The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ at the prime 3

Katsumi Shimomura ${ }^{\mathrm{a}, *}$, Xiangjun Wang ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Kochi University, Kochi 780-8520, Japan
${ }^{\mathrm{b}}$ Department of Mathematics, Nankai University, Tianjin 300071, People's Republic of China

Received 27 September 1999; received in revised form 18 July 2001; accepted 8 August 2001

Abstract

The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ of the L_{2}-localized sphere are determined by studying the Bockstein spectral sequence. The results also indicate the homotopy groups $\pi_{*}\left(L_{K(2)} S^{0}\right)$ and we observe that the fiber of the localization map $L_{2} S_{3}^{0} \rightarrow L_{K(2)} S^{0}$ is homotopic to $\Sigma^{-2} L_{1} S_{3}^{0}$. Here S_{3}^{0} denotes the 3-completed sphere. © 2002 Elsevier Science Ltd. All rights reserved.

MSC: 55Q99
Keywords: Homotopy groups of spheres; Bousfield localization; Johnson-Wilson spectrum; Adams-Novikov spectral sequence

1. Introduction and statement of results

For each prime number p, there is the Bousfield localization functor $L_{n}: \mathscr{S}_{(p)} \rightarrow \mathscr{S}_{(p)}$ with respect to $v_{n}^{-1} B P$, where $\mathscr{S}_{(p)}$ denotes the stable homotopy category localized away from the prime $p, B P$ the Brown-Peterson spectrum at p, and v_{n} the nth generator of the coefficient algebra $B P_{*}$. Consider the Morava K-theories $K(n)$ and the Johnson-Wilson spectra $E(n)$, where $K(n)_{*}=\boldsymbol{Z} / p\left[v_{n}^{ \pm 1}\right]$ and $E(n)_{*}=\boldsymbol{Z}_{(p)}\left[v_{1}, v_{2}, \ldots, v_{n}, v_{n}^{-1}\right]$. Then L_{n} is also the localization with respect to $K(0) \vee K(1) \vee \cdots \vee K(n)$ or $E(n)$.

Hopkins and Ravenel present the homotopy equivalence $S_{(p)}^{0} \simeq \underset{n}{\curvearrowleft} \underset{\sim}{\operatorname{holim}} L_{n} S^{0}$, and so $\pi_{*}\left(L_{n} S^{0}\right)$ is an approximation of the homotopy groups of spheres. Actually, $\pi_{*}\left(L_{0} S^{0}\right)=\boldsymbol{Q}$ at any prime and $\pi_{*}\left(L_{1} S^{0}\right)=\boldsymbol{Z}_{(p)} \oplus A \oplus \boldsymbol{Q} / \boldsymbol{Z}_{(p)}\langle y\rangle$ at a prime $p>2$ (cf. [4,5]), where A denotes the module

[^0]generated by the generalized α-elements (see below) and $\boldsymbol{Q} / \boldsymbol{Z}_{(p)}\langle y\rangle \subset \pi_{-2}\left(L_{1} S^{0}\right)$ for the virtual generator y. The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ of $E(2)_{*}$-localized spheres are determined at a prime >3 in [10], which satisfies Hopkins' chromatic splitting conjecture [2]. In this paper, we determine $\pi_{*}\left(L_{2} S^{0}\right)$ at the prime 3.

Theorem A. The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ at the prime 3 are a direct sum of three modules G_{i} 's, which are described as follows:

$$
\begin{aligned}
& G_{0}=\boldsymbol{Z}_{(3)} \oplus A_{+} \oplus \Sigma^{-1}\left(A_{-} \oplus \boldsymbol{Q} / \boldsymbol{Z}_{(3)}\langle y\rangle\right) \zeta_{2} \\
& G_{1}=B \oplus C \oplus C I \oplus B^{*} \oplus\left(B_{1} \oplus C\right) \zeta_{2} \\
& G_{2}=\hat{G} \oplus \hat{G}^{*} \oplus \widehat{G Z} \oplus \widehat{G Z}^{*}
\end{aligned}
$$

Here, the modules on the right-hand sides are as follows:

$$
\begin{aligned}
& A=\sum_{i \geqslant 0} \boldsymbol{Z} / 3^{i+1}\left\langle\alpha_{3 i s / i+1} \mid 3+s \in \boldsymbol{Z}\right\rangle \\
& A_{+}=\boldsymbol{Z}_{(3)}\left\{\alpha_{3^{i} / / i+1} \mid \alpha_{3 i s / i+1} \in A, s>0\right\}, \\
& A_{-}=\boldsymbol{Z}_{(3)}\left\{\alpha_{3^{i} / i+1} \mid \alpha_{3 i s / i+1} \in A, s<0\right\}
\end{aligned}
$$

for G_{0},

$$
\begin{aligned}
& B=\boldsymbol{Z}_{(3)}\left\{\beta_{3^{n} s / 3^{i} m, i+1} \mid n \geqslant 0,3+s \in \boldsymbol{Z}, i \geqslant 0,1 \leqslant m<4 \times 3^{n-2 i-1}\right. \\
& \left.\quad \text { and } 3+m \text { or } 4 \times 3^{n-2 i-2} \leqslant m\right\}, \\
& B_{1}=\boldsymbol{Z}_{(3)}\left\{\beta_{3^{n} s / 3^{i} m, i+1}\left|\beta_{3^{n} s / j, i+1} \in B, 3+(s+1), 3\right| m,\right. \\
& \left.\quad \text { or } i \neq k+1 \text { if } s=3^{k+2} t-1 \text { with } k \geqslant 0 \text { and } 3+t\right\}, \\
& C=C_{1} \oplus C_{2}, \\
& C_{1}=\boldsymbol{Z}_{(3)}\left\{{\widetilde{\left.\alpha_{1} \beta_{3^{n}(3 t+1) / 3^{i} m+1, i} \mid 0<i \leqslant n, \text { and } 2 \times 3^{n-i}<3^{i} m \leqslant 2 \times 3^{n-i+1}\right\},}}_{C_{2}=\boldsymbol{Z}_{(3)}\left\{{\widetilde{\alpha_{1} \beta}}_{3^{n}(9 t-1) / 3^{i} m+1, i} \mid 0<i \leqslant n,\right. \text { and }}^{\left.\qquad 2 \times 3^{n-i-1}<3^{i} m-8 \times 3^{n} \leqslant 2 \times 3^{n-i}\right\},}\right. \\
& C I=C I_{0} \oplus C I_{1} \oplus C I_{2} \oplus C I_{3}, \\
& C I_{0}=\boldsymbol{Z}_{(3)}\left\{c_{3^{n} s} \mid n \geqslant 0, s=3 t+1 \text { or } s=9 t-1(t \in \boldsymbol{Z})\right\}, \\
& C I_{1}=\boldsymbol{Z}_{(3)}\left\{\widetilde{\alpha_{1} \beta_{3^{n}}(3 t+1) / 3^{i} m+1, i+1} \mid 0 \leqslant i \leqslant n, 2 \times 3^{n-i-1}<3^{i} m \leqslant 2 \times 3^{n-i}, 3+m\right\}, \\
& C I_{2}=\boldsymbol{Z}_{(3)}\left\{\widetilde{\left.\alpha_{1} \beta_{3^{n}(9 t-1) / 3^{i} m+1, i+1} \mid 3+m \leqslant 8 \times 3^{n-i}, \quad 0 \leqslant i<n, \quad k+1>i \text { if } 3^{k} \mid t\right\},}\right.
\end{aligned}
$$

$$
\begin{aligned}
& C I_{3}=\boldsymbol{Z}_{(3)}\left\{{\widetilde{\alpha_{1}} \beta_{3^{n}(9 t-1) / 3^{n} m+1, i} \left\lvert\, i= \begin{cases}n+1 & \text { if } m=1,3,4,6,7, \\
n+2 & \text { if } m=2,8, \\
n+3 & \text { if } \left.m=5, k+1>n \text { if } 3^{k} \mid t\right\},\end{cases} \right.}_{B^{*}=\boldsymbol{Z}_{(3)}\left\{\beta(n)_{3^{n+l} s / 3^{i} m, i+1}^{*} \mid 3+s \in \boldsymbol{Z}, i, n \geqslant 0,0<3^{i} m \leqslant 4 \times 3^{n},\right.}^{\quad l>i \text { and } l>i+1 \text { if } 3 \mid(s+1)\}}\right.
\end{aligned}
$$

for G_{1} and

$$
\begin{aligned}
& \hat{G}= \sum_{t \in \boldsymbol{Z}}\left(B_{5}\left\{\beta_{9 t+1}\right\} \oplus B_{4}\left\{\beta_{9 t+1} \beta_{6 / 3}\right\} \oplus B_{3}\left\{\overline{\beta_{9 t+7} \alpha_{1}}\right\}\right. \\
&\left.\oplus B_{2}\left\{\beta_{9 t+1} \alpha_{1},\left[\beta_{9 t+2} \beta_{1}^{\prime}\right],\left[\beta_{9 t+5} \beta_{1}^{\prime}\right]\right\}\right) \oplus B_{1}\left\{\left[\beta_{9 t-1 / 2} \beta_{1}^{\prime}\right]\right\}, \\
& \hat{G}^{*}=\sum_{t \in \boldsymbol{Z}}\left(B_{5}\left\{\chi_{9 t+7}^{1}\right\} \oplus B_{4}\left\{\chi_{9 t+3}^{0}\right\} \oplus B_{2}\left\{\beta(0)_{9 t+1}^{*}, \beta_{6 / 3} \beta(0)_{9 t+1}^{*}, \beta_{6 / 3} \beta(0)_{9 t+4}^{*}\right\}\right. \\
&\left.\oplus \sum_{n \geqslant 1}\left(B_{3}\left\{\beta(0)_{3^{n+2} t+9 u+3}^{*} \mid u \in \boldsymbol{Z}-I(n)\right\} \oplus B_{2}\left\{\beta(0)_{3^{n+2} t+9 u+3}^{*} \mid u \in I(n)\right\}\right)\right), \\
& \widehat{G Z}=\sum_{t \in \boldsymbol{Z}}\left(B_{5}\left\{\zeta \beta_{9 t+1}\right\} \oplus B_{3}\left\{\zeta \beta_{9 t+1} \beta_{6 / 3}\right\}\right. \\
&\left.\oplus B_{2}\left\{\overline{\zeta \beta_{9 t+7} \alpha_{1}}, \zeta \beta_{9 t+1} \alpha_{1}, \zeta\left[\beta_{9 t+2} \beta_{1}^{\prime}\right], \zeta\left[\beta_{9 t+5} \beta_{1}^{\prime}\right]\right\}\right), \\
& \widehat{G Z}=\sum_{t \in \boldsymbol{Z}}^{*}\left(B_{5}\left\{\zeta_{2} \chi_{9 t+7}^{1}\right\} \oplus B_{4}\left\{\zeta_{2} \chi_{9 t+3}^{0}\right\} \oplus B_{2}\left\{\zeta_{2} \beta(0)_{9 t+1}^{*}\right\}\right. \\
& \oplus B_{1}\left\{\zeta_{2} \beta_{6 / 3} \beta(0)_{9 t+1}^{*}, \zeta_{2} \beta_{6 / 3} \beta(0)_{9 t+4}^{*}\right\} \\
& \oplus \sum_{n \geqslant 1}\left(B_{3}\left\{\zeta_{2} \beta(0)_{3^{n+2} t+9 u+3}^{*} \mid u \in \boldsymbol{Z}-I(n)\right\}\right. \\
&\left.\left.\quad \oplus B_{2}\left\{\zeta_{2} \beta(0)_{3^{n+2} t+9 u+3}^{*} \mid u \in I(n)\right\}\right)\right)
\end{aligned}
$$

