Homotopy Theories of Algebras over Operads

V. A. Smirnov

Received August 12, 2003; in final form, July 6, 2004

Abstract—Homotopy theories of algebras over operads, including operads over "little *n*-cubes," are defined. Spectral sequences are constructed and the corresponding homotopy groups are calculated.

KEY WORDS: homotopy theory, algebra over an operad, little n-cubes operad, category of chain complexes, monad, natural transformation of functors, homotopy group of spheres.

There are two classical homotopy theories:

- (1) the homotopy theory of topological spaces, in which the calculation of the homotopy groups of spheres is one of the most difficult problems of algebraic topology;
- (2) rational homotopy theory, in which the calculation of the homotopy groups of spheres is a fairly simple problem.

In [1], it was shown that rational homotopy theory is equivalent to the homotopy theory of commutative DGA-algebras. In [2, 3], it was proved that the singular chain complex $C_*(X)$ (cochain complex $C^*(X)$) of a topological space X has the natural structure of an E_{∞} -coalgebra (E_{∞} -algebra), and the homotopy theory of topological spaces is equivalent to the homotopy theory of E_{∞} -coalgebras (E_{∞} -algebras).

A natural problem is to find intermediate homotopy theories between the homotopy theories of DGA-algebras and E_{∞} -algebras and calculate the homotopy groups of spheres in these theories.

In this paper, we define homotopy theories of algebras over operads, in particular, the little *n*-cubes operads E_n over little *n*-cubes, where $1 \le n \le \infty$ (see [4]). We construct spectral sequences and calculate the corresponding homotopy groups.

Recall that a family $\mathcal{E} = {\mathcal{E}(j)}_{j\geq 1}$ of chain complexes $\mathcal{E}(j)$ on which the permutation groups Σ_j act is called an *operad* if it is endowed with operations

$$\gamma \colon \mathcal{E}(k) \otimes \mathcal{E}(j_1) \otimes \cdots \otimes \mathcal{E}(j_k) \to \mathcal{E}(j_1 + \cdots + j_k)$$

compatible with the permutation group actions and satisfying certain associativity relations [2].

A chain complex X with operations

$$\mu(j)\colon \mathcal{E}(j)\otimes X^{\otimes j}\to X \qquad \left(\tau(j)\colon X\to \operatorname{Hom}(\mathcal{E}(j)\,;\,X^{\otimes j})\right)$$

compatible with the permutation group actions and satisfying certain associativity relations [2] is called an *algebra* (respectively, a *coalgebra*) over an operad \mathcal{E} , or simply an \mathcal{E} -algebra (an \mathcal{E} -coalgebra).

Let us denote the sum

$$\sum_{j} \mathcal{E}(j) \otimes_{\Sigma_{j}} X^{\otimes j}$$

V. A. SMIRNOV

by $\underline{\mathcal{E}}(X)$. The correspondence $X \mapsto \underline{\mathcal{E}}(X)$ determines a functor on the category of chain complexes. The operad structure on \mathcal{E} determines the natural transformation of functors $\gamma : \underline{\mathcal{E}} \circ \underline{\mathcal{E}} \to \underline{\mathcal{E}}$, which defines a monad structure on $\underline{\mathcal{E}}$ [3]. Moreover, a chain complex X is an algebra over the operad \mathcal{E} if and only if it is an algebra over the monad $\underline{\mathcal{E}}$.

Dually, for

$$\overline{\mathcal{E}}(X) = \prod_{j} \operatorname{Hom}_{\Sigma_{j}}(\mathcal{E}(j); X^{\otimes j}),$$

the correspondence $X \mapsto \overline{\mathcal{E}}(X)$ determines a comonad on the category of chain complexes. A chain complex X is a coalgebra over the operad \mathcal{E} if and only if it is a coalgebra over the comonad $\overline{\mathcal{E}}$.

