalent, and any two equivariant chain maps going

from one such complex to another are equivariantly homotopic. Therefore the

_ — . - - R e acmurr=e L 4 i
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groups H:(W;A), as W varies over the class, are all isomorphic to each
other and the isamorphisms are unique and transitive. We can therefore
identify all these cohomology groups and write H*(n;A) instead of H:(W;A)

2.k, LEMMA. H*(u;A) is a contravariant functor from the category
of pairs (see 1.1).

§3. Proper maps.

Suppose we have a continuous map f: K —> L between two CW com-
plexes. A carrier C for f is a carrier from K to L such that
f(t) C C(t) for all cells T € K. The minimal carrier of f 1is the car-
rier which assigns to each cell T € K the smallest subcomplex of L con-
taining f(t). Every carrier of f contains the minimal carrier. We say
f 1is proper if the minimal carrier is cyclic. If = acts on K, p acts
on L, h: « —> p 1s a homomorphism and f is equivariant, then the

minimal carrier is also equivariant.

3.1. IEMMA. Iet K and L be finite regular cell complexes.
Jet = acton K and p acton L, let h: = —> p be a homomorphism
and let f: K——> L be a continuous equivariant map. Then f can be

factored into proper equivariant maps
K>k —1' 151
where K' and L' are barycentric subdivisions of K and L.

PROOF. The first barycentric subdivision of a regular cell complex
is a simplicial cell complex, as we see by induction on the dimension. ILet
L' be the n'P barycentric subdivision of L for n> 1. ILet U; be the
open star of the 1™ vertex xy of L'. Then (Ui] is an open covering of
L. We can choose a barycentric subdivision K' of K such that each sim-
plex T of K' is contained in a set of the form f"(Ui). Then the mini-
mal carrier of T consists of simplexes all of which have X, asa vertex.,
Therefore f: K' —> L' 1is proper. The identity meps K —> K' and
L' — L are obviously proper. The maps are all equivariant. This proves
the lemma.

Note that we were able to choose L' to be any barycentric
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subdivision of L. Note also that any subdivision finer than K' would do
equally well in the place of K'. Iemma 3.1 is true but more difficult to
prove if the words "finite" and "barycentric" sre deleted from its statement

3.2, DEFINITION. The category of geometric triples is defined in

the same way as the categbry of algebraic triples (see 1.1), except that we
replace the chain camplex K by a finite regular cell complex K and equi-
variant chain maps f# by equivariant continuous meps. We say a map of
geometric triples (=,A,K) —> (p,B,L) is proper if the continuous map
K —> L is proper.

Iet f: («,A,K) —> (p,B,L) be a map of geometric triples. Let
W be a =r-free acyclic complex and V a p-free acyclic complex (these
~exist by 2.3). We wish to construct a map

e H(V x LiB) —> H (W x K;4)

where the action of = on W x K 1is the diagonal action — that is
a(w,k) = (ew,ak) for all o€ n, we W and k € K — and similarly for
the action of p on V x L.

If f is proper, let its minimal carrier be C. Then we have the
acyclic equivariant carrier from W x K to V x L which assigns V x C(r1)
to any cell _of the form w x 7 € W x K. By 2.2 this gives us an equivariant
chain map f#: W@ K—> V®L which is determined up to equivariant
homotopy. If f is not proper we can factorize it into proper maps

(x,A,K) —> (x,A,K") —> (p,B,L') —> (p,B,L)

and define f‘# as the composition of three chain maps
WeK—> WK — Vel — Vel

For a proper map of geometric triples («,A,K) —> (p,B,L) we now
have two different constructions of an equivariant chain mep W ® K —>
V®L. The first is obtained directly and the second is obtained by fac-
torizing into three maps. The results differ by at most an equivariant
homotopy. It is easy to see that the definition of f‘* does not depend,
up to equivariant homotopy, on the number of times we subdivide K and L
in 3.1. It easily follows that if

(x,4,8) £ (5,8,1) &> (0,0,M)
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are maps of geometric triples and if U is an acyclic equivariant o-complex,
then g#f#: W@ K —>U®M 1is equivariantly homotopic to (gf) 2 Let-
ting L = I x K, 1it follows that if h,k: K —> M are equivariantly
homotopic as continuous maps, then h# and k# are equivariantly homotopic
as chain meps from W® K to U ® M. )

Therefore a map of geometric triples (=x,A,K) —> (p,B,L) glves
rise to a map of algebraic triples (7, AW® K) —> (p,B,V® L). As in
2.4 we show that H:(W ® K;A) does not depend on the choice of W. We

have therefore proved

3.3 ILEMMA. Hj‘(w x K;A) is a contravariant functor from the cate-
gory of geometric triples. Induced maps are independent of equivariant

homotopies of the variable K.

3.4 If = is a normal subgroup of p, A 1is a p-module
and K 1is a finite regular cell complex on which p- acts, then p acts
on the geometric triple (x,A,K) by the same formulas as in 1.3. Therefore
p acts on H::(W x K;A) by 3.3. This action commutes with equivariant maps
of the variable K. If =« = p, then p acts trivially on H:(W x K;A)
by 1.4. If K has trivial n-action, then the action of ¥ € p on
H:(W x K;A) can be found by extending the automorphism of (=x,A) induced
by 7 (see 1.3) to a map of the algebraic triple (=x,A,W) into itself.
Using the identity map on K, this gives a map of (x,A,W ® K) into itself,
which induces the automorphism of H:(W x K;A).

If K 1is a polnt then K (W x K;A) 1is just H (n;A) and 3.3 re-

duces to 2.k,

§k. Products.

Iet K be a n-free CW complex and L a CW complex on which o
acts, and suppose we have a homomorphism =« —> p and a continuous equi-
variant map f: K —> L. By an increasing induction on the dimension of
the cells which form a =n-basis for K, we can construct an equivariant
homotopy I x K —> L, which starts by being f and ends as a cellular
map. This gives rise to an equivariant chain map f 2 K —> L, which is
determined up to equivariant homotopy. We can insist that, during the
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homotopy, the image of each cell in K stays within the minimal carrier of
f. Then f# is carried by the minimal carrier.

Now f induces a map g: K/x —> L/o. The msp f# induces a
chain map K/ —> L/p. This chain map will do for &z since the equi-
variant homotopy I x K —> L induces a homotopy I x K/n —> L/p which
starts by being g and ends as a cellular map.

Iet X and L be regular cell complexes with group action as above
and let f be proper. Then we can choose f#: K —> L in a different
way to that above. We can simply apply 2.2 using the minimal carrier of f.
However our previous choice of f# was also carried by the minimal carrier.
Therefore the two procedures lead to the same result (up to equivariant
homotopy) .

Iet W be a n-free regular cell complex and let L = W/x. Let =«
act on W x W by the diagonal action. The diagonal d: W —> W x W is

an equivariant proper map. By the discussion above we have

4,1, IEMMA. Any equivariant diagonal approximation in W induces
a chainmap L —> L ® L which is homotopic to a diagonal approximation
in L. If W is acyclic, then any equivariant chainmep W —> W@ W
will induce amap L —> L @ L. which is homotopic to a diagonal approxi-
mation.

let (=,A,M) and (p,B,N)" be algebraic triples (see 1.1). Then
we have a triple (n x o,A® B,M® N). We have a map

* * *
Cp(M;A) ® C (N;B) —> C, (M ® N;A ® B)

defined in an obvious way. This gives us a cross-product or external -

product pairing
Hy,(M:A) ® H,(N;B) —> H, (M@ N:A®B).

Iet W be an acyclic n-free complex and let V be an acyclic
p-free complex. Iet (x,A,K) and (p,B,L) be geometric triples. Then the
cross-product above gives us a map

H (W x K3A) @ H(V x LiB) —> K, (W x KxV x LiA ® B).

Now the algebraic triples (v X p, AB, W K@ V®L) and
(n xp, A®B, W® V® K® L) are isomorphic via the map which interchanges
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V and K (with a sign change). Here the action of = x p on
WRK®2Ve®eL is given by

(a,8)(w@k@vel) = (oweoakepv sl
for all o€ n, B€p ,wWeW, ke K, veV and £ € L. The action of
tnxp on WRVR®K®L 1is given by

(e,8)(vedvekel) = (ow®pveoakest).
Therefore we have an isomorphism between ,
Heyo(W x K x V x L;A ® B) and H:xp(WxV x Kx L;A®B). Since WxV 1is
a (nxp)-free acyclic complex, we see that, composing this isomorphism with
the cross-product above, we have introduced a cross-product
(h.2)  H(W x K:A) ® H (V x LsB) —> H, (W x V x K x L;A ® B)
defined on the functor of 3.3. The image of u® v 1is denoted by u x v.

We have a diagonal map of geametric triples
d: (r,A®B,K) —> (= x r,A®B,K x K),

where n acts on A® B in the first triple by the diagonal action.
Hence we have a map (see 3.3)

* *

N
d: H"x’((WxWxKxK;AQB) —> H (W x K;A ® B)

where axx acts on W x W x K x K by
(a,B) (v1 ’vayk«"ke) = (W1,5V2,ak1,5k2)

for all o, € x, v,,v, € W and k,,k, € K. Combining d* with the cross-
product of 4.2, we have the cup-product peiring

(4.3) H (W x K;A) @ Hy(W x KsB) —> Hy(W x K:A @ B).
If = 4is the trivial group, this is the usual cup-product in K. If K is

a point, then this is the usual cup-product in the cohomology of a group.

4,4, REMARK. Iet W and L be as in 4.1. We can compute cup-
products in L by constructing an equivariant diagonal approximation in
W. This 1s particularly useful when L is not a regular cell complex.

§5. The Cyclic Group.

Iet W be the unit sphere the space of infinitely many complex
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varisbles. That is, every point in W has the form (z,,2;,...,2,,0,..)
where I Eizi = 1. We give W the weak topology. Alternatively W may
be described as the CW complex obtained by taking the union of the sequence

stcgdcsdc....

Iet n be any integer greater than one. Iet T: W —> W be the trans-
formation defined by

T(Z,295.00) = (MzZg,hz,,...)

where A = ee"i/n. T obviously acts freely and generates a cyclic group
= of order n.

We now construct an equivariant cell decomposition for W, which
makes W a regular cell complex. We do this in the ocbvious way for S‘,
so as to get n o0-cells ey,Tey,..., T 'e,, and n 1-cells,
e1,Te1,...,Tn'1e1. Let de, = (T-1)e,. Now we proceed by induction.
g2r+l  _ gor-? * 8! (where * means join). Here S' can be identified
with the set of points (0,...,0,2,,0,...) such that Zrzr = 1. We con-
struct a cell decomposition for S°T*' by taking its (2r-1)-skeleton to
be the cell decomposition for g2r-1 already defined by our induction. We
let the 2r-cells of S°"*' be of the form s?¥7' x Ttey - Tle,,
let the (2r+1)-cells be of the form S°T~' « e, - i We then

1 Cops”
have n cells in each dimension.

and we

Iet N=14+T+ ...+ T ' and A=T-1 be elements in the
group ring of =x. Choosing the orientation of the join correctly, we obtain
i
T e
er = Ne,, ,
i i
and AT Copyq = Toe,, .

Therefore the cell complex is =-equivariant and is regular.
et a = Z°_<. i< J< n ™ x 1 be an element in the group ring
Z(x x x). 2Z(x x x) acts on W®W in the obvious way. Z(x) acts on
W®W via the map Z(n) —> Z(n x =n) induced by the diagonal = —> = x x
5.1. LEMMA. The equivariant map d: W —> W@ W defined by
de =7 e . e D ®e
2i j=0 ~2j 21-2j 'j=0 2j+1 2i-23-1

i
141 = Zjoo (eej ® Coi-2541 * C2541 @ Teei-ej) is & chain map.
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PROOF. In 2Z(x x x) we have the relations

TXT - 1x1 = 1xA + AXT
(TxT)Q - & = Nx1 - 1xN
1T + TxXT + oo + T ™1 C 0 5+ 2(ax1)
IXT + TXTZ # ooe + T = Nxt1 - Q(1xa) .

Using these relations the lemms follows by a straightforward calculation.
let L = W/x. 8ince W is contractible and covers L n times,
L is an Eilenberg-MacLane space of type K(Zn,1) . L has one cell, also

denoted by e;, in each dimension. We have 3de,, = ne and ode =0

2r-1 2r+1

in L. Let w, be the cochain dual to e,. Then H'(L;Z)) is cyclic of
order n and is gemerated by w,. Let p: HNL;Z)) —> Hq”(L;Zn) be

the Bockstein operator associated with the exact coefficient sequence

0 —> Z, —> Zpp —> Z, —> 0.

2
5.2. THEOREM. BW, = -Wy; BW, = 0. If n is odd, w, = 0,
r r r
Vop = (wg) and Wy, 4 = (we) w,» If n=2, then w, = (w1) .
PROOF. Since de, = ne,,
BW, + &, = -(1/n)w1 - de, = W, - e, = -l.

2
Therefore BW, = -~W,. Since 8 = 0, Bpw, = O.
By 4.4 we can campute cup-products in L by using the diagonal of
5.1. In L we therefore have the induced diagonal approximation

i-1 .
depy = z:jL=o 5 ® €y py *+ D(0-1)/2 L3575 €54.4 @ €55 5474
2i+1
depi41 = Zjo ©5 ® Cpi_guq -

The theorem follows.

5.3. COROLLARY. If n is odd, K (L;Z,) is the tensor product
of the exterior algebra on w; and the polynomial algebra on BW, = -W,.
If n=2, pw, =w, and H*(L;Z?) is the polynomial algebra on W,

§6. The Symmetric Group.

Throughout this section we assume that p 1is an odd prime. Iet
3(p) be the symmetric group of permutations of p symbols. We regard
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S(p) as acting on the finite field Zp Iet k be a generator of the
miltiplicative group of Z,. Then ¥' - 1. Let T be the cyclic permu-

tation T(i) = 1 + 1. It is easy to see that any element of S(p) which
commtes with T 1is a power of T. We define 7 € S(p) by »i = K.
Then
-1, -1 -1 Xk
yPy (1) = 9T(k 1) = y(k i+ 1) = 1i+k = TH(i).
So 'rT';"1 = 'I'k. v 1is an odd permutation as we see by letting » act on

{0,1,k,...,k°7 "),

Iet =« Dbe the cyclic group generated by T, and let p be its
normalizer. Then 9y € p. Moreover, p 1is generated by » and T. For
suppose «@ € p and oo ! = Tj. Then j = x' for some 1. Therefore

7'10Tcx'1-yi = 7-1Tki7i = T.

Therefore 7‘ia commites with T and is thus a power of T.

Let Zéq) be the S(p)-module which is Zp as an abelian group,
and vith action from S(p) as follows. If q is even, let Z;Q) be
the trivial S(p)-module. If q 1is odd, let S(p) act on zé‘” by the
sign of the permutation. Now T 1is an even permutation. Therefore Z;q)
is a trivial =-module and so if K has trivial =-action

B x Gzl¥) = HW x Kizg) = B (W/x x KsZp) .

The following two lemmas will be important in Chapter VII. Iet K
be a finite regular cell complex with trivial =-action.

6.1. LEMMA. Iet q be even, let r > 0 and let ue H'(KZ).
Then Wp; x u € HoU(W x Ks2Z{¥)  is invarient under y € o if and only
if 1 = m(p-1) for some m, and W, _, Xu € Hii"r'](w x K;ZI()Q)) is
invariant if and only if i = m(p-1) for some m. (See 3.4 for the defi-
nition of the action of 7.).

6.2, IEMMA. Iet q be odd, let » > 0 and let u e HP(K;ZP).
Then w,; x U € Hii*r(w X K;Zéq)) is invariant under y € p, if and only
if 1 = m(p-1)/2 for some odd number m, and woy_, X U € Hei;r-1(w X K;Z;q))
is invariant if and only if i = m(p—1)‘/2 for some odd number m.

PROOF. Since » 1is an.odd permutation, the map g: («,Z;Q)) —
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(":Zl(;,q)) induced by ¥, 1is given as follows (see 1.3 and 3.4)

g, zgl) —>z{® 45 -1 1f q 1s odd and +1 if q is even;

g,(T) = ¥y~ = X,

With W as in §5, we must construct g#: W —> W which is g, -equivari-

21+1° (In
these formulas we regard k as an integer, 1 < k < p.) We extend g# to

-1 md
ant. Let g#e21 = k1621 and let 3#621+1 = ki joT e

be a g,-equivariant map. We easlly check that & is a chain map by using
the following formulas. Iet N and A be the elements of 2Z(x) described
in §5. Then

g(M = N and g/(a) = T¢- 1.