for G_{2}. Here, $B_{k}=\boldsymbol{Z} / 3\left[\beta_{1}\right] /\left(\beta_{1}^{k}\right)$,

$$
I(n)=\left\{x \in \boldsymbol{Z} \mid x=\left(3^{n-1}-1\right) / 2 \quad \text { or } \quad x=5 \times 3^{n-2}+\left(3^{n-2}-1\right) / 2\right\}
$$

\bar{x} denotes a homotopy element detected by $x \in E_{2}^{*, *}\left(L_{2} S^{0}\right)$, the E_{2}-term of the Adams-Novikov spectral sequence converging to $\pi_{*}\left(L_{2} S^{0}\right)$, and $[x]$ for $x \in \pi_{*}\left(L_{2} V(0)\right)$ is an element of $\pi_{*}\left(L_{2} S^{0}\right)$ such that $i_{*}([x])=x$ for the inclusion $i: S^{0} \rightarrow V(0)=S^{0} \cup_{3} e^{1}$. The generators are defined in Section 4 and degrees of them are

$$
\begin{aligned}
& \left|\alpha_{a / b}\right|=4 a-1, \quad\left|\beta_{1}^{\prime}\right|=11, \quad\left|\beta_{a / b, c}\right|=16 a-4 b-2, \quad\left|c_{a}\right|=16 a-7, \\
& \left|\widetilde{\alpha_{1}} \beta_{a / b, c}\right|=16 a-4 b+1, \quad\left|\beta(a)_{b / c, d}^{*}\right|=16 b-8 \times 3^{a}-4 c-4 \\
& \left|\chi_{a}^{0}\right|=16 a+7, \quad\left|\chi_{a}^{1}\right|=16 a+15, \quad\left|\zeta_{2}\right|=-1
\end{aligned}
$$

and orders of them are

$$
\begin{aligned}
& o\left(\alpha_{a / b}\right)=3^{b}, \quad o\left(\beta_{a / b, c}\right)=3^{c}, \quad o\left(c_{3^{n} s}\right)=3^{n+1} \quad \text { if } 3+s \\
& o\left(\widetilde{\alpha_{1} \beta_{a / b, c}}\right)=3^{c}, \quad o\left(\beta(a)_{b / c, d}^{*}\right)=3^{d}, \quad o\left(\chi_{a}^{0}\right)=3, \quad o\left(\chi_{a}^{1}\right)=3 .
\end{aligned}
$$

Furthermore, we abbreviate as follows:

$$
\begin{aligned}
& \alpha_{a}=\alpha_{a / 1}, \quad \beta_{a / b}=\beta_{a / b, 1}, \quad \beta_{a}=\beta_{a / 1}, \quad{\widetilde{\alpha_{1} \beta}}_{a / b}={\widetilde{\alpha_{1}}}_{a / b, 1}, \\
& {\widetilde{\alpha_{1}} \beta_{a}={\widetilde{\alpha_{1} \beta}}_{a / 1} \quad \beta(a)_{b / c}^{*}=\beta(a)_{b / c, 1}^{*} \quad \text { and } \quad \beta(a)_{b}^{*}=\beta(a)_{b / 1}^{*} .}_{\text {. }}
\end{aligned}
$$

Our computation of the differentials of the Bockstein spectral sequence $\pi_{*}\left(L_{2} V(0)\right) \Rightarrow \pi_{*}\left(L_{2} S^{0}\right)$ also works for the Bockstein spectral sequence associated to the cofiber sequence $L_{K(2)} S^{0} \rightarrow$ $L_{K(2)} S^{0} \rightarrow L_{K(2)} V(0)$, and we obtain the homotopy groups $\pi_{*}\left(L_{K(2)} S^{0}\right)$ from the result on $\pi_{*}\left(L_{K(2)} V(0)\right)$ given in [7].

Theorem B. The homotopy groups $\pi_{*}\left(L_{K(2)} S^{0}\right)$ are the direct sum of $\left(\boldsymbol{Z}_{3} \oplus A_{+}\right) \otimes \Lambda\left(\zeta_{2}\right), G_{1}$ and G_{2}. Therefore, the homotopy fiber $F\left(L_{1} S^{0}, L_{2} S_{3}^{0}\right)$ of the localization map $L_{2} S_{3}^{0} \rightarrow L_{K(2)} S^{0}$ of the 3-adic completed sphere S_{3}^{0} is homotopic to $\Sigma^{-2} L_{1} S_{3}^{0}$.

The second half of the theorem is observed in the same manner as the one at a prime >3 [2]. This shows that there is only one summand in $F\left(L_{1} S^{0}, L_{2} S_{3}^{0}\right)$, while Hopkins' chromatic splitting conjecture denotes that it has three summands.

Theorem A is proved by using the Adams-Novikov spectral sequence. Let N^{2} denote the spectrum such that $B P_{*}\left(N^{2}\right)=B P_{*} /\left(3^{\infty}, v_{1}^{\infty}\right)$. We denote the Adams-Novikov E_{2}-term for computing $\pi_{*}\left(L_{2} N^{2}\right)$ by $H^{*} M_{0}^{2}$. In the next section, we show that the E_{2}-term $H^{*} M_{0}^{2}$ is the direct sum of the three modules $\overline{A_{i}}$ for $i=0,1,2$, and give the structures of $\overline{A_{0}}$ and $\overline{A_{2}}$. Section 3 is devoted to determine the structure of the module $\overline{A_{1}}$ using some results proven in the last section. The differentials of the Adams-Novikov spectral sequence are studied in [8], and we deduce the homotopy groups $\pi_{*}\left(L_{2} N^{2}\right)$ from these results, and then the chromatic spectral sequence shows Theorem A in Section 4.

2. Notations and the structure of $H^{*} M_{0}^{2}$

Consider the Hopf algebroid

$$
\left(E(2)_{*}, E(2)_{*}(E(2))\right)=\left(\boldsymbol{Z}_{(3)}\left[v_{1}, v_{2}^{ \pm 1}\right], E(2)_{*}\left[t_{1}, t_{2}, \ldots\right] \otimes_{B P_{*}} E(2)_{*}\right)
$$

associated to the Johnson-Wilson spectrum $E(2)$, where $B P$ denotes the Brown-Peterson spectrum with $B P_{*}=\boldsymbol{Z}_{(3)}\left[v_{1}, v_{2}, \ldots\right]$ and $B P_{*}$ acts on $E(2)_{*}$ by moving v_{i} to v_{i} if $i \leqslant 2$, and to zero if $i>2$. For an $E(2)_{*}(E(2))$-comodule $M, H^{*} M$ denotes $\operatorname{Ext}_{E(2)_{*}(E(2))}^{*}\left(E(2)_{*}, M\right)$, which is given as a cohomology of the cobar complex $\Omega^{*} M$ of $E(2)_{*}(E(2))$-comodules (cf. Section 5). Then we have the Adams-Novikov spectral sequence

$$
E_{2}^{*}=H^{*} E(2)_{*} \Rightarrow \pi_{*}\left(L_{2} S^{0}\right)
$$

converging to the homotopy groups of $E(2)_{*}$-localized sphere spectrum.

We now recall the definition of the chromatic comodules N_{j}^{i} and M_{j}^{i}. They are defined inductively by setting $N_{j}^{0}=E(2)_{*} / I_{j}$ for $I_{0}=0, I_{1}=(3)$ and $I_{2}=\left(3, v_{1}\right), M_{j}^{i}=v_{i+j}^{-1} N_{j}^{i}$, and $N_{j}^{i+1}=M_{j}^{i} / N_{j}^{i}$. Note that $M_{j}^{i}=N_{j}^{i}$ if $i+j=2$ and $=0$ if $i+j>2$. Then we see that the AdamsNovikov E_{2}-term $H^{*} E(2)_{*}$ is obtained from $H^{*} M_{0}^{i}$ for $i \leqslant 2$ and the long exact sequences $H^{s} N_{0}^{i} \rightarrow H^{s} M_{0}^{i} \rightarrow H^{s} N_{0}^{i+1} \rightarrow H^{s+1} N_{0}^{i}$. Since the modules $H^{*} M_{0}^{i}$ for $i<2$ are determined in [4], we here determine $H^{*} M_{0}^{2}$. For this sake, we consider the comodule $M_{1}^{1}=\boldsymbol{Z} / 3\left\{x / v_{1}^{j} \mid j>0\right.$, $\left.x \in K(2)_{*}\right\}$, where $K(2)_{*}=\boldsymbol{Z} / 3\left[v_{2}^{ \pm 1}\right]$, and the short exact sequence $0 \rightarrow M_{1}^{1} \xrightarrow{1 / 3} M_{0}^{2} \xrightarrow{3} M_{0}^{2} \rightarrow 0$. Here, note that M_{0}^{2} is described as $M_{0}^{2}=\boldsymbol{Z}_{(3)}\left\{x / 3^{i} v_{1}^{j} \mid i, j>0, x \in K(2)_{*}\right\}$. Then we obtain $H^{*} M_{0}^{2}$ from $H^{*} M_{1}^{1}$ which is determined in [7], by using the lemma given in [4, Remark 3.11].

