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1. INTRODUCTION 

To determine the homotopy groups “*(So) of spheres is one of the main problems in 
homotopy theory, and several methods have been found to reach it. One of them is the one 
using a generalized Adams spectral sequence based on a ring spectrum E. In many 
examples, it converges to the homotopy groups of the localized spheres with respect to E, 
not to those of the unlocalized one. Consider the Brown-Peterson spectrum BP at a prime 
p. Then the localized sphere with respect to BP is the one localized at the prime p. We call 
the spectral sequence based on it the Adams-Nouikov spectral sequence. It converges to the 
homotopy groups of the p-localized spheres and its E,-term is expressed by the Ext group, 
which is computable object. For odd prime p, it seems more powerful than the Adams 
spectral sequence that is based on the Eilenberg-MacLane spectrum. When we use the 
spectral sequence, we have to compute the Ez-term. The E2-term E?’ of the 
Adams-Novikov spectral sequence based on BP for the sphere is computed for t < p3q by 
Ravenel, and for s < 3 by Miller, Ravenel and Wilson using the chromatic spectral 
sequences. The E,-term of the chromatic spectral sequence does not only converge to the 
E2-term of the Adams-Novikov spectral sequence but also is itself the E,-term of the 
Adams-Novikov spectral sequence for computing homotopy groups of a spectrum whose 
existence is shown by Ravenel [12]. 

Now we fix a prime p > 3. The El-term of the chromatic spectral sequence is denoted by 
H’M,” and converging to EJ”+‘Nz (see section 4). In this paper, we study it for the 
Johnson-Wilson spectrum E(2) whose homotopy group E(2), is the polynomial ring 
Zc,,[ol, u2, II;‘] on the generators of BP,. Here note that E(n) is not proved to be a ring 
spectrum. Since E(n) is a spectrum representing the homology theory E(n),(X) = 
E(n), OBP* BP,(X), we can construct a generalized Adams spectral sequence based on E(n) 
similarly to the original one. So we use E(2) here. Then we may put Nt = E(2),, 
NF = E(2),/(p) and M,S = u ,;‘,N,” (u. = p) for the E,-term of the chromatic spectral 
sequence. Moreover, M,” = 0 if n + s > 2. So far, for this case, the E,-terms of the 
chromatic spectral sequence are computed for all n and s but n = 0 and s = 2. Here we 
obtain this case (n, s) = (0,2) (Theorem 2.3). This module H*Mi seems to have many 
applications. One of them is the one for the Greek letter elements in the stable homotopy 
groups of spheres. As is remarked in [6], it gives complete information on products of a’s 
and p’s and decomposability of the y’s. Let L2 denote the Bousfield localization functor with 
respect to the spectrum E(2) [2, lo]. Before our computation, we only know about the 
homotopy groups n*(L2M) for the mod p Moore spectrum M. Our computation on H*Mi 
gives rise to the homotopy groups of 7r*(L2So) (Theorem 2.4) by the mod p Bockstein 
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spectral sequence. This has also much information on the products of the homotopy 
elements. In fact, the localization map q:S” + LzSo induces the homomorphism 
q*:n,(S’) + K*(L$O), by which we can tell some information. On this map, we have the 
relating exact sequence H*-3Ni-%H*BP*-%H*E(2)* + H*-‘Ni of the E,-terms 
given in [3], where Ni = BP,/(pm, up, v?), and Gr denotes the universal Greek letter map 

introduced in [6]. Thus the map q* maps the elements of n*(S’) whose filtration degree is 
less than 3 monomorphically to those of 7rn,(L2So). Furthermore, M. Hopkins and D. 
Ravenel show that L2X is homotopic to L2So A X (cf. [13]). So our computation will be 
a grip to understand the L2-localization. These applications will be discussed in the 

forthcoming papers. 

2. STATEMENT OF RESULTS 

Let E(2) denote the Johnson-Wilson spectrum at a prime p > 3 with the homotopy 
groups E(2), = Zc,,[v,, v2, VT’]. Then it is known (cf. [2, lo]) that we have the 
Adams-Novikov spectral sequence converging to 7r*(L2So) with the E2-term 

HSs’E(2), = Ext~fi).(E(2))(E(2)*, E(2),). 

Here L2 denotes the Bousfield localization functor with respect to E(2). Consider the 
comodules Nf and Mi for i + n 5 2 such that Mi = v,-,‘iNiy N,f-” = M,f-” and 

N,O = E(2), 

N,O = E(2),/(p), No’ = E(2)&“) 

N-2” = E(2)*/(P, u1), N; = E(2),&, VP), N,Z = E(2)&“, VP). 

Then we have the chromatic spectral sequence converging to our target H”,‘E(2), with the 
El-term H’MS,. The El-terms for s < 2 are determined in [6]. In order to determine H*M& 

we have the vl- and the mod p-Bockstein spectral sequences coverging to H*M,f-” with the 

&-term H’M,‘;; for n = 0, 1. Ravenel shows the following result. 

THEOREM 2.1 (Ravenel [9]). H*Mt = FJu2, &.‘I (1, ho, h, 9o,gl, hog,) 0 E(i). 

Here FP denotes the prime field of characteristic p, which is identified with Z/p, R(x) 

denotes the R-module generated by x, and E(x) the exterior algebra generated by x. By the 
vl-Bockstein spectral sequence, we compute H*M: from Theorem 2.1. For simplicity, we 
denote a cocycle by its leading term. Put 

X = FP[vl] {v~~“/v~: n 2 0, SEZ - pZ} 

X, = F,{l/v/: j > 0} 2 Fp[vI, v; ‘]/Fp[vl] 

Yo = FpCo11 {v%olv~ 2+An: mEZ(O), n = v,(m)> 

Yl = F,[uJ {~~h~/vf+*~: m E Z(2), n = v,(m)} 

Y= F,[v,]{~:p-~h~/v;-~: FEZ} 

Y, = FP{ho/vi: j > 0} z FP[vl, v;‘]/FP[vl] and 

G = F,[v,]{v~p”~‘p”~L~l~‘~p~l~g~/v(f”, vsgo/vl: n 2 1, s + 1 EZ - pZ}. 

Here vp(m) denotes the maximal power of p dividing m, the integers a,, A, and AL are given 
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a0 = 1, a,=p”+p”_‘- 1 

A” = (p + l)(P” - 1MP - 1) 

A:, = (P + l)(p”+’ - p” + (P” - l)/(p - 1)) 

and we use the subsets of integers 

Z(0) = (m: m = sp” with p$s(s + I)} 

Z(2) = {m: m = (sp2 - l)p”}. 

Then we have the structure of H*M: shown as follows. 

THEOREM 2.2. (Miller et al. [S], Shimomura and Tamura [16] and Shimomura [14]). 

H*M: =(X0X,@ Y,@ Y,@ Y@ Y,@G)@E(C). 

In this paper, we use the mod p-Bockstein spectral sequence, and obtain the following 
theorem. 

THEOREM 2.3. The module H*Mi is isomorphic to 

(Xm, 0 Y:,, 0 W) 0 E(i) 0 X” 0 -XC!’ 0 Y& 0 Yc, 0 YF $ G”. 

Here the modules are defined by 

X” = ZCP){U~p”/pi+lV{: n 2 0, SEZ - pZ, i 2 0, 

j 2 1 with p’lj I an-i and either p’+‘xj or u,_~_~ cj} 

X2 = ZCp,(l/pi+ ‘vi: i = VP(j) 2 0} 

for dimension 0, 

xy,m = z(p,{v”p”~/pi+lu~: SEZ - pZ, j > 0, p’lj 5 U,_i 

eitherp’+‘$j orj> an-i-i, and pi+‘(jifpkflljfor s = tp’+‘- 1 with k >O} 

Y& = Z~,,{o~p”ho/pi+‘v:Pi+‘: p$s(s + l), for k = 0, i = n, and for k > 0, 

kp’ + 1 I An-i + 2, kp’ + 1 > an-i if p,fk, and > An-i-1 + 2 otherwise} 

YT, = ZCp,{v~pz- l’P”ho/p$+‘i+ l: 1 = r~ + 1 if k = 0; for k > 0 with kp’ > an-i, 

1 = i > 0 for p”+’ - p” < kp’ < pne2 - p” + FI_~+ 1 + 2 and 

P n+2 - P” + A,_i + 2 I kp’ if plk 

I= i + 1 for i = 0 and p,/‘(k + pnei), for kp’ = (p2 - 1)~” or 

for kp’ < P”+~ - p”, p,+‘(k + p”-‘) and 0 < i I n 

I = n + 2 for i = n, k s p2 - 1, p((k + 1) and k # p2 - p - 1; and 

1=n+3ifi=nandk=p2-p-l} 

Yc” = z@,{u~-’ hI/p’u{: 1 = 1 if j < p - 1, and I= 2 if pit and j = p - l} 

Y” m.C = Q/Z,,, generated by the set {h,/pju,: j > 0} 
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for dimension 1, and 

for 

Y co*G = Z~p){“~p”hO/~i+l”:P’+‘+l: p$s(s + 1), 0,c 

k # 0, An-i-1 + 1 < kp’+’ I An-i + 1 for i 2 0} 

Y a0.G = ~~P~{“:tp2-~l)Pnho~p~+lu:p*+1+l~ k -+ 0, 
1.c 

P “+’ - p” + An-i-1 + 1 < kpi+l I p”+’ - p” + A,_i + 1 for i 2 0} 

G,” = ~~p,{v~P”go/p”+‘v,,v~P”-~P”-‘-~~/~P-~~g~/ply~~ 

p$(S + I), 0 < j I Cl,, p”‘,f(j + An-i-1 + 1) ifs = Up’EZ(O), 

pi~(j+A~-~+1)ifs=upi~Z(2),andI=i+1if~=Oandvp(s)=i; 

I=i+lifn~landvp(j+A,_,+l)=i} 

G,” = Q/Z,,, generated by the set { go/pju,: j > O}. 

As a corollary of this theorem, we have the E2-term H*,?(2), of the Adams-Novikov 
spectral sequence by the chromatic spectral sequence. Furthermore it collapses since Es = 0 
for s > 4, and so the E2-term is isomorphic to the homotopy groups of L2So. Thus we have 
our main theorem. 