Iet o be an r-cell of K and let u denote a cochain represen-
tative for the class u e H (K;Zy). Then

g#(w21 x Upe(eyy x 0) = gl(wyy & eyy)(u - c))
= glit(u - o))

{ki(u -+ 0g) if q 1is even
-ki(u . 06) if q is odd.

Therefore

L]

{ ki(w21 xu) if q is even

#
g (wyy X W)
21 -ki(wei xu) 1f q 1is odd.

Also

3#(w21+1 x u)e(epy, 4 X 0) (-1 gyllwyy,q - BCo14q) (U + 0)]
= (=07 gyl it Zk 1/ €p1413(u - 0)
= (=17 gy(TfTg KD - o)
= (DT g - 0
{(-1)1° Kd*!' if q is even
(-0 i+ 4 g is odd.

Therefore
4+ (W21 ) X u) if q is even
g (Wp1,q X W) = ki*
(ng+1 xu) if g 1is odd.
For w, x u to be invariant under 7y, it is necessary and suffi-
cient that g*(wr x u) - (Wr x u) = 0. The lemmas follow since o- 1,

if and only if 1i{p-1, and any non-zero element of Zp has an inverse.
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§7. The Transfer.

In this section, we shall use the same symbol for a cohomology class
and one of its cocycle representatives.
Let = be a subgroup of finite index in p. ILet K be a p-complex
and A a p-module. Then we have the inclusion
* *
1: C_(K;A) —> C,(K;A)
inducing a map
* %* *
i: Hp(K;A) —_— H“(K;A)
We define the transfer
t: CL(K;A) —> C\(K;A)
=)
as follows: 1if u e C:(K;A) and c¢ € K, then

=1
™ C-Zaep/“au'act

where a ranges over a set of left coset representatives [ai} — that is
Goyr = p and ayx N ax = 8 if 1 £ j. We check immediately that
the definition of T is independent of the choice of coset representatives.
If B € p, then

g"'(tu - pe) = I a"aiu . aj‘_'sc = Tu

since, for any fixed B8, the set [a"ozi] is a set of left coset repre-
sentatives for = in p. Therefore tTu € C:(K;A) . It is immediate that
T 1is a chain mep. Therefore <t induces a map

i H(KiA) —> E (K:A)

which is natural for equivarient maps of p-complexes K.

Let [p:m=] dendte the index of = in o — that is, the number of
elements in the set (a,]. ’

T.1. LEMMA. The composition

CL(K:R) 2> CL(K;A) > C(K;A)

is multiplication by [p:=x].

PROOF. If u € C:(K;A), then

™m:+*«c = Ziaiu.a;_1c = Z‘.i u.c = [p:n] u.e.
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Iet o be a subgroup of p. ILet 2z range over a set of represen-
tatives of double cosets ozr of o and =« in p. We write % =

N (z'1cz) and o, = z2z ' N o. Let ad, be the restriction to ,x

z z
of the inner automorphism of p induced by z. Then adz: 2" —_ o, is

an isomorphism. We also denote by adz the homomorphism

¥* *
C _(K;A) —> C_ (K;A)
z" 92

given by adu . ¢ = z(u - z"c) where c¢ € K.

The remsinder of this section is not required elsewhere in these

notes.

7.2, IEMMA. The following diagram is commutative

* . T ¥* . i ¥* .
Cl(K;8) > C} (K3A) > € (K:A)
I, It,
£ ad
T, O L (G8) z I, G (K38)

PROOF. Let y, range over a set of left coset representatives of

o, in o¢. By Uy and Z‘.y we shall mean taking unions or sums over Ty

while keeping =z fixed. Now

-1
0,Z% = z(2z o,2)n = z(z")" = zx.
Therefore
ozZn = Uy Y,0, 2% = Uy Y, 2
and so p = Uz ozZn = Uz Uy y, 2%

We easily check that the last is a disjoint union. Hence the elements ¥,z
range over a set of representatives of left cosets of =« in o.

Suppose u € C:(K;A) and c € K. Then
-1
Zz T, adz(izu) . Cc = Z‘.z Zy yz[adz(izu) © Y, cl

Z'.z Z‘.y yzz[izu(z'ly; eyl

-1
= Z'.z,y yzx[u . (yzz) cl

This proves the lemma.
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Now take o = . Then _n =N 2z

2 nz eand =x, = zxz"' N oz, Let

m= [p:n].

7.3. IEMMA. If p is a prime not dividing m, then the composi-
tion « .
*
B (K:8) 2> H (K8 > H (K;8)
is an isomorphism of the p-primary part of H:(K;A) .

PROOF. By 7.1, =i = m. Also multiplication by m 1is an isomor-
phism on the p-primary psrt of an abelian group.

7.4, IEMMA., Iet u € Hz(K;A) and suppose p-u = 0. If ad, 1 < =

Z
i,u for all ze€ p, then u 1is the image under 1 of some v € H:(K;A)
z

such that p® = 0. If u is the image of same Vv € H:(K;A) then

a.dziﬂu=ilu for all z € p .
z z
PROOF. Suppose that adzixu = i“ u for all z € p. We
z z

choose m' so that mm' = 1 modulo ps. Then by 7.2

imu = X2_ T, ad_ i _u = X T,  i_ u
z m, 2w z n, Tw,

where the sum ranges over a set of representatives of double cosets
nzn in op.

From the first paragraph of the proof of 7.2, we see that as Y,
runs through a set of left coset representatives of %, in =, and =z

runs through a set of representatives of double cosets nzn, the elements

Y,z form a set of left coset representatives of = in p. Let m, = [:r::tzl
Then I, m, = m. Hence
imu = %, 'r"z i“z u
= Zz m, u by 7.1
= m .

Therefore, on putting v = Tm'u, we obtain the first assertion of the lemma,
The second assertion follows directly from the definitions. This

proves the lemma.
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7.5. ILEMMA. ILet = be a normal subgroup of p, and let p be
prime to [p:x}. Then <1 .is an isomorphism of the p-primary part of
H:(K;A). If u 4is in the p-primary part of H:(K;A), it is in the image
of i: H:(K;A) —> H/(K;A), if and only if ad;u = u for all ze p.

PROOF. This is immediate from 7.3 and 7.k,
7.6. IEMMA, If m = |p|, then m Hi(p;A) =0 for q > o.

PROOF. Iet K be a p-free acyclic complex, and let = = 1, We
apply 7.1 and use the fact that H(K;A) = 0 if q > 0. The lemma follows.

7.7. IEMMA. Let = be a Sylow p-subgroup of p (p finite).
Then H*(n;A) is a p-group in positive dimensions and 1i: H*(p;A) _
H*( %3;A) maps the p-primary part of H*(p;A) isomorphically onto the sub-

group of those elements u such that ad, i ~u = 1
z z

u for each z € p.

PROOF. We note that |x] = p® and m = [p:x] is prime to p.

By 7.6, psH*(x;A) = 0 in positive dimensions. So H(x;A) is a p-group
for g > 0, The rest of the lemma follows from 7.4 and 7.3.

7.8. PROPOSITION. Iet = be a cyclic group of order p, and let
n be a Sylow p-subgroup of p. Iet o be the normalizer of x in o.
Then the monomorphic imeges of the p-primary parts of H*(p;A) and H*(o 3A)
(in positive dimensions) coincide. The image is the subgroup of those
elements of H*(:t;A) which are invariant under o.

PROOF. Since || = p, we have
xnz 'z = 1 if z ¢ o and

20z 'tz = = if z € o.

Therefore i x =1, =0 in positive dimensions, if 2z ¢ o. Therefore
z z

by 7.7 the conditions for an element to be in the p-primary part of

Im(H*( p3A)) are the same as the conditions for it to be in the p-primary

pert of Im(H (o;A)). If z € o, then
ad, H*(n;A) —> H'(n34)

" is the automorphism induced by 2™ (see 1.3 and the definition of a.dz) .
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This proves the proposition.

T.9. LEMMA, HD(N;A) is isamorphic to the subgroup of invariant
elements of A under =. This isomorphism is natural for maps of (x,4)
(see 1.1).

PROOF. This follows immediately from the definition of H*(n;A) R

since an acyclic n-free complex must be connected.

7.10., COROLLARY. If xC p and A 1is a p-module, then the in-
duced map Ho(p;A) e HD(x;A) has an image consisting of those elements
of A which are invariant under o.
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CHAPTER VI.

Axiomatic Development of the Algebra @(p).

In §1 we give the axioms for the PL. In §2 we define the
Steenrod algebra @ (p) and show it is a Hopf algebra. In §3 we obtain
the structure of the dual Hopf algebra. The proofs are very similar to
those in the mod 2 case. In §5 we obtain some results about the homotopy

groups of spheres and in §6 we derive the Wang sequence .

§1., Axioms.
Iet p be an odd prime and let
. . +1v,
B: Hq(X,Zp) > B (X:2)
be the Bockstein coboundary operator associated with the exact coefficient
sequence
0 — —_— —_ —> 0.
> Zp > Zpg > Zp > 0
We assume as known that g is natural for mappings of spaces, that a2 =0
and that
8(xy) = (Bx)y + (-1)? x(By) where q = dim x.
We have the following axioms
1) For all integers 1 > 0 and q > 0 there is a natural transformation
of functors which is a homomorphism
i, . +21(p-1) (.
Pt Hq(X,Zp) > 1 (X52p)
2) 0 - 1.
3) If dim x = 2k, then P = xP.
¥) If 2k> dim x, then P = o.

5) Cartan formula.
Pk(xy) = Zi Pix-Pk'iy .
76
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6) Adem relations. If a < pb then
popP o gple/p) (_pyest ((e- 1)(g t)-1> patb-tpt
If a<b then

b [ ] t -1) (b-t b-t,t
P - 2 oot (P00 6 e

+

Z[t(_:.ai)/p] (_1)a+t-1 ((p-l)-l()b_t;)-l) pa+b- t

We shall prove the axioms in Chapters VII and VIII and we shall
show that the other axioms imply Axiom 6). As in Chapter I, we can show
that, in the presence of Axiom 1), the Cartan formula above is equivalent

to

Pk(x Xy = X Plx x Pk'iy .

We can also show that Pi commutes with suspension and with
5 Hi(A;Zp) —_ i”(X A; Zp)

as in I t.2 and I 2.1. Similarly Bs = -5 and Bs = -sB, where s

is the suspension.

§2. Definition and Properties of @ (p).

We define the Steenrod algebra @(p) to be the graded associative
i

algebra generated by the elements P~ of degree 2i(p-1) and B of de-
gree 1, subject to 52 = 0, the Adem relations and to PO = 1. A monomial

in @(p) can be written in the form

€g 8, & s, €
% ' ...P KK
where €y = 0,1 and s; = 1,2,3.... We denote this monomial by PI,
where
I = (50’31’51’82""’Sk’sk’o’o“')’

A sequence I 1is called admissible if 8y > P8y, *+ &y for each 1 > 1.
The corresponding PI, and also P° , Wwill be called admissible monomials.

We define the moment of I to be T :‘L(si + si) . ILet the degree of I be

I

the degree of P~, which we denote by d4(I).

2,1. PROPOSITION. Each element of @(p) is a linear combination

of admissible monomials.
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PROOF. As in I 3.1, we see by a straightforward computation that
the Adem relations express any inadmissible monomial as the sum of monomials
of smaller moment. The proposition then follows by induction on the moment.

We shall investigate @(p) by letting it operate on a product of

lens spaces. We first prove some lemmas

2.2, IEMMA. Iet x and y be mod p cohomology classes in any
space such that dim x = 1 and dim y = 2. Then Axioms 2),3),4) and 5)

imply that Pix = 0 unless i =0 and

plyk ( !f) yk+i(.p-1)

PROOF. For k = 1, the result follows from §1 Axioms k4),3) and
2). For k > 1, it follows by induction on k and the Cartan formula.

2.3ltc IEMMA. If y is as in 2.2 then Axioms 2),3),%) i.nd 5) imply
k +1

that PL(yP) 1s yP if 1 =0; zero 1if 1 4 0,p5; and 3P if

is= pk.

PROOF. This follows immediately from 2.2 and I 2.6.

Iet u be a cohomology class of dimension q. ILet I be a sequence

of the form (30,50,31,81,...,sr,er,o...). Then we have the formulas

Bluxv) = BuxXV+ (-1)quva,
Pk(u x v) = ZphxpKly ,

Plav) = Zg g (-1 3D Ky py
Plluxv) = g, o1 (_1)q-d(J) PXa x Plv

Let L and w, e Hi(L;zp) be as In V §5. Iet X = Ix...xL = LB,
Let
W, = YXEXTXK. ...l XTXX € H3n(L2n;Zp)

where x

v, and y = Wy

2.4, PROPOSITION. The elements Y’Iu,n are linearly independent,
where I ranges over all admissible sequences (50,31,51,...,si,ei,o,...)

of degree < n.

PROOF. let Jj = (0,p%,0,052,...,0,p',0,0°,0,...) and

1 k-2

I = (0,05",0,052,...,0,0",0,0°,1,0,...).
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Recall that Bx =y and By = 0 (see V 5.2). Therefore, by 2.3, Plx = 0
unless I 1is J;{ }r%th a number of pairs of adjacent zeros inserted, or

I = (0,0,...): P % - y° and P°x = x. Also by 2.3, PIy = 0
unless H 1s Jy w}th a mnnbir of pairs of zeros inserted, or

I = (0,0,...): PYX - y° ana P% - y. We note that Pi(xxy) = 0

if there is more than one non-zero € in I.

i

We prove the lemma by induction on n. It is obvious for n =1,
since the only monomials of degree < 1 are P° and B.

Suppose I a.IPIu.n = 0 (a.I € Zp), where the sum is taken over
admissible sequences I of a fixed degree q, where q < n. We wish to
prove that each ar = 0. This is done by a decreasing induction on the
length £(I). Suppose that ap =0 for £(I) > 2m+1.

The Kinneth theorem asserts that
SR &g BY(L) @ HY(L) @ HI3R-S-E(E)
’
Let &n be the projection onto the factor with s = pm and t =1. Ilet
h, be the projection onto the factor with s =2 and t = .
I I a(L)
(1) P, = Py y) = Zyggor (-1 PJy x Px x ]’I‘x.l.n_1
Iet I be admissible. We assert that
(2) 1if &(I) < 2ms1, then hPlu = o0, and
if £(I) = 2m+1, then I > J; and
1
%Plun = (-ntyx ypm x prIm W4,
where 1 = deg (I - Jr;1) . We also assert that
(3) if D) <2m, then gPlu - o and
if #(I) = 2m, then I > J  and
ngIun = (-nt me x x x pL™Im Wy,
vhere 1 = deg (I - Jm).
To prove (2) and (3), we refer to the first paragraph of this proof.
We note that a sequence obtained from Jn'1 by inserting zeros has length
greater than 2m+1, and a sequence obtained from I by inserting zeros
has length greater than 2m, Therefore (2) and (3) follow from (1).

We can now apply (2) and (3) to our decreasing induction on  £(I).
Since ap = 0 for £(I) > 2m+1, we see by applying (2) to our relation that
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1
¥ x yF" =m oy | = o.

As I ranges over all admissible sequences of length (2m+1) and degree q,

X Zg(T)a2me1 (-n* arP

I- Jx;x ranges over all admissible sequences of length < 2m and degree
q - 2p™ 4 1. By our induction on n, we have ag = 0 when £(I) = 2m+1

Now applying (3) to our relation, we see that

ypm X X X 22(1)-:2111 (-1)1 aIPI'Jm w,_, = O.
As I ranges over all admissible sequences of length 2m and degree q,
I- Jm ranges over all admissible sequences of length < 2m and degree
q - 2pm + 2. By our induction on n, we have ar = 0 when 2(I) = om.
This completes the proof of the proposition.
Combining 2.1 and 2'# we obtain

2,5, THEOREM. The admissible monomials form a basis for Q@(p)

2.6. COROLLARY. The mapping @(p) —> H (L) given by evalua-

tion on ), is a monomorphism in degrees < n.

2,7. THEOREM. Any Pk (k # pi) is decomposable. Therefore @(p)
i
is generated by B and PP~ (i = 0,1,2,...).

PROOF. By the Adem relations, PP 44 decomposable if a < pb
and  (P7')P°") 4 0 mod p. ILet
a+b = k = k +k p] + + m
= = % 1 cee + KD

where 0 <k <p and k £0. Let b=p". Then

(p-1)b -1 = (P™ 1) + (p-2)p"
= (-0 + D 4 oo+ D)+ (p-2)P" .
Now
a = k-b = kg +kp +...+k 0"+ (k- D"
So by I 2.6,

@) = GEDED o (EDED 4o

The theorem follows from I 4,1.

