# Homotopy Theories of Algebras over Operads 

V. A. Smirnov

Received August 12, 2003; in final form, July 6, 2004


#### Abstract

Homotopy theories of algebras over operads, including operads over "little $n$ cubes," are defined. Spectral sequences are constructed and the corresponding homotopy groups are calculated.


KEY WORDS: homotopy theory, algebra over an operad, little n-cubes operad, category of chain complexes, monad, natural transformation of functors, homotopy group of spheres.

There are two classical homotopy theories:
(1) the homotopy theory of topological spaces, in which the calculation of the homotopy groups of spheres is one of the most difficult problems of algebraic topology;
(2) rational homotopy theory, in which the calculation of the homotopy groups of spheres is a fairly simple problem.
In [1], it was shown that rational homotopy theory is equivalent to the homotopy theory of commutative $D G A$-algebras. In $[2,3]$, it was proved that the singular chain complex $C_{*}(X)$ (cochain complex $C^{*}(X)$ ) of a topological space $X$ has the natural structure of an $E_{\infty}$-coalgebra ( $E_{\infty}$-algebra), and the homotopy theory of topological spaces is equivalent to the homotopy theory of $E_{\infty}$-coalgebras ( $E_{\infty}$-algebras).

A natural problem is to find intermediate homotopy theories between the homotopy theories of $D G A$-algebras and $E_{\infty}$-algebras and calculate the homotopy groups of spheres in these theories.

In this paper, we define homotopy theories of algebras over operads, in particular, the little $n$ cubes operads $E_{n}$ over little $n$-cubes, where $1 \leq n \leq \infty$ (see [4]). We construct spectral sequences and calculate the corresponding homotopy groups.

Recall that a family $\mathcal{E}=\{\mathcal{E}(j)\}_{j \geq 1}$ of chain complexes $\mathcal{E}(j)$ on which the permutation groups $\Sigma_{j}$ act is called an operad if it is endowed with operations

$$
\gamma: \mathcal{E}(k) \otimes \mathcal{E}\left(j_{1}\right) \otimes \cdots \otimes \mathcal{E}\left(j_{k}\right) \rightarrow \mathcal{E}\left(j_{1}+\cdots+j_{k}\right)
$$

compatible with the permutation group actions and satisfying certain associativity relations [2].
A chain complex $X$ with operations

$$
\mu(j): \mathcal{E}(j) \otimes X^{\otimes j} \rightarrow X \quad\left(\tau(j): X \rightarrow \operatorname{Hom}\left(\mathcal{E}(j) ; X^{\otimes j}\right)\right)
$$

compatible with the permutation group actions and satisfying certain associativity relations [2] is called an algebra (respectively, a coalgebra) over an operad $\mathcal{E}$, or simply an $\mathcal{E}$-algebra (an $\mathcal{E}$ coalgebra).

Let us denote the sum

$$
\sum_{j} \mathcal{E}(j) \otimes_{\Sigma_{j}} X^{\otimes j}
$$

by $\underline{\mathcal{E}}(X)$. The correspondence $X \mapsto \underline{\mathcal{E}}(X)$ determines a functor on the category of chain complexes. The operad structure on $\mathcal{E}$ determines the natural transformation of functors $\gamma: \underline{\mathcal{E}} \circ \underline{\mathcal{E}} \rightarrow \underline{\mathcal{E}}$, which defines a monad structure on $\underline{\mathcal{E}}[3]$. Moreover, a chain complex $X$ is an algebra over the operad $\mathcal{E}$ if and only if it is an algebra over the monad $\underline{\mathcal{E}}$.

Dually, for

$$
\overline{\mathcal{E}}(X)=\prod_{j} \operatorname{Hom}_{\Sigma_{j}}\left(\mathcal{E}(j) ; X^{\otimes j}\right)
$$

the correspondence $X \mapsto \overline{\mathcal{E}}(X)$ determines a comonad on the category of chain complexes. A chain complex $X$ is a coalgebra over the operad $\mathcal{E}$ if and only if it is a coalgebra over the comonad $\overline{\mathcal{E}}$.

Operads and algebras over operads can also be defined in the category of topological spaces. In this case, in the definition of the operations $\gamma$, the tensor product $\otimes$ must be replaced by the usual Cartesian product $\times$ of topological spaces [3].

