The beta elements $\beta_{tp^2/r}$ in the homotopy of spheres

KATSUMI SHIMOMURA

In [1], Miller, Ravenel and Wilson defined generalized beta elements in the E_2 -term of the Adams–Novikov spectral sequence converging to the stable homotopy groups of spheres, and in [4], Oka showed that the beta elements of the form $\beta_{tp^2/r}$ for positive integers t and r survive to the homotopy of spheres at a prime p > 3, when $r \le 2p-2$ and $r \le 2p$ if t > 1. In this paper, for p > 5, we expand the condition so that $\beta_{tp^2/r}$ for $t \ge 1$ and $r \le p^2-2$ survives to the stable homotopy groups.

55Q45; 55Q10

1 Introduction

Let BP be the Brown–Peterson spectrum at a prime p, and consider the Adams–Novikov spectral sequence converging to homotopy groups $\pi_*(X)$ of a spectrum X with E_2 –term $E_2^{s,t}(X) = \operatorname{Ext}_{\mathrm{BP}_*(\mathrm{BP})}^{s,t}(\mathrm{BP}_*,\mathrm{BP}_*(X))$. Here,

$$BP_* = \mathbb{Z}_{(n)}[v_1, v_2, \dots]$$
 and $BP_*(BP) = BP_*[t_1, t_2, \dots]$

for $v_i \in \mathrm{BP}_{2p^i-2}$ and $t_i \in \mathrm{BP}_{2p^i-2}(\mathrm{BP})$. In [1], Miller, Ravenel and Wilson defined generalized Greek letter elements in the E_2 -term of the Adams–Novikov spectral sequence converging to the homotopy groups $\pi_*(S^0)$ of the sphere spectrum S^0 at each prime p. For the beta elements, we consider the mod p Moore spectrum M and finite spectra V_a for a>0 defined by the cofiber sequences

(1.1)
$$S^0 \xrightarrow{p} S^0 \xrightarrow{i} M \xrightarrow{j} S^1$$
 and $\Sigma^{aq} M \xrightarrow{\alpha^a} M \xrightarrow{i_a} V_a \xrightarrow{j_a} \Sigma^{aq+1} M$,

where $p \in \pi_0(S^0) = \mathbb{Z}_{(p)}$, $\alpha \in [M, M]_q$ is the Adams map, and

$$q = 2p - 2$$
.

Since the maps j and j_a induce trivial homomorphisms on the BP*-homologies, these cofiber sequences yield short exact sequences

(1.2)
$$0 \longrightarrow BP_* \stackrel{p}{\longrightarrow} BP_* \stackrel{i_*}{\longrightarrow} BP_* / (p) \longrightarrow 0, \\ 0 \longrightarrow BP_* / (p) \stackrel{v_1^a}{\longrightarrow} BP_* / (p) \stackrel{i_{a*}}{\longrightarrow} BP_* / (p, v_1^a) \longrightarrow 0,$$

Published: 16 October 2010 DOI: 10.2140/agt.2010.10.2079

where

(1.3)
$$BP_*(M) = BP_*/(p)$$
 and $BP_*(V_a) = BP_*/(p, v_1^a)$.

The beta elements of the E_2 -terms are now defined by

(1.4)
$$\overline{\beta}'_{s/a-b} = \delta_a(v_1^b v_2^s) \in E_2^{1,(sp+s-a+b)q}(M),$$

$$\overline{\beta}_{s/a-b} = \delta(\overline{\beta}'_{s/a-b}) \in E_2^{2,(sp+s-a+b)q}(S^0)$$

for s>0 and $a>b\geq 0$, if $v_1^bv_2^s\in E_2^{0,(sp+s+b)q}(V_a)$, where δ and δ_a are the connecting homomorphisms associated to the short exact sequences (1.2). We abbreviate $\overline{\beta}_{s/1}$ to $\overline{\beta}_s$ as usual. Now assume that the prime p is greater than three. Then L Smith [7] showed that every $\overline{\beta}_s$ for s>0 survives to a homotopy element $\beta_s\in\pi_{(sp+s-1)q-2}(S^0)$, and S Oka showed the following beta elements survive:

$$\beta_{tp/r}$$
 for $t > 0$ and $r \le p$ with $(t, r) \ne (1, p)$ in [2; 3],
 $\beta_{tp^2/r}$ for $t > 0$ and $r \le 2p - 2$ in [2],
 $\beta_{tp^2/r}$ for $t > 1$ and $r \le 2p$ in [4].