2.8. LEMMA. Iet X be any space such that H*(X;Zp) is a poly-

nomial ring on one generator of dimension 2k (possibly truncated by xt' =0
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where t > p). Then k has the form k = mpj where m divides (p-1).

PROOF. By §1 Axiom 3), P% = xP £ o. Therefore by £.7,
Ppix £ 0 for some pi < k. Now dim (Ppix) = 2k + api(p-1). Since
PP - ax® (¢ 2) for some integer s, we see that
2k + 2pi(p~1) = 2ks. Therefore pi(p-1) = k(s-1). The lemma follows.

2.9, Theorem. If K is a CW complex with a finite n-skeleton
for each n, and H*(K;Z) is a polynomial ring on one generator of dimen-

sion 2k (possibly truncated by xt =0 where t > 3), then k=1 or 2,

PROOF. We have a commutative diagram

c*(KiZ) @ 2 —=—> C (K;2)

|

v v
0" (K;2) ® Z, —=—> C (K;Z))
where the vertical map on the right is the coefficient homomorphism, and
the lower horizontal map makes the diagram commutative.

By the universal coefficient theorem for C*(K;Z) ® Zp, we have

an exact sequence
¥*
0 —> H(X;2) ® Z, RN Hq(K;Zp) — mor(51(X;2) JZp) —> 0.

Since H*(K;Z) is free, the third term is zero. Therefore using the com-
mutative diagram above, we see that the coefficient homomorphism
Hq(K;Z) —_ Hq(K;Zp) induces an isomorphism

H(K;2) ®2z, ~ Hq(K;Zp) .

Since the coefficient homomorphism is a map of coefficient rings, this iso-
morphism gives an isomerphism of rings.
Therefore H*(K;Zp) is a polynomial ring on one generator x of

dimension 2k (possibly truncated by x% = 0, where t > 3). Since

x3 # 0, we see from 2.8 for p =3 that k = m31, where m = 1 or 2.

Since x° 4 0, we see from I 4.5 that k = 2J. Therefore k = 1 or 2.

2.10 THEOREM. The map of generators \y(Pk) . ® PK1 and
¥(B) = B® 1+ 1 ®pB extends to a map of algebras
¥v: @(p) —> G(p) @ @(p)
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PROOF. The proof is the same as that of II 1.1. We merely substi-
tute L°® for the n-fold Cartesian product of infinite dimensional real
projective space, and substitute w, for w.

2,11, THEOREM. @(p) is a Hopf algebra with a commtative and

associative diagonal map.

PROOF. As in IT 1.2,

§3. The Structure of the Dual Algebra.

let @(p)* be the duasl of @(p). ( @(p) is of finite type by
2.5.) Then a(p)* is a commtative associative Hopf algebra with an as-
sociative diagonal map. ILet Ey be the dual of Mk = ]?’Jk and let Ty be
the dual of Ml:c = Jk in the basis of admissible monomials. (J, and
J;{ are as in 2.4.) Then ¢, has degree 2(p - 1) and 7, has degree
2pk— 1. Since T, has an odd degree, ‘l’ke = O.

We define
o) = gy = 1, (1) = Ty, for 1> 1
e(1) = ¢y, for 120
-1
x(0) = x, x(1) = y° for 121,
vy = yet for 1> 0

where x and y are the classes in H*(L;Zp) described before 2.%. ILet

I = (i,,.. .,in) 'pe a sequence of non-negative integers. We define
oD = T ..ot e
(D) = 81 ...o8(1) ¢ @
XD = x(1) xe.x x(Ly) e B (@%2)

V(D = oy xex ¥ e B (@hZ)

Iet g(I) be the minimum number of transpositions needed to transfer all
zeros in I to the right of I.

The following lemma will enable us to determine the structure of
am”
3.1. LEMMA. Iet a e @(p). Then

a(xy oo X Xy X Ty xeex ) = Iy (-08DenDne@),e > x(1) x 33
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where the summation ranges over terms where I has length n and J has:
length m. (The summation is finite since we get a zero contribution un-
less T(I)&(J) and a have the same degree.)

PROOF. We prove the formule by induction. It is true for
(n,m) = (0,1) or (1,0), since non-zero terms occur only when « = M,
or Ml'{ by 2.2, 2.3 and V 5.2.

Now suppose the lemma is true for (0,m-1). Let va = I  al® ag.
By the Cartan formula

a(y; Xe..x ¥p) I a; ¥y % gy, Xewox )

= Zg,5,00 < 8@),a0 > < (I, 00 >¥(I)

where J = (§,J")
= L)) ® eI, af © ag >y(J)

= L<E(d) @ 8T, va >3(I)
= DY) ® £(TN),a >y(d)

= L < &(),0>y(I)
This proves the lemma for (0,m).

Suppose the lemma has been proved for (n-1,m). By the Cartan

formula "

deg ag "
a(x, x...x Xy X ¥q XeeoX ym) = ZS(-1) ay X, x as(x2 XeooX Xy X Yy Xeo XYy

= Igi,1r,5 (-1 < (D)0 > < «(INE(I),ap >X(I) x ¥(JI)
where I = (1,I') and y = deg ag + g(I')
Zg 1,5 (1% < x(1) @ «(IN8(3),a) x @ > x(I) x y(I)

where & = deg oy + g(I') + deg o} (deg «(I')&(J)).

We must compute & mod 2 for the non-zero terms of the sum. Now, if a
term of the sum is non-zero, then «+(i) and aé have the same degree, and
o(I')e(J) and a; have the same degree. Since ¢(J) has even degree, we

have mod 2
& = deg T(I') + g(I') + deg T(1i)-deg 7(I")

Since the number of non-zero terms in I' is congruent mod 2 to deg T(I'),
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we see that if 1 = 0,
5 = deg T(I') + g(I') = g(I) .

If i 4 0 then deg T(i)

1 and 5 = g(I'Y = g(I). This proves
that the expression above is
£ (-8 ¢y (x(1) ® F(INE(D),a> x(I) x y(I)

- 2 (08D ¢ yDe@),e> x(I) x I .
This proves the lemma.

et @' denote the free, graded, commtative algebra over Zp
generated by TasTysene and L POREEE As is well known, @' 1is a ten-

sor product

E(TeyTqseee) ® P& ,Ep,...)
of an exterior algebra and a polynomial algebra (recall that T; has odd
degree and so ri2 = 0). Since @' is free and a(p)* is commutative,
the map of the generators of @' into G,(p)* extends in just one way to
a Ahomomorphism of algebras Q@' —> G(P)*-

3.2, THEOREM. The map @' —> a(p)* is an isomorphism.

PROOF. We first show that @' —> @(p)  is an epimorphism.
Suppose < t(I)&(J),c >

0 for all choices of I and J. By 3.1,
a(x, XeooX X X Fy XeoX ym) = 0

for all choices of m and n. But, 2.6 shows that in this case « = o.
Therefore @' —> a(p)* is an epimorphism.

We now show that the map @' —> @(p)" is an isomorphism, by
showing that in each dimension, the ranks of @' and Q@ (p)* as vector
spaces over Zp are the same. We have only to show that the ranks of @'
and @ (p) are the same in each degree.

We write ¢ - T,E0 ¢, 71 7,81 ...gkrk rkek , where
I = (eo,r1,51,...,rk,ek,0;...) and €5 = 0 or 1, ry>0. The
monomials §I, whi?h form a basis of @', correspond in a one-to-one way
with such sequences I. The admissible monomials PI' e @ correspond to
sequences of integers I' = (86,81,...,81{,81'{,0,...) where s; > psy ., + €]

for each i, and €y = Oor .1. It remains to set up a one-to-one
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correspoﬁdence between the sequences I and I', preserving the degrees
of the corresponding monomials.

Let Rk be the sequence with zeros everywhere except for 1 in
the 2k-th place. Let Q,k be the sequence with zeros everywhere except in
the (2k+1)-th place. Iet

- -2 1 (o]
x T:o’pk yee+,0,P ,0,07,0,...)

- k-2 1 0
k1’0}p y"')O:P :0:p )110)"’)

Ry

%

(0,p

(o,p

The map from sequences I to sequences I' can now be defined by extending
the map already defined on Rk and Qk to be additive (with respect to
coordinates). Then if

I = (EO’P1’51""’rk’sk’0"") —> I' = (56,31,s{,...,sk,sf{,o,...) ,
we have ej'_ = gy and

8, = (ry +e) + (Py o + e 0D 4.t (v, + &)pK"

1= Pyt & 141 T E3 )P e (D + EJD

Solving for ry in terms of 8;, Wwe see that

it &1 = 8 - PSiy,
Therefore, given an admissible sequence I', we obtain a unique sequence
I with e; = Oor 1 and r;y 2 0, and vice versa. A computation of
degrees shows that'

deg gI = deg PI' = Zlf rJQ(pJ— 1) + Zg ej(epj— 1).

This completes the proof of the theorem.

3.3. THEOREM. The diagonal msp o : @° —> @* g @* is given

by « 5
ot = Lo tpy®e and

X i
T ® 1+ 21:0 gﬁ_i ® Ty .

S

A
(3
n

PROOF. ILet «a,p ¢ @ . We have to show that

* pi 1
<o t,2® B> <t @t ,a0p> and

* i
<oem,®p> = <1 e1,2@8>+<Zth ,@7,x08>
That is, we have to show

i
(1) <guee> = Tef ,0><8y,8>, and
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i
(2) < Tk,aB > = < Tk,a > K< go)B >+ < §E_i,a> < Ti,ﬂ > .

Iet x and y have the same meaning as in 3.1. In the same way

as in II 2.3, we prove that

orypi

g a+i
I, <& ,a> 5P .
Now

k
T, < g0 > P

agy by 3.1

= 21 < &4,B> ypi

pi pi+a.

= za,i<§a’°'><§i’5>y .
Equating coefficients of powers of y, we see that (1) holds. It remains
to prove (2). Now

k
<t >x+ L <T,08>5° = apx by 3.1

1
al< ,,6> x + I; < 7y,B> yP ]

a
< 85,8 >< £, >X + T, < £y,B >< T, >P
1

[

i a4+
+ I o <T,B> LR a> P
Equating coefficients of powers of y, we obtain (2).
This proves the theorem.

§4. Ideals.

Let Mk be the ideal of a* generated by

k k-1
&, 8

s b 1 Tt o e g iy e -

Then M, 1is a Hopf ideal by 3.3. Therefore @ /M, 1s a finite Hopf
algebra. Its dual is a Hopf subalgebra @ x € @. Arguing as in II 3.2
(with minor embellishments), we see that 8,P',. ..,Ppk-1 are gll elements

of Gk. It follows that

4.1 THEOREM. @ is the union of the sequence Gk of finite Hopf

subalgebras.

If A 1is any commtative algebra over Zp and » A —> A is
defined by Ax = xp, then A is a map of algebras. Moreover 1 com-
mites with maps of algebras. Hence if ‘A 1is a Hopf algebra, » is a
map of Hopf algebras.
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Then X: a(p)* —_ a(p)* multiplies degrees by p. The kernel
of » 1is the ideal generated by T,,T;,....

b.2. IEBMMA. If xe @ and Pl e @, then x*.P1 - x-P 1if

I - pJ, and xP.P' = 0 otherwise. (Notice that if I = pJ, nelther

PI nor PJ can contain B as a factor.)

PROOF. Without loss of generaiity, we can suppose x 1s a monomial
in &,,6,,... and Ty,T,,.... Let x®.PY /o0: then x can contain no
factor of the form Ty since Ti2 = 0. Therefore x has even dimension
We have

I

xP.p (X ® ... ® X) .pt

(xX® ... ®x)-vPI

J
= 2(X® ... ®x)(P‘®...®PJp)

where the summation is over all sequences J,,... ,J.. such that

p
Jl +ooot Jp = I. So

L. pl - T (x PJ') el (X PJp)

If, in some term of the sum, two of the Jy's are not equal, then cyclic
permutation gives p equal terms of the sum. These cancel out mod p. So,
ir xPpl 4 0, I =pJ] and Lpl - (x PJ)p = xP . This proves
the lemma.

Iet @' be the Hopf subalgebra of @(p) generated by pJ
(j =1,2...). Let 2 @(p) —> QG@G(p) be the map dual to .

4.3. PROPOSITION. Voo is a map of Hopf algebras, which divides
degrees by p. The image of e is @', and its kernel is the ideal
generated by P1 and 8.

vopl P oir I - o
I

*
» P

0 otherwise .

PROOF. Using 4.2, we see that we have only to check that the ker-
nel of x* is contained in the ideal generated by B and P1 . Applying

the formulas for v to a linear combination of admissible monomials, we

k

see that we have only to prove that P~ is in the ideal generated by P1 ,
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if k is not a multiple of p. By the Adem relations

P‘Pb - (_1)((p-1’)b-1) Pb-l" - (b . ‘)Pb*‘l s

Therefore I»’K is in the ideal generated by P1 if k is not a multiple
of bp.

This proposition has been used by Wall {2) and Novikov [1].

4.4, PROPOSITION. If we abelianize @(p), we obtain a Hopf alge-
bra, which is the tensor product of E(8) , the exterior algebra on 8,
and the divided polynomial ring on P ,Pe. .o, 1loe.,

Pk = (k) Pk (g, @),

FROOF. let I be the ideal generated by all commutators in @ (p).
et A = @/I. Then A and A @ A are commutative algebras. Consider
the composition

eYt>a9@—> ARA.

This is an algebra homomorphism into a commutative algebra and is therefore

zero on I. Therefore
WIHC@ReI+I @

and - I is a Hopf ideal. Therefore A is a Hopf algebra. A® consists of
all elements x ¢ @  such that ¥x is symmetric. Therefore w,,t; e A",
Suppose that I anJ e A" (a5 ¢ Z). Then X aJr:p*gJ is symmetric
Iet J = (eo,r] ,e,,...,rk,ek,o,...). We collect terms in ¢*§J of the
form ¢,"@t' and ¢" ®¢,", where m and n are maximal. A short

calculation shows that these terms are

e r e T €k _
§]n® T, 1 £, 2 T, 2 .. 1 gy Where n = Zli‘ (ry + z»:i)pi !
pr, pr
and &, 2 ... §k_11{® g, vhere m = IX r,.

We note that X (ry + ei)pj"1 > I r;, and that we have equality only if
g = 0 for 1> 1 and ry = 0 for 1> 2.
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In 2 a.JgJ we select those terms for which }311{ (r'1 + t-:i)pi'1 is
maximal. By symmetry, we must have g, = O for i>1 and r; = O
for 1 > 2. Such terms are in the algebra generated by Ty and ¢,. An
induction on Zf (r1 + 81)p1-1 therefore shows that A* is the subaglebra
generated by To and g, -

Dualizing, we see that A has the structure described in the

proposition.

§5. Homotopy Groups of Spheres.

If G 1is an abelian group, we let Gp be the subgroup of elements
whose orders are powers of the prime p. If G is finitely generated then
G can be expressed as the direct sum

G = F*ZpGp

vhere F 1is a free group. In this case we can talk of the p-primary part
of an element of G, by which we mean the component in Gp.~

5.1. THEOREM. =,(S%) is finite for 1> 3.

3, _fo  if 1< z2p
“1(s)p-{zp if 1-2p.

N

Iet f: 32p —_— 83 represent an element of xap(s3) with a non-zero
p-primary part and let E be a (2ps1)-cell. Then, if L = 83 u. E,
P': H3(L;zp) — H2P+‘(L;zp)

is an isomorphism. (When p = 2, replace p' by Sq2, see I 2.3).

5.2. COROLLARY. Let g: S8™2P _5 g™3 pe the n-fold suspension
of f, and let M = SPL. Then

1

. N+ 3 r . +2p+1 .
Pl HTIMZ) _'”_In M;52)

i1s an isomorphism. Therefore

I+ 3
"n+2p(S )p ’l 0.

FROOF of 5.2+ As P! commutes with suspension, the first part follows.
Since M is formed by attaching & (2psn+1)-cell to S™3 with the mep g,

the second part follows by taking f to be the generator of ‘ep(33)p'
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In fact the following stronger result can be deduced from 5.1 by
using [3] Chapter XI, Theorem 8.3 and Corollary 13.3.

5.3. COROLIARY. If p is an odd prime, then

ne3 o if 1< 2p
et g = {zp if 1-2p.

The remainder of this section will be concerned with the proof of
5.1. We shall rely heavily on Serre's mod € theory. We refer the reader
to [3] Chapter X or to [k].

