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1. INTRODUCTION

To determine the homotopy groups =,(S°) of spheres is one of the main problems in
homotopy theory, and several methods have been found to reach it. One of them is the one
using a generalized Adams spectral sequence based on a ring spectrum E. In many
examples, it converges to the homotopy groups of the localized spheres with respect to E,
not to those of the unlocalized one. Consider the Brown—Peterson spectrum BP at a prime
p. Then the localized sphere with respect to BP is the one localized at the prime p. We call
the spectral sequence based on it the Adams—Novikov spectral sequence. It converges to the
homotopy groups of the p-localized spheres and its E,-term is expressed by the Ext group,
which is computable object. For odd prime p, it seems more powerful than the Adams
spectral sequence that is based on the Eilenberg-MacLane spectrum. When we use the
spectral sequence, we have to compute the E,-term. The E,-term E3' of the
Adams-Novikov spectral sequence based on BP for the sphere is computed for t < p*q by
Ravenel, and for s <3 by Miller, Ravenel and Wilson using the chromatic spectral
sequences. The E;-term of the chromatic spectral sequence does not only converge to the
E,-term of the Adams—Novikov spectral sequence but also is itself the E,-term of the
Adams-Novikov spectral sequence for computing homotopy groups of a spectrum whose
existence is shown by Ravenel [12].

Now we fix a prime p > 3. The E,-term of the chromatic spectral sequence is denoted by
H'M; and converging to H**'N;? (see section 4). In this paper, we study it for the
Johnson-Wilson spectrum E(2) whose homotopy group E(2), is the polynomial ring
Z,)[v:, v2,v7 '] on the generators of BP,. Here note that E(n) is not proved to be a ring
spectrum. Since E(n) is a spectrum representing the homology theory E(n) (X)=
E(n), ®gp, BP,(X), we can construct a generalized Adams spectral sequence based on E(n)
similarly to the original one. So we use E(2) here. Then we may put N§ = E(2),,
N? = EQ2),/(p) and M= v, N (v, = p) for the E,-term of the chromatic spectral
sequence. Moreover, M; =0 if n+ s> 2. So far, for this case, the E,-terms of the
chromatic spectral sequence are computed for all n and s but n =0 and s = 2. Here we
obtain this case (n, s) = (0,2) (Theorem 2.3). This module H*M? seems to have many
applications. One of them is the one for the Greek letter elements in the stable homotopy
groups of spheres. As is remarked in [6], it gives complete information on products of o’s
and f’s and decomposability of the y’s. Let L, denote the Bousfield localization functor with
respect to the spectrum E(2) [2, 10]. Before our computation, we only know about the
homotopy groups 7, (L, M) for the mod p Moore spectrum M. Our computation on H*M,
gives rise to the homotopy groups of n,(L,S°) (Theorem 2.4) by the mod p Bockstein
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spectral sequence. This has also much information on the products of the homotopy
elements. In fact, the localization map #:S°— L,S° induces the homomorphism
Ny 7y (8% = 7, (L,S°), by which we can tell some information. On this map, we have the
relating exact sequence H*~3Ng—S- H*BP, 1+, H*E(2), - H* 2N} of the E,-terms
given in [3], where N3 = BP, /(p®, v?, v¥), and Gr denotes the universal Greek letter map
introduced in [6]. Thus the map 7, maps the elements of r,(S°) whose filtration degree is
less than 3 monomorphically to those of m,(L,S°). Furthermore, M. Hopkins and D.
Ravenel show that L,X is homotopic to L,S® A X (cf. [13]). So our computation will be
a grip to understand the L,-localization. These applications will be discussed in the
forthcoming papers.

2. STATEMENT OF RESULTS

Let E(2) denote the Johnson—Wilson spectrum at a prime p > 3 with the homotopy
groups E(2), = Z,[vy, 03,07 ']. Then it is known (cf. [2,10]) that we have the
Adams-Novikov spectral sequence converging to n,(L,S°) with the E,-term

H*E(2)y = Exti(2). g @)(EQy E(2),)-
Here L, denotes the Bousfield localization functor with respect to E(2). Consider the
comodules Ni and M for i + n < 2 such that M} = v, ;Ni, N?™" = M?™" and
No = EQ2)y
N{=EQu/(p),  No=EQu/p*)
N; =EQ@,/p,v)),  Ni=EQ@Qu/Ap,v?),  Ng=EQ),/(p,v7).

Then we have the chromatic spectral sequence converging to our target H*'E(2), with the
E,-term H'M$. The E-terms for s < 2 are determined in [6]. In order to determine H*M 2,
we have the v,- and the mod p-Bockstein spectral sequences coverging to H*M,2 ™" with the
E,-term H'M, [ for n = 0, 1. Ravenel shows the following result.

TueoreM 2.1 (Ravenel [9]). H*M3 = F,[v,, 031 1{1, ko, h1, go, 91, hog1} ® E().

Here F, denotes the prime field of characteristic p, which is identified with Z/p, R{x}
denotes the R-module generated by x, and E(x) the exterior algebra generated by x. By the
vy-Bockstein spectral sequence, we compute H*M 1 from Theorem 2.1. For simplicity, we
denote a cocycle by its leading term. Put

X =F,[v,1{v¥"/vi~ n>0,seZ — pZ}

X, = F,{1jvt: j > 0} = F, [0y, v I/F,[0;]

Yo = F,[0,]{v3ho/v} ™" me Z(0), n = v,(m)}

Y, = F,[0,3{v3ho/v] " **: me Z(2), n = v,(m)}

Y = F,[v,){v? 'hy v} " teZ)}

Y, = Fy{ho/vi: j > 0} = F,[vy, v; *1/F,[v,] and

G = Fp[vl]{v’z"""""—1"”/(”_“g1/v‘{", vigo/vyi:n=1,s+ leZ — pZ}.

Here v,(m) denotes the maximal power of p dividing m, the integers a,, 4, and A, are given
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ap=1, a=p"+p"' -1
A=(p+ D" -Dp-1)
A=+ =p"+(p" = Dp-D)
and we use the subsets of integers
Z(0) = {m: m = sp” with p}s(s + 1)}
ZQ) = {m: m = (sp* = )p"}.

Then we have the structure of H*M} shown as follows.

THeOREM 2.2. (Miller et al. [6], Shimomura and Tamura [16] and Shimomura [14]).
HM =(X®X,®Y,®Y,®Y® Y, DG QE(.
In this paper, we use the mod p-Bockstein spectral sequence, and obtain the following
theorem.

TuEOREM 2.3. The module H* M} is isomorphic to

XYL cDOGNRED® X" DXEDY5cBDITcRYCDG™.

Here the modules are defined by
X =Z, v /P vi:n=20,5¢Z —pZ,i>0,
j =1 with p'|j < a,_; and either p"* 1 }j or a,—;—; <j}
X% =Zp{t/p ol i = v,(j) = 0}

for dimension 0,

X(& = Zpy{oT"(/p'* vl: s€Z — pZ, j> 0, p'lj < a,—
either p'*'fjorj>a,_;_,, and p'*1|jif pt*!|j for s = tp**! — 1 with k > 0}
Y&c = Zip{vF ho/p {7 " pys(s + 1), for k =0, i = n, and for k > 0,
kp' +1 < A,—i+ 2, kp'+1>a,_;if p¥k,and > A,_;_, + 2 otherwise}
Yic = Zp {37 VP ho PP L= n + 1if k = O; for k > 0 with kp' > a,_;,
I=i>0forp"*2 —p"<kp'<p"*?2 —p"+ A,_;+1 + 2 and
Pt —pt 4+ A, +2<kp'if plk
=i+ 1fori=0and pk¥(k+ p"™, for kp' = (p> — 1)p" or
forkp' <p™*? —p" pktk+p" Hand0<i<n
l=n+2fori=nk<p?—1,pl(k+1)and k # p*> — p— 1;and
I=n+3ifi=nandk=p>*—-p—1}
YE =Z,v¥ 'hy/p'v{:1=1ifj<p—1,andI=2ifp|tand j=p~ 1}
2 ¢ = Q/Z, generated by the set {hy/pv;: j > 0}
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for dimension 1, and
G*=Ge @Y
Y& = (Y5 @ Y28 ® 2y, {(}
for
YOF = Zp){vF ho/p't 1057 L p (s + 1),
k#0,4,_;_1 +1<kp'*' <4, ;+ 1fori>0}
Vi = 2 (047 I ho [ oA T k 0,
P"tP—p "+ Ao+ 1 <kpTr<p"t?—p"+ A4, +1fori=0}
GE = Zp{o¥"golp"* o1, 03"~ 70 Vgl
PA(+1),0<j<a pt Y(j+ Api—y + 1) if s = up'e Z(0),
PAG+Asi+ ) if s=up'eZ(2),and I =i+ 1if n=0and v,(s) = i;
I=i+tifn>1and v(j+ A4,—y + 1) =i}
G§ = Q/Z, generated by the set {go/pv,: j > 0}.

As a corollary of this theorem, we have the E,-term H*E(2), of the Adams-Novikov
spectral sequence by the chromatic spectral sequence. Furthermore it collapses since E§ = 0
for s > 4, and so the E,-term is isomorphic to the homotopy groups of L,S°. Thus we have
our main theorem.

