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Abstract

In this paper we construct a refinement of the transchromatic gen-
eralized character maps by taking into account the torus action on
the inertia groupoid (also known as the Fix functor). The relation-
ship between this construction and the geometry of p-divisible groups
is made precise.

1 Introduction

In chromatic homotopy theory, there is a history of trying to understand
height n phenomena in terms of height n − 1 phenomena associated to the
free loop space. There is an S1-action on the free loop space by rotation.
This action plays a key role in topological cyclic homology and the redshift
conjecture (such as in [3]) and in Witten’s work on the elliptic genus (see [11]
and [10]). In generalized character theory the S1-action has been traditionally
ignored. In this work, we describe a generalized character theory in which
this S1-action is accounted for and we explain the relationship between it
and the geometry of p-divisible groups.

When a space X has an action by a group G, there are competing notions
of the free loop space ofX. In [11], Witten introduced the notion of a “twisted
loop space” in which the loops and group action on the space X have some
interplay. Given g ∈ G such that gh = e, a loop twisted by g is a map

sg : R/hZ −→ X,

such that
sg(t+ 1) = gsg(t)
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for t ∈ R/hZ.
This construction can be easily formalized using topological groupoids.

The space of all twisted loops is modeled by the topological groupoid of maps

homtop. groupoids(R//Z, X//G),

where the notation X//G means the action topological groupoid. On restric-
tion to the constant loops inside of this topological groupoid one recovers the
inertia groupoid of the G-space X:

homtop. groupoids(∗//Z, X//G).

This is the action topological groupoid for the G-space

Fix(X) =
∐
g∈G

Xg

of Hopkins, Kuhn, and Ravenel. The target of the character maps of [5]
and [8] are the cohomology of the geometric realization of this topological
groupoid (or the Borel construction):

EG×G Fix(X).

In this case, the constant loops carry an action by S1 that is non-trivial
because of the interplay between the loops and the G-action. The purpose
of this paper is to construct a character theory for Morava E-theory that
keeps track of this S1-action on the constant loops. We call the geometric
realization of the resulting topological groupoid

Twist(X).

To be a bit more precise about what these spaces are, first note the equiva-
lence

EG×G Fix(X) '
∐

[g]∈G

EC(g)×C(g) X
g,

where the coproduct is taken over conjugacy classes of elements in G and
C(g) is the centralizer of g. However, a conjugacy class of elements in G is
the same thing as a conjugacy class of maps Z −→ G. Fix a map

α : Z −→ G.
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Then BZ = S1 acts on EC(g) ×C(g) X
g by addition through α. Finally, we

can define
Twist(X) =

∐
[g]∈G

ES1 ×S1 EC(g)×C(g) X
g.

A generalized character theory built using these spaces is somewhat more
refined than the generalized character theory of [8]. In fact, the transchro-
matic generalized character maps of [8] factor through these new maps. The
cohomology of these spaces turns out to be closely tied to the geometry of
p-divisible groups. To go into more detail, we must discuss the relationship
between generalized character theory and p-divisible groups.

The generalized character theory of Hopkins, Kuhn, and Ravenel [5] has
proved to be a powerful tool in the analysis of the Morava E-theory of finite
groups and finite G-spaces. A key idea of theirs is to construct a rational al-
gebra C0 over which the p-divisible group associated to Morava En trivializes
to a constant scheme. Because C0 is a rational algebra the generalized char-
acter map of Hopkins, Kuhn, and Ravenel can be viewed as transchromatic
in nature: its source is in chromatic layer n and its target is in chromatic
layer 0. In [8] the author generalized their construction to all of the heights
between 0 and n by constructing an LK(t)E

0
n-algebra Ct with the property

that there is a pullback square of p-divisible groups

G0 ⊕Qp/Zn−tp
//

��

G //

��

GEn

��
Spec(Ct) // Spec(LK(t)E

0
n) // SpecE0

n.

Over the ring Ct, GEn splits into the sum of a formal group of height t and a
constant étale group of height n−t. It is vital to the topological constructions
that the étale part of Ct⊗E0

n
GEn is constant. The main theorem of this paper

is that a generalized character map can be defined using a ring Bt over which
the p-divisible group is a non-trivial extension of a height t formal group by
a height n − t constant étale p-divisible group. More precisely, there is a
pullback square

G0 ⊕Zn−tp
Qn−t
p

//

��

GEn

��
Spf(Bt) // Spec(E0

n).
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We construct a complete version of Ct, called Ĉt. There is a canonical map
Bt −→ Ĉt. Pulling back over this map recovers the split p-divisible group
from the first diagram above. Recall that the transchromatic generalized
character map of [8] that starts in chromatic height n and lands in chromatic
height t is a map of Borel equivariant cohomology theories

ΦG : E∗n(EG×G X) −→ Ĉt ⊗LK(t)E
0
n
LK(t)E

∗
n(EG×G Fixn−t(X)).

One of the key constructions in this paper is a generalization of the con-
struction of the functor EG ×G Fixh(−) from [8]. Recall that, for a finite
G-CW complex X,

Fixh(X) =
∐

α∈hom(Zhp ,G)

X imα.

This is a finite G-CW complex and the cohomology of EG×GFixh(X) is the
codomain of the generalized character map. There is an equivalence

EG×G Fixh(X) '
∐

[α]∈hom(Zhp ,G)/∼

EC(imα)×C(imα) X
imα,

where C(imα) is the centralizer of the image of α and the disjoint union
is taken over conjugacy classes of maps. An analagous space is required to
construct the twisted character maps. Let Zhp

α−→ G be a continuous map of
groups in which G is finite and discrete. A map of this form is determined
by an h-tuple of pairwise commuting prime-power elements in G. It turns
out that the pushout of abelian groups

Zhp //

α

��

Qh
p

��
imα // imα⊕Zhp Q

h
p

can be extended on the left to C(imα). We define

T (α) = C(imα)⊕Zhp Q
h
p .

There is a short exact sequence

0 −→ C(imα) −→ T (α) −→ Qp/Zhp −→ 0.
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The action on the fixed point space X imα by C(imα) can be extended to
T (α) and we define

Twisth(X) =
∐

[α]∈hom(Zhp ,G)/∼

ET (α)×T (α) X
imα.

Analogues of this construction have shown up in work of Ganter in [4] and
in unpublished work of Rezk. As discussed in the first paragraphs, it is a
Borel equivariant version of a construction in equivariant loop space theory
in which the free loop space LX is studied by understanding the S1-action
by rotation on the constant loops. There is a canonical map

Twisth(X) −→ Twisth(∗) ∼= (BQp/Zp)h

induced by the maps T (α) −→ (Qp/Zp)h and X −→ ∗. We use this to
construct a map of Borel equivariant cohomology theories called the twisted
character map

ΥG : E∗n(EG×G X) −→ B∗t ⊗LK(t)E
∗
n(BQp/Zn−tp ) LK(t)E

∗
n(Twistn−t(X)).

