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Abstract

The homotopy groups �∗(L2S0) of the L2-localized sphere are determined by studying the Bockstein
spectral sequence. The results also indicate the homotopy groups �∗(LK(2)S0) and we observe that the
3ber of the localization map L2S03 → LK(2)S0 is homotopic to �−2L1S03 . Here S03 denotes the 3-completed
sphere. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction and statement of results

For each prime number p, there is the Bous3eld localization functor Ln :S(p) → S(p) with
respect to v−1

n BP, where S(p) denotes the stable homotopy category localized away from the
prime p, BP the Brown–Peterson spectrum at p, and vn the nth generator of the coe=cient al-
gebra BP∗. Consider the Morava K-theories K(n) and the Johnson–Wilson spectra E(n), where
K(n)∗=Z=p[v±1

n ] and E(n)∗=Z(p)[v1; v2; : : : ; vn; v−1
n ]. Then Ln is also the localization with re-

spect to K(0) ∨ K(1) ∨ · · · ∨ K(n) or E(n).
Hopkins and Ravenel present the homotopy equivalence S0(p) � holim

n←
LnS0, and so �∗(LnS0)

is an approximation of the homotopy groups of spheres. Actually, �∗(L0S0)=Q at any prime
and �∗(L1S0)=Z(p)⊕A⊕Q=Z(p)〈y〉 at a prime p¿ 2 (cf. [4,5]), where A denotes the module
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generated by the generalized �-elements (see below) and Q=Z(p)〈y〉 ⊂ �−2(L1S0) for the virtual
generator y. The homotopy groups �∗(L2S0) of E(2)∗-localized spheres are determined at a
prime ¿ 3 in [10], which satis3es Hopkins’ chromatic splitting conjecture [2]. In this paper,
we determine �∗(L2S0) at the prime 3.

Theorem A. The homotopy groups �∗(L2S0) at the prime 3 are a direct sum of three modules
Gi’s; which are described as follows:

G0 =Z(3) ⊕ A+ ⊕ �−1(A− ⊕Q=Z(3)〈y〉)�2;
G1 =B⊕ C ⊕ CI ⊕ B∗ ⊕ (B1 ⊕ C)�2;

G2 = Ĝ ⊕ Ĝ
∗ ⊕ ĜZ ⊕ ĜZ

∗
:

Here, the modules on the right-hand sides are as follows:

A=
∑
i¿0

Z=3i+1〈�3is=i+1 | 3 - s∈Z〉;

A+ =Z(3){�3is=i+1 | �3is=i+1 ∈A; s¿ 0};
A−=Z(3){�3is=i+1 | �3is=i+1 ∈A; s¡ 0}

for G0,

B=Z(3){�3ns=3im; i+1 | n¿ 0; 3 - s∈Z ; i¿ 0; 16m¡ 4× 3n−2i−1

and 3 - m or 4× 3n−2i−26m};

B1 =Z(3){�3ns=3im; i+1 |�3ns=j; i+1 ∈B; 3 - (s+ 1); 3|m;

or i �= k + 1 if s=3k+2t − 1 with k¿ 0 and 3 - t};

C=C1 ⊕ C2;

C1 =Z(3){�̃1�3n(3t+1)=3im+1; i | 0¡i6 n; and 2× 3n−i ¡ 3im6 2× 3n−i+1};

C2 =Z(3){�̃1�3n(9t−1)=3im+1; i | 0¡i6 n; and

2× 3n−i−1¡ 3im− 8× 3n6 2× 3n−i};

CI =CI0 ⊕ CI1 ⊕ CI2 ⊕ CI3;

CI0 =Z(3){c3ns | n¿ 0; s=3t + 1 or s=9t − 1 (t ∈Z)};

CI1 =Z(3){�̃1�3n(3t+1)=3im+1; i+1 | 06 i6 n; 2× 3n−i−1¡ 3im6 2× 3n−i; 3 - m};

CI2 =Z(3){�̃1�3n(9t−1)=3im+1; i+1 | 3 - m6 8× 3n−i; 06 i¡n; k + 1¿i if 3k |t};
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CI3 =Z(3){�̃1�3n(9t−1)=3nm+1; i | i=


n+ 1 if m=1; 3; 4; 6; 7;

n+ 2 if m=2; 8;

n+ 3 if m=5; k + 1¿n if 3k |t};
B∗=Z(3){�(n)∗3n+ls=3im; i+1 | 3 - s∈Z ; i; n¿ 0; 0¡ 3im6 4× 3n;

l¿ i and l¿ i + 1 if 3|(s+ 1)}
for G1 and

Ĝ=
∑
t∈Z

(B5{�9t+1} ⊕ B4{�9t+1�6=3} ⊕ B3{�9t+7�1}

⊕B2{�9t+1�1; [�9t+2�′
1]; [�9t+5�

′
1]})⊕ B1{[�9t−1=2�′

1]};

Ĝ
∗
=
∑
t∈Z

(B5{"19t+7} ⊕ B4{"09t+3} ⊕ B2{�(0)∗9t+1; �6=3�(0)∗9t+1; �6=3�(0)∗9t+4}

⊕
∑
n¿1

(B3{�(0)∗3n+2t+9u+3 | u∈Z − I(n)} ⊕ B2{�(0)∗3n+2t+9u+3 | u∈ I(n)}));

ĜZ =
∑
t∈Z

(B5{��9t+1} ⊕ B3{��9t+1�6=3}

⊕B2{��9t+7�1; ��9t+1�1; �[�9t+2�′
1]; �[�9t+5�

′
1]});