THEOREM 2.4. m,(L,S°) is isomorphic to H*E(2),, which is isomorphic to

Zpy®Zy,{v? /p*i>0,520,pks} ®X™
OY DY DYEDXEDXI®Z,{LY)
D YOG DY c®Zy{L}) ® G5
DGy ®Z{L}).

The degrees of the elements are read off from Theorem 10.1 as follows. Here a homotopy
element ¢ e n, (L,S°) has degree r if ¢ e n,(L,S°), and we denote | £| = r. Then all elements in

the first factor are 0. If we identify the elements in the theorem with the corresponding
homotopy elements under the isomorphism, we have degrees:

vl /p"* 1t =jg—1

log/p'vl| = m(p + 1)g — jq — 2

lvTho/p'vil =m(p + 1)g +q—jg—3

|0~ hy /p'v]| = tp(p + 1)g — g — jg — 3

|03 go/p'v]| =m(p+ g +q—jg—4

[v3g:1/p'vil =m(p+ 1) —q—jqg— 4
and for the elements of the form z ® {,

lz® (] =]z] - 1.



THE HOMOTOPY GROUPS #,(L,S%) 265

3. HOPF ALGEBROIDS

Let E be a ring spectrum, and denote E, = E,(S°). If the homology E,(E) of E is flat
over E, then the pair (E,, E,(E)) becomes a Hopf algebroid in the usual way (cf. [1, 11]),
and we can do homological algebra in the category of E,(E)-comodules (cf. [11, A1]).

Among such spectra E, at each prime number p, we have the Brown—Peterson spectrum
BP and the Johnson-Wilson spectrum E(n) for a nonnegative integer n. Here we note that,
although we do not know whether or not E(n) is a ring spectrum, we have the Hopf
algebroid (E(n),, (E(n),(E(n))) whose structure is induced from that of BP,(BP), since
E(n),(X) = E(n), ® gp, BP,(X) for any spectrum X. Here the action of BP, to E(n), is
given by sending v, (k > n) to 0, in which v, is the Hazewinkel’s generator of the coefficient
rings E(0), = Q,

BP, = Z,\[v,,v; ...]1 and E(@n), =Zylvy, ..., 0, 0, '] (3.1
for n > 0 (cf. [11]). Their self-homologies are
BP,(BP)= BP,[t,t,, ... ]
E(n)4(E(n)) = E(n), ® pp, BP,(BP) ® pp E(n)s. (3:2)

We obtain the formulae of the structure maps of the Hopf algebroids associated to these
spectra by [7] (cf. [11]). The structure of the Hopf algebroid associated to E{n) is induced
from that of BP,. So we give here the formulae for BP. The left unit n, : BP, — BP,(BP) is
the inclusion BP, — BP,(BP). Then BP,(BP) is a left BP,-module by #;. The right unit
ng: BP, — BP(BP), which also gives BP,(BP) a right BP,-module structure, sustains
Landweber’s formula

MR(vy) = 0y + 0, 77 — 0Pty (3.3)
mod I,_, for the prime ideal I, =(p, vy, ..., v,-,) of BP,. We also have
nr(vy) = vy + pty
Mr(vz) = v2 + vyt + pty — t1(vy + pty)(p + Dofyy
—p vy + pt1 P — %)
=0, + vyt + pt; —(p + 1)vPt; mod(p?) (3.4)
Ar(v3)-= v3 + 0287 + 0,12 — 7R (v2)° + 03V mod (p, v87)
=03 4 0282 + pt3 — v8t; mod (p?, vy)
where we use the same notation V as that of [16] defined by
po V=08 + vPt? — o' tE — (v, + vy 18 — VPP, (3.5
For the diagonal A: BP, (BP) — BP,(BP) ®gp, BP,(BP), we have
At) =t ®1 +1®1¢,
A=t 01+1®@t, +t, @7 + 0, T (3:6)
A(t))=t; @1+ 1®@t3+g+v, 77 mod(p,vy)
where g, Te BP,(BP) ® gp, BP, (BP) denote the elements
=L@+, @t
pT=t'@1+1Q@t!-(t®1+1®¢,)". 3.7



266 Katsumi Shimomura and Atsuko Yabe
Turn now to the structure of E(n),(E(n)). Noticing that E(n),(BP)= E(n), ® pp,
BP,(BP) = E(n), [t:,t,, ... ], we have
E(n),(E(n)) = E(n),(BP) ® pp,E(n),
= EMm),[t1,t2, ... Ynr(vi): i > n).

In this paper, we consider only for the case n = 2. Then the formula on v5 in (3.4) gives rise
to the relation in E(2),(E(2)):

Uzllpz = tlﬂR(Uz)p - Ultzp - vf V' mod (p’ v‘l’z)' (3'8)

Furthermore, we have the following result.

(3.9) (Shimomura and Tamura [16, Lemma 3.2]). In the E(2),(E(2)), we have the
relations

vatP =08 t, — v, tf; mod (p,v?) for n >0
and

vg’T”2 = v{zT mod(p, vy).

Let (4, I') denote one of the Hopf algebroids (BP,,, BP,(BP)) and (E(2),, E(2),(E(2))).
Then the Ext group
H*M = Ext{(4, M)
of a comodule M can be computed by the homology of the cobar complex (Q¢M, d,,). It is
shown in [5] that there is an isomorphism

Extgp, gp)(BP,, M) —= Extepen(EQ@)y EQ2)y ®pp, M)

for a v,-local BP, (BP)-comodule M. Thus there would be no confusion if we write H*M for
those Ext groups, as long as we consider v,-local comodules. A cobar complex of
a comodule M is a pair (Qf'*M, d,) of graded Z,-modules

Q*M =M@ R, ®, (scopiesof I')
for s > 0 and the differentials d;: Q2 *M — Q2" 1** M in the sense d, .+, d; = 0 for s > 0 which
are defined inductively by
dom)=y(m)—m® 1
dim®x)=yMIx—MmRAX)+mR xR 1 (3.10)
AmM@x@x,1)=d; (MO X)® X1 — MO x ®dy_(x;—1)

for meM, xeI” and x,eQFA=T®, - ®,4I (s copies). Here y:M - M ® I is the
comodule structure of M.

We note that in the following sections, we mainly treat comodules with structure maps
induced from 7y, and so the comodule structure ¥ is computable by using the formulae (3.3)
and (3.4). We further use the notation #y for such a structure map ¥. For example, by (3.4)
and (3.10), we obtain the following lemma.

LemMa 3.11. In the cobar complex Q!A, we have do(v?)=vPtF — v’l’zt‘{ — pv,

V + p*(v2 + 037 — 081, P~ (¢, — vPty) mod (p®). In particular, do(vE) = pv,vE~1t? + <§>

2,p-2 - - -
v2vf 2P + p2osT e, — pPo vE T3P, + (pP/2)vFvr T33P, mod (p3, D).
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We have more formulae on the differential shown immediately from the definition (3.10).

(3.12)(Shimomura and Tamura [16]). For any u,ve A and x, yeI', we have
do(uv) = do(W)ne(v) + ud,(v)
di(xy) =d; (AN + (x®1+1@x)d, () —x@y—y®x
di(uy) = do(W) ® y + udy(y)
dy(xnr(v)) = d1(x) (1 @ 7r(v)) — x @ do(v).

Note that once we give an element in Q2 A, then we have the corresponding elements in
QZA/I for any ideal I of A. In this case we use the same notation for those elements. First
define the elements g, and g, € Q2 A4:

go=v37g and g, =v;" g =vy'g} (3.13)
for g given in (3.7). The element {, in Q! A4 is defined in [6] by

-1 - 2 -p—-1
(=05t + 07 P(tF — tV 79 — v 77 togtd.

LemMa 3.14. In the cobar complex Q2A/(p, v,), we have
di(t11) =038, @ Ly — 0290 — 21, @t — 1] @ 1P
di(t56) =00, @15 —v3g; — 26, @5 —t, @ t7P
di(t,18) =030, ®t; —vigo —25@ t; — 2 @71

This follows from a direct calculation by definition with the help of (3.6) and (3.12).

4. THE CHROMATIC SPECTRAL SEQUENCE

In this section we also consider the ring spectra BP and E(2), the Brown—Peterson and
the Johnson-Wilson spectra, respectively, and denote those spectra by E. Then we have the
Adams-Novikov spectral sequence converging to the homotopy groups of 7, (LgX) of the
Bousfield localization of X with respect to E if X is connected (cf. [1, 2]). Note that
LgpX = X for a connected p-local spectrum X. The E,-term is H*E,(X) = Ext}
(E,, E.(X)). By virtue of the Landweber filtration theorem [4], the E,-term can be lead by
computing H*E, /I,’s. Here I, denotes the invariant prime ideal (p, vy, ..., vx—,) of E,, and
k < 2if E = E(2). The Ext groups H*E,/I,’s are also the E,-term of the Adams-Novikov
spectral sequence for computing the homotopy 7, (LgV(k — 1)) of the Toda—Smith spectra
V(k — 1) when they exist. Miller et al. [6] introduced the chromatic spectral sequence for
computing the Ext groups H*E, /I,’s.