Operads and algebras over operads can also be defined in the category of topological spaces. In this case, in the definition of the operations γ , the tensor product \otimes must be replaced by the usual Cartesian product \times of topological spaces [3].

Below, we give examples of operads and algebras (coalgebras) over operads.

Example 1. Let $E_0(j)$ be the free module with one zero-dimensional generator e(j) and trivial action of the permutation groups Σ_j (i.e., $E_0(j) \cong R$). Then $E_0 = \{E_0(j)\}$ is an operad. The operation $\gamma: E_0 \times E_0 \to E_0$ is defined by

$$\gamma(e(k) \otimes e(j_1) \otimes \cdots \otimes e(j_k)) = e(j_1 + \cdots + j_k).$$

It is easy to verify that it is associative and compatible with the actions of the permutation groups. The algebras (coalgebras) over E_0 are simply commutative and associative algebras (coalgebras).

Example 2. Let A(j) be the free Σ_j -module with one zero-dimensional generator a(j) (i.e., $A(j) \cong R(\Sigma_j)$). Then $A = \{A(j)\}$ is an operad; the operation $\gamma: A \times A \to A$ is defined by

$$\gamma(a(k) \otimes a(j_1) \otimes \cdots \otimes a(j_k)) = a(j_1 + \cdots + j_k).$$

It is easy to verify that the required relations do hold.

The algebras (coalgebras) over the operad A are simply associative algebras (coalgebras).

Example 3. An arbitrary chain complex X determines the operads

$$\mathcal{E}_X(j) = \operatorname{Hom}(X^{\otimes j}; X), \qquad \mathcal{E}^X(j) = \operatorname{Hom}(X; X^{\otimes j}).$$

The actions of the permutation groups are permutations of factors in $X^{\otimes j}$, and the operad structure is defined by

$$\gamma_X(f \otimes g_1 \otimes \cdots \otimes g_k) = f \circ (g_1 \otimes \cdots \otimes g_k), \qquad f \in \mathcal{E}_X(k), \quad g_i \in \mathcal{E}_X(j_i);$$

$$\gamma^X(f \otimes g_1 \otimes \cdots \otimes g_k) = (g_1 \otimes \cdots \otimes g_k) \circ f, \qquad f \in \mathcal{E}^X(k), \quad g_i \in \mathcal{E}^X(j_i).$$

A chain complex X is an algebra (coalgebra) over the operad \mathcal{E} if and only if there is a map of operads $\xi \colon \mathcal{E} \to \mathcal{E}_X$ (respectively, $\xi \colon \mathcal{E} \to \mathcal{E}^X$).

Example 4. For $n \ge 0$, let Δ^n denote the normalized chain complex of the standard *n*-simplex. Then $\Delta^* = \{\Delta^n\}$ is a cosimplicial object in the category of chain complexes.

Let $E^{\Delta}(j)$ denote the realization of the cosimplicial object $(\Delta^*)^{\otimes j} = \Delta^* \otimes \cdots \otimes \Delta^*$, i.e.,

$$E^{\Delta}(j) = \operatorname{Hom}(\Delta^*; \, (\Delta^*)^{\otimes j}),$$

where Hom is considered in the category cosimplicial objects.

The family $E^{\Delta} = \{E^{\Delta}(j)\}$ is an operad; the actions of permutation groups and the operad structure are similar to those for the operads \mathcal{E}^X defined above (in the definition, Δ^* instead of X is taken).

Note that, since the chain complexes Δ^n are acyclic, the operad E^{Δ} is acyclic also.

In [3], it was shown that the singular chain complex $C_*(X)$ of a topological space X admits the natural structure of an E^{Δ} -coalgebra. Dually, the cochain complex $C^*(X)$ admits the natural structure of an E^{Δ} -algebra. **Example 5.** The main examples of operads in the category of topological spaces are the little *n*-cubes operads \mathcal{E}_n , which were introduced by Boardman and Vogt [5] and studied by May [4]. In particular, May showed that any *n*-fold loop space $\Omega^n X$ is an algebra over the operad \mathcal{E}_n .