In order to describe the module $H^{*} M_{1}^{1}$, we set up some notations: $H^{*} M_{2}^{0}=H^{*} K(2)_{*}$ is determined (cf. [6]) to be $F \otimes K(2)_{*}\left[b_{10}\right] \otimes \Lambda\left(\zeta_{2}\right)$, where F is the $\boldsymbol{Z} / 3$-vector space spanned by $1, h_{10}, h_{11}, b_{11}, \xi, \psi_{0}, \psi_{1}$, and $b_{11} \xi$. These generators, $\zeta_{2}, h_{1 i}$ and $b_{1 i}$, are cohomology classes represented by cocycles $v_{2}^{-1}\left(t_{2}-t_{1}^{4}\right)+v_{2}^{-3} t_{2}^{3}, t_{1}^{3^{i}}$ and $-t_{1}^{3^{i}} \otimes t_{1}^{2 \times 3^{i}}-t_{1}^{2 \times 3^{i}} \otimes t_{1}^{3^{i}}$ of the cobar complex $\Omega^{*} K(2)_{*}$, respectively. Besides, ξ and ψ_{i} are the generators of $H^{2,8} K(2)_{*}$ and $H^{3,8(i+2)} K(2)_{*}$.

Put $k(1)_{*}=\boldsymbol{Z} / 3\left[v_{1}\right], K(1)_{*}=v_{1}^{-1} k(1)_{*}, P E=\boldsymbol{Z} / 3\left[b_{10}\right] \otimes \Lambda\left(\zeta_{2}\right), E(2, n)_{*}=\boldsymbol{Z} / 3\left[v_{1}, v_{2}^{ \pm 3^{n}}\right]$ and

$$
\begin{aligned}
F_{(h)} & =\boldsymbol{Z} / 3\left[v_{2}^{ \pm 3}\right]\left\{v_{2} / v_{1}, v_{2} h_{10} / v_{1}, v_{2}^{-1} h_{11} / v_{1}, v_{2} b_{11} / v_{1}\right\}, \\
F_{(t)} & =\boldsymbol{Z} / 3\left[v_{2}^{ \pm 3}\right]\left\{v_{2}^{-1} / v_{1}, v_{2} h_{10} / v_{1}^{2}, v_{2}^{-1} h_{11} / v_{1}^{2}, v_{2}^{-1} b_{11} / v_{1}\right\}, \\
F_{(h)}^{*} & =\boldsymbol{Z} / 3\left[v_{2}^{ \pm 3}\right]\left\{\xi / v_{1}, \psi_{0} / v_{1}, v_{2} \psi_{1} / v_{1}, b_{11} \xi / v_{1}\right\}, \\
F_{(t)}^{*} & =\boldsymbol{Z} / 3\left[v_{2}^{ \pm 3}\right]\left\{\xi / v_{1}^{2}, v_{2} \psi_{0} / v_{1}, v_{2}^{-1} \psi_{1} / v_{1}, b_{11} \xi / v_{1}^{2}\right\}, \\
F_{n} & =E(2, n+2)_{*}\left\{v_{2}^{ \pm 3^{n+1}} / v_{1}^{4 \times 3^{n}-1}, v_{2}^{3^{n+1}} h_{10} / v_{1}^{2 \times 3^{n+1}+1},\right. \\
& \left.v_{2}^{8 \times 3^{n}} h_{10} / v_{1}^{8 \times 3^{n}+1}, v_{2}^{3^{n+1}(2 \pm 1)} \xi_{n} / v_{1}^{4 \times 3^{n}}\right\}, \\
F_{0}^{\prime} & =E(2,2)_{*}\left\{v_{2}^{ \pm 3} / v_{1}^{2}, v_{2}^{3} h_{10} / v_{1}^{7}, v_{2}^{8} h_{10} / v_{1}^{9}, v_{2}^{3(2 \pm 1)} \xi_{0} / v_{1}^{4}\right\},
\end{aligned}
$$

where $\xi_{n}=v_{2}^{-3^{n}+\left(3^{n}-1\right) / 2} \xi$. Note that $F_{0}=F_{0}^{\prime} \oplus F_{0}^{\prime \prime}$ for $F_{0}^{\prime \prime}=\boldsymbol{Z} / 3\left[v_{2}^{ \pm 9}\right]\left\{v_{2}^{ \pm 3} / v_{1}^{3}\right\}$. Then, in [8], $H^{*} M_{1}^{1}$ is shown to be the direct sum of $F_{0}^{\prime \prime}$ and the three modules A_{i}, where

$$
\begin{aligned}
& A_{0}=\left(K(1)_{*} / k(1)_{*}\right) \otimes \Lambda\left(h_{10}, \zeta_{2}\right), \\
& A_{1}=\left(F_{0}^{\prime} \oplus \sum_{n>0} F_{n}\right) \otimes \Lambda\left(\zeta_{2}\right), \\
& A_{2}=\left(F_{(h)} \oplus F_{(t)} \oplus F_{(h)}^{*} \oplus F_{(t)}^{*}\right) \otimes P E .
\end{aligned}
$$

Once we know the behavior of connecting homomorphism $\delta: H^{*} M_{1}^{1} \rightarrow H^{*+1} M_{0}^{2}$, we obtain $H^{*} M_{0}^{2}$ by Miller et al. [4, Remark 3.11]. In [4,8], it is shown that $\delta\left(A_{i}\right) \subset A_{i}$. Let A_{i}^{s} denote the submodule $A_{i} \cap H^{s} M_{1}^{1}$. We now define the submodule \bar{A}_{i}^{s} to fit the commutative diagram
of exact sequences

We deduce the following lemma from [4, Remark 3.11]:
Lemma 2.1. Suppose that we have a 3-torsion module B^{s} and a homomorphism $f: B^{s} \rightarrow{\overline{A_{i}}}^{s}$ such that the diagram of exact sequences

commutes. Then f is an isomorphism.
Note that [10, Proposition 7.2] is also valid for the prime 3, and for the elements $y_{3 t}^{\prime}, V$ and G_{1} there are $v_{2}^{3 t+2} h_{11} / 9 v_{1}^{2},-v_{2}^{2} h_{11}$ and $v_{2}^{-1} b_{10}$ in our notation, respectively. Therefore, we have

Proposition 2.2. For each integer t,

$$
\delta\left(v_{2}^{3 t+2} h_{11} / 9 v_{1}^{2}\right)=v_{2}^{3 t+2}\left(-b_{10}+h_{11} \zeta_{2}\right) / v_{1}^{2}+\cdots
$$

Since $\delta\left(v_{2}^{3 s} / 3 v_{1}^{3}\right)=s v_{2}^{3 s-1} h_{11} / v_{1}^{2}$ by Miller et al. [4, Proposition 6.9] and $\delta\left(v_{2}^{9 t-1} h_{11} / 9 v_{1}^{2}\right)=$ $v_{2}^{9 t-1}\left(-b_{10}+h_{11} \zeta_{2}\right) / v_{1}^{2}+\cdots$ by Proposition 2.2 , we derive the following:

Proposition 2.3. $H^{s} M_{0}^{2}$ is isomorphic to $\sum_{i=0}^{2}{\overline{A_{i}}}^{s}$ if $s \neq 1$, and $H^{1} M_{0}^{2} \cong \sum_{i=0}^{2}{\overline{A_{i}}}^{s} \oplus$ $\sum_{t \in Z} \boldsymbol{Z} / 9\left\{v_{2}^{9 t-1} h_{11} / 9 v_{1}^{2}\right\}$.

In the same manner as [4, Theorem 4.2], we obtain
Proposition 2.4. The module $\overline{A_{0}}$ is given as follows:

$$
\overline{A_{0}}=\left(\overline{A_{-}} \oplus \boldsymbol{Q} / \boldsymbol{Z}_{(3)}\right) \otimes \Lambda\left(\zeta_{2}\right),
$$

where

$$
\overline{A_{-}}=\left\{1 / 3^{i+1} v_{1}^{3^{i} m} \mid i \geqslant 0, m>0\right\} .
$$

The module $\overline{A_{2}}$ is determined in [8] as follows:
Proposition 2.5. The module $\overline{A_{2}}$ is the direct sum of $\boldsymbol{Z} / 3\left[v_{2}^{ \pm 3}\right]\left\{v_{2}^{-1} / 3 v_{1}, \xi / 3 v_{1}^{2}\right\}$ and

$$
\left(\overline{F_{(h)}} \oplus \overline{F_{(h)}^{*}}\right) \otimes P E .
$$

Here, $\overline{F_{(h)}}$ and $\overline{F_{(h)}^{*}}$ are the images of $F_{(h)}$ and $F_{(h)}^{*}$ under the map $H^{*} M_{1}^{1} \xrightarrow{\varphi} H^{*} M_{0}^{2}$ given by $\varphi(x)=x / 3$.

3. Determination of $\overline{A_{1}}$

We divide A_{1} into 14 pieces:

$$
A_{1}=\left(\left(X_{1} \oplus X_{2}\right) \oplus\left(H \oplus H I \oplus H^{*}\right) \oplus\left(X_{1}^{*} \oplus X_{2}^{*}\right)\right) \otimes \Lambda\left(\zeta_{2}\right)
$$