THEOREM 2.4. 7zJL2So) is isomorphic to H*E(2),, which is isomorphic to 

Z,,,@ z~p){“;p’/pi+l: i20,s20,p$s}@Xm 

0 Y& 8 YCc 0 Y; 0 X&T 0 (X,m 60 Z,,,(5)) 

0 YQ’ 0 G,” 0 (Y:,, 60 Z(,,{i>) 0 G,” 

0 (G,” @ %&I). 

The degrees of the elements are read off from Theorem 10.1 as follows. Here a homotopy 
element r E x*(L2So) has degree r if 5 E n,(L2So), and we denote I < I = r. Then all elements in 
the first factor are 0. If we identify the elements in the theorem with the corresponding 
homotopy elements under the isomorphism, we have degrees: 

14/pi+‘[ =jq- 1 

Iu~/piui I = m(p + 1)q - jq - 2 

IuTho/piui I = m(p + 1)q + q - jq - 3 

I~~~-~h~/p~u{I = tp(p + 1)q - q - jq - 3 

I @go/pi”{ I = m(p + l)q + q - jq - 4 

IuTgI/piui I = m(p + 1)q - q - jq - 4 

and for the elements of the form z @ [, 

lz@Cl= Izl- 1. 
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3. HOPF ALGEBROIDS 

Let E be a ring spectrum, and denote E, = E.+(S’). If the homology E,(E) of E is flat 

over E,, then the pair (E,, E,(E)) becomes a Hopf algebroid in the usual way (cf. [l, ll]), 
and we can do homological algebra in the category of E,(E)-comodules (cf. [ll, Al]). 

Among such spectra E, at each prime number p, we have the Brown-Peterson spectrum 
BP and the Johnson-Wilson spectrum E(n) for a nonnegative integer n. Here we note that, 
although we do not know whether or not E(n) is a ring spectrum, we have the Hopf 

algebroid (E(n),, (E(n),(E(n))) h w ose structure is induced from that of BP,(BP), since 
E(n),(X) = E(n), 8 BP,BP*(X) for any spectrum X. Here the action of BP, to E(n), is 
given by sending vk (k > n) to 0, in which uk is the Hazewinkel’s generator of the coefficient 
rings E(O), = Q, 

BP, = Ztp,Cv~, ~2, . . . 1 and E(n), = Zc,,[ul, . . . , v,, v;‘] (3.1) 

for n > 0 (cf. [l 11). Their self-homologies are 

BP,(BP) = BP,[t,, t2, . . . ] 

&)&W)) = E(n), 63 ~p,W#f’) C3 BP,JW,. (3.2) 

We obtain the formulae of the structure maps of the Hopf algebroids associated to these 
spectra by [7] (cf. [ 111). The structure of the Hopf algebroid associated to E(n) is induced 
from that of BP.,, . So we give here the formulae for BP. The left unit qL : BP, + BP,(BP) is 

the inclusion BP, c BP,(BP). Then BP,(BP) is a left BP,-module by qL. The right unit 
qR: BP,,, + BP,(BP), which also gives BP,(BP) a right BP,-module structure, sustains 
Landweber’s formula 

p”- I 
~Rh) = 0, + v,- 1 t, - V,P_lCl 

mod I,_ 1 for the prime ideal I, = (p, vl, . . . , v,_ 1) of BP,. We also have 

(3.3) 

IfRh) = Ul + Ptl 

qR(v2) = v2 + vltf + Pt2 - tl(vl + PtdP(P + l)v:t, 

- P-‘((vl + PLl)” - $1 

= v2 + v,t’; + pt2 -(p + l)u~t, mod(p2) 

q~(V3).% U3 + V4 + Vlt,P - t1ffR(v2)P + 0: v mod (P, Uf) 

s ~3 + ~2tf + pt3 - ~‘;tl mod (p2 01) 9 

where we use the same notation V as that of [16] defined by 

pv, v = II; + vftf - l$tf - (v2 + u1t’; - VfCl)P. 

For the diagonal A : BP.,.(BP) + BP, (BP) Oep, BP, (BP), we have 

A&) = t1 0 1 + 10 t, 

A(t2) = t2 8 1 + 18 t2 + tl @ tf + vlT 

A(t3) - t3 0 1 + 1 0 t, + g + v2TP mod (p, vl) 

where g, TE BP,(BP) 6 Bp, BP, (BP) denote the elements 

g = Cl 0 t; + t2 0 tf’ 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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Turn now to the structure of E(n),@(n)). Noticing that E(n),(BP) = E(n), @ Bp, 
BP, (BP) = E(n), [tl, tz, . . . 1, we have 

E(n)*(Q)) = E(n)*(BP) @ !I!+(@* 

= F(n)* Cl1 7 t2, ... I/(qR(vi): i > n). 

In this paper, we consider only for the case n = 2. Then the formula on v3 in (3.4) gives rise 
to the relation in E(2),&(2)): 

02tf2 = tiqa(02)P - 1 2” u t - 0: V mod (p, v;‘). (3.8) 

Furthermore, we have the following result. 

(3.9) (Shimomura and Tamura [16, Lemma 3.21). In the E(2),@(2)), we have the 
relations 

and 

u2 tP2 = u;” t, - 01 t,P+ 1 n mod(p,u:)forn>O 

u,PTP2 - u;‘T mod(p, ui). 

Let (A, I) denote one of the Hopf algebroids (BP,, BP,(RP)) and (E(2),, E(2)@(2))). 
Then the Ext group 

H*M = Ext,*(A, M) 

of a comodule M can be computed by the homology of the cobar complex &I:! M, d,). It is 
shown in [S] that there is an isomorphism 

Extap,(apj (BP, 9 Ml A ExtE(z,.(E(z,,(E(2),, J%% @BP, W 

for a u2-local BP, (BP)-comodule M. Thus there would be no confusion if we write H*M for 
those Ext groups, as long as we consider u2-local comodules. A cobar complex of 
a comodule M is a pair (C$**M, d,) of graded Zt,rmodules 

R;*M = M OArBA... @IAl- (s copies of I) 

for s 2 0 and the differentials d, : i2: *M + f,Ii+ l- * M in the sense d,+ 1 d, = 0 for s 2 0 which 
are defined inductively by 

da(m) = e(m) - m 0 1 

d,(m~x)=Il/(m)Ox-m8A(x)+m~x~l (3.10) 

d,(m~xxxx,-,)=d,(mOx)~xx,-, -mOxO&l(x,-l) 

for mgM, xE:T and x,~R&4 = I’@,,‘.. @‘AI (S copies). Here $ : M --* M @J is the 
comodule structure of M. 

We note that in the following sections, we mainly treat comodules with structure maps 
induced from qa, and so the comodule structure II/ is computable by using the formulae (3.3) 
and (3.4). We further use the notation qa for such a structure map @. For example, by (3.4) 
and (3.10), we obtain the following lemma. 

LEMMA 3.11. In the cobar complex Q,!A, we have dO(uf) = u:t$ - uftf - pul 

V + p2(u2 + ultf - uftl)P-‘(t2 - uftl) mod (p3). In particular, do($) = pulu;-‘tf + 
0 

; 

u;pt;p+ p%,p-‘t2 - p2ulu;-2tft2 + (p2/2)u~u,P-3tfPt2mod(p3, u:). 
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We have more formulae on the differential shown immediately from the definition (3.10). 

(3.12)(Shimomura and Tamura [16]). For any a, oeA and x, YET, we have 

&(a4 = do(a)rlr(u) + udo(u) 

d,(xy) = d,(x)A(y) + (x 0 1 + 18 W,(y) - x C3 Y - Y 63 x 

&by) = do(u) @ y + u&(y) 

dl(xtldu)) = 4(x)(1 0 n&)) - x 8 do(u). 

Note that once we give an element in RiA, then we have the corresponding elements in 
O,‘A/Z for any ideal I of A. In this case we use the same notation for those elements. First 

define the elements go and g1 E CJt A: 

90 = GPs and g1 = u;P2-‘gP = u;‘gP, (3.13) 

for g given in (3.7). The element cz in Q,! A is defined in [6] by 

c2 = u;‘tz + u;“(t; - $‘p) - u;P-+J&. 

LEMMA 3.14. In the cobar complex RtA/(p, ul), we haue 

dl(tltz) = uztl@ 52 - vzgo - 2t, 63 t2 - t: @I tf 

dl(tft2) = u2i2 0 t; - u;gl - 2t, ~$3 t; - t, @I t;” 

d,(t,t;) = ur;c, 0 tl - u;go - 2t; @ tI - t; 8 $+I. 

This follows from a direct calculation by definition with the help of (3.6) and (3.12). 

4. THE CHROMATIC SPECTRAL SEQUENCE 

In this section we also consider the ring spectra BP and E(2), the Brown-Peterson and 
the Johnson-Wilson spectra, respectively, and denote those spectra by E. Then we have the 
Adams-Novikov spectral sequence converging to the homotopy groups of x.,(LEX) of the 
Bousfield localization of X with respect to E if X is connected (cf. [l, 2)). Note that 
LBpX = X for a connected p-local spectrum X. The E,-term is H*&(X) = Ext& 
(E,, E,(X)). By virtue of the Landweber filtration theorem [4], the E2-term can be lead by 
computing H*E,/IP’s. Here Ik denotes the invariant prime ideal (p, ul, . . . , vk_ 1) of E,, and 
k I 2 if E = E(2). The Ext groups H*E,/Zk)s are also the E2-term of the Adams-Novikov 
spectral sequence for computing the homotopy n,(&V(k - 1)) of the Toda-Smith spectra 
V(k - 1) when they exist. Miller et al. [6] introduced the chromatic spectral sequence for 
computing the Ext groups H*E,/lk’S. 

We now give the definition of the chromatic spectral sequence. Put first N,” = E,/Zk and 
inductively suppose that N; is defined. Then define Ml = uk;lSN;, which has the comodule 
structure induced from that of Ni by [S]. Now Nl+l is the cokernel of the inclusion 

Ni c Mi, which also has the induced comodule structure. In other words, we have the short 

exact sequence of comodules 

O-N," -LM,“-+N,“+‘+o. (4.1) 

As usual, we will denote an element < of Mi by a linear combination of the elements of the 
form 

X/Vke” . . . VI”++‘,“--; (00 = P) 
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for ei > 0 with k ( i I k + s - 1 and for XEM~+~. Furthermore, the element x/@ ... 
v$+;z; is killed by VT for each i. 