We would like to compute the homotopy groups of g3 by applying
the (mod € ) Hurewicz theorem. But the Hurewicz theorem in dimension n
only applies to spaces that are (n-1)-connected (mod €). So u3(s3) ~Z
is an obstacle to this program. We therefore construct a space X which
has the same homotopy groups as g3 except that n3(X) = 0, and then
apply the Hurewicz theorem to X. The definition of X, which is rather
long, follows.

5.4, DEFINITION. Iet =« be an abelian group and let n > 2 be
an integer. K(=,n) will denote any space whose homotopy groups are all
zero except for L which is isomorphic to =n. Such a space is called

an Eilenberg-Maclane space.

5.5 THEOREM. For any abelian group = and any integer n > 2,
there exists a CW-complex which is a K(x,n).

REMARK. We can easily show by obstruction theory that all such

CW-camplexes are homotopy equivalent.

PROOF. Iet = be generated by elements Xy wilth relations r-J
between the xi's. We take a bouquet of n-spheres, one for each X4 For
each relation

Py = Gy Ky 4 Opy Xy keeuk Oy Xy
where each o 1s an integer, we map an n-sphere into the bouquet with
degree ;4 on the n-sphere corresponding to x,, with degree % on the
n-sphere corresponding to X, and so on. We attach one (n+1)-cell to the
bouquet for each relation r‘j with this map. We now kill successively the
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homotopy groups in dimensions n+1, n+2, etc., by attaching cells of dimen-

slons n+2, n+3, etc.

Computing the nt'h

see that H, =~ =«. By the Hurewlcz theorem we have constructed a K(=,n).

homology group by using the cell structure, we

5.6. If K is a path-connected topological space with base-point
x, let PK be the paths in K starting at x and let @K be the loops
in K based on x. We have the standard fibration p: PK —> K obtained
by sending a path in K to its end-point. The fibre is 0K. (See [3]
Chapter IIT.) Note that PK is contractible. By the homotopy exact

sequence for a fibration, 9: =;(K) ~=; ,(0K). If K is an Ellenberg-
MaclLane space of type X(x,n), then this shows that QK is an Eilenberg-
MacLane space of type X(=,n-1).

let K = K(Z,3) be a CW-complex. Let 85 —> K be a map which
represents a generator of n3(K) ~Z., Let p: X —> S3 be the fibration
induced by the standard fibration over K. We have the commutative diagram

X > PK
P P
v v
83— K

where the vertical maps are fibrations with fibre @K, which is a K(Z,2).
By the homotopy exact sequences of the fibrations, n3(X) = 0 and
P (X) ~ n(8h) for 14 3.

We now find H,(X) and apply the Hurewicz theorem (mod €) to X
to find the first non-vanishing higher homotopy group (mod € ) of 83. The
usual method of finding the homology of a fibre space is by using a spectral
sequence. In this simple case (base space § sphere), the spectral sequence

reduces to the Wang sequence.
5.7. THEOREM. Iet X —> S® be a fibration with fibre F. Then
we have an exact sequence (Wang's sequence)
B (x58) —> mh(Fsa) L5 B (Fia) — B (x58)

where A 1is a commutative ring with a unit. Moreover, 6 1is a derivation:

that 1s, 1f x e HI(F;A), and y e HO(F;A), then
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(n-1)1i

8(xy) = 6x.y + (-1) X-0y5.

PROOF. We refer the reader to [5] p. 471 for a proof by spectral
sequences or to the next section of this chapter for a proof not using

spectral sequences.

5.8. LEMMA. If k> 0, then H, (X;Z) = Z, and

k
H?k—’ (X;Z) = 0.
PROOF. We have the fibration X —> S5 with fibre 0K which is
a K(z,2). Now complex projective space of infinite dimension is also a

K(z,2) and therefore H*(nK) is a polynomial ring on a two-dimensional

generator u. We have the exact sequence (see 5.7)
B (x52) —> #H(aK;2) 2> B2(eksz) —> B (Xs2)
In order to find H (X52), we need only find the derivation 6.

Now since X 1is 3-comnected, H.i(x) = 0 for 1< 3. Hence

6u = + 1. Changing the sign of u, we can ensure that 6u = 1. Since
8 1is a derivation, 6u® = n u"' by induction on n. Therefore
B¥(X:2) = o and BF'(X;2) - 3z, .

Iet us first consider the class @ of abelian groups which are
finitely generated. By the (mod @) Hurewicz Theorem, the homotopy groups
of simply connected finite complexes are finitely generated. Therefore
ni(s3) 1s finitely generated for all i, and so ni(x) is finitely gen-
erated for all 1. Hence Hi(X;Z) is finitely generated for all i. By
the universal coefficient theorem we deduce the lemma.

We now take the class € of finite abelian groups and deduce from
the lemma that =, (X) ~ x,(8%) 1is finite for all 1> 3.

Taking the class € to consist of all finite abelian groups with
orders prime to p, we deduce that

3 _ ] if 1< 2p
(87, = {zp if 1a-2p.
- This proves the first part of 5.1.
et f: Sep —_> 83 be as in the statement of 5.1, Let L be
83 with a (2p+1)-cell adjoined with the map f. We can extend the map
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83— K(Z,3) which we have been using to a map L —> K(Z,3) since
”Qp(K(Z: 3)) = 0. Iet Y—> L be the fibration induced by the standard
fibration over K(Z,3). By the cell structure of L, we have

%y (1,8%)

0 for i< 2p+1 and
x2p+.l(L,S3) = Z.
Moreover the boundary map
T (1y83) — 5 (8%)
maps the generator of the group on the left onto the element of "2p( S3)

represented by f. By the homotopy exact sequence for (L,S3) we deduce
that

7y (L) = 1[1(33) for i< 2p, "2p‘L)p = 0,
By the same reasoning which gave us the homotopy groups of X in terms of
those of 83, we find that

x(¥) = 0 for 1<k, x(8%) ~ x(Y) for ¥ <1< e2p,

ﬂap(Y)p = 0,

By the (mod ) Hurewicz Theorem, Hi(Y;Zp) - 0 for 0< 1< 2p.

5.9. DEFINITION. Suppose we have a fibration p: E —> B with
fiber F over b e¢ B. Then we have the maps

*
HY(B,b) —2—> HXE,F) <2 B '(F).

We say x e KV V(F) is transgressive if sx e Im p*. If our coefficients
are Zp, then a transgressive element is mapped into a transgressive

element by any element of the Steenrod algebra mod p.

We show that in the fibration ¥ —> L with fibre aK, the gen-
erating class u e Hz(nK;Zp) is transgressive. From the exact sequences
for the pair (Y,0K) and since Y is 3-connected we have the diagram

g

P
%, (L,X) <—2*— x_(Y,0K) > 1, (0K) =~ Z
3 ~ 3 2
|% =~
o) v v
Hy(L,x) < ¥ H(Y,0K;2) —> H,(ak;2)

where the vertical maps are Hurewicz homomorphisms and x is the base-point
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in L. By the universal coefficient theorem, u € HQ(nK;zp) is trans-
gressive. Let it correspond to Vv e H3(L;Zp) . By 5.9, Plu = uP is
transgressive. Since Hi(Y;Zp) = 0 for 0 < 1< 2p, the map

. 12P(aR:7 ) s F2DH .
51 HP(AK;Z)) —> EPH(Y,0K;7,)

*
1s a monomorphism. Hence suf = oP’v is non-zero. Hence P’v is non-

zero. This completes the proof of 5.1.

§6. The Wang Sequence.

In this section we shall prove 5.7 without using spectral sequences
We restrict ourselves to fibrations which have the covering homotopy pro-
perty for all spaces (not just for triangulable spaces). (See [3] Chapter
III.)

6.1 THEOREM. ILet p: E —> X x I be a fibration. ILet Et be
the fibre space over X obtained by restricting E to X x {t} where
t ¢ I. Then E0 and E1 are fibre homotopy equivalent fibre spaces over

X.

PROOF. ILet p x 1: E0 x I —> X x I. Lifting this homotopy to
the identity on E; x {0}, we obtain a map E, x (1} —> E;. So we have
a fibre-preserving map f: E, —> E, and similarly a fibre-preserving
map g: E, —> Eo' We must prove that gf 1is fibre homotopy equivalent
to the identity and similarly for fg.

We have the map

pX T X 13 onIxI—>X><{0}xI=XxI.
We 1lift this map to E on
on(lo}quIx{o)u{1}xI),

by the constant lifting on I x {0} and using the constructions described
above on {0} x I and ({1} x I. By the covering homotopy property we can
extend the lifting to E0 x I x I. The homotopy between gf and the iden-
tity are found by looking at the lifting restricted to Eo x I x {1}.

This proves the theorem.
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6.2, COROLLARY. Iet f: X' —> X be a map which can be contrac-
ted to a point X by a homotopy keeping f(p) = x fixed. Suppose we
have a fibration over X with fibre F over Xx. Theﬁ the induced fibra-
tion E' —=> X' 1is fibre homotopy equivalent to the trivial fibration
X' x F —> X', The fibre homotopy equivalence maps F, the fibre over p,
into F Dby a map which is homotopic to the identity.

PROOF. We have a map X' x I —> X such that X' x 1 v px I is
sent to Xx. Let E be the induced fibration over X' x I. The corollary
follows from 6.1.

Now suppose we have a fibration X —> st By 6.2 if we restrict
the fibre space to any proper subspace of Sn, we have a fibration which
is fibre homotopy equivalent to the trivial fibration. Iet st E . Y E_
where E+ nEgE = Sn-1. Iet F be the fibre over a base-point X e Sn"1 .
Let X+ be the part of the fibre space over E+ and X_ the part over

E_. Then we have the commutative diagram

(E, x F,s"'x F) > (X,X) < (X,F)
! Y L
(B,,8"") —————> (8,E) < (s%,%)

Using excision and 6.2 we easily deduce the isomorphisms
H(E,s") o B (F) ~H(E, xF,s"'xF) ~ H(X,X) =~ H(XF
Hence Hk(X,F) ~ Hk'n(F) . Under this isomorphism the cohomology sequence
of (X,F) becomes
B —> BF) L B () — B (%)
This is the Wang sequence. We have yet to prove that € is a derivation.
We have the commutative diagram

BE o~ B > EY(S I F) —— 5 B¥(x x F) ~ HY(F)
s) ] 3}
A4 v
B o~ BN o~ BNE, xFTIx R~ B IRE)

The composition on the top line is the identity by the last sentence in the
statement of 6.2. Hence X ¢ Hk(F‘) goes to

ux6x+1xxe B(P %P
- . N . e T
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where u generates H““(s '1). Therefore if y e H*(F), Xy goes to

u x (6xy + (-1)‘“")k X:0y) + 1 XXy ¢ H*(F.’an-1 x F)

This shows that

and

(11

[2]

[3]
(4]

[5]

(6}

o(xy) = 6x-y + (-1)(P"1K x.oy

completes the proof of 5.7.
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CHAPTER VIT.

Construction of the Reduced Powers

In §1 we explain how the reduced powers are & fairly natural gen-
eralization of products in cohomology groups. In §2 we define the external
reduced power map P in general situation and prove same of its properties.
In §3 we specialize to the case of the cyclic group of permutations of p
factors, where p 1is a prime and the coefficient group Zp In §% we use
the transfer to prove some further properties of the reduced powers. In §5
we determine the reduced power of degree zero. In §6 we define Pi and
Sqi and prove all the axioms in Chapters VI and I except for the Adem re-
lations, which will be proved in Chapter VIII.

§1. Intuitive Ideas behind the Construction.

Iet K be a finite regular cell camplex and let K® be the n-fold
Cartesian product. Let S(n) be the symmetric group on n elements acting
as permutations of the factors of K', Let = be a subgroup of S(n) and
let W be a =n-free acyclic complex. W x K' is a n-free complex via the
diagonal action.

Apart from these definitions, an understanding of this section is
not logically necessary for the understanding of what follows. In places
this section is deliberately vague.

Iet L be another finite regular cell complex. ILet u € H*(K)
and Vv € H*(L) . Then we have the cross-product u x v € H*(K x L). If
K==L and d: K—> K x K is the diagonal we define the cup-product

Wuv = d(uxv),

The cup-product is called an internal operation since all the cohomology

classes exist in a single space K; the cross-product is called an external
97
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operation. The advantage of the cross-product is that its definition re-
quires no choice, even on the cochain level. On the other hand, the cup-
product requires a diagonal approximation d#: K—> K@ K. Many diffi-
culties experienced with the cup-product in the past arose from the great
variety of choices of d#, any particular choice giving rise to artificial-
looking formulas. Moreover, the properties of the cup-product such as the
associative and commutative laws follow easily from the corresponding pro-
perties for the cross-product by applying the diagonal. The properties for
the cross-products themselves are easy to prove.

Similarly we shall obtain the (internal) reduced powers as images,
under an analogue of the diagonal mapping, of a certain external operation
P, We shall prove many of the properties of the (internal) reduced powers
by proving the corresponding properties for the externsal operation.

Let W x, K' = (Wx K%Y/t and let j be the composition (which
is an embedding)
' —> Wx K'—> Wx K.

The map W x_K'—> W/x 1is a fibration with fibre K. Given a cohomolo-
gy class u on K, we have a class ux ... xu on K®. Under suitable
conditions we can extend this class in one and only one way to a class Pu

in the total space W X K? so that P is natural with respect to maps of

the variable K, P0 = 0 and
j*Pu = U X o0 X U
For the nth power in the sense of cup-products, we have
ut o= d*(ux cee XU

To define reduced nth powers, we replace K2 by W X, K and ux ... xu
by Pu. We replace d: K —> K? by

1 x, d: wx‘K—>UxxKn.

Now Wx K = W/n x K. Hence
(1 x, ®7Pu € H (W/x x K .

If we are working with a field of coefficients, we can expand in H*(W/n x K)

by the Kinneth theorem. The coefficients of the expansion of (1 X, d)*Pu

which lie in H*(K) are the internal reduced nth powers.,
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In subsequent sections we replace cohomology classes on W x o K

by equivariant cohomology classes on W x K&,

§2. Construction.

Iet K be a finite regular cell complex. Suppose we are given a
g-cocycle u on K with values in an abelian group G. We regard G as
a camplex with all components Gr = 0 except in dimension zero G, = G.
Then we have a chain mep u: K —> G which lowers degrees by q. ILet
G™q) be the 8(n) -complex defined as follows. It is zero in non-zero
dimensions and is the n-fold tensor product G in dimension zero. We let
@ € 3(n) act on G by the product of the sign of o and the permutation
of the factors of G" if q is odd. If q 1is even we let o permute the
factors of G with no sign change. Then u®™: K* —> @™(q) is an equi-
variant chain map which lowers degrees by ng.

Iet e: W—> Z be the augmentation on W. Then €& ® 1 : Ve K
—> K isaen equivariant chain map (using the diagonal action on W ® K.
Therefore the composition

. n
WK £ 15 gk U 5 gfg)

1s an equivariant chain map which lowers degrees by nq. In other words,

we have an equivariant ng-cocycle on W @ Kn, which we denote by
Pue C2A(W @ K% a™(q)).
We now prove that if we vary u by a cohomology, then Pu varies

by an equivariant cohomology.

2.1. LEMMA. There exists an equivariant map h: I gW —> 1@ W
such that h(f@w) = 6" @w and h(T@w) = T®@w, forall weW.

PROOF. h 1is equivariant on 6 ® W and 7 @ W. We have the equi-

variant acyclic carrier W @ 1%, The lemma follows from V 2.2,

2.2, IEMMA. If u and v are cohomologous g-cocycles on K with
values in G, then Pu and Pv are cohomologous ng-cocycles in

C:(W ® K G%(q))— that is, they are equivariantly cohomologous.

PROOF. Now u cohomologous to v means that there is a chain homotopy
of u into v, that is a chainmap D: I ® K —> G lowering degrees
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by q, such that D(0@7) = u(r) and D(T® ) = v(t) forall < € K.
By 2.1 we have the following composition of equivariant chain maps

n
IgWe K18l Magye gt 1881, Mggt Sy (112 D 5 g%q).

The mep shuf denotes the sluffling of the two sets of n factors with the
usual sign convention. This composition gives the equivariant homotopy of
Pu into Pv which shows they are equivariantly cohomologous.

The lemma shows that P induces a map (not a homomorphism in gen-
eral) .

P HUK;6) —> H23(W @ K6™(Q)).

Iet w be a 0-dimensional cell of W, We have & map J: K° _
W@ K defined by j(x) = we®x forall xe K If L is another
finite regular cell complex and f: K—> L is a cmt;lmws map, then by
V 3.3 the equivariant continuous msp f°: K°* —> I® induces a map

(£H*: H x 1h6NQ) —> H (W x ¥h6%N(q).