ĜZ
∗
=
∑
t∈Z

(B5{�2"19t+7} ⊕ B4{�2"09t+3} ⊕ B2{�2�(0)∗9t+1}

⊕B1{�2�6=3�(0)∗9t+1; �2�6=3�(0)∗9t+4}

⊕
∑
n¿1

(B3{�2�(0)∗3n+2t+9u+3 | u∈Z − I(n)}

⊕B2{�2�(0)∗3n+2t+9u+3 | u∈ I(n)}))
for G2. Here, Bk =Z=3[�1]=(�k

1),

I(n)= {x∈Z | x=(3n−1 − 1)=2 or x=5× 3n−2 + (3n−2 − 1)=2};
Kx denotes a homotopy element detected by x∈E∗;∗

2 (L2S0), the E2-term of the Adams–Novikov
spectral sequence converging to �∗(L2S0), and [x] for x∈�∗(L2V (0)) is an element of �∗(L2S0)
such that i∗([x])= x for the inclusion i : S0 → V (0)= S0 ∪3 e1. The generators are de3ned in
Section 4 and degrees of them are

|�a=b|=4a− 1; |�′
1|=11; |�a=b;c|=16a− 4b− 2; |ca|=16a− 7;

|�̃1�a=b;c|=16a− 4b+ 1; |�(a)∗b=c;d|=16b− 8× 3a − 4c − 4;

|"0a|=16a+ 7; |"1a|=16a+ 15; |�2|=− 1
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and orders of them are

o(�a=b)=3b; o(�a=b;c)=3c; o(c3ns)=3n+1 if 3 - s;

o(�̃1�a=b;c)=3c; o(�(a)∗b=c;d)=3d; o("0a)=3; o("1a)=3:

Furthermore, we abbreviate as follows:

�a= �a=1; �a=b=�a=b;1; �a=�a=1; �̃1�a=b= �̃1�a=b;1;

�̃1�a= �̃1�a=1 �(a)∗b=c=�(a)∗b=c;1 and �(a)∗b =�(a)∗b=1:

Our computation of the diMerentials of the Bockstein spectral sequence �∗(L2V (0)) ⇒ �∗(L2S0)
also works for the Bockstein spectral sequence associated to the co3ber sequence LK(2)S0 →
LK(2)S0 → LK(2)V (0), and we obtain the homotopy groups �∗(LK(2)S0) from the result on
�∗(LK(2)V (0)) given in [7].

Theorem B. The homotopy groups �∗(LK(2)S0) are the direct sum of (Z3 ⊕ A+) ⊗ +(�2); G1
and G2. Therefore; the homotopy 9ber F(L1S0; L2S03 ) of the localization map L2S03 → LK(2)S0

of the 3-adic completed sphere S03 is homotopic to �−2L1S03 .

The second half of the theorem is observed in the same manner as the one at a prime ¿ 3
[2]. This shows that there is only one summand in F(L1S0; L2S03 ), while Hopkins’ chromatic
splitting conjecture denotes that it has three summands.
Theorem A is proved by using the Adams–Novikov spectral sequence. Let N 2 denote the

spectrum such that BP∗(N 2)=BP∗=(3∞; v∞1 ). We denote the Adams–Novikov E2-term for com-
puting �∗(L2N 2) by H ∗M 2

0 . In the next section, we show that the E2-term H ∗M 2
0 is the direct

sum of the three modules Ai for i=0; 1; 2, and give the structures of A0 and A2. Section 3 is de-
voted to determine the structure of the module A1 using some results proven in the last section.
The diMerentials of the Adams–Novikov spectral sequence are studied in [8], and we deduce
the homotopy groups �∗(L2N 2) from these results, and then the chromatic spectral sequence
shows Theorem A in Section 4.

2. Notations and the structure of H ∗M 2
0

Consider the Hopf algebroid

(E(2)∗; E(2)∗(E(2)))= (Z(3)[v1; v±1
2 ]; E(2)∗[t1; t2; : : : ]⊗BP∗ E(2)∗)

associated to the Johnson–Wilson spectrum E(2), where BP denotes the Brown–Peterson spec-
trum with BP∗=Z(3)[v1; v2; : : : ] and BP∗ acts on E(2)∗ by moving vi to vi if i6 2, and
to zero if i¿ 2. For an E(2)∗(E(2))-comodule M , H ∗M denotes Ext∗E(2)∗(E(2))(E(2)∗; M),
which is given as a cohomology of the cobar complex 0∗M of E(2)∗(E(2))-comodules
(cf. Section 5). Then we have the Adams–Novikov spectral sequence

E∗
2 =H ∗E(2)∗ ⇒ �∗(L2S0)

converging to the homotopy groups of E(2)∗-localized sphere spectrum.
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We now recall the de3nition of the chromatic comodules Ni
j and Mi

j . They are de3ned induc-
tively by setting N 0

j =E(2)∗=Ij for I0 =0; I1 = (3) and I2 = (3; v1); M i
j = v−1

i+jN
i
j , and

Ni+1
j =Mi

j =N
i
j . Note that M

i
j =Ni

j if i+ j=2 and =0 if i+ j¿ 2. Then we see that the Adams–
Novikov E2-term H ∗E(2)∗ is obtained from H ∗Mi

0 for i6 2 and the long exact sequences
HsN i

0 → HsMi
0 → HsN i+1

0 → Hs+1Ni
0. Since the modules H ∗Mi

0 for i¡ 2 are determined in
[4], we here determine H ∗M 2

0 . For this sake, we consider the comodule M 1
1 =Z=3{x=vj

1 | j¿ 0;

x∈K(2)∗}, where K(2)∗=Z=3[v±1
2 ], and the short exact sequence 0 → M 1

1
1=3→M 2

0
3→M 2

0 → 0.
Here, note that M 2

0 is described as M 2
0 =Z(3){x=3iv j

1 | i; j¿ 0; x∈K(2)∗}. Then we obtain H ∗M 2
0

from H ∗M 1
1 which is determined in [7], by using the lemma given in [4, Remark 3:11].