Applying the functor H * - to the exact sequence (4.1}, we have the long exact sequence 

0 + H”N; -+ H”A4k” -+ H”N$+’ + JO H’N;+H’Mf 

+ H’N;+l --% . . . d”_,, H”N; .+ HEMS --, H”N;+l + . . . (4.2) 

for each nonnegative integers k and s. These exact sequences are the exact couple that gives 
rise to the chromatic spectral sequence. The iE,-term is Es,’ = H’M[ and the abutting 
module is the desired Ext group H sffNf = HS”‘E,,/fk. To compute the &-term, Miller 
et al. 163 further introduced the Bockstein spectral sequence that is defined by the exact 
couple obtained by applying the functor H* - to the short exact sequence 

where tp is the comodule map defined by rp(x) = x/v~. The Bockstein spectral sequence has 
the &-term H*Mi;: and abuts to H*Ml. Thus we can compute inductively the &-term of 
the chromatic spectral sequence. When we work on the Bockstein spectral sequence, 
(k, s) = (0,2) in our case, we mainly use the following result. 

LEMMA 4.3 (Miller et al. [6, Remark 3.11-J). Consider a map of exact couples 

If B’ is p-torsion, then f is an isomorph~sm. 

The first step of the induction is Morava’s theorem. 

(4.4) (Rave& [S]). If p > 2, then H*My ‘= Fp[vl, v;‘] 0 E(t,). If p > 3, then 

H*@ = &J&r u;‘] (1, tl> f:, go, sr, got:) @ Eti2). 

Here E(x) and F(bi} denote the exterior algebra over the generators (x} and the 
F-vector space with basis {bi}, respectively, in which F denotes a field. 

Turn to the second step. 

(4.5) (Miller et al. [6]). Z’p > 2, then H’M,’ = 0 for t > 1, HIM,’ = Q/Z,,, whose sub- 
group of order pj is generated by 

yl,j = - z. ( ;b,‘::i:‘: 

and 

Ho@ = Q/Z,,,Q i~o~~l_*(z/P’+~)(~;~i/P’+‘). 
7 9 

Here G(x) denotes the group isomorphic to G whose generator is x. 
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For stating the results on H*M:, we introduce some more elements. From here on we 
work on E(2) not on BP, and the Hopf algebroid (A, r) denotes (E(2),, E(2),@(2))). The 
elements x, E f$4 are inductively defined by 

x0 = 02, Xl = v;, x2 = XP _ vP2-‘vP=-P+1 
1 1 2 

x,=x;_1 - 
2uyn-Pv2p”-P”-‘+t for n > 2 (4.6) 

for the integer ai with a, = 1 and 

a,=p”+p”_‘-1 (4.7) 

for n > 0. For the differential do of the cobar complex, we have the following result. 

(4.8) (Miller et al. [6]). mod (p, uf+“*), 

dO(Xi) E Ultf, i = 0 

E ufk-l(tl + ul(u;‘(t2 - tf+‘) - c2)), i = 1 

E 2qu:p- l)P’_’ 
Oi-17 i> 1. 

The above element on is given by 

0” = t1 - ) u1 (z”“. 

The element c2 satisfies the following. 

(4.9) (Miller et al. [6]). c2 = u;‘t2 + u;p(t; - t f’2+p) is homologous to [!f for i 2 0 in 

$A/(p, Ul). 

(4.10) (Shimomura [15]). We have a cocycle c in each cobur complex niA/(p’+ ‘, up’) 
such that c is homologous to c2 in ir,! A/(p, ul). 

By virtue of this, we will use the notation [ for a cocycle of CA:’ A/( pi+ ‘, uTpi) such that 
[ is homologous to i2 in C$A/(p, ul) including ipi. We also use the notation 

a=t,-+u15. (4.11) 

Then c is homologous to 6, for any n in fikA/(p, ul). 
Divide the set Z - pZ of integers into three parts: 

Z. = {s: s E Z with p $ s(s + l)} 

Zl = (sp - 1: SEZ with p$s} 

z2 = (sp2 - 1: SEZ} 

(4.12) 

and Z - (0) into 

Z(i) = {m: m = sp” with n 2 0 and seZi} (4.13) 

for i = 0, 1 and 2. We then introduce the element y, = u;tl + uljm of Q,!A for 
m E Z(0) u Z(2) defined in [16] such that 

d,(y,) E - s,uf(m)u;(m)gl mod(p, uf(‘“)+l) (4.14) 
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t $03 tf) in (3.13). Here s, for m = sp” with p,j’s equals 

if n = 0 and m~Z(0) 

if n>O and meZ(O) 

1 if n =0 and mEZ(2) 

( - 1)” - if n > 0 and mEZ(2). 
4 

We define the integers e(m) and A(m) for m = sp” with p$s by 

(4.15) 

e(m) = m -(p” - l)/(p - 1) if mEZ(O) 

e(m) = m - p”(p - 1) - (p” - l)/(p - 1) if mE Z(2) 
(4.16) 

and 

4 = (P + l)(P" - IMP - 1) 

A:, = (p + l)(p”+’ -P” + (P” - MP - 1)) 

A(m)=&+2 ifm=sp”andmEZ(O) (4.17) 

=A;+2 ifm=sp”andmEZ(2) 

=CC if m = 0. 

Now we define inductively the elements y, for rnE Z(0) u Z(2) [16]. Let m = sp” with 
p$s. Then, for SEZ~, we put 

y, = u;tl + SUlU2 
s-l 

s-l(t;+l - t2) + - 
2 

UIGI 

u~u;-2t~(t~+ l - t2 + up!J + su~u;-‘-p2t~ (4.18) 

and, for s = tp2 - FEZ,, 

Once y, for p 1 m is defined, y,, is given by 

u;Ynlp = UlYm p - d,(u~P+l) + s,Lpm)-p+2 Wecm). 

Here the elements W,, Z, and X are defined in [16] so that they satisfy 

mod (p, uf+2) 

(4.19) 

(4.20) 

d,(Z,) s up-2usp-p 
1 2 mod (p, uf’+2) (4.21) 

d,(X) = - ufgp - uf+3u;pg1 mod (p, u;‘~) 
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and 

w, = - usp-p(v+ uppt;‘- +l$,p(t:+~ - t,)P(2 - qo;‘t;) + $-‘cP)) 

2, = W, mod (p, u;-‘). (4.22) 

We need other cocycles G, of nFA/(p, uy) for n 2 0 introduced in [14] such that 

Go = go and G, - u;(p”-‘-l)‘(p-l)gl mod (p, ul) for n > 0 (4.23) 

where the elements go and gl are given in (3.13). We prepare some notation here: 

k(l), = FpCd 

K(l), = u;‘k(l), = Fp[ul, u;‘] 

k(l),{x/ui: XE A) denotes the direct sum of the cyclic k(l),-modules isomorphic to 
k(l),/(u{) generated by x/u{, and 

k(l), {x/u?: x E A} denotes the direct sum of the modules isomorphic to K(l),/k(l), with 
F,-basis {x/u{: j > O}. 

Now consider the following k( l),-modules: 

X = k(l), (xs,/ui”: n20,scZ-pZ} 

x, = k(l),Illu?j 

Yo = k(l), (y&+ 111 E Z(O), n = v,(m)} 

Yl = k(l),(y,/uf+ mcZ(2), n = v,(m)} 

Y = k(l),(u!fV/u~-l: sZ} 

Y, = k(l), Wu? 1 

G = k(l), (xS.GJu4”: n20,s+lEZ-PZ}. 

Here v,(m) denotes the maximal power of p dividing m. Then we have the structure of H*M: 
obtained in [6, 16, 143: 

H*M; =(X0X,@ Y,@ Y,@ Y@ Y,@G)@E(c). 

We will end this section with rewriting the element y, as follows. 

(4.24) 

LEMMA 4.25. Let s and n be integers with n > 0. Then we have 

YSP” = 
u;P”(tl _)ulc) + qu;+Pn-‘uf-IIP”,,“-’ 

mo,-J(p u(P-l)P”-‘+l 
3 1 ) and moreouer 

2uP”- 1 
1 

y~tp2-~l)pn = - u:‘-l)P 
n+?. n+, 

VP 

mod (p, ~p”-‘+~(“))for F(n) = pn+2 - p”+l - 3~” + 1, up to homology. 

(4.26) 

(4.27) 

Remark. We can define y, so that the congruence (4.26) holds mod (p, uf’) after 
replacing I$!‘” by xi. 
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Proof: We first prove (4.26). By the definition of the elements (4.18) and (4.22), 

y,, = V~CJ - ; ($ZJ 

if se&, and 

Z, E W, s - v”pepV mod (p, vf-‘). 

Therefore we have the case for n = 1 and s E ZO. 
Next suppose that s = tp2 - 1. Then the definitions (4.19) and (4.22) give 

ys = Wp mod(p, $‘,I 

z - v~~-~* VP mod (p, II;) 

3V ;pzep tf’* mod@, vD 

which is congruent to v~P*-‘tI - ~~v~P*-~-~t~rnod(p, v:) by (3.8). Thus we have 

yp E $P*- l)Pt:, _ @$P-P- l)Pq* 

mod (p, v:J’). Furthermore, the formula (3.4) gives us 

d&;+(‘P*-l)P) E (v2 + vltfJ _ Vftl)(V:‘P*-‘)P _ vyV$P*-2)Ptf*) _ v;+(‘P*--l)P 

E vlv:‘p*- UPt:, _ $qP*- UPtl 

- VlV2 
P (tP*-2)P+ltP* _ vP+lv(fP*--Z)PtP*+P 

1 1 2 1 

mod (p, vf9 which turns out to be congruent, again by (3.8), to 

vlV:‘P*-l)PtP _ qqP*-l)Ptl + vfJ+1vy*-2)Pt; + v~+2v:‘p*-2)Pv_ v~+lv$uJ*-2)Pt;*+P~ 
1 

Put these into the congruence 

2vfy,, E vl ySp - &,(v:‘p* - ‘jp+ ‘) mod (p, vi”) 

of (4.19), and we have the same result as the case for s E: Z,,. 
Since d,(v’;P+‘) 3 v;P(v,t; - v[tI)mod(p, v~““) for m = sp” with n 2 2, we have 

v[y,, E v,v!y(t~ - fvy) +; v;+p+p”v);p-p”+’ VP” - v2”P(v1 t; - up,) 

mod (p, vip- l)p”fp+ ‘) by the definition (4.20) under the inductive hypothesis. Thus the case 
for n 2 2 immediately follows from the induction on n. 

