An introduction to stable homotopy theory

"Abelian groups up to homotopy" spectra ⇔generalized cohomology theories

Examples:

1. Ordinary cohomology:

For A any abelian group, $H^n(X; A) = [X_+, K(A, n)].$

Eilenberg-Mac Lane spectrum, denoted HA. $HA_n = K(A, n)$ for $n \ge 0$.

The coefficients of the theory are given by $HA^*(\text{pt}) = \begin{cases} A & * = 0\\ 0 & * \neq 0 \end{cases}$

2. Hypercohomology:

For C. any chain complex of abelian groups, $\mathbb{H}^{s}(X; C.) \cong \bigoplus_{q-p=s} H^{p}(X; H_{q}(C.)).$ Just a direct sum of shifted ordinary cohomologies.

 $HC.^{*}(\text{pt}) = H_{*}(C.).$

3. Complex K-theory:

 $K^*(X)$; associated spectrum denoted K.

$$K_n = \begin{cases} U & n = \text{odd} \\ BU \times \mathbb{Z} & n = \text{even} \end{cases}$$

$$K^*(\text{pt}) = \begin{cases} 0 & * = \text{odd} \\ \mathbb{Z} & * = \text{even} \end{cases}$$

4. Stable cohomotopy: $\pi_S^*(X)$; associated spectrum denoted S.

 $\mathbb{S}_n = S^n$, \mathbb{S} is the sphere spectrum.

 $\pi_S^*(\text{pt}) = \pi_{-*}^S(\text{pt}) = \text{stable homotopy groups of spheres.}$ These are only known in a range.

"Rings up to homotopy"

ring spectra \iff gen. coh. theories with a product

1. For R a ring, HR is a ring spectrum. The cup product gives a graded product: $HR^{p}(X) \otimes HR^{q}(X) \to HR^{p+q}(X)$

Induced by $K(R,p) \wedge K(R,q) \rightarrow K(R,p+q)$.

2. For A. a differential graded algebra (DGA), HA. is a ring spectrum. Product induced by $\mu: A. \otimes A. \to A.$, or $A_p \otimes A_q \to A_{p+q}$.

The groups $\mathbb{H}(X; A)$ are still determined by $H_*(A)$, but the product structure is *not* determined $H_*(A)$.

3. K is a ring spectrum;

Product induced by tensor product of vector bundles.

4. S is a commutative ring spectrum.

Definition. A "ring spectrum" is a sequence of pointed spaces $R = (R_0, R_1, \dots, R_n, \dots)$ with compatibly associative and unital products $R_p \wedge R_q \to R_{p+q}$.

Definition. A "spectrum" F is a sequence of pointed spaces $(F_0, F_1, \dots, F_n, \dots)$ with structure maps $\Sigma F_n \to F_{n+1}$. Equivalently, adjoint maps $F_n \to \Omega F_{n+1}$.

Example: S a commutative ring spectrum

Structure maps: $\Sigma S^n = S^1 \wedge S^n \xrightarrow{\cong} S^{n+1}$.

Product maps: $S^p \wedge S^q \xrightarrow{\cong} S^{p+q}$.

Actually, must be more careful here. For example: $S^1 \wedge S^1 \xrightarrow{\text{twist}} S^1 \wedge S^1$ is a degree -1 map.

History of spectra and \wedge

Boardman in 1965 defined spectra and \wedge . \wedge is only commutative and associative up to homotopy.

 A_{∞} ring spectrum = best approximation to associative ring spectrum.

 E_{∞} ring spectrum = best approximation to commutative ring spectrum.

Lewis in 1991: No good \land exists. Five reasonable axioms \implies no such \land .

Since 1997, lots of monoidal categories of spectra exist! (with ∧ that is commutative and associative.)
1. 1997: Elmendorf, Kriz, Mandell, May
2. 2000: Hovey, S., Smith
3, 4 and 5 ... Lydakis, Schwede, ...

Theorem.(Mandell, May, Schwede, S. '01; Schwede '01) All above models define the same homotopy theory.

Spectral Algebra

Given the good categories of spectra with \wedge , one can easily do algebra with spectra.

Definitions:

A ring spectrum is a spectrum R with an associative and unital multiplication $\mu : R \wedge R \to R$ (with unit $\mathbb{S} \to R$).

