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Abstract

The homotopy groups 7,(L>S°) of the L,-localized sphere are determined by studying the Bockstein
spectral sequence. The results also indicate the homotopy groups n*(LK(z)SO) and we observe that the
fiber of the localization map LzSg) — LK(z)SO is homotopic to X _2L1S§) . Here Sg denotes the 3-completed
sphere. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction and statement of results

For each prime number p, there is the Bousfield localization functor L,:.%(,) — <, with
respect to v, ! BP, where &, denotes the stable homotopy category localized away from the
prime p, BP the Brown—Peterson spectrum at p, and v, the nth generator of the coefficient al-
gebra BP,. Consider the Morava K-theories K(n) and the Johnson—Wilson spectra E(n), where
K(n).=Z/plvi'] and E(n). = Z,)[v1,02,...,00,0,']. Then L, is also the localization with re-
spect to K(0)VK(1)V---VK(n) or E(n).

Hopkins and Ravenel present the homotopy equivalence S(Op) ~ holim L,,S°, and so 7,(L,S?)
pres

is an approximation of the homotopy groups of spheres. Actually, m.(LoS°)= Q at any prime
and 1,(L1S°)=Z,)® A5 Q/Z,)(y) at a prime p > 2 (cf. [4,5]), where 4 denotes the module
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generated by the generalized a-elements (see below) and Q/Z(,)(y) C n_»(L1S?) for the virtual
generator y. The homotopy groups m.(L;S?) of E(2).-localized spheres are determined at a
prime > 3 in [10], which satisfies Hopkins’ chromatic splitting conjecture [2]. In this paper,
we determine 7.(L,S?) at the prime 3.

Theorem A. The homotopy groups m.(L,S°) at the prime 3 are a direct sum of three modules
G;’s, which are described as follows:

Go=Z3) A ® X2 (A @ Q/Z3(¥)Ea,
Gi=BaCo®CIdB & (B @ C),
G,=GaG oGz GZ .

Here, the modules on the right-hand sides are as follows:

A=) Z/3" Nz |3 ts€2),

i0
Ay =Zi) {01 | 031511 €4, 5 > 0},
A= Zi){ozig)i1 | 030511 €4, s <0}
for G(),
B=2Zx){Bysjymit1 |n=0,31s€Z,i>0, 1 <m<4x3"21
and 3t m or 4 x 3"7%72 < m},
B1 = Z3){B3rs/3m,it1 | Pyrsjjic1 €B, 3t (s+ 1), 3|m,
or i#£k+1if s=3"2 — 1 with k > 0 and 3 t ¢},
C=C o,
Cl :Z(3){&:-B3”(3t+1)/3’m+1,1 | 0 < l < I’l, aIld 2 X 3n_i < 3im < 2 X 3n_i+l},
Co = Z3){o1B3uor—1)3my1.i 10 < i < n, and
2x3" < 3im -8 x 3" <2 %3},

CI=Clyae Cl, & Cl, ® CI3,

C]():Z(3){C3n5 n=0,s=3t+1ors=9—1 (ZEZ)},

Cll :Z(3){alﬁ3n(3t+l)/3im+1’l'+l ‘O <i < n, 2 X 3’1_[_1 < 3im <2 X 3}1—1"3 Tm},

Ch = Za) {0 Byvqor1ysmyriet |3 1M <8x 37, 0<i<n k+1>iif 3¢},
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n+1 ifm=13,4,6,7,
Cl = Z) {01 Bysgor_1yzomir | i=4 n+2 if m=2.8,
n+3 if m=5, k+1>nif 3%},
B* =Z){p(n)3wigzimi 131S€Z, iin>20, 0 < 3'm <4 x3",
[>iand [ >i+1if 3|(s+ 1)}

for G| and
G=Y " (Bs{Porr1} © Ba{Pori1Bs3} & B3{Pors701}
€z

@ Bo{ Porv10t1, [Pors2 P11, [Bor+sP11}) @ Bi{[Por—12611}

G = Z (Bs{ 1917} ® Ba{18,13} ® Bo{B(0)5,1 1, Boj3P(0)5; 115 Bo3B0)s, 14}
teZ

5] Z (B3{B(0)302 19ys3 |4 EZ —1(n)} © Ba{B(0)30i2; 19,13 | U EL(N)})),

n=1

(/;2 = Z (Bs{CPor+1} ® B3{LPor+1 ﬁG/S}

teZ

® Bo{CPor701, CPorr 101, ([ Porsa 11, L Porrs Pr1}),

GZ = Z (Bs{Cox9117} ® Ba{lax9ry3} @ Bo{EaB(0)5,41}
teZ

@ B1{02Bes/3B(0)5,4 1, C2Be/3P(0)5, 14}
©) (B{B0)snys0,13 |4 EZ —1(n)}

n=1

@82{52B(0);+21+9u+3 ‘ uec I(”)}))
for G,. Here, By =Z/3[B11/(BY),
Im)={xecZ|x=03"1-1)2 or x=5x3"24+(3"2-1)/2},

