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Abstract—Homotopy theories of algebras over operads, including operads over “little n-
cubes,” are defined. Spectral sequences are constructed and the corresponding homotopy
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There are two classical homotopy theories:

(1) the homotopy theory of topological spaces, in which the calculation of the homotopy groups
of spheres is one of the most difficult problems of algebraic topology;

(2) rational homotopy theory, in which the calculation of the homotopy groups of spheres is a
fairly simple problem.

In [1], it was shown that rational homotopy theory is equivalent to the homotopy theory of
commutative DGA-algebras. In [2, 3], it was proved that the singular chain complex C∗(X)
(cochain complex C∗(X)) of a topological space X has the natural structure of an E∞-coalgebra
(E∞-algebra), and the homotopy theory of topological spaces is equivalent to the homotopy theory
of E∞-coalgebras (E∞-algebras).

A natural problem is to find intermediate homotopy theories between the homotopy theories of
DGA-algebras and E∞-algebras and calculate the homotopy groups of spheres in these theories.

In this paper, we define homotopy theories of algebras over operads, in particular, the little n-
cubes operads En over little n-cubes, where 1 ≤ n ≤ ∞ (see [4]). We construct spectral sequences
and calculate the corresponding homotopy groups.

Recall that a family E = {E(j)}j≥1 of chain complexes E(j) on which the permutation groups Σj

act is called an operad if it is endowed with operations

γ : E(k) ⊗ E(j1) ⊗ · · · ⊗ E(jk) → E(j1 + · · · + jk)

compatible with the permutation group actions and satisfying certain associativity relations [2].
A chain complex X with operations

µ(j) : E(j) ⊗ X⊗j → X
(
τ(j) : X → Hom(E(j) ; X⊗j)

)

compatible with the permutation group actions and satisfying certain associativity relations [2]
is called an algebra (respectively, a coalgebra) over an operad E , or simply an E-algebra (an E-
coalgebra).

Let us denote the sum ∑

j

E(j) ⊗Σj X⊗j
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by E(X) . The correspondence X �→ E(X) determines a functor on the category of chain complexes.
The operad structure on E determines the natural transformation of functors γ : E ◦E → E , which
defines a monad structure on E [3]. Moreover, a chain complex X is an algebra over the operad E
if and only if it is an algebra over the monad E .

Dually, for
E(X) =

∏

j

HomΣj (E(j) ; X⊗j),

the correspondence X �→ E(X) determines a comonad on the category of chain complexes. A chain
complex X is a coalgebra over the operad E if and only if it is a coalgebra over the comonad E .

Operads and algebras over operads can also be defined in the category of topological spaces.
In this case, in the definition of the operations γ , the tensor product ⊗ must be replaced by the
usual Cartesian product × of topological spaces [3].

Below, we give examples of operads and algebras (coalgebras) over operads.

Example 1. Let E0(j) be the free module with one zero-dimensional generator e(j) and trivial
action of the permutation groups Σj (i.e., E0(j) ∼= R). Then E0 = {E0(j)} is an operad. The
operation γ : E0 × E0 → E0 is defined by

γ(e(k) ⊗ e(j1) ⊗ · · · ⊗ e(jk)) = e(j1 + · · · + jk).

It is easy to verify that it is associative and compatible with the actions of the permutation groups.
The algebras (coalgebras) over E0 are simply commutative and associative algebras (coalgebras).

Example 2. Let A(j) be the free Σj-module with one zero-dimensional generator a(j) (i.e.,
A(j) ∼= R(Σj)). Then A = {A(j)} is an operad; the operation γ : A × A → A is defined by

γ(a(k) ⊗ a(j1) ⊗ · · · ⊗ a(jk)) = a(j1 + · · · + jk).

It is easy to verify that the required relations do hold.
The algebras (coalgebras) over the operad A are simply associative algebras (coalgebras).

Example 3. An arbitrary chain complex X determines the operads

EX(j) = Hom(X⊗j ; X), EX(j) = Hom(X ; X⊗j).

The actions of the permutation groups are permutations of factors in X⊗j , and the operad struc-
ture is defined by

γX(f ⊗ g1 ⊗ · · · ⊗ gk) = f ◦ (g1 ⊗ · · · ⊗ gk), f ∈ EX(k), gi ∈ EX(ji) ;

γX(f ⊗ g1 ⊗ · · · ⊗ gk) = (g1 ⊗ · · · ⊗ gk) ◦ f , f ∈ EX(k), gi ∈ EX(ji).