In order to describe the module H ∗M 1
1 , we set up some notations: H ∗M 0

2 =H ∗K(2)∗ is
determined (cf. [6]) to be F ⊗K(2)∗[b10]⊗+(�2), where F is the Z=3-vector space spanned by
1; h10; h11; b11; 2;  0;  1; and b112. These generators, �2, h1i and b1i, are cohomology classes
represented by cocycles v−1

2 (t2− t41)+v−3
2 t32 , t

3i
1 and −t3

i

1 ⊗ t2×3i
1 − t2×3i

1 ⊗ t3
i

1 of the cobar complex
0∗K(2)∗, respectively. Besides, 2 and  i are the generators of H 2;8K(2)∗ and H 3;8(i+2)K(2)∗.
Put k(1)∗=Z=3[v1], K(1)∗= v−1

1 k(1)∗, PE=Z=3[b10]⊗+(�2), E(2; n)∗=Z=3[v1; v±3n
2 ] and

F(h) =Z=3[v±3
2 ]{v2=v1; v2h10=v1; v−1

2 h11=v1; v2b11=v1};
F(t) =Z=3[v±3

2 ]{v−1
2 =v1; v2h10=v21; v

−1
2 h11=v21; v

−1
2 b11=v1};

F∗
(h) =Z=3[v±3

2 ]{2=v1;  0=v1; v2 1=v1; b112=v1};
F∗
(t) =Z=3[v±3

2 ]{2=v21; v2 0=v1; v−1
2  1=v1; b112=v21};

Fn =E(2; n+ 2)∗{v±3n+1
2 =v4×3n−1

1 ; v3
n+1

2 h10=v2×3n+1+1
1 ;

v8×3n
2 h10=v8×3n+1

1 ; v3
n+1(2±1)
2 2n=v4×3n

1 };
F ′
0 =E(2; 2)∗{v±3

2 =v21; v
3
2h10=v

7
1; v

8
2h10=v

9
1; v

3(2±1)
2 20=v41};

where 2n= v−3n+(3n−1)=2
2 2. Note that F0 =F ′

0⊕F ′′
0 for F ′′

0 =Z=3[v±9
2 ]{v±3

2 =v31}. Then, in [8], H ∗M 1
1

is shown to be the direct sum of F ′′
0 and the three modules Ai, where

A0 = (K(1)∗=k(1)∗)⊗+(h10; �2);

A1 =

(
F ′
0 ⊕

∑
n¿0

Fn

)
⊗+(�2);

A2 = (F(h) ⊕ F(t) ⊕ F∗
(h) ⊕ F∗

(t))⊗ PE:

Once we know the behavior of connecting homomorphism 4 :H ∗M 1
1 → H ∗+1M 2

0 , we obtain
H ∗M 2

0 by Miller et al. [4, Remark 3:11]. In [4,8], it is shown that 4(Ai) ⊂ Ai. Let As
i denote

the submodule Ai ∩ HsM 1
1 . We now de3ne the submodule Ai

s
to 3t the commutative diagram
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of exact sequences

(2.1)

We deduce the following lemma from [4, Remark 3:11]:

Lemma 2.1. Suppose that we have a 3-torsion module Bs and a homomorphism f :Bs → Ai
s

such that the diagram of exact sequences

commutes. Then f is an isomorphism.

Note that [10, Proposition 7:2] is also valid for the prime 3, and for the elements y′
3t , V and

G1 there are v3t+22 h11=9v21, −v22h11 and v−1
2 b10 in our notation, respectively. Therefore, we have

Proposition 2.2. For each integer t;

4(v3t+22 h11=9v21)= v3t+22 (−b10 + h11�2)=v21 + · · · :

Since 4(v3s2 =3v31)= sv3s−1
2 h11=v21 by Miller et al. [4, Proposition 6:9] and 4(v9t−1

2 h11=9v21)=
v9t−1
2 (−b10 + h11�2)=v21 + · · · by Proposition 2.2, we derive the following:

Proposition 2.3. HsM 2
0 is isomorphic to

∑2
i=0 Ai

s if s �=1; and H 1M 2
0

∼= ∑2
i=0 Ai

s ⊕∑
t∈Z Z=9{v9t−1

2 h11=9v21}.

In the same manner as [4, Theorem 4:2], we obtain

Proposition 2.4. The module A0 is given as follows:

A0 = (A− ⊕Q=Z(3))⊗+(�2);
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where

A−= {1=3i+1v3im1 | i¿ 0; m¿ 0}:

The module A2 is determined in [8] as follows:

Proposition 2.5. The module A2 is the direct sum of Z=3[v±3
2 ]{v−1

2 =3v1; 2=3v21} and
(F(h) ⊕ F∗

(h))⊗ PE:

Here, F(h) and F∗
(h) are the images of F(h) and F∗

(h) under the map H ∗M 1
1

’→H ∗M 2
0 given by

’(x)= x=3.

3. Determination of A1

We divide A1 into 14 pieces:

A1 = ((X1 ⊕ X2)⊕ (H ⊕HI ⊕H ∗)⊕ (X ∗
1 ⊕ X ∗

2 ))⊗+(�2):

Here,

X1 =X1;1 ⊕ X1;2;

X1;1 =Z=3{v3n(3t+1)2 =vj
1 | n¿ 0; t ∈Z ; 0¡j¡ 4× 3n−1;

such that j¿ 4× 3n−i−1 − 1 if 3i|j};

X1;2 =Z=3{v3n(3k+2u−1)
2 =v3

k+1m
1 | n¿ 0; 3 - u∈Z ; 0¡ 3k+1m¡ 4× 3n−1;

such that j¿ 4× 3n−i−1 − 1 if 3i−k−1|m};

X2 =X2;1 ⊕ X2;2;

X2;1 =Z=3{v3n(3t−1)
2 =v3

im
1 | n¿ 0; 3 - m; 16m6 4× 3n−2i−1};

X2;2 =Z=3{v3n(3k+2u−1)
2 =v3

k+1m
1 | 26 2k6 n; 0¡m¡ 4× 3n−2k−1; 3 - m};