When X = ∗ and G = Z/pk we show that this map recovers the global
sections of the map on pk-torsion

G0 ⊕Zn−tp
Qn−t
p [pk] −→ GEn [pk].

Because there is an isomorphism

G0 ⊕Zn−tp
Qn−t
p [pk]

∼=−→ Bt ⊗E0
n
GEn [pk],

one might hope that this holds for more general spaces and groups. This is
the main result.

Theorem. For all finite groups G, the twisted character map induces an
isomorphism of Borel equivariant cohomology theories

Bt⊗E0
n
ΥG : Bt⊗E0

n
E∗n(EG×GX)

∼=−→ B∗t⊗LK(t)E
∗
n(BQp/Zn−tp )LK(t)E

∗
n(Twistn−t(X)).

We also show how to canonically recover the transchromatic generalized
character maps of [8] using the canonical map Bt −→ Ĉt. It should be
noted that, in personal correspondence, Lurie has described a method for
building the transchromatic twisted character maps from the transchromatic
generalized character maps of [8].
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2 Notation and Conventions

For a scheme X over SpecR and a map R −→ S we will set

S ⊗X = SpecS ×SpecR X.

At times we will be working with formal schemes and we will mean the
pullback in the appropriate category of formal schemes.

Given a ring R complete with respect to an ideal I, let

SpfI R = colim
k

(
Spec(R/I) −→ Spec(R/I2) −→ . . .

)
.

By Qp/Zhp , Zhp , and Qh
p we will always mean (Qp/Zp)h, (Zp)h, and (Qp)

h.
We permanantly fix basis elements b1, . . . , bh of Zhp where

bi = (0, . . . , 0, 1, 0, . . . 0)

where the 1 is in the ith place.
We will often need to refer to an indexed collection of elements such as

{q1, . . . , qh}. We will often refer to this collection using a bar:

q̄ = {q1, . . . , qh}.

So for example
Zp[[q̄]] = Zp[[q1, . . . , qh]].

Given maps of abelian groups A −→ B and A −→ C we let B ⊕A C be the
pushout of B and C along A.
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3 Transchromatic Geometry

3.1 Non-Trivial Extensions

We begin by constructing a universal LK(t)E
0
n-algebra Bt with the property

that there is a pullback square

G0 ⊕Zn−tp
Qn−t
p

//

��

GEn

��
SpfIt+(q̄)(Bt) // Spec(E0

n).

Fix a prime p and let 0 ≤ t < n. Let En be a Morava E-theory and
LK(t)En be the localization of En with respect to Morava K-theory of height
t. We have the following description of the coefficients of En and LK(t)En:

E0
n
∼= W (k)[[u1, . . . , un−1]]

Lt = LK(t)E
0
n
∼= W (k)[[u1, . . . , un−1]][u−1

t ]∧(p,...,ut−1).

Let It = (p, u1, . . . , ut−1). Note that both of the rings above are complete
with respect to It. Let GEn be the formal group associated to En viewed as
a p-divisible group. Once and for all we fix a coordinate x for GEn . In [8]
it is shown that G = Lt ⊗E0

n
GEn is the middle term of a connected-étale

sequence of p-divisible groups

0 −→ G0 −→ G −→ Get −→ 0,

where G0 is the formal group associated to LK(t)En from the complex ori-
entation induced by the canonical localization map En −→ LK(t)En. Note
that En and LK(t)En are p-complete for n > 0 and t > 0 so that we have the
following isomorphisms

E∗n(BQp/Zhp) ∼= E∗n(B(S1)h)

LK(t)E
∗
n(BQp/Zhp) ∼= LK(t)E

∗
n(B(S1)h).

On the other hand, for n = 0 or t = 0, E∗n(BQp/Zhp) ∼= E∗n and (LK(t)En)∗(BQp/Zhp) ∼=
LK(t)E

∗
n.
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We begin by constructing an Lt-algebra B
′
t with the property that over

B
′
t there is a canonical diagram of the form

Zn−tp
//

��

Qn−t
p

��
G0

// G.

Define

q̄ = {q1, . . . , qn−t},
Ā = {A1, . . . , An−t},

([pk]Ā− q̄) = ([pk]A1 − q1, . . . , [p
k]An−t − qn−t).

Consider the ring

B
′

t = (colim
k

Lt[[q̄]]⊗E0
n[[q̄]] E

0
n[[q̄, Ā]]/([pk]Ā− q̄))∧It+(q̄).

The colimit is completed with respect to the ideal It + (q̄).
This construction was inspired by the work of Ando and Morava in [1]

Section 5. The idea behind the construction is that the ring B
′
t has n − t

canonical points for the formal group G0 = GLK(t)En given by the set q̄.

The elements of Ā are invisible to G0 in the sense that there are no maps
Lt[[x]] −→ B

′
t such that x 7→ Ai for any i. We formalize all of this in the next

proposition using the language of formal algebraic geometry.

Proposition 3.2. The ring B
′
t is the universal complete Lt-algebra equipped

with the following diagram of sheaves of Zp-modules in the fppf topology on
complete Lt-algebras:

Zn−tp
//

��

Qn−t
p

��
B
′
t ⊗G0

// B
′
t ⊗G.

Proof. We will prove this in four steps. First we will construct the map
Zn−tp −→ B

′
t ⊗ G0. Then we will show that it does not extend to a map

from Qn−t
p −→ B

′
t ⊗ G0. Then we will show that it does extend to a map

Qn−t
p −→ B

′
t ⊗ G. We will use Tate’s Lemma 0 from [9]. Let R be a ring
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complete with respect to an ideal I that contains p and let [pk](x) be the pk-
series for some formal group law. Tate’s Lemma 0 states that the topologies
on R[[x]] generated by the powers of I+(x) and the ideals Ik+([pk](x)) agree.

1. We construct the map Zn−tp −→ B
′
t ⊗G0 as a map

Zn−tp −→ G0(B
′

t).

We have the isomorphism

G0(B
′

t)
∼= lim

k
colim

j
homcont Lt(Lt[[x]]/[pj](x), B

′

t/(It + q̄)k).

As G0 is formal and by Tate’s Lemma 0 this is

hom(SpfIt+(q̄)(B
′

t), SpfIt+(x)(Lt[[x]])) ∼= homcont Lt(Lt[[x]], B
′

t),

which is the largest ideal of definition for B
′
t with the topology induced by

It + (q̄). Call this ideal J . The elements of q̄ are elements of J and can be
used to define the required map.

2. We observe that the map defined in part 1 does not extend to Qn−t
p .

This is not immediately clear because we don’t know that the elements of Ā
are not in J . Assume a continuous map

Lt[[x]]
x 7→Ai−→ B

′

t

exists. Consider the composite

Lt[[x]] −→ B
′

t −→ B
′

t/(q̄).