The inclusions $\mathcal{E}_n \to \mathcal{E}_{n+1}$ hold; we denote the direct limit determined by these inclusions by \mathcal{E}_{∞} . The operad \mathcal{E}_{∞} is an acyclic operad with free actions of permutation groups.

Any acyclic operad with free actions of permutation groups is called an E_{∞} -operad, and any algebra (coalgebra) over an E_{∞} -operad is called an E_{∞} -algebra (an E_{∞} -coalgebra).

Example 6. It is easy to see that if $\mathcal{E} = \{\mathcal{E}(j)\}$ is an operad in the category of topological spaces, then the family of chain complexes $C_*(\mathcal{E}) = \{C_*(\mathcal{E}(j))\}$ is an operad in the category of chain complexes. If \mathcal{E} is an E_{∞} -operad, then $C_*(\mathcal{E})$ is an E_{∞} -operad.

Let us show that any singular chain complex $C_*(X)$ (singular cochain complex $C^*(X)$) is an E_{∞} -coalgebra (respectively, an E_{∞} -algebra).

Let E be an E_{∞} -operad. Consider the operad $E^{\Delta} \otimes E$. It is an E_{∞} -operad. Consider the projection of operads $p: E^{\Delta} \otimes E \to E^{\Delta}$. The composition

$$E^{\Delta} \otimes E \xrightarrow{p} E^{\Delta} \xrightarrow{\xi} \mathcal{E}^{C_*(X)} \qquad \left(E^{\Delta} \otimes E \xrightarrow{p} E^{\Delta} \xrightarrow{\xi} \mathcal{E}_{C^*(X)}\right)$$

determines the structure of an $E^{\Delta} \otimes E$ -coalgebra (respectively, of an $E^{\Delta} \otimes E$ -algebra) on $C_*(X)$ (on $C^*(X)$).

We denote the operad $E^{\Delta} \otimes C_*(\mathcal{E}_n)$ simply by E_n and call it the little *n*-cubes operad. The complex $C_*(X)$ can be regarded as an E_n -coalgebra, and $C^*(X)$ can be regarded as an E_n -algebra.

We need the following general property of algebras (coalgebras) over operads.

Theorem 1. If $X_* = \{X_n\}$ is a simplicial object in the category of algebras over an operad \mathcal{E} , then its realization $|X_*|$ is an \mathcal{E} -algebra also. Dually, if $X^* = \{X^n\}$ is a cosimplicial object in the category of coalgebras over an operad \mathcal{E} , then its realization $|X^*|$ is an \mathcal{E} -coalgebra also.

Proof. Suppose that $X_* = \{X_n\}$ be a simplicial object in the category of \mathcal{E} -algebras, and let $\mu_n : \mathcal{E}(X_n) \to X_n$ be an \mathcal{E} -algebra structure on X_n . The Eilenberg–Zilber maps

$$\psi \colon |X_*| \otimes \cdots \otimes |X_*| \to |X_* \otimes \cdots \otimes X_*|$$

commute with the actions of permutation groups and, therefore, induce maps

$$\psi \colon \mathcal{E}(j) \otimes_{\Sigma_j} |X_*|^{\otimes j} \to |\mathcal{E}(j) \otimes_{\Sigma_j} X_*^{\otimes j}|.$$

These maps determine a map $\psi : \mathcal{E}(|X_*|) \to |\mathcal{E}(X_*)|$, and the required map $\mathcal{E}(|X_*|) \to |X_*|$ is defined as the composition

$$\mathcal{E}(|X_*|) \xrightarrow{\psi} |\mathcal{E}(X_*)| \xrightarrow{\mu_*} |X_*|.$$