H =H1 ⊕H2;

H1 =Z=3{v3n(3t+1)2 h10=v
j+1
1 | 0¡i¡n; j6 2× 3n; 2× 3n−i6 j if 3i|j};

H2 =Z=3{v3n(9t−1)
2 h10=v

j
1 | n¿ 0; 8× 3n ¡ j6 10× 3n + 1};

HI =HI1 ⊕HI2;
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HI1 =Z=3{v3n(3t+1)2 h10=v
j+1
1 | 06 i6 n; 4× 3n−i−16 j6 2× 3n−i

if 3i|j and 3i+1 - j};

HI2 =Z=3{v3n(9t−1)
2 h10=v

j+1
1 | n¿ 0; 06 j6 8× 3n; 3k+1 - (j + 4× 3n)

if t=3ku with 3 - u};

H ∗=H ∗
1 ⊕ (H ∗

2;1 +H ∗
2;2);

H ∗
1 =Z=3{v3n(3t+1)2 h10=v

j+1
1 | n¿ 0; j¿ 0 and j¡ 4× 3n−i−1 if 3i+1 - j};

H ∗
2;1 =Z=3{v3n(9t−1)

2 h10=v
j+1
1 | n¿ 0; j¿ 0 and j6 4× 3n−i−1 if 3i+1 - j};

H ∗
2;2 =Z=3{v3n(9t−1)

2 h10=v
j+1
1 | n¿ 0; j¿ 0 and 3k+1|(j + 4× 3n)6 4× 3n+1

if t=3ku with 3 - u};

X ∗
1 =X ∗

1;1 ⊕ X ∗
1;2;

X ∗
1;1 =Z=3{v3n+i(3t+1)

2 2n=v3
ik
1 | i¿ 0; 0¡ 3ik6 4× 3n};

X ∗
1;2 =Z=3{v3n+i+1(3t−1)

2 2n=v3
ik
1 | i¿ 0; 0¡ 3ik6 4× 3n};

X ∗
2 =Z=3{v3n+ls

2 2n=v3
ik
1 | 3 - s; i; n¿ 0; 0¡ 3ik6 4× 3n;

l¿ i and l¿ i + 1 if 3|(s+ 1)}:
Note that it is just for simplicity that each direct summand of A1 is presented as the direct sum
of two modules. We also consider the following submodules of H ∗M 2

0 :

X̃ =Z(3){v3ns2 =3i+1vj
1 | n¿ 0; 3 - s∈Z ; i¿ 0; j¿ 0;

with 3i|j¡ 4× 3n−i−1 and either 3i+1 - j or 4× 3n−i−2¡j}
= X̃1 ⊕ X̃2;

X̃1 =Z(3){v3ns2 =3i+1v3
im
1 | v3ns2 =3i+1v3

im
1 ∈ X̃ ; 3 - (s+ 1); 3|m

or i �= k + 1 if s=3k+2t − 1 with k¿ 0 and 3 - t};

X̃2 =Z(3){v3ns2 =3i+1v3
im
1 | v3ns2 =3i+1v3

im
1 ∈ X̃ ; 3|(s+ 1); 3 - m

and i= k + 1 if s=3k+2t − 1 with k¿ 0 and 3 - t};

H̃ = H̃1 ⊕ H̃2;

H̃1 =Z(3){v3
n(3t+1)
2 h10=3iv3

im+1
1 | 0¡i6 n and 2× 3n−i ¡ 3im6 2× 3n−i+1};
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H̃2 =Z(3){v3
n(9t−1)
2 h10=3iv3

im+1
1 | 0¡i6 n and 2× 3n−i ¡ 3im− 8× 3n6 2× 3n−i+1};

H̃I = H̃I0 ⊕ H̃I1 ⊕ H̃I2 ⊕ H̃I3;

H̃I0 =Z(3){v3ns2 h10=3n+1v1 | n¿ 0; s=3t + 1 or s=9t − 1 (t ∈Z)};

H̃I1 =Z(3){v3
n(3t+1)
2 h10=3i+1v3

im+1
1 | 06 i6 n; 2× 3n−i−1¡ 3im6 2× 3n−i; 3 - m};

H̃I2 =Z(3){v3
n(9t−1)
2 h10=3i+1v3

im+1
1 | 3 - m¡ 8× 3n−i; 06 i¡n; k + 1¿i if 3k |t};

H̃I3 =Z(3){v3
n(9t−1)
2 h10=3iv3

nm+1
1 | i=


n+ 1 if m=1; 3; 4; 6; 7;

n+ 2 if m=2; 8;

n+ 3 if m=5;

k + 1¿n if 3k |t};

X̃2
∗
=Z(3){v3n+ls

2 2n=3i+1v3
im
1 | 3 - s∈Z ; i; n¿ 0; 0¡ 3im6 4× 3n;

l¿ i and l¿ i + 1 if 3|(s+ 1)}:
The propositions of Section 5 below show the behavior of the connecting homomorphism

4 : A1
s → As+1

1 as follows:

Proposition 3.1. The connecting homomorphism 4 :A1
s → As+1

1 maps X̃1; X̃2; H̃ ; H̃I ; X̃1�2 X̃2
∗

and H̃I�2 to H ∗; X2�2; X ∗
1 ; HI�2; X ∗

2 �2 and X ∗
1 �2; respectively. Furthermore; the images of

generators under 4 are linearly independent.

We now use Lemma 2.1 to obtain our main theorem:

Theorem 3.2. A1
s is isomorphic to X̃1 ⊕ X̃2 if s=0; H̃ ⊕ H̃I ⊕ X̃1�2 if s=1; X̃2

∗ ⊕ H̃ �2 if s=2;
and 0 otherwise.

4. The homotopy groups �∗(L2S0)

Let Er(X ) denote the Er-term of the Adams–Novikov spectral sequence converging to the
homotopy groups �∗(X ). We start with a general result on the spectral sequence, which is well
known and proved in the same manner as [3, Theorem 4:1].