x denotes a homotopy element detected by x € E5°*(L,S?), the E;-term of the Adams—Novikov
spectral sequence converging to m.(L»S?), and [x] for x € m.(L,V(0)) is an element of 7,(L,S°)
such that i.([x])=x for the inclusion i:S° — V(0)=S°U; e!. The generators are defined in
Section 4 and degrees of them are

]oca/b\:4a—1, ‘ﬂ“zll, \ﬂa/b,c]:16a—4b—2, ]ca\:16a—7,
(01 Bagpe| =160 — 4b+ 1, |B(a)yql=16b— 8 x 39 —4c — 4,

0 =16a+7, |rll=16a+15 |L|=-1
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and orders of them are
O(OCa/b) = 3bs O(Ba/b,c) = 3C> 0(03”5) = 3n+] if 3¢ S,

(o1 By )=3%  o(B@)yea)=3" o(2)=3. o(x})=3.
Furthermore, we abbreviate as follows:

% =0/t Pap=PBap.1s  Ba=PBaps  1Bap =014 15

B, =By Bla)y=p@a)., and Pla)=pa)),.

Our computation of the differentials of the Bockstein spectral sequence m.(L, V' (0)) = m.(L,S°)
also works for the Bockstein spectral sequence associated to the cofiber sequence Lg(2)S® —
LK(z)SO — Lg)V(0), and we obtain the homotopy groups n*(LK(z)SO) from the result on
m«(Lg2)V(0)) given in [7].

Theorem B. The homotopy groups m.(Lx2)S°) are the direct sum of (Zs ® A1) ® A((2), G
and G,. Therefore, the homotopy fiber F(L1S°, L,SY) of the localization map L,SY — L 2)S°
of the 3-adic completed sphere S? is homotopic to 2L, SY.

The second half of the theorem is observed in the same manner as the one at a prime > 3
[2]. This shows that there is only one summand in F(L;S° L,S?), while Hopkins® chromatic
splitting conjecture denotes that it has three summands.

Theorem A is proved by using the Adams—Novikov spectral sequence. Let N? denote the
spectrum such that BP,(N?)=BP,/(3*,0v°). We denote the Adams—Novikov E»-term for com-
puting 7.(L,N?) by H*M3. In the next section, we show that the E>-term H*Mg is the direct
sum of the three modules 4; for i =0, 1,2, and give the structures of 4y and 4,. Section 3 is de-
voted to determine the structure of the module A; using some results proven in the last section.
The differentials of the Adams—Novikov spectral sequence are studied in [8], and we deduce
the homotopy groups m.(L,N?) from these results, and then the chromatic spectral sequence
shows Theorem A in Section 4.

2. Notations and the structure of H*M}

Consider the Hopf algebroid

(EQ2)es EQ)(EQ2)) = (Zip [0, vE LEQ). 11, 12, .. 1 @51, E(2).)
associated to the Johnson—Wilson spectrum E(2), where BP denotes the Brown—Peterson spec-
trum with BP, = Z3)[vi,v2,...] and BP, acts on E(2). by moving v; to v; if i <2, and
to zero if i>2. For an E(2).(E(2))-comodule M, H*M denotes Extyq,) o)) (E(2)s M),
which is given as a cohomology of the cobar complex *M of E(2).(E(2))-comodules
(cf. Section 5). Then we have the Adams—Novikov spectral sequence

E; =H*E(2), = 1.(L2S°)

converging to the homotopy groups of E(2).-localized sphere spectrum.
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We now recall the definition of the chromatic comodules N} and M]. They are defined induc-
tively by setting NJQ:E(2)*/[J- for Ip=0, 1 =3) and 5L =(3,v1), MJ’ —v;lej’, and
N*'=M!/N}. Note that M/ =N} if i+j=2 and =0 if i+, > 2. Then we see that the Adams—
Novikov E,-term H*E(2), is obtained from H*M; for i <2 and the long exact sequences
HN} — H*M} — H°N{™ — H**Ni. Since the modules H*M] for i <2 are determined in
[4], we here determine H*M¢. For this sake, we consider the comodule M| =Z /3{x/v{ |j >0,
x€K(2).}, where K(2). —Z/3[1)2i1] and the short exact sequence 0 — M| fMOZiMOZ — 0.
Here, note that M is described as M3 = Z(g){x/?a’ |i,j >0, x € K(2),}. Then we obtain H*M?
from H*M/ Wthh is determined in [7] by using the lemma given in [4, Remark 3.11].