Now turn to (4.27). By the definitions (4.19) and (4.22), we have 

ys z - $-l)P* VP (4.28) 

mod (p, v~*-P-~) for n = 0, and 2~7~ lysp = - v~-~)~’ VP* mod(p, v~J-p2-29 for n = 1 up 

to homology. Suppose that 

&)P”_ 1 
1 Y(fp*-l)P” = - Vi 

t-ll)p”+*vP”f1 (4.29) 

mod (p, v f”-l+F(n))for F(n) = pn+2 _ p”+’ - 3~” + 1 up to homology. Then the definition 
(4.20) leads us to 

2q+‘-l y(~p2_r)p”+l = 2u~+‘-pyfrp*_1)p” 

mod(p, a;“+‘-l+F(n+l) ) up to homology. Hence we have the desired congruence. Q.E.D. 
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COROLLARY 4.30. Let m be an integer in Z(0) v Z(2) with plm. In the complex C&A/ 

(p, vf), tI Q y, is homologous to - iv1 y, @I [. 

Proof: By (4.26), we see that t1 0 y, = tl @I vy(tl - full). Since plm, the first term is 
t1 0 v$‘t, = vytl @ tl in our complex, which equals d,( - iv?tf). Thus tI @ y, is homolog- 
ous to - +vlv~tl Q [. Q.E.D. 

5. THE COKERNEL OF 6, 

In this section, we consider the connecting homomorphism 6a : Ho@ -+ H’M: asso- 

ciated to the short exact sequence 0 + Mi + M: 2 M: + 0. The image of a0 is given in [6, 

Prop. 6.91. First we rewrite the result by using the bases of HIM:. By Lemma 4.25, we 
obtain the following lemma. 

LEMMA 5.1. The connecting homomorphism ho : H"Mi + H1 M: sends an element xf+J 

P “‘vi for SEZ - pZ and j = mp’ with 0 I i I k and 1 I m I ah-i to 

- yJv: + (s - l)v”,[/2v, ifk = 0 

- mySpi+ 1 I v1 j+l _ mx~+1~/20~ _ sv;P’+‘-Pv/u{-l + . . . ifk = 1 

- my,,i+2/v~+l - mxf, 2 1/2vi + sySpz + 2 _ 1 v / i-P + sv;Pi+2-P-1 V/4-“- + . . . $k = 2 

- mySpi++{+’ - mxf+kc/2v{ + 2~y~,~i+2_~,~-~/v~-~~-~ + *.. ifk > 2. 

For the generator ho/vi E H’M:, which is represented by tJv{, we also have Lemma 5.2. 

LEMMA 5.2. Put j = kp’ > 0 for k with p#k. Then, 

60(l/pf+‘v~) = - kho/vl j+l 

Proof: This follows immediately from the definition of do and the formula 

d,(v{) - jpvi-’ tI mod(p’+2). Q.E.D. 

We read off the following proposition on the cokernel of a0 from Lemma 5.1 and the 
structures of H”Mi given in [6] and H’M: in (4.24). We prepare the following notation: 

z~,,{x/p’u;: xEI\, jEJ, iEZ} 

denotes the direct sum of the cyclic Zcpr modules isomorphic to Z/(p’) generated by the 
elements x/p’v{ subject to the conditions x E A, je J, and i E I. 

X”’ = z~,,{x;/p’+‘v{: n 2 0, SEZ - pZ, i 2 0, j 2 1, such that p’lj I a,_i and either 

pi+‘$j or a,_i_l <j}; and 

Xz: = Z~p){l/pi+lvi: i = VP(j) 2 O}. (5.3) 

Under these notations, we have the following result. 

(5.4) (Miller et al. 16, Theorem 6.11). H”Mi = X” @ X2. 

We also have 

H’M: = (X 0 X,) 0 F,(c) @ Yo 0 Y10 Ym 0 Y (5.5) 



274 Katsumi Shimomura and Atsuko Yabe 

by (4.24). Recall the notation (4.12) and (4.13): 

Z0 = {s: SEZ with p,/‘s(s + l)} 

Z1 = {sp - 1: SGZ with pJs} 

zz = (sp2 - 1: SEZ} 

Z(i) = (m: m = sp" with n 2 0 and scZi) (ig (0, 1,2}). 

We further define a subset of Z(2) by 

z: = {tp’+2 - 1: t E z - pZ) 

for each nonnegative integer i. Then u,Z: = Zz, which is a disjoint union. 

(5.6) 

PROPOSITION 5.7. The cokernel of a,,: H”Mg + H1 M t is a vector space spanned by the 
bases represented by the cocycles: 

(i) tl/vl and @{for j 2 1; 

(ii) yS,Jv{for SEZO u Z2, n 2 0, j I A(sp”) such that j = 1 or j - 1 > a,_i ifp’l(j - l), 
subject to pk”,+(j + a,+J or j > a,+2 - a,,,, ifs~Z,“; 

(iii) x:[/vi for s E Z - pZ, n 2 0 and 1 I j < a, such that j > a,_I ifp’ 1 jfor either s E Z1 
or SEZ~ and pk+’ 1 j; 

(iv) v~*V/vi for SEZ and 1 I j I p - 1 with a condition that pl(s + 1) ifj = p - 1. 

Proof: By Lemma 5.1, the leading terms of bo-images of the generators x,/pi”v~ of 
H”Mt are rewritten to be: 

(1) YsP.lvii+l> sEZouZ2,n>0,j>1 andjIa,-iifp’+‘#j. 
(2) xi&i, sEZl,n 2 0, j 2 1, and j I a,,-i if p’+‘J’j. 
(3) XS,~/V{, SEZ~, n 2 0, j 2 1, and j I a,_i if pi+lJ’j, subject to pk+‘lj if sEZ;. 

(4) v;p-” v/v;-‘, SEZ - pz. 

(5) YS,& 3 SEZ~, n 2 0, j 2 1, and pk+lI(j + a,,,) I a.+2 if sEZ& 

Here we make a note on the elements of (3). Since seZ,k, we may put s = tpk+2 - 1 for 
t with p#t. Lemma 5.1 says that if pk”l(j + a,+1 + 1) < a,+2, 

6O(x:,+2+k/P k+lVj+a~+~+1)= &ty(,~+2_l)pn/V~+l + ... 

where E = 1 if n = 0, and = 2 otherwise. Thus we have the elements in both of (1) and (5). 
Therefore, the second terms of the last two equations of Lemma 5.1 turn into the leading 
terms and give the elements of (3). 

The cokernel of do is expressed by the generators of H1 M: other than those that appear 
above as the leading terms. For the generator of the form v~~V/V{, vff V/v:-’ with p#(t + 1) 
die in the cokernel by (4). Thus we have (iv). 

Considering the negative statements, we deduce (ii) from (1) and (5), and (iii) from (2) and 

(3). 
Lemma 5.2 gives the first half of (i), and the second half follows from Lemma 5.1. 

Q.E.D. 

6. SOME LEMMAS ON 6, 

Consider the short exact sequence 

O-+M;*M,2~M,+O 
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and apply the functor H * - to it to obtain the Bockstein spectral sequence. The differen- 
tials d, of the spectral sequence depend on the computation of the connecting homomor- 
phism 6,: H’M: + H’+lMi. 

As we have remarked in (4.10), we have a cocycle [ in each cobar complex 
$A/( pi+ 1, ~7~‘). So we have Lemma 6.1. 

LEMMA 6.1. tet XE H’-‘Mi, and 6,: H’M: + H ff ‘M: , the connecting homomorphism. 

Then 

WOC)=&-l(X)@i. 

By the definition of 6,, we obtain the following lemma. 

LEMMA 6.2. Let w be an element ofE(2), such that d,,(w) G 0 mod(p’+l, vi). Then we 
have 

for x/p’v{ E H’M;. 

wb,(x/p’v{) = G,(wx/p’v{) 

Proof This follows from the definition of 6, and the calculation 

d,(wx/p’+‘v{) = wd,(x/p’+‘vi). Q.E.D. 

Since d,(v~‘) = 0 mod(p’+‘, v{) even if pi c j, we have the following corollary. 

COROLLARY 6.3. Let 6,: H’M: + H 1+1 M i be the connecting homomorphism. Then we 
have 

v$qx/p’vi) = S,(x/p’v{-q 

for x/p’v{ E H’M:. In particular, 

vl;b,(x/pv{) = G,(x/pv{-p) 

for x/pv{ E H’M:. 

In order to state the next corollary, we define integers p(i, j) depending on integers i and 

j by 

p(i,j) = min{nEZ: p’ln and j < n}. 

COROLLARY 6.4. For a cocycle x/p’v( E H’M,$ suppose that 

G,(x/p’vi) = c5/v: # 0 

for the elements &I: E H’+lM: with t/v1 # 0. Then k I p(i,j). 

Proof Corollary 6.3 implies that v f”* j’S,(x/p’v’,) = 0 since j I p(i,j). Thus we have 
5/~:-~“~j) = 0. If k > p(i,j), then [/v~-P”*j) # 0, which is a contradiction. Q.E.D. 

For the next section we introduce some more elements defined by 

pv, = v;“t;“+’ - v;“+‘t~” - d&q) (6.5) 

for n 2 1, in which the right-hand side is divisible by p since qR(vZ) = v2 + v1 t: - vTtl 
mod (p, vl). Then we have Lemma 6.6. 
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LEMMA 6.6. In the complex fI,* A, 

V.+l E uf”Vp” mod(p) 

z - u~“u~-‘)P” tT”‘l mod (p, vl) 

d,(V,) E 0 mod (p”,uf”). 