Lemma 4.1. Let X
f→Y

g→Z h→�X be the co9ber sequence with BP∗(h)=0. Then we have
the induced maps Es

r(X )
f∗→Es

r(Y )
g∗→Es

r(Z)
4→Es+1

r (X ). Suppose that g∗( Ky)= Kz for non-zero el-
ements y∈Es

r(Y ) and z ∈Es+r
r (Z). Here; Ka denotes a homotopy element that is detected by

an element a of the Er-term. Then if y=f∗(x) for some x∈Es
r(X ); then dr(x)= 4(z).
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Let N 1 and N 2 denote the co3bers of the localization maps S0 → L0S0 and N 1 → L1N 1,
respectively. Then we have the Adams–Novikov spectral sequence E2(L2N 2)=H ∗M 2

0 ⇒
�∗(L2N 2). The diMerentials of the spectral sequence are determined in [8], and we have the
following.

Proposition 4.2. The E∞-term of the Adams–Novikov spectral sequence for �∗(L2N 2) is the
direct sum of the three modules A0; A1 and Ã2. Here; A0 and A1 are determined in the previous
sections; and

Ã2 = G̃ ⊕ G̃
∗ ⊕ G̃Z ⊕ G̃Z

∗
;

where these four modules are determined in [8]:

G̃=B5(2; 2)∗{v2=3v1} ⊕ B4(2; 2)∗{v42b11=3v1} ⊕ B3(2; 2)∗{v72h10=3v1}
⊕B2(2; 2)∗{v2h10=3v1; v22h11=3v1; v52h11=3v1} ⊕ B1(2; 2){v−1

2 h11=3v21};

G̃
∗
=B5(2; 2)∗{v72 1=3v1} ⊕ B4(2; 2)∗{v32 0=3v1} ⊕ B2(2; 2)∗{2=3v1; v32b112=3v1; v62b112=3v1}
⊕
∑
n¿1

(B3(2; n+ 2)∗{v9u+32 2=3v1 | u∈Z − I(n)}

⊕B2(2; n+ 2)∗{v9u+32 2=3v1 | u∈ I(n)});

G̃Z =B5(2; 2)∗{v2�2=3v1}
⊕B3(2; 2)∗{v42b11�2=3v1}
⊕B2(2; 2)∗{v2h10�2=3v1; v22h11�2=3v1; v52h11�2=3v1; v72h10�2=3v1};

G̃Z
∗
=B5(2; 2)∗{v72 1�2=3v1} ⊕ B4(2; 2)∗{v32 0�2=3v1}
⊕B2(2; 2)∗{2�2=3v1}
⊕B1(2; 2)∗{v32b112�2=3v1; v62b112�2=3v1}
⊕
∑
n¿1

(B3(2; n+ 2)∗{v9u+32 2�2=3v1 | u∈Z − I(n)}

⊕B2(2; n+ 2)∗{v9u+32 2�2=3v1 | u∈ I(n)})
for Bk(2; n)∗=(Z=3)[v±3n

2 ; b10]=(bk
10) and I(n) given in Section 1.

Lemma 4.3. There is no extension problem in the spectral sequence for �∗(L2N 2).

Proof. Let M (i;∞) be a co3ber of the localization map M (i) → L1M (i) of the mod 3i Moore

spectrum M (i). Then we have the co3ber sequence M (i;∞)
’→N 2 3i→N 2. If there are non-zero
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elements x∈Es;∗∞ (L2N 2) and y∈Es+r−1;∗∞ (L2N 2) for integers s¿ 0 and r¿ 1 such that 3i Kx= Ky in
�∗(L2N 2), then there exists an element x̃∈Es;∗

r (L2M (i;∞)) such that ’∗(x̃)= x and dr(x̃)= 4(y)
in Es+r;∗

r (L2M (i;∞)) by Lemma 4.1. Consider the commutative diagram

Then the relation dr(x̃)= 4(y) in Es+r;∗
r (L2M (i;∞)) is the one in Es+r;∗

r (L2M (1;∞)). Note
that M (1;∞) is denoted by W in [7]. We observe in [8] that the diMerentials on E∗

r (L2N 2)
are obtained by sending those on E∗

r (L2W ) by the map ’∗ :E∗
r (L2W ) → E∗

r (L2N 2), and so y
cannot be an image of the connecting homomorphism 4. This means that there are no non-zero
elements x; y∈E∗;∗∞ (L2N 2) such that 3i Kx= Ky in �∗(L2N 2).

Corollary 4.4. The homotopy groups �∗(L2N 2) are the direct sum of the three modules A0; A1

and Ã2.

Proof of Theorem A. Consider the exact sequences · · · → �∗(L2S0) → �∗(L0S0) → �∗(L2N 1) →
· · · and · · · → �∗(L2N 1) → �∗(L1N 1) v1→�∗(L2N 2) → · · · associated to the co3ber sequence
S0 → L0S0 → N 1 and N 1 → L1N 1 → N 2. They also induce the connecting homomorphisms
4 :Es

2(L2N
1) → Es+1

2 (L2S0) and 4′ :Es
2(L2N

2) → Es+1
2 (L2N 1) of E2-terms. Now de3ne the ele-

ments of the E2-term E∗
2 (L2S

0) by

�a=b= 4(va1=3
b); �′

1 = h11 − v21h10;

�a=b;c= 44′(va2=3
cvb1);

c3ns= 44′(v3
ns
2 h10=3n+1v1) for 3 - s;

�̃1�a=b;c= 44′(va2h10=3
cvb1);

�(a)∗b=c;d= 44′(vb22a=3dvc1);

"0a = 44′(va2 0=3v1)

and

"1a = 44′(va2 1=3v1):