Here,

$$
\begin{aligned}
& X_{1}=X_{1,1} \oplus X_{1,2}, \\
& X_{1,1}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}(3 t+1)} / v_{1}^{j} \mid n \geqslant 0, t \in \boldsymbol{Z}, 0<j<4 \times 3^{n-1},\right. \\
& \left.\quad \text { such that } j>4 \times 3^{n-i-1}-1 \text { if } 3^{i} \mid j\right\}, \\
& X_{1,2}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}\left(3^{k+2} u-1\right)} / v_{1}^{3^{k+1} m} \mid n \geqslant 0,3+u \in \boldsymbol{Z}, 0<3^{k+1} m<4 \times 3^{n-1},\right. \\
& \left.\quad \text { such that } j>4 \times 3^{n-i-1}-1 \text { if } 3^{i-k-1} \mid m\right\}, \\
& X_{2}=X_{2,1} \oplus X_{2,2}, \\
& X_{2,1}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}(3 t-1)} / v_{1}^{3^{i} m} \mid n \geqslant 0,3+m, 1 \leqslant m \leqslant 4 \times 3^{n-2 i-1}\right\}, \\
& X_{2,2}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}\left(3^{k+2} u-1\right)} / v_{1}^{3^{k+1} m} \mid 2 \leqslant 2 k \leqslant n, 0<m<4 \times 3^{n-2 k-1}, 3 \dagger m\right\}, \\
& H=H 1 \oplus H_{2}, \\
& H_{1}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}(3 t+1)} h_{10} / v_{1}^{j+1} \mid 0<i<n, j \leqslant 2 \times 3^{n}, 2 \times 3^{n-i} \leqslant j \text { if } 3^{i} \mid j\right\}, \\
& H_{2}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}(9 t-1)} h_{10} / v_{1}^{j} \mid n \geqslant 0,8 \times 3^{n}<j \leqslant 10 \times 3^{n}+1\right\}, \\
& H I=H I_{1} \oplus H I_{2},
\end{aligned}
$$

$$
\begin{aligned}
& H I_{1}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}(3 t+1)} h_{10} / v_{1}^{j+1} \mid 0 \leqslant i \leqslant n, 4 \times 3^{n-i-1} \leqslant j \leqslant 2 \times 3^{n-i}\right. \\
& \left.\quad \text { if } 3^{i} \mid j \text { and } 3^{i+1} \dagger j\right\}, \\
& H I_{2}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}(9 t-1)} h_{10} / v_{1}^{j+1} \mid n \geqslant 0,0 \leqslant j \leqslant 8 \times 3^{n}, 3^{k+1} \dagger\left(j+4 \times 3^{n}\right)\right. \\
& \left.\quad \text { if } t=3^{k} u \text { with } 3 \dagger u\right\}, \\
& H^{*}=H_{1}^{*} \oplus\left(H_{2,1}^{*}+H_{2,2}^{*}\right), \\
& H_{1}^{*}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}(3 t+1)} h_{10} / v_{1}^{j+1} \mid n \geqslant 0, j>0 \text { and } j<4 \times 3^{n-i-1} \text { if } 3^{i+1} \dagger j\right\}, \\
& H_{2,1}^{*}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}(9 t-1)} h_{10} / v_{1}^{j+1} \mid n \geqslant 0, j>0 \text { and } j \leqslant 4 \times 3^{n-i-1} \text { if } 3^{i+1}+j\right\}, \\
& H_{2,2}^{*}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n}(9 t-1)} h_{10} / v_{1}^{j+1} \mid n \geqslant 0, j \geqslant 0 \text { and } 3^{k+1} \mid\left(j+4 \times 3^{n}\right) \leqslant 4 \times 3^{n+1}\right. \\
& \left.\qquad \quad \text { if } t=3^{k} u \text { with } 3+u\right\}, \\
& X_{1}^{*}=X_{1,1}^{*} \oplus X_{1,2}^{*}, \\
& X_{1,1}^{*}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n+i}(3 t+1)} \xi_{n} / v_{1}^{3^{i} k} \mid i>0,0<3^{i} k \leqslant 4 \times 3^{n}\right\}, \\
& X_{1,2}^{*}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n+i+1}(3 t-1)} \xi_{n} / v_{1}^{i^{i} k} \mid i>0,0<3^{i} k \leqslant 4 \times 3^{n}\right\}, \\
& X_{2}^{*}=\boldsymbol{Z} / 3\left\{v_{2}^{3^{n+l} s} \xi_{n} / v_{1}^{3^{i} k} \mid 3+s, i, n \geqslant 0,0<3^{i} k \leqslant 4 \times 3^{n},\right. \\
& \\
& \quad l>i \text { and } l>i+1 \text { if } 3 \mid(s+1)\} .
\end{aligned}
$$

Note that it is just for simplicity that each direct summand of A_{1} is presented as the direct sum of two modules. We also consider the following submodules of $H^{*} M_{0}^{2}$:

$$
\begin{aligned}
& \tilde{X}=\boldsymbol{Z}_{(3)}\left\{v_{2}^{3^{n} s} / 3^{i+1} v_{1}^{j} \mid n \geqslant 0,3+s \in \boldsymbol{Z}, i \geqslant 0, j>0,\right. \\
& \text { with } \left.3^{i} \mid j<4 \times 3^{n-i-1} \text { and either } 3^{i+1}+j \text { or } 4 \times 3^{n-i-2}<j\right\} \\
& =\widetilde{X_{1}} \oplus \widetilde{X_{2}}, \\
& \widetilde{X_{1}}=\boldsymbol{Z}_{(3)}\left\{v_{2}^{3^{n} s} / 3^{i+1} v_{1}^{3^{i} m}\left|v_{2}^{3^{n} s} / 3^{i+1} v_{1}^{3^{i} m} \in \tilde{X}, 3 \dagger(s+1), 3\right| m\right. \\
& \text { or } \left.i \neq k+1 \text { if } s=3^{k+2} t-1 \text { with } k \geqslant 0 \text { and } 3+t\right\}, \\
& \widetilde{X_{2}}=\boldsymbol{Z}_{(3)}\left\{v_{2}^{3^{n_{s}} /} / 3^{i+1} v_{1}^{3^{i} m}\left|v_{2}^{3^{n} s} / 3^{i+1} v_{1}^{3^{i} m} \in \tilde{X}, 3\right|(s+1), 3+m\right. \\
& \text { and } \left.i=k+1 \text { if } s=3^{k+2} t-1 \text { with } k \geqslant 0 \text { and } 3+t\right\}, \\
& \tilde{H}=\widetilde{H_{1}} \oplus \widetilde{H_{2}}, \\
& \widetilde{H_{1}}=\boldsymbol{Z}_{(3)}\left\{v_{2}^{3^{n}(3 t+1)} h_{10} / 3^{i} v_{1}^{3^{i} m+1} \mid 0<i \leqslant n \text { and } 2 \times 3^{n-i}<3^{i} m \leqslant 2 \times 3^{n-i+1}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{H_{2}}=\boldsymbol{Z}_{(3)}\left\{v_{2}^{3^{n}(9 t-1)} h_{10} / 3^{i} v_{1}^{3^{i} m+1} \mid 0<i \leqslant n \text { and } 2 \times 3^{n-i}<3^{i} m-8 \times 3^{n} \leqslant 2 \times 3^{n-i+1}\right\}, \\
& \widetilde{H I}=\widetilde{H I_{0}} \oplus \widetilde{H I_{1}} \oplus \widetilde{H I_{2}} \oplus \widetilde{H I_{3}}, \\
& \widetilde{H I_{0}}=\boldsymbol{Z}_{(3)}\left\{v_{2}^{3^{n} s} h_{10} / 3^{n+1} v_{1} \mid n \geqslant 0, s=3 t+1 \text { or } s=9 t-1(t \in \boldsymbol{Z})\right\}, \\
& \widetilde{H I_{1}}=\boldsymbol{Z}_{(3)}\left\{v_{2}^{3^{n}(3 t+1)} h_{10} / 3^{i+1} v_{1}^{3^{i} m+1} \mid 0 \leqslant i \leqslant n, 2 \times 3^{n-i-1}<3^{i} m \leqslant 2 \times 3^{n-i}, 3+m\right\}, \\
& \widetilde{H I_{2}}=\boldsymbol{Z}_{(3)}\left\{v_{2}^{3^{n}(9 t-1)} h_{10} / 3^{i+1} v_{1}^{3^{i} m+1} \mid 3+m<8 \times 3^{n-i}, 0 \leqslant i<n, k+1>i \text { if } 3^{k} \mid t\right\}, \\
& \widetilde{H I_{3}}=\boldsymbol{Z}_{(3)}\left\{v_{2}^{3^{n}(9 t-1)} h_{10} / 3^{i} v_{1}^{3^{3} m+1} \left\lvert\, i= \begin{cases}n+1 \quad \text { if } m=1,3,4,6,7, \\
n+2 \quad \text { if } m=2,8, \\
n+3 & \text { if } m=5, \\
\left.k+1>n \text { if } 3^{k} \mid t\right\},\end{cases} \right.\right. \\
& \widetilde{X_{2}}=\boldsymbol{Z}_{(3)}\left\{v_{2}^{3^{n+l} s} \xi_{n} / 3^{i+1} v_{1}^{3^{i} m} \mid 3+s \in \boldsymbol{Z}, i, n \geqslant 0,0<3^{i} m \leqslant 4 \times 3^{n},\right. \\
& \quad l>i \text { and } l>i+1 \text { if } 3 \mid(s+1)\} .
\end{aligned}
$$

The propositions of Section 5 below show the behavior of the connecting homomorphism $\delta:{\overline{A_{1}}}^{s} \rightarrow A_{1}^{s+1}$ as follows:

Proposition 3.1. The connecting homomorphism $\delta:{\overline{A_{1}}}^{s} \rightarrow A_{1}^{s+1}$ maps $\widetilde{X_{1}}, \widetilde{X_{2}}, \widetilde{H}, \widetilde{H I}, \widetilde{X_{1}} \zeta_{2}{\widetilde{X_{2}}}^{*}$ and $\widetilde{H I} \zeta_{2}$ to $H^{*}, X_{2} \zeta_{2}, X_{1}^{*}, H I \zeta_{2}, X_{2}^{*} \zeta_{2}$ and $X_{1}^{*} \zeta_{2}$, respectively. Furthermore, the images of generators under δ are linearly independent.

We now use Lemma 2.1 to obtain our main theorem:

Theorem 3.2. ${\overline{A_{1}}}^{s}$ is isomorphic to $\widetilde{X_{1}} \oplus \widetilde{X_{2}}$ if $s=0, \widetilde{H} \oplus \widetilde{H I} \oplus \widetilde{X_{1}} \zeta_{2}$ if $s=1,{\widetilde{X_{2}}}^{*} \oplus \widetilde{H} \zeta_{2}$ if $s=2$, and 0 otherwise.

4. The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$

Let $E_{r}(X)$ denote the E_{r}-term of the Adams-Novikov spectral sequence converging to the homotopy groups $\pi_{*}(X)$. We start with a general result on the spectral sequence, which is well known and proved in the same manner as [3, Theorem 4.1].

Lemma 4.1. Let $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$ be the cofiber sequence with $B P_{*}(h)=0$. Then we have the induced maps $E_{r}^{s}(X) \xrightarrow{f_{*}} E_{r}^{s}(Y) \xrightarrow{g_{*}} E_{r}^{s}(Z) \xrightarrow{\delta} E_{r}^{s+1}(X)$. Suppose that $g_{*}(\bar{y})=\bar{z}$ for non-zero elements $y \in E_{r}^{s}(Y)$ and $z \in E_{r}^{s+r}(Z)$. Here, \bar{a} denotes a homotopy element that is detected by an element a of the E_{r}-term. Then if $y=f_{*}(x)$ for some $x \in E_{r}^{s}(X)$, then $d_{r}(x)=\delta(z)$.