Here V is the element of(3.5). 

ProoJ The first two are seen by direct calculations and the definition of V. We deduce 
the last one by the definition (6.5) and the following facts: dldo = 0, d,(uf” ,f”“) = 0 and 
dI(uTntl tf”) E 0 mod(p”+’ , UT”), the map p: fltA/(p”, UT”) + RtA/(p”+‘, uf;“) is mono- 
morphic and (p”+l, ~7”) is an invariant ideal. Q.E.D. 

Noticing that d,-Ju~“+*) s I$“+’ tTnt3 - p V,,+2 mod(u~““) by the definition (6.5), we 

obtain Lemma 6.7. 

LEMMA 6.7. Let u, n and 12 0 be integers such that p$ u and n, 12 0. Then in the complex 

GA, 

d&;P”+‘+* ) s _ up$$P’-‘-l)P”+~ vn+3 

1 (up’-l)p”+z 
= up u* (I$“” tTnt3 - pV,+,) 

mo~(p’+~,p~+~u~“+2+p”+‘,U~P”+*)~ 

We have some relations on the elements V”‘s. 

LEMMA 6.8. In the cobar complex RiA/(p,u:), 2t, 631 V is homologous to 

- u1u;g, - ulu;-‘~@ t;. 

Proof: By the definition of V, mod (p,uf), 

2tl~Vr2t~~(-u~-‘t~)+ulu:-2tl~~~P 

z - 2u;-‘tl @It; + 2u1u;-y+’ @It; + u1q2t1 @I tp. 

Direct computation by the formulae (3.6) and (3.10) brings us 

d,( - 24-‘t2) = 2ulu;-2t$’ @I t2 + 24-‘tl @tT + 2u14-‘Tmod(p,uf). 

The last term is homologous to - 2ulu~gl by (3.6), (3.9) and (3.13). We also see the 
following by Lemma 3.14: 

dl(olu, P-2&) = ulu;-2(u2~@ t; - u;g, - 2t, @I t; - t1 @I tf”) 

mod (p,u:). These together with the equation t: @ t2 + tf+’ @ t: - t2 @tT = uig, - 
u2( @ t: show 

2tl @ V = - ulu:g, - ulu”;-‘~ @ ty mod (p,u:) 

up to homology. Q.E.D. 

LEMMA 6.9. In the cobar complex f$A/(p, II:), 2tl@ VP is homologous to 

u1ur?gfJ - r 63 a. 
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Proof We see that - 2ti @ VP = 2v$‘-‘t, 0 tI - 2v1v~2-2t~+1 @ tl - 2vIv~2-P-‘tI 

@ tc by (3.9, (3.8) and (3.4). We also compute 

pz-1 2 _ 4(v, tJ - - v,v;*-2ty @ t: - 2l$-‘t1 @I t, 

d,(v,v;‘-p-ltlt;)= -v,v;2-P-1(t~+1@t;2+ t;@t;‘+‘+tl@t;+t;@ttl) 

by (3.4) (3.6) and (3.10). Since vl tf = vl vz-’ tl, these computations show that 2t, @ VP is 
homologous to - vlv~‘-P-‘(t~ @I ty’+’ + 2t; @ tl). Thus Lemma 3.14 implies the lemma. 

Q.E.D. 

For the last lemma of this section, we prepare the following. 

LEMMA 6.10 (Shimomura and Yabe [17, Lemma 3.43). We have the elements 

w(s, n) E v ; ’ r such that vy w(s, n) E r, and 

d,(w(s,O)) s 2v~pp-pV@ CF - vlv;pg, mod (p,vf) 

dl(w(s,n)) G 2$-“P”” VP” @ g _ ( - ‘)” vP”-‘+A”-r+2vehsP) 

2 1 2 91 (n 2 1) 

mod (p,~~“-‘+“n-~+~). Here a, = p” + p”-’ - 1 and e(n,s) = sp” - (p” - l)/(p - 1). 

LEMMA 6.11. In the cobar complex R~A/(p,v~n-2+An-2+3), 2t, @ ~$-~)P”Vp”-~for n 2 2 
is homologous to 

- 2v~“-2~@y~gp2_ll)p~-2 -(- y“ v;n-2+An-2+2x;G.. 

Proof. Since 2tl @ v(;-~)~” VP”-’ = 20 @ v$-~)~” VP”-’ + vll @ v(ZS-l)pnVpn-‘, Lemma 

4.25 gives 

2t, @ v:“- l)P” VP”.’ = 20 @ v’z”- l)P” VP”-’ - 2VlC @I v;n-2y~SpZ_ l)p”.z. 

Now apply Lemma 6.10 to it, and we have the result by the property (4.23) of G,. 

Q.E.D. 

7. COMPUTATION OF S, 

We will compute the bi-image of the generators of H’M:. Let x/v{ denote one of the 
generators of the cokernel of 6,_, :H’-‘Mi + H’M: that are given in Proposition 5.7. 
Then x(j, 1) = x/pv{ gives a nonzero element of H’M;. Suppose inductively that there 
exists a nonzero element x( j, I)E H1 Mi such that px( j, I) = x( j, I - 1). If 6,(x( j, I)) = 0, 
then there exists a cochain p such that d,(x( j, 1)/p) = d,(p). Put now 

x(j,l+ 1) = x(j,l)lp - p 

and we see that x( j, I + 1) is a cocycle and 

px(j,l+ l)=x(j,l). 

Thus this proceeds until we have an integer i (maybe infinity) such that 

&(x(j, 9) f 0. 

We will find such an integer i for each generator x/v{ of the cokernel. 
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We first consider the elements of X of (4.24). Notice that an element xii @ c/u{ is 
bounded by -$x:~‘/vi as long as j I a,. By Lemmas 5.1 and 6.1, we then have the 
following result. 

PROPOSITION 7.1. The connecting homomorphism ~3~ : H ‘M i -+ H’M : sends an element 

$+kUj, i + 1) = G+kUp ‘“vi for SEZ - pZ, 0 I i I k and 1 I m I ak_i for j = mp’ to 

-y,@‘r/v: ifk=O 

- mySPi+l @ [/oi+’ - suSpi+L-pVQ {/u(-’ + ... ifk=l 

- mySpit @ c/vi+’ + ~y~~i+~-~@&~~-~+ SU~P~‘~-~)-~V~~/D~-P-~ + ... ifk = 2 

- mySpi+k @ [/u{+’ + 2syCspi+2_ l)p~.2 @ C/u{-“‘-’ + .+. ifk>2. 

Next we study the elements in Y of (4.24). 

PROPOSITION 7.2. For each integer t, we have the cocycles yj,( j, 1) = t$‘V/pv’; and 

yj,(p - 1,2) = u!fV/p2v~-’ - ~v$-‘)~+‘t~~*/p2ul and 

b,(yj,( j, 1)) = ‘T (x:+‘G,/v’; + u:PV@O &I{) + ... 

bW,(P - 192)) = i-wl+ 1 Cl/o;-’ + $7’0 C/u;-‘) + 1.. 

Proof: We get the congruences d,(u y) z t v :P-pd,(u!J and do(@) z - pu, Vmod(p’, VI) 
by Lemma 3.11. These congruences lead us to the equation tQ’V/pvj = - do(u$+‘)P)/ 

(t + l)p20{+ ’ in our cobar complex RrMg if j + 1 I p. Therefore the definition of the 
connecting homomorphism shows that 

for <j = dl( - do(o2 cr + ““)/(t + l)p%{+ 1 ).Putt+l=sp”forsanduwithp$sandu>O. 
Then [j equals - dl(v~P”‘*-i-ld o( 2 ~(‘+‘)~))/(t + l)p3u:p”“, and we have 

<j = - (j + l)Uytl @ V/pU{+’ ( - t$tl 0 ty”/pul if j = p - 1) 

by the equation dldo = 0. Now applying Lemma 6.8, we have the case for j c p - 1 by 
definition of the elements. The above computation is applied for the case j = p - 1 by 
setting tp_l = d,( - do(v:‘+“P)/(t + l)p4u;), and we have 

5,-l = @l/Pu;) 0 qv- h/P2Q @ 4aw. 

Wealsocomputedl(v~-1)P+1t~PZ/p2ul) = - (qR(u~-l)p”)tl/po:) ~$3 tfp’ + (o$-‘)Pt2/pul) 

Ott:” - 2(o;-“t~‘/pzul) @ vyt;’ - u!- ‘jp+ ’ TPA (t;’ )/pu, by (3.4). Since the last congruence of 
(3.4) also gives V;-Pt:2/p%Jl = tl/p2ul - oTPt3/pvl, the second term of <p_1 is homologous to an 
element X/pu: for some XEBP.,J(~, ul), which is denoted by ... in the proposition. 

Q.E.D. 

For the case j = 0, we also have Proposition 7.3. 

PROP~SIRON 7.3 (Shimomura and Yabe [17, Prop. 4.41). For each sp” EZ(O) u Z(2) with 

n 2 0 and p$s, we have a cocycle y,,(l,n + 1) such that 

&(yspn(l,n + 1)) = ~(G?‘Go/u~ - yspn 0 i/O. 



THE HOMOTOPY GROUPS n*(LzSo) 279 

We introduce here elements: 

cj, I = yj, I - IUp’“{- ’ 

for positive integers j and 1. Here 

is given in [6] to satisfy 

P’-iYj,l= tilpvjl, and dl(Yj.0 = 0 

for any j and 1. Then we see that 

P 
l-l 

Oj, I = aId, 

and the foIIowing lemma holds. 

LEMMA 7.4. dI(ak,i+I,l) = 0 ifl I i + 1, and = fkt, C3~/pU?‘+1 $fl = i + 2. 

ProoJ: Note that dI (yj, I) = 0 and d,(Q 5 0 mod J for any ideal J = (p’, VT) by the conven- 
tion on 5. We further see that do(l/pzv~p’) = - ktI/p’-‘-’ I$“+~ in R’M; if I I i + 2. Thus the 

lemma follows. Q.E.D. 