Corollary. The realization $B(\mathcal{E}, \mathcal{E}, X)$ of a simplicial resolution

$$B_*(\mathcal{E}, \mathcal{E}, X) \colon \mathcal{E}(X) \leftarrow \mathcal{E}^2(X) \leftarrow \cdots \leftarrow \mathcal{E}^n(X) \leftarrow \cdots$$

over an \mathcal{E} -algebra X is an \mathcal{E} -algebra. Moreover, the augmentation $\eta: B(\mathcal{E}, \mathcal{E}, X) \to X$ is a chain equivalence. Dually, the realization $F(\mathcal{E}, \mathcal{E}, X)$ of a cosimplicial resolution

$$F^*(\mathcal{E}, \mathcal{E}, X) \colon \overline{\mathcal{E}}(X) \to \overline{\mathcal{E}}^2(X) \to \cdots \to \overline{\mathcal{E}}^n(X) \to \cdots$$

over an \mathcal{E} -coalgebra X is an \mathcal{E} -coalgebra. Moreover, the augmentation $\xi \colon X \to F(\mathcal{E}, \mathcal{E}, X)$ is a chain equivalence.

We proceed to construct the corresponding homotopy theories. Suppose that \mathcal{E} is an operad and $\mathcal{E} \to \mathcal{E}^{\Delta}$ is a map of operads. This means that the chain complexes Δ^n have \mathcal{E} -coalgebra

MATHEMATICAL NOTES Vol. 78 No. 2 2005

V. A. SMIRNOV

structures compatible with the coface and codegeneracy operators. This requirement is quite natural for homotopy theories. In particular, it allows us to define homotopy groups in these theories.

Let $\mathcal{A}_{\mathcal{E}}$ denote the category whose objects are \mathcal{E} -algebras and morphisms are maps of \mathcal{E} -algebras.

The category $\mathcal{A}_{\mathcal{E}}$ is a closed model category [6] in which the fibrations are surjective maps $p: X \to Y$, the weak equivalences are maps inducing isomorphisms in homology, and the cofibrations are maps $i: A \to B$ having the left lifting property with respect to the trivial fibrations. This means that, for any commutative diagram

there exists a diagonal map $f: B \to X$ preserving commutativity.

Dually, let $\mathcal{K}_{\mathcal{E}}$ denote the category whose objects are \mathcal{E} -coalgebras and morphisms are maps of \mathcal{E} -coalgebras.

The category $\mathcal{K}_{\mathcal{E}}$ is a closed model category in which cofibrations are injective maps $i: A \to B$, weak equivalences are maps inducing isomorphisms in homology, and fibrations are maps $p: X \to Y$ having the right lifting property with respect to the trivial cofibrations. This means that, for any commutative diagram of the above form, there exists a diagonal map $f: B \to X$ preserving commutativity.

Theorem 2. For any trivial fibration $p: X \to Y$ in the category $\mathcal{A}_{\mathcal{E}}$, there exists a map of \mathcal{E} -algebras $\tilde{q}: B(\mathcal{E}, \mathcal{E}, Y) \to X$ such that

$$p \circ \tilde{q} = \eta \colon B(\mathcal{E}, \mathcal{E}, Y) \to Y.$$

Proof. Let $p: X \to Y$ be a trivial fibration. This means that p is surjective and induces an isomorphism in homology. Hence there exists a chain map $q: Y \to X$ and a chain homotopy $h: X \to X$ such that

$$p \circ q = \mathrm{Id},$$
 $d(h) = q \circ p - \mathrm{Id},$ $p \circ h = 0,$ $h \circ q = 0,$ $h \circ h = 0.$

Let us construct the required map of \mathcal{E} -algebras $\tilde{q}: B(\mathcal{E}, \mathcal{E}, Y) \to X$.