Let N^{1} and N^{2} denote the cofibers of the localization maps $S^{0} \rightarrow L_{0} S^{0}$ and $N^{1} \rightarrow L_{1} N^{1}$, respectively. Then we have the Adams-Novikov spectral sequence $E_{2}\left(L_{2} N^{2}\right)=H^{*} M_{0}^{2} \Rightarrow$ $\pi_{*}\left(L_{2} N^{2}\right)$. The differentials of the spectral sequence are determined in [8], and we have the following.

Proposition 4.2. The E_{∞}-term of the Adams-Novikov spectral sequence for $\pi_{*}\left(L_{2} N^{2}\right)$ is the direct sum of the three modules $\overline{A_{0}}, \overline{A_{1}}$ and $\widetilde{A_{2}}$. Here, $\overline{A_{0}}$ and $\overline{A_{1}}$ are determined in the previous sections, and

$$
\widetilde{A_{2}}=\tilde{G} \oplus \tilde{G}^{*} \oplus \widetilde{G Z} \oplus \widetilde{G Z}^{*}
$$

where these four modules are determined in [8]:

$$
\begin{aligned}
\tilde{G}= & B_{5}(2,2)_{*}\left\{v_{2} / 3 v_{1}\right\} \oplus B_{4}(2,2)_{*}\left\{v_{2}^{4} b_{11} / 3 v_{1}\right\} \oplus B_{3}(2,2)_{*}\left\{v_{2}^{7} h_{10} / 3 v_{1}\right\} \\
& \oplus B_{2}(2,2)_{*}\left\{v_{2} h_{10} / 3 v_{1}, v_{2}^{2} h_{11} / 3 v_{1}, v_{2}^{5} h_{11} / 3 v_{1}\right\} \oplus B_{1}(2,2)\left\{v_{2}^{-1} h_{11} / 3 v_{1}^{2}\right\} \\
\tilde{G}^{*}= & B_{5}(2,2)_{*}\left\{v_{2}^{7} \psi_{1} / 3 v_{1}\right\} \oplus B_{4}(2,2)_{*}\left\{v_{2}^{3} \psi_{0} / 3 v_{1}\right\} \oplus B_{2}(2,2)_{*}\left\{\xi / 3 v_{1}, v_{2}^{3} b_{11} \xi / 3 v_{1}, v_{2}^{6} b_{11} \xi / 3 v_{1}\right\} \\
& \oplus \sum_{n \geqslant 1}\left(B_{3}(2, n+2)_{*}\left\{v_{2}^{9 u+3} \xi / 3 v_{1} \mid u \in \boldsymbol{Z}-I(n)\right\}\right. \\
& \left.\oplus B_{2}(2, n+2)_{*}\left\{v_{2}^{9 u+3} \xi / 3 v_{1} \mid u \in I(n)\right\}\right), \\
\widetilde{G Z}= & B_{5}(2,2)_{*}\left\{v_{2} \zeta_{2} / 3 v_{1}\right\} \\
& \oplus B_{3}(2,2)_{*}\left\{v_{2}^{4} b_{11} \zeta_{2} / 3 v_{1}\right\} \\
& \oplus B_{2}(2,2)_{*}\left\{v_{2} h_{10} \zeta_{2} / 3 v_{1}, v_{2}^{2} h_{11} \zeta_{2} / 3 v_{1}, v_{2}^{5} h_{11} \zeta_{2} / 3 v_{1}, v_{2}^{7} h_{10} \zeta_{2} / 3 v_{1}\right\} \\
\widetilde{G Z} & =B_{5}(2,2)_{*}\left\{v_{2}^{7} \psi_{1} \zeta_{2} / 3 v_{1}\right\} \oplus B_{4}(2,2)_{*}\left\{v_{2}^{3} \psi_{0} \zeta_{2} / 3 v_{1}\right\} \\
& \oplus B_{2}(2,2)_{*}\left\{\xi \zeta_{2} / 3 v_{1}\right\} \\
& \oplus B_{1}(2,2)_{*}\left\{v_{2}^{3} b_{11} \xi \zeta_{2} / 3 v_{1}, v_{2}^{6} b_{11} \xi \zeta_{2} / 3 v_{1}\right\} \\
& \oplus \sum_{n \geqslant 1}\left(B_{3}(2, n+2)_{*}\left\{v_{2}^{9 u+3} \xi \zeta_{2} / 3 v_{1} \mid u \in \boldsymbol{Z}-I(n)\right\}\right. \\
& \left.\oplus B_{2}(2, n+2)_{*}\left\{v_{2}^{9 u+3} \xi \zeta_{2} / 3 v_{1} \mid u \in I(n)\right\}\right)
\end{aligned}
$$

for $B_{k}(2, n)_{*}=(\boldsymbol{Z} / 3)\left[v_{2}^{ \pm 3^{n}}, b_{10}\right] /\left(b_{10}^{k}\right)$ and $I(n)$ given in Section 1 .
Lemma 4.3. There is no extension problem in the spectral sequence for $\pi_{*}\left(L_{2} N^{2}\right)$.
Proof. Let $M(i, \infty)$ be a cofiber of the localization map $M(i) \rightarrow L_{1} M(i)$ of the $\bmod 3^{i}$ Moore spectrum $M(i)$. Then we have the cofiber sequence $M(i, \infty) \xrightarrow{\varphi} N^{2} \xrightarrow{3^{i}} N^{2}$. If there are non-zero
elements $x \in E_{\infty}^{s, *}\left(L_{2} N^{2}\right)$ and $y \in E_{\infty}^{s+r-1, *}\left(L_{2} N^{2}\right)$ for integers $s \geqslant 0$ and $r>1$ such that $3^{i} \bar{x}=\bar{y}$ in $\pi_{*}\left(L_{2} N^{2}\right)$, then there exists an element $\tilde{x} \in E_{r}^{s, *}\left(L_{2} M(i, \infty)\right)$ such that $\varphi_{*}(\tilde{x})=x$ and $d_{r}(\tilde{x})=\delta(y)$ in $E_{r}^{s+r, *}\left(L_{2} M(i, \infty)\right)$ by Lemma 4.1. Consider the commutative diagram

Then the relation $d_{r}(\tilde{x})=\delta(y)$ in $E_{r}^{s+r, *}\left(L_{2} M(i, \infty)\right)$ is the one in $E_{r}^{s+r, *}\left(L_{2} M(1, \infty)\right)$. Note that $M(1, \infty)$ is denoted by W in [7]. We observe in [8] that the differentials on $E_{r}^{*}\left(L_{2} N^{2}\right)$ are obtained by sending those on $E_{r}^{*}\left(L_{2} W\right)$ by the map $\varphi_{*}: E_{r}^{*}\left(L_{2} W\right) \rightarrow E_{r}^{*}\left(L_{2} N^{2}\right)$, and so y cannot be an image of the connecting homomorphism δ. This means that there are no non-zero elements $x, y \in E_{\infty}^{* * *}\left(L_{2} N^{2}\right)$ such that $3^{i} \bar{x}=\bar{y}$ in $\pi_{*}\left(L_{2} N^{2}\right)$.

Corollary 4.4. The homotopy groups $\pi_{*}\left(L_{2} N^{2}\right)$ are the direct sum of the three modules $\overline{A_{0}}, \overline{A_{1}}$ and $\widetilde{A_{2}}$.

Proof of Theorem A. Consider the exact sequences $\cdots \rightarrow \pi_{*}\left(L_{2} S^{0}\right) \rightarrow \pi_{*}\left(L_{0} S^{0}\right) \rightarrow \pi_{*}\left(L_{2} N^{1}\right) \rightarrow$ \cdots and $\cdots \rightarrow \pi_{*}\left(L_{2} N^{1}\right) \rightarrow \pi_{*}\left(L_{1} N^{1}\right) \xrightarrow{v_{1}} \pi_{*}\left(L_{2} N^{2}\right) \rightarrow \cdots$ associated to the cofiber sequence $S^{0} \rightarrow L_{0} S^{0} \rightarrow N^{1}$ and $N^{1} \rightarrow L_{1} N^{1} \rightarrow N^{2}$. They also induce the connecting homomorphisms $\delta: E_{2}^{s}\left(L_{2} N^{1}\right) \rightarrow E_{2}^{s+1}\left(L_{2} S^{0}\right)$ and $\delta^{\prime}: E_{2}^{s}\left(L_{2} N^{2}\right) \rightarrow E_{2}^{s+1}\left(L_{2} N^{1}\right)$ of E_{2}-terms. Now define the elements of the E_{2}-term $E_{2}^{*}\left(L_{2} S^{0}\right)$ by

$$
\begin{aligned}
& \alpha_{a / b}=\delta\left(v_{1}^{a} / 3^{b}\right), \quad \beta_{1}^{\prime}=h_{11}-v_{1}^{2} h_{10}, \\
& \beta_{a / b, c}=\delta \delta^{\prime}\left(v_{2}^{a} / 3^{c} v_{1}^{b}\right), \\
& c_{3^{n} s}=\delta \delta^{\prime}\left(v_{2}^{3^{n s}} h_{10} / 3^{n+1} v_{1}\right) \quad \text { for } 3 \dagger s, \\
& \widetilde{\alpha_{1}} \beta_{a / b, c}=\delta \delta^{\prime}\left(v_{2}^{a} h_{10} / 3^{c} v_{1}^{b}\right), \\
& \beta(a)_{b / c, d}^{*}=\delta \delta^{\prime}\left(v_{2}^{b} \xi_{a} / 3^{d} v_{1}^{c}\right), \\
& \chi_{a}^{0}=\delta \delta^{\prime}\left(v_{2}^{a} \psi_{0} / 3 v_{1}\right)
\end{aligned}
$$

and

$$
\chi_{a}^{1}=\delta \delta^{\prime}\left(v_{2}^{a} \psi_{1} / 3 v_{1}\right)
$$

Then $\overline{A_{1}}$ and $\overline{A_{2}}$ are isomorphic to G_{1} and G_{2}, respectively. Since $\pi_{*}\left(L_{0} S^{0}\right)=\boldsymbol{Q}$ and $\pi_{*}\left(L_{1} N^{1}\right)=$ $\boldsymbol{Q} / \boldsymbol{Z}_{(3)} \otimes \Lambda(y) \oplus A l$, an easy diagram chasing with Corollary 4.4 enables us to obtain G_{0} from $\overline{A_{0}}$, and proves Theorem A. Here, $A l$ is the $\boldsymbol{Z}_{(3)}$-module generated by $v_{1}^{3^{i} s / 3^{i+1}}$ for $i \geqslant 0$ and $3 \dagger s \in \boldsymbol{Z}$.