It factors through

Lt[[x]]
x 7→Ai−→ Lt ⊗E0

n
E0
n[[Ai]]/[p

k](Ai)

for some k. Now, since the map is assumed to be continuous, the power series
[pk](x) must be in the kernel of the map. Thus we get a map

Lt[[x]]/[pk](x)
x7→Ai−→ Lt ⊗E0

n
E0
n[[Ai]]/[p

k](Ai).
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But this map is an inverse to the canonical quotient in the other direction
and cannot exist for dimension reasons (the ring on the right has higher rank
as a free Lt-module).

3. The composite Zn−tp −→ B
′
t ⊗ G does extend to Qn−t

p . Tate’s Lemma
0 gives us that

lim
k
B
′

t/(It + q̄)k ∼= lim
k
B
′

t/(I
k
t + [pk](q̄))

and so

G(B
′

t)
∼= lim

k
colim

j
homcont Lt(Lt ⊗E0

n
E0
n[[x]]/[pj](x), B

′

t/(It + q̄)k)

∼= lim
k

colim
j

homcont Lt(Lt ⊗E0
n
E0
n[[x]]/[pj](x), B

′

t/(I
k
t + [pk](q̄)))

does detect the elements of Ā. As k varies we get

Qn−t
p = lim

(
. . . −→ (Qp/p

2Zp)n−t −→ (Qp/pZp)n−t −→ (Qp/Zp)n−t
)
.

4. By universality in the statement of the claim we mean that SpfIt+(q̄)(B
′
t)

represents the functor that brings a complete Lt-algebra R to the set of
commutative squares of the form

Zn−tp
//

��

Qn−t
p

��
R⊗G0

// R⊗G.

From the above we see that a continuous Lt-algebra map B′t −→ R induces a
square of this sort. Also, each square of this sort comes from such a map. Let
R be a connected complete Lt-algebra. Given such a square, the R points of
the square induce a map

(Zp)n−t −→ G0(R),

which is precisely a map Lt[[q̄]] −→ R. Now the other side of the square
implies that this map extends to a map

B′t −→ R.
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The ring B
′
t can be realized topologically. We give the case t = n−1. View

E0
n(BQp/Zp) as an E0

n(BQp/Zp)-algebra through the map Qp/Zp
×pk−→ Qp/Zp.

Using the coordinate this map is described by

E0
n[[x]]

x 7→[pk](x)−→ E0
n[[x]].

Set q = [pk](x). Then the codomain can be described as

E0
n[[x]] ∼= E0

n[[q, A1]]/([pk]A1 − q)

and the map is the inclusion

E0
n[[q]] −→ E0

n[[q, A1]]/([pk]A1 − q).

The Weierstrass preparation theorem implies that the codomain is a free
module of rank pkn over the domain. To topologically define the maps that
the colimit is taken over consider the square

Qp/Zp
×pk+1

//

×p
��

Qp/Zp
=

��
Qp/Zp

×pk // Qp/Zp.

This induces

LK(t)E
0
n(BQp/Zp)⊗p

k

E0
n(BQp/Zp) E

0
n(BQp/Zp)

1⊗p−→ LK(t)E
0
n(BQp/Zp)⊗p

k+1

E0
n(BQp/Zp) E

0
n(BQp/Zp).

Now we see that, up to a matter of completion, we have the following
isomorphism

B
′

t
∼= colim

k
LK(t)E

0
n(B(Qp/Zn−tp ))⊗p

k

E0
n(B(Qp/Zn−tp ))

E0
n(B(Qp/Zn−tp )),

where the right side of the tensor product is induced by the map

Qp/Zn−tp

×pk−→ Qp/Zn−tp .

As LK(0)En is a rational cohomology theory, this implies that B
′
0
∼= C

′
0, where

C
′
0 is the ring defined just before Proposition 2.13 of [8].
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Over B
′
t there is a canonical map of p-divisible groups

G0 ⊕(Zp)n−t (Qp)
n−t −→ G.

We can give a description of the global sections of this map on pk-torsion. We
begin with an informal description of the global sections and then describe
the map. Let R be a complete B

′
t-algebra. Let qj ∈ R be the image of

qj ∈ B
′
t. Then

G0 ⊕(Zp)n−t (Qp)
n−t(R) = G0(R)⊕(Zp)n−t (Qp)

n−t

has elements of the form

(r,
i1
pk1

, . . . ,
in−t
pkn−t

),

where r is an element of G0(R) and the quotients are elements of Qp greater
than or equal to 0 and less than 1. Addition of two such tuples is computed by
formal addition in the first variable and adding in Qp in the other variables.

However, if in the sum
ij

pkj
≥ 1 for some 1 ≤ j ≤ n − t then we subtract

1 from it and formally subtract qj from the first term. A more thorough
discussion of the arithmetic can be found in [1] Subsection 5.1.

Thus, for example, an element of the form

(r,
1

p
, 0, . . . , 0)

is p-torsion if and only if [p](r) = q1, for then

p·(r, 1

p
, 0, . . . , 0) = ([p](r), 1, 0, . . . , 0) = ([p](r)−G0q1, 0, 0, . . . , 0) = (0, 0, 0, . . . , 0).

For i = (i1, . . . , in−t) ∈ Λk, let

[i](q̄) = [i1](q1) +G0 . . .+G0 [in−t](qn−t).

From the above discussion we deduce that

OG0⊕Zn−tp
Qn−tp [pk]

∼=
∏
i∈Λk

B
′

t[[xi]]/([p
k](xi)− [i](q̄)).

Recall from Lemma 2.16 in [8] that the ideals ([pk](xi)−[i](q̄)) and ([pk](xi)−G0

[i](q̄)) are equal.
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Now we can describe the global sections of the map

G0 ⊕Zn−tp
Qn−t
p [pk] −→ GEn [pk].

This is a map

E0
n[[x]]/[pk](x) −→

∏
i∈Λk

B
′

t[[xi]]/([p
k](xi)−G0 [i](q̄)).

We only need to explain where x maps to for each i ∈ Λk. The map above is
given by

x 7→ (xi −GEn [i](Ā))i∈Λk ,

where
[i](Ā) = [i1]A1 +GEn . . .+GEn [in−t](An−t)

for Ai ∈ B
′
t with the property that [pk]Ai = qi.

Recall that Ai ∈ B
′
t is an element of G(B

′
t) but not an element of G0(B

′
t).

Now we can check that the map is well defined:

[pk](xi −GEn [i](Ā))i∈Λk = ([pk]xi −GEn [pk][i](Ā))i∈Λk

= ([pk]xi −GEn [i][pk](Ā))i∈Λk

= ([i](q̄)−GEn [i](q̄))i∈Λk

= 0.

