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Abstract. In this paper we determine the E>-term of the Adams-Novikov
spectral sequence converging to the homotopy groups 7, (L2SY) of Lo-
localized sphere spectrum at the prime 2. The structure of the FEs-term
indicates that the homotopy group m;(L2SY) is finite except for i = 0, —4
and —5.

1 Introduction

Let S, denote the stable homotopy category of p-local spectra, and £,, the
stable homotopy subcategory of F/(n)-local spectra for the n-th Johnson-
Wilson spectrum E'(n) (cf. [1],[6],[7]). Miller, Ravenel and Wilson [4] in-
troduced the chromatic method to understand the homotopy category S,
through £,,. Bousfield localization provides a retraction L,:S, — L.
The E(n)-localization L,,S° of the p-local sphere spectrum SV plays as
important a role in £,, as the sphere spectrum itself does in S,. Thus the
determination of the homotopy groups 7 (L, S°) is one of crucial problems
for understanding the stable homotopy category £,,. We obtain some infor-
mation about the homotopy groups 7, (S°) of spheres from 7, (L,,S°). For
example, some relations among a-elements and [3-elements are obtained by
studying 7, (L1S°) and 7. (L2S°) ([4], [10], [11], [14]).

Turn to the homotopy groups 7, (L, S°). For n = 0, 7.(LoSY) = Q by
Serre [9]. 7, (L1S°) is determined in [4] for p > 2, and in [6] for p = 2.
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If n = 2 and p > 3, then 7, (L2S5°) is determined in [17]. Hopkins arrived
at the chromatic splitting conjecture from this result [3]. One statement of
the conjecture says that the fiber F}, of LnSg — L) SY decomposes into
2™ — 1 nontrivial summands, where Sg denotes the p-completion of S°. This
is based on the fact that [ = X 2L1.Sp vV XLy S)V X5 LoS) forn = 2
and p > 3 [3], which is predicted from the fact that the homotopy groups
7+ (L2S°) have three summands Q/Z ;. At the prime 3, we determined
7+(L2S°) in [16] and found only one summand Q/Z, in it. We also
showed that F, = X ~2L1SY, which is a counter example of the conjecture
at the prime 3.

The homotopy groups 7, (L2S%) are computed by the Adams-Novikov
spectral sequence E} = H*E(2), = m.(L25°), where H*— denotes the
functor Ext o) (g2 (E(2)x, —). In this paper, we determine the Fs-term
of the Adams-Novikov spectral sequence at the prime 2 (Theorem 2.4). Since
summands Q/Z (2) of the Ey-term are infinitely 2-divisible, they survive
to the Eo-term, and we have three summands Q/Z (2) in the homotopy
groups 7, (L2S%) (Corollary 2.5). This indicates a possibility that the fiber
F5, decomposes into 3 summands as in the case p > 3. The computation of
the differentials of this spectral sequence seems much more difficult than it
isin the case p = 3, just as the issue of the existence of elements of Kervaire
invariant one is harder at p = 2 than itis at p = 3.

We begin by computing the E>-term by the chromatic spectral sequence
Ef = H*M} = H*E(2). (i = 0,1,2) 1ntroduced by Miller, Ravenel
and Wilson [4]. Here F(2). = Z, [vl, vF!] with |v;] = 2(p — 1) and
lvg| = 2(p? — 1), and E(2). (E(2)) comodules My are defined as follows:
Put first NJ = F(2), and M{ = p~1F(2).. Then define N3 by the short
exact sequence

(1.1) 0— N = MJ — N3 —0

and put Mo = 1N0 Mo is defined by the short exact sequence

(1.2) 0— N S L M2 —o.

Applying the functor H*— to these short exact sequences yields the chro-
matic spectral sequence. The E1-term H* M of the chromatic spectral se-
quence is @ concentrated at dimension 0, and H *MO1 is given in [4] (see
Sect. 4). Now the determination of the Adams-Novikov Ea-term H*E(2).,
results in the determination of the chromatic F;-term H *Mg. Indeed, af-
ter determining the E'j-term, we observe the long exact sequence associ-
ated to (1.2) to see that there is only one non-trivial extension in the spec-
tral sequence (see Sect. 18), and obtain H *N& (Proposition 18.2) and then
H*E(2), from the long exact sequence associated to (1.1).
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Miller, Ravenel and Wilson introduced in [4] the v1-Bockstein spectral
sequence H*MJY = H*M{ and the mod p Bockstein spectral sequence
H*M{] = H*M? associated to the short exact sequences