In order to describe the module H*M|, we set up some notations: H*MY=H*K(2). is
determined (cf. [6]) to be F @ K(2).[b10] ® A({2), where F is the Z/3-vector space spanned by

1, hio, i1, bi1, €, Yo, Y, and byi¢. These generators, (5, Ay; and by;, are cohomology classes

represented by cocycles v, (6 — 1) +0;°8, £ and —£)' @123 23 243 of the cobar complex
p y cocy 2 1 2 1 0 1 5 1 p

Q*K(2),, respectively. Besides, & and yf are the generators of H>8K(2), and H330H+2K(2),.
Put k(1). = Z/3[01], K(1). =0y 'k(1)., PE =Z/3[b10] ® A((2), EQ2,n). = Z/3[v1,05" ] and

Fuy = Z/3[v*{va/v1, vah1o/v1, 05 iy /o1, vabry Jo1 ),
Fiy= Z/3[v§c3]{02_1/vl,vzhlo/v%,vz_lhn/v%,vz_lbn/vl},
Fiy=Z[3[v° 1{E o1 o /v1, v /o1, b1 Efor ),
F(iy=Z/3[v5 1/, vayo/v1, 03 'y /o1, bri Efvt ),
F,=EQ2,n+2), {Uﬁﬁ"“ zltx3"—1,U3"+1hlo/vzx3”+‘+1’
08 oy /o3, 3”“(2i1)€n/ .

F§=E(2,2). {023 /02, 03ho/v], v8hofv], 132D & fu),

where &, = v, %" "2¢ Note that Fo = F{&F! for Fj = Z/3[v3°){v3>/v3}. Then, in [8], H*M|
is shown to be the direct sum of F] and the three modules A,, where

Ao = (K(1):/k(1)+) ® A(h0,(2),

4= (F() ® Zn) ® A(%),

n>0

Ay =(Fony® Fy © F) © F)) @ PE.

Once we know the behavior of connecting homomorphism 6: H*M! — H**'MZ2, we obtain
H *Mg by Miller et al. [4, Remark 3.11]. In [4,8], it is shown that 6(4;) C A4;. Let 4 denote
the submodule A4; ﬁHlel. We now define the submodule 4;" to fit the commutative diagram
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of exact sequences

1/3 — 3 -5 o s+1
Al A, ; A

i i

I N

s+1

i

o113 o 3 NP
HM, —— g’y —— HM,—— H

We deduce the following lemma from [4, Remark 3.11]:

M,.

2.1)

Lemma 2.1. Suppose that we have a 3-torsion module B* and a homomorphism f:B* — A;

such that the diagram of exact sequences

1/3 3

BS
vy 3
A

commutes. Then f is an isomorphism.

Y

s+1

—_—

s+l
i b

A

i

21
0

Note that [10, Proposition 7.2] is also valid for the prime 3, and for the elements y%,, V' and
G, there are vgt”hn /912%, —v%hll and v, 'h1o in our notation, respectively. Therefore, we have

Proposition 2.2. For each integer t,

6(03 2 /901) = 032 (=bio + )/} + -+

Since &(v3°/3v3)=sv3""'h11/v? by Miller et al. [4, Proposition 6.9] and S(vy' 'h1/9v})=

vg’_l(—blo + h“Cz)/v% + -+ by Proposition 2.2, we derive the following:

Proposition 2.3. H°M} is isomorphic to Y7, A; if s#1, and H'M}

ZteZ Z/9{Ugt_lhll/9v%}-

In the same manner as [4, Theorem 4.2], we obtain

Proposition 2.4. The module Ay is given as follows:

Ao=(A-® 0/Z3)) ® A((),

Yiod @
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where

A-={13""3" i >0, m > 0}.
The module 4, is determined in [8] as follows:

Proposition 2.5. The module A, is the direct sum of Z/3[02i3]{02_1/3vl, &/30%} and
(Fun & Fiyy) @ PE.