We leave it as an exercise to the reader to verify that this is a map of
Hopf algebras.

As in [8] the induced map Qp/Zn−tp −→ Get over B
′
t defines a subset

R ⊂ B
′
t such that over Bt = (R−1B

′
t)
∧
It+(q̄) there is a canonical isomorphism

G0 ⊕Zn−tp
Qn−t
p

∼=−→ G.

Proposition 3.3. The complete Lt-algebra Bt represents the functor

IsoG0/(G0 ⊕Zn−tp
Qn−t
p ,G) : Complete Lt − Alg −→ Set

that sends
R 7→ IsoG0/(R⊗Lt G0 ⊕Zn−tp

Qn−t
p , R⊗G).
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Proof. A map
Bt −→ R

induces via precomposition a map

B
′

t −→ R,

which represents a square

Zn−tp
//

��

Qn−t
p

��
G0

// G

over R. This induces a map

Qp/Zn−tp −→ Get,

which is an isomorphism by the definition of Bt. Now the five lemma implies
that the map from the pushout of the square to G is an isomorphism.

3.4 Relation to Ct

Let Ct be the Lt-algebra defined in Section 2.9 of [8]. Recall that Ct = S−1C ′t.

Let Ĉt
′
= (C ′t)

∧
It

be the completion of C ′t at the ideal It. Now we define Ĉt to
be

(S−1Ĉt
′
)∧It
∼= (S−1C ′t)

∧
It .

It should not be surprising that this is the correct analogue of Ct in the
setting of this paper. The recompletion process just forces the ring to be a
complete Lt-algebra.

There is a canonical topologically-induced map from Bt to Ĉt. Let Λk =
(Z/pk)n−t. Consider the commutative square

Λk
//

��

Qp/Zn−tp

×pk
��

e // Qp/Zn−tp .

The map

LK(t)E
0
n(B(Qp/Zn−tp ))⊗p

k

E0
n(B(Qp/Zn−tp ))

E0
n(B(Qp/Zn−tp )) −→ Lt⊗E0

n
E0
n(B(Λk))
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is induced in the left and bottom factors by the bottom map of the square
and in the right factor by the top map of the square. This map fits together

with the colimit on both sides to provide a map B
′
t −→ Ĉt

′
.

Proposition 3.5. The map above sends the set R ⊂ B
′
t bijectively to the

set S ⊂ Ĉt
′
.

Proof. Recall from [8] that there is a canonical map

φ : Qp/Zn−tp −→ Get

over Ĉt
′
. Also the fixed coordinate provides an isomorphism (in the notation

of [8])

OGet[pk]
∼= Ĉt

′
[y]/(jk(y)).

In Section 2.9 of [8] we defined

φy : Λk −→ Ĉt
′

by φy(i) = πiφ
∗(y), the image of y in the component of OΛk corresponding

to i ∈ Λk. We then defined

S = colim
k

Sk = colim
k
{φy(i)|i ∈ Λk}.

Let Rk ⊂ B′t be defined analagously. Because φy is injective the finite sets
Sk and Rk have the same cardinality. Pulling the canonical map

Qp/Zn−tp −→ B′t ⊗Get

back along the map B′t −→ Ĉt
′

gives the commutative square

Qp/Zn−tp
//

��

Qp/Zn−tp

��
Ĉt
′
⊗Get

// B′t ⊗Get.

The commutativity of the global sections of the pk-torsion of the square
implies that there is a surjection

Rk −→ Sk.

Because the sets are finite and have the same cardinality this implies the
map is a bijection.

15



This implies that Bt is nonzero.

Proposition 3.6. The map Lt/It −→ Bt/(It + q̄) is faithfully flat.

Proof. Note that
Bt/(It + q̄) ∼= Ct/It.

Now this follow immediately from Proposition 2.18 in [8].

4 Transchromatic Twisted Character Maps

The transchromatic twisted character map is defined to be the composition
of two maps. The first map is induced by a map of topological spaces and
the second one is algebraic in nature.

4.1 The Topological Map

The transchromatic twisted character map is the composition of two maps
- a topological map and an algebraic map. In this section we describe the
topological map. It is induced by a map of topological spaces

BT (γk)×BQp/Zn−tp
Twistn−t(X) −→ EG×G X

where X is a finite G CW-complex. In this map, the domain is a pullback and
the codomain is the Borel construction. Our first goal is to define the functor
Twistn−t(−) from finite G-spaces to spaces. It plays the role of the functor
EG×GFixn−t(−) of [5] and [8]. We will give two equivalent definitions of the
functor. The first is simpler to understand but requires some choices. The
second construction is free of any choices.

Given a continuous map of groups

α : Zhp −→ G,

we can form the pushout in abelian groups

Zhp //

α

��

Qh
p

��
imα // imα⊕Zhp Q

h
p .

16



Proposition 4.2. The pushout extends on the left to the centralizer of the
image of α

C(imα) = {g ∈ G|ghg−1 = h ∀h ∈ imα}.

Proof. Let g, h ∈ C(imα), s, t ∈ Qh
p , and i, j ∈ Zhp . We will represent an

element of the pushout by [g, t] with the relation

[g, t+ i] = [gα(i), t].

We prove that multiplication is well-defined. We have

[g, t+ i][h, s+ j] = [gα(i), t][hα(j), s]

= [gα(i)hα(j), t+ s]

and

[g, t+ i][h, s+ j] = [gh, t+ s+ i+ j]

= [ghα(i+ j), t+ s].

Now ghα(i + j) = gα(i)hα(j) because α is a homomorphism and because
g, h are in the centralizer of the image of α.

Definition 4.3. Let
T (α) = C(imα)⊕Zhp Q

h
p .

Proposition 4.4. There is a short exact sequence

0 −→ C(imα) −→ T (α) −→ Qp/Zhp −→ 0.

Proof. This is clear.

Example 4.5. Let γk : Zhp −→ Λk = (Z/pk)h be the quotient. Then T (γk)
is the pushout

Λk ⊕Zhp Q
h
p .

Note that this is isomorphic to Qp/Zhp and that this is the middle term of a
short exact sequence

Zhp //

γk

��

Qh
p

��

// Qp/Zhp
=

��
Λk

// Λk ⊕Zhp Q
h
p

×pk // Qp/Zhp .
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Example 4.6. Next we work a slightly more complicated example. Let

α : Zhp −→ Z/pk.