We now give the definition of the chromatic spectral sequence. Put first N0 = E, /I, and
inductively suppose that N is defined. Then define M; = v, ', N§, which has the comodule
structure induced from that of N§ by [5]. Now Ni*! is the cokernel of the inclusion
N§ < M§, which also has the induced comodule structure. In other words, we have the short
exact sequence of comodules

0 Nf —= M > Ni*1 0. @.1)

As usual, we will denote an element ¢ of M by a linear combination of the elements of the
form

X/og* - vg<rasl (0o = p)
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for ¢, >0 with k<i<k+s—1 and for xe My, ,. Furthermore, the element x/vf* ---
vgerso 1 is killed by of for each i
Applying the functor H* — to the exact sequence (4.1), we have the long exact sequence

0—>H°Nkw~>H°Mk—>H°N”1—>H1Nk-»H M;
s
—)H NS+1——-—) e —)H"Nk __)HHM"__)H”NS‘*‘l * (4‘2}

for each nonnegative integers k and s. These exact sequences are the exact couple that gives
rise to the chromatic spectral sequence. The E;-term is E}' = H'M;{ and the abutting
modaule is the desired Ext group H**'N? = H**'E, /I,. To compute the E,-term, Miller
et al. [6] further introduced the Bockstein spectral sequence that is defined by the exact
couple obtained by applying the functor H* — to the short exact sequence

- Vi
0->M{ > M, — M{->0

where ¢ is the comodule map defined by ¢(x) = x/v,. The Bockstein spectral sequence has
the E,-term H*M;} and abuts to H*M;. Thus we can compute inductively the E;-term of
the chromatic spectral sequence. When we work on the Bockstein spectral sequence,
(k, s) = (0, 2) in our case, we mainly use the following result.

LemMa 4.3 (Miller et al. [6, Remark 3.11]). Consider a map of exact couples

& - 3,
0 - —> H'M' -2, B -2, B — H'IMD 2,
1= v v 1=
LB ¢

0— . — H'M! -*5 H'M? -2 HM! — H'''M} %> ..
If B! is p-torsion, then f is an isomorphism.
The first step of the induction is Morava’s theorem.

(44) (Ravenel [9]). If p>2, then H*M{=F,[v,,v7'"1QE(t;). If p>3, then
H*Mg = P[UZ’ UEI] {19 s tf& Jos 91> goff} ® E(‘:Z)

Here E(x) and F{b;} denote the exterior algebra over the generators {x} and the
F-vector space with basis {b;}, respectively, in which F denotes a field.
Turn to the second step.

(4.5) Miller et al. [6]). If p> 2, then H'M} =0 for t > 1, H' M = Q/Z,, whose sub-
group of order p’ is generated by

(___ l)k -k k
= k>0"'7(';;—+?k_'
and
H'M;=Q/Zp,® Y, (Z/p™ ") <o?/p' ™).

i>0,(ps=1

Here G{x) denotes the group isomorphic to G whose generator is x.
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For stating the results on H*M1}, we introduce some more elements. From here on we
work on E(2) not on BP, and the Hopf algebroid (4, I') denotes (E(2),., E(2),(E(2))). The
elements x,€QP A are inductively defined by

Xo =10y, Xy =08, Xx,=xb— P 1pp?mptl
Xp=XxE_y — 29 PpE" P forn > 2 (4.6)
for the integer a; with aq = 1 and
ay=p"+p" -1 4.7

for n > 0. For the differential d, of the cobar complex, we have the following result.

(4.8) (Miller et al. [6]). mod (p, v2*%),

do(x;) =vitf, i=0

VPR 4 oy (o7 Mt — 2T = 0,)), i=1

. —1)pi-1 .
PPV gy, P> 1

The above element g, is given by
Oy = tl - % vngn'

The element (, satisfies the following.

(4.9) (Miller et al. [6]). {, = vy *t; + v3 A(tZ — tP**?) is homologous to (E for i >0 in
QrAf(p, vy).

(4.10) (Shimomura [15]). We have a cocycle { in each cobar complex QLA/p'**, v™")
such that { is homologous to {, in QF A/(p, v,).

By virtue of this, we will use the notation ¢ for a cocycle of QL:° A/(p'*?, v™") such that
{ is homologous to {, in QF A/(p, v,) including { P, We also use the notation

o=t — 30, 4.11)
Then ¢ is homologous to g, for any n in QLA/(p, vy).
Divide the set Z — pZ of integers into three parts:
Z, = {s: se Z with p ¥ s(s + 1)}
Z, ={sp—1:seZ with p}s} 4.12)
Z,={sp’—1:s5eZ}
and Z — {0} into
Z(i)= {m:m = sp”" withn > 0 and seZ;} 4.13)

for i=0,1 and 2. We then introduce the element y, =v7t; + 0,5, of QLA for
me Z(0) L Z(2) defined in [16] such that

di(ym) = — su0i™v3™g:  mod(p, v{™*1) (4.14)
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for g, = vz"’z’l(tf® tgz +® tf’) in (3.13). Here s, for m = sp™ with p t's equals

(”;1) if n=0 and meZ(0)

(‘21)" (s ; 1) if n>0 and meZ(0) (4.15)

1 if n=0 and meZ(2)
(-1
4

if n>0 and meZ(2).

We define the integers e(m) and A(m) for m = sp™ with pts by
em=m—(p"—1/(p—1) if meZ(0) . .16
em=m-p"(p—1)—(p"—DAp—1) if meZ(2)

and
A, =+ Hp"-DAp -1
A=+ D" —p"+ ("~ Dip— 1))
Am)=A,+2 ifm=sp”and meZ(0) 4.17)
=A,+2 ifm=sp”and meZ(2)
=ow ifm=0

Now we define inductively the elements y,, for me Z(0) U Z(2) [16]. Let m = sp" with
pX's. Then, for se Z,, we put

s—1

2

Vs =03ty + 0,057 0T — 1) + v105¢

N
+ (2> 2037 2P(P T — £y + 0,0) + sv2oy " PR (4.18)

S
— psp 252
y,u,—vza—zulzs

and, for s = tp* — 1eZ,,

2-p— +
Yo= WP 40P PRt IX

B 4.19
208y, =0,y —do(0F ) + 07 2 W, )
Once y,, for p{m is defined, yn, is given by
Vf Ymp = 01Vh — do(3? ™) + 5,034 TPEIW, ). (4.20)

Here the elements W,, Z; and X are defined in [16] so that they satisfy

dy(W) = o7~ ogg? =2~ 00* 0P g, mod (p, vP*?)

1
di(Z)= " WP R0 — (5_42-_) vP*1pP~lg; mod(p,vP*?) (4.21)

di(X)= —vigP —vP*3p3Pg; mod (p, vP*Y
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and

2
Z,= W, mod (p,vP 2. 4.22)

- - s - _ _
W= — v oV + 08 o718 — P71t — 12)P(2 — w03 M) + 0 7H(P))

We need other cocycles G, of Q2 A/(p, v") for n > 0 introduced in [14] such that
Go=go and G,=ov;% '~y mod(p,uv,)forn>0 4.23)
where the elements g, and g, are given in (3.13). We prepare some notation here:
k(1) = Fylv,]
K1)y, = vi k(1) = F,[vy, 07']

k(1)4{x/v{: xe A} denotes the direct sum of the cyclic k(1),-modules isomorphic to
k(1),/(v]) generated by x/vi, and

k(1) {x/v¥: x € A} denotes the direct sum of the modules isomorphic to K (1),/k(1),, with
F,-basis {x/vi: j > 0}.

Now consider the following k(1),-modules:

X =k(1),{x3/v{"n>0,seZ — pZ}
X = k(1) {1/07}
Yo = k(1) { ym/vi": meZ(0), n = v,(m)}
Yy = k(1) {ym/vi": meZ(2), n = v,(m)}
Y = k(1) {oPV/vi 1 teZ}
Yo, = k(1) {t,/0%}
G =k(1), {x3G,/vi" n>0,5+ 1eZ — pZ}.
Here v,(m) denotes the maximal power of p dividing m. Then we have the structure of H*M}
obtained in [6, 16, 14]:
H'Mi=(X® X, ®Y,® Y, @ YO Y. D G)QE(). (4.24)

We will end this section with rewriting the element y,, as follows.

LeMMa 4.25. Let s and n be integers with n > 0. Then we have
Vopn = 0"ty — v, 0) + % plHpm Tty et (4.26)

mod (p, v? " V?""**1) and moreover
208" Ypropypn = — 0T IPTRyr (4.27)
mod (p, vf" "' *F®) for F(n) = p"*? — p"** — 3p" + 1, up to homology.

Remark. We can define y, so that the congruence (4.26) holds mod (p, v?") after
replacing v¥" by x:.
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Proof. We first prove (4.26). By the definition of the elements (4.18) and (4.22),
SP, s 2
Vsp = V50 — E(UIZS)

if seZgy and
Z,=W,= —v¥ ™"V mod (p,vP 3.

Therefore we have the case for n =1 and seZ,.
Next suppose that s = tp? — 1. Then the definitions (4.19) and (4.22) give

ys = WP mod(p, vl)
= — o’ P VP mod (p, v?)