0—>M0 /’“Ml v M1—>0

(1.3)

Here MY = FE(2)./(p,v1), which is also denoted by K(2), and M} =
E(2)./(p,v$°). The v-Bockstein spectral sequence H*M' = H*M for
(v,M', M) = (v, MJ, M}) or (2, M}, M2) is computed by defining

submodules B® of H°M ﬁtting into the exact sequence H* 'M 2,

HeM S s 2 gs Xy g, Indeed, such a module B* is shown
to equal H°M itself. Generators of B* are obtained as follows: For each
generator £ of k(v)-module H*M', we have £ /v € H*M and pull it back
by v as many times as possible to obtain an element £/ vU&) e H*M for
an integer a (&) such that §(¢/v¥€)) = 0, which is seen to be a generator of
B? (k(v) = Z/pifv = vy, and = k(1) = Z /p[v1] if v = 2). We start the
computation of the Bockstein spectral sequences from Ravenel’s result:

Theorem (Ravenel [5]). As a K (2).-module,
H*M3 = A(C)QK (2)+{1, ho, ht,s go, 91, gohan } ifp >3,
H*M3 = A(p2)@ (Z/2[9| Q@ A(B)QMBA)QCK (2)[ho]) if p = 2,

where M = K(2)[hio, h11]/(h10h11, vgh:fo — h3)), and the elements p,
9, 3, ¢, ho, h1o and hq1 for p = 2 have bidegree (1,0), (4,0), (3,0), (1,0),
(1,0), (1,2) and (1,4), respectively.

Note that H* M2 is infinite dimensional if p = 2, since g and hg are the
polynomial generators of positive dimensions. In [5], the elements (h, are
denoted by (o for i = 0, ag for i = 1, (o for ¢ = 2 and « for i = 3. The
structure of H* M, 0 at the prime 3 is given by Henn [2] (cf [12]), which is

also infinite dimensional. In order to find the integer a(v2 ) for the generator

v2 of H OM2 , Miller, Ravenel and Wilson introduced in [4] the elements x;
(see Sect. 4). Then by these Bockstein spectral sequences, they determined
the B -term H¥ M for s = 0 and p > 2. In the same manner, the first author
determined H°M§ at p = 2 in [10]. For the case s > 0, H*M¢ forp > 3 is
determined in [17] and [16]. For the prime 2, H* M 11 is determined in [14].
Here we determine H *Mg at the prime 2 (Theorem 2.3), whose structure is
much more complicated than if p > 3 in that it is infinite dimensional.

The computation is similar but very complicated. If we have a cochain
x of 2*E(2), such that d(x) = 0 mod (2"*!,v?") for any n > 0, then
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the cohomology class & represented by = acts on H *Mg. We have such
cochains z and G in Sect. 2, 7in Sect. 4, and R, B and G in Sect. 6, which
represent ( = v1v2(2, vig, (/vi, p2, B and g, respectively The action of
these elements helps computation. For example, 1/ *MO W*®A(p2) for
a submodule W+ = Yo W in the exact sequence W*~1 — W — We —

W5 % W+l where H*M{ = W*QA(p2). To make the verification
easier, we decompose W* into ten submodules M; = MC;@MI;, and

find submodules M, of H * Mg such that the sequence 0 — MC; = Y2 3>

MZ- —> M1I; — 0is exact. Then we see that W* = Zi:l Mi (Lemma 18.1).
V&: rename M; the i-th letterof D, E, F', J, K, L, M, N, P, () and define
M; one by one.

These modules are too complicated to write here, and we give hints of
these modules. The explicit definitions of these modules are found in the

next section. If we put RM; = {¢ € H*MY | 5/2%11’ € ]\Z for some a,
b > 0}, then we have

RD =K (2. {vs, vzc}@ﬁ(”{vzé}
RE = W“){l}@m 2) vy '¢)
RF = (K@), (o3 W, 05 06, bR (2), {20} ) ®2/2]9]
RJ = (Z [2[hq]
RK = Z/2{927”242 h107 057 Uz_ 117”2 1B}®Z/2[ ]
RL = (Z/2{mo)/ () @ABBK ). (ol / (o)) ®Z/2lg
® (K@ (¢ vt 0a0%}) @2 /2{h0)
RM = 2/2{v2,v2, 3h1o, v3hio, v3h11 }QA(DRK (2)1[g]
RN = K(Q)* {1,1)2@}@2/2{@2”54’ ln>0,s=—1(4)}
RP = Z/2{1,v:¢*}
RQ = Z/2{vs(, va(?)
(n)