Here, F(y) and Fj, are the images of F,) and £} under the map H M} LH*ME given by
p(x)=x/3.

3. Determination of 4;

We divide 4, into 14 pieces:
Ai=((NroX)eHSHI @ HY) o (X ®X7)) ® AL).
Here,

X1 =X11® X2,

X =2Z3{03 %Vl in=0,1€Z, 0<j<4x3",

such that j > 4 x 3"7=1 — 1 if 3i|;},

Xia=2Z3{C 03 m >0, 3tuez, 0 <3 m <4 %3,

such that j > 4 x 3"7=1 — 1 if 37=%~|m},

Xo=X51® X,

Xoa=Z/3{o3 Vi 020, 3tm, 1 <m<4x321Y,

X0 =2/3{63CT I 12 <ok <n, 0 <m < 4 x 3L 3 m),
H=H © H,,

Hy=Z/3{v] ool ™0 <i<n, j<2x3", 2x3"7<jif 37},
Hy=Z/3{v] " Phiofv] |n >0, 8 x 3" < j <10 x 3" + 1},

HI =HI, & Hb,
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HI = Z/3{v; * Do/l 0 <i<n, 4 x 3771 <j<2x 3"

if 37j and 3!t /1,
HL=Z/3{v " Phiofol™ 120, 0 <j <8x 3", 3+t (j+4x3"

if ¢ =23%u with 3 1 u},
H*=H{ & (H;, + Hy,),

=Z/3{03 P Ohyo/ol ™ |n =0, j > 0and j <4 x 3771 if 37

Hy =Z/3{v3 " Phio/o]™ |n >0, j > 0and j <4x 3"V if 371 5},
H; > =2Z/3{v; " Phio/o]"" |n =0, j =0 and 37|(j + 4 x 3") < 4 x 3!

if +=3%u with 3 t u},
X=X @ X5,
Xy =Z/3{v etk 11> 0, 0 < 3k <4 x 3"},
Xﬁzzﬁwf“@”kgﬁﬂi>m0<3%<4xyh

= Z/3{v3"E 0% |3 15, iin =0, 0 <3k <4x3,
I>iand [ >i+1if 3|/(s+ 1)}

Note that it is just for simplicity that each direct summand of 4, is presented as the direct sum
of two modules. We also consider the following submodules of H*M}:

X =Z3){v3*/3" 0] [n=0,3ts€Z,i>0, j>0,
with 37|/ < 4 x 3”71 and either 3" t j or 4 x 3" 772 < j}
=X, & X,
Xy = Z{o3 /3 03 | 0353 e X, 3t (s + 1), 3|m
or i#k+1if s=3"?¢ — 1 with k > 0 and 3 t ¢},
Xy = Z3) {033 3 | 033 i e X, 3|(s 4+ 1), 3tm
and i=k + 1 if s=3%"t — 1 with k > 0 and 3 1 ¢},
H=H & H,

Hl Z(3){U3 (3t+l)h /31 3m+1‘0<l nand 2 x 3" l<3m 2 % 3 l+1}
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Hy=Z5{v; " Vhio/3707" 1|0 <i<nand 2 x 3" < 3'm — 8 x 3" <2 x 3",

HI = HI, @ HI, © H, & HI,
Hly = Z3{v3hio/3" v [n >0, s=3t+1ors=9%— 1 (te Z)},
}——]\[/1:Z(3){U;"(3t+])h10/3i+]U?im+l |0 <i< n, 2 % 3n—i—1 < 3im < 2 % 3n—i, 3 ’rm},
HI = Z3){vy ™ Dho/3 0™ 3 tm <8 x 3", 0<i <n, k+1>1iif 3%},
n+1 if m=1,3,4,6,7,
HI = Zi3){v) @ Dhyo/307™ 4 i={ n+2 if m=2,8,
n+3 if m=5,
k41> nif 3%,

3n+[

X, = Za{vd &3 3 tseZ, iin=0, 0<3m<4x3,
I >iand [ >i+1if 3|(s+1)}.

The propositions of Section 5 below show the behavior of the connecting homomorphism
5: Ay — AT as follows:

Proposition 3.1. The connecting homomorphism o Al — A‘i“ maps )71, )A(;, H, 171, )A(I (2)?2*
and HI{, to H*, X205, X, HI(, X;( and X['(5, respectively. Furthermore, the images of
generators under o are linearly independent.

We now use Lemma 2.1 to obtain our main theorem:

Theorem 3.2. A, is isomorphic to X, ®X, if s=0, HOHI & X, (> if s=1, X, o HG if s=2,
and 0 otherwise.