For a while we abuse the notation: For an integer s E Z - pZ, y,,, (j, l) denotes a cocycle 
whose leading term is @” tJp* vi, if such a cocycle exists. It would be possible that the cocycle is 
a coboundary. 

PROPOSITION 7.5. Let s, n, i and k be integers with s EZ - pZ, k 2 1, n 2 i 2 0 and 

kp’ < An-i + 2 and put m = sp”. Then we have cocycles y,(kp’ + 1,Z) for 0 I I I i + 1, 
whose bI-images are given by Gl(y,(kpi + 1,1)) = 0 for 1 I i and 

Gt(y,(kpi + l,i + 1)) = 5~. 0 C/v:p’+r + S~,_iX~~iGn_i/v:Pi-A,-i-l-’ 

( 

ks 
+ - T ;In~f,GJv:-An+-l ifi = 0 

) 
+ . . . 

where A, = ( - 1)“/4for n > 1, = - f for n = 1, and . ‘. denotes an element killed by v:- 2p”- ’ . 

ProoJ For i = 0, we see that y,(k + 1,l) = cp(y,/u’i+‘) is a cocycle, and consider 

o(m;k + 192) = ?R("%k+l,z - fdoWlp3v:. Then po(m; k + 1,2) = y,Jk + 1,l) for 
k I (p - 1)~“~’ with n = VP(m) by Lemma 4.25, and dl(y,(k -I- 1,l)) = q-‘(dl(o(m;k 

+ 1,2))). Use (3.12) and Lemma 7.4 to get 

dlb,‘d”%%+l. 2) = ;h 6 h~(“?)h’“:+~ - ~k+l,z@'o(v?) 

dI(do(v~)/p3v:) = - kt, 0d&~)/p2v:+1 + t: 8 doN’)lpv:+2. 

Lemma 6.7 says that d,(v;) = - spvy-P” V, mod(p’,v’;“) for n = VP(m), in which 
V, = vf;“.’ VP”-’ mod(p) by Lemma 6.6. Substituting this to the above equations gives the 
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following: 

k 
dI(o(m;k + 1,2)) = -v;t, @[/pvk,+l + sv!J-P”a@ Vp”-‘/p~:+~-p”-~ 

2 

sk _ _Vy-P”tl @ VPn-‘/pUy-Pnml 

2 

which is homologous to iky,@ [/pv:” + s(1 - k/2)v;-P”o @ VP”m’/pv~+l-pn-l by 
Lemma 4.25, noticing that v’;c @ [/pot+’ is homologous to zero. This gives 6r (y,,,(k + 1,1)) 
for k < (p - 1)~“~‘. For k > (p - 1)~~~’ with k > p or n > 1, use Corollary 6.3 to find the 
leading term. In fact, we have an integer e such that 0 < k - ep I (p - 1)~“~’ and consider 

velPSI(y,(k + 1,l)) = J1(y,(k + 1 - ep, 1)). A direct calculation also gives the case n = 1 
and k = p. Thus we have the case i = 0. For the additional case for m E Z(2) is also seen in 
the same manner. 

Now turn to the case i > 0. Assume that kp’ + 1 I An-i + 2 and put ym(kpi + 1, I) = 
~a(~);)o~.~+r,~forI > O.Then weobtain that dl(y,(kpi + 1,1)) = Oforl I i. Wefurthersee 
that y,(kp’ + 1, i + 1) is also a cocycle for kp’ < an-i, if we put y,(kp’ + 1, i + 1) = 

VR(X~ci)~kpi+ 1, i+l. 

Inductively, we have a cocycle y,(kp’ + 1, i + 1) for kp’ + 1 I An-i such that 
py,(kpi + 1,i + 1) = y,(kp’+ 1,i) and vTPiy,(kpi + 1,i + 1) = y,,,((k - a)~‘+ 1,i + 1) for 
u with An-i-1 +2<(k-a)$+ 1 I@‘-~ + 1. Then to tell the leading term of 
6i (y,(kp’ + 1, i + 1)) suffices to show the one only for kp’ I p”-’ by virtue of Corollary 6.3. 
NOW compute dr(qa(V’;)ok,<+r,i+2) for kp’ I p”-’ by (3.12) and Lemma 7.4 as above, and 
obtain :kvyt, @ [/pv:“‘” + sv);I-p”~‘a Q Vp”-‘-‘/pv~‘-P”~‘~‘+l + </PO,. The proposi- 
tion then follows from Lemmas 4.25 and 6.10. Q.E.D. 

PROPOSITION 7.6. Let t and j be integers with 1 5 j I p2 + 1. Then there exist cocycles 

y,p2--l(j,l)fir 1 5 I I i + 1 such that 

b(Ytp2--l(j, 1)) = ;Y,,z-I @i/v{ + ... 

uYtp4P2? 1)) = ~b’~-“~G~/v~ (p’,ft) 

= Y(,p-1)pO LA (p21t) 

k+l 
b(y,+l(b2)) = 2~zp2-~ @WV:~ 

61(y,,2-,(p2 - P,3)) = fYfPW 0 iM’-p. 

Proof: First consider the case j = p2, where we put 

Y,~z-I(P~, 1) = do(x:)ltp2v;‘+” 

and obtain the desired equation from (4.8) and Proposition 7.3. 
By the definition (6.5), we see that d,(vy’) E - tpv(:-‘)p* b mod(p2, VT’). So if we put 

ylp2-l(kpi - p;i + 1) = do(v!f)/tpi+2v~i ( + v:f+P-2)Pt2/pvI if i = 2) 

then piylp2_-l(kpi - p,i + 1) = do(v!f)/tp2v:“’ = - v$-‘)P* VP/pv~-P = y,p2_I/pv~-P 

by Lemma 6.6 and (4.28). Besides, if i < 2, 

dl(y,p2-I(kpi - p,i + 1)/p) = - kt, 0 d0(v:P2)/tp2v:P’+1 
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which equals kt, 0 u$-‘)~’ Yp/pu:p’-p+ ‘. U se now Lemma 6.9 to obtain the proposition, 

noticing that some element bounds the element corresponding to go in Lemma 6.9, which 
can be read off from the structure of H2M: of (4.24). Comparing degrees, the structure of 
Zf2M: also induces the other fact that the al-image has no lower term. A similar argument 
also shows the case i = 2. Q.E.D. 

Thus we have computed the 6,-images of the elements associated to the generators 
y,,,/v’, of Y1,c with ~,j’m or p,j’(j + 1). 

LEMMA 7.7. Let n, t, k and i be integers such that n, k, i > 0 and kp’ + 1 s AL + 2 = p”+’ 

- p” + A, + 2. Then y(tp2-l)p” (kp’ + 1,l) is rede$ned to be a sum of fdo(xi+2)/ 

tp2u:P’+P”t’+P” and - y~fp_-lJp.,+I(kpi + p” - P”+~ + 1,2). 

Proof: In this proof, we put m = (tp - l)p”+’ and jp’ = kp’ + p” - p”+‘. We read off 

that ym(jpi + 1,2) = y~tp_-l)p”+~(kpi + p” - P”+~ + 1,2) is a cocycle from Proposition 7.5, 
since kp’ + 1 I p”+’ - p2 + A, + 2. Furthermore, ym( jp’ + 1,2) has the leading term 
Y/R(V);l)Ojpi+ 1. 2 by the proof of Proposition 7.5. We compute 

do(xi+2) s 2tu~+2~:fP-1)P”t’o mod(p’+‘,uf+“n+2) 

E 2tpU~+lD~P2-l)Pno mod(p’+2,vf+“n+l) 

by (4.8) and the binomial theorem, where 1 = VP(t). 

Put now 

4 = :do(xi+,)/tp2 u:p’+p”+‘+p” - y,,,( jp’ + 1,2). 

Then the above statements say that p{ = 0, 4 is a cocycle and 5 has the leading term 
(fP2- l)P” 

02 cr/pv:p’+ ‘. These properties are those of yclp2_ lJp”(kpi + 1, l), and so we redefine 

Yopz-UP” (kp’ + 1,1) = 5. Q.E.D. 

PROPOSITION 7.8. Consider an integer m = (tp2 - 1)~” l Z(2)&r t, n EZ with n > 0. Zf 

i and k are positive integers with kp’ < P”+~ - p” + An-i+ 1 + 2, then we have cocycles 

ym(kpi + 1, I)fir 0 I I I i, whose b,-images are gioen by a,( y,(kp’ + 1,1)) = Ofor 1< i and 

&(y,(kpi + l,i)) = _ ~,+‘;~;‘:f” Gn_i+l/U:P’-P”+2+P”-~n-i-1 + . . . . 

Furthermore, if kp’ I p”+ ’ - p”, then we have more cocycles such that 

Gl(y,(kp’+ 1,i + 1)) = 
k + p”-’ 

2 ym Q &:pi+l + .** 

&tYnl(P”+2 - p” + 1,n + 1)) = ~~bf~~)~“+~ Go/u1 (~“‘~$t) 

= fY#p- ljp”+’ 0 i/h (P”+21t) 

h(Y&P”+’ -p”+l,n+2))= 
k+l 2 YmQ~/U:pn+‘-Pn+l + . . . 

&(YdP”+2 -P”+’ -p”+ 1,n+3))=~y,Q~/v~“+‘-P”+‘-P”+1. 

In the above equations, ... denotes a lower term. 

Proof: For the case kp’ I P”+~ - p”, we put 

y,(kp’ + 1, I) = +d,(u:P ““WP 1 
I+ 1 vkp’+p”+‘+p” 
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ifkp’#p”+*-p”,and 

Ynl(Pn+* - p" + 1,1) = ~d~(x~+2)/tp~+lo~“+2+p”+‘. 

This is guaranteed by Lemmas 4.25 and 6.7. Note that this element y may differ from the one 
y in Proposition 7.5 and we will denote the latter by j? Thus if kp’ < p”+* - p”, we see that 
6,( y,(kp’ + 1, I)) = 0 for I I i as we have seen above. For I= i + 1, we deduce the results 
from (3.12) and Lemmas 6.7 and 6.11 using the formula do(l/pi+2u~‘+P”f”P”) = - 
(k + pn-i)tl/pu~“P”f’+P”‘l. Even in the case kp’ = p”+* - p”, we have the same results as 

above by (4.8) and Proposition 7.3. Furthermore, a similar computation gives the case i = n 

and p((k + 1) and the case i = n and p*l(k + p + 1). Note that the last condition i = n and 
p*l(k + p + 1) is equivalent to k = p* - p - 1. 