We will try to understand the relationship between T (α) and Qp/Zhp through

the quotient map T (α)
c−→ Qp/Zhp in terms of their duals. We call it “c” for

cokernal. First, the dual of Qp/Zhp is Zhp and the fact that the quotient map
is surjective implies that the dual map is injective. Now let i1, . . . , ih be the
image of the basis elements of Zhp in Z/pk. Consider the inclusion

Z/pk f−→ Qp/Zp

given by

i 7→ i

pk
,

where, for convenience, we consider 0 to map to 1 ∈ Qp/Zp. Elements of
T (α) can be put in the form

(i, (
a1

pk1
, . . . ,

ah
pkh

)),

where i ∈ Z/pk, 0 ≤ aj

pkj
< 1, and (0, (0, . . . , 1, . . . , 0)) = (ij, (0, . . . , 0)) when

the 1 is in the jth place. Consider the composition

T (α) c // Qp/Zhp
πj

��
Qp/Zp,

where πj is the projection onto the jth factor. The composition πj ◦ c gives
the image of the element bj = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zhp in T (α)∗, where the
1 is in the jth place. We construct a map

T (α)
x−→ Qp/Zp

by sending

(i, (
a1

pk1
, . . . ,

ah
pkh

)) 7→ f(i) +
h∑
j=1

f(ij)
aj
pkj

.
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A quick computation gives the relation

pkx = i1(π1 ◦ c) + . . .+ ih(πh ◦ c).

Next note that the map

(π1 ◦ c, . . . , πh ◦ c, x) : T (α) −→ Qp/Zh+1
p

is a monomorphism so the dual is an epimorphism from a free Zp-module.
Thus x generates the part of T (α)∗ not hit by c∗ and satisfies the relation
above. Finally we conclude that T (α)∗ is the Zp-module with the following
presentation

{b1, . . . , bh, x|pkx = i1b1 + . . .+ ihbh}.

Let G be a finite group and X a finite G-space (equivalent to a finite
G-CW complex).

Proposition 4.7. The action on the fixed point space X imα by C(imα)
extends to an action by T (α).

Proof. We will represent elements of T (α) as tuples of the form [g, t] where
g ∈ C(imα) and t ∈ Qh

p . We define

[g, t]x = gx.

We see that if j ∈ Zhp ⊆ Qh
p then

x = [1, j]x = [α(j), 0]x = α(j)x = x

as x ∈ X imα. Thus the action is well-defined.

Recall from [8] that the set of continuous homomorphisms hom(Zhp , G) is
a G-set under conjugation.

The following definition is fundamental to our work here:

Definition 4.8. For a G-space X, let

Twisth(X) =
∐

[α]∈hom(Zhp ,G)/∼

ET (α)×T (α) X
imα,

where the coproduct is over conjugacy classes.
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This is analagous to the equivalence

EG×G Fixh(X) '
∐

[α]∈hom(Zhp ,G)/∼

EC(imα)×C(imα) X
imα.

Remark 4.9. There is an alternative way to view the relationship between
Twisth(X) and EG×G Fixh(X). There is a T = (S1)×h action on∐

[α]∈hom(Zhp ,G)/∼

EC(imα)×C(imα) X
imα.

The action is induced componentwise. We begin by treating the case when
X = ∗. Thus fix an [α] ∈ hom(Zhp , G)/ ∼ and consider, by precomposition
with Zh −→ Zhp , the map

Zh × C(imα) −→ Zhp × C(imα)
+α−→ C(imα),

where
+α : (s, g) 7→ α(s) + g.

Now applying B(−) to the map gives an action of T on BC(imα) and the
Borel construction gives the p-complete equivalence

ET×T BC(imα) ' BT (α).

It is not hard to see that the above construction extends to give a T-action
on EC(imα) ×C(imα) X

imα. Thus, up to p-completion, Twisth(X) is the
homotopy orbits for a T-action on∐

[α]∈hom(Zhp ,G)/∼

EC(imα)×C(imα) X
imα.

Example 4.10. Note that if X = ∗ and G = e then

Twisth(∗) ∼= (BQp/Zp)h.

Now we provide a more canonical form for the functor Twisth(−). Let
α, β : Zhp −→ G and let

C(α, β) = {g ∈ G|gαg−1 = β}.
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Proposition 4.11. The set C(α, β) is a right Zhp-set through α.

Proof. For j ∈ Zhp and g ∈ C(α, β) let

gj = gα(j).

This is well-defined because

gα(j)αα(j)−1g−1 = gαg−1 = β.

Now let T (α, β) be the coequalizer of

C(α, β)× Zhp ×Qh
p

//// C(α, β)×Qh
p ,

where one map is induced by the action of Zhp on C(α, β) described above
and the other is induced by the standard action of Zhp on Qh

p . There is a map

T (α, β)×X imα c−→ X imβ

given by
[g, t]x = gx ∈ X im gαg−1

= X imβ.

The proof that it is well defined is similar to the proof of Prop 4.7. Note that
T (α) = T (α, α).

There is a natural composition

T (β, δ)× T (α, β) −→ T (α, δ)

given by
[h, s]× [g, t] 7→ [hg, s+ t].

Also T (α, α) contains an identity: the identity element e ∈ G.

Definition 4.12. Let Twistgpdh (X) be the geometric realization of the nerve
of the topological groupoid ∐

(α,β)∈hom(Zhp ,G)×2

T (α, β)×X imα

d

��

c

��∐
α∈hom(Zhp ,G)

X imα,

where the domain map d is the projection and the codomain map c is the
map defined above.
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Proposition 4.13. We have the following equivalence for all finite G-spaces
X:

Twisth(X) ' Twistgpdh (X).

Proof. We will construct a map of topological groupoids∐
[α]∈hom(Zhp ,G)/∼

T (α)×X imα

d

��

c

��

fmor//
∐

(α,β)∈hom(Zhp ,G)×2

T (α, β)×X imα

d

��

c

��∐
[α]∈hom(Zhp ,G)/∼

X imα fob //
∐

α∈hom(Zhp ,G)

X imα

that is an equivalence in the sense of Corollary 4.8 and Definition B.15 in [2].
Fix a collection of representatives of the conjugacy classes of hom(Zhp , G)/ ∼.

On objects we’ll send ∐
[α]∈hom(Zhp ,G)/∼

X imα −→
∐

α∈hom(Zhp ,G)

X imα

by using the representatives of the conjugacy classes.
The map on morphisms∐

[α]∈hom(Zhp ,G)/∼

T (α)×X imα −→
∐
(α,β)

T (α, β)×X imα

sends ([g, t], x) ∈ T (α)×X imα 7→ ([g, t], x) ∈ T (α, α)×X imα. The commu-
tativity of the necessary diagrams is clear.

To ease the notation let

(H0, H1) =
( ∐

[α]∈hom(Zhp ,G)/∼

X imα,
∐

[α]∈hom(Zhp ,G)/∼

T (α)×X imα
)

and

(G0, G1) =
( ∐
α∈hom(Zhp ,G)

X imα,
∐

(α,β)∈hom(Zhp ,G)×2

T (α, β)×X imα
)
.