4. The homotopy groups 7,(L,S°)

Let E,(X) denote the E,-term of the Adams—Novikov spectral sequence converging to the
homotopy groups m.(X). We start with a general result on the spectral sequence, which is well
known and proved in the same manner as [3, Theorem 4.1].

Lemma 4.1. Let X LY %725 3X be the cofiber sequence with BP.(h)=0. Then we have

the induced maps Ei(X)&Ei(Y)ﬁEi(Z) gEi“(X). Suppose that g.(y)=z for non-zero el-
ements y€ EXY) and z € EST"(Z). Here, a denotes a homotopy element that is detected by
an element a of the E.-term. Then if y= f.(x) for some x € EX(X), then d,(x)=0d(z).
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Let N' and N? denote the cofibers of the localization maps S° — LoS® and N! — LN,
respectively. Then we have the Adams—Novikov spectral sequence E>(LoN?)=H*M{ =
n.(LyN?). The differentials of the spectral sequence are determined in [8], and we have the
following.

Proposition 4.2. The E-term of the Adams—Novikov spectral sequence for n.(LyN?) is the

direct sum of the three modules Ay, A and A>. Here, Ay and A, are determined in the previous
sections, and

hHh=GaG ©GZaGZ,
where these four modules are determined in [8]:

G :B5(2,2)*{02/3U1} ) B4(2,2)*{U§b11/3l)1} ) 33(2,2)*{051’110/3121}
@ B(2,2).{v2h10/301,v3h11/3v1,v3h11 /301 } © B1(2,2){v; 'hi1/301},

G =Bs(2,2) {vIn/3v1} ® Ba(2,2){v3/301} @ Ba(2,2).{&/301,v3b11E/301,08b1,E/301 }
@Y (B3(2,n+2).{03EBv |ue Z — I(n)}

n=1

@ Bo(2,n +2). {03 E/3v1 |u e l(n)}),

GZ = B5(2,2) {v202/301}
® B3(2,2).{v3b11{2/301}
® B2(2,2).{v2h10la/301, V3011 La/301, V3011 Lo/ 301, V5 h1ola /301 },

GZ = Bs(2,2).{vlya(a/301} ® Ba(2,2){v3v0la/301}
© B2(2,2){¢0/301 }
@ B1(2,2){v3b11ELa /301, 08011 EC /301 }
@Y (B3(2,n+2){v3 P&l /301 [ue Z — 1(n)}

n=1
©By(2,n + 2). {0y P EGL 3oy |luel(n)})
for Bk(Z,n)*:(Z/3)[02i3",b10]/(b’1‘0) and I(n) given in Section 1.

Lemma 4.3. There is no extension problem in the spectral sequence for m,(L,N?).

Proof. Let M(i,c0) be a cofiber of the localization map M (i) — LiM (i) of the mod 3’ Moore
spectrum M (i). Then we have the cofiber sequence M (i,oo)gNziNz. If there are non-zero
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elements x € E5*(L,N?) and y € ESI"~1*(L,N?) for integers s > 0 and » > 1 such that 3’ =y in
n.(LyN?), then there exists an element X € ES*(L,M (i,o0)) such that ¢.(¥) =x and d,(¥)=d(y)
in EST"*(LyM(i,00)) by Lemma 4.1. Consider the commutative diagram

% ) % . P " 3 *
E,(L,N)—— E,(L,M@i~=) —"y EL,N) —— EiL,N)

|

® ] * P+ # 2 * 2
Ei(L,N)—— E.(L,M(1e) — E}L,N) —— E}L,N)

Then the relation d,(X)=0(y) in EST*(LyM(i,00)) is the one in EST*(L,M(1,00)). Note
that M(1,00) is denoted by W in [7]. We observe in [8] that the differentials on E*(L,N?)
are obtained by sending those on E*(L,W) by the map ¢.:E (LyW) — E*(L,N?), and so y
cannot be an image of the connecting homomorphism o. This means that there are no non-zero
elements x, y € E%*(LyN?) such that 3'x = j in n(L,N?). O

Corollary 4.4. The homotopy groups m.(LN*) are the direct sum of the three modules Ao, Ay
and A,.