Below, we give examples of operads and algebras (coalgebras) over operads.
Example 1. Let $E_{0}(j)$ be the free module with one zero-dimensional generator $e(j)$ and trivial action of the permutation groups $\Sigma_{j}$ (i.e., $E_{0}(j) \cong R$ ). Then $E_{0}=\left\{E_{0}(j)\right\}$ is an operad. The operation $\gamma: E_{0} \times E_{0} \rightarrow E_{0}$ is defined by

$$
\gamma\left(e(k) \otimes e\left(j_{1}\right) \otimes \cdots \otimes e\left(j_{k}\right)\right)=e\left(j_{1}+\cdots+j_{k}\right) .
$$

It is easy to verify that it is associative and compatible with the actions of the permutation groups.
The algebras (coalgebras) over $E_{0}$ are simply commutative and associative algebras (coalgebras).
Example 2. Let $A(j)$ be the free $\Sigma_{j}$-module with one zero-dimensional generator $a(j)$ (i.e., $\left.A(j) \cong R\left(\Sigma_{j}\right)\right)$. Then $A=\{A(j)\}$ is an operad; the operation $\gamma: A \times A \rightarrow A$ is defined by

$$
\gamma\left(a(k) \otimes a\left(j_{1}\right) \otimes \cdots \otimes a\left(j_{k}\right)\right)=a\left(j_{1}+\cdots+j_{k}\right) .
$$

It is easy to verify that the required relations do hold.
The algebras (coalgebras) over the operad $A$ are simply associative algebras (coalgebras).
Example 3. An arbitrary chain complex $X$ determines the operads

$$
\mathcal{E}_{X}(j)=\operatorname{Hom}\left(X^{\otimes j} ; X\right), \quad \mathcal{E}^{X}(j)=\operatorname{Hom}\left(X ; X^{\otimes j}\right)
$$

The actions of the permutation groups are permutations of factors in $X^{\otimes j}$, and the operad structure is defined by

$$
\begin{array}{lll}
\gamma_{X}\left(f \otimes g_{1} \otimes \cdots \otimes g_{k}\right)=f \circ\left(g_{1} \otimes \cdots \otimes g_{k}\right), & f \in \mathcal{E}_{X}(k), & g_{i} \in \mathcal{E}_{X}\left(j_{i}\right) ; \\
\gamma^{X}\left(f \otimes g_{1} \otimes \cdots \otimes g_{k}\right)=\left(g_{1} \otimes \cdots \otimes g_{k}\right) \circ f, & f \in \mathcal{E}^{X}(k), & g_{i} \in \mathcal{E}^{X}\left(j_{i}\right) .
\end{array}
$$

A chain complex $X$ is an algebra (coalgebra) over the operad $\mathcal{E}$ if and only if there is a map of operads $\xi: \mathcal{E} \rightarrow \mathcal{E}_{X}$ (respectively, $\xi: \mathcal{E} \rightarrow \mathcal{E}^{X}$ ).
Example 4. For $n \geq 0$, let $\Delta^{n}$ denote the normalized chain complex of the standard $n$-simplex. Then $\Delta^{*}=\left\{\Delta^{n}\right\}$ is a cosimplicial object in the category of chain complexes.

Let $E^{\Delta}(j)$ denote the realization of the cosimplicial object $\left(\Delta^{*}\right)^{\otimes j}=\Delta^{*} \otimes \cdots \otimes \Delta^{*}$, i.e.,

$$
E^{\Delta}(j)=\operatorname{Hom}\left(\Delta^{*} ;\left(\Delta^{*}\right)^{\otimes j}\right),
$$

where Hom is considered in the category cosimplicial objects.
The family $E^{\Delta}=\left\{E^{\Delta}(j)\right\}$ is an operad; the actions of permutation groups and the operad structure are similar to those for the operads $\mathcal{E}^{X}$ defined above (in the definition, $\Delta^{*}$ instead of $X$ is taken).

Note that, since the chain complexes $\Delta^{n}$ are acyclic, the operad $E^{\Delta}$ is acyclic also.
In [3], it was shown that the singular chain complex $C_{*}(X)$ of a topological space $X$ admits the natural structure of an $E^{\Delta}$-coalgebra. Dually, the cochain complex $C^{*}(X)$ admits the natural structure of an $E^{\Delta}$-algebra.