5. Computations in the cobar complex

In this section, we work on the cobar complex (cf. [3]) based on the Hopf algebroid $\left(E(2)_{*}, E(2)_{*}(E(2))\right)$ in order to study the connecting homomorphism $\delta:{\overline{A_{1}}}^{s} \rightarrow A_{1}^{s+1}$. The structure maps $\eta_{R}: E(2)_{*} \rightarrow E(2)_{*}(E(2))$ and $\Delta: E(2)_{*}(E(2)) \rightarrow E(2)_{*}(E(2)) \otimes_{E(2)_{*}} E(2)_{*}(E(2))$ behave as follows:

$$
\begin{aligned}
& \eta_{R}\left(v_{1}\right)=v_{1}+3 t_{1} \\
& \eta_{R}\left(v_{2}\right)=v_{2}+v_{1} t_{1}^{3}-t_{1} \eta_{R}\left(v_{1}\right)^{3}-3 v_{1} t_{1}\left(v_{1}^{2}+3 v_{1} t_{1}+3 t_{1}^{2}\right) \\
& \Delta\left(t_{1}\right)=t_{1} \otimes 1+1 \otimes t_{1} \\
& \Delta\left(t_{2}\right)=t_{2} \otimes 1+t_{1} \otimes t_{1}^{2}+v_{1} b_{0} \\
& \Delta\left(t_{3}\right) \equiv t_{3} \otimes 1+t_{2} \otimes t_{1}^{9}+t_{1} \otimes t_{2}^{3}+1 \otimes t_{3}+v_{2} b_{1}-v_{1} b_{20} \bmod \left(9, v_{1}^{2}\right)
\end{aligned}
$$

where $3 b_{i}=t_{1}^{3+1} \otimes 1+1 \otimes t_{1}^{3+1}-\left(t_{1} \otimes 1+1 \otimes t_{1}\right)^{3 i+1}$ and $3 b_{20}=\left(t_{2}^{3} \otimes 1+t_{1}^{3} \otimes t_{1}^{9}+1 \otimes t_{2}^{3}\right)-\left(t_{2} \otimes 1\right.$ $\left.+t_{1} \otimes t_{1}^{3}+1 \otimes t_{2}\right)^{3}$. Furthermore, we have the relations in $E(2)_{*}(E(2))$ by setting $\eta_{R}\left(v_{i}\right)=0$ in $B P_{*}(B P)$ for $i>2$ such as $v_{2} t_{i-2}^{9} \equiv v_{2}^{3^{i}} t_{i-2} \bmod \left(3, v_{1}\right)$ and $v_{2} t_{1}^{9} \equiv v_{2}^{3} t_{1}-v_{1} t_{2}^{3} \bmod \left(3, v_{1}^{2}\right)$. For an $E(2)_{*}(E(2))$-comodule M with structure map induced from η_{R}, the cobar complex is a family of $E(2)_{*}$-modules $\Omega^{s} M=M \otimes_{E(2)_{*}} E(2)_{*}(E(2)) \otimes_{E(2)_{*}} \cdots \otimes_{E(2)_{*}} E(2)_{*}(E(2))$ (s factors) with differential $d: \Omega^{s} M \rightarrow \Omega^{s+1} M$ defined by $d(m \otimes x)=\eta_{R}(m) \otimes x+\sum_{i=1}^{s}(-1)^{i} m \otimes \Delta_{i}(x)-$ $(-1)^{s} m \otimes x \otimes 1$ for $m \in M$ and $x \in \Omega^{s} M$, where $\Delta_{i}\left(x_{1} \otimes \cdots \otimes x_{n}\right)=x_{1} \otimes \cdots \otimes \Delta\left(x_{i}\right) \otimes \cdots \otimes x_{n}$.

Lemma 5.1. In the cobar complex $\Omega^{*} E(2)_{*} /\left(3, v_{1}^{3}\right)$, put $t_{31}=v_{2}^{-6} t_{3}^{3}-t_{1}^{3} t_{2}^{3}$, and we obtain

$$
d\left(t_{31}\right)=t_{1}^{6} \otimes t_{1}^{9}-t_{1}^{3} \otimes t_{2}^{3}-v_{2}^{3} t_{1}^{3} \otimes z^{3}-v_{2}^{-3} b_{11}^{3}
$$

Here $z=v_{2}^{-1}\left(t_{2}-t_{1}^{4}\right)+v_{2}^{-3} t_{2}^{3}$.
Proof. This follows immediately from the computation

$$
\begin{aligned}
d\left(v_{2}^{-6} t_{3}^{3}\right) & =-v_{2}^{-6} t_{1}^{3} \otimes t_{2}^{9}-v_{2}^{-6} t_{2}^{3} \otimes t_{1}^{27}-v_{2}^{-3} b_{11}^{3} \\
d\left(-t_{1}^{3} t_{2}^{3}\right) & =t_{1}^{6} \otimes t_{1}^{9}+t_{1}^{3} \otimes t_{1}^{12}+t_{1}^{3} \otimes t_{2}^{3}+t_{2}^{3} \otimes t_{1}^{3} \\
& =t_{1}^{6} \otimes t_{1}^{9}-v_{2}^{3} t_{1}^{3} \otimes z^{3}+v_{2}^{-6} t_{1}^{3} \otimes t_{2}^{9}-t_{1}^{3} \otimes t_{2}^{3}+t_{2}^{3} \otimes t_{1}^{3}
\end{aligned}
$$

Since $\eta_{R}\left(v_{2}\right) \equiv v_{2}+v_{1} t_{1}^{3}-v_{1}^{3} t_{1} \bmod (3)$, we note that $\eta_{R}\left(v_{2}^{3}\right) \equiv v_{2}^{3}+v_{1}^{3} t_{1}^{9}-v_{1}^{9} t_{1}^{3} \bmod \left(9,3 v_{1}\right)$. We then define an element V by the congruence

$$
3 v_{1} V \equiv v_{2}^{3}+v_{1}^{3} t_{1}^{9}-v_{1}^{9} t_{1}^{3}-\eta_{R}\left(v_{2}^{3}\right) \bmod (9)
$$

Lemma 5.2. There exists an element Y_{n} such that

$$
d\left(Y_{n}\right)=-v_{1}^{4 \times 3^{n-1}-1} \sigma_{n+1} \otimes V^{3^{n}}-v_{1}^{7 \times 3^{n-1}} v_{2}^{2 \times 3^{n}} x^{3^{n}} \bmod \left(3, v_{1}^{8}\right)
$$

for each $n>0$. Here $\sigma_{n}=t_{1}+v_{1} z^{3^{n}}$ and x is a cocycle whose leading term is $-v_{2}^{10} t_{3}^{3} \otimes t_{1}^{3}-$ $v_{2}^{-3} t_{1} \otimes t_{3}$.

Proof. First note that $V \equiv-v_{2}^{2} t_{1}^{3}-v_{1} v_{2} t_{1}^{6} \bmod \left(3, v_{1}^{2}\right)$. Recall the element Y of $\Omega^{1} E(2)_{*}$ ($\left[1\right.$, Theorem 4.8]) such that $Y \equiv \sigma_{2} \eta_{R}\left(v_{2}^{3}\right)-v_{1}^{2} V+v_{1}^{3} v_{2}^{-2} t_{1}^{18}+v_{1}^{4} v_{2}^{-27}\left(t_{1}^{9} t_{2}^{27}-t_{3}^{9}\right) \bmod \left(3, v_{1}^{5}\right)$ and

$$
d(Y) \equiv v_{1}^{7} x^{3} \bmod \left(3, v_{1}^{8}\right)
$$

Here, x^{3} denotes a cocycle whose leading term is $-v_{2}^{30} t_{3}^{9} \otimes t_{1}^{9}-v_{2}^{-9} t_{1}^{3} \otimes t_{3}^{3}$, which represents $v_{2} \xi \in H^{2,8} M_{2}^{0}$. We define elements Y_{i} inductively by

$$
\begin{aligned}
& Y_{1}=\eta_{R}\left(v_{2}^{6}\right) Y+v_{1}^{5} v_{2}^{5} t_{2}^{3}-v_{1}^{6} v_{2}^{4} t_{31}+v_{1}^{5} v_{2}^{8} z^{3}, \\
& Y_{n}=Y_{n-1}^{3}+v_{1}^{4 \times 3^{n-1}-4} v_{2} V^{3^{n}} .
\end{aligned}
$$

Since $d\left(\eta_{R}(v) t\right)=d(t) \Delta \eta_{R}(v)-t \otimes d(v)$ for $v \in E(2)_{*}$ and $t \in E(2)_{*} E(2)$, we compute $\bmod \left(3, v_{1}^{8}\right)$,

$$
\begin{aligned}
d\left(\eta_{R}\left(v_{2}^{6}\right) Y\right)= & v_{1}^{7} v_{2}^{6} x^{3}-Y \otimes\left(-v_{1}^{3} v_{2}^{3} t_{1}^{9}+v_{1}^{6} t_{1}^{18}\right) \\
= & v_{1}^{7} v_{2}^{6} x^{3}-v_{1}^{3} Y \otimes v_{2}^{-3} V^{3}+v_{1}^{6} Y \otimes t_{1}^{18} \\
= & v_{1}^{7} v_{2}^{6} x^{3}+v_{1}^{6} \sigma_{2} \eta_{R}\left(v_{2}^{3}\right) \otimes t_{1}^{18} \\
& -v_{1}^{3}\left(\sigma_{2} \eta_{R}\left(v_{2}^{3}\right)-v_{1}^{2} V+v_{1}^{3} v_{2}^{-2} t_{1}^{18}+v_{1}^{4} v_{2}^{-27}\left(t_{1}^{9} t_{2}^{27}-t_{3}^{9}\right)\right) \otimes v_{2}^{-3} V^{3} \\
= & v_{1}^{7} v_{2}^{6} x^{3}+v_{1}^{6}\left(\underline{v_{2} t_{1}^{9}}+v_{1} t_{2}^{3}+v_{1} z^{9} \eta_{R}\left(v_{2}^{3}\right)\right) \otimes t_{1}^{18} \\
& -v_{1}^{3} \sigma_{2} \otimes V^{3}-v_{1}^{5}\left(\underline{-v_{2}^{2} t_{1}^{3}} \underline{1}-\underline{v_{1} v_{2} t_{1}^{6}}+v_{1}^{2} v_{2}^{2} t_{1}\right) \otimes v_{2}^{3} t_{1}^{9} \\
& \left.+\underline{v_{1}^{6} v_{2}^{-2} t_{1}^{18} \otimes v_{2}^{3} t_{1}^{9}}+v_{1}^{7} v_{2}^{-27}\left(t_{1}^{9} t_{2}^{27}-t_{3}^{9}\right)\right) \otimes v_{2}^{3} t_{1}^{9}, \\
d\left(v_{1}^{5} v_{2}^{5} t_{2}^{3}\right)=- & \left.\underline{v_{1}^{6} v_{2}^{4} t_{1}^{3} \otimes t_{2}^{3}-\underline{v_{1}^{5} v_{2}^{5} t_{1}^{3} \otimes \underline{t_{1}^{9}}},} \begin{array}{l}
d\left(-v_{1}^{6} v_{2}^{4} t_{31}\right)= \\
-v_{1}^{7} v_{2}^{3} t_{1}^{3} \otimes t_{31}-v_{1}^{6} v_{2}^{4}\left(\underline{t_{1}^{6} \otimes t_{1}^{9}}-\underline{t_{1}^{3} \otimes t_{2}^{3}}-\underline{v_{2}^{3} t_{1}^{3} \otimes z^{3}}{ }_{5}-\underline{v_{2}^{-3} b_{11}^{3}}\right), \\
d\left(v_{1}^{5} v_{2}^{8} z^{3}\right)=
\end{array}\right)-\underline{v_{1}^{6} v_{2}^{7} t_{1}^{3} \otimes z^{3}}+v_{1}^{7} v_{2}^{6} t_{1}^{6} \otimes z^{3},
\end{aligned}
$$