Letting W denote the cofiber of the beta element $\beta_1 \in \pi_{pq-2}(S^0)$, we have a cofiber sequence

$$(1.5) S^{pq-2} \stackrel{\beta_1}{\longrightarrow} S^0 \stackrel{i_W}{\longrightarrow} W \stackrel{j_W}{\longrightarrow} S^{pq-1}.$$

Then $E_2^{s,tq}(W \wedge V_a) = E_2^{s,tq}(V_a)$. In [6], we showed the following:

Theorem 1.6 [6, Theorem 1.4] Suppose that $v_2^s \in E_2^{0,s(p+1)q}(W \wedge V_a)$. If the element v_2^s survives to $\pi_*(W \wedge V_a)$, then $\overline{\beta}_{st/r}$ for t > 0 and 0 < r < a - 1 survives to $\pi_*(S^0)$.

In this paper, we show the following theorem:

Theorem 1.7 Let p be a prime greater than five. Then the element $v_2^{p^2} \in E_2^0(W \wedge V_{p^2})$ is a permanent cycle.

We work at a prime p greater than three throughout the paper except for Lemma 3.8, which requires us to exclude the case p = 5.

Corollary 1.8 Let p be a prime greater than five. Then the beta elements $\overline{\beta}_{tp^2/r} \in E_2^{2,(tp^2(p+1)-r)q}(S^0)$ for t>0 and $0< r< p^2-1$ are permanent cycles.

2 Vanishing lines for Adams–Novikov E_3 –terms for W

Ravenel constructed a ring spectrum T(m) for each integer $m \geq 0$ characterized by $\mathrm{BP}_*(T(m)) = \mathrm{BP}_*[t_1,\ldots,t_m]$ [5]. He then showed the change of rings theorem $E_2^{s,t}(T(m) \wedge U) = \mathrm{Ext}_{\Gamma(m+1)}^{s,t}(\mathrm{BP}_*,\mathrm{BP}_*(U))$ for a spectrum U and the Hopf algebroid $\Gamma(m+1) = \mathrm{BP}_*(\mathrm{BP})/(t_1,\ldots,t_m)$. It follows from the Cartan–Eilenberg spectral sequence that

(2.1)
$$E_2^{s,t}(T(1) \wedge U)$$
 is a subquotient of $BP_*(U) \otimes \bigotimes_{i \geq 2, j \geq 0} (E(h_{i,j}) \otimes P(b_{i,j}))$,

where $E(h_{i,j})$ and $P(b_{i,j})$ denote an exterior and a polynomial algebras on the generators $h_{i,j}$ and $b_{i,j}$, which have bidegrees $(1,2p^j(p^i-1))$ and $(2,2p^{j+1}(p^i-1))$. Ravenel further constructed a spectrum X_k , which is denoted by $T(0)_{(k)}$ in [5], characterized by BP_* -homology $\mathrm{BP}_*(X_k) = \mathrm{BP}_*[t_1]/(t_1^{p^k})$ as a $\mathrm{BP}_*(\mathrm{BP})$ -comodule, and a diagram

(2.2)
$$X_{k-1} \stackrel{\lambda_k}{\longleftarrow} \Sigma^{p^{k-1}q} \bar{X}_k \stackrel{\lambda'_k}{\longleftarrow} \Sigma^{p^k q} X_{k-1}$$

$$\downarrow^{\iota_k} \qquad \qquad \downarrow^{\iota_k} \qquad \qquad \downarrow^{\iota_k'} \qquad \qquad \downarrow^{\iota_k'}$$

$$X_k \qquad \qquad \Sigma^{p^{k-1}q} X_k$$

in which each triangle is a cofiber sequence with inclusion ι_k or ι'_k . Hereafter, we abbreviate X_1 to X. Since λ_k and λ'_k induce the zero homomorphisms on BP*-homologies, applying the Adams-Novikov E_2 -terms $E_M^*(-) = E_2^*(- \wedge M)$ to the diagram gives rise to an exact couple (D_1^s, E_1^s) with $D_1^{2s} = E_M^*(X_{k-1})$, $D_1^{2s+1} = E_M^*(\bar{X}_k)$ and $E_1^s = E_M^*(X_k)$, which defines the small descent spectral sequence (see [5, 7.1.13] with $k = \infty$):

$$(2.3) SDE_1^* = E(h_{k-1}) \otimes P(b_{k-1}) \otimes E_M^*(X_k) \Longrightarrow E_M^*(X_{k-1}),$$

where $h_{k-1} \in {}^{\mathrm{SD}}E_1^{1,0,p^{k-1}q}$ and $b_{k-1} \in {}^{\mathrm{SD}}E_1^{2,0,p^kq}$ are represented by the cocycles $t_1^{p^{k-1}}$ and

$$y_{k-1} = \sum_{k=1}^{p-1} \frac{1}{p} \binom{p}{k} t_1^{k p^{k-1}} \otimes t_1^{(p-k)p^{k-1}},$$

respectively, of the cobar complex

$$\Omega^* = \Omega^*_{\mathrm{BP}_*(\mathrm{BP})} \, \mathrm{BP}_* / (p)$$

for computing $E_M^*(S^0) = E_2^*(M)$. Note that

(2.4)
$$\overline{\delta}'_k \overline{\delta}_k(x) = b_{k-1} x \quad \text{for } x \in E_M^*(X_{k-1}),$$

where $\overline{\delta}_k$ and $\overline{\delta}'_k$ denote the connecting homomorphisms corresponding to λ_k and λ'_k , respectively. Besides,

$$(2.5) b_0 = \overline{\beta}_1.$$

Hereafter, we abbreviate $E_M^*(S^0)$ to E_M^* .