The map of topological groupoids above is then just

H1

d
��
c

��

fmor // G1

d
��
c

��
H0

fob // G0.
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First consider the pullback
G1 ×G0 H0

along the maps d and fob. To show that f is essentially surjective we must
show that

G1 ×G0 H0
c◦π1−→ G0

admits local sections, where π1 is the projection onto the first factor. Since
fob maps components homeomorphically to components the pullback is just
the components of ∐

(α,β)∈hom(Zhp ,G)×2

T (α, β)×X imα

with α in the chosen reprentatives of the conjugacy classes. Now for a fixed
β : Zhp −→ G, choosing an element of [g, t] ∈ T (α, β) allows one to construct
a section of c,

X imβ −→ T (α, β)×X imα,

mapping
x 7→ ([g, t], g−1x).

To show that f is fully faithful we must show that the following square
is a pullback:

H1

(d,c)
��

fmor // G1

(d,c)
��

H0 ×H0
(fob,fob)// G0 ×G0.

But this is clear, for if [α] 6= [β], then the preimage of X imα ×X imβ on the
right hand side of the square is empty.

Now it follows from Corollary 4.8 of [2] that the fat geometric realization
of the map f is an equivalence. The nerves of the topological groupoids are
“good” simplicial spaces in the sense of [7] Definition A.4 and this implies
that the geometric realization is canonically equivalent to the fat geometric
realization by Theorem A.1 of [7]. We conclude that the geometric realization
of f is an equivalence.

When multiple groups are in use, we will write TwistGh (−) to make it
clear what group Twisth(−) depends on.

A critical property of Twisth(−) is the way that it interacts with abelian
subgroups of G.
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Proposition 4.14. Let H ⊆ G be an abelian subgroup of G, then

TwistGh (G/H) ' TwistHh (∗).

Proof. We produce an equivalence of topological groupoids that provides
the desired equivalence after applying geometric realization. The map of
topological groupoids takes the form∐

(α,α′)∈hom(Zhp ,H)×2

T (α, α′)× ∗imα

d

��

c

��

//
∐

(β,β′)∈hom(Zhp ,G)×2

T (β, β′)× (G/H)imβ

d

��

c

��∐
α∈hom(Zhp ,H)

∗imα //
∐

β∈hom(Zhp ,G)

(G/H)imβ

Let i : H −→ G denote the inclusion and let the map be defined on
objects by sending ∗ ∈ ∗imα to eH ∈ (G/H)im i◦α and on maps by sending

T (α, α′)× ∗imα −→ T (i ◦ α, i ◦ α′)× eH

via the inclusion C(α, α′) −→ C(i ◦ α, i ◦ α′).
We prove that the map is fully faithful and essentially surjective. To prove

that it is fully faithful we observe that the following square is a pullback:∐
(α,α′)∈hom(Zhp ,H)×2

T (α, α′)× ∗imα

(d,c)

��

//
∐

(β,β′)∈hom(Zhp ,G)×2

T (β, β′)× (G/H)imβ

(d,c)

��∐
α∈hom(Zhp ,H)

∗imα ×
∐

α∈hom(Zhp ,H)

∗imα //
∐

β∈hom(Zhp ,G)

(G/H)imβ ×
∐

β∈hom(Zhp ,G)

(G/H)imβ.

Note that eH ∈ (G/H)imβ if and only if im β ⊆ H. Also note that T (α, α′) =
∅ unless α = α′ because H is abelian. The preimage of a point (eH, eH) ∈
(G/H)imβ × (G/H)imβ′ consists of the collection [g, t] ∈ T (β, β′) such that

gH = eH ∈ (G/H)im gβg−1=β′ .

To have the equality gH = eH, g must be an element of H. Thus β = β′

since H is abelian. The square is a pullback because the subspace

{[g, t]|g ∈ H} ⊆ T (β, β)
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is homeomorphic to T (α, α).
To prove that the map of topological groupoids is essentially surjective

we must show that c ◦ π1:( ∐
(β,β′)∈hom(Zhp ,G)2

T (β, β′)×(G/H)imβ
)
×( ∐

β∈hom(Zhp ,G)

(G/H)im β
)( ∐

α∈hom(Zhp ,H)

∗imα
)

↓∐
β∈hom(Zhp ,G)

(G/H)imβ

has local sections. As the codomain is a set it suffices to show that the map
is surjective. Given

gH ∈ (G/H)imβ′ ,

we will produce an element in the domain that maps to it. Let β = g−1β′g.
Then

eH = g−1gH ∈ (G/H)imβ

so im β ⊆ H. Now [g, t] ∈ T (β, β′) sends eH ∈ (G/H)imβ to gH ∈
(G/H)imβ′ . Thus the map is a surjection.

We note some more properties of T (−).

Proposition 4.15. Let GroupfinZhp/
be the full subcategory of the category

of topological groups and continuous maps under Zhp consisting of the finite
groups. The map

T : α 7→ T (α)

extends to a functor
T : GroupfinZhp/

−→ Group.

Proof. This follows in a straight-forward way from the fact that

C : GroupfinZhp/
−→ Group,

which sends α 7→ C(imα), is a functor.
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Proposition 4.16. Let α : Zhp −→ G, β : Zhp −→ H and α×β : Zhp −→ G×H
be the product, then

T (α× β) ∼= T (α)×Qp/Zhp T (β).

Proof. First note that the pullback does make sense because T (α) and T (β)
both come with canonical maps to Qp/Zhp that send

[g, t] 7→ t.

The isomorphism is given by

[(g, h), t] 7→ ([g, t], [h, t]).

Finally we give the construction of the topological part of the twisted
character map from height n to height t. Fix a finite group G. We produce
it as the realization of a map of topological groupoids.

Let k be such that every map Zn−tp −→ G factors through Λk = (Z/pk)n−t.
Let γk : Zn−tp −→ Λk be the canonical quotient.

We begin by extending the morphism space of TwistGn−t(X).

Proposition 4.17. The morphism space of TwistGn−t(X) can be extended to∐
[α]∈hom(Zn−tp ,G)/∼

T (γk × α)×X imα.

Proof. Let l ∈ Λk. We define the action to be

[l, g, t]x = α(l)gx = gx ∈ X imα.

By Prop 4.16 we have that∐
[α]∈hom(Zn−tp ,G)/∼

T (γk × α)×X imα ∼=
∐

[α]∈hom(Zn−tp ,G)/∼

T (γk)×Qp/Zn−tp
T (α)×X imα

∼= T (γk)×Qp/Zn−tp

∐
[α]∈hom(Zn−tp ,G)/∼

T (α)×X imα.
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It is easiest to think about this final term as being the morphisms of a
topological groupoid over the object space

∗ ×∗
∐

[α]∈hom(Zn−tp ,G)/∼

X imα

by collapsing T (γk) and Qp/Zn−tp to a point. This implies that the classifying
space of the topological groupoid∐

[α]∈hom(Zn−tp ,G)/∼
T (γk × α)×X imα

d

��

c

��∐
[α]∈hom(Zn−tp ,G)/∼

X imα

is
BT (γk)×BQp/Zn−tp

∐
[α]∈hom(Zn−tp ,G)/∼

ET (α)×T (α) X
imα

or
BT (γk)×BQp/Zn−tp

TwistGn−t(X).