Then A1 and A2 are isomorphic to G1 and G2, respectively. Since �∗(L0S0)=Q and �∗(L1N 1)=
Q=Z(3) ⊗ +(y) ⊕ Al, an easy diagram chasing with Corollary 4.4 enables us to obtain G0

from A0, and proves Theorem A. Here, Al is the Z(3)-module generated by v3
is
1 =3i+1 for i¿ 0

and 3 - s∈Z .
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5. Computations in the cobar complex

In this section, we work on the cobar complex (cf. [3]) based on the Hopf algebroid
(E(2)∗; E(2)∗(E(2))) in order to study the connecting homomorphism 4 :A1

s → As+1
1 . The struc-

ture maps =R :E(2)∗ → E(2)∗(E(2)) and ? :E(2)∗(E(2)) → E(2)∗(E(2)) ⊗E(2)∗ E(2)∗(E(2))
behave as follows:

=R(v1)= v1 + 3t1;

=R(v2)= v2 + v1t31 − t1=R(v1)3 − 3v1t1(v21 + 3v1t1 + 3t21);

?(t1)= t1 ⊗ 1 + 1⊗ t1;

?(t2)= t2 ⊗ 1 + t1 ⊗ t21 + v1b0;

?(t3) ≡ t3 ⊗ 1 + t2 ⊗ t91 + t1 ⊗ t32 + 1⊗ t3 + v2b1 − v1b20 mod(9; v21);

where 3bi = t3
i+1

1 ⊗ 1+1⊗ t3
i+1

1 − (t1⊗ 1+1⊗ t1)3
i+1

and 3b20 = (t32 ⊗ 1+ t31 ⊗ t91 +1⊗ t32)− (t2⊗ 1
+ t1 ⊗ t31 + 1 ⊗ t2)3. Furthermore, we have the relations in E(2)∗(E(2)) by setting =R(vi)=0
in BP∗(BP) for i¿ 2 such as v2t9i−2 ≡ v3

i

2 ti−2 mod(3; v1) and v2t91 ≡ v32t1 − v1t32 mod(3; v
2
1). For

an E(2)∗(E(2))-comodule M with structure map induced from =R, the cobar complex is a
family of E(2)∗-modules 0sM =M ⊗E(2)∗ E(2)∗(E(2))⊗E(2)∗ · · · ⊗E(2)∗ E(2)∗(E(2)) (s factors)
with diMerential d :0sM → 0s+1M de3ned by d(m ⊗ x)= =R(m) ⊗ x +

∑s
i=1 (−1)im ⊗ ?i(x) −

(−1)sm⊗ x ⊗ 1 for m∈M and x∈0sM , where ?i(x1 ⊗ · · · ⊗ xn)= x1 ⊗ · · · ⊗ ?(xi)⊗ · · · ⊗ xn.

Lemma 5.1. In the cobar complex 0∗E(2)∗=(3; v31); put t31 = v−6
2 t33 − t31 t

3
2 ; and we obtain

d(t31)= t61 ⊗ t91 − t31 ⊗ t32 − v32t
3
1 ⊗ z3 − v−3

2 b311:

Here z= v−1
2 (t2 − t41) + v−3

2 t32 .

Proof. This follows immediately from the computation

d(v−6
2 t33)=− v−6

2 t31 ⊗ t92 − v−6
2 t32 ⊗ t271 − v−3

2 b311;

d(−t31 t
3
2) = t61 ⊗ t91 + t31 ⊗ t121 + t31 ⊗ t32 + t32 ⊗ t31

= t61 ⊗ t91 − v32t
3
1 ⊗ z3 + v−6

2 t31 ⊗ t92 − t31 ⊗ t32 + t32 ⊗ t31 :

Since =R(v2) ≡ v2 + v1t31 − v31t1 mod(3), we note that =R(v32) ≡ v32 + v31t
9
1 − v91t

3
1 mod(9; 3v1). We

then de3ne an element V by the congruence

3v1V ≡ v32 + v31t
9
1 − v91t

3
1 − =R(v32)mod(9):

Lemma 5.2. There exists an element Yn such that

d(Yn)=− v4×3n−1−1
1 @n+1 ⊗ V 3n − v7×3n−1

1 v2×3n
2 x3

n
mod(3; v81)

for each n¿ 0. Here @n= t1 + v1z3
n and x is a cocycle whose leading term is −v102 t33 ⊗ t31 −

v−3
2 t1 ⊗ t3.
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Proof. First note that V ≡ −v22t
3
1 − v1v2t61 mod(3; v

2
1). Recall the element Y of 01E(2)∗

([1, Theorem 4:8]) such that Y ≡ @2=R(v32) − v21V + v31v
−2
2 t181 + v41v

−27
2 (t91 t

27
2 − t93)mod(3; v

5
1)

and

d(Y ) ≡ v71x
3 mod(3; v81):

Here, x3 denotes a cocycle whose leading term is −v302 t93 ⊗ t91 − v−9
2 t31 ⊗ t33 , which represents

v22∈H 2;8M 0
2 . We de3ne elements Yi inductively by

Y1 = =R(v62)Y + v51v
5
2t
3
2 − v61v

4
2t31 + v51v

8
2z

3;

Yn=Y 3
n−1 + v4×3n−1−4

1 v2V 3n :

Since d(=R(v)t)=d(t)O=R(v)−t⊗d(v) for v∈E(2)∗ and t ∈E(2)∗E(2), we compute mod(3; v81),

d(=R(v62)Y )= v71v
6
2x

3 − Y ⊗ (−v31v
3
2t
9
1 + v61t

18
1 )