2.3, LEMMA. 1) j*Pu is the n-fold cross-product u X ...x u €
6",
2) We have a commutative diagram
BH(L:6) —F—> H(W x 1P36%(q))
J/f* J/(fn)*
B8 ——> W x Kie%(Q)).

PROOF. 1) follows immediately by the definitions on the cochain
level of P and of cross-products.

We reduce the proof of 2) to the case where f 1is proper by using
V31 and V3.3. Let C be the minimal carrier of f., Then the carrier from

K to IM which sends o, X ... x 0, to C(o,) X ... x C(s.) is an
1 1 n

n
acyclic equivariant carrier for =, Therefore, if f#z K—> L 1is a
chain approximetion to f, we canuse 1 @® (f#)n as our equivariant map

We K' —> W@ IP. We have a commtative diagram
- \n
vert—c@1 g (Rl o,
1@ (£)7 (£ [
b # 3

n
WeIl —£81 50 __ Y 5 g%q).
The lemma follows.
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2,4, REMARK, If n=p and G = Zp and n is the subgroup of
S(p) which permutes the factors of i cyclically, then P 1is character-
ized by the properties in 2.3 and the fact that Po0 = 0. (This can be proved
by the methods of VIII §3.)

Iet #C pC S(n) &and let V and W be respectively a p-free and

a rn-free acyclic complex.

2.5. ILEMMA. The following diagram is commutative
3w x K56™(Q))
N

/P/>
HY(K;G) |

\
P > prlq(V x K6%(q))

where the map on the right is induced as in V 3.3. It follows that P 1is
independent of the choice of W.

PROOF. let g#: W —> V be an equivariant chain map. The dia-

gram
VeKt
E@1 n
89! \I, R S
Vo K" a1

is commutative. The lemma follows.

let ue HYK:G) and v e H'(L;F) where K and I are finite
regular cell complexes and G and F are abelian groups. We have
Pu € H)3(W x K%;6™(q)) and Pv e HY(W x LF(r)). By V 4.2, ve have &
cross-product
Pux Pv € HpUP0(W x W x K x I 6™(q) @ F(r))
where = x n acts on W x W x K* x IP by the formula

(a,B)(v,v,,%,7) = (ov,,Bv,,0x,py)

for all o,pe€x, v,,v, €W, x €K' and ye L% We also have
uxve H*TEKx LG @ F) and
Plu xv) € B (v ¢ (K x 1)P3(C @ F)™N(q + 7))
where V 1s a n-free acyclic complex.

We have a map of geometric triples
r (5, (G @ )G + 1), (K x I)Y—> (2 x 7,6%q) ® F(r),K? x 1P
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defined as follows: LRI —> % X ® 1s such that x1(a) = (a,a) for
all o € =n;

At GHQ) @ FH(r) —> (G e M)™q + 1)
is the obvious isomorphism which shuffles the two sets of n variables; the
mep (K x L)® —> K% x I unshuffles the two sets of n variables. By

V 3.3 we have a map

* *

ViOHL O x Wox B2 x Th6NQ) @ F(r)) —> H(V x(K x I)™5(¢ @ F)™(q + 1)

2.6. LEMMA. 2*(Pu x Pv) = (-1)R(B-1)a2/2p, o 4y,

PROOF. According to 2.5 we may take V to be an arbitrary =-free
acyclic complex. ILet V = W x W with the diagonal action. We have the

commitative diagram of equivariant chain meps

10N
WeW @ (Ko L)? s wewWekK @l

o | L

EQERIR
1y
(Xxe L) ts ®erP
J ;
(uev) ™, \|, u"gv

(@ ®™MNq + r) L > Q) ® F(r)

where u 1is (_1)n(n-1)rq/2 times the inverse of *,. The left side of
the diagram gives P(u x v) and the right side gives Pu x Pv. This proves

the lemma.

§3. Cyclic Reduced Powers.

Now let n = p, a prime, and let G = Z Then GP(q) is isomor-

phic to Zp as an abelian group. S(p) acts onp Zp = GP(q) by the sign
of the permutation if q is odd, and trivially if q is even. In the no-
tation of V §6, GP(q) = Z(%).

Iet =« C 3(p) be the cyclic group of order p, generated by the
permutation T which sends i to (i + 1) mod p. The sign of this permu-
tation 1s (-1)®7'. Since (-1)P"' = 1 (mod p), z(%) is a trivial

n-module.
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3.1, LEMMA. Iet K be a finite regular cell complex with no =-
action. Then
H:(W X K;Zp) ~ H (W= x K;Zp)

and this isomorphism is natural for maps of K.

Tlet d: K —> Kp be the diagonal map. Then d 1is equivariant,
if S(p) acts on ¥P by permuting its factors. By V 3.3 we have an in-
duced map

*

* * ()
@y x 2,209 s w o x k2D

Since Z(%) 1s a trivial =-module, we can replace Z(%) by Zp So, if
u € Hq(K;Zp), we have by 3.1 and the Kinneth formula

3.2. DEFINITION. d'Pu = & w, x D
where W € Hk(W/n;Zp) are the elements of V 5,2, and this defines
Dy B (K7 —> BK(K;Z,)
(Note that we have not yet shown that D, 1is a homomorphi sm. )
et f: K—=> L be a continuous map between two finite regular
cell complexes with no group action.

3.3, IEMMA. For each k, £ D

¥
k = Dif -
PROOF. We have df = fPd. Hence the following diagram is com-

muitative (by V 3.3)
g o

g p. Pq .
B (W x L ,Zp) >Hn(WxL,Zp)

(P £
D4 v 1D & gy
BV x 1;7,) > B x KZ,)

Applying the commutative diagram of 2.3 to the left and the isomorphsims of
3.1 to the right of this diagram, the lemma follows.

3.4, IEMMA. D.ou= uP.

PROOF. Let w be a O-cell of W. Let dy: K—> K’ be a
diagonal approximaetion. We have a commutative diagram
K 4 >Wek

% | 1y
kP _J >W®K
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where jx = w@® x. Now
RQu = J*(zkwkx])ku)
= %" pu
= a7 P

= d*(ux see X 1) by 2.3
Y

3.5. LEMMA., Iet u € Hq(K;Zp) and let p> 2. If q is even
DJu = 0 unless j = 2m(p-t) or 2m(p-1)- 1 for some non-negative
integer m. If q 1is odd, Dju = 0 unless J = (2m+1)(p-1) or

(2m+1)(p-1)- 1 for some non-negative integer m.

PROOF. With notation as inV §6, let y be the automorphism of
H*(W X L;Z(%)) induced by 7 € p as inV 3.4, where 1 1is a finite regular
cell complex on which p acts. Iet V be a p-free acyclic camplex. By
2,5, V 3.3 and V 3.4 we have the commutative diagram

*
/am(v x ®2;7(9) 2 oy B x 6:2(@) 2L B x K;2(Y)

Hq(K,Zp)

Vv A4
Pq(w x KP; z(Q)) -uN 4w x K; z“”) . (W x K,z(Q))

The lemms follows from V 6.1 and V 6.2.

§k. The Transfer.

We have defined the transfer in V §7. Let 4 : H (W x P37) —>
H (W x K;Z,) the msp induced by the dlagonal d: K —> KP.

b1 IEMMA. Let t: H (W@®K’Z) —> H(WeKPZ) denote the

transfer. Then d*'r = 0.

PROOF. We have a commutative diagram

* P,z ) s g ;
B (W@ K;2)"> H (@ K52

* ¥*

a 4a
v v

*
* . i % . T * .
Hﬂ(w ] K:Zp) —> H (WS K:Zp) _— Hﬂ(W ® K:Zp) .
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Since W is acyclic and H?I(W;Zp) —_ HO(H;ZP) is onto,
*
1 HWe Kz) —> B @ KiZ,)

is also onto. ByV 7.1 71* - 0. The lemma follows.

k,2, ILEMMA. If =« is the group of cyclic permutations and
P: Hq(K;Zp) —_— Hp,?(w X Kp;Zp) then d'P is a homomorphism,

PROOF., Iet u and v be gq-cocycles on K. Then P(vsu) - Pu - Pv
is given by the chain map

W@ KP i@i_> & (u+v)P- uP- P S Zp .

According to k.1, we need only show that this cocycle is in the image of the

transfer. It will be sufficient to show that (u+v)P- uP- vP 1s in the
image of a cocycle under

w C(EPZ) —> C(xP;z)
since € ® 1 is an equivariant map.

Now (usv)P- uP- vP 1is the sum of all monomials which contain k
factors u and (p-k) factors v, where 1< k< p-1. Now n permutes
such factors freely. ILet us choose a basis conslsting of monomials whose
permutations under = give each monomial exactly once. Let 2z be the sum
of the monomials in the basis. Then 1tz = (uwv)P- uP- vP. Also 2z 1s
a cocycle in KP since each monomial is a cocycle. The lemma follows.

4.3. COROLLARY. For each k,
D HUKZ) —> Hpq‘k(K;zp)
is a homomorphism.

4,4, IEMMA, If uqu(K;Zp) then Du = 0 for k> (p-1)q

and D(p_1)qu = aqu where 8 € Zp is a constant which is independent of

u and K.
PROOF. Iet K% be the g-skeleton of K. Then
1 ®BE® — BFEY

is a monomorphism for r < q. By 3.3 we can therefore assume that K 1is
q-dimensiohal. Let ug € Y Sq;Zp) be the class dual to S%. There is a
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map f: K-—> 8% such that f*uo = u: we let f(Kq'1) be a point and
map each g-cell of K into s? with degree given by v, a cocycle repre-
sentative for u. By 3.3 we can assume that K = s and u - ug. The
second part of the lemma follows. If k> (p-1)q, then the only possibili-
ty remaining for Dku to be non-zero and k > (p-1)g is that k = pq
and q> 0. Let j: s —> 5% be the inclusion of & polnt s in s2,

Then j* is an isomorphism in dimension zero and j*u = 0.
¥ *
J quu = quj u by 3.3

o]
qu

= 0 by 4.3,

This proves the lemma.

L.5. IEMMA, ILet B be the Bockstein operator associated with the
exact sequence
0 —> Zp —_—> sz —_— Zp —> 0.

Then Ed*Pu = 0 for p> 2 or q even.

PROOF. Since Bd. = d'B, 4.1 shows that we have only to prove
that pBPu 1is in the image of the transfer. ILet v be an integral cochain
on K represented u e Hq(K;Zp). Then sv = pz where 2z is an inte-
gral (g+t)-cocycle, and 2z represents Bu € Hq+1(K;Zp). The cochain vP
is an integral cochain on kP whose cohomology, class we denote by
vP) e BUEP;2). Let e®1: W@ K —> KP. Then

BPu = Ble ® N*(vP) = (e ® 1)*B(VP).

Since T commtes with (e ® 1)*, it will be sufficient to show that
B(vP) is in the image of T.

svP Zg;é (-1)2® ¥3(sv)v -8-1

p 270 (-1)%8 v8 g Pt

D Zaen (_1)‘15(]3'1) a(zvp"l)
= p 'r(zvp'1)

since either p-1 or g is even. Since v 1is a mod p cocycle, zvP!

is a mod p cocycle. The above argument shows that -r(zvp'1) represents
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p(vP) , and the proof of the lemma is complete.

4.6. COROLLARY., If p>2 or g =dimu is even then ADju = 0,

Dot = Doy g, Dy g4 = 0.

PROOF. By 3.2 and L4.5

B(Z, wi x Du) = ©
FramV 5.2, B W,y = 0 and BWyy,, = -Woy., (j >0). Hence
Zes o Vo X Do - Iy o Vemer X PDaiyq < Ip p1 Vo X Dopq® = O

The lemma follows by comparing coefflcients of Wi

L.7. LEMMA. Iet u € HP(K;Zp) and v € HS(L;ZP). If p> 2 then
Dyp(u x v) = (_1)p(p-1)rs/2 25{:0 Doy U X Doy g V

If p =2, Dk(u X v) = le:o Dju X Dk_jv.

PROOF. The map of geometric triples A, used in 2,6, takes the
form
A: (n,Zp,(K x I)P) —> (= x n,Zp,Kp x 1Py,

We have a commutative diagram of maps of geometric triples

(2,2, (K x DP) 2 (x x 2,2,KP x L)
FAS N
|2 o
d"I
(n,Zp,K X L) ————> (% % %, %, K X L)

where d 1is induced by the dilagonal on X x 1L, d1 by the diagonal on =«

and 4' by combining the diagonals on K and L.

Iet W be a n-free acyclic complex. Then W x W isa (x x xn)-
free acyclic complex. From the sbove diagram and V 3.3 we have a commuta-
tive dlagram

* *
H (W x (K x D)P;2) <

H_ ((Wx W x(prlP);Zp)

X

a (@n*

Y% A%

*
H (W x K x LiZ,) < Hpen(W X W x K x LiZ)

According toV4.2, Pu x Pv. is an element in the group on the up-
per right of the diagram. We have
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*

HpoW x W x K x LiZ)) ~ B (W/x x W/x x K x LiZ) .

It is easy to see that under this isomorphsim we have by 3.2
n* - _1y&(pr-J)
(@9 (Pux Pv) = Iy o (-1) Wy x Wy x Dyu x Dyv.

Applying (d1)* to each side of this equation, and using the commtative
diagram, we obtaln

*\ ¥ _ _1y&(pr-J) ;

a2 (Pu x Pv) = 23,1 (-1) VW xDJuxD!v.

Also d*P(uxv) = Z‘k Wy X Dk(uxv). The lemms follows from 2.6 and V 5.2.

§5. Determination of Dq(p-‘l).

We know from 4.4 that for each q there is a constant aq € Zp,
such that

Da(p-1) = 2% -

5.1, LEMMA. &, = (-n)* a.? where r = p(p-1)a(q-1)/4.

PROOF. The lemma is proved by induction on ¢q. It is true for
qQ =0 by k.b.

Iet u € Hq"(K;Zp) be non-zero and let v be a generator of
H‘(S1;Zp). Then u x v € HY(K x 81;Zp) is non-zero. By k.4 DJV = 0
unless J = p-1. By k4.7

Dq(p_1)(u X V) = (-1)1)(1:"1)“1'1)/2 D(g-1) (p-1)% X Dp_qVv
(_1 )P(P-l)(Q-U/? a.q_,a.1 (u X V)

Hence &, = (_1)p(p-1)(q—1)/2 8y.18;+ The lemma follows by induction.

In order to complete the determination of Dq(p_1) ,

a,. This is done by appealing directly to the definition in the case of

s'.

we must find

Suppose X is a finite regular cell complex and u € Hq(K;Zp) .
Then Zj wyox Dju is represented by the composition

e@®d 1Y
Wx K—>tswx kP E8Ly gP U Zy
where d# is a diagonal approximation. By V 2.2 any two equivariant chain

maps W K—> Kp, carried by the diagonal carrier, are equivariantly
homotopic.
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Hence, in order to find Dp_1 on a 1-dimensional class, we need only
find an equivariant chain map

109

»: W s —> (8HP
carried by the diagonal carrier. We make s' intoa regular complex by
Breaking it into two intervals J, and J, such that dJ 1 = A-B and
37, = A - B. Then the fundamental homology class of 8' is J, - J,.
ILet W be the complex of V §5. We define
#(e, ® A) = AP ; 8(ey @ B) = BP ;

o(eJ®A) = QJ(SJQB) = 0 for 3> 0.

In fact ¢ 1s uniquely determined thus fer by the carrier. We need only
extend the definition of ¢ to an equivariant chain map

p: W I —> 1P
where dI = B - A, and this will give a formula W ® s' by taking first

J; = I and then J, = I.
We define
a, B a, B o B
olep; ® 1) = 1! I(ACIB O)(IA 'IB ) ... (1A 'Y
where the summation extends over all sequences («,8) such that
2i= (a; + B;) = p-2i-1; and
=0 737 ' % =Po o P
cp(e‘,z,:u1 @I) = 1! X(IA"IB ) ... (IA "IB )
where the summation extends over all sequences (o,B) such that
%ao(“j*ﬂj) = p-2i-2,

The problem now is to show that ¢ is a chain map. We do this by
using a contracting homotopy in P, Iet s be the contracting homotopy
in I givenby sA = 0, sB = I, s8I = 0., Thenif e: I —> A 1is
the augmentation

SO +38 = 1 -¢,

We define a contracting homotopy S in 1P by the usual formula

8 = s 1Py Z‘.rp;: ef@s@1PT !, Plgs
Then

38 + 83 = 1P - P,

The following formulas will help us to evaluate S. ILet C be any
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chain in I" for some r > 0. Then we easily see that
(1) s&ah = o (11) s(BP) = 127} ATIRPTT
(111) s(A¥0) = o (k» 0 (i) s@%S10) - Il ATmUTT acrc
(t>1, s8> 0).