The pullback is in fact a homotopy pullback because T (γk) −→ Qp/Zn−tp is
surjective and so gives rise to a fibration when B(−) is applied.

The topological part of the character map

BT (γk)×BQp/Zn−tp
TwistGn−t(X) −→ EG×G X

is constructed by realizing a map of topological groupoids∐
[α]∈hom(Zn−tp ,G)/∼

T (γk × α)×X imα

d

��

c

��

fmor // G×X

d

��

c

��∐
[α]∈hom(Zn−tp ,G)/∼

X imα fob // X.

We will define the map on objects fob and the map on morphisms fmor. The
map fob is defined as the coproduct of the inclusions

X imα ↪→ X.
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The map fmor is a bit more complicated. For

([l, g, t], x) ∈ T (γk × α)×X imα,

we define
fmor : ([l, g, t], x) 7→ (gα(l)−1, x).

Note that the order switches and α(l) is inverted. We show this is well-
defined. For i ∈ Zn−tp ,

(gα(l)−1, x) = fmor([l, g, t+ i], x) = fmor([l + γk(i), gα(i), t], x)

= ([gα(i)α(γk(i))
−1α(l)−1], x) = ([gα(l)−1], x),

using the fact that α(γk(i)) = α(i). It is clear that the square made up of fob,
fmor, and the domains (projections) commutes. We show that the diagram
involving the codomain maps commutes:

([l, g, t], x) //

��

(gα(l)−1, x)

��
α(l)gx = gx // gα(l)−1x = gx.

As an example of the above construction we compute the topological map
from X = ∗ and G = Z/pk.

Example 4.18. We compute

BT (γk)×BQp/Zn−tp
Twist

Z/pk
n−t (∗) −→ BZ/pk.

Because Z/pk is abelian each map α : Zn−tp −→ Z/pk is its own conjugacy
class. Thus on objects we get ∐

α∈hom(Zn−tp ,Z/pk)

∗ −→ ∗.

Fix an α as above. On morphisms in the path component corresponding to
α we have the subtraction group homomorphism

sα : T (γk × α) = (Λk ⊕ Z/pk)⊕Zn−tp
Qn−t
p −→ Z/pk,

which sends
sα : (l, g, t) 7→ g − α(l).
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When α is the zero map this is just the projection on to Z/pk. Put all
together on morphisms we get the disjoint union over the maps α of the
subtractions maps ∐

α∈hom(Zn−tp ,Z/pk)

sα.

The realization of this map is thus∐
α∈hom(Zn−tp ,Z/pk)

Bsα :
∐

α∈hom(Zn−tp ,Z/pk)

BT (γk × α) −→ BZ/pk,

or written another way a map

BT (γk)×BQp/Zn−tp

∐
α∈hom(Zn−tp ,Z/pk)

BT (α) −→ BZ/pk.

4.19 The Algebraic Map

The algebraic part of the twisted character map uses the properties of the
ring Bt constructed and described in Section 3.1 to construct an appropriate
codomain for the twisted character map.

The discussion regarding gradings in [8] carries over to this situation.
Applying En to the topological map constructed in the last section we

get
E0
n(EG×G X) −→ E0

n(BT (γk)×BQp/Zn−tp
TwistGn−t(X)).

We begin with an algebraic manipulation of the codomain of the topological
part of the character map.

Proposition 4.20. There is an isomorphism

E0
n(BT (γk)×BQp/Zn−tp

TwistGn−t(X)) ∼= E0
n(BT (γk))⊗E0

n(BQp/Zn−tp )E
0
n(TwistGn−t(X)).

Proof. Let us assume that n > 0 and let T = (S1)×n−t. The result follows
from the fact that the functors on T-spaces (with no finiteness hypotheses)

E0
n(BT (γk)×BT ET×T Y )

and
E0
n(BT (γk))⊗E0

n(BT) E
0
n(ET×T Y )

29



are both cohomology theories. This includes the spaces in the proposition
by Remark 4.9. The first functor is a cohomology theory in Y because
it is the pullback along a fibration and this pullback commutes with all
homotopy colimits by [6]. The second is a cohomology theory in Y because
it is extension by a finitely generated free module. There is a natural map
from the tensor product to the other functor. It suffices to check that these
cohomology theories agree on T/A for any closed subgroup A ⊆ T. Now as
T/A ∼= S1/A1 × . . . × S1/An−t it suffices to check these one at a time and
here the isomorphism is clear.

Example 4.21. Let sα be as in Example 4.18 in the previous section. We
compute E0

n(Bsα). We begin by computing E0
n(BT (α)). For a complete

E0
n-algebra R we have the correspondence

homcont E0
n
(E0

n(BQp/Zn−tp ), R) ∼= homab(Zn−tp ,GEn(R)),

where Zn−tp
∼= (Qp/Zn−tp )∗. This carries over to T (α).

homcont E0
n
(E0

n(BT (α)), R) ∼= homab(T (α)∗,GEn(R)).

A presentation for T (α)∗ as a Zp-module was given in Example 4.6 and this
gives a description of E0

n(BT (α)) as an E0
n(BQp/Zn−tp )-algebra. Using the

coordinate and the presentation we have

E0
n(BT (α)) ∼= E0

n[[q1, . . . , qn−t, x]]/([pk](x)−([i1](q1)+GEn . . .+GEn [in−t](qn−t))).

Recall that
E0
n(BT (γk)) ∼= E0

n[[q̄, Ā]]/([pk]Ā− q̄).
The map sα factors through T (α× α):

T (γk × α)
sα //

��

Z/pk

T (α× α)

s
99

.

Now dualizing s gives the map (in the notation of Example 4.6)

(Z/pk)∗ −→ T (α× α)∗ = {b1, . . . , bn−t, x, y|pkx = pky = i1b1 + . . . in−tbn−t},

defined by
1 7→ y − x.
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We get the following explicit description of E0
n(Bsα)

E0
n(Bsα) : x 7→ (x−GEn ([i1]A1 +GEn . . .+GEn [in−t]An−t)).

The algebraic part of the twisted character map will be assembled from
two maps: the canonical map of spectra

L : En −→ LK(t)En

and the canonical flat map of rings

it : E∗n(BT (γk)) −→ B∗t .