= v’ 77tP  mod(p, vP)

which is congruent to v?* "¢, — v,0?’ P~ 1tZmod (p, v?) by (3.8). Thus we have
P = ,@P2—1)pep __ P, (P> —p—1)psp?
s =03 I — o1t r
mod (p, v3?). Furthermore, the formula (3.4) gives us
1+@p2—1)py — 2-1 2-2)p,p? 1+@p2—1
do(Uz (tp )p) = (Uz + vt — v{’tl)(v;“’ p__ Uziv(ztp “’t{’ ) -0} @tp p
= 0, 0{PP VPP — Py Pt pg,
_ U};U;tpz—lnﬁ—ltfz _ vf+lvgp2——2)ptlp2+p
mod (p, v??) which turns out to be congruent, again by (3.8), to
tp2—1 tp2—1 +1 2-2 +2.,(p2~2 +1 2-2 2+
v OYPP TP PPt DRy g pPHIpUPET DGR 4 Pt 2 IR DY P LSRRy PP TR,
Put these into the congruence
— 2-1)p+1 2
208y = 01 yF — do(§P " VP* 1) mod (p, v3?)
of (4.19), and we have the same result as the case for seZ,.
Since do(V7P*!) = v7P(v, 2 — vPty) mod(p, v7""") for m = sp" with n > 2, we have

S
= m 1 1+p+pn —-pnt1 n m
Ufy p = vlvzp(tlp —_ Ivll,cp) +§Ul p U';p P VP - sz(vltlp — v};tl)

mod (p, v?~1P"*P*1) by the definition (4.20) under the inductive hypothesis. Thus the case
for n > 2 immediately follows from the induction on n.
Now turn to (4.27). By the definitions (4.19) and (4.22), we have

yo= —pd-etye (4.28)
mod (p, v?* 7% for n =0, and 202~ 'y, = — o~ V7’ VP mod(p, v?*~?* " 2P for n = 1 up
to homology. Suppose that

200"y pro gy = — DY VPP 4.29)

mod (p, 2"+ for F(n) = p"*% — p"*' — 3p" + 1 up to homology. Then the definition
(4.20) leads us to

Pn+l_1 — +l_p
2171 y(,pz_l)pvw) = 2Uf" yftPZ_l)pn

mod (p, v?"" ' ~1*F@* ) yp to homology. Hence we have the desired congruence. Q.E.D.
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CoroLLARY 4.30. Let m be an integer in Z(0) L Z(2) with p|m. In the complex QrA/
(p, V%), t; ® ym is homologous to — 3v,y, ® L.

Proof. By (4.26), we see that t; ® y,, = t; ® v3(t; — 3v,{). Since p|m, the first term is
t; ® v¥'t; = 5ty ® t, in our complex, which equals do( — $v5't2). Thus t; ® y,, is homolog-
ousto —3v, 17, ®L Q.E.D.

5. THE COKERNEL OF 4§,

In this section, we consider the connecting homomorphism &,: H°MZ - H' M| asso-
ciated to the short exact sequence 0 > M2 - M} — M} — 0. The image of &, is given in [6,

Prop. 6.9]. First we rewrite the result by using the bases of H'M}. By Lemma 4.25, we
obtain the following lemma.

LeEMMA 5.1. The connecting homomorphism 3o: H°M} - H' M} sends an element x5,/
pitlol for seZ—pLandj=mp' withO<i<kandl <m<a_;to

— ys/v} + (s — D320, ifk=0

— mYgpii /03T — mxf {200 — v TPV RIT 4+ ik =1
— Myspi+2/viT Y — mx$ 020 + Sygpeacy foITP + 0P TPV pITPT2 4 L k=2
— My pien/vI Y — mxF (200 4 25ppira gy -2 /ST 4 e ik > 2,

For the generator hy/v{ € H' M}, which is represented by ¢, /v], we also have Lemma 5.2.

LemMa 5.2. Put j = kp' > O for k with p ¥ k. Then,
So(1/p'* vl) = — kho/vi*t.

Proof. This follows immediately from the definition of d, and the formula
do(v]) =jpvi~'t; mod(p'*?). Q.ED.
We read off the following proposition on the cokernel of §, from Lemma 5.1 and the
structures of H°M? given in [6] and H'M in (4.24). We prepare the following notation:
Z,){x/pvi: xeA, jeJ, iel}

denotes the direct sum of the cyclic Z,~-modules isomorphic to Z/(p‘) generated by the
elements x/p'v] subject to the conditions xe A, jeJ, and i€l

X*=Zy{xs/p'*viin>0,5€Z —pZ,i>0,j>1,such that p'|j < a,_; and either
pittyjora,_;_, <j}; and
X3 =Zy{1/p" ol i =v,(j) 2 0}. (53)
Under these notations, we have the following result.

(5.4) (Miller et al. [6, Theorem 6.1]). H'MZ =X~ ® X2.

We also have

HM =(X®X,)QF{{}®Y, @Y, @Y, DY (5.5)
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by (4.24). Recall the notation (4.12) and (4.13):
Zy={sseZ withpts(s + 1)}
Z, = {sp— 1: seZ with p }s}
Z,={sp* — 1: seZ}
Z(i)={m m=sp" withn>0and seZ;} (ie{0,1,2}).
We further define a subset of Z(2) by
Zi={tp'*? — l:teZ — pZ} (5.6)

for each nonnegative integer i. Then | );Z} = Z,, which is a disjoint union.

PrOPOSITION 5.7. The cokernel of 5o: HMZ — H'M} is a vector space spanned by the
bases represented by the cocycles:

(i) t1/v, and {fv] for j = 1;
(1) yopn/vi for s€eZLo W Zy,n>0,j < A(sp")suchthatj=1orj—1>a,_;ifp'|(j — 1),
subject to p** N (j + @y11) OF j > Gyuz — Gpy if SEZE;
(i) x3¢/v) for seZ — pZ,n>0and 1 <j < a, such that j > a,_, if p'|j for either se Z,
or seZ! and p**1|j;
(iv) v¥V/v] for seZ and 1 < j < p — 1 with a condition that p|(s + 1) if j=p — 1.

Proof. By Lemma 5.1, the leading terms of d,-images of the generators xi/p'*'v{ of
H°M are rewritten to be:

(1) yspn/vi*t, s€ZyUZy,n>0,j>1andj<a,_;if p'*' tj.

(2) x3¢/vi,s€eZ;;n>0,j>1,and j < a,—;if p'T1 fj.

(3) x3{/v],s€Z,,n>0,j>1,and j < a,_;if p'** tj, subject to p**!|;j if se Z¥.
@) v VP, seZ — p.

(5) Yopr/vl, s€Zy,n 20,721, and pP** 1 |(j + Gys 1) < G4, if sEZS,

Here we make a note on the elements of (3). Since se Z%, we may put s = tp**2 — 1 for
t with p yt. Lemma 5.1 says that if p**|(j + @p+1 + 1) < Gp4 2,

t k+1, j+an+1+1y j+1
So(Xn+2+k/P* T T0{TTY) = etygperzoy /] + -

where ¢ = 1 if n = 0, and = 2 otherwise. Thus we have the elements in both of (1) and (5).
Therefore, the second terms of the last two equations of Lemma 5.1 turn into the leading
terms and give the elements of (3).

The cokernel of d, is expressed by the generators of H' M1 other than those that appear
above as the leading terms. For the generator of the form vV/vi, vf V/v?~ ! withp ¥ (¢t + 1)
die in the cokernel by (4). Thus we have (iv).

Considering the negative statements, we deduce (ii) from (1) and (5), and (iii) from (2) and
).

Lemma 5.2 gives the first half of (i), and the second half follows from Lemma 5.1.

Q.ED.

6. SOME LEMMAS ON 4,

Consider the short exact sequence

0->M! 2> M2 M0



THE HOMOTOPY GROUPS =,(L,S8°) 275

and apply the functor H* — to it to obtain the Bockstein spectral sequence. The differen-
tials d, of the spectral sequence depend on the computation of the connecting homomor-
phism §,: H'M2 -~ H'" M.

As we have remarked in (4.10), we have a cocycle { in each cobar complex
QLA/(p'*1, v™"). So we have Lemma 6.1.

LemMa 6.1. Let xe H'"'*MZ, and 6,: H'M — H'*' M}, the connecting homomorphism.
Then
O(x®{)=6,-1(x)® L.
By the definition of J,, we obtain the following lemma.
LEMMA 6.2. Let w be an element of E(2), such that do(w) = 0 mod (p'*?, v]). Then we
have
wo,(x/p'v]) = d,(wx/p'v])
for x/pivie H'M}.

Proof. This follows from the definition of 4, and the calculation

dy(wx/p'* tvd) = wd;(x/p** 1 vi). Q.ED.
Since do(v?') = 0 mod (p'**, vJ) even if p’ < j, we have the following corollary.

COROLLARY 6.3. Let 6,: HHMZ — H'*'M be the connecting homomorphism. Then we
have

oP'8,(x/p'v]) = 8,(x/p"v{"")
for x/p'vie H'MZ. In particular,
v88,(x/pv]) = 8,(x/pv{™P)
for x/pvie H'M?.
In order to state the next corollary, we define integers p(i, j) depending on integers i and
Jj by
p(i,j) = min{neZ: p'in and j < n}.
COROLLARY 6.4. For a cocycle x/p'v’, e H'M3, suppose that
S,(x/p'vf) = 3 &k # 0
for the elements £/v% € H'* ' M1 with &/v, # 0. Then k < p(i,j).

Proof. Corollary 6.3 implies that v5%?§,(x/p'v}) = 0 since j < p(i,j). Thus we have
E/pkPED = 0, If k > p(i,j), then &/v%~ 7@ 3 0, which is a contradiction. Q.E.D.