Example 5. The main examples of operads in the category of topological spaces are the little $n$ cubes operads $\mathcal{E}_{n}$, which were introduced by Boardman and Vogt [5] and studied by May [4]. In particular, May showed that any $n$-fold loop space $\Omega^{n} X$ is an algebra over the operad $\mathcal{E}_{n}$.

The inclusions $\mathcal{E}_{n} \rightarrow \mathcal{E}_{n+1}$ hold; we denote the direct limit determined by these inclusions by $\mathcal{E}_{\infty}$. The operad $\mathcal{E}_{\infty}$ is an acyclic operad with free actions of permutation groups.

Any acyclic operad with free actions of permutation groups is called an $E_{\infty}$-operad, and any algebra (coalgebra) over an $E_{\infty}$-operad is called an $E_{\infty}$-algebra (an $E_{\infty}$-coalgebra).
Example 6. It is easy to see that if $\mathcal{E}=\{\mathcal{E}(j)\}$ is an operad in the category of topological spaces, then the family of chain complexes $C_{*}(\mathcal{E})=\left\{C_{*}(\mathcal{E}(j))\right\}$ is an operad in the category of chain complexes. If $\mathcal{E}$ is an $E_{\infty}$-operad, then $C_{*}(\mathcal{E})$ is an $E_{\infty}$-operad.

Let us show that any singular chain complex $C_{*}(X)$ (singular cochain complex $C^{*}(X)$ ) is an $E_{\infty}$-coalgebra (respectively, an $E_{\infty}$-algebra).

Let $E$ be an $E_{\infty}$-operad. Consider the operad $E^{\Delta} \otimes E$. It is an $E_{\infty}$-operad. Consider the projection of operads $p: E^{\Delta} \otimes E \rightarrow E^{\Delta}$. The composition

$$
E^{\Delta} \otimes E \xrightarrow{p} E^{\Delta} \xrightarrow{\xi} \mathcal{E}^{C_{*}(X)} \quad\left(E^{\Delta} \otimes E \xrightarrow{p} E^{\Delta} \xrightarrow{\xi} \mathcal{E}_{C^{*}(X)}\right)
$$

determines the structure of an $E^{\Delta} \otimes E$-coalgebra (respectively, of an $E^{\Delta} \otimes E$-algebra) on $C_{*}(X)$ (on $C^{*}(X)$ ).

We denote the operad $E^{\Delta} \otimes C_{*}\left(\mathcal{E}_{n}\right)$ simply by $E_{n}$ and call it the little $n$-cubes operad. The complex $C_{*}(X)$ can be regarded as an $E_{n}$-coalgebra, and $C^{*}(X)$ can be regarded as an $E_{n}$-algebra.

We need the following general property of algebras (coalgebras) over operads.
Theorem 1. If $X_{*}=\left\{X_{n}\right\}$ is a simplicial object in the category of algebras over an operad $\mathcal{E}$, then its realization $\left|X_{*}\right|$ is an $\mathcal{E}$-algebra also. Dually, if $X^{*}=\left\{X^{n}\right\}$ is a cosimplicial object in the category of coalgebras over an operad $\mathcal{E}$, then its realization $\left|X^{*}\right|$ is an $\mathcal{E}$-coalgebra also.
Proof. Suppose that $X_{*}=\left\{X_{n}\right\}$ be a simplicial object in the category of $\mathcal{E}$-algebras, and let $\mu_{n}: \mathcal{E}\left(X_{n}\right) \rightarrow X_{n}$ be an $\mathcal{E}$-algebra structure on $X_{n}$. The Eilenberg-Zilber maps

$$
\psi:\left|X_{*}\right| \otimes \cdots \otimes\left|X_{*}\right| \rightarrow\left|X_{*} \otimes \cdots \otimes X_{*}\right|
$$

commute with the actions of permutation groups and, therefore, induce maps

$$
\psi: \mathcal{E}(j) \otimes_{\Sigma_{j}}\left|X_{*}\right|^{\otimes j} \rightarrow\left|\mathcal{E}(j) \otimes_{\Sigma_{j}} X_{*}^{\otimes j}\right| .
$$