Lemma 2.6 The homomorphism $\overline{\beta}_1$: $E_M^{s-2,t-pq} \to E_M^{s,t}$ is a monomorphism if

$$E_M^{s-1,t}(X) = 0$$
 and $E_M^{s-2,t-q}(X) = 0$,

and an epimorphism if

$$E_M^{s,t}(X) = 0$$
 and $E_M^{s-1,t-q}(X) = 0$.

Proof This follows immediately from the exact sequences

(2.7)
$$E_{M}^{s-1,t}(X) \stackrel{\kappa_{1*}}{\to} E_{M}^{s-1,t-q}(\overline{X}) \stackrel{\overline{\delta}_{1}}{\to} E_{M}^{s,t} \stackrel{\iota_{1*}}{\to} E_{M}^{s,t}(X),$$

$$E_{M}^{s-2,t-q}(X) \stackrel{\kappa'_{1*}}{\to} E_{M}^{s-2,t-pq} \stackrel{\overline{\delta}'_{1}}{\to} E_{M}^{s-1,t-q}(\overline{X}) \stackrel{\iota'_{1*}}{\to} E_{M}^{s-1,t-q}(X)$$

associated to the cofiber sequences in (2.2) for k = 1.

For a non-negative integer s, we consider the integer $\tau(s)$ defined by

(2.8)
$$\tau(s) = \mu(s) p^2 + \varepsilon(s) p = \begin{cases} (s/2) p^2 & \text{if } s \text{ is even,} \\ ((s-1)/2) p^2 + p & \text{if } s \text{ is odd,} \end{cases}$$

where $\varepsilon(s)$ and $\mu(s)$ are the integers given by

(2.9)
$$2\varepsilon(s) = 1 - (-1)^s$$
 and $2\mu(s) = s - \varepsilon(s)$.

Lemma 2.10 $E_M^{s,t}(X) = 0$ if $t < \tau(s)q$.

Proof By an iterate use of the small descent spectral sequences (2.3) for k, we see that $E_M^{s,t}(X)$ is a subquotient of $E(h_j:j>0)\otimes P(b_j:j>0)\otimes E_M^*(T(1))$. For each dimension s, minding (2.1), the (additive) generator with the smallest internal degree is $h_1^{\varepsilon(s)}b_1^{\mu(s)}$, whose bidegree is $(s,\tau(s)q)$.

Let $\widetilde{E}_{M}^{s,t}(U)$ denote the Adams–Novikov E_{3} –term $E_{3}^{s,t}(U \wedge M)$. Since the Adams–Novikov spectral sequence has the sparseness: $E_{M}^{s,t}=0$ unless $q\mid t$, we see that $\widetilde{E}_{M}^{s,t}(S^{0})=E_{M}^{s,t}$.

Lemma 2.11 $\widetilde{E}_{M}^{s,t}(W) = 0$ if one of the following conditions holds:

- (1) $q \nmid t(t+1)$.
- (2) $q \mid t \text{ and } t < (\tau(s-1)+1)q$.
- (3) $q \mid (t+1)$ and $t+1 < (\tau(s)+1)q$.

Proof The cofiber sequence (1.5) induces the short exact sequence

$$0 \longrightarrow E_M^{s,t} \stackrel{i_{W^*}}{\longrightarrow} E_M^{s,t}(W) \stackrel{j_{W^*}}{\longrightarrow} E_M^{s,t-pq+1} \longrightarrow 0$$

of the E_2 -terms. Therefore, $E_M^{s,t}(W)=E_M^{s,t}\oplus gE_M^{s,t-pq+1}$ for an element $g\in E_M^{0,pq-1}(W)$. Since $d_2(g)=i_{W*}(\overline{\beta}_1)$ in the Adams–Novikov spectral sequence, we have the long exact sequence

$$(2.12) E_M^{s-2,t-pq} \xrightarrow{\bar{\beta}_1} E_M^{s,t} \overset{i_{W^*}}{\longrightarrow} \tilde{E}_M^{s,t}(W) \xrightarrow{j_{W^*}} E_M^{s,t-pq+1} \xrightarrow{\bar{\beta}_1} E_M^{s+2,t+1}$$

of the E_3 -terms. The sparseness of the spectral sequence implies that i_{W*} and j_{W*} in (2.12) are zero if $q \nmid t$ and $q \nmid (t+1)$, respectively. This immediately shows the lemma under the first condition. If the second (resp. third) condition holds, then Lemma 2.10 and Lemma 2.6 imply that the left (resp. right) $\bar{\beta}_1$ in (2.12) is an epimorphism (resp. a monomorphism).