For the next section we introduce some more elements defined by
PVa= 00t — ol — do(vd) (6.5)

for n > 1, in which the right-hand side is divisible by p since ng(v,) = v, + v1t] — vit,
mod (p,v,). Then we have Lemma 6.6.
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LEMMA 6.6. In the complex QE A,
Varr =0"V?" mod (p)

— oo PP 2™ mod (p,v,)

di(V,) =0 mod (p"vf").

Here V is the element of (3.5).

Proof. The first two are seen by direct calculations and the definition of V. We deduce
the last one by the definition (6.5) and the following facts: dydy = 0, d, (v2"t2™' ") = 0 and
dy (""" t8"y =0 mod(p"**,v%"), the map p:QFA/(p",v2") - Q2ZA4/(p"*',v2") is mono-
morphic and (p"*!,v%") is an invariant ideal. Q.E.D.

pn+2

Noticing that do(v5"*) = 02" * 2" — p¥,,, mod (3™"*) by the definition (6.5), we
obtain Lemma 6.7.

LEMMA 6.7. Let u, nand | > 0 be integers such that p ¥ u and n,1 > 0. Then in the complex
QlA,
do(v;prnhz) = _ uplv(zupl—l _l)pruS Vn+3

. t_q)pn+2 ,, _pn+2 pn+3
=up D(zup )p (U‘l’ tll’ - an+2)

1+2 1+1,pnt2+pntl 2p"’2)
B 5

mOd(p 4 Uy »U1

We have some relations on the elements V,’s.

LeMMaA 6.8. In the cobar complex QEA/(p,v?), 2t, ® V is homologous to
— o059, — 0105 @15
Proof. By the definition of ¥, mod (p,v?),

2@V =2t @(— v5 " t]) + v, 05721, @t2P

— 2057, @8 + 20,087 25 L @ 8 + 0,082 @ 1 2P,

Direct computation by the formulae (3.6) and (3.10) brings us
di(— 2057 8,) = 20,0572 @ 1 + 20571ty @ £ + 20,05 1 T mod (p, v2).

The last term is homologous to — 2v,v5g, by (3.6), (3.9) and (3.13). We also see the
following by Lemma 3.14:

- _ - 2 2
di(0v572t8t,) = v 05 20l @t — v3g, — 26, @15 —t, ®tP)

mod (p,v3). These together with the equation t? ®t, + t2*' @12 — 1, @1? = vig, —
v, @ tf show

26, @ V= —v,05g9, — 0,05 1 ® t£ mod (p,vf)

up to homology. QE.D.

LEMMA 6.9. In the cobar complex Q% A/(p, v3), 2t,® V7 is homologous to
v 05 _l(go —-{®t).
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Proof. Wesee that —2t, ® V? =205 "'t ® t; — 20,05 25" @ t; — 20,08" 7P~ 1,
® t4 by (3.5), (3.8) and (3.4). We also compute

d, (v} "'t} = — Ulvgz—ztlf @t -5 @t

di(, 05 7P 18y = — 0,08 TP RV + @ 4 L @+ 1R ty)

by (3.4), (3.6) and (3.10). Since v, 12" = v; v5™!¢,, these computations show that 2¢; ® V7 is
homologous to — v;02° P (t2 @ t2**! + 2t ® t,). Thus Lemma 3.14 implies the lemma.

Q.ED.
For the last lemma of this section, we prepare the following.

LemMMa 6.10 (Shimomura and Yabe [17, Lemma 3.4]). We have the elements
w(s,n)evy *T such that vi"w(s,n)eT, and

d (w(s,0) = 20 PV ® 06 — v,v¥g, mod (p,v?)

t n - " n-1
dl(w(s,n))E2v‘2‘_””"+ %4 ®O’—( 2) U{ +“""”v§‘"""’g1 (nZl)

pr-l+4

mod (p, v n-1*3) Here a,=p" + p"~ ' — 1 and e(n,s) = sp" — (p" — 1)/(p — 1).

LEMMA 6.11. In the cobar complex Qi A/(p,v?" " *4n-2+3) 2t, @ v§~ V2" V*" ' forn > 2
is homologous to

(= Pr-2+ A, ,+2 .8
—_0 n-27Ex2 G,

n-2
= 207" ® ysp2~1)pn-2 — 2 1

Proof. Since 2t; ® v§~ VP VP =20 @ 0§ VP VP 4 0, @ v§T VP VP Lemma
4.25 gives

- n -1 - n n-1 n—
2t1 ® U(zs br VP" = 20'® U(zs Lp VP - ZUIC ® U‘l, zy(spz_l)pn_z.

Now apply Lemma 6.10 to it, and we have the result by the property (4.23) of G,.
QE.D.

7. COMPUTATION OF 6,

We will compute the §,-image of the generators of H!M1. Let x/v{ denote one of the
generators of the cokernel of 6,—,:H'"!M3 — H'M} that are given in Proposition 5.7.
Then x(j,1) = x/pv{ gives a nonzero element of H'M3. Suppose inductively that there
exists a nonzero element x(j,!)e H! M3 such that px(j,1) = x(j,I — 1). If 6,(x(j,1)) =0,
then there exists a cochain p such that d,(x(j,1)/p) = d;(p). Put now

x(l+ D) =x()/p—p
and we see that x(j,/ + 1) is a cocycle and
px(j, 1+ 1) = x(j,1).
Thus this proceeds until we have an integer i (maybe infinity) such that
0:(x(j,1)) # 0.

We will find such an integer i for each generator x/v4 of the cokernel.
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We first consider the elements of X of (4.24). Notice that an element x5{ ® {/v] is
bounded by —ix5(?/v{ as long as j < a,. By Lemmas 5.1 and 6.1, we then have the
following result.

ProposiTioN 7.1. The connecting homomorphism &,: H*M3 — H*M} sends an element
X5kl i+ 1) = x1l/p 0] for seZ — pZ,0<i<kand 1 <m<a_; for j = mp to

-y @t ifk=0

— My @L/v{Tt —sv¥ T TPV LT+ - k=1

— MYgpie2 @ {04 + 5y @ WP+ 50" TPV @ LITPT2 4  ifk=2
— MY ® /0T + 25y gpieao e @ LT+ o ik > 2.

Next we study the elements in Y of (4.24).

PrOPOSITION 7.2. For each integer t, we have the cocycles y.(j,1) = v¥V/pvi and
Yi(p — 1,2) = 0 V/p*vy ™1 — $0§~ VP 113%/p?0, and

j+1 . .
61 (Vip (s 1) = 15— (" Gufof + oFV @ L) + -

01(yip(p — 1,2) = 31" 1G0T + 0PV @ {08 + -

Proof. We get the congruences do(vF) = tv'f ~?d,(v5) and do(v5) = — pv, ¥ mod (p?, v})
by Lemma 3.11. These congruences lead us to the equation v#V/pvi = — do(v§* 7))
(¢ + )p*vi*! in our cobar complex QM3 if j + 1 < p. Therefore the definition of the
connecting homomorphism shows that

81wFV/pvi) =971 (¢))
for &;=dy(— do(v§*V7)/(t + 1)p>vi*!). Put t + 1 = sp* for s and u with p ¥ s and u > 0.
Then ¢; equals — d, (07> 7~ 1do (0§ VP))/(t + 1)p®v*P*"?, and we have
&=—0+ Do, ®Vipol* (= v¥t ®@tf/poyifj=p—1)

by the equation d;d, = 0. Now applying Lemma 6.8, we have the case for j <p — 1 by
definition of the elements. The above computation is applied for the case j=p — 1 by
setting &, = d, (~ do(v§*V?)/(t + 1)p*v%), and we have

Ep1=(t/p}) @ vV — (t:/p*v1) ® v’zptfz-

We also compute d; (04~ V7120 /p2y ) = — (qe(v¥~ 2+ )ty /pod) @ 377 + (0§~ VPt,/pv,)
® 37 — 2vl P2 pPu,) ® vF 2’ — v~ VP TPA (¢ )/po, by (3.4). Since the last congruence of
(34) also gives v} ~Pt2"/p?v; = t,/p*v, — v t3/pvy, the second term of ,_; is homologous to an
element X/pv? for some X € BP, /(p, v,), which is denoted by --- in the proposition.

Q.ED.

For the case j = 0, we also have Proposition 7.3.

ProrosiTioN 7.3 (Shimomura and Yabe [17, Prop. 4.4]). For each sp" e Z(0) v Z(2) with
n>0and p ¥s, we have a cocycle y,»(1,n + 1) such that

810 (Lun + 1) = 5 (" Go/y = yopr ® Lfor).
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We introduce here elements:
i1 = yj1 — 3¢p' ol
for positive integers j and I. Here
k+j—2\ (— 1Dk 1k
Yit= k§0< k—1 >kpl+1—kv{—l+k
is given in [6] to satisfy

]

'y =1t /pvi, anddi(y;))=0
for any j and I Then we see that

-1 _ j
p ;= afpvy,

and the following lemma holds.
LEmMMA 7.4. dl(akp‘+1,l) =0 !fl <i+ 1, and = %ktl ®C/pv';”i+l lfl =i+ 2.
Proof. Note that d(y; ;) =0 and 4,({) = 0 mod J for any ideal J = (p’,v") by the conven-

tion on {. We further see that do(1/p'v%') = — kt,/p' " 1 v*?'*1in Q' M2 if | < i + 2. Thus the
lemma follows. QED.