These maps determine a map $\psi: \mathcal{E}\left(\left|X_{*}\right|\right) \rightarrow\left|\mathcal{E}\left(X_{*}\right)\right|$, and the required map $\mathcal{E}\left(\left|X_{*}\right|\right) \rightarrow\left|X_{*}\right|$ is defined as the composition

$$
\mathcal{E}\left(\left|X_{*}\right|\right) \xrightarrow{\psi}\left|\mathcal{E}\left(X_{*}\right)\right| \xrightarrow{\mu_{*}}\left|X_{*}\right| .
$$

Corollary. The realization $B(\mathcal{E}, \mathcal{E}, X)$ of a simplicial resolution

$$
B_{*}(\mathcal{E}, \mathcal{E}, X): \mathcal{E}(X) \leftarrow \mathcal{E}^{2}(X) \leftarrow \cdots \leftarrow \mathcal{E}^{n}(X) \leftarrow \cdots
$$

over an $\mathcal{E}$-algebra $X$ is an $\mathcal{E}$-algebra. Moreover, the augmentation $\eta: B(\mathcal{E}, \mathcal{E}, X) \rightarrow X$ is a chain equivalence. Dually, the realization $F(\mathcal{E}, \mathcal{E}, X)$ of a cosimplicial resolution

$$
F^{*}(\mathcal{E}, \mathcal{E}, X): \overline{\mathcal{E}}(X) \rightarrow \overline{\mathcal{E}}^{2}(X) \rightarrow \cdots \rightarrow \overline{\mathcal{E}}^{n}(X) \rightarrow \cdots
$$

over an $\mathcal{E}$-coalgebra $X$ is an $\mathcal{E}$-coalgebra. Moreover, the augmentation $\xi: X \rightarrow F(\mathcal{E}, \mathcal{E}, X)$ is a chain equivalence.

We proceed to construct the corresponding homotopy theories. Suppose that $\mathcal{E}$ is an operad and $\mathcal{E} \rightarrow \mathcal{E}^{\Delta}$ is a map of operads. This means that the chain complexes $\Delta^{n}$ have $\mathcal{E}$-coalgebra
structures compatible with the coface and codegeneracy operators. This requirement is quite natural for homotopy theories. In particular, it allows us to define homotopy groups in these theories.

Let $\mathcal{A}_{\mathcal{E}}$ denote the category whose objects are $\mathcal{E}$-algebras and morphisms are maps of $\mathcal{E}$-algebras.

The category $\mathcal{A}_{\mathcal{E}}$ is a closed model category [6] in which the fibrations are surjective maps $p: X \rightarrow Y$, the weak equivalences are maps inducing isomorphisms in homology, and the cofibrations are maps $i: A \rightarrow B$ having the left lifting property with respect to the trivial fibrations. This means that, for any commutative diagram

there exists a diagonal map $f: B \rightarrow X$ preserving commutativity.
Dually, let $\mathcal{K}_{\mathcal{E}}$ denote the category whose objects are $\mathcal{E}$-coalgebras and morphisms are maps of $\mathcal{E}$-coalgebras.

The category $\mathcal{K}_{\mathcal{E}}$ is a closed model category in which cofibrations are injective maps $i: A \rightarrow B$, weak equivalences are maps inducing isomorphisms in homology, and fibrations are maps $p: X \rightarrow Y$ having the right lifting property with respect to the trivial cofibrations. This means that, for any commutative diagram of the above form, there exists a diagonal map $f: B \rightarrow X$ preserving commutativity.
Theorem 2. For any trivial fibration $p: X \rightarrow Y$ in the category $\mathcal{A}_{\mathcal{E}}$, there exists a map of $\mathcal{E}$-algebras $\tilde{q}: B(\mathcal{E}, \mathcal{E}, Y) \rightarrow X$ such that

$$
p \circ \tilde{q}=\eta: B(\mathcal{E}, \mathcal{E}, Y) \rightarrow Y .
$$

Proof. Let $p: X \rightarrow Y$ be a trivial fibration. This means that $p$ is surjective and induces an isomorphism in homology. Hence there exists a chain map $q: Y \rightarrow X$ and a chain homotopy $h: X \rightarrow X$ such that

$$
p \circ q=\mathrm{Id}, \quad d(h)=q \circ p-\mathrm{Id}, \quad p \circ h=0, \quad h \circ q=0, \quad h \circ h=0 .
$$