The algebraic part of the twisted character map is

E∗n(BT (γk))⊗E∗n(BQp/Zn−tp ) E
∗
n(TwistGn−t(X))

−→ B∗t⊗LK(t)E
∗
n(BQp/Zn−tp )LK(t)E

∗
n(TwistGn−t(X)).

It is the tensor product of the maps it and L(TwistGn−t(X)) over L(BQp/Zn−tp ).
This map composed with the topological map of the previous section gives

the twisted character map

ΥG : E∗n(EG×G X) −→ B∗t ⊗LK(t)E
∗
n(BQp/Zn−tp ) LK(t)E

∗
n(TwistGn−t(X)).

When we want to specify a space X in the twisted character map we will
write ΥG(X) for the map above. We will use a shorthand for the codomain
of the twisted character map. Let

B∗t (TwistGn−t(X)) = B∗t ⊗LK(t)E
∗
n(BQp/Zn−tp ) LK(t)E

∗
n(TwistGn−t(X)).

Proposition 4.22. The map ΥG is independent of the choice of k.

Proof. This follows from the proof of Proposition 3.13 in [8].

Theorem 4.23. The map on global sections of the pk-torsion of p-divisible
groups

G0 ⊕Zn−tp
Qn−t
p [pk] //

��

GEn [pk]

��
SpfIt+(q̄)(Bt) // Spec(E0

n)

is recovered by ΥZ/pk(∗).
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Proof. We will use the results of Section 3.1 and the examples of the previous
sections. By Example 4.18 the topological part of the map gives∏
α∈hom(Zn−tp ,Z/pk)

E0
n(Bsα) : E0

n(BZ/pk) −→
∏

α∈hom(Zn−tp ,Z/pk)

E0
n(BT (γk × α)).

By Example 4.21 this map sends

x 7→
∏
i∈Λk

(x−GEn [i](Ā)).

Now composing with the map toBt on the left and the map to LK(t)E
0
n(BT (α))

on the right sends Ā ∈ E0
n(BT (γk)) to Ā ∈ Bt and x and q̄ ∈ E0

n(BT (α))
to x and q̄ ∈ LK(t)E

0
n(BT (α)). All together this gives the map described in

Section 3.1: the global sections of the pk-torsion of the map of p-divisible
groups above.

4.24 The Isomorphism

In this section we prove by reduction to the case of G finite abelian and
X = ∗ that for any finite G and finite G-space X there is an isomorphism

Bt⊗E0
n
ΥG : Bt⊗E0

n
E∗n(EG×GX)

∼=−→ B∗t⊗LK(t)E
∗
n(BQp/Zn−tp )LK(t)E

∗
n(TwistGn−t(X)).

The proof here follows the same lines as that in [8]. Because of this we
will only point out how to prove the essential properties of the Twistn−t(−)
functor that allow for the reduction to cyclic p-groups where it differs from
the proof in [8].

Proposition 4.25. The functor Twistn−t(−) commutes with pushouts of
finite G-CW complexes.

Proof. This is similar to the proof in [8]. The main difference is that the
Borel construction in the definition of Twistn−t(−) has an infinite group.
The main point of the proof is that everything in sight is a colimit and the
groups of the form T (α) for α : Zn−tp −→ G are no exception. Let T (α)i be
the pushout in the sense of Proposition 4.2

Zn−tp

×pi //

α

��

Zn−tp

��
C(imα) // T (α)i.
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The group T (α)i is finite and

T (α) ∼= colim
i

T (α)i.

Proposition 4.26. The functor Twistn−t(−) commutes with geometric re-
alization of simplicial finite G-CW complexes.

Proof. This follows from [8]. There are no difficulties in extending the result
there for the functor Fixn−t(−) to Twistn−t(−).

Now we follow [8]. Using the Bousfield-Kan spectral sequence the two
facts above allow us to reduce the isomorphism for transchromatic gener-
alized character maps to the case of finite G-CW complexes with abelian
stabilizers. Now Mayer-Vietoris reduces this to the case of BA for A a finite
abelian group. It may not be entirely clear that the cohomology theory in the
codomain of the twisted character map above has the Kunneth isomorphism
that we need to reduce to cyclic p-groups. We prove that now.

Proposition 4.27. Let G×H be a finite abelian group. Then

B∗t (TwistG×Hn−t (∗)) ∼=
B∗t (TwistGn−t(∗))⊗B∗t (Twisten−t(∗)) B

∗
t (TwistHn−t(∗)).

Proof. This follows from the chain of homotopy equivalences

TwistG×Hn−t (∗) '
∐

α∈hom(Zn−tp ,G×H)

BT (α)

'
∐

α∈hom(Zn−tp ,G×H)

B(T (αG)×Qp/Zn−tp
T (αH))

'
∐

αG∈hom(Zn−tp ,G)

BT (αG)×BQp/Zn−tp

∐
αH∈hom(Zn−tp ,H)

BT (αH)

' TwistGn−t(∗)×Twisten−t(∗) TwistHn−t(∗).

The result now follows from the fact that the map

TwistGn−t(∗) −→ Twisten−t(∗)

is a fibration and the cohomology of the domain is a finitely generated free
module over the cohomology of the codomain just as in the proof of Propo-
sition 4.20.
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The above propositions together with the work in [8] establish the main
theorem.

Theorem 4.28. The transchromatic twisted character map ΥG induces an
isomorphism when tensored up to Bt

Bt ⊗E0
n

ΥG : Bt ⊗E0
n
E∗n(EG×G X)

∼=−→ B∗t (TwistGn−t(X)).

4.29 Relation to [8]

There is a canonical topologically-induced quotient map Bt −→ Ĉt and a
canonical natural transformation

EG×G Fixn−t(−) −→ Twistn−t(−).

This can be used to recover the character map of [8].
The quotient map was described in Section 3.4. Recall that

EG×G Fixn−t(X) '
∐

[α]∈hom(Zn−tp ,G)/∼

EC(imα)×C(imα) X
imα.

The natural transformation is induced by the inclusion

C(imα) ↪→ T (α).

We can map EG×GFixn−t(X) to Twistn−t(X) on components via the inclu-
sion above. Putting the map of rings and the map of spaces together we get
the map of equivariant cohomology theories

Bt ⊗LK(t)E
0
n(BQp/Zn−tp ) LK(t)E

∗
n( Twistn−t(X))

−→Ĉt ⊗LK(t)E
0
n
LK(t)E

∗
n(EG×G Fixn−t(X)).

Note that G0 ⊕Qp/Zn−tp is the pullback:

G0 ⊕Qp/Zn−tp
//

��

G0 ⊕Zn−tp
Qn−t
p

��
SpfIt(Ĉt)

// SpfIt+(q̄)(Bt).

This implies that the composite

E∗n(EG×G X) −→ B∗t (Twistn−t(X)) −→ Ĉt
∗
(EG×G Fixn−t(X))

recovers a completed version of the character map ΦG of [8].
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