Proof of Theorem A. Consider the exact sequences - - - — 7,(L2S?) — 7. (LoS?) — m (LoN') —

cand - — m(LoN') — m (L N")Dn,(LyN?) — --- associated to the cofiber sequence
S® — LyS® — N! and N! — L|N' — N?. They also induce the connecting homomorphisms
S:E5(LoN') — EST(LyS%) and O : E5(LoN?) — EST'(LaN') of Er-terms. Now define the ele-
ments of the E>-term E3(L,S°) by

oap = 0(v}/3%), By =hi1 — vihio,
Bajp.e = 30'(v5/3
Cyng = 68" (13 *h1o/3"vy)  for 3t s,
o1 Ban.c = 08 (v5h10/3°07)
B(@)yye.q = 00" (V5 4/37v§
= 00'(v3/3v1)
and
= 00" (V5yn /301).

Then 4; and A, are isomorphic to G; and G,, respectively. Since 7,(LoS®)=Q and n.(LiN')=
0Q/Z3y @ A(y) @ Al, an easy diagram chasing with Corollary 4.4 enables us to obtain Gy
from Ao, and proves Theorem A. Here, A/ is the Z;3)-module generated by v} s/3i+1 for i >0
and 3tseZ. O
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5. Computations in the cobar complex

In this section, we work on the cobar complex (cf. [3]) based on the Hopf algebroid
(E(2).,E(2).(E(2))) in order to study the connecting homomorphism &: 4, — A5t The struc-
ture maps ng:E(2), — E(2)«(E(2)) and 4:E(2).(E(2)) — E(2)«(E(2)) ®£@). E(2)«(E(2))
behave as follows:

nr(vi)=v1 + 311,

nr(v2)=v, + vltf — t1nr(vy )3 — 3vlt1(v% +3v1t + 3tf),

A=t 1+1x4,

AL)=t®1+4 & t] + vi1by,

AB)=6014+601H +6 086 +1® 1t + vyby — v1byymod(9,v?),

where 3b, =" @1+108" —(191+104)*" and 3by =B 1+ +108)— (Lo 1
+14 ® 8 + 1 ® 5)*. Furthermore, we have the relations in E(2).(£(2)) by setting nz(v;)=0
in BP.(BP) for i > 2 such as vyf] , = v3 t;_,mod(3,v;) and vy} = v3t; — v1£3 mod(3,v?). For
an E(2).«(E(2))-comodule M with structure map induced from #g, the cobar complex is a
family of E(2).-modules M =M ®gq), E(2)(E(2)) ®£@), - ®E@). E(2)«(E(2)) (s factors)
with differential d: QM — Q"M defined by d(m @ x)=nr(m) @ x + >_i_; (—=1)m @ 4;(x) —
(—1)ymex®1 for me M and x € Q*M, where 4;(x1 Q- - @Xx,) =X Q- QA(X;) ® - - R Xp.

Lemma 5.1. In the cobar complex Q*E(2)./(3,v3), put 51 =v,° — £13, and we obtain
dt) =60t -6 -3t @2° —vy°b},.
Here z=v,'(t, — t}) + v3°83.
Proof. This follows immediately from the computation
d,°8)=— 06 @t —v,°6 @6 —vy°bi,
d-i)=f et +fo’+5e8 +504
=8 -vier+u,'Me8 e+ O

Since nr(v2) = vy + 153 — v3ty mod(3), we note that ng(v3) = v3 + v31] — v]; mod(9,3v;). We
then define an element V' by the congruence

30V =03 + 03] — vit; — nr(v3)mod(9).

Lemma 5.2. There exists an element Y, such that
d(Y,)=— " e @ v — ol Y mod(3, v})

for each n > 0. Here o,=t; + v1z*" and x is a cocycle whose leading term is —v}°8 ® t; —
-3
U, 1 & 3.
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Proof. First note that ¥V = —u3 — vj09 mod(3,v}). Recall the element Y of Q'E(2).
([1, Theorem 4.8]) such that ¥ = oanr(v3) — 02V + vivy 2t}® + vho, 7()£7 — £))mod(3,v7)
and
d(Y) = vlx* mod(3,0}).
~9,3
1

Here, x* denotes a cocycle whose leading term is —v3%4 ® ] — v,
¢ e H*3M?. We define elements Y; inductively by

® £3, which represents

Y1 =nr()Y +viv385 — vdv3ts1 + 070523,
Ya=Y3, +op T r
Since d(nz(v)t) =d(t)Anr(v)—t®@d(v) for v € E(2). and ¢ € E(2).E(2), we compute mod(3,1}),

dnr(5)Y) =0lt8x* — Y ® (—viv3e] + o8t1®)