in which the underlined terms with the same subscript cancel out. So we redefine the cocycle $-x^{3}$ by the cocycle that appears in the sum of the above congruences to satisfy

$$
d\left(Y_{1}\right) \equiv-v_{1}^{3} \sigma_{2} \otimes V^{3}-v_{1}^{7} v_{2}^{6} x^{3}
$$

Here, x^{3} has the same leading term $-v_{2}^{30} t_{3}^{9} \otimes t_{1}^{9}-v_{2}^{-9} t_{1}^{3} \otimes t_{3}^{3}$ as the above cocycle x^{3}.
Now turn to the case n. We assume the case for $n-1$. Then

$$
\begin{aligned}
& d\left(Y_{n-1}^{3}\right) \equiv-v_{1}^{4 \times 3^{n-1}-3} \sigma_{n}^{3} \otimes V^{3^{n}}-v_{1}^{7 \times 3^{n-1}} v_{2}^{2 \times 3^{n}} x^{3^{n}} \\
& d\left(v_{1}^{4 \times 3^{n-1}-4} v_{2} V^{3^{n}}\right)=v_{1}^{4 \times 3^{n-1}-3}\left(t_{1}^{3}-v_{1}^{2} t_{1}\right) \otimes V^{3^{n}}
\end{aligned}
$$

Note that $\sigma_{n}^{3}-\left(t_{1}^{3}-v_{1}^{2} t_{1}\right)=v_{1}^{2} \sigma_{n+1}$, and we have the case for n.
The following is also shown in [9, Proposition 4.4] which also holds for the prime 3. Here, the elements $y_{3^{n} s}, t_{1} \otimes \zeta$, and g_{0} are our $v_{2}^{3^{n} s} h_{10}, h_{10} \zeta_{2}$ and $v_{2}^{-2} b_{11}$, respectively.

Proposition 5.3. For $n \geqslant 0$ and $s \in I$,

$$
\delta\left(v_{2}^{3^{n} s} h_{10} / 3^{n+1} v_{1}\right)=v_{2}^{3^{n} s} h_{10} \zeta_{2} / v_{1}+v_{2}^{3^{n} s-2} b_{11} / v_{1} .
$$

We have similar results to [10, Propositions 7.5, 7.6 and 7.8]:

Proposition 5.4. Let s, n, i, k be integers with $3+s, k>0$ and $0 \leqslant i \leqslant n$. Then the Bockstein differential on $v_{2}^{3^{n} s} h_{10} / v_{1}^{3^{i} k+1}$ is given as follows:

1. If $3^{i} k \leqslant 2 \times 3^{n-i}$, then

$$
\delta\left(v_{2}^{3^{n} s} h_{10} / 3^{i+1} v_{1}^{3^{i} k+1}\right)=-k v_{2}^{3^{n} s} h_{10} \zeta_{2} / v_{1}^{3^{i} k+1}-(-1)^{n-i} s v_{2}^{3^{n} s} \xi_{n-i-1} / v_{1}^{3^{i} k-2 \times 3^{n-i-1}}+\cdots .
$$

2. If $s=9 t-1$ and $3^{i} k \leqslant 8 \times 3^{n}+2 \times 3^{n-i+1}$, then

$$
\delta\left(v_{2}^{3^{n} s} h_{10} / 3^{i} v_{1}^{3^{i} k+1}\right)=(-1)^{n-i} v_{2}^{3^{n+1}(3 t-1)} \xi_{n-i} / v_{1}^{3^{i} k-8 \times 3^{n}-2 \times 3^{n-i}}+\cdots .
$$

3. If $s=9 t-1,3^{i+1}+3^{i} k \leqslant 8 \times 3^{n}$ and $i<n$, then

$$
\delta\left(v_{2}^{3^{n} s} h_{10} / 3^{i+1} v_{1}^{3^{i} k+1}\right)=-k v_{2}^{3^{n} s} h_{10} \zeta_{2} / v_{1}^{3^{i} k+1}+\cdots
$$

4. If $s=9 t-1,3^{n} k \leqslant 8 \times 3^{n}$ and $3 \dagger(k+1)$, then

$$
\delta\left(v_{2}^{3^{n} s} h_{10} / 3^{n+1} v_{1}^{3^{n} k+1}\right)=-(k+1) v_{2}^{3^{n} s} h_{10} \zeta_{2} / v_{1}^{3^{n} k+1}+\cdots .
$$

5. If $s=9 t-1,3^{n} k \leqslant 8 \times 3^{n}$ and $3 \mid(k+1)($ i.e. $k=2,5,8)$, then

$$
\begin{aligned}
& \delta\left(v_{2}^{3^{n} s} h_{10} / 3^{n+2} v_{1}^{2 \times 3^{n}+1}\right)=-v_{2}^{3^{n} s} h_{10} \zeta_{2} / v_{1}^{2 \times 3^{n}+1}+\cdots \\
& \delta\left(v_{2}^{3^{n} s} h_{10} / 3^{n+2} v_{1}^{8 \times 3^{n}+1}\right)=v_{2}^{3^{n} s} h_{10} \zeta_{2} / v_{1}^{8 \times 3^{n}+1}+\cdots \\
& \delta\left(v_{2}^{3^{n} s} h_{10} / 3^{n+3} v_{1}^{5 \times 3^{n}+1}\right)=-v_{2}^{3^{n} s} h_{10} \zeta_{2} / v_{1}^{5 \times 3^{n}+1}+\cdots
\end{aligned}
$$

Here \cdot. denotes an element killed by a lower power of v_{1} than is shown.
Proof. Let \tilde{z} denote the element given in [8] such that $\tilde{z} \equiv v_{2}^{-1}\left(t_{2}-t_{1}^{4}\right)+v_{2}^{-3} t_{2}^{3} \bmod \left(3, v_{1}\right)$ and $d(\tilde{z}) \equiv 0 \bmod \left(3^{i}, v_{1}^{3^{i-1} k}\right)$ for any $i, k>0$, and denote $\sigma=t_{1}+v_{1} \tilde{z}$. We also consider a cocycle

$$
y_{j, l}=\sum_{k>0}\binom{k+j-2}{k-1} \frac{-\left(-t_{1}\right)^{k}}{3^{l-k+1} k v_{1}^{j+k-1}}
$$

of $\Omega^{1} M_{0}^{2}$ ([4]). Put $\sigma_{a, b}=y_{a, b}+\tilde{z} / 3^{b} v_{1}^{a-1}$, and we note that $3^{b-1} \sigma_{a, b}=\sigma / 3 v_{1}^{a}$ and

$$
d\left(\sigma_{3^{i} k+1, i+2}\right)=k t_{1} \otimes \tilde{z} / 3 v_{1}^{3^{i} k+1}
$$

Note that $v_{2}^{3^{n} s} h_{10} / v_{1}^{3^{i} k+1}$ is represented by a cocycle $c\left(3^{n} s / 3^{i} k+1\right)=\eta_{R}\left(v_{2}^{3^{n} s}\right) \sigma / v_{1}^{3^{i} k+1}+w / v_{1}^{3^{i} k-3^{n}}$ for some $w \in E(2)_{*}(E(2))$.

For $i=0$ and $k<3^{n}-1$, we define $c\left(3^{n} s / k+1, l\right)=\eta_{R}\left(v_{2}^{3^{n} s}\right) \sigma_{k+1, l}$ for an integer $l>0$, and replace the generator $v_{2}^{3^{n} s} h_{10} / v_{1}^{k+1}$ by the element represented by the cocycle $c\left(3^{n} s / k+1\right)$. Since $d\left(v_{2}^{3}\right) \equiv 3 v_{1} V \bmod \left(9, v_{1}^{3}\right)$ by definition, we observe that

$$
d\left(v_{2}^{3^{n}}\right) \equiv-3^{i+1} s v_{1}^{3^{n-i-1}} v_{2}^{3^{n-i}\left(3^{i} s-1\right)} V^{3^{n-i-1}} \bmod \left(3^{i+2}, v_{1}^{3^{n-i}}\right)
$$

We compute in $\Omega^{2} M_{0}^{2}$:

$$
\begin{aligned}
d\left(c\left(3^{n} s / k+1,2\right)\right) & =d\left(\eta_{R}\left(v_{2}^{3^{n} s}\right) \sigma_{k+1,2}\right) \\
& =k t_{1} \otimes \eta_{R}\left(v_{2}^{3^{n} s}\right) \tilde{z} / 3 v_{1}^{k+1}-\sigma_{k+1,2} \otimes d\left(v_{2}^{3^{n} s}\right) \\
& =k v_{2}^{3^{n} s} t_{1} \otimes \tilde{z} / 3 v_{1}^{k+1}+s v_{2}^{3^{n}(s-1)} \sigma \otimes V^{3^{n-1}} / 3 v_{1}^{k+1-3^{n-1}}
\end{aligned}
$$

whose second term is homologous to $-v_{2}^{3^{n} s-3^{n-1}} x^{3^{n-1}} / 3 v_{1}^{k-2 \times 3^{n-1}}$ by Lemma 5.2. Since ξ_{n} is represented by $(-1)^{n} v_{2}^{-3^{n}} x^{3^{n}}$, this represents $(-1)^{n} v_{2}^{3^{n}} s \xi_{n-1} / 3 v_{1}^{k-2 \times 3^{n-1}}$ as desired. If $k \geqslant 3^{n}$, then the case $i=0$ follows from the formula $v_{1}^{3 n+3} \delta\left(v_{2}^{3^{n} s} h_{10} / 3 v_{1}^{3^{i} k+1}\right)=\delta\left(v_{2}^{3^{n} s} h_{10} / 3 v_{1}^{3^{i} k-3^{n}-2}\right)$.