Here K (2)" = Z/2[vF"] and K (2),
H *Mg is infinite dimensional, since so are the summands F', J, K, L and
M. The only indecomposable summands of H *MO2 which are not finite in

every degree are the four summands of Q®A(p2), each of which contains
a Q / Z (2)-

= K(2)§<n) \ Z /2. The module
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We divide the paper into eighteen sections:

Introduction

Statement of results

Cocycles of the cobar complex 2% A
The Miller-Ravenel-Wilson elements x;
H* M} revisited

H* M revisited

The cocycles R and B

The connecting homomorphism on J

e NN kWD -

The connecting homomorphism on K

_
=]

The connecting homomorphism on £/

—
—_

. The connecting homomorphism on F'

._
N

The connecting homomorphism on D

—_
w

. The connecting homomorphism on L

_.
»

The connecting homomorphism on M

9}

. The connecting homomorphism on N

—_
o

The connecting homomorphism on P

—_
~

. The connecting homomorphism on Q)
18. The Adams-Novikov E»-terms

In the next section, we state the structure of the chromatic E;-term H *Mg
and the Adams-Novikov Ea-term H* E(2), for .(L2S") by using explicit
generators. The Sects. 3 and 4 are devoted to make some preliminary com-
putation in the cobar complexes for studying the mod 2 Bockstein spectral
sequence H *Ml1 = H *Mg. In particular, we construct the cocycles z
and G of the cobar complex 2*A of A = E(2). over E(2).(E(2)) as
well as the cochain 7 that is obtained from the generator p; of H'Mj.
In Sect. 5, we define one of Q/Z ) summands in H 1MO2 originating
from H!'Mg. We decompose the Ej-term H*M{ into the summands in
Sect. 6. In the next section, we study some cochains arisen from the struc-
ture of H*M{ including the cocycles R on E(2)./(2""!,v?") and B on
E(2),/(2"5,v2""") for n > 0, which represent the generators po and (3,
respectively. In Sects. 8 to 17, we study the behavior of the connecting ho-
momorphism &: H*MZ — H**1M{} on each summand of H*M;. Note
that each element used to state the results is expressed by its leading term
as we did in the previous papers. In the last section, we compute the chro-
matic spectral sequence, or observe the exact sequence associated to (1.1)
and (1.2), to obtain the module H *Nol and prove the theorems on H *Mg
and H*E(2),.

Acknowledgements. The authors would like to thank Haynes Miller for the suggestions that
make this paper readable.
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2 Statement of results

Ravenel showed the structure of H*MY = H*K (2). (cf. [7]):
(2.1)
H*M3 = (K(2)+[hio, hu1]/(hiohar, vahiy — b, ) QA(B)R Z /2]g]

DK (2)+[ho]QA(C)) @A(p2)-

From this, H* M7 is determined in [13]:

(2.2) H*M} = (26: MBZ-> RA(p2),

=0

where

MBy = K (1)./k(1){hig, hioB, Chiy, C2hi, Chiy, (Chiy | i = 0,1,2,3}
X Zg]

MBy = (v2/v1) Z/2[v3 | QZ /2[h11] /(13 @AB)R Z /2[g]

MB; = (v3/v}) Z /2[v1,v3|@®A(h10, v2h10, )R Z /2]

MBs =3 (03" /0¥ ) Z 200,03 @ Z /2]

n>0
MBy =3 (03" D 03 Z /2001, 052 |® Z /2[R
n>1
n—1 n+1
MBsZZ(vz vPT Y Z /200,037
n>1

®Z/2{U17 h10a01h107h10}®z/2[9]

MBs = (03" ¢V /o) Z /2y, 072

n>1

®Z/2{C, viCho, viCht, viChE YR Z /2[g).

Here ¢ / U1 and (1) v{ denote the elements represented by cocycles z /v U1
and 22" /v] € Q' M}, respectively, where the cocycle 7 is defined in the
next section. Note that ¢/v; = 0 and ("~ 1) /02" = 2" ¢2"" = 0.

Remark. The names of the generators are different from those of [13].
The generators Ch /v1 Ch /v1 and ((MAi /v{ correspond to Cagb/v{,
v2lag? /v~ U] ! and e q° /v vy © , respectively, where a and b are integers
suchthata— 1,2,3,4and i =4b+a — 1.
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In order to state the structure of H *Mg , we introduce submodules of it,
in which s and