= v71v
6
2x

3 − v31Y ⊗ v−3
2 V 3 + v61Y ⊗ t181

= v71v
6
2x

3 + v61@2=R(v32)⊗ t181

− v31(@2=R(v32)− v21V + v31v
−2
2 t181 + v41v

−27
2 (t91 t

27
2 − t93))⊗ v−3

2 V 3

= v71v
6
2x

3 + v61(v2t
9
14
+ v1t32 + v1z9=R(v32))⊗ t181

− v31@2 ⊗ V 3 − v51(−v22t
3
11

− v1v2t612 + v21v
2
2t1)⊗ v32t

9
1

+ v61v
−2
2 t181 ⊗ v32t

9
14
+ v71v

−27
2 (t91 t

27
2 − t93))⊗ v32t

9
1 ;

d(v51v
5
2t
3
2)=− v61v

4
2t
3
1 ⊗ t323 − v51v

5
2t
3
1 ⊗ t911;

d(−v61v
4
2t31)=− v71v

3
2t
3
1 ⊗ t31 − v61v

4
2(t

6
1 ⊗ t912 − t31 ⊗ t323 − v32t

3
1 ⊗ z3

5
− v−3

2 b3114);

d(v51v
8
2z

3)=− v61v
7
2t
3
1 ⊗ z3

5
+ v71v

6
2t
6
1 ⊗ z3;

in which the underlined terms with the same subscript cancel out. So we rede3ne the cocycle
−x3 by the cocycle that appears in the sum of the above congruences to satisfy

d(Y1) ≡ −v31@2 ⊗ V 3 − v71v
6
2x

3:

Here, x3 has the same leading term −v302 t93 ⊗ t91 − v−9
2 t31 ⊗ t33 as the above cocycle x3.

Now turn to the case n. We assume the case for n− 1. Then

d(Y 3
n−1) ≡ −v4×3n−1−3

1 @3n ⊗ V 3n − v7×3n−1

1 v2×3n
2 x3

n
;

d(v4×3n−1−4
1 v2V 3n)= v4×3n−1−3

1 (t31 − v21t1)⊗ V 3n :

Note that @3n − (t31 − v21t1)= v21@n+1, and we have the case for n.

The following is also shown in [9, Proposition 4:4] which also holds for the prime 3. Here,
the elements y3ns, t1 ⊗ �, and g0 are our v3

ns
2 h10, h10�2 and v−2

2 b11, respectively.
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Proposition 5.3. For n¿ 0 and s∈ I;

4(v3
ns
2 h10=3n+1v1)= v3

ns
2 h10�2=v1 + v3

ns−2
2 b11=v1:

We have similar results to [10, Propositions 7:5, 7:6 and 7:8]:

Proposition 5.4. Let s; n; i; k be integers with 3 - s; k ¿ 0 and 06 i6 n. Then the Bockstein
diBerential on v3

ns
2 h10=v3

ik+1
1 is given as follows:

1. If 3ik6 2× 3n−i; then

4(v3
ns
2 h10=3i+1v3

ik+1
1 )=− kv3

ns
2 h10�2=v3

ik+1
1 − (−1)n−isv3

ns
2 2n−i−1=v3

ik−2×3n−i−1

1 + · · · :

2. If s=9t − 1 and 3ik6 8× 3n + 2× 3n−i+1; then

4(v3
ns
2 h10=3iv3

ik+1
1 )= (−1)n−iv3

n+1(3t−1)
2 2n−i=v3

ik−8×3n−2×3n−i

1 + · · · :

3. If s=9t − 1; 3i+1 - 3ik6 8× 3n and i¡n; then

4(v3
ns
2 h10=3i+1v3

ik+1
1 )=− kv3

ns
2 h10�2=v3

ik+1
1 + · · · :

4. If s=9t − 1; 3nk6 8× 3n and 3 - (k + 1); then

4(v3
ns
2 h10=3n+1v3

nk+1
1 )=− (k + 1)v3

ns
2 h10�2=v3

nk+1
1 + · · · :

5. If s=9t − 1; 3nk6 8× 3n and 3 | (k + 1) (i.e. k=2; 5; 8); then

4(v3
ns
2 h10=3n+2v2×3n+1

1 )=− v3
ns
2 h10�2=v2×3n+1

1 + · · · ;

4(v3
ns
2 h10=3n+2v8×3n+1

1 )= v3
ns
2 h10�2=v8×3n+1

1 + · · · ;

4(v3
ns
2 h10=3n+3v5×3n+1

1 )=− v3
ns
2 h10�2=v5×3n+1

1 + · · · :

Here · · · denotes an element killed by a lower power of v1 than is shown.

Proof. Let z̃ denote the element given in [8] such that z̃ ≡ v−1
2 (t2 − t41) + v−3

2 t32 mod(3; v1) and
d(z̃) ≡ 0mod(3i; v3

i−1k
1 ) for any i; k ¿ 0, and denote @= t1 + v1z̃. We also consider a cocycle

yj;l=
∑
k¿0

(
k + j − 2
k − 1

) −(−t1)k

3l−k+1kvj+k−1
1

of 01M 2
0 ([4]). Put @a;b=ya;b + z̃=3bva−1

1 , and we note that 3b−1@a;b=@=3va1 and

d(@3ik+1; i+2)= kt1 ⊗ z̃=3v3
ik+1
1 :

Note that v3
ns
2 h10=v3

ik+1
1 is represented by a cocycle c(3ns=3ik + 1)= =R(v3

ns
2 )@=v3

ik+1
1 + w=v3

ik−3n
1

for some w∈E(2)∗(E(2)).
For i=0 and k ¡ 3n − 1, we de3ne c(3ns=k + 1; l)= =R(v3

ns
2 )@k+1; l for an integer l¿ 0, and

replace the generator v3
ns
2 h10=vk+11 by the element represented by the cocycle c(3ns=k+1). Since

d(v32) ≡ 3v1V mod(9; v31) by de3nition, we observe that

d(v3
ns
2 ) ≡ −3i+1sv3n−i−1

1 v3
n−i(3is−1)
2 V 3n−i−1

mod(3i+2; v3
n−i

1 ):
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We compute in 02M 2
0 :

d(c(3ns=k + 1; 2))= d(=R(v3
ns
2 )@k+1;2)

= kt1 ⊗ =R(v3
ns
2 )z̃=3vk+11 − @k+1;2 ⊗ d(v3

ns
2 )

= kv3
ns
2 t1 ⊗ z̃=3vk+11 + sv3

n(s−1)
2 @ ⊗ V 3n−1

=3vk+1−3n−1

1

whose second term is homologous to −v3
ns−3n−1

2 x3
n−1

=3vk−2×3n−1

1 by Lemma 5.2. Since 2n is
represented by (−1)nv−3n

2 x3
n
, this represents (−1)nv3ns2 2n−1=3vk−2×3n−1

1 as desired. If k¿ 3n, then
the case i=0 follows from the formula v3n+31 4(v3

ns
2 h10=3v3

ik+1
1 )= 4(v3

ns
2 h10=3v3

ik−3n−2
1 ).