Suppose the case for i. Then $\delta\left(v_{2}^{3^{n} s} h_{10} / 3^{i+1} v_{1}^{3+1} k+1\right)=0$ if $3^{i+1} k \leqslant 2 \times 3^{n-i-1}$. Since we compute

$$
d\left(\eta_{R}\left(v_{2}^{3^{n} s}\right) \sigma_{3^{i+1} k+1, i+3}\right)=k v_{2}^{3^{n} s} t_{1} \otimes z / 3 v_{1}^{3^{i+1} k+1}-v_{2}^{3^{n-i-1}\left(3^{i+1} s-1\right)} \sigma \otimes V^{3^{n-i-2}} / 3 v_{1}^{3 i+1} k+1-3^{n-i-2}
$$

in $\Omega^{2} M_{0}^{2}$, which shows the case for $i+1$, we obtain inductively the first part by Lemma 5.2. Thus, if we denote a cocycle that represents $v_{2}^{a} h_{10} / 3^{c} v_{1}^{b}$ by $c(a / b, c)$, then

$$
\begin{equation*}
d\left(c\left(3^{n} s / 3^{i} k+1, i+2\right)\right)=k v_{2}^{3^{n} s} t_{1} \otimes z / 3 v_{1}^{3^{i} k+1}-(-1)^{n-i} v_{2}^{3^{n} s} x(n-i-1) / 3 v_{1}^{3^{i} k-2 \times 3^{n-i-1}} \tag{5.1}
\end{equation*}
$$

where $x(n)=(-1)^{n} v_{2}^{-3^{n}} x^{3^{n}}$ and so $\sigma \otimes V^{3^{n}}=(-1)^{n+1} v_{1}^{3^{n}+1} v_{2}^{3^{n+1}} x(n)$ up to homology.
Consider the case $s=9 t-1$. The proof of [10, Lemma 7.7] works also at prime 3 and we obtain
5.5. The element $v_{2}^{3^{n}(9 t-1)} h_{10} / 3 v_{1}^{3^{i} k+1}$ of $H^{1} M_{0}^{2}$ is represented by a cochain $c\left(3^{n} S / 3^{i} k+1,1\right)=$ $d\left(x_{n+2}^{t}\right) / 9 t v_{1}^{4 \times 3^{n}+3^{i} k}-c\left(3^{n+1}(3 t-1) / 3^{i} k-8 \times 3^{n}+1,2\right)$.

In [4], they introduce the elements $x_{i} \in E(2)_{*}$ such that $x_{i} \equiv v_{2}^{3^{i}} \bmod \left(3, v_{1}\right)$ and give the formulas on $d\left(x_{i}\right)$. With a detailed computation, we observe that these elements satisfy $d\left(x_{i}\right) \equiv$ $v_{1}^{a_{i}} v_{2}^{2 \times 3^{i-1}} \sigma_{n-1} \bmod \left(3, v_{1}^{2 \times 3^{n}-1}\right)$ for $i \geqslant 2$. We then compute with (5.1)

$$
\begin{aligned}
& d\left(d\left(x_{n+2}^{t}\right) / 3^{i+2} t v_{1}^{4 \times 3^{n}+3^{i} k}\right)=-k t_{1} \otimes d\left(x_{n+2}^{t}\right) / 3 t v_{1}^{4 \times 3^{n}+3^{i} k+1} \\
& =-k t_{1} \otimes v_{2}^{3^{n+1}(3 t-1)} \sigma / 3 v_{1}^{3^{i} k+1-8 \times 3^{n}}+\cdots \\
& d\left(-k v_{2}^{3^{n+1}(3 t-1)} t_{1}^{2} / 3 v_{1}^{3^{i} k+1-8 \times 3^{n}}\right)=-k v_{2}^{3^{n+1}(3 t-1)} t_{1} \otimes t_{1} / 3 v_{1}^{3^{i} k+1-8 \times 3^{n}} \\
& d\left(c\left(3^{n+1}(3 t-1) / 3^{i} k+1-8 \times 3^{n}, i+2\right)\right) \\
& \quad=k v_{2}^{3^{n+1}(3 t-1)} t_{1} \otimes z / 3 v_{1}^{3^{i} k+1-8 \times 3^{n}}+(-1)^{n-i} v_{2}^{3^{n+1}(3 t-1)} x(n-i) / 3 v_{1}^{3^{i} k-8 \times 3^{n}-2 \times 3^{n-i}} .
\end{aligned}
$$

They amount to

$$
d\left(c\left(3^{n}(9 t-1) / 3^{i} k+1, i+1\right)\right)=(-1)^{n-i} v_{2}^{3^{n+1}(3 t-1)} x(n-i) / 33_{1}^{3^{i} k-8 \times 3^{n}-2 \times 3^{n-i}}
$$

We also note the case $n=i=1$ in the same manner, and we obtain part 2.

Parts 3 and 4 follow immediately from 5.5 and computation

$$
d\left(d\left(x_{n+2}^{t}\right) / 3^{n+3} t v_{1}^{(4+k) 3^{n}}\right)=(4+k) t_{1} \otimes d\left(x_{n+2}^{t}\right) / 9 t v_{1}^{(4+k) 3^{n}+1}
$$

In the same way, we obtain part 5 by computing $d\left(d\left(x_{n+2}^{t}\right) / 3^{n+4} t v_{1}^{(4+k) 3^{n}}\right)$ for $k=2,8$ and $d\left(d\left(x_{n+2}^{t}\right) / 3^{n+5} t v_{1}^{3^{n+2}}\right)$ for $k=5$.

They imply that ${\overline{A_{1}}}^{1}=\tilde{H} \oplus \widetilde{H I} \oplus \widetilde{X_{1}} \zeta_{2}$, and Propositions 5.3 and 5.4 show that the cokernel of $\delta:{\overline{A_{1}}}^{1} \rightarrow A_{1}^{2}$ is isomorphic to X_{2}^{*}.

Proposition 5.6. For an element $v_{2}^{3^{n+l} s} \xi_{n} / v_{1}^{3^{i} k}$ of X_{2}^{*}, the connecting homomorphism $\delta:{\overline{A_{1}}}^{2} \rightarrow A_{1}^{3}$ acts as follows:

$$
\delta\left(v_{2}^{3^{n+l} s} \xi_{n} / 3^{i+1} v_{1}^{3^{i} k}\right)= \pm k\left(v_{2}^{3^{n+l} s} \xi_{n} \zeta_{2} / v_{1}^{3^{i} k}+v_{2}^{3^{n+l} s-1} \psi_{1} / v_{1}^{3^{i} k}+\cdots\right)
$$

Proof. Let $c \in \Omega^{2} M_{1}^{1}$ denote a cocycle that represents $v_{2}^{3^{n+l} s} \xi_{n} / v_{1}^{3 j m}$ which is in the image of $\delta:{\overline{A_{1}}}^{1} \rightarrow A_{1}^{2}$ with $3^{i} k \leqslant 3^{j} m \leqslant 4 \times 3^{n}$ and $j>i$.

Since the cocycle $c / 3 \in \Omega^{2} M_{0}^{2}$ is bounded, we have a cochain $u \in \Omega^{1} M_{0}^{2}$ such that $d(u)=c / 3$. Then $v_{2}^{3 n+l} s \xi_{n} / v_{1}^{3^{i} k}$ is represented by $c^{\prime}=v_{1}^{3 m-3^{i} k} c$ and so $c^{\prime} / 3^{i+2}=\left(v_{1}^{3^{i} m-3^{i} k} / 3^{i+1}\right) d(u)$. Therefore, we compute in the cobar complex $\Omega^{3} M_{0}^{2}$,

$$
\begin{aligned}
d\left(c^{\prime} / 3^{i+2}\right) & =d\left(1 / 3^{i+1} v_{1}^{3^{i} k-3^{i} m}\right) d(u) \\
& =-k t_{1} \otimes c / 3 v_{1}^{3^{i} k-3^{j} m+1}
\end{aligned}
$$

which represents $\pm k\left(v_{2}^{3^{n+l}} \xi_{n} \zeta_{2} / 3 v_{1}^{3^{i} k}+v_{2}^{3^{n+l} s-1} \psi_{1} / 3 v_{1}^{3^{i} k}+\cdots\right)$ by Shimomura [8, Lemma 3.9] as desired.

References

[1] Y. Arita, K. Shimomura, The chromatic E_{1}-term $H^{1} M_{1}^{1}$ at the prime 3, Hiroshima Math. J. 26 (1996) 415-431.
[2] M. Hovey, Bousfield localization functors and Hopkins' chromatic splitting conjecture, Contemp. Math. 181 (1995) 225-250.
[3] M. Mahowald, K. Shimomura, The Adams-Novikov spectral sequence for the L_{2} localization of a v_{2} spectrum, Contemp. Math. 146 (1993) 237-250.
[4] H.R. Miller, D.C. Ravenel, W.S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. Math. 106 (1977) 469-516.
[5] D.C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, New York, 1986.
[6] K. Shimomura, The homotopy groups of the L_{2}-localized Toda-Smith spectrum at the prime 3, Trans. Amer. Math. Soc. 349 (1997) 1821-1850.
[7] K. Shimomura, The homotopy groups of the L_{2}-localized mod 3 Moore spectrum, J. Math. Soc. Japan 52 (2000) 65-90.
[8] K. Shimomura, On the action of β_{1} in the stable homotopy of spheres at the prime 3, Hiroshima Math. J. 30 (2000) 345-362.
[9] K. Shimomura, A. Yabe, On the chromatic E_{1}-term $H^{*} M_{0}^{2}$, Contemp. Math. 158 (1994) 217-228.
[10] K. Shimomura, A. Yabe, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$, Topology 34 (1995) 261-289.

[^0]: * Corresponding author. Tel.: +81-88-844-8266; fax: +81-88-844-8358.

 E-mail addresses: katsumi@math.kochi-u.ac.jp (K. Shimomura), xwang@nankai.edu.cn (X. Wang).