Remark Lemma 2.10 and Lemma 2.6 hold by the same proof after replacing $E_M(-)$ and $\widetilde{E}_M(-)$ by $E_2(-)$ and $E_3(-)$.

We state here relations in the E_2 -term $E_M^* = E_2^*(M)$:

Lemma 2.13 In the Adams–Novikov E_2 –term E_M^2 , $v_1^2b_0=0$ and $v_1^{p-1}b_1=0$.

Proof Note that $d(t_2) = -t_1 \otimes t_1^p + v_1 y_0$ in Ω^2 (see [5, 4.3.15]). Then $v_1^2 y_0$ cobounds $c_0 = -t_1 \eta_R(v_2) + v_1 t_2 - (1/2) v_1^p t_1^2$, since v_1 and t_1 are primitive, and $\eta_R(v_2) \equiv v_2 + v_1 t_1^p - v_1^p t_1 \mod(p)$ in BP* BP (see [5, 4.3.21]).

Consider the cobar complex $\Omega_2^* = \Omega_{\mathrm{BP}_*(\mathrm{BP})}^* \mathrm{BP}_*/(p^2)$. We define the element $w \in \Omega^1$ by

(2.14)
$$d(v_2^p) = v_1^p t_1^{p^2} - v_1^{p^2} t_1^p + p v_1 w \in \Omega_2^1.$$

It is well defined, since $pv_1\colon \Omega^s \to \Omega^s_2$ is a monomorphism. Noticing that $d(t_1^{p^{i+1}}) = -py_i$ and $d(v_1) = pt_1$ in Ω^*_2 , send the equation (2.14) to Ω^2_2 under the differential d, and we obtain $0 = -pv_1^p y_1 + pv_1^{p^2} y_0 + pv_1 d(w) \in \Omega^2_2$, which is pulled back to Ω^2 under pv_1 to give $d(w) = v_1^{p-1} y_1 - v_1^{p^2-1} y_0 \in \Omega^2$. It follows that $v_1^{p-1} y_1$ cobounds $w + v_1^{p^2-3} c_0$.

3 Adams–Novikov E_2 –terms for $X \wedge M$

Ravenel computed the small descent spectral sequences to determine $E_2^{s,t}(T(m))$ in [5, 7.2.6, 7.2.7] below internal degree $2(p^{m+3}-p^2)$. In particular, below internal degree $(p^3+p^2)q$,

(3.1)
$$\bigoplus_{s\geq 2} E_2^{s,*}(T(1)) = k(2)_* \left\{ v_3^s b_{20} : s \geq 0 \right\} \otimes E(h_{20}) \otimes P(b_{20}).$$

Here, E and P denote an exterior and a polynomial algebras over \mathbb{Z}/p ,

$$(3.2) k(m)_* = \mathbb{Z}/p[v_m]$$

and $v_3^s b_{20}$ denotes the element corresponding to \hat{v}_2^{s+1}/pv_1 in [5, 7.2.6]. We here read off the following formulas on the differential of the cobar complex $C_2^* = \Omega_{\Gamma(2)}^* BP_*$ from the Hazewinkel and the Quillen formulas (see [1, (1.1), (1.2), (1.3)]):

(3.3)
$$d(v_1) = 0, d(v_2) = pt_2, d(v_3) = v_1 t_2^p - v_1^{p^2} t_2 + pt_3 - p^{-1} v_1 d(v_2^p), d(t_2) = 0.$$

By virtue of these, we see that the generators v_1 , h_{20} and $v_3^s b_{20}$ are represented by v_1 , t_2 and $y_{2,s} = p^{-1}d(\overline{y}_{2,s})$ for

$$\overline{y}_{2,s} = -\sum_{i=1}^{s+1} {s+1 \choose i} v_1^{i-1} v_3^{s+1-i} (t_2^p - v_1^{p^2-1} t_2)^i,$$

respectively, in the cobar complex C_2^* for computing $E_2^*(T(1))$.

Corollary 3.4 The Adams–Novikov E_2 –terms $E_M^{s,t}(T(1))$ below internal degree $(p^3 + p^2)q$ are given as follows:

$$\bigoplus_{s\geq 2} E_M^{s,*}(T(1)) = b_{20}k(2)_*[v_3] \otimes E(h_{20}, h_{21}) \otimes P(b_{20})$$

Here, the generators have the following bidegrees:

$$|v_2| = (0, (p+1)q), \quad |v_3| = (0, (p^2 + p + 1)q),$$

 $|h_{20}| = (1, (p+1)q), \quad |h_{21}| = (1, (p^2 + p)q) \quad \text{and} \quad |b_{20}| = (2, (p^2 + p)q).$

Proof Consider the long exact sequence

$$E_2^{s,t}(T(1)) \xrightarrow{p} E_2^{s,t}(T(1)) \xrightarrow{i_*} E_M^{s,t}(T(1)) \xrightarrow{\delta} E_2^{s+1,t}(T(1)) \xrightarrow{p} E_2^{s+1,t}(T(1))$$

associated to the first cofiber sequence in (1.1). Note that this is a sequence of $\mathbb{Z}[v_1]$ -modules.