We shall prove the following formulas

) 9(epy, ® 1) = S0 3y, 1)
b) ¢(621 ® I) = S(P 3(621 ® I) H
c) cp(ei ®A) = 0 = So a(ei ® A) if i>0 ,
q)(ei ®B) = 0 = So a(ei ® B) if i>0 .
Iet Ao = T -1, where T is the element of = which sends 1 to

i+ 1 (mod p). Then

Sp d(eyi,, ® I) = Selaley; © 1))
Sm(egi ® I)

o B a, B o, B
= 118 Z(ACBO(IA 'B YH... (a1 1) .

By (iii), terms with B; = 0 make no contribution. If B; >0, Ilet
Bj'_ = B;-1. Then by (iii) the above expressioh is equal to
o B a; B a, Bl
1183, 5, (B °m O)y(1a i M...(1a fB D) .

By (iv) this expression is equal to

a, B @, B o, Bl
113, 5o (A OIA B .. (almh
1

This summation extends over all sequences (a,p) such that X2 (aj + Bj) =
p-2i-1 and Bi > 0. Therefore the expression is equal to ‘P(621+1 ® I)
This proves a).

To prove b) we note that if 1 = 0 then

Se d(e, ® I) Sq>(eo®B-eO®A)
= S(BP - AP)
- I ATEPT!
= o(e, ® I)

Tet N=14+T+ ... + @', If 1> 0 then

So e,y @ )

S‘?N(egi_-l ® ) = SN¢(921_1 ® I)

Q, ) Q g
(1-1)! SN ¥ (IA °1B 9)...(Ta I '3 11y
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By (i1ii) the only terms which make a contribution are those which begin

1

with B. The expression is therefore equal to
B a B
(1-11 8 Iy o) T30 ol (BT I (1 Ivers iee)
B o Bs-P
e (T 3B Iy (I T

_where the subscripts k in o, and By &re taken mod i. By (iv) this is
equal to

B+l @, B,-r
-1t g gy B0 23, 57 (AbEF- 1) (I s ) e I )

= (1 - 01 I eley; @ /L
= q)(ezi R I) .

This proves b). Formula c) follows from the definition of o.
From a), b) and c) we see that if ¢ is a chainin W® I and
dim ¢ > 1, then ¢c = S¢ dc.

5.2, LEMMA. ¢ is a chain map.

PROOF. We prove this by induction on the dimension. It is immedi-
ate in dimension 0. In dimension 1 we have

93(e; ® A) = oa(e, ® A)
= a9(e, @ A)
= AAP
= 0.
Also aq>(e1®A) = 0. Similarly <pb(e1®B) = 0 = acp(e,@B).
(e, ®I) = 3 3R] ATIEPT! o BP - AP . 4d(e, & I).

. This proves the lemma in dimension 1.
If dim ¢ > 2, then

dpc = 3Spdc = (1 - N) e3¢ = gdc

since the induction hypothesis tells us that 93d¢ = ¢dd¢ = 0. This

proves the lemma.

Let m = (p-1)/2 if p > 2.

5.3. IEMMA. &, = (-1)"m! if p>2. a, = 1 if p=2.
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PROOF. Let u be the cocycle of S' which has value 1 on J,
and 0 on J,. Then u generates H’(S';Zp). We have

(wp_1 @Dp_1u)(ep_1 @ (I, - J,)) (wp_1 . ep_1)[Dp_1u (3 - 3)]

- s,
and
(Wpy @Dy (e, @ (3, - 3,)) = W . ole_; ® (3, - I).
If p =2 then
ole, ® (3, - 3,)) = J,%- 3%

Therefore a, = 1.

If p> 2, then (p-1) 1is even and
veyy ® (3, - 3,)) = mt (3,P-3.P).
Therefore a, = m! uP ., J.,p = (-1)1)(1)'1)/2 m! This proves the lemma.

Combining 5.1 and 5.3 we obtain

q . _
5.4 THEOREM. ILet q >0 and let ue H K,Zp). Then Dq(p_1)u =
&8qu where 8y = 1 if p =2 and
ay = (_1)mq(q+1)/2(m!)q if p> 2.

§6. The Reduced Powers PjL and Sqi.

6.1. DEFINITION. Iet K be a finite regular cell complex and let

u e Hq(K;ZP). If p> 2, let m= (p-1)/2. We define

- _\r 1 4d
Plu = (-0F (m) D(q-21) (p-1)"
where r = 1 + m(q2 +q)/2. If p =2, we define
i
Squ = Dq_iu .
Restricting ourselves for the moment (in VIII §2 the restrictions

are removed) to the absolute cohomology of finite regular cell coniplexes we
have

6.2, THEOREM. The PT

for the Adem relations which will be proved in Chapter VIII).

satisfy all the axioms in VI §1 (except

We divide the proof into a number of lemmas.

6.3. IEMMA. (m))2 = (-1)™ mod p.
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PROOF. By Wilson's Theorem, (p-1)! = -1. Therefore
- 1
-1 o= (p-1! = 1.2 ... (-E?‘-) N L4 B (p-1)

1.2 ... (P;—‘)[- 125‘—)] e (=2)(-1)

= (m)? (-n™,

The lemma follows.
6.4. 1EMMA. P° - 1.

PROOF. ILet dim u = q. Then by 6.1

PPu = (-1 (m "9 Dq(p_‘)u

where n = m(q2 +q)/2. By 5.%, Pu = u.

6.5. LEMMA. Cartan Formula. If u € H(K) and v € HY(L) then

Pk(u xvVv) = I

stk Pou x Ptv .

PROOF.

Psu X PtV = (-1)n(m.')'r-q D(q_es) (p_.l)u X D(I‘-Qt) (p_.I)V

where n=s + t + m[q2 +d + r? rl}/2. Therefore

t 1 L=
ZS+t=k Psu X Pv = (-1)n(m.) r-q 23+t=k D(q-23) (P-‘)u X D(l"-?t) (p_1)V

(0T T D oy (pery (8 X V)

by 4.7, 4.4 and 3.5.

Now mrq + n

k¥ + ml(r + q)2 + (r + @))/2. The lemma follows by 6.1.
6.6. IEMMA. If dimu = 2k, then P = uP.

PROOF. PRu = (-1)I'(mz)'2kDou

where r = k + m(hk® + 2k)/2

k(m + 1) mod 2. By 6.3
m 2% = (k) g o,

The lemma follows from 3.4,

Combining the lemmas we obtain 6.2.
Restricting ourselves for the moment (in VIII §2 the restrictions

are removed) to absolute cohomology of finite regular cell complexes we have

6.7. THEOREM. The Sqi satisfy the axioms of I §1 (except for the
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Adem relations which we prove in Chapter VIII).

PROOF. The proof of Axioms 1)-5) is very similar to the proof of
6.2, except that we do not have to worry about coefficients in Zp We
have only to prove that B8 = Sq1 . Now if dim u = 2q then by 4.6

1 0
Sq'u = Deq-1u = BDequ = BSqQu = Bu.

In order to camplete the proof of the theorem we prove the following lemma.

6.8. LEMMA. If p =2 let R be a sum of compogsitions of the
form B or Sqi (1 =0,1,2,...). If p is an odd prime, let R be a
sum of compositions of cohomology oﬁerations of the form B or Pi. Iet
n‘j be a sequence of integers strictly increasing with j, and let Ru = 0
for any cohomology class of dimension ny. Then Ru is zero for all coho-

mology classes.

PROOF. ILet R be zero on classes of dimension r. We shall prove
that Ru = 0 for all classes of dimension (r-1). let v € H’(S’;Zp)
be the generator. Then the only cohomology operation, amongst those in the
statement of the lemma, which is non-zero is the identity (P° or Sqo) .
By the Cartan formula

Ruxv) = Ruxv.

Since dim (u x v) = r, we have Ru x v = 0 and hence Ru = 0. This

proves the lemms and also completes the proof of 6.7.
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CHAPTER VIII.

The Relations of Adem and The Unigqueness Theorem.

1 and sqb defined

in Chapter VII satisfy the Adem relations., In §2 we shall show how to ex-
tend the domain of definition of the reduced powers so that they operate in

In §1 we shall prove that the operations P

relative Cohomology and in the Gech and singular theories, In §3 we prove
that the reduced powers are uniquely determined by the first five axioms.

§1. The Adem Relations.

let S(p2) be the symmetric group on p2 elements, namely the
ordered pairs (i,J) with 1i,] € Zp, arfa.nged in a matrix with (1,J) in
the 1% row and 3™ column. Iet o(1,5) = (1 + 1,1) and let B(L,J) =
(1,J + 1). Then af = Ba, o generates a cyclic subgroup = of order
P, B generates a cyclic subgroup o of order p, and o = = x p is
a subgroup of S(pg) of order pg.

Iet W be a n-free acyclic complex and let p act on W through
the isomorphism sending B into «®. Then W@W 1is a (xxp)-free
acyclic camplex by letting = act on the first factor and o on the second.

Let zI(JQ) denote the S(p®)-module which is Z, as an abelian
group, and where a permutation acts by its sign if q is odd and trivially
otherwise. Let R be any subgroup of S(pe) . Let V be an R-free
cyclic complex. By VII §2 we have a map

2 2
Pt BN(K;Z) —> BRIV x &P ;zf,q’) .

If R 1is a subgroup of o, then Zl()q) is a jtrivial R-module, since
either p = 2 or R contains only even permutations.
Iet W1 =W with = acting and let W2 =W with p acting. Then
115
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an action of = x p on W, x (W, x K*)P  can be defined by
(a,B) (x x (¥, X 2;) X...X (yp x zp)) =
= X X (Bya“)x 520:(1)) XuwoX (Bya(p) X Bza(p))

for all o€ x, Bep, X €W, 7; €W,, z; € kP (we regard both =« and
p a8 groups of cyclic permutations of p elements). We define an action

of xxp on W, xw,‘,px(Kp)p by

) =

(2,B) (X x ¥y XuvuX Tp X 2y XeeoX Zg

= QX X Bya“) XoooX Bya(p) X Bza“) XoooX Bza(p)

where the variables have the same meaning as in the previous equation.
Now W, x Wap is a (x x p)-free acyclic complex. Therefore we have
the isomorphisms
3 2 *
D, D DyD.
anp(w1 x W, x K ,Zp) ~ H’txp(w1 x Wy© x (K¥) ,Zp)
* DyD.
=~ Hﬂxp(w1 x(W, x K¥) ,Zp)
*
~ H (W, x (W, x pr)p;Zp) ,
2
where 7 x p acts on K° = (KP)P by
(o,8)(2; X...x zp) = BZy(q) X---X Bz
We theréfore have an isomorphism

a(p)

*

2
s 7 DyD. * D,
de. H (W1 X ﬂ(WQ X pK ) ,Zp) —> H (W1 X KWQ X pK ,Zp)
which is induced by the diagonal d,: W, —> W,F.
1.1. LEMMA. The following diagram is commutative
*
P g, P 1 D, __4a g s
B (K,Zp) —_—> (ngpK ,Zp) > B (Wz/‘”‘K Zp)
! P
- E !

2 v 2 (d2) 2 * 2
DD, dogpd P,
B LW, x Wox K 5Z) < BP0 (Wpx KO P53) —=5 T 5(W x, (Wp/oxK) 75 2,)

*

\!/(d')* | a" \l/ (axa)”

\%

2 * 2 * 2
d .
P AW, /a0l [oxKsZ) < BD AW [ax(Wpx KD) > B UV, /dh [oxEsZ,)
2
vhere d': K—> K0, d: K—> K

and dy: W, x P —> (W, x K)P are diagonals.
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PROOF. The commutativity of the lower two squares follows since
the maps of cohomology groups are induced by continuous maps which commute.
The upper right hand square commutes because of VII 2.3. The upper left

hand square commutes on the cochain level.

REMARK, To be quite rigorous one should point out that P was only
defined on finite regular cell complexes {(Chapter VII §2), while w2 X, it
is certainly not finite, and may not be regular. We can ensure that
W, X, K is regular by replacing W, by its first derived. To make
W, X, K’ finite , we Insist that W, should have a finite n-skeleton for
each n (for example the complex of V §5), and then replace W, by its

n-skeleton for some n much larger than peq.
By the Kinneth theorem we can write

*
da ! = . .
(d') Pu ZJ,k vy xwkxDJ,ku

1.2, . . = . .
COROLLARY Zj,k Wy X Wy X DJ’ku Z‘.j Wy X Dj(zl W, x Dyu)
PROOF. From 1.1 we see that (a")*P' = (d, x @) P d* P.

1.3. IEMMA. If uqu(K;Zp), then

D (-1 Jlep(P-1a/2 o P

s

3,k

PROOF. let X € S(pg) be the element such that A(1i,j]) = (j,1)
Iet A" denote the sutomorphisms induced by A on the cohomology level
(see V 3.4). Iet V Dbe an S(pz)-free acyclic complex. Iet o = = X p.
Then by VII2.5,V3.3and V3.kwe have the commutative diagram

. *
. ngq(WxWxK;ZgZ)) —-—X—> Hgaq(WxWxK; Z;Q))
M A AN
BH(K;Z,) I i
. X *
MHIFQQ (V x K;Z;Q)) A =1 > HPQq. (V x KSZI()q))

3(p°) 5(p=)

In order to determine the upper map x*, we have by V 3.4 to construct a
chain map

x#:W®W——>W®W
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such that x#a = m# and X#ﬁ - dx# where o generates = and acts
on the first factor and B generates p and acts on the second factor.

Such a map is given by
ik
Mvp@vy) = (1), @ vy)
where d:l.mv1 =] a.nddimv2 = k. Now ) transposes a p x p matrix and

therefore it is a permutation with sign (-1)P(P-1/2 gy 1.2,
x*(w.j X Wy X D‘1 ku) is represented by the (nxp)-equivariant cocycle
’

Ay @1 w, ®Ww, ®D, u p(p-1)q/2
WxWxK—2—  S>WeWeK K Lk\zpf") >

This cocycle is equal to
_iyJkep(p-1)a/2
(-1) wkewJ@DJ,ku.
By the commutative diagram the lemma follows.
The proof of the Adem relations will be slightly simplified by the

following conventions.

1.4, CONVENTION. (3') =0 if r<o or J<O0; (§ =1 if
>0 W,e€ Hr(at;Zp) is zero if r < 0; qu and PJ are zero for j <O
All summations run from -e to +« unless otherwise stated.

By V 5.2 and I 2,k4kwehave qu"r = (?)wmj and this now holds for
all integers r and j. By V 5.2 and VI 2.2 we have

J _ AT
Py = (J)w2r+23(p-1) .
By Vs.2 BPJwer = 0. By the Cartan formula, V 5.2 and VI 2.2,
3 _ (r=1
Lo PYORT ( 3 ) Wi'r+2j(p-1)-1

and ﬁijar-t = '(r31)"2r+2;|(p-1)'

1.5. THEOREM. The Sqi defined in VII 6.1 satisfy the Adem rela-
tions.
PROOF. If dim u = g, we have
* i
d'Pu = Ziwq_ixSqu.
By 1.2, 1.4 and the Cartan formula we have
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(@0 Pru = Ty y Woq y X 8" (vy_y % satu)

-1 K-Jqil
zi,k,J(qJ ) Vaq-k X ¥g-14+3 X 5@ Jsqtu .

Therefore

-1 k+f-1i-
D z“:I. ( c—lll+i 8q* 4 Sqiu °

2q-k,2q-¢%
By 1.3,
Daq—k, 2q-4% = Dog-1 ,2q-k1,
Therefore
q-i k+f-1-q q-r k+2—r—q r
zi(-!+ Sq quu z‘r(-ku’ Squ .

Iet ¢ = 285-1+¢c and let £ = q + c. The non-negative integers

s,k and c¢ are now arbitrary. Then

() - CEE™) - {3 i fig wrremres
(QEI-‘I:k) = q::gr = (281_{1- ;g-r‘. since (;) = (x}fy) .

Now suppose that k < 2c. The binomial coefficient just examined is zero
unless 2r < k. Therefore it is zero unless ¢ - r > 0. By I 2.6 this bi-
nomial coefficient is equal to (cl-:;;.) for 2°> k and r > 0. Substi-
tuting in (1) we have that if k< 2%,2¢ anddimu = ¢ = 25%1 + ¢,
then (2) sa°8q% = %, (4%5)) sa¥*°T sq®u. By VII 6.8 the theorem is

proved.