Let us construct the required map of $\mathcal{E}$-algebras $\tilde{q}: B(\mathcal{E}, \mathcal{E}, Y) \rightarrow X$.
It is easy to see that to define such a map is the same thing as to define a family of maps of $\mathcal{E}$-algebras $q^{n}: \mathcal{E}^{n+1}(Y) \rightarrow \operatorname{Hom}\left(\Delta^{n} ; X\right)$ for which the diagrams

$$
\begin{array}{rlc}
\mathcal{E}^{n}(Y) & \xrightarrow{q^{n-1}} & \operatorname{Hom}\left(\Delta^{n-1} ; X\right) \\
s_{i} \mid \uparrow d_{i} & & s_{i} \downarrow \uparrow d_{i} \\
\mathcal{E}^{n+1}(Y) \xrightarrow{q^{n}} & \operatorname{Hom}\left(\Delta^{n} ; X\right)
\end{array}
$$

are commutative.
Defining a map of $\mathcal{E}$-algebras $q^{n}: \mathcal{E}^{n+1}(Y) \rightarrow \operatorname{Hom}\left(\Delta^{n} ; X\right)$ is equivalent to defining a chain map $\bar{q}^{n}: \mathcal{E}^{n}(Y) \rightarrow \operatorname{Hom}\left(\Delta^{n} ; X\right)$; thus, defining a map of $\mathcal{E}$-algebras $\tilde{q}: B(\mathcal{E}, \mathcal{E}, Y) \rightarrow X$ is equivalent to defining a family of chain maps $\bar{q}^{n}: \mathcal{E}^{n}(A) \rightarrow \operatorname{Hom}\left(\Delta^{n} ; X\right)$ for which the corresponding maps $f^{n}$ of $\mathcal{E}$-algebras give the commutative diagrams specified above.

We set $\bar{q}^{0}=q: Y \rightarrow X$ and $\bar{q}^{n}=h \circ \mu \circ \mathcal{E}(h) \circ \mathcal{E}(\mu) \circ \cdots \circ \mathcal{E}^{n-1}(\mu) \circ \mathcal{E}^{n}(q)$. A direct calculation shows that these maps satisfy the required relations.

Corollary. If $A$ is an $\mathcal{E}$-algebra, then the $\mathcal{E}$-algebra $B(\mathcal{E}, \mathcal{E}, A)$ is a cofibered object in the category $\mathcal{A}_{\mathcal{E}}$.

Indeed, suppose that $p: X \rightarrow Y$ is a trivial fibration and $f: B(\mathcal{E}, \mathcal{E}, A) \rightarrow Y$ is a map of $\mathcal{E}$-algebras. Let us construct a map of $\mathcal{E}$-algebras $\tilde{f}: B(\mathcal{E}, \mathcal{E}, A) \rightarrow X$ for which $p \circ \tilde{f}=f$.

Theorem 2 gives a map of $\mathcal{E}$-algebras $\tilde{q}: B(\mathcal{E}, \mathcal{E}, Y) \rightarrow X$. Since $\eta: B(\mathcal{E}, \mathcal{E}, A) \rightarrow A$ is a trivial fibration, there exists a map of $\mathcal{E}$-algebras $\psi: B(\mathcal{E}, \mathcal{E}, A) \rightarrow B(\mathcal{E}, \mathcal{E}, B(\mathcal{E}, \mathcal{E}, A))$. We define $\widetilde{q}$ as the composition

$$
B(\mathcal{E}, \mathcal{E}, A) \xrightarrow{\psi} B(\mathcal{E}, \mathcal{E}, B(\mathcal{E}, \mathcal{E}, A)) \xrightarrow{B(\mathcal{E}, \mathcal{E}, f)} B(\mathcal{E}, \mathcal{E}, Y) \xrightarrow{\tilde{q}} X .
$$

The dual assertion is the following theorem.
Theorem $\mathbf{2 '}^{\prime}$. For any trivial cofibration $i: A \rightarrow B$ in the category $\mathcal{K}_{\mathcal{E}}$, there exists a map of $\mathcal{E}$-coalgebras $\tilde{j}: B \rightarrow F(\mathcal{E}, \mathcal{E}, A)$ for which

$$
\tilde{j} \circ i=\xi: A \rightarrow F(\mathcal{E}, \mathcal{E}, A) .
$$

Corollary. If $X$ is an $\mathcal{E}$-coalgebra, then the $\mathcal{E}$-coalgebra $F(\mathcal{E}, \mathcal{E}, X)$ is a fibered object in the category $\mathcal{K}_{\mathcal{E}}$.