The s-th line $E_M^{s,*}(T(1))$ for $s \ge 2$ is the direct sum of the image $i_*E_2^{s,*}(T(1)) = E^s$ of i_* and the module isomorphic to the image of δ . Here $E^s = h_{20}^{\varepsilon(s)} h_{20}^{\mu(s)} k(2)_*[v_3]$ for the integers of (2.9). Since $v_1 \overline{y}_{2,s} = d(v_3^{s+1}) \in \Omega_{\Gamma(2)}^* \operatorname{BP}_*/(p)$, we see that $\overline{y}_{2,s}$ is a cocycle that represents $v_3^s h_{21}$, and $\delta(v_3^s h_{21}) = v_3^s b_{20}$ by definition. Therefore, the image of δ is $b_{20}E^{s-1} = E_2^{s+1,*}(T(1))$, which is isomorphic to $h_{21}E^{s-1}$.

By (2.4) for k=2, we have a homomorphism $b_1: E_M^{s-2,t-p^2q}(X) \to E_M^{s,t}(X)$. As Lemma 2.6, the following lemma follows from the exact sequences

$$E_{M}^{s-1,t-pq}(\bar{X}_{2}) \xrightarrow{\bar{\delta}_{2}} E_{M}^{s,t}(X) \xrightarrow{\iota_{2}*} E_{M}^{s,t}(X_{2}),$$

$$E_{M}^{s-2,t-p^{2}q}(X) \xrightarrow{\bar{\delta}'_{2}} E_{M}^{s-1,t-pq}(\bar{X}_{2}) \xrightarrow{\iota'_{2}*} E_{M}^{s-1,t-pq}(X_{2})$$

associated to the cofiber sequences in (2.2):

Lemma 3.5 The homomorphism b_1 : $E_M^{s-2,t-p^2q}(X) \to E_M^{s,t}(X)$ is an epimorphism if $E_M^{s,t}(X_2) = 0$ and $E_M^{s-1,t-pq}(X_2) = 0$.

For each integer s and t, we consider the set

(3.6)
$$S(s,t) = \{(s,t), (s-1,t-pq), (s-1,t+(p-2)q), (s-2,t-2q)\}$$

Corollary 3.7 If $E_M^{s,t}(X_2) = 0$ for $(s,t) \in S(a,b)$, then (see (2.5))

$$v_1^{2p-2}E_M^{a,b}\subset \overline{\beta}_1 E_M^{a-2,b+(p-2)q}$$

Proof Consider the diagram (2.2) for k = 1 smashing with M. Then for any element $x \in E_M^{a,b}$,

$$\iota_{1*}(x) = b_1 x_1 \in E_M^{a,b}(X)$$
 for some $x_1 \in E_M^*(X)$

by Lemma 3.5. Since

$$\iota_{1*}(v_1^{p-1}x) = v_1^{p-1}b_1x_1 = 0$$

by Lemma 2.13, there is an element $x_2 \in E_M^{a-1,b+(p-2)q}(\bar{X})$ such that

$$\overline{\delta}_1(x_2) = v_1^{p-1} x.$$

In the same manner, we have an element $x_3 \in E_M^{a-2,b+(p-2)q}$ such that

$$\overline{\delta}_1'(x_3) = v_1^{p-1} x_2.$$

It follows that

$$v_1^{2p-2}x = v_1^{p-1}\overline{\delta}_1(x_2) = \overline{\delta}_1\overline{\delta}_1'(x_3) = \overline{\beta}_1(x_3). \quad \Box$$

We now consider the integer

$$u = p^3 + p^2 - 2p + 2.$$

Lemma 3.8 If p > 5, then the E_2 -terms $E_M^{s,t}(X_2) = 0$ for $(s,t) \in S(q+1,(u+1)q)$.