A chain complex X is an algebra (coalgebra) over the operad E if and only if there is a map of
operads ξ : E → EX (respectively, ξ : E → EX).

Example 4. For n ≥ 0 , let ∆n denote the normalized chain complex of the standard n-simplex.
Then ∆∗ = {∆n} is a cosimplicial object in the category of chain complexes.

Let E∆(j) denote the realization of the cosimplicial object (∆∗)⊗j = ∆∗ ⊗ · · · ⊗ ∆∗ , i.e.,

E∆(j) = Hom(∆∗ ; (∆∗)⊗j),

where Hom is considered in the category cosimplicial objects.
The family E∆ = {E∆(j)} is an operad; the actions of permutation groups and the operad

structure are similar to those for the operads EX defined above (in the definition, ∆∗ instead of X
is taken).

Note that, since the chain complexes ∆n are acyclic, the operad E∆ is acyclic also.

In [3], it was shown that the singular chain complex C∗(X) of a topological space X admits
the natural structure of an E∆-coalgebra. Dually, the cochain complex C∗(X) admits the natural
structure of an E∆-algebra.
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Example 5. The main examples of operads in the category of topological spaces are the little n-
cubes operads En , which were introduced by Boardman and Vogt [5] and studied by May [4]. In
particular, May showed that any n-fold loop space ΩnX is an algebra over the operad En .

The inclusions En → En+1 hold; we denote the direct limit determined by these inclusions
by E∞ . The operad E∞ is an acyclic operad with free actions of permutation groups.

Any acyclic operad with free actions of permutation groups is called an E∞-operad, and any
algebra (coalgebra) over an E∞-operad is called an E∞-algebra (an E∞-coalgebra).

Example 6. It is easy to see that if E = {E(j)} is an operad in the category of topological
spaces, then the family of chain complexes C∗(E) = {C∗(E(j))} is an operad in the category of
chain complexes. If E is an E∞-operad, then C∗(E) is an E∞-operad.

Let us show that any singular chain complex C∗(X) (singular cochain complex C∗(X)) is
an E∞-coalgebra (respectively, an E∞-algebra).

Let E be an E∞-operad. Consider the operad E∆ ⊗ E . It is an E∞-operad. Consider the
projection of operads p : E∆ ⊗ E → E∆ . The composition

E∆ ⊗ E
p−→ E∆ ξ−→ EC∗(X)

(
E∆ ⊗ E

p−→ E∆ ξ−→ EC∗(X)

)

determines the structure of an E∆ ⊗ E-coalgebra (respectively, of an E∆ ⊗ E-algebra) on C∗(X)
(on C∗(X)).

We denote the operad E∆ ⊗ C∗(En) simply by En and call it the little n-cubes operad. The
complex C∗(X) can be regarded as an En-coalgebra, and C∗(X) can be regarded as an En-algebra.

We need the following general property of algebras (coalgebras) over operads.

Theorem 1. If X∗ = {Xn} is a simplicial object in the category of algebras over an operad E ,
then its realization |X∗| is an E -algebra also. Dually, if X∗ = {Xn} is a cosimplicial object in
the category of coalgebras over an operad E , then its realization |X∗| is an E -coalgebra also.

Proof. Suppose that X∗ = {Xn} be a simplicial object in the category of E -algebras, and let
µn : E(Xn) → Xn be an E -algebra structure on Xn . The Eilenberg–Zilber maps

ψ : |X∗| ⊗ · · · ⊗ |X∗| → |X∗ ⊗ · · · ⊗ X∗|
commute with the actions of permutation groups and, therefore, induce maps

ψ : E(j) ⊗Σj |X∗|⊗j → |E(j) ⊗Σj X⊗j
∗ |.

These maps determine a map ψ : E(|X∗|) → |E(X∗)| , and the required map E(|X∗|) → |X∗| is
defined as the composition

E(|X∗|) ψ−→ |E(X∗)| µ∗−→ |X∗|. �

Corollary. The realization B(E , E , X) of a simplicial resolution

B∗(E , E , X) : E(X) ← E2(X) ← · · · ← En(X) ← · · ·
over an E -algebra X is an E -algebra. Moreover, the augmentation η : B(E , E , X) → X is a chain
equivalence. Dually, the realization F (E , E , X) of a cosimplicial resolution

F ∗(E , E , X) : E(X) → E2
(X) → · · · → En

(X) → · · ·
over an E -coalgebra X is an E -coalgebra. Moreover, the augmentation ξ : X → F (E , E , X) is a
chain equivalence.