:v¥vgx3 — U%Y ® 122_3V3 + U?Y ® tllg

=0]185x° + 8aanr(v3) @ 113

—v3(aanr(v3) — VIV + vivy 28 + vl (8T - 8)) @ vy V3
= 0{u3x’ + o}(0at], + 0153 + 012 nR(v3)) @ 1

— oy @ V3 — v?(—v%tfl - Ulvztf7 + vt @ v3t]

—2.1 27,92
+oin @ v, + o (057 - 6)) @ v,

5 53V _ 643 o 3 5,53 o 19
d(vinty) = — vVt @b, — VK 1,
6,4, \_ _ 7,33 6,846 o 0 _ 3 o 3 33 o 3 -3;3
d(=vivats1) = = viiat] @ 31 — V(G D1, — 1 O b, — i @27 — v, byy ),
5,83 6,73 o 3 7,66 o 3
d(nvyz° )= — Vit @z s T ©z7,

in which the underlined terms with the same subscript cancel out. So we redefine the cocycle
—x3 by the cocycle that appears in the sum of the above congruences to satisfy

d(Y1) = —vjo, ® V? — v]udx’.

Here, x* has the same leading term —u3°f @ ] — v,°# ® £ as the above cocycle x>
Now turn to the case n. We assume the case for n — 1. Then

3y AX3TIS3 3 37Xl a3 3
d(Y, )= —v; 0, @V —u ;77X
4x3—1—4, T3 4x3TI-303 2 3
d(v] v V") =71 (H—vih)R V.
Note that ¢} — (£ — vit;)=1306,+1, and we have the case for n. [

The following is also shown in [9, Proposition 4.4] which also holds for the prime 3. Here,
the elements y3., 1 ® {, and gy are our vg"shlo, hio{2> and v,y b1y, respectively.



1196 K. Shimomura, X. Wang | Topology 41 (2002) 1183-1198

Proposition 5.3. For n >0 and s€l,
803 ho/3" 1) =13 hiola /1 + v3 ¥ by /o1

We have similar results to [10, Propositions 7.5, 7.6 and 7.8]:

Proposition 5.4. Let s,n,i,k be integers with 3 +s, k >0 and 0 <i < n. Then the Bockstein
differential on v3"hyo/v3* " is given as follows:
1. If 3"k <2 x 3", then
5(1)3”;:}110/31'-&-10?"/{-&-1)_ kl)g shIOCZ/U3 'k+1 — (=1~ ISUZ SE i /U3 f—2x3mi—1 4
2. If s=9t — 1 and 3’k <8 x 3"+ 2 x 3"*1 then
5(Uz"sh10/3i k+1)_( l)n i 3+ (31— l)én 1/ 3k—8x3"—2x3"" ’+ )
3. If s=9t—1, 3 3k <8 x 3" and1<n then
(03 hyo/3 0y = — kw3 Shyola o} T 4
4. If s=9t—1, 3"k <8 x 3" and 3 1+ (k+ 1), then
5(02"5}110/3"4_11)%%4_1) (k + 1)1)2 SthCZ/U3 k+1
5.Ifs=9t—1, 3"k <8x3"and 3|(k+1) (ie. k=2,5,8), then
5(03”sh10/3n+202><3"+1 ) — _ U%”shmgz/v%x?‘-&-l 4.
5(02”sh1 /3n+2 8x3"+1 ) _ Uz”shlocz/véfxy-&-l 4o
5(Ug"shlo/3n+3v?><3”+l): _ U%”shlocz/vfx_%”-‘rl N

Here --- denotes an element killed by a lower power of vy than is shown.

b

Proof. Let Z denote the element given in [8] such that Z = v, W(t, — i +v5 t2 mod(3,v;) and
diz)= 0mod(3",v?'_1k) for any 7,k > 0, and denote ¢ =¢; + v;Z. We also consider a cocycle

k+j—2 —(=n)
V= ( - ) T
k>0 k ! 3! k—HkU{
of Q'MZ ([4]). Put 6,5 = y.p +Z/3°0¢"", and we note that 3°~'g, , = /30 and
d(03i11,i12) = ki ®Z~/3U3ik+l-

Note that v3"hyo/v] *+1 s represented by a cocycle ¢(3"s/3'k + 1) = nr(v3")a /v Lo w/v3k 3
for some we E(2).(E(2)).