It is easy to see that to define such a map is the same thing as to define a family of maps of \mathcal{E} -algebras $q^n \colon \mathcal{E}^{n+1}(Y) \to \operatorname{Hom}(\Delta^n; X)$ for which the diagrams

$$\begin{array}{cccc}
\mathcal{E}^{n}(Y) & \xrightarrow{q^{n-1}} & \operatorname{Hom}(\Delta^{n-1}; X) \\
\stackrel{s_{i}}{\downarrow} \uparrow d_{i} & \stackrel{s_{i}}{\downarrow} \uparrow d_{i} \\
\mathcal{E}^{n+1}(Y) & \xrightarrow{q^{n}} & \operatorname{Hom}(\Delta^{n}; X)
\end{array}$$

are commutative.

Defining a map of \mathcal{E} -algebras $q^n : \mathcal{E}^{n+1}(Y) \to \operatorname{Hom}(\Delta^n; X)$ is equivalent to defining a chain map $\bar{q}^n : \mathcal{E}^n(Y) \to \operatorname{Hom}(\Delta^n; X)$; thus, defining a map of \mathcal{E} -algebras $\tilde{q} : B(\mathcal{E}, \mathcal{E}, Y) \to X$ is equivalent to defining a family of chain maps $\bar{q}^n : \mathcal{E}^n(A) \to \operatorname{Hom}(\Delta^n; X)$ for which the corresponding maps f^n of \mathcal{E} -algebras give the commutative diagrams specified above.

We set $\bar{q}^0 = q: Y \to X$ and $\bar{q}^n = h \circ \mu \circ \mathcal{E}(h) \circ \mathcal{E}(\mu) \circ \cdots \circ \mathcal{E}^{n-1}(\mu) \circ \mathcal{E}^n(q)$. A direct calculation shows that these maps satisfy the required relations. \Box

Corollary. If A is an \mathcal{E} -algebra, then the \mathcal{E} -algebra $B(\mathcal{E}, \mathcal{E}, A)$ is a cofibered object in the category $\mathcal{A}_{\mathcal{E}}$.

Indeed, suppose that $p: X \to Y$ is a trivial fibration and $f: B(\mathcal{E}, \mathcal{E}, A) \to Y$ is a map of \mathcal{E} -algebras. Let us construct a map of \mathcal{E} -algebras $\tilde{f}: B(\mathcal{E}, \mathcal{E}, A) \to X$ for which $p \circ \tilde{f} = f$.

Theorem 2 gives a map of \mathcal{E} -algebras $\tilde{q} \colon B(\mathcal{E}, \mathcal{E}, Y) \to X$. Since $\eta \colon B(\mathcal{E}, \mathcal{E}, A) \to A$ is a trivial fibration, there exists a map of \mathcal{E} -algebras $\psi \colon B(\mathcal{E}, \mathcal{E}, A) \to B(\mathcal{E}, \mathcal{E}, B(\mathcal{E}, \mathcal{E}, A))$. We define \tilde{q} as the composition

$$B(\mathcal{E}, \mathcal{E}, A) \xrightarrow{\psi} B(\mathcal{E}, \mathcal{E}, B(\mathcal{E}, \mathcal{E}, A)) \xrightarrow{B(\mathcal{E}, \mathcal{E}, f)} B(\mathcal{E}, \mathcal{E}, Y) \xrightarrow{\tilde{q}} X.$$

The dual assertion is the following theorem.

Theorem 2'. For any trivial cofibration $i: A \to B$ in the category $\mathcal{K}_{\mathcal{E}}$, there exists a map of \mathcal{E} -coalgebras $\tilde{j}: B \to F(\mathcal{E}, \mathcal{E}, A)$ for which

$$\tilde{j} \circ i = \xi \colon A \to F(\mathcal{E}, \mathcal{E}, A).$$

Corollary. If X is an \mathcal{E} -coalgebra, then the \mathcal{E} -coalgebra $F(\mathcal{E}, \mathcal{E}, X)$ is a fibered object in the category $\mathcal{K}_{\mathcal{E}}$.