For a while we abuse the notation: For an integer s € Z — pZ, y,,~(j,1) denotes a cocycle
whose leading term is v¥" ¢, /p' v1, if such a cocycle exists. It would be possible that the cocycle is
a coboundary.

ProposITION 7.5. Let s, n, i and k be integers with s€eZ —pZ, k>1,n>i>0 and

kp' < A,_; +2 and put m = sp". Then we have cocycles y,(kp' + 1,1) for 0<I<i+ 1,
whose 6,-images are given by &,(ym(kp' + 1,1)) = 0 for | < i and

. k ; i Ay -
O1(ymlkp' + Li+ 1)) = Ey,n@C/v'{" R TS - AT Y e

k
+ ( —Esl,,xf,G,,/v’{“"*‘_l ifi= 0) + -
where A, = (— 1)"/4forn > 1, = — } forn = 1,and --- denotes an element killed by v*~27""",
Proof. For i =0, we see that y,(k + 1,1) = @(y./v5"") is a cocycle, and consider
w(mk +1,2) = nr(©F)04+1, 2 — 3do(v3)/p’vf. Then pw(mk + 1,2) = yu(k + 1,1) for

k<(p—1p" ' with n=v,(m) by Lemma 4.25, and 6,(ynm(k + 1,1)) = ¢~ '(d,(w(m; k
+ 1,2))). Use (3.12) and Lemma 7.4 to get

k
di(r(03)0x11,2) = Etl ® (nr(©3)/pvi*! — o4y 1,2®do(v7)

k+1
di(do(v5)/p*v}) = —kt1®do(v'2")/l720'i+l+< 2 )tf®do(v?)/l7”’i+2~
Lemma 6.7 says that do(v3)= —spv5 P"¥,mod(p%v}") for n=v,(m), in which

V,=0v2""'V?""" mod(p) by Lemma 6.6. Substituting this to the above equations gives the
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following:

k ; L
di(w(mk + 1,2)) = Ev'zntl ®L/poitt + st P e @ VP /pvk*ti-r

=S L@ P ke

which is homologous to ky, ® {/pvi*! +s(1 — k/2)vT "6 @ VP" ' /pp**t1-2"" by
Lemma 4.25, noticing that v5{ ® {/pv*** is homologous to zero. This gives 8, (y,(k + 1, 1))
fork <(p—1)p" . Fork>(p— 1)p"~ ! withk > p or n > 1, use Corollary 6.3 to find the
leading term. In fact, we have an integer e such that 0 < k — ep < (p — 1)p"~ ! and consider
0P8, (ym(k + 1,1)) = 6 (ym(k + 1 — ep, 1)). A direct calculation also gives the case n = 1
and k = p. Thus we have the case i = 0. For the additional case for m € Z(2) is also seen in
the same manner.

Now turn to the case i > 0. Assume that kp' + | < 4,_; + 2 and put y,(kp' + 1,1) =
Nr(V3)0kp14 1, for I > 0. Then we obtain that d, (y,,(kp’ + 1,1)) = 0for I < i. We further see
that y,(kp' + 1,i + 1) is also a cocycle for kp' < a,_; if we put y.(kp'+ 1,i+ 1) =
nR(xflp—ii)Ukp"+ 1,i+1- ' .

Inductively, we have a cocycle y,(kp'+ 1,i+1) for kp'+1 < A,_; such that
Pymkp’ + 1,i + 1) = y,(kp’ + 1,i) and 0"y, (kp' + 1,i + 1) = y,,(k — a)p' + 1,i + 1) for
a with 4, +2<(k—ap'+1<p" "+ 1. Then to tell the leading term of
31 (ym(kp' + 1,i + 1)) suffices to show the one only for kp’ < p"~* by virtue of Corollary 6.3.
Now compute d; (g (v5)6xpi+1,:+2) for kp' < p"~! by (3.12) and Lemma 7.4 as above, and
obtain kvt ® {/pv¥'*! + 50T P e @ VP pok?' P H L L Eipy,. The proposi-
tion then follows from Lemmas 4.25 and 6.10. Q.ED.

PROPOSITION 7.6. Let t and j be integers with 1 <j < p* + 1. Then there exist cocycles
Vip2—1(j 1) for 1 <1< i+ 1 such that

511U 1) = S o1 @ L) + -

01(yip2-1 (P2 1)) = xEP~ VP Gofv,  (p* k1)
=y(tp—1)p®€/vl (pzlt)

k+1
6l(ytp2—l(kp’ 2)) = Tsz2—1 ® (/vlip

51(yrp2—1(p2 —Ds 3)) = %ytpz—l ® C/vlljz_p'

Proof. First consider the case j = p*, where we put
yrp2—1 (Pz’ 1) = dO(th)/tpzugz+p

and obtain the desired equation from (4.8) and Proposition 7.3.
By the definition (6.5), we see that do(v'?") = — tpr$~V#* ¥, mod (p?,v2°). So if we put

Vipr -1 (kp' — pii + 1) = do@F")tp 208 (4 04t PPy fpo, if i = 2)

then  p'ya-i(kp' — pi+ 1) = do(w’)/tp? v = — 0§~ VP VP por TP =y [pkP e
by Lemma 6.6 and (4.28). Besides, if i < 2,

di(yip2-1(kp' — p,i + 1)/p) = — kt; ® do (v’ )/tp?>v*P'+1
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which equals kt; ® v~ VP’ V?/pp*P'~P*1 Use now Lemma 6.9 to obtain the proposition,
noticing that some element bounds the element corresponding to g, in Lemma 6.9, which
can be read off from the structure of H2M} of (4.24). Comparing degrees, the structure of
H*M} also induces the other fact that the §,-image has no lower term. A similar argument
also shows the case i = 2. QED.

Thus we have computed the J,-images of the elements associated to the generators
Ym/Uy Of Yy cwithpymorph(j+1).

LemMa 7.7. Let n, t, k and i be integers such that n, k,i > OQand kp' + 1 < A, +2 = p"*2
—p"+ A, + 2. Then yupo_yypm(kp' + 1,1) is redefined to be a sum of 3do(xh,)/

tplulipi+P“‘1+p" and — y(tp—l)p"*l(kpi 4 pn _ pn+2 + 1,2)

Proof. 1n this proof, we put m = (tp — 1)p"*! and jp' = kp' + p" — p"*%. We read off
that y,(jp' + 1,2) = yup-1)pn+: (kp' + p" — p"*% + 1,2) is a cocycle from Proposition 7.5,
since kp' + 1 <p"*? — p* + A, + 2. Furthermore, y,(jp' + 1,2) has the leading term
Hr(%)0;pi+ 1.2 by the proof of Proposition 7.5. We compute

do(xps2) = 205 20fP" P g mod(p' Tt v o)
R 2.
= 2tpo§r v P* V"6 mod(p't2pitent)

by (4.8) and the binomial theorem, where I = v ().
Put now

& =$do(xhs2)/tp? 0} PPN —y (Pt + 1,2),
Then the above statements say that p£ =0, ¢ is a cocycle and ¢ has the leading term

v§P’~DP" g/pykP'* 1 These properties are those of yp2—1),(kp' + 1, 1), and so we redefine
y(’pz_l)pn (kpl + 1, 1) = é. Q.E.D.

ProposITION 7.8. Consider an integer m = (tp? — V)p" € Z(2) for t, n € Z with n > 0. If
i and k are positive integers with kp' < p"*? —p" + A,_;+, + 2, then we have cocycles
ymlkp' + 1,1) for 0 < 1 < i, whose ,-images are given by 6(y,(kp' + 1,1)) =0 for | < i and

81 (ymlkp' + L1)) = = Apxf2LEP" Gy foRp! 7P PRI AT

Furthermore, if kp' < p"*2 — p", then we have more cocycles such that
. . k + pn—i .
O1(ymkp' + i+ 1)) = Tym()b Lokt +

Si(ym(P" T2 — "+ Lin+ 1) = $x§P7V" Gofvy (p"T241)
=%y(lp—1)l7'”l ®C/01 (pﬂ+2|t)

k+1

S1(ymkp" "t ="+ Ln+ D) = ——yn ® A A P
Si(ym(p" 2 =P =P+ Ln+3) =y, Qe T
In the above equations, --- denotes a lower term.
Proof. For the case kp' < p"*? — p", we put

ym(kpi + l,l) = %do(vtzpn‘z)/tpl‘l'l vl;pi+pn+1+pn
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if kpl # pn+2 _ pn, and
PP = 7 1) = $do(xhe ) p! o7

This is guaranteed by Lemmas 4.25 and 6.7. Note that this element y may differ from the one
y in Proposition 7.5 and we will denote the latter by §. Thus if kp’ < p**2 — p”, we see that
81(ymkp’ + 1,1)) = 0 for | < i as we have seen above. For | = i + 1, we deduce the results
from (3.12) and Lemmas 6.7 and 6.11 using the formula do(1/p'*2p*e'*r™ *r"y = _
(k + p"~ ")ty /po*P P +P"* 1 Even in the case kp' = p"*? — p”, we have the same results as
above by (4.8) and Proposition 7.3. Furthermore, a similar computation gives the case i = n
and p|(k + 1) and the case i = n and p?|(k + p + 1). Note that the last condition i = n and
p%l(k + p + 1) is equivalent to k = p*> — p — 1.
Turn now to the case kp’ > p"*2 — p". Then Lemma 7.7 enables us to define