Proof By use of the small descent spectral sequences (2.3) for $k \ge 2$, we see that our $E_M^{s,t}(X_2)$ is a subquotient of the module $A^{s,t} = E_M^{s,t}(T(1)) \oplus h_2 E_M^{s-1,t-pq}(T(1))$ by degree reason. It suffices to show that $A^{s,t} = 0$ for $(s,t) \in S(q+1,(u+1)q)$. The integers t fit in the table:

t/q	u+1	u+1-p	u+p-1	u-1
$t/q \mod (p+1)$	5	6	2	3
$t/q \mod (p)$	3	3	1	1

Corollary 3.4 implies that the module $A^{s,t}$ is generated by elements of the form $v_2^i v_3^j h_2^k h_{20}^l h_{21}^m b_{20}^n$ with $k, l, m \in \{0, 1\}$ and $i, j, n \ge 0$. The internal degree of it is q times

(3.9)
$$a = (p^2 + p + 1)j + p^2k + (p + 1)(i + l + p(m + n)),$$

which is congruent to j+k modulo (p+1) and i+j+l modulo (p). Since $s \ge q-1$ and s=k+l+m+2n, we see that $n \ge p-3$. Then $a \ge (p^2+p+1)j+p^3-2p^2-3p>u+p-1$ if $j \ge 3$. It follows that $j+k \le 3$, and the first two cases in the above table are excluded if p>5. The last case is also excluded. Indeed, in this case, j=2 and k=1, which shows $a \ge 3p^2+2p+2+p^3-2p^2-3p>u-1$.

In the third case, j+k=2, and i+j+l=rp+1 for some $r \ge 0$. Then $a=2p^2+(p+1)(rp+1+p(m+n))$, which equals u+p-1 if and only if r=0, m=0 and n=p-2, since $n \ge p-2$ in this case. The solution m=0 implies k=l=1 and so j=1. Then 1=i+j+l=i+2, which contradicts to $i \ge 0$. \square

Remark If p = 5, we have elements $v_2^3 b_{20}^4$ and $v_2^2 h_{20} h_{21} b_{20}^3$ in $A^{q,u+1-5}$.

Lemma 3.10 Suppose that $\xi \in \pi_{uq-1}(M)$ is detected by an element of $E_M^{q+1,(u+1)q}$. Then $i_{W*}(\alpha^{2p-2}\xi) = 0 \in \pi_{(u+2p-2)q-1}(W \wedge M)$.

Proof Let x be an element that detects ξ . Then by Corollary 3.7 with Lemma 3.8, we see that $v_1^{2p-2}x=\bar{\beta}_1y$ for some $y\in E_M^{q-1,(u+p-1)q}$, and so $i_{W*}(v_1^{2p-2}x)=0\in \widetilde{E}_M^{q+1,(u+2p-1)q}(W)$. The lemma now follows from Lemma 2.11. \square

4 The beta element $\beta'_{p^2/p^2} \in \pi_{p^3q-1}(W \wedge M)$

Consider the set

$$S'(s,t) = \{(s+1,t), (s,t), (s,t-q), (s-1,t-q)\}.$$

Lemma 4.1 If $E_2^{s,t}(X) = 0$ for $(s,t) \in S'(a,b)$, then $\overline{\beta}_1: E_M^{a-2,b-pq} \to E_M^{a,b}$ is an epimorphism.

Proof The condition on (s,t) implies that $E_M^{a,b}(X) = 0 = E_M^{a-1,b-q}(X)$ by the exact sequence associated to the first cofiber sequence (1.1). The lemma follows from Lemma 2.6.

In [5, 7.5.1], Ravenel determined $E_2^{s,t}(X)$ for $t < (p^3 + p)q$. In particular, he showed

(4.2)
$$E_2^{s,t}(X) = 0 \quad \text{for } (s,t) \in S'(q+2,(p^3+1)q),$$

$$E_2^{s,t}(X) = 0 \quad \text{for } (s,t) \in S'(q,(p^3-p+2)q).$$

Remark A preferable condition for the second equation is $(s,t) \in S'(q,(p^3-p+1)q)$, but $h_1 b_{20}^{p-3} \gamma_2 \in E_2^{q,(p^3-p)q}(X)$.

Proposition 4.3 The element $i_{W*}(\overline{\beta}'_{p^2/p^2}) \in E_2^{1,p^3q}(W \wedge M)$ for the beta element $\overline{\beta}'_{p^2/p^2} \in E_2^{1,p^3q}(M)$ survives to a homotopy element $\beta'_{p^2/p^2} \in \pi_{p^3q-1}(W \wedge M)$.

Proof The E_3 -terms $\widetilde{E}_M^{rq+2,(p^3+r)q}(W)$ are all trivial by Lemma 2.11 for r>1. We also see that $d_{q+1}(i_{W*}(\overline{\beta}'_{p^2/p^2}))=i_{W*}d_{q+1}(\overline{\beta}'_{p^2/p^2})=0\in \widetilde{E}_M^{q+2,(p^3+1)q}(W)$ by Lemma 4.1 with the first equation of (4.2).