Turn now to the case kp’ > p”+* - p”. Then Lemma 7.7 enables us to define 

y,(kp’ + 1,1) = +d,(u:P “+2)/tp’+1~~i+P”+1+P” - j+tp_llp”+~(kpi + p” - p”+* + 1,1+ 1) 

where jj denotes the element y in Proposition 7.5 as we noted above. We use the notation 
9 here in order to distinguish these y’s appearing in both of Propositions 7.5 and 7.8. Then 
the first term is a cocycle for 1 I i and mapped to fk yctp_l)p”+~ 63 ~/p~:pi+~“-~“‘~+~ for 
I= i + 1 by dI as we have seen above. For the second term, use Proposition 7.5 to see that it 
is a cocycle for 1 I i, and 

&(y,(kp’ + 1,i)) = ~yep_I,p”+I 0 ~/u~~‘+~“-~“~~+~ - ~yC,,,,p~+I @[/u~‘+~“-~“+~+~ 

as desired. 

- sl _.X~~~~;ll~iG,_i+llukpi-pni’-p”-An-r-~ 
n I 1 

Q.E.D. 

8. H'M; 

Let 6,: H’Mf + H’+’ M: be the connecting homomorphism. Then we introduce some 
notation: 

For a submodule M of H’+lM:, MC (resp. MI) denotes the intersection of M and 

cokernel (resp. image) of a1 up to isomorphism. M” denotes the submodule of Hr+lMi 
consisting of x E H’ + ’ Mg such that p”x ~cp(M) for some n. 

We also denote 

XY = X 0 Z,,,(r) and X,C = X, 0 Z,,,(i). 

Then Proposition 5.7 gives 

Xc, = Fp;,(x~[/u{ : s E Z - pZ, n 2 0, 1 I j I u, such that 

j > an-i if piI j for either SE Z1, or s EZ~, and pk+llj) 

x*r, = xmi 

YO,C = Fp{yspn/u{:s E Zo, n 2 0, j I A, + 2, such that 

j = 1 or j - 1 > U,-i if p’(( j - l)} 

YIc = Fp(ysp&:s EZ “2, k 2 0, n 2 0, j I 4, + 2, such that 

j= l,j- 1 >a,-iifp’l(j- l)andpk+l,/‘(j+a,+I), orj>un+* -a,+,} 

yC = Fp{u~pV/u~:s EZ, 1 I j I p - 1, pl(s + 1) ifj = p - l> 

Y m,c = Fphh 1. 
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Since XC? c X” &I Z,,,(c), we have 

XLCC” = Zo?,NlP ‘“0: :S EZ - pZ, j > 0, piI j I Q”_i 

either pi+l$j or j > an-i-i, and 

p’+‘lj if either s EZ~ or s EZ~, and pk+llj} 

by Proposition 7.1. We also see that 

XaJic” = X: 0 Z,,&). 

We have more modules: 

Y” - Z,,,{J+(kp’ + 1,i + l):ysp”/u:p’+l E Yo,c, 0,c - 

for k = 0, i = n, and 

for k > 0, kp’ + 1 I A”_ i + 2, 

kp’ + 1 > an-i if p,/‘k, and >A,_i_r + 2 otherwise}. 

Y?,c = Z&y~tpZ-l&kPi + W:YW~~~~++~ E Yl,c, 

I=n+lifk=0; 

For k > 0, 

I = i > 0 for JI”+~ - p” < kp’ < pa+2 - p” + A”-i+l + 2 and 

P n+2 - p” + An-i + 2 I kp’ if plk; 

I = i + 1 for i = 0 and p$(k + pnei), or 

for kp’ I P”+~ - p”, p J’(k + p”-‘) and 0 < i 5 n; 

I= n + 2 for i = n, k I p2 - 1, pl(k + 1) and k # p2 - p - 1; and 

I= n + 3 if i = n and k = p2 - p - l}. 

Yp = Z,,,{yip( j, I):uyV/ui E Yc, 

I= 1 if j < p - 1, and I= 2 if j = p - l}. 

y:.c = Z,,,{YI,~,> 2 Q/Z,,, 

Moreover, by Propositions 7.2, 7.3, 7.5, 7.6 and 7.8, we divide Yzc and YT’ into two 
submodules, respectively: 

Yo”,p = Z,,,{y,,,(kp’+’ + 1,i + l):ysp+:p’+‘+’ E Yo,c, k # 0, 

An-i-1 + 1 < kp’+’ <An-i+ 1 for i20). 

YZi7y = {O} u Y& - Yg. 

Y cp = ZC,,{y,,,(kpi+’ + 1,i + l):ysp&:P’+‘+l E Yl,c, k # 0, 

P 
n+2 -p”+A~_i_~+1<kpi’11p”‘2-p”+A~_i+1 fori20). 

YC$ = (0) u YCc - rri-“. 

We summarize the results of the previous section as follows. 

PROPOSITION 8.1. The connecting homomorphism a1 sends an element y/p’v’, of 

Yg$ @ Yz’ @ YFto the element y @ @I{ of H’M:. An element y/p’u{ of Yo”,iG @ Yy;c” 



284 Katsumi Shimomura and Atsuko Yabe 

is mapped to an element of G c H’M: by hl. Furthermore, 

Yo,r @ Y1,I @ K and Y,, respectively, and Y2.c to 0. 

Now we have the following theorem. 

THEOREM 8.2. H’M; is a Z(,,-module isomorphic to 

X” and X2 are sent to 

y;c 0 y:, 0 ycm 0 ymm,c 0 xcc” 0 (XG 6 Z(p,(i>,. (8.3) 

Proof: We will prove this by Lemma 4.3. Let B’ be the module (8.3) and the map 
f: B’ + H’M; the inclusion. Since the cokernel of &, is isomorphic to the image of rp, 
cp induces the map cp: H’M: -+ B’ by the definition of the modules Mc It is easy to see that 
pB’ c B’. Thus we have the commutative diagram of Lemma 4.3. 

Now it is sufficient to show that the sequence including B’ is exact. It follows from the 
exact couple of the Bockstein spectral sequence that the sequence H’M: + B’ + B’ is 

exact. To see that the sequence B’ --+ B’$ H’M: is exact, we assume that a linear 
combination C 5 of the elements of B’ maps to zero by ~5~. If J,(e) = 0, then there exists 
r’ EB’ such that 5 = pr’ by the definition of B ‘. Furthermore, if the sum of 5’s with 
S,(t) # 0 is null, then there is some nontrivial relation between these elements, which is 
a contradiction to Proposition 8.1. In fact, the generators in H’M: are linearly independent. 
Thus the linear combination does not have a term < such that S,(c) # 0, and so it is in the 

image of p. Q.E.D. 

9. H'M; 

In order to state the structure of H’M& we divide the module G into two parts: one is Gc 
and the other is G,. Propositions 7.3, 7.5, 7.6 and 7.8 show that 

Gc = Zt,,{x;p” Go/vl,x~G,/v~: k 2 0, n > 0, s + 1 EZ - pZ, 

l<j<a,,andforn>O, 

p”‘X(j + An-i-1 + 1) ifs = Up’EZ(O), or 

p’J’( j + An-i + 1) ifs = up’ EZ(~) and i > 0). 

Now we compute the connecting homomorphism &: H’M; + H3M:. 

PROPOSITION 9.1 (Shimomura and Yabe [17, Prop. 4.1 and 4.31). 

G,(x;G,/pv;) = -j+x;G, Q[/v; 

&(xS GJP ‘vy- ‘) = - fxs, G1 @ c/v;-‘. 

In order to generalize the results of [17, Prop. 4.11, we redefine the generators x;G,/vi 
of H2M: as for the generator y,/v( in Section 7. 

Recall that the generator xiG,/v{ with n > 0 is characterized by the two conditions: 
v;-‘x;G,/v; = v;Pn-(P”-‘-l)/(P-l) 

gl/vl and d,(x”,G,/v<) = 0. Put now 

xiG,(j, 1) =~d,(v:P”)~~j+~.~,+2,~+2 

for s = up’ with p$ u, where X” = ( - 1) ‘+‘4 if n > 1 and =2 if n = 1. Then we have 
Lemma 9.2. 
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LEMMA 9.2. Let n, s and j be integers such that n > 0,O c j I a,, and pls( j + A,,_, + 1). 

Then the element xiG,(j, 1) satisjies the following: pxf,G,(j, 1) and vi- ’ xf,G,( j, 1) are 

homologous to zero and u~~“-(~“~‘-~)‘(~-~) gI/pul, respectively, and xiG,( j, 1) is a cocycle in 

the cobar complex n2M& Therefore, we have a generator x”,G,/vi of H2M: such that 

cp(xslG&) = xZG,(j, 1). 

Proof Since xS,G,/v{ is a generator, we have j I a,,, and so j + A,_ I + 2 I A,, + 1. 

Note that 

d&“P”) E _ su;“v;P”-P”t’ VP” _ pso~“~‘v;P”-P” VP”-’ 
(9.3) 

mo~(p”+~,p~+~v~“+Pn-‘,U~Pn 
) for e = vp(s) by Lemma 6.7. Then we see that px”,G,( j, 1) is 

homologous to zero by Lemma 6.10, and vi-‘x”,G,( j, 1) = &,u(,“-“~” VP”-’ @a/ 
pDyn-2+An_,+3 is homologous to ~~P”-(Pne’-l)/(P-l) gl/pul by Lemma 6.10. We also see that 
xiG,( j, 1) is a cocycle by Lemma 7.4. Q.E.D. 

LEMMA 9.4. Suppose that x”,G,( j, 1) is a cocycle, kp’ = j + A,_ 1 + 1 I A, + 1 and 

1 I i + 1. Then S,(x~G,( j,l)) = Ax”,G, 0 i/o:. 

Proof: Since H3Mf is generated by the elements y/v: = x’,G, 0 @I: with p,/‘(t + 1) 
and a < pm- ’ (p + l), we may put 

&(x:G,(j, 1)) = Ck,ylu”, 

for k, E Fp In the summation, we see that a I pn+l by Corollary 6.4 since j < p”+‘. 