Consider the category $\widetilde{\mathcal{K}}_{\mathcal{E}}$ whose objects are \mathcal{E} -coalgebras and morphisms $f: X \to Y$ are maps of \mathcal{E} -coalgebras $\widetilde{f}: X \to F(\mathcal{E}, \mathcal{E}, Y)$.

We say that two morphisms $f_0, f_1: X \to Y$ in the category $\widetilde{\mathcal{K}}_{\mathcal{E}}$ are *homotopic* and write $f \simeq g$ if there exists a morphism $h: \Delta^1 \otimes X \to Y$, which is called a *homotopy*, such that

$$h|_{0\otimes X} = f_0, \qquad h|_{1\otimes X} = f_1$$

Let $Ho\mathcal{K}_{\mathcal{E}}$ be the localization of the category $\mathcal{K}_{\mathcal{E}}$ with respect to the weak equivalences (i.e., morphisms inducing isomorphisms in homology).

By $\pi \mathcal{K}_{\mathcal{E}}$ we denote the category whose objects are \mathcal{E} -coalgebras and morphisms are the homotopy classes of morphisms of the category $\widetilde{\mathcal{K}}_{\mathcal{E}}$. The general theory of homotopy in categories [6] gives the following result.

Theorem 3. The following equivalence of categories hold:

$$Ho\mathcal{K}_{\mathcal{E}} \cong \pi\mathcal{K}_{\mathcal{E}}$$

The dual assertion for \mathcal{E} -algebras is the following theorem.

Theorem 3'. The following equivalence of categories hold:

$$Ho\mathcal{A}_{\mathcal{E}} \cong \pi\mathcal{A}_{\mathcal{E}}$$

Now, consider the problem of calculating homotopy groups of \mathcal{E} -coalgebras. Since the chain complexes Δ^n of the standard *n*-simplices are \mathcal{E} -coalgebras, it follows that the chain complexes S^n of the *n*-spheres are \mathcal{E} -coalgebras as well.

We define the homotopy groups $\pi_n^{\mathcal{E}}(X)$ of a \mathcal{E} -coalgebra X by $\pi_n^{\mathcal{E}}(X) = [S^n; F(\mathcal{E}, \mathcal{E}, X)]$, i.e., as the sets of homotopy classes of maps $f: S^n \to F(\mathcal{E}, \mathcal{E}, X)$ of \mathcal{E} -coalgebras.

Theorem 4. For any \mathcal{E} -coalgebra X, there is a spectral sequence of homotopy groups $\pi_*^{\mathcal{E}}(X)$ in which the term E^1 is isomorphic to the cobar construction $F(\mathcal{E}_*, X_*)$, where \mathcal{E}_* and X_* denote the homology of \mathcal{E} and X, respectively.

Proof. Consider the filtration

$$F(\mathcal{E},\mathcal{E},X) \supset F^1(\mathcal{E},\mathcal{E},X) \supset \cdots \supset F^m(\mathcal{E},\mathcal{E},X) \supset \cdots,$$

where $F^m(\mathcal{E}, \mathcal{E}, X) : \overline{\mathcal{E}}^m(X) \to \overline{\mathcal{E}}^{m+1}(X) \to \cdots$.

It induces a spectral sequence. The exact sequences

$$0 \to F^{m+1}(\mathcal{E}, \mathcal{E}, X) \to F^m(\mathcal{E}, \mathcal{E}, X) \to \overline{\mathcal{E}}^{m+1}(X) \to 0$$

induce the isomorphisms

$$E_{n,m}^1 = [S^n, \overline{\mathcal{E}}^{m+1}(X)] \cong H_n(\overline{\mathcal{E}}^m(X))$$

and, therefore, the isomorphism $E^1 \cong F(\mathcal{E}_*, X_*)$. \Box

If S^n is the trivial \mathcal{E} -coalgebra, then the differentials of this spectral sequence are determined by the differentials in the cobar construction $F(\mathcal{E}, X)$; thus, we obtain the following result.