Hereafter, for an element $f \in [X,Y]_t$, we abbreviate $f \wedge Z \in [X \wedge Z,Y \wedge Z]_t$ to f. Since $\alpha^2\beta_1=0\in [M,M]_{(p+2)q-2}$ [8], we have elements $\sigma\in [W \wedge M,M]_{2q}$ and $\sigma^*\in [M,W \wedge M]_{(p+2)q-1}$ such that $\sigma i_W=\alpha^2=j_W\sigma^*$.

Lemma 4.4 (a) $[W \wedge M, W \wedge M,]_{2q} = \mathbb{Z}/p\{\alpha^2, \delta_W \delta \alpha^{p+2}, \delta_W \alpha^{p+2} \delta, \sigma^* j_W\},$ where $\delta_W = i_W j_W$.

- (b) $[W \wedge M, M]_{(2-p)q+1} = \mathbb{Z}/p\{\alpha^2 j_W\}.$
- (c) $[M, W \wedge M]_{2a} = \mathbb{Z}/p\{\alpha^2 i_W\}.$

Proof The homotopy groups $[M, M]_t$ for $t < p^2q - 4$ are given in [8, Th.I]. In particular, the generators are given in the table:

We have the exact sequence

$$[M,M]_{t-pq+2} \xrightarrow{\beta_1} [M,M]_t \xrightarrow{i_{W^*}} [M,W \wedge M]_t \xrightarrow{j_{W^*}} [M,M]_{t-pq+1} \xrightarrow{\beta_1} [M,M]_{t-1}$$

associated to the cofiber sequence (1.5). From this sequence and the previous table, we obtain the following:

$$\begin{array}{c|cccc} t & 2q & 2q+1 & (p+2)q-1 \\ \hline [M,W\wedge M]_t & i_W\alpha^2 & 0 & i_W\delta\alpha^{p+2}, i_W\alpha^{p+2}\delta, \sigma^* \end{array}$$

In particular, we have part (c). The cofiber sequence (1.5) also induces the exact sequence

$$[M, W \wedge M]_{2q+1} \xrightarrow{\beta_1^*} [M, W \wedge M]_{(p+2)q-1} \xrightarrow{j_W^*} [W \wedge M, W \wedge M]_{2q}$$

$$\xrightarrow{i_W^*} [M, W \wedge M]_{2q} \xrightarrow{\beta_1^*} [M, W \wedge M]_{(p+2)q-2},$$

from which we obtain part (a).

Part (b) is the Spanier-Whitehead dual of (c).

Lemma 4.5 $i_W \sigma + \sigma^* j_W \equiv \alpha^2 \mod \mathbb{Z} / p\{\delta_W \delta \alpha^{p+2}, \delta_W \alpha^{p+2} \delta\}$. In particular, $i_W \sigma = \alpha^2 + \varphi j_W$ for some φ .

Proof By virtue of Lemma 4.4 (a), we put

$$i_W \sigma = a_1 \alpha^2 + a_2 \delta_W \delta \alpha^{p+2} + a_3 \delta_W \alpha^{p+2} \delta + a_4 \sigma^* j_W \in [W \land M, W \land M]_{2q}$$

for $a_i \in \mathbb{Z}/p$. Send this to $[W \wedge M, M]_{(2-p)q+1}$ by j_W to obtain

$$0 = i_W i_W \sigma = a_1 j_W \alpha^2 + a_4 j_W \sigma^* j_W = a_1 \alpha^2 j_W + a_4 \alpha^2 j_W$$

Since $\alpha^2 j_W$ is a generator by Lemma 4.4 (b), we have $a_1 = -a_4$. Next send the above equality to $[M, W \wedge M]_{2g}$ by i_W , and we have

$$i_W \sigma i_W = a_1 \alpha^2 i_W$$
.

It follows that $a_1 = 1$ by Lemma 4.4 (c).

Proposition 4.6 The element

$$\sigma \beta'_{p^2/p^2} \in \pi_{(p^3+2)q-1}(M)$$

for $\beta'_{p^2/p^2} \in \pi_{p^3q-1}(W \wedge M)$ in Proposition 4.3 is detected by the beta element

$$\bar{\beta}'_{p^2/p^2-2} \in E_M^{1,(p^3-2)q}.$$

Proof The homomorphism on the E_2 -term induced from $\sigma i_W = \alpha^2$ is multiplication by v_1^2 , so $\sigma_* \overline{\beta}'_{p^2/p^2} = \sigma_* i_{W*} \overline{\beta}'_{p^2/p^2} = v_1^2 \overline{\beta}'_{p^2/p^2} = \overline{\beta}'_{p^2/p^2-2}$ in the E_2 -term. \square

Lemma 4.7 $\alpha^5 i_{W*}(\sigma \beta'_{p^2/p^2}) = \alpha^7 \beta'_{p^2/p^2} \in \pi_*(W \wedge M)$.