An *R*-module spectrum is a spectrum M with an associative and unital action $\alpha : R \land M \to M$.

 \mathbb{S} -modules are spectra. $S^1 \wedge F_n \to F_{n+1}$ iterated gives $S^p \wedge F_q \to F_{p+q}$. Fits together to give $\mathbb{S} \wedge F \to F$.

 \mathbb{S} -algebras are ring spectra.

Homological Algebra vs. Spectral Algebra

\mathbb{Z}	\mathbb{Z} (d.g.)	S
\mathbb{Z} -Mod	d.gMod	S-Mod
$= \mathcal{A}b$	$= \mathfrak{C}h$	= Spectra
\mathbb{Z} -Alg =	d.gAlg =	S-Alg =
$\Re ings$	$\mathcal{D}GAs$	Ring spectra

\mathbb{Z}	\mathbb{Z} (d.g.)	HZ	S
\mathbb{Z} -Mod	d.gMod	HZ-Mod	S-Mod
\mathbb{Z} -Alg	d.gAlg	H Z-Alg	S-Alg
211	quasi-iso	weak equiv.	weak equiv.

Quasi-isomorphisms are maps which induce isomorphisms in homology.

Weak equivalences are maps which induce isomorphisms on the coefficients.

\mathbb{Z}	\mathbb{Z} (d.g.)	ΗZ	S
\mathbb{Z} -Mod	d.gMod	HZ-Mod	S-Mod
Z-Alg	d.gAlg	H Z-Alg	S-Alg
	quasi-iso	weak equiv.	weak equiv.
	$\mathcal{D}(\mathbb{Z}) =$	$\mathcal{H}o(H\mathbb{Z}\operatorname{-Mod})$	$\mathcal{H}o(S) =$
	$ \mathcal{C}h[\text{q-iso}]^{-1}$		Spectra[wk.eq.] ⁻¹

Theorem. (Robinson '87; Schwede-S. '03; S. '07) Columns two and three are equivalent up to homotopy.

(1)
$$\mathcal{D}(\mathbb{Z}) \simeq_{\Delta} \mathcal{H}o(H\mathbb{Z}\operatorname{-Mod}).$$

- (2) $\mathcal{C}h \simeq_{\text{Quillen}} H\mathbb{Z}$ -Mod.
- (3) Associative $\mathcal{D}GA \simeq_{\text{Quillen}} \text{Assoc. } H\mathbb{Z}\text{-Alg.}$
- (4) For A. a DGA, d.g. A. -Mod $\simeq_{\text{Quillen}} HA$. -Mod and $\mathcal{D}(A.) \simeq_{\Delta} \mathcal{H}o(HA.$ -Mod).

Algebraic Models

Thm.(Gabriel)

Let \mathfrak{C} be a cocomplete, abelian category with a small projective generator G. Let $\mathcal{E}(G) = \mathfrak{C}(G, G)$ be the endomorphism ring of G. Then

 $\mathfrak{C} \cong \operatorname{Mod-} \mathcal{E}(G)$

Consider $\mathfrak{C}(G, -)$: $X \to \mathfrak{C}(G, X)$.

Differential graded categories

Defn: \mathcal{C} is a Ch_R -model category if it is enriched and tensored over Ch_R in a way that is compatible with the model structures.

Example: differential graded modules over a dga. Note, $\mathcal{E}(X) = \operatorname{Hom}_{\mathfrak{C}}(X, X)$ is a dga.

Defn: An object X is *small* in \mathfrak{C} if $\oplus[X, A_i] \to [X, \coprod A_i]$ is an isomorphism.

An object X is a generator of \mathcal{C} (or $\mathcal{H}o(\mathcal{C})$) if the only localizing subcategory containing X is $\mathcal{H}o(\mathcal{C})$ itself. (A *localizing* subcategory is a triangulated subcategory which is closed under coproducts.)

Example: A is a small generator of A-Mod.