For i=0 and k < 3" — 1, we define ¢(3"s/k + 1,1) =ng(v3"*)ox1,; for an integer / > 0, and
replace the generator v3 ‘hlo/karl by the element represented by the cocycle ¢(3"s/k +1). Since
d(v3) = 3v1 ¥V mod(9,v}) by definition, we observe that

d(wd*) = =3 sy o) TP mod (372,037,
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We compute in Q2M3:
d(c(3"s/k +1,2)) =d(nr(v3*)ox41.2)
=kty @ nr(v3*)Z/305 — 6411, @ d(13)
— ko3t @ /30 503 S Ve @ 13 3ok
whose second term is homologous to —v3" ™3 'x3"' /308" by Lemma 5.2. Since &, is
represented by (—1)"v;>'x>", this represents (—1)"v3"¢,_; /_31)’1"2“"_l as desired. If k > 3", then
the case i =0 follows from the formula v?”+3_5(vz"sh10/3vfk+l):5(02"‘%10/31)?"‘_3"_2).
Suppose the case for i. Then d(v3' /3 0¥ F+1) =0 if 371k < 2x3"~7~!. Since we compute

3" — 'S 3+ 33— 312y 3 g 32
d(Mr(v3 *)03is1p41,i43) = kv3 °t ® /307 — 0, oV /307

in @M, which shows the case for i + 1, we obtain inductively the first part by Lemma 5.2.
Thus, if we denote a cocycle that represents v4h19/3°0? by c(a/b,c), then

d(c(3"s/3k + 1,i +2)) =kv3*t; @ /3075 — (=1)""03"x(n — i — 1)/307% 23",
(5.1)

where x(n) = (—1)"v;>"x*" and so ¢ ® V" = (=103 "103""x(n) up to homology.
Consider the case s=9¢ — 1. The proof of [10, Lemma 7.7] works also at prime 3 and we
obtain

5.5. The element Ugn(gtfl)hm/%?i“l of H'M¢ is represented by a cochain ¢(3"s/3'k +1,1)=
d(x! )/t T3 — (31 (3 — 1)/37k — 8 x 3"+ 1,2).

In [4], they introduce the elements x; € E(2), such that x; = v%’ mod(3,v;) and give the
formulas on d(x;). With a detailed computation, we observe that these elements satisty d(x;) =

v‘f’v%X3Han_1 mod(3,v1*¥ 1) for i > 2. We then compute with (5.1)
d(d(xthrz)/3i+2tvélt><3”+3[k) =kt ® d(xtn+2 )/3tvéli><3”+3[k+l

n+1 _ i n

= —kty @ v) O Vg3 k1mS

nlg3s i _ . wtlag ; B .
d(—k) R33N GE Dy g 33183

d(c(3"™'(3t —1)/3%k +1 -8 x 3"i+2))
_ kv;"“(%fl)tl ®Z/3U?"k+l—8><3” + (_l)nfivgnﬂ(%fl)x(n _ l-)/3vifk—8><3”—2><3"*"‘
They amount to
d(C(3n(9t o 1)/31k +1,i+ 1)) — (*l)n_iugul(}l‘_l)X(l’l . l.)/3vjfik78><3"72><3n7i.

We also note the case n=i=1 in the same manner, and we obtain part 2.
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Parts 3 and 4 follow immediately from 5.5 and computation
d(d(xl,5)/3 PN = (4 + k)t © d(xl ) 9

In the same way, we obtain part 5 by computing d(d(x’, +2)/3”4“4tv(14+k)3") for k=2,8 and
d(d(x! ,,)/3"50d™) for k=5. O

They imply that 4; =H @ HI & X,(», and Propositions 5.3 and 5.4 show that the cokernel
of §:47 — A2 is isomorphic to X5

g n i . . —2
Proposition 5.6. For an element v3'"5¢,/v3% of X, the connecting homomorphism 6:4,” — A3
acts as follows:

803 &3 R = £ k(03 GG ol 4 0 T o ),

Proof. Let ce QM| denote a cocycle that represents v ¢,/v¥” which is in the image of
§5: A, — A% with 3k <3/m <4 x 3" and j > i.

Since the cocycle ¢/3 € Q°Mg is bounded, we have a cochain u € Q'Mg such that d(u)=c/3.
Then v}""5¢,/v3% is represented by ¢/ =v¥" 3¢ and so ¢//37*2 = (v3™~3*/371)d(u). Therefore,
we compute in the cobar complex Q3M¢,

d(c' /37" =d(1/3" o]* ¥ ™)d(u)
= —kt)y @ /3033 mHl

which represents +k(v3""*&,/303% + 13"~y /303% 4 ...) by Shimomura [8, Lemma 3.9] as
desired. O
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