Suppose the case for i. Then 4(v3
ns
2 h10=3i+1v3

i+1k+1
1 )=0 if 3i+1k6 2×3n−i−1. Since we compute

d(=R(v3
ns
2 )@3i+1k+1; i+3)= kv3

ns
2 t1 ⊗ z=3v3

i+1k+1
1 − v3

n−i−1(3i+1s−1)
2 @ ⊗ V 3n−i−2

=3v3
i+1k+1−3n−i−2

1

in 02M 2
0 , which shows the case for i + 1, we obtain inductively the 3rst part by Lemma 5.2.

Thus, if we denote a cocycle that represents va2h10=3
cvb1 by c(a=b; c), then

d(c(3ns=3ik + 1; i + 2))= kv3
ns
2 t1 ⊗ z=3v3

ik+1
1 − (−1)n−iv3

ns
2 x(n− i − 1)=3v3

ik−2×3n−i−1

1 ;
(5.1)

where x(n)= (−1)nv−3n
2 x3

n
and so @ ⊗ V 3n =(−1)n+1v3n+11 v3

n+1

2 x(n) up to homology.
Consider the case s=9t − 1. The proof of [10, Lemma 7:7] works also at prime 3 and we

obtain

5.5. The element v3
n(9t−1)
2 h10=3v3

ik+1
1 of H 1M 2

0 is represented by a cochain c(3ns=3ik + 1; 1)=
d(xtn+2)=9tv

4×3n+3ik
1 − c(3n+1(3t − 1)=3ik − 8× 3n + 1; 2).

In [4], they introduce the elements xi ∈E(2)∗ such that xi ≡ v3
i

2 mod(3; v1) and give the
formulas on d(xi). With a detailed computation, we observe that these elements satisfy d(xi) ≡
vai
1 v

2×3i−1

2 @n−1 mod(3; v2×3n−1
1 ) for i¿ 2. We then compute with (5.1)

d(d(xtn+2)=3
i+2tv4×3n+3ik

1 ) =−kt1 ⊗ d(xtn+2)=3tv
4×3n+3ik+1
1

= −kt1 ⊗ v3
n+1(3t−1)
2 @=3v3

ik+1−8×3n
1 + · · · ;

d(−kv3
n+1(3t−1)
2 t21=3v

3ik+1−8×3n
1 ) = − kv3

n+1(3t−1)
2 t1 ⊗ t1=3v3

ik+1−8×3n
1 ;

d(c(3n+1(3t − 1)=3ik + 1− 8× 3n; i + 2))

= kv3
n+1(3t−1)
2 t1 ⊗ z=3v3

ik+1−8×3n
1 + (−1)n−iv3

n+1(3t−1)
2 x(n− i)=3v3

ik−8×3n−2×3n−i

1 :

They amount to

d(c(3n(9t − 1)=3ik + 1; i + 1))= (−1)n−iv3
n+1(3t−1)
2 x(n− i)=3v3

ik−8×3n−2×3n−i

1 :

We also note the case n= i=1 in the same manner, and we obtain part 2.
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Parts 3 and 4 follow immediately from 5:5 and computation

d(d(xtn+2)=3
n+3tv(4+k)3n

1 )= (4 + k)t1 ⊗ d(xtn+2)=9tv
(4+k)3n+1
1 :

In the same way, we obtain part 5 by computing d(d(xtn+2)=3
n+4tv(4+k)3n

1 ) for k=2; 8 and
d(d(xtn+2)=3

n+5tv3
n+2

1 ) for k=5.

They imply that A1
1
= H̃ ⊕ H̃I ⊕ X̃1�2, and Propositions 5.3 and 5.4 show that the cokernel

of 4 :A1
1 → A2

1 is isomorphic to X ∗
2 .

Proposition 5.6. For an element v3n+ls
2 2n=v3

ik
1 of X ∗

2 ; the connecting homomorphism 4 :A1
2 → A3

1
acts as follows:

4(v3
n+ls
2 2n=3i+1v3

ik
1 )=± k(v3

n+ls
2 2n�2=v3

ik
1 + v3

n+ls−1
2  1=v3

ik
1 + · · ·):

Proof. Let c∈02M 1
1 denote a cocycle that represents v3

n+ls
2 2n=v3

jm
1 which is in the image of

4 :A1
1 → A2

1 with 3ik6 3jm6 4× 3n and j¿ i.
Since the cocycle c=3∈02M 2

0 is bounded, we have a cochain u∈01M 2
0 such that d(u)= c=3.

Then v3
n+ls
2 2n=v3

ik
1 is represented by c′= v3

jm−3ik
1 c and so c′=3i+2 = (v3

im−3ik
1 =3i+1)d(u). Therefore,

we compute in the cobar complex 03M 2
0 ,

d(c′=3i+2)= d(1=3i+1v3
ik−3jm
1 )d(u)

=−kt1 ⊗ c=3v3
ik−3jm+1
1 ;

which represents ±k(v3
n+ls
2 2n�2=3v3

ik
1 + v3

n+ls−1
2  1=3v3

ik
1 + · · ·) by Shimomura [8, Lemma 3:9] as

desired.
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