Theorem 5. If S^n is a trivial \mathcal{E} -coalgebra, then, for any \mathcal{E} -coalgebra X, the following isomorphism holds:

$$\pi_n^{\mathcal{E}}(X) \cong H_n(F(\mathcal{E}, X)).$$

Now, suppose that X is a topological space and E_n is the little *n*-cubes operad. Note that if $m \ge n$, then S^m has the trivial structure of an E_n -coalgebra, which implies the following theorem.

Theorem 6. If X is a topological space and $m \ge n$, then

$$\pi_m^{E_n}(X) \cong H_m(F(E_n, C_*(X))).$$

The term E^1 of this spectral sequence can be expressed via the homology of the operad E_n and, therefore, of the Dyer–Lashof algebra [7, 8].

Theorem 7. If X is a topological space, then the term E^1 of the spectral sequence of homotopy groups $\pi_*^{E_n}(X)$ is isomorphic to the module $S^n T_s R_{n-1} L_{n-1} S^{-n} H_*(X)$, where T_s is a free commutative algebra, R_{n-1} is the submodule of the Dyer–Lashof algebra generated by the admissible sequences of redundancy less than n, and L_{n-1} is the free Lie (n-1)-algebra.

If X is an n-connected topological space, then the cobar construction $F(E_n, C_*(X))$ is chain equivalent to the n-fold suspension over the chain complex of the iterated loop space $\Omega^n X$ [8]. Thus, the following theorem is valid.

Theorem 8. If X is an n-connected topological space, then

$$\pi_*^{E_n}(X) \cong S^n H_*(\Omega^n X).$$

This theorem generalizes the result of Quillen [1, 6] asserting that the rational homotopy groups of a simply connected topological space can be expressed in terms of the homology of its loop space. It determines the upper bound on those m for which the homotopy groups (over the operad E_m) of an *n*-connected space X are related directly to the homology of the *m*-fold loop space over X.

The method suggested above makes it possible to reduce the very difficult problem of calculating the homotopy groups of spheres over the operad E_{∞} to calculating the homotopy groups of spheres over the operads E_n .

In particular, it follows from the theorem proved in this paper that if $m \leq n$, then the homotopy groups (over the operad E_m) of the sphere S^n are isomorphic to the *m*-fold suspension over the homology of the *m*-fold loop space over S^n . In this author's opinion, it would be interesting to calculate the homotopy groups of the sphere S^n over the operads E_n , E_{n+1} , etc.

ACKNOWLEDGMENTS

This research was supported by the Russian Foundation for Basic Research under grant no. 01-01-00482.

REFERENCES

- 1. D. Quillen, "Rational homotopy theory," Ann. of Math., 90 (1969), no. 2, 205–295.
- V. A. Smirnov, "On cochain complexes of topological spaces," Mat. Sb. [Math. USSR-Sb.], 115 (1981), 146–158.
- V. A. Smirnov, "The homotopy theory of coalgebras," Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 49 (1985), 1302–1321.
- 4. J. P. May, *The Geometry of Iterated Loop Spaces*, Lecture Notes in Math., vol. 271, Springer-Verlag, New York, 1972.
- 5. J. M. Boardman and R. M. Vogt, *Homotopy Invariant Algebraic Structures on Topological Spaces*, Lecture Notes in Math., vol. 347, Springer-Verlag, New York, 1973.
- 6. D. Quillen, Homotopical Algebra, Lecture Notes in Math., vol. 43, Springer-Verlag, New York, 1967.
- 7. E. Dyer and R. Lashof, "Homology of iterated loop spaces," Amer. J. Math., 84 (1962), 35-88.
- 8. V. A. Smirnov, "The homology of iterated loop spaces," Forum Mathematicum, 14 (2002), 345-381.

MOSCOW STATE PEDAGOGICAL UNIVERSITY *E-mail*: V.Smirnov@ru.net