Furthermore the above equation is homogeneous, and so the internal degree of y/v? is the 
same as that of xiG,(j,l). As is stated in [14, (4.3.3)], IxiG,/v{l = (sp” - (p”-’ - l)/ 
(p - l))(p + 1) - 1 - j. Thus we have an equation and an inequality 

sp”(p + 1) - kp’ = (tp” - (pm-’ - l)/(p - l))(p + 1) - 1 - a 

0 < a < min {pn+l,pm-l (p + 1)) 

since kp’ = j + 1 + (p + l)(p” - l)/(p - 1). Here we note that a # p”+‘. In fact, if so, we 
deduce that i = n and k = 1 and the equation does not hold even if we consider it modulo p. 

Now we solve these. First suppose that m 2 n + 1. Then a < p”+‘. Note that A,_ 1 + 1 
< kp’ I A, + 1, and the above equations give us 

( tp” _ sp” _ (Pm-’ -P”_‘) 

(P - 1) ) 
(p+l)<a<p”+’ 

0 < a < 
( 

tp” - sp” - (Pm-’ -P”) 

(P - 1) 1 
(p + 1) - 1. 

This gives tp” = sp” + (pm- ’ - p”)/(p - 1) + p” and then deduce the contradiction 
a > p”+ 1. Next consider the case that m I n. Then a < pm-‘(p + 1) and similarly to the 
above, we have inequalities 

( tp” - sp” + 
(p”-’ -pm-l) 

(P - 1) > 
(p + 1) < a < pm-l@ + 1) 

0 < a < 
( 

tp” - sp” + 
(P” - Pm-‘) 

(P - 1) ) 
(p + 1) - 1. 
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If m = n, then we have the trivial solution: t = s and a = j. For the case m < n, we obtain 
that t = sp”-“’ - (p”-” - l)/(p - 1) + a and a = ( - (p” - l)/(p - 1) + pm+’ + ap”) 

(p + 1) - 1 + kp’ for 0 I a < pn-m-l. We further see that the inequality a > 0 indicates 
a 2 pnmmel. This is a contradiction. Therefore we have no solution in this case, either. 

Hence the above summation has only a term kyy/uy = AxiG, 6 [/vi. Q.E.D. 

Now we have the generalization of [ 17, Prop. 4.11. 

PROPOSITION 9.5. Let n, s, i, j and k be integers such that n > 1, i 2 0, j, k > 0, p,/‘(s + l), 
j I a, and kp’ = j + A,._1 + 1. Then we have cocycles xiG,(j,l)fir 0 < I< i + 1, and 

&(x:G,(j,i+ l))= -ix”.G,,@i/u{ 

Proof We show first that x”,G,( j, 1) is a cocycle for 0 < 1 I i + 1, inductively. For 1 = 1, 
it is trivial since x”,G,( j, 1) = cp(x~G,/u~). Assume now that x:G,( j, 1) is a cocycle for I I i. 

Lemma 9.4 says that 

&(x~G,( j,l)) = XC, 0 r/u: (9.6) 

for some 2 E Fp. By virtue of Lemma 6.10, we may put 

xiG,(j,l) = ;l~~:“-“~” J(,Qo~~~+~,~+~ 

=~do(v:P.)Q~~pi+l,~+l (by Lemma 6.7) (9.7) 

for kp’ 5 p”, and for kp’ > p”, some lower terms would be added. Here 1; = ( - 1)“+‘4 for 
n > 1. Lemma 7.4 tells us that xiG,( j, I+ 1) is a cocycle for j I p”. For j > p”, use Corollary 
6.3 to find that 1 in (9.6) is null, which means that x:G,( j, 1 + 1) is a cocycle. 

WecomputedZ(xS,G,(j,i + 2)) = -~k&,u~-“P”V,,@tl @{/pv:pi+l for a smallvalue 
j by Lemma 7.4. Then the proposition follows from the definition of a2 and (9.7) for a small 
value of j. For a larger value of j, again use Corollary 6.3, and we have 1 = - fk in (9.6) by 
comparing internal degrees. Q.E.D. 

We also have in [17, Prop. 4.4 and Lemma 4.51 the following: 

and 

MY, 0 ilP”+1 ul) = ;x;Go 0 [Jul. 

Putting these together, we obtain Proposition 9.8. 

PROPOSITION 9.8. For the integers s and n with p $ s(s + l), we have 

G,(x”,P”G,/~“+~ ul) = ;x;~~G,-, Q ~/VI. 

In fact, the first equation gives x~~“G~/~v~ = ySp” 8 clpvI and then use the second one. 
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COROLLARY 9.9. For any j > 0, we have 

G,(G,/p’v,) = 0. 

Proof Suppose that there exists a positive integer j such that &(GO/pjvl) # 0. By 
Lemma 6.2 and Proposition 9.8, we see that ~~‘8~(G~/pjv~) = 0. Since vl acts monomor- 
phically on the submodule (x~G,,/vl :s + 1 EZ - pZ) of H*M:, the above two statements 
produce a contradiction. Q.E.D. 

Now define 

G,” = Zcp,(xsIG,,(j, I): x:G,lvi EGO - {G&I}, 

1= i + 1 if n = 0 and v&s) = i; 

I= i + 1 if n 2 1 and v,( j + A,_, + 1) = i} 

G,” = Z,,,(GO/pjv, : j > O}. 

From Propositions 7.5 and 7.8, we further have Y[c = (( Y,,, @ Yr,c) @ F,(c)), that is an 
F,-vector space over the basis 

{ ysp” 8 [/v~““‘~: yspn/~~‘tl+l E Y,,, @ YI,c, k = 0, or 

p$s and An-i-r + 2 < kp’+’ + 1 I An-i + 2 ifs EZO, and 

kp i+l ’ P”+z -p”fori>Oandkp>A,_,+1fori=OifsEZ2}. 

Note that we have an isomorphism. 

Remark 9.10. Y[c g GI as F, -vector spaces. 

In fact, the correspondence can be read off from Propositions 7.5 and 7.8. Note also that 
Y[c produces the submodule ( Y ,$? 0 YckG) 0 Z,,,{[} of H*M,$ Thus we introduce 
another notation: 

YC? = ( YCkG 0 Y?P) 0 Z(&}. 

Now we have the following result. 

THEOREM 9.11. 

Proof First we study the cokernel of 6r. By the results of Section 6, we see that the 
submodule of H*M: of the form M 6 Z,,,(c) is in the image of a1 except for Ycc and 

Y, @ Z,,,{[}. For the submodule G, G = Cc 0 GI and G, is in the image of 6r. Now the 
theorem follows in the same way as the proof of Theorem 8.2. Q.E.D. 

Note that b2 maps YcF isomorphically to G, 0 Z,,,{&J, which is deduced from Lemma 
6.1 and Propositions 7.5 and 7.8, and G,” to (Cc - {G,,/vl}) @ F,{(Y). Besides, 6,( Yz 
@I Z, PJ {c}) = 0. Therefore we have Lemma 9.12. 

LEMMA 9.12. The cokernel of a2 is the submodule generated by Go Q 5/v1. 

Using Lemma 4.3, the following is now a corollary of this lemma and Corollary 9.9. 
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THEOREM 9.13. The module H3M$ is isomorphic to Q/Z,,, generated by Go @I C/$v,. 

Summarizing these, we have the following result. 

THEOREM 9.14. The module H*M$ is isomorphic to 

(X:0 Y,“.cOGo”)OE(i)OX”OXrc”O Y&O YzcO YF@G’=. 

Here G” = GF @I Y[“. 

Since we see that Y& is isomorphic to G,, the notation G” is reasonable. 

10. n*(L,P) 

Consider the Adams-Novikov spectral sequence based on E(2) converging to the 

homotopy groups rc*(&S’) of the Bousfield localization of the sphere So ([l, 23, cf. [lo]). 
Then the Ez-term of the spectral sequence is 

H”*‘A = Ext?‘(A, A) 

where (A, I) denotes the Hopf algebroid (E(2),, E(2), E(2)) associated to the spectrum E(2). 
We have the long exact sequence (4.2) 

0 --, H’N; -+ H’M; + H’N; + H’NZ + . . . 

-+ H’N; + H’M: -+ H’N; - H’+‘N$ + . . . 

and 

0 + H’N; + H’M; + H’M; do H’N; + . . . 

+ H’N; + H’M; + H’M; - H’+‘N; + . . . 

In these long exact sequences, H*Nz = H*A, and the modules H*ME, H*M$ and H*Mg 

are known now. Since H’M; = 0 for t > 1,6,: H’M: + H’+lNk is isomorphic for r > 1 and 
epimorphic for t = 1. The kernel of 6i is Yz,,, since H’MA = Yg,c by (4.5). This further 
means that the map H’MA + H’M: in the above sequence is a monomorphism, and we 

have the exact sequences 

and 

0 + H’M:, + H’M;+ ” H2N; -+O. 

By the structures (4.5) and Theorem 9.14, we see that 

Kerf= Z~,,~(z~~~‘/p~+~ ;i~O,s~O,p~s}OQ/Z~,~ 

Imf= X2. 

Furthermore H’ME = 0 if t > 0, and =Q at the internal degree 0 if t = 0. Therefore we have 

the following theorem. 
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THEOREM 10.1. The E,-term E”, of the Adams-Novikov spectral sequencefor n*(L2So) is 
given by 

(1) Ei 2 ZtpI{v~p'/pi+l: i 2 0, s 2 0, pks}, 

(2) E; z X”, 

(3) E: z Y& 0 Yi?, 0 Y,m 0 XC? 0 (X2 0 &{i}), 

(4) E’: g Yic” 0 G? 0 ( YZ,c 0 Z,,,(C)) 0 G,“, 

(5) E: g GF z Q/Z,,,, and 

(6) E; = Ofor t > 5. 

Since the prime p is greater than 3, the Adams-Novikov spectral sequence for x *( L2 So) 
collapses from the E,-term and so Theorem 10.1 gives the structure of the homotopy groups 
as well. 
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