We proceed to construct the corresponding homotopy theories. Suppose that E is an operad
and E → E∆ is a map of operads. This means that the chain complexes ∆n have E -coalgebra
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structures compatible with the coface and codegeneracy operators. This requirement is quite
natural for homotopy theories. In particular, it allows us to define homotopy groups in these
theories.

Let AE denote the category whose objects are E -algebras and morphisms are maps of E -algeb-
ras.

The category AE is a closed model category [6] in which the fibrations are surjective maps
p : X → Y , the weak equivalences are maps inducing isomorphisms in homology, and the cofibra-
tions are maps i : A → B having the left lifting property with respect to the trivial fibrations.
This means that, for any commutative diagram

A −−→ X

i

⏐
⏐
�

⏐
⏐
�p

B −−→ Y

,

there exists a diagonal map f : B → X preserving commutativity.
Dually, let KE denote the category whose objects are E -coalgebras and morphisms are maps of

E -coalgebras.
The category KE is a closed model category in which cofibrations are injective maps i : A → B ,

weak equivalences are maps inducing isomorphisms in homology, and fibrations are maps p : X → Y
having the right lifting property with respect to the trivial cofibrations. This means that, for any
commutative diagram of the above form, there exists a diagonal map f : B → X preserving
commutativity.

Theorem 2. For any trivial fibration p : X → Y in the category AE , there exists a map of
E -algebras q̃ : B(E , E , Y ) → X such that

p ◦ q̃ = η : B(E , E , Y ) → Y.

Proof. Let p : X → Y be a trivial fibration. This means that p is surjective and induces an
isomorphism in homology. Hence there exists a chain map q : Y → X and a chain homotopy
h : X → X such that

p ◦ q = Id, d(h) = q ◦ p − Id, p ◦ h = 0, h ◦ q = 0, h ◦ h = 0.

Let us construct the required map of E -algebras q̃ : B(E , E , Y ) → X .
It is easy to see that to define such a map is the same thing as to define a family of maps of

E -algebras qn : En+1(Y ) → Hom(∆n ; X) for which the diagrams

En(Y )
qn−1

−−−→ Hom(∆n−1 ; X)

si

⏐
⏐
�
�
⏐
⏐di si

⏐
⏐
�
�
⏐
⏐di

En+1(Y )
qn

−−→ Hom(∆n ; X)

are commutative.
Defining a map of E -algebras qn : En+1(Y ) → Hom(∆n ; X) is equivalent to defining a chain

map q̄n : En(Y ) → Hom(∆n ; X) ; thus, defining a map of E -algebras q̃ : B(E , E , Y ) → X is equiv-
alent to defining a family of chain maps q̄n : En(A) → Hom(∆n ; X) for which the corresponding
maps fn of E -algebras give the commutative diagrams specified above.

We set q̄0 = q : Y → X and q̄n = h ◦µ ◦ E(h) ◦ E(µ) ◦ · · · ◦ En−1(µ) ◦ En(q) . A direct calculation
shows that these maps satisfy the required relations. �
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Corollary. If A is an E-algebra, then the E -algebra B(E , E , A) is a cofibered object in the cate-
gory AE .

Indeed, suppose that p : X → Y is a trivial fibration and f : B(E , E , A) → Y is a map of
E -algebras. Let us construct a map of E -algebras f̃ : B(E , E , A) → X for which p ◦ f̃ = f .

Theorem 2 gives a map of E -algebras q̃ : B(E , E , Y ) → X . Since η : B(E , E , A) → A is a trivial
fibration, there exists a map of E -algebras ψ : B(E , E , A) → B(E , E , B(E , E , A)) . We define q̃ as
the composition

B(E , E , A)
ψ−→ B(E , E , B(E , E , A))

B(E ,E ,f)−−−−−−→ B(E , E , Y )
q̃−→ X.

The dual assertion is the following theorem.

Theorem 2′ . For any trivial cofibration i : A → B in the category KE , there exists a map of
E -coalgebras j̃ : B → F (E , E , A) for which

j̃ ◦ i = ξ : A → F (E , E , A).

Corollary. If X is an E-coalgebra, then the E -coalgebra F (E , E , X) is a fibered object in the
category KE .

Consider the category K̃E whose objects are E -coalgebras and morphisms f : X → Y are maps
of E -coalgebras f̃ : X → F (E , E , Y ) .