Thm: If \mathcal{C} is a Ch_R -model category with a (cofibrant and fibrant) small generator G then \mathcal{C} is Quillen equivalent to (right) d.g. modules over $\mathcal{E}(G)$.

$$\mathfrak{C} \simeq_Q \operatorname{Mod} \mathcal{E}(G)$$

Example: Koszul duality

Consider the graded ring $P_{\mathbb{Q}}[c]$ with |c| = -2. Let tor P-Mod be d.g. torsion $P_{\mathbb{Q}}[c]$ -modules.

 $\mathbb{Q}[0]$ is a small generator of tor P-Mod. Let \widetilde{Q} be a cofibrant and fibrant replacement.

Corollary: There are Quillen equivalences: tor P-Mod \simeq_Q Mod- $\mathcal{E}(\widetilde{Q}) \simeq_Q$ Mod- $\Lambda_{\mathbb{Q}}[x]$

$$-\otimes_{\mathcal{E}(\widetilde{Q})} \widetilde{Q} : \operatorname{Mod-} \mathcal{E}(\widetilde{Q}) \rightleftharpoons \operatorname{tor} P \operatorname{-Mod} : \operatorname{Hom}_{P[c]}(\widetilde{Q}, -)$$

 $\mathcal{E}(\widetilde{Q}) \to \widetilde{Q}$
 $\mathcal{E}(\widetilde{Q}) \leftarrow \widetilde{Q}$

Note
$$\mathcal{E}(\widetilde{Q}) = \operatorname{Hom}_{P[c]}(\widetilde{Q}, \widetilde{Q})$$

 $\simeq \Lambda_{\mathbb{Q}}[x]$ with $|x| = 1$.

Corollary: Extension and restriction of scalars induce another Quillen equivalence:

$$-\otimes_{\mathcal{E}(\widetilde{Q})} \Lambda_{\mathbb{Q}}[x] : \operatorname{Mod} \mathcal{E}(\widetilde{Q}) \rightleftharpoons \operatorname{Mod} \Lambda_{\mathbb{Q}}[x] : \operatorname{res}.$$

Spectral model categories

Defn: Let Sp denote a monoidal model category of spectra. \mathcal{C} is a Sp-model category if it is compatibly enriched and tensored over Sp. $\mathcal{E}(X) = F_{\mathcal{C}}(X, X)$ is a ring spectrum.

Thm: (Schwede-S.) If \mathcal{C} is a Sp-model category with a (cofibrant and fibrant) small generator G then \mathcal{C} is Quillen equivalent to (right) module spectra over $\mathcal{E}(G) = F_{\mathcal{C}}(G, G)$.

 $\mathfrak{C} \simeq_Q \operatorname{Mod-} \mathcal{E}(G)$

$$-\otimes_{\mathcal{E}(G)}G$$
: Mod- $\mathcal{E}(G) \rightleftharpoons \mathfrak{C}: F_{\mathfrak{C}}(G, -)$

Rational stable model categories

Defn: A Sp-model category is rational if $[X, Y]_{\mathcal{C}}$ is a rational vector space for all X, Y in \mathcal{C} . In this case $\mathcal{E}(X) = F_{\mathcal{C}}(X, X) \simeq H\mathbb{Q} \wedge cF_{\mathcal{C}}(X, X).$

Rational spectral algebra \simeq d.g. algebra:

• There are composite Quillen equivalences

 $\Theta: H\mathbb{Q}\operatorname{-Alg} \rightleftharpoons \mathrm{DGA}_{\mathbb{Q}}: \mathbb{H}.$

• For any $H\mathbb{Q}$ -algebra spectrum B, Mod- $B \rightleftharpoons Mod-\Theta B$.

Thm: If \mathcal{C} is a rational Sp-model category with a (cofibrant and fibrant) small generator G then there are Quillen equivalences:

 $\mathfrak{C} \simeq_Q \operatorname{Mod}_{\mathcal{C}} \mathcal{E}(G)$ $\simeq_Q \operatorname{Mod}_{\mathcal{C}} \mathcal{E}(G))$

 $\simeq_Q d.g. \operatorname{Mod-} \Theta(H\mathbb{Q} \wedge c\mathcal{E}(G)).$

 $\Theta(H\mathbb{Q} \wedge c\mathcal{E}(G)) \text{ is a rational dga with} \\ H_*\Theta(H\mathbb{Q} \wedge c\mathcal{E}(G)) \cong \pi_*c\mathcal{E}(G).$