Proof Since $j_{W*}(\overline{\beta}'_{p^2/p^2})=0$ in the E_2 -term, the homotopy element $j_{W*}(\beta'_{p^2/p^2})$ is detected by an element x of $E_M^{rq,(p^3-p+r)q}$ for some r>0. If r=1, then $v_1x=\overline{\beta}_1x'$ for some x' by Lemma 4.1 with the second equation of (4.2). Therefore, $v_1^3x=v_1^2\overline{\beta}_1x'=0$ by Lemma 2.13. It follows that, in any case, $\alpha^3j_{W*}(\beta'_{p^2/p^2})$ is detected by an element of $E_M^{rq,(p^3-p+r)q}$ for some r>1. Then $i_{W*}(\alpha^3j_{W*}(\beta'_{p^2/p^2}))=0$ by Lemma 2.11, and $\alpha^3j_{W*}(\beta'_{p^2/p^2})=\beta_1\xi'$ for some homotopy element ξ' . Now, we compute

$$\alpha^{5}i_{W*}(\sigma\beta'_{p^{2}/p^{2}}) = \alpha^{7}\beta'_{p^{2}/p^{2}} + \varphi_{*}(\alpha^{5}j_{W*}(\beta'_{p^{2}/p^{2}}))$$
$$= \alpha^{7}\beta'_{p^{2}/p^{2}} + \varphi_{*}(\alpha^{2}\beta_{1}\xi') = \alpha^{7}\beta'_{p^{2}/p^{2}}$$

by Lemma 4.5 and Lemma 2.13.

Lemma 4.8 $\alpha^{p^2} \beta'_{p^2/p^2} = 0 \in \pi_{(p^3+p^2)q-1}(W \wedge M).$

Proof Oka [2] constructed the beta element $\beta'_{p^2/2p-2} \in \pi_{uq-1}(M)$ such that $\alpha^{2p-2} \times \beta'_{p^2/2p-2} = 0$ in homotopy, which is detected by $v_1^{p^2-2p+2} \overline{\beta'_{p^2/p^2}}$ in the E_2 -term. Consider an element $\xi = \alpha^{p^2-2p} \sigma \beta'_{p^2/p^2} - \beta'_{p^2/2p-2} \in \pi_{uq-1}(M)$. Then it goes to zero in the E_2 -term, and is detected by an element of $E_M^{rq+1,(u+r)q}$ for r>0. If r>1, $i_{W*}(\xi)$ is zero by Lemma 2.11. If r=1, then it satisfies the condition of Lemma 3.10, and so $\alpha^{2p-2}i_{W*}(\xi) = 0$. Therefore, by Lemma 4.7,

$$\alpha^{p^2} \beta'_{p^2/p^2} = \alpha^{p^2 - 2} i_{W*}(\sigma \beta'_{p^2/p^2}) = \alpha^{2p - 2} i_{W*}(\xi + \beta'_{p^2/2p - 2}) = 0.$$

Proof of Theorem 1.7 Consider the second cofiber sequence (1.1) for $a=p^2$. Then, by Lemma 4.8, we have an element $v \in \pi_*(W \wedge V_{p^2})$ such that $(j_{p^2})_*(v) = \beta'_{p^2/p^2}$. As v is detected by an element of $E_2^{0,(p^3+p^2)q}(W \wedge V_{p^2})$, we see $v=v_2^{p^2}$ by degree reasons.

References

[1] **HR Miller, D C Ravenel, W S Wilson**, *Periodic phenomena in the Adams–Novikov spectral sequence*, Ann. Math. (2) 106 (1977) 469–516 MR0458423

- [2] **S Oka**, *A new family in the stable homotopy groups of spheres*, Hiroshima Math. J. 5 (1975) 87–114 MR0380791
- [3] **S Oka**, A new family in the stable homotopy groups of spheres. II, Hiroshima Math. J. 6 (1976) 331–342 MR0418096
- [4] **S Oka**, Realizing some cyclic BP_{*}-modules and applications to stable homotopy of spheres, Hiroshima Math. J. 7 (1977) 427–447 MR0474290
- [5] **DC Ravenel**, *Complex cobordism and stable homotopy groups of spheres*, second edition, AMS Chelsea Publ. 347, Amer. Math. Soc. (2004) MR860042
- [6] **K Shimomura**, *Note on beta elements in homotopy, and an application to the prime three case*, Proc. Amer. Math. Soc. 138 (2010) 1495–1499 MR2578544
- [7] **L Smith**, On realizing complex bordism modules. IV. Applications to the stable homotopy groups of spheres, Amer. J. Math. 99 (1977) 418–436 MR0433450
- [8] **N Yamamoto**, *Algebra of stable homotopy of Moore space*, J. Math. Osaka City Univ. 14 (1963) 45–67 MR0157382

Department of Mathematics, Faculty of Science, Kochi University 2-5-1, Akebono, Kochi 780-8520, Japan

katsumi@kochi-u.ac.jp

Received: 21 August 2009 Revised: 26 March 2010