Consider the category $\widetilde{\mathcal{K}}_{\mathcal{E}}$ whose objects are $\mathcal{E}$-coalgebras and morphisms $f: X \rightarrow Y$ are maps of $\mathcal{E}$-coalgebras $\tilde{f}: X \rightarrow F(\mathcal{E}, \mathcal{E}, Y)$.

We say that two morphisms $f_{0}, f_{1}: X \rightarrow Y$ in the category $\widetilde{\mathcal{K}}_{\mathcal{E}}$ are homotopic and write $f \simeq g$ if there exists a morphism $h: \Delta^{1} \otimes X \rightarrow Y$, which is called a homotopy, such that

$$
\left.h\right|_{0 \otimes X}=f_{0},\left.\quad h\right|_{1 \otimes X}=f_{1} .
$$

Let $H o \mathcal{K}_{\mathcal{E}}$ be the localization of the category $\mathcal{K}_{\mathcal{E}}$ with respect to the weak equivalences (i.e., morphisms inducing isomorphisms in homology).

By $\pi \mathcal{K}_{\mathcal{E}}$ we denote the category whose objects are $\mathcal{E}$-coalgebras and morphisms are the homotopy classes of morphisms of the category $\widetilde{\mathcal{K}}_{\mathcal{E}}$. The general theory of homotopy in categories [6] gives the following result.
Theorem 3. The following equivalence of categories hold:

$$
H o \mathcal{K}_{\mathcal{E}} \cong \pi \mathcal{K}_{\mathcal{E}}
$$

The dual assertion for $\mathcal{E}$-algebras is the following theorem.
Theorem $\mathbf{3}^{\prime}$. The following equivalence of categories hold:

$$
H o \mathcal{A}_{\mathcal{E}} \cong \pi \mathcal{A}_{\mathcal{E}}
$$

Now, consider the problem of calculating homotopy groups of $\mathcal{E}$-coalgebras. Since the chain complexes $\Delta^{n}$ of the standard $n$-simplices are $\mathcal{E}$-coalgebras, it follows that the chain complexes $S^{n}$ of the $n$-spheres are $\mathcal{E}$-coalgebras as well.

We define the homotopy groups $\pi_{n}^{\mathcal{E}}(X)$ of a $\mathcal{E}$-coalgebra $X$ by $\pi_{n}^{\mathcal{E}}(X)=\left[S^{n} ; F(\mathcal{E}, \mathcal{E}, X)\right]$, i.e., as the sets of homotopy classes of maps $f: S^{n} \rightarrow F(\mathcal{E}, \mathcal{E}, X)$ of $\mathcal{E}$-coalgebras.
Theorem 4. For any $\mathcal{E}$-coalgebra $X$, there is a spectral sequence of homotopy groups $\pi_{*}^{\mathcal{E}}(X)$ in which the term $E^{1}$ is isomorphic to the cobar construction $F\left(\mathcal{E}_{*}, X_{*}\right)$, where $\mathcal{E}_{*}$ and $X_{*}$ denote the homology of $\mathcal{E}$ and $X$, respectively.

Proof. Consider the filtration

$$
F(\mathcal{E}, \mathcal{E}, X) \supset F^{1}(\mathcal{E}, \mathcal{E}, X) \supset \cdots \supset F^{m}(\mathcal{E}, \mathcal{E}, X) \supset \cdots
$$

where $F^{m}(\mathcal{E}, \mathcal{E}, X): \overline{\mathcal{E}}^{m}(X) \rightarrow \overline{\mathcal{E}}^{m+1}(X) \rightarrow \cdots$.
It induces a spectral sequence. The exact sequences

$$
0 \rightarrow F^{m+1}(\mathcal{E}, \mathcal{E}, X) \rightarrow F^{m}(\mathcal{E}, \mathcal{E}, X) \rightarrow \overline{\mathcal{E}}^{m+1}(X) \rightarrow 0
$$

induce the isomorphisms

$$
E_{n, m}^{1}=\left[S^{n}, \overline{\mathcal{E}}^{m+1}(X)\right] \cong H_{n}\left(\overline{\mathcal{E}}^{m}(X)\right)
$$