Ymkp' + 1,1) = o™ ") /tp' 1A P G (kD P = PR 4 LI+ 1)

where j denotes the element y in Proposition 7.5 as we noted above. We use the notation
7 here in order to distinguish these y’s appearing in both of Propositions 7.5 and 7.8. Then
the first term is a cocycle for | < i and mapped to 4k yg,— 1)pne1 ® {/pv*P'+P" P 2+1 for
I =i+ 1byd, as we have seen above. For the second term, use Proposition 7.5 to see that it
is a cocycle for I < i, and

Ly =K i g k L
51(ym(kp‘+1,1))=§y(tp—1)p'“1®§/vlip+p ? 2+1_§y(tp—1)pn+1®C/Ul{p tpnopneitl
_S'ln—ixfltgi—#ipiGn—i+1/l7‘{pi_pml_P"_A"-‘_1
as desired. QED.
8. H'M(z)

Let 8,: H'M§ — H'* ' M1 be the connecting homomorphism. Then we introduce some
notation:

For a submodule M of H'*'M}, M (resp. M;) denotes the intersection of M and
cokernel (resp. image) of §; up to isomorphism. M denotes the submodule of H** 1 M?2
consisting of x e H'*'M} such that p"x € 9(M) for some n.

We also denote
X(=X®Z,{{} and X, {=X,®Z,{
Then Proposition 5.7 gives
X{c=F,{xi{/vi:seZ —pZ,n>0,1<j< a, such that
Jj > a,_; if p'|j for either s€ Z,, or s €Z% and p**!|j}
Xole=X(
Yo,c = Fy{yspn/vi:s €Zo, n > 0,j < A, + 2, such that
j=1lorj—1>a,;if p'|(j — 1)}
Yic=F{yp/viiseZ’ k>0,n>0,j< A4, + 2, such that
J=Lj—1>a, ;i pI(j— 1) and p** ' f (j + Gpr1), OF j > Gpss — Gy}
Ye=F{v¥VpiseZ 1 <j<p—1,plis+1)ifj=p— 1}
Yo, = F{t,/v,}.
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Since X{ & < X*° ® Z,{(}, we have
X(® =Zp{x3l/p'* o5 €Z ~pZ,j> 0, plj < a,-;
either p'*' Y jorj>a, ;-, and
p'*t1|j if either s € Z, or s € Z4 and p**!|j}
by Proposition 7.1. We also see that
X8 =X3® Z(p){C}-
We have more modules:
Y& = Zip{Ysprkp' + 1,i + 1):ym/v¥"* 1 € Yo c,
for k=0,i=n, and
fork>0,kp' +1<A4,_;+2,
kp' + 1>a,_;if pfk,and >A,_;_; + 2 otherwise}.
YEc = Zip{Vapr-1pm kD' + L1):yp2—1)pn/ 05 € Y1,
I=n+1ifk=0
For k > 0,
I=i>0for p"*2 —p"<kp'<p"*? —p"+ Ay-i+: + 2 and
Pt —p"+ A,_; +2 < kp'if plk;
I=i+1fori=0and pt¥(k+p"i), or
forkp'<p't?—p" pkk+p"Hand 0<i<n;
l=n+2fori=nk<p®>—1,p|lk+1)and k # p?> —p — 1; and
I=n+3ifi=nand k=p*—p—1}.
YE = Z,{yiplil):vfV/v] e Y,
I=1ifj<p-—1l,andI=2ifj=p— 1}.
YZ.c=Zp{yio} = Q/Zy

Moreover, by Propositions 7.2, 7.3, 7.5, 7.6 and 7.8, we divide Y§¢c and YT into two
submodules, respectively:

YEE = Zp{ysprlkD' ™1 + 1,i + 1) yepn/v¥P " L €Yo, k #0,
Apoior + 1 <kp'*t <A, ;+1 forix>0}

¢ ={0}u ¥&c— Y&

YPE = Zipy (yspmkp™ ' + 1,0 + 1)1y,,n/0"P" "1 e Y, ¢, k #0,

Y,

PP+ A, i+ 1l<kpti<pti—p"+A4,;+1 fori=>0}
Yed = {0} u YPe — YRE.

We summarize the results of the previous section as follows.

PropoSITION 8.1. The connecting homomorphism &; sends an element y/p'vi of
YEd @ YE& @ Y®to the element y @ {[v] of H*M]. An element y/p'v] of Y3& ® YT
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is mapped to an element of G = H*M1 by &,. Furthermore, X* and X3 are sent to
Yo ®Y,,® Y and Y, respectively, and Y3, o to 0.

Now we have the following theorem.

THeOREM 8.2. H'MY is a Z,-module isomorphic to

YEc®YTc®YEDYI D XIEDXT®Zp{l}) 8.3)

Proof. We will prove this by Lemma 4.3. Let B' be the module (8.3) and the map
f:B' - H'M3} the inclusion. Since the cokernel of §, is isomorphic to the image of ¢,
@ induces the map ¢: H*M} — B! by the definition of the modules M. It is easy to see that
pB! c B'. Thus we have the commutative diagram of Lemma 4.3.

Now it is sufficient to show that the sequence including B? is exact. It follows from the
exact couple of the Bockstein spectral sequence that the sequence H'M} —» B' - B! is
exact. To see that the sequence B! - B% HM ! is exact, we assume that a linear
combination ¥ ¢ of the elements of B! maps to zero by d;. If §,(¢) = 0, then there exists
& B! such that ¢ = p&’ by the definition of B'. Furthermore, if the sum of &’s with
8,(¢) # 0 is null, then there is some nontrivial relation between these elements, which is
a contradiction to Proposition 8.1. In fact, the generators in H>M1 are linearly independent.
Thus the linear combination does not have a term £ such that §,(¢) # 0, and so it is in the
image of p. QED.

9. H*M?

In order to state the structure of H2M3, we divide the module G into two parts: one is G¢
and the other is G;. Propositions 7.3, 7.5, 7.6 and 7.8 show that

Ge = L {x¥ Go/v1,x5G,/vi: k> 0,n> 0,5+ 1 €Z — pZ,
1<j<a, and for n> 0,
PN+ Auoioq + 1) if s = up' €Z(0), or
PY(j+ Ay_i + 1) if s = up’ €Z(2) and i > 0}.

Now we compute the connecting homomorphism 6,: H*tM§ —» H3M.

ProvrosiTion 9.1 (Shimomura and Yabe [17, Prop. 4.1 and 4.3]).

. i+ 1 .
8,(x3Gy/pvl) = —JTx:GI ® o)

8,(x3G,/pvy ) = — 4x3G, @ {/vi L.

In order to generalize the results of [17, Prop. 4.1], we redefine the generators xf,G,,/v{
of H>M1 as for the generator y,,,/v{ in Section 7.

Recall that the generator x$G,/v’ with n > 0 is characterized by the two conditions:
03T x$G,/vh = o DDy, 1y and d, (x5G,/v}) = 0. Put now

’

x3G, (1) = ;"do(vszp") ®0jsa, +2,e+2

for s = up® with ptu, where I, =(—1)"*'4 if n>1 and =2 if n = 1. Then we have
Lemma 9.2.
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LEMMA 9.2. Let n, s and j be integers such that n > 0,0 <j < a, and pls(j + A,-1 + 1).
Then the element x5G,(j,1) satisfies the following: px;G,(j,1) and v{‘ 1x8G,(j,1) are
homologous to zero and vsP"~(P" '~ VI~ Vg py, respectively, and x5G,(j, 1) is a cocycle in
the cobar complex Q*M3. Therefore, we have a generator x3G,/v’ of H*M} such that
@(x3G,/v]) = x3G,(j, 1).

Proof. Since xf,G,,/v{ is a generator, we have j<ag,,and so j+ A4,., +2<4,+ 1.
Note that

n. +1 n n-1 - -1
do(wF") = — sy P TP YRT  pspp™ st et et 9.3)

mod (p¢* 2, pe* 1 vE"P" ! v 2P") for e = v,(s) by Lemma 6.7. Then we see that px;G,(j, 1) is
homologous to zero by Lemma 610, and o) 'x3G,(j,1) = 2,0 V7" V?""' ®a/
pv?"**4n-2*3 is homologous to v3f"~#""'~ /P~y /py, by Lemma 6.10. We also see that
x5 G,(j,1) is a cocycle by Lemma 7.4. Q.E.D.

LEMMA 9.4. Suppose that x5G,(j,1) is a cocycle, kp'=j+ A,_, +1 <A, + 1 and
| <i+ 1. Then 8,(x5G,(j,1)) = ix3G, ® {/vi.