1.6. THEOREM. The P defined in VII 6.1 satisfy the Adem rela-
tions.

PROOF. By VIT 3.5, VII L.k and VII 6.1, we have, writing 2m = p-1
and v(q) = (m!)'Q(_”m(qZ*Q) /2,
* i i
v(@ &P = DY v oy x Pus -0 Wi oty x 8PN
By 1.2 we have

v (pa)v (@) (@) *Pru

i+k k
Z‘,k,i(-l) + Y (pq-2k) 2m ¥ P (w(q-21)2m % Plu)
i+k k i
z"l(,:l.('l) * Y(pa-2k) 2m * P ("’(q-ei)em-1 x BPTu)
i+k k i
I 1 (D7 Wipg ok emet X PP (V(gqupyon X PW)

1+k \ K
T, 1 (DM Vo o omer X BPE OV (qp1yomoy X BPTW).

+

+

+
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By the Cartan formila and 1.% we have

k i —21 k-3 1. .
Pr(Wigo1yom X B0 = Iy ((q J )m)"’(q-21+23)2m x P Pl

¥ i -21)m-1 k-3 npl. .
PV q-p1)em-1 X BP u) = ZJ ((q J)m )W(q-21+2j)2m-1 x P gy ;

K 1 -1 k-3 i
BE(W(q pgyom X P = Iy (¢ i )m)"(q-21+2j)2m x P Pl

k i -21)m-1 k-
PP g _atyomen X BPW = =2y (O™ NN o1 gy e x P70 PN

-21)m-1 k-J opl
- ZJ ((q 23)m )W(q-21+2j)2m-1 x pPEd gply

Therefore if a = pg-2k and b = @q-2i+2j, " and the summations range

over i,j,k, we have

(1) v(pq)v(q) Dgam’gbmu _ Zi,j’k(_1)i+k((Q'§i)m)Pk'J Piu
ik ((@-2)m-1\pk-J 4o
(2) v(PDV(Q Dpgy g1t = Iy g (-0 ((A2Pm)PET gpty
i+k -21i k- i
(3) v(PDY(Q) Dpgry ppt = Iy j (D ((q 3Im) gpk-d phy

- thk’j’k(_‘)ii-k((q-gg.)m-‘l) Pk-j BPiu

Now v(a)"

m

1 (mod p) by VII 6.3 and therefore v(pq) v(q) has

an inverse.

1.8. LEMMA. The first Adem relation is satisfied.

PROOF. et a = pg -2k and b = pg - 2¢. By 1.2 and (1) we
have
_qyi+k((g-21)m\ k-ma+f-1 i
(M) I (-1 (mq—£+i) P plu

_ zr(_”r+£+mq((l?l&-2-£)£) Pl-mq+k—r Py .

Iet qQ = 2(1 +...+ ps'1) +2c and let £ = c + mgq. The integers s,c
and k are now arbitrary. Then

(a-2bym) (-1 (1+ ... 4P) & (p-1)(e-))
mq-2+i (i-¢)

0 if 1 4c byI 2.6and 1.4
if 1=

1 c.
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Also

(g-2r)m (g-2r)m . b4 b4
mg-k+r/ = k-pr since (y\) = (x-y

(p -1+(p-1)(c—r))
Now suppose that k < pc. The binomial coefficient just examined is zero

unless bpr < k. Therefore it is zero unless r < c. By I2.6 this binomial
coefficient is equal to ((p-1%{(<_;-r;-1) for p®> k and r > 0.

Substituting in (4) we have that if p® > k < pc and dimu = q =

2(1+...+ps’1)+ 2¢  then
c r+k ((p-1)(c-r)-1 c+k-r
PPOu = 3, (-nTHE (e (erm) =ty p Pu .
By VII 6.8 the lemma is proved.

1.9. IEMMA. The second Adem relation is satisfied.

PROOF. Let a = (pg - 2k) and b = (pa - 28). By 1.3, (2)
and (3) we have
( 5) Zi( -1 ) i+k+mq+1 ((ql;lgi;n-l—‘l ) Pk-mq—li-ﬁ 8P U.

Zr(_1)r+£+1 (%C-lfer P -mq-r+k PPy

Zr(_”ml ((q;ﬂéz;nj;) P2-mq-r°+k sP u

et g = 2p° + 2¢c and let £ = c + mg. The integers s,c and k are
now arbitrary. Then
(-ehmr) ((p-1)(1+...+ps") + (p-1)(c-1))
mg-£+1 = i-c

N (o] if 1 4e¢c by I2.6 and 1.4
1 if 1 =c¢.

-2 5 »
(I%q-illrl} = (qk_;)?m - ((P )(p +c r))

Now suppose that ¥k < pc. The binamial coefficient just examined is zero
unless pr £ k. Therefore it is zero unless r < c¢c. ByI=2.6 this binomial
coefficient is equal to ((p'I{) EOI-)?)) for p°> k and r > 0. We also
have

(qn-éfl)(?;) - (q;fﬁf‘) ((p-1)£pp;czr) 1)
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This binomial coefficient is zero uniess pr < k. Therefore it is zero
unless ¢ < r. By l2.6 this binomial coefficient is equal to

(p';{zlgg:f)") for p®>k and r> 0.

Substituting in (5) we have that 1f p° > k< pc and dimu = q =

2p® + 2¢  then

Pppou - B, (-1)FHE (P (em)) gposker pry

BT (D) e e

By VII 6.8the lemma is proved.

§2. Extensions to Other Cohomology Theories.

We now extend the definitions of PX and Sqb so that they operate
on relative cohomology groups.

2.,1. THEOREM. If F 1is a cohomology operation defined for abso-
lute cohomology groups, then there is one and only one cohomology operation
defined on both absolute and relative cohomology groups, which coincides
with F on absolute cohomology. Furthermore these extensions to the rela-
tive groups of the reduced power operations Sqi and Pi

axioms (see I §1 and VI §1).

satisfy all the

PROOF. If a € K we have a commutative diagram
o —> Hi(K,a;6) —> HYK;G) —> Hi(a;6) —> o
F | p
\4 \4
0 —> H(K,a;G') —> H(K;G') —> H'(8;G') —> 0 .
\

By diagram chasing we obtain a unique definition for F: H(K,a;G) —>
HP(K,a;G') . The definition is natural for maps of pairs where the second
space is a point or is empty.

Let (X,A) be a pair of spaces. lLet L be K with the cone on
A attached. By excision we have an lisomorphism

H'(L,CA) —> H (K,A).

Iet ¢ be the cone-point of CA. By the five lemma wé have an isomorphism
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H (L,CA) —> H (L,e).

These constructions and isomorphisms are natural for mappings of
pairs (K,A). Since we have defined F on H (L,c), we obtain F on
H (K,A) .

It is immediate to check that all the axioms listed in I §t and
VI §t follows fram the axioms for absolute cohomology. This proves the

theorem.

We now have Sqi and P1 defined on cohomology groups of pairs
(K,L) where K is a finite regular cell complex and L 1is & subcomplex.

2.2. THEOREM. a) There is a unique definition of Sq* and P!
on the singular cohomology groups of an arbitrary pair of spaces, which
coincides with the definition on finite reguler cell complexes.

b) There is a unique definition of Sqi and P1 on the Cech cohomology
groups of an arbitrary pair of spaces, which coincides with the definition
already given on finite regular cell complexes.

The extensions in both a) and b) satisfy all the axioms in T §1
and VI §1.

PROOF. We shall leave the reader to check that the axioms are
satisfied whenever we extend the definitions of Sqt or PL.

We first extend the definition to pairs (K,L) where L is an
infinite regular cell complex and L a subcomplex. Now Hq(K,L;Zp) is
naturally isomorphic to Hom (Hy(K,L),Z,). Therefore H*(K,L;zp) is the
inverse 1limit of the groups H*(Ka,La;Zp) where K, and L, vary over
the finite subcomplexes of K and L. Since the reduced powers are natural
this gives a unique definition on H*(K,L;Zp) . A continuous map from one
pair of infinite complexes to another pair maps finite subcomplexes into
subsets of finite subcomplexes. It follows that Sql and P! are natural
on the category of pairs (K,L) where K is a (finite or infinite) reguler
cell complex and L is a subcomplex. )

Now we extend the definition to pairs (K,L) where K is a CW com-
plex and L a subcomplex. According to J. H. C. Whitehead (see [2]), the
pair (K,L) 1s homotopy equivalent to a pair of simplicial complexes. This
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i or Sqi on

obviously gives a unique and natural definition for P
" (K,L).

We now give the definition on H*(X,Y), the singular cohomology
of an arbitrary pair X,Y. ILet SX and SY be the geometric realisations
of the singular complexes of the spaces X and Y (see [2]). Then we
have a singular homotopy equivalence h: (&X,S¥) —> (X,Y). Moreover
this map is natural for maps of pairs (X,Y). Since (SX,3Y) is a pair

of CW complexes, we have defined P' and SqT in H'(SX,SY). Since

n: H(X,Y) —> H(SX,sY)

is an isomorphism, this gives a unique and natural extension of P1

Sqi

theorem.

and
to singular cohomology groups. This proves the first part of the

i

We now extend Sq 1

and P~ to Cech cohomology. The Cech coho-
mology groups of a pair (X,Y) are obtalned by ordering the open coverings
of (X,Y) according to whether one covering refines another, taking the
nerves of the coverings, and then taking the direct limit of the cohomology
-groups of the nerves. Since we have introduced Sqi and Pi into the
cohomology structure of the nerve of each covering, and Sq1 and Pi are
natural, this defines Sq and Pl

see that Sqi and Pi

uniquely on H*(X,Y) . It is easy to
are natural with respect to continuous maps of

pairs (X,Y). This completes the proof of the theorem.

§3. The Uniqueness Theorem.

In this section we shall prove that the Sqi and the Pi are

uniquely determined by the axioms 1)-5) in I §1 and 1)-5) in VI §1. We
shall do this by investigating the cyeclic product of spaces. We shall use
ZP as coefficients throughout this section.

3.1. IEMMA. Iet K be a chain complex over Zp. Then K is
homotopically equivalent to the chain complex which is isomorphic to H, (K)
as a graded module and has zero boundary.

PROOF. lLet Bc1 be the boundaries in K and let Dq be a subspace

of Kq which is complementary to the cycles. Then K 1is isomorphic to the

complex which is Hq(K) + B':1 + Dq in dimension q, and whose boundary
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operator is zero on Hq(K) + B and maps D_ isomorphically onto B

qQ q q-1°
Therefore K is the direct sum of the chain complexes H and (B + D).
B + D has the contracting homotopy s which is defined to be a map into
D, which is zero on Dq and such that s: Bq —_—> Dq+1
of the boundary. We extend s to K by letting s(H) = 0. Let

is the inverse

p: K —> H be the projection and let »: H—> K be the injection.
The pr = 1 and *w = 1 by the homotopy s. This proves the lemma.

Iet K and L be chain complexes. Iet = be the cyclic group of
order p acting by cyclic permutations on K’ eand IP. Iet W be a n-
free acyclic complex'and let = act on W@® K° and W@ IP by the

diagonal action.
3.2, IEMMA. If f,g: K —> L are chain homotopic, then
19fP, 10’ WokK —> WeorlP
are equivariantly homotopic.
PROOF. By VII2.1 there is an equivariant msp h: I @ W —> Peow
such that h(T@w) = P @w eand h(iew) = TPgw. Let

D: I ®@ K—> L be the chain homotopy between f and g. Then we have
the equivariant chain maps

ToVer M 5 Peyer® “sve (Tan? 1205 yga1P .

The composition is the required equivariant chain homotopy.

3.3. COROLLARY. If f: K —> L is a homotopy equivalence, then
1® P is an equivariant homotopy equivalence.

From 3.1 and 3.3, we see that W@ K° and W @ H (K)P are equi-
variantly homotopy equivalent. Therefore Hom 7‘(w ® Kp,Zp) is homotopy
equivalent to Hom (W ® H*(K)p,Zp) .

We choose a direct sum splitting of H*(K) into components A,,

-]
each isomorphic to Zp. Then H*(K) = Z:L=1 Ay, Bo
E(RP - 2, AP+ 2,(0 @B
where B = . A, ® ... %A .
T, <1y € een <2ty <1 A 1,

The action of = on Aip is by cyeclic permutation and on Zp(n) ®B Dby
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the usual action on Zp(n) and the identity on B. 8o, if H(K) 1is of
finite type,
Hom (W @ H (0F,2)) ~ I, Hom (W @ AF,Z) + Hom (W @ Zy(x) ® B, Z) .

We then obtain immediately

3.4, IEMMA, Iet K Dbe a finite regular cell complex. Then,
writing (W x K°)/x = Wx P,

e, ) ~ I H(/x 04" + H(We 7 () @B .

Let W/ x K be embedded in W x_ K° by the diagonal map
a: K—> KP,

3.5. REMARK. For any pair of spaces (X,A), H'(X), H (A) and
H*(X,A) are modules over H*(X) in an obvious way. Moreover it is easy
to see that the maps in the cohomology sequence are consistent with the
module structure. If we have a map X —> Y, then the cohomology sequence
of (X,A) gets an H (Y) structure via the induced map H (Y) —> H (X).
The cohomology sequence of (W Xy Kp,w/n x K) is a module over H*(x)
via the projection W x, K’ —> W/x. The action of a class

weH(x) = H(Wn
is multiplication by u x 1p, where 1 1is the unit class (or augmentation)
on K.
We have the maps

*
H(r) 5> 8w x, kP) -5 BP0/x x K) .

3.6, PROPOSITION. The image of a* is the H*(n) -module generated
by the image of 4 P.

PROOF. By VII 4.1 it will be sufficient to show that Hi(w X Kp;Zp)
is the sum of Im v, where T is the transfer, and the H' () -module gen-
erated by Im P. We see from 3.4 that we need only show

1) H(W®Z(x) B) CInt and

2) H*(w/n ® Aip) is generated as an H*( r) -module by the element

Puy, where u; 1is dual to a generator of Ai'
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PROOF of 1). ILet a: Zp-—> Zp(x) be the map which sends
1ezp to 1 € n. Iet wv: Zp(x)—>Zp send 1 € n to 1ezp and

all other elements of = to zero. A induces a map
Vi e Zy(x) @ BiZy) —> c"We Z, ® BsZy) -

An equivariant cochain of W ® Zp(x) ® B 1is determined by its image under

x*. We also have a map
Vi C'(W ® Z, ® B;Zy) —> C (W @ Zy(x) © BiZy)
induced by v. Since vA = 1, 1t follows that Ay = 1.

We must show that any equivariant cocycle u in W@ zp(x) ®B 1is
the transfer of a cocycle in W@ Zp(x) ® B. Now v*x*u is a cocycle on
Ve Zp(x) ® B. In order to prove that 'rv*x*u = u, we need only show
that ).*( 'rv*x*u) = x*u since an equivariant cochain ls determined by its
image under A*. From the definition of <, it follows that A m" = 1.
This proves 1).

FROOF of 2). Iet C; = Hom(Ai,Zp) and let wu; generate G,.
The H*(n) -structure on H;(W x KP) 1s given by cup-products with elements
v x 1P where v € H (n) (see 3.5). Therefore H:(W e AP ~ E(x) ® c,?
is a module over H*( x) generated by 1 X uip. Now as in 3.1 we can con-

sider Ai &8s a subspace of K  for some q. Iet L, be a complementary

Q q
space to Ai in Kq. We can represent u; asa cochain by insisting that
“1(Lq) = 0. Now Pu; is defined by the composition

(uy)P
W@Kp e®1>Kp i S

which is equal to 1 ® (ui)p. Therefore 1 ® u:I_p = Pu; . This proves 2)
and the proposition follows.

We now define a graded module 8 = {s'} where 8% C H'(W/x x K)
defined by the formula

r -
S = Iy (g« (pet)rlp ww/x) o (k).
Note that j = pj - (p-1)J < (p-1)(r-j).
3.7. IEMMA. &: H'(W/x x K) —> H™'(W x, KP,W/x % K)

maps g’ monomorphically.
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PROOF. By the cohomology exact seugence, we need only show that

S nImi® = 0. By 3.6 we need only show that S¥ n (H (x)-module gen-
* * q(p-1)
erated by Imd P} = 0. Now dPu = X jeo @ W3 X Dju by VII 3.2 and

VII 4,4k, By V 5.2 and VII 5.4
*
W dPu = Vieaq(p-1) X 3R * other terms.
But k + q(p-1) > (p-1)q which proves the lemma.

We now define a modified transfer <t' such that the following

diagram is commutative.