We say that two morphisms f0 , f1 : X → Y in the category K̃E are homotopic and write f � g
if there exists a morphism h : ∆1 ⊗ X → Y , which is called a homotopy, such that

h|0⊗X = f0 , h|1⊗X = f1.

Let HoKE be the localization of the category KE with respect to the weak equivalences (i.e.,
morphisms inducing isomorphisms in homology).

By πKE we denote the category whose objects are E -coalgebras and morphisms are the homo-
topy classes of morphisms of the category K̃E . The general theory of homotopy in categories [6]
gives the following result.

Theorem 3. The following equivalence of categories hold :

HoKE ∼= πKE .

The dual assertion for E -algebras is the following theorem.

Theorem 3′ . The following equivalence of categories hold :

HoAE ∼= πAE .

Now, consider the problem of calculating homotopy groups of E -coalgebras. Since the chain
complexes ∆n of the standard n-simplices are E -coalgebras, it follows that the chain complexes Sn

of the n-spheres are E -coalgebras as well.
We define the homotopy groups πE

n(X) of a E -coalgebra X by πE
n(X) = [Sn ; F (E , E , X)] , i.e.,

as the sets of homotopy classes of maps f : Sn → F (E , E , X) of E -coalgebras.

Theorem 4. For any E -coalgebra X , there is a spectral sequence of homotopy groups πE
∗ (X) in

which the term E1 is isomorphic to the cobar construction F (E∗ , X∗) , where E∗ and X∗ denote
the homology of E and X , respectively.
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Proof. Consider the filtration

F (E , E , X) ⊃ F 1(E , E , X) ⊃ · · · ⊃ Fm(E , E , X) ⊃ · · · ,

where Fm(E , E , X) : Em
(X) → Em+1

(X) → · · · .
It induces a spectral sequence. The exact sequences

0 → Fm+1(E , E , X) → Fm(E , E , X) → Em+1
(X) → 0

induce the isomorphisms
E1

n,m = [Sn , Em+1
(X)] ∼= Hn(Em

(X))

and, therefore, the isomorphism E1 ∼= F (E∗ , X∗) . �
If Sn is the trivial E -coalgebra, then the differentials of this spectral sequence are determined

by the differentials in the cobar construction F (E , X) ; thus, we obtain the following result.

Theorem 5. If Sn is a trivial E -coalgebra, then, for any E -coalgebra X , the following isomor-
phism holds:

πE
n(X) ∼= Hn(F (E , X)).

Now, suppose that X is a topological space and En is the little n-cubes operad. Note that if
m ≥ n , then Sm has the trivial structure of an En-coalgebra, which implies the following theorem.

Theorem 6. If X is a topological space and m ≥ n , then

πEn
m (X) ∼= Hm(F (En , C∗(X))).

The term E1 of this spectral sequence can be expressed via the homology of the operad En

and, therefore, of the Dyer–Lashof algebra [7, 8].

Theorem 7. If X is a topological space, then the term E1 of the spectral sequence of homotopy
groups πEn∗ (X) is isomorphic to the module SnTsRn−1Ln−1S

−nH∗(X) , where Ts is a free com-
mutative algebra, Rn−1 is the submodule of the Dyer–Lashof algebra generated by the admissible
sequences of redundancy less than n , and Ln−1 is the free Lie (n − 1)-algebra.

If X is an n-connected topological space, then the cobar construction F (En , C∗(X)) is chain
equivalent to the n-fold suspension over the chain complex of the iterated loop space ΩnX [8].
Thus, the following theorem is valid.

Theorem 8. If X is an n-connected topological space, then

πEn∗ (X) ∼= SnH∗(ΩnX).

This theorem generalizes the result of Quillen [1, 6] asserting that the rational homotopy groups
of a simply connected topological space can be expressed in terms of the homology of its loop space.
It determines the upper bound on those m for which the homotopy groups (over the operad Em)
of an n-connected space X are related directly to the homology of the m-fold loop space over X .

The method suggested above makes it possible to reduce the very difficult problem of calculating
the homotopy groups of spheres over the operad E∞ to calculating the homotopy groups of spheres
over the operads En .

In particular, it follows from the theorem proved in this paper that if m ≤ n , then the homotopy
groups (over the operad Em) of the sphere Sn are isomorphic to the m-fold suspension over the
homology of the m-fold loop space over Sn . In this author’s opinion, it would be interesting to
calculate the homotopy groups of the sphere Sn over the operads En , En+1 , etc.
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