and, therefore, the isomorphism $E^{1} \cong F\left(\mathcal{E}_{*}, X_{*}\right)$.
If $S^{n}$ is the trivial $\mathcal{E}$-coalgebra, then the differentials of this spectral sequence are determined by the differentials in the cobar construction $F(\mathcal{E}, X)$; thus, we obtain the following result.
Theorem 5. If $S^{n}$ is a trivial $\mathcal{E}$-coalgebra, then, for any $\mathcal{E}$-coalgebra $X$, the following isomorphism holds:

$$
\pi_{n}^{\mathcal{E}}(X) \cong H_{n}(F(\mathcal{E}, X))
$$

Now, suppose that $X$ is a topological space and $E_{n}$ is the little $n$-cubes operad. Note that if $m \geq n$, then $S^{m}$ has the trivial structure of an $E_{n}$-coalgebra, which implies the following theorem.

Theorem 6. If $X$ is a topological space and $m \geq n$, then

$$
\pi_{m}^{E_{n}}(X) \cong H_{m}\left(F\left(E_{n}, C_{*}(X)\right)\right)
$$

The term $E^{1}$ of this spectral sequence can be expressed via the homology of the operad $E_{n}$ and, therefore, of the Dyer-Lashof algebra [7, 8].
Theorem 7. If $X$ is a topological space, then the term $E^{1}$ of the spectral sequence of homotopy groups $\pi_{*}^{E_{n}}(X)$ is isomorphic to the module $S^{n} T_{s} R_{n-1} L_{n-1} S^{-n} H_{*}(X)$, where $T_{s}$ is a free commutative algebra, $R_{n-1}$ is the submodule of the Dyer-Lashof algebra generated by the admissible sequences of redundancy less than $n$, and $L_{n-1}$ is the free Lie $(n-1)$-algebra.

If $X$ is an $n$-connected topological space, then the cobar construction $F\left(E_{n}, C_{*}(X)\right)$ is chain equivalent to the $n$-fold suspension over the chain complex of the iterated loop space $\Omega^{n} X[8]$. Thus, the following theorem is valid.

Theorem 8. If $X$ is an n-connected topological space, then

$$
\pi_{*}^{E_{n}}(X) \cong S^{n} H_{*}\left(\Omega^{n} X\right)
$$

This theorem generalizes the result of Quillen $[1,6]$ asserting that the rational homotopy groups of a simply connected topological space can be expressed in terms of the homology of its loop space. It determines the upper bound on those $m$ for which the homotopy groups (over the operad $E_{m}$ ) of an $n$-connected space $X$ are related directly to the homology of the $m$-fold loop space over $X$.

The method suggested above makes it possible to reduce the very difficult problem of calculating the homotopy groups of spheres over the operad $E_{\infty}$ to calculating the homotopy groups of spheres over the operads $E_{n}$.

In particular, it follows from the theorem proved in this paper that if $m \leq n$, then the homotopy groups (over the operad $E_{m}$ ) of the sphere $S^{n}$ are isomorphic to the $m$-fold suspension over the homology of the $m$-fold loop space over $S^{n}$. In this author's opinion, it would be interesting to calculate the homotopy groups of the sphere $S^{n}$ over the operads $E_{n}, E_{n+1}$, etc.

## ACKNOWLEDGMENTS

This research was supported by the Russian Foundation for Basic Research under grant no. 01-01-00482.

## REFERENCES

1. D. Quillen, "Rational homotopy theory," Ann. of Math., 90 (1969), no. 2, 205-295.
2. V. A. Smirnov, "On cochain complexes of topological spaces," Mat. Sb. [Math. USSR-Sb.], 115 (1981), 146-158.
3. V. A. Smirnov, "The homotopy theory of coalgebras," Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSRIzv.], 49 (1985), 1302-1321.
4. J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Math., vol. 271, Springer-Verlag, New York, 1972.
5. J. M. Boardman and R. M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces, Lecture Notes in Math., vol. 347, Springer-Verlag, New York, 1973.
6. D. Quillen, Homotopical Algebra, Lecture Notes in Math., vol. 43, Springer-Verlag, New York, 1967.
7. E. Dyer and R. Lashof, "Homology of iterated loop spaces," Amer. J. Math., 84 (1962), 35-88.
8. V. A. Smirnov, "The homology of iterated loop spaces," Forum Mathematicum, 14 (2002), 345-381.

Moscow State Pedagogical University
E-mail: V.Smirnov@ru.net