* Py ___ 7'y g* P
H (W x K) >H(WxﬂK,Wxde)

*
T 3
12

B (W x KP)
let KP be subdivided so that the triangulation is invariant under = and
has the dlagonal as a subcomplex (subdivide K to get a simplicial complex
and then take the Cartesian product of the triangulation as defined in [3]
p. 67). Since H*(W x Py - H*(Kp), we can represent any cohomology class
of W x KP by e ® u vwhere u 1is a cocycle on K°. If weW and
g€ Kp, we define

T e(ow) u(ao)

(e ® W(V® o) e x

T e(w) u(ao)

o724

If ceKd then o = ¢ for all a € = and so
' (e®@u) . (W®o) = pe(w) uls) = 0.

Therefore <'(e @ u) € C:(W X KP,w X Kd) . This defines the modified trans-

fer.
Iet h: K —> K be the projection onto the first factor. Let
5: H (W xK) —> E (W x, KW/xK.

Recall from 3.5 that & is a homomorphism of H*(:t) -modules. ILet u € H(K)

*
3.8. LEMMA. -a(wgi_1 x u) Woq (1 x hu)

LIRE T'(1 % h*u) .

If p=2, 8(w; x u) i+
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PROOF. Wy . T(1 x h*u) is given by (see p. 67 for definition of N)
NY w;gh
VoKl Sio P o gkl 188y g 18 sy x? Lk S 57 .
The composition of the first two maps i1s equivariantly homotopic to the
identity by V 2.2, Therefore w; . 7'(1 x h*u) is represented by

W o K (=D i@ Z, -

et h#u: K —> Zp be written as u' + u"where u' = 0 on K,y and u" =0 on
KP - Kq. Then u" is invariant since Ky 1s fixed under =. Therefore

u"N = o. Therefore Wy TH(1 % h*u) is represented by
i
WP (D N 2.

Now u"|Kd = ulK. Therefore 5(wj x u) 1is given by

1y Q3 w.eu"
ve kP LNV wg Rz

Now 3 = 0® 1+ 1®90 and we can leave out o ® 1 since wj is a

cocycle. Therefore s(wj x u) 1s represented by

(DT eu (103 = (-DIw; e 8"
Now  su" 5(h#u -u') = -su' since u 1is a cocycle. Therefore
s(wy xu) = (v x sut) (-1)3*!

We must show that for 1 ¢&ven or p = 2, -Wy ® u'N and
w;_; ® su' have the same class in H (W x_K°,W/x x K). It is sufficient to
show that these two cocycles have the same value on every relative cycle in
(W x Kp,w/n x K). Such a relative cycle has the form

q+i
L 3l0 ©3 ®x %q-yat

where
g+1i
(20 €5 Bx °q-ju1

Therefore for Jj even or p = 2

5.y @ acq_'jﬂ_+1 + Nej_1 ®; Cq_j+i € W O K, .
Therefore

N -d ¢

Cq-jei q-J+i+1 € Kq

Now since u' =0 on K; we have for 1 evenor p = 2
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(v @ u N)(Eg:% ey ® Cy j,q) = uleg = udey,,

= (-n%su ey, ,

= -(v;_, @8u )(Z%:% ey ® Cy_4,4) -

3.9. THEOREM. For a fixed odd prime p, the axioms 1 through 5

of VI §1 characterize the operations Pi

]3i (i = 0,1,2...) 1is any sequence of cohomology operations satisfying

these axioms then, for each 1, Bi = Pi

(1 = 0,1,2...). Precisely, if

PROOF. From the axioms we deduce that

(1) ot . Pl

5 as in I 1.2,
(2) P:"w1 = 0 from VI 2.2 and so Pi(w1u) = w1Piu by the
Cartan formula.

(3) -0y ooy P

K i _
Zi o(=1) Vo1 (p-1) 42 pely

k-1-1

+

e l-nte
zﬂ'?.Pk\l.

(8) By 3.7, &: H(W/xxK —> B*'(W x, K W/x x K) maps

st monomorphically.

2(1+1) (p-1)+2 T

(5) By 3.8, -b(wyy_4 X u) = LAYER T (1 x h*u).

- *
Lot 7 = I (-NNpypqyer x P € H'(W/a x ). We recell that
5 is an H*(n) ~homomorphism by 3.5. We see that

8y = Z;:o(ﬂ)i Va1 (p-1) s(w,Pk'iu).

2o (-0 Wy (pgy PERB(w W) By (1) and (2)

n

ZE o (-1 N (pogy P 101 x BT by (5)

-, PX (1 x b'u) by (3)

If q=dimu=238 or 2s+1, weput k= s+1. Then 2k> g and dim

T (1 xh*u) = q, 80 Pk'r'(l xh*u) = 0 and &y = O.
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Suppose 84 satisfy the same axioms as {P}}. Then we can define

7! by replacing Pi with Bi. As above 8y!'! = 0. Therefore

8o (-DF Woy(payar x BBy sy -y o
The term i = s + 1 4is omitted since P° -B® = 1 -1 = 0. Now
aim (y - 9') = 2i(p - 1) + 1 +q+2(s -1+ N(p~-1)

2(s + 1)(p -1) +q +1

2(s + 1)p if q
{2(s+1)p—1 if q
Therefore (p - 1) dim (y - ")} /p

28 + 1

2s.

{2(s+1)(p-1) = 28(p-1) + 2(p - 1) if q = 28+1
Clesa -1 - (-1
2s(p - 1) + 2(p-1) - (p-1)/p if q = 2s.

Therefore  (p - 1) dim (7 - 7")/p > 24(p - 1) + 1 = Aim Wy 4y, -

Therefore (7 - ') € 8¢ where r = dim (r - 7). Since s(y - y') =0,
3.7 shows that y - y' = 0. Therefore Pu = Blu for © <ik., 1If

1>k then 2i> 2k> dimu and PjutBiu-o. The theorem is proved.
3.10. THEOREM. The axioms 1 through 5 characterize the operations
Sqi

cohamology operations satisfying these exioms then, for each i, R1 = sq:l

(i =0,1,2,..). Precisely if rt (1 =0,1,2,,.) is any sequence of

PROOF. From the axioms we deduce
(1) sSqi = Sqis as in I 1.2,
k-1 k- -1 k-i-1
(2) zf:o wi Sq' (Wlu) = g=0 vi+1 Sq iu + Zfeo wi-l-? Sq u
= w.l Sqlﬂl.
(3) 5: H(W/¢ x K) —> H“""(l«lr Xy KP, W/n x K) maps S* mono-
morphically by 3.7.
(%) 8(1 xu) = w, (1 xh*u) by 3.8.
et 7 = X v, x st ue B W/ xK.
We recall that 5 is an H*(x) -homomorphism by 3.5. Therefore
7 = I¥_o w801 x st

= 21120 Wy 5qu'1(1 x )
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21f=0 LA qu'i 5(1 x u)
I o vy 5T e (1 xpw)

v, qu't'(‘l X h*u) .

]

If g =dimu, we put k = g+t, Then qu‘r'(1 X h*u) = 0 and so &y = O,
Suppose (Ril satisfy the same axioms as [Sqi} . Then we can
define y' by replacing Sqi with Ri. As above 8y' = 0. Therefore

8(3 o vy x (3T R ) o5y -y = 0

Now dim (y - ') = 29 + 1 and 15q<(2q+1)/2. Hence 7—7'eSr.
Therefore y - y' = O by 3.7. Therefore Sqtu = Rlu for 0< 1<k

1f 1>k then Sqiu = R = 0. So the theorem is proved.
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APPENDIX

Algebraic Derivations of Certain Properties of
The Steenrod Algebra

@ , the Steenrod algebra mod p, has been defined in VI §2 (in I

§2 for p = 2) in a purely algebraic menner as the free assoclative algebra
@ over Zp generated by the elements Pi of degree 2i(p-1) and B of
degree 1 (for p = 2 by Sqi of degree 1) modulo the ideal generated by
Be, -1 (Sqo- 1 if p = 2) and the Adem relations. The theorem proved
in this appendix (Theorem 2) is purely algebraic both in hypothesis and con-
clusion. It was proved in Chapters I, IT and VI by allowing @ to
operate on the cohomology groups of certain spaces. The proof to be given
here will be purely algebraic. The only new step is an identity between
binomial coefficients mod p which was proved by D. E. Cohen [1] in a paper
on the Adem relations.

Let P(&;,t,,...) Dbe the polynomial algebra over Zp on generators
of degree 2(pi- 1) (of degree e p=2). let E('ro,'r1,...)

i

be the exterior algebra over Zp on generators Ty of degree 2p - 1.

let H = PQ®E (H=P if p = 2). We shall define a diagonal

€1

Vgi H—> H® H which will make H a Hopf algebra. In doing so we are
free to choose *H on the generators &y and Ty and then "H will be
uniquely determined. Let

5 1
vty = L tf @8y end wr - o1+ Lt e

The following lemma 1s easily verified.

LEMMA 1. Yy is associative. H 1is a commutative associative Hopf
algebra with an associative diagonal. H 1is of finite type.

From now on we shall give no special discussion of the case p = 2,

i

since this can be obtained by replacing P~ with Sq1 and suppressing all

133
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arguments involving B or T .
We define a homomorphism of algebras
7w G—> '

i

by letting n(P!) be the dual of &, in the

basis of admissible monomials.

and n(B) the dual of T,

THEOREM 2. The map n induces an epimorphism @ —> H which
sends no non-zero sum of admissible monomials to zero.

Theorem 2 has the following corollary.

THEOREM 3. 8) 1 induces an iscmorphism @ —> H. @ has a
basis consisting of the admissible monomials.
b) @ 1is a Hopf algebra with diagonal given by
vl - ZJPJQPi'j and ¥(B) = B®1+1®B.
¢) H is the Hopf algebra dual to Q.
PROOF of THEOREM 3. As in VI 2.1 we see that the admissible

monomials span @. They are linearly independent by Theorem 2. Part a)
of the theorem follows. Part b) is proved by showing that

o 2(PH) Z (P @ n(Pt™d) and

o5 1(B)

ne) @1 + 1 ®n(B) ,
where oy 1s the multiplication in H. Part ¢) is trivial.

We shall now prove Theorem 2. The first step is to show that 4
is zero on 32 and on the Adem relations. It is easy to see that
n(ﬁe) = 0, since if x is a monomial in H, then

<% ,x> = < n(B) x n(B), x> = O
by inspection of the formula for YyX. In order to sée that n maps each

Adem relation to zero we need a lemma.

LEMMA 4. (Cohen [1]) if 0 < c < pd then

esd S (-nyed ( c-sd )((d.jii;nn) nod p.

PROOF. The formal power series in a varisble t with coefficients



APPENDIX 135

in Zp form a commutative ring. A power series whose constant coefficient
is non-zero has a unique inverse under multiplication. Iet £ be the
element of the ring given by

£ty = ((1 + t)p‘1_ tp)Ci-d/(] . t)c(p_1)+1

The lemma will be proved by expanding f£(t) in two different ways.
If we apply the binomial theorem to the numerator of f£(t) we obtain

£ = I, (%) -nd Pl n @D -0

Since c¢ - pJ < p(d - J) the expansion of (1 + 1:.)(‘1'3)(1"7)'1 will con-
tain t°PJ only 1f J < d, in which case the coefficient of t°PJ ig

(d'JéSggl)'l) . Therefore the coefficient of t® in f(t) 1s

B ! (SF)(@RE
On the other hand (1 + t)? = 1 4+ tP and so
(1« PP o 1 - g1 4 )P
Therefore
£(t) = (1 - t(1 + pP-Hyo+d 4 pele-1)a
= I (-1)3 (C'sd Yed(r v 1y (3-0) (R-1) -1

If we expand (1 + t)(j'c) (P"j)” we obtain a term of the form t°7J only .
if j<c. Let As.j be the coefficlent of this term. Then the coeffi-
cient of t© in f£(t) is

-J c+d
g gy (930) .
Now )‘o = 1 and the lemma will follow if A, = O for k> 0.

S 1¢S5 M EL S S BN -S)) SRS Y
k!

-+ (%)

= 0 if k>0 by I 2.6.

PROPOSITION 5. The hamomorphism 17: @ —> H  sends each Adem
relation to zero.
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PROOF. Suppose X ¢ H 1s a monomial then

<PPPx> = <P @ PP ux> .
This is zero unless x = gqglg and (for dimensional reasons)
a+B = J+k(p+ 1), Then
e N D O I R I DGR T DR

< % g PP, L (ri)§1m+pk® §1jj+k-m>

( a{pk)

Let R(a,b) = -popP . g, (.18 ((B-1)(p-1)-1) pard-ipl
1
a-pi
Then R(a,b) = 0 in @ if a < pb. Now n R(a,b) could only be non-

zero on monomials of the form g?gg where a +b = J + k(p+1) and its

value on such monomials is

SRR g, (@ ((0-1) (1) T (mrbok(pe )
Tbois

By Lemma b with 4 = b-%k, ¢ = a-pk and j = 1 -k, this expres-
sion is zero mod p.

We now have to show that if a < pb, then 15 sends the following

expression to zero

M - PPpPP 4 % (- 1ya+i((b- i)(p-l)) p pa+b-1 pl

. Z (- 1)a.-t~:l.((b-1) (p-‘l)-1) Pa+b -i Pi.

Tet Qe H be dual to T, ¢ H. Then

1
(2) aP® e -8PYH - QP

To see this we note that n(P2),n(sP?) and Q n(P®"') are zero except on
monomials of the form g?ro and g?"n , and on these monomials the
identity (2) is easy to check.

If a < pb then the expression (1) 1is sent to zero by 14, as we
see on using (2) and n(R(a,b)) = 0 and q(R(a-t1,b)) = 0. If a =7pb
then (1) becomes

-p* PP PP,
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Under n this becomes - Qq(Ppb"Pb). Now
n(PPP7PP) = a(R(pb-1,b)) = O .

This proves the proposition.

COROILIARY 6. 13 induces a homomorphism of algebras n: @ —> H*.

As in VI 4.2 we can set up a one-to-one correspondence between

sequences I = (50,11,51,...,ik,ek,o,...) with €, - Oor 1 and

i, = 0,1,2,... and admissible sequences I' = (50,11,81,...,1k',sk,0,...)

by the equations

i, = ip-Plag - %
eqg 11 e il €
et P’ - 0P 1 6% .. Pk K ang 1et
I € i1 € ik ek
¢ = T, 0 gt L b C Ty

Then gI and PI' have the same degree. We order the set of sequences

(I} lexicographically from the right.

J

IEMMA T. <PI',g > is zero for I <J and + 1 for I = J.

PROOF. We prove this by induction on the degree of ¢°. It is
true in degree O.
Case 1). The last non-zero element of I' 1s 1]'{ . Let M' be the
sequence I' with 11’( replaced by 0. We have

g = 1, and M = (ey,i,,8,,...,1  + pip,e, ,,0..0) .
(If k = 1, M = (50’0’ ...).)
I .J Mg Pk T
Now < P™ [t > = < ®P ,#Hg >. By our induction hypothesis we need

only take into account terms of the form §L ® gfk where L <M in the
expansion of vﬂgJ. Inspecting the formula for ¥y We see that

< PI',gJ > = 0 unless J and I have the same length and JkS ik.
Since J > I, we can assume that Jj, = i, and that J and I have the
same length. Therefore in the expansion of ¢H§J we need only take into
account the term gL [ g'}k where

L = (50,31,51,...,31{_1 + DiysBi_qs0,000) -
(If kx=1, L = (85,0,...) )
S0 L>M and we have L =M if and only if J = I . By our induction
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hypothesis the lemma follows in this case.
Case 2). The last non-zero term of I' is € Let M!' be the sequence

I' with € replaced by zero. Then
M = (50,11,e1,...,1k_1,ek_1,ik+ 1,0,...).
(If k=0, M = (0,0,...).)
Now
<P s o <M g’ >
By our induction hypothesis we need only take into account terms of the form

gL ® T, where L < M 1n the expansion of wﬂgJ. Inspecting the formula
for ¥y we see that < PI',QJ > = 0 unless J and I have the same
length (and so b = € = 1). We assume that J and I have the same
length. Then in the expansion of vﬁgJ we need only take into account the
term gL X T4 "where

L o= (85,31587500sdp1s8pqsdp + 150,..0)
(If k=0, L = (0,0,...).)

So L>M and we have L =M 1if and only if J = I. The lemma follows.

We now show that 17 is an epimorphism. On each degree there are
only a finite number of monomials gJ. By a decreasing induction on J,
and using ILemma 7, the image of 1n 1is seen to contain the dual of gJ.
Moreover 1 does not send the sum of admissible monomials I xiPIj'- to
zero, as we see by applying Lemms 7 to the term for which Ii is greatest.

This proves Theorem 2.
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