Proof. Since H3M} is generated by the elements y/v? = x%,G,, ® {/v$ with p ¥ (t + 1)
and a < p™ 1(p + 1), we may put

52(xiGn(]’l)) = ZkyY/val

for k, e F, In the summation, we see that a < p"*! by Corollary 6.4 since j <p"*!.
Furthermore the above equation is homogeneous, and so the internal degree of y/v$ is the
same as that of x$G,(j,1). As is stated in [14, (4.3.3)],|x3G,/v’| = (sp" — (p" "' — 1)/
(p — 1)(p + 1) — 1 —j. Thus we have an equation and an inequality

sp"(p+ ) —kp' =(tp" - (p" ' = D/(p-DP+1)~1~a
O<a<min{p"tLp" '(p+ 1)}
since kp' =j + 1 + (p + 1)(p" — 1)/(p — 1). Here we note that a # p"*!. In fact, if so, we
deduce that i = nand k = 1 and the equation does not hold even if we consider it modulo p.

Now we solve these. First suppose that m > n + 1. Then a < p"*'. Note that 4,_, + 1
< kp* < A, + 1, and the above equations give us

m—1 _ .n~—
(tp"‘—sp"———(p (p*f) 1)>(p+1)<a<p"“
O<a<<tp'"—sp"—£p—m—_l—_@>(p+l)—l.

(p—1)

This gives tp™ =sp" + (p"~ ' — p")/(p — 1) + p" and then deduce the contradiction
a > p"*!. Next consider the case that m < n. Then a < p™~!(p + 1) and similarly to the
above, we have inequalities

(pn—l _ Dm—l)

Ty )(p+l)<a<p’”‘1(p+l)

(tp’" —sp" +

(r"—p"h

O<a<|tp" —sp" +
<” AT

>(p+1)—1.
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If m = n, then we have the trivial solution: t = s and a = j. For the case m < n, we obtain
that t=sp" " —(p" " —1/(p—D+a and a=(—(p"~D/Ap—1)+p""" +oap)
(p+1)—1+kpfor 0<a<p" ™ ' We further see that the inequality a > 0 indicates
o > p" ™! This is a contradiction. Therefore we have no solution in this case, either.
Hence the above summation has only a term k,y/v{ = Ax;G, ® { /v{. Q.ED.

Now we have the generalization of [17, Prop. 4.1].

ProPOSITION 9.5. Let n, s, i, j and k be integers such thatn > 1,i > 0,j,k > 0,p k(s + 1),
j<a,and kp'=j+ A,—, + 1. Then we have cocycles x;G,(j,1) for 0 <l<i+ 1, and

k ,
S2xaGa(fii + 1) = — 2 %3G, @ {/vi.

Proof. We show first that x5G,(j,1) is a cocycle for 0 < [ < i + 1, inductively. For [ = 1,
it is trivial since x5G,(j,1) = @(x$G,/v"). Assume now that x}G,(j,!)is a cocycle for I < i.
Lemma 9.4 says that

82(x3Ga(j, 1) = 2x3G, ® { /v (96)
for some A € F,. By virtue of Lemma 6.10, we may put

x2Ga(j,1) = }»;.U(zs_l)p" Ve ® Orpivt, et

A/
?do (vF") ® Oipi+1,1+1 (by Lemma 6.7) 9.7

for kp' < p", and for kp’ > p", some lower terms would be added. Here 4, = (— 1)"*'4 for
n > 1. Lemma 7.4 tells us that x$G,(j, ] + 1) is a cocycle for j < p". For j > p”, use Corollary
6.3 to find that A in (9.6) is null, which means that x3G,(j,! + 1) is a cocycle.

We compute d,(x5G,(j,i +2)) = — 3k 08~ VPV, ® t, ® {/pv*?'* ! for a small value
j by Lemma 7.4. Then the proposition follows from the definition of 4, and (9.7) for a small
value of j. For a larger value of j, again use Corollary 6.3, and we have 1 = — %k in (9.6) by
comparing internal degrees. Q.ED.

We also have in [17, Prop. 4.4 and Lemma 4.5] the following:
81(Pspn/p" 1 01) = —v“’ (go — 11 ®L)/vy

and

s
2(ym® /" 0y) = Ex'gGo ® {/vy.
Putting these together, we obtain Proposition 9.8.

ProrosiTiON 9.8. For the integers s and n with p ¥ s(s + 1), we have

85(x§ Go/p"" ' v1) = EXB""Go ® (/o1

In fact, the first equation gives x ?"Go/pv; = ys,» ® {/pv; and then use the second one.
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CoROLLARY 9.9. For any j > 0, we have
62(Go/p’vy) = 0.

Proof. Suppose that there exists a positive integer j such that §,(Go/p’v,) # 0. By
Lemma 6.2 and Proposition 9.8, we see that v2’8,(Go/p’v,) = 0. Since v% acts monomor-
phically on the submodule (x§Go/v,:s + 1 € Z — pZ > of H>*M3, the above two statements
produce a contradiction. Q.ED.

Now define

GE = Z»{x3Gu(j,1): x5Ga/v] €Gc — {Go/v1},
I=i+1ifn=0and v,(s) =i
I=i+lifn>landv(j+ A4,-, +1)=i}

GE‘)o = Z(p){Go/ijI :j > 0}

From Propositions 7.5 and 7.8, we further have Y{c = (Yo,c ® Y;,¢) ® F,{(})c that is an
F,-vector space over the basis

{,Vsp"®C/U';pmﬂz.}’sp"/vliphul €Yoc® Yy, k=0,0r
p¥sand A,_;_y +2<kp'*' +1< A4, ;+2ifseZ, and
kp'*' > p"*? —p"fori>0and kp > A, + 1fori=0ifseZ,}.

Note that we have an isomorphism.
Remark 9.10. Y{c = G, as F, -vector spaces.

In fact, the correspondence can be read off from Propositions 7.5 and 7.8. Note also that
Y{c produces the submodule (Y3 @ YPE) ® Z,,{{} of H*M3. Thus we introduce
another notation:

Y =(YSERYTE)®Z,{L}

Now we have the following result.

THEOREM 9.11.
HMi=Y( ®GE D (Y3 QZ,{{}) @ GE.
Proof. First we study the cokernel of §,. By the results of Section 6, we see that the
submodule of H*M} of the form M ® Z,){(} is in the image of &, except for Y{c and

Yo ® Z,){¢}. For the submodule G, G = G- ® G; and G is in the image of §,. Now the
theorem follows in the same way as the proof of Theorem 8.2. QED.

Note that 6, maps Y{& isomorphically to G; ® Z,{{}, which is deduced from Lemma
6.1 and Propositions 7.5 and 7.8, and G& to (G¢ — {Go/v1}) ® F,{{}. Besides, d,(Y3
® Z,){{}) = 0. Therefore we have Lemma 9.12.

LEmMA 9.12. The cokernel of 8, is the submodule generated by G, ® {/v,.

Using Lemma 4.3, the following is now a corollary of this lemma and Corollary 9.9.
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THEOREM 9.13. The module H>*M3 is isomorphic to Q/Z,,, generated by G, ® {/p'v;.
Summarizing these, we have the following resulit.

THEOREM 9.14. The module H*M?3 is isomorphic to
(X2DYZcOGT)IREQPX"DX(CDYFcR YT cDYEDECG™.
Here G* = G@ @ Y(~.

Since we see that Y{. is isomorphic to G;, the notation G* is reasonable.

10. 7, (L,S°)

Consider the Adams-Novikov spectral sequence based on E(2) converging to the
homotopy groups 7, (L,S°) of the Bousfield localization of the sphere S° ([1,2], cf. [10]).
Then the E,-term of the spectral sequence is

H*>'A = Exty'(4, A)

where (4, ') denotes the Hopf algebroid (E(2) ., E(2), E(2)) associated to the spectrum E(2).
We have the long exact sequence (4.2)

0 = HONS — H'M$ — HON} — H'N§ - ---

~ H'N§ —» H'MY — H'N§ 2 H'*ING - ...
and

0 — HON} — HOM§ — H'M3 —2> H'N§ — -

> H'N} - H'M} - H'M3 = H'*IN} — -

In these long exact sequences, H*NJ = H*A, and the modules H*M J, H*M § and H*M}
are known now. Since H'M§ = Ofort > 1,6,: H'M} — H'* N} is isomorphic for t > 1 and
epimorphic for t = 1. The kernel of &, is Y2 ¢, since H'M§ = Y% ¢ by (4.5). This further
means that the map H'M{ — H'M} in the above sequence is a monomorphism, and we
have the exact sequences

0 — HONY —» HOM3 £, HOM2_* ,HIN} - 0
and
0 - H'M} - H'M3 >, H2N} —0.
By the structures (4.5) and Theorem 9.14, we see that
Kerf=Z,{v¥/p'*"i20,520,pks} ®Q/Z
Imf=X5.

Furthermore H'M = 0if t > 0,and =Q at the internal degree 0if t = 0. Therefore we have
the following theorem.
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Tueorem 10.1. The E,-term E5 of the Adams—Novikov spectral sequence for 7, (L,S°) is

given by

0) ES = Z4,,

(1) EY>Z,,{v/p*1:i>0,5>0, pts},

) E3 =X~

Q) E3=YEDYEcDYEDXIED(X2®Z,{LY,
@) E5=YE®GED(YE c®Z,{L}H)DGT,

(5) E3 =Gy = Q/Z,, and

1

I

(6) E4=0fort >S5

Since the prime p is greater than 3, the Adams-Novikov spectral sequence for 7 ,(L,S°)

collapses from the E,-term and so Theorem 10.1 gives the structure of the homotopy groups
as well.

w N

4.

14.

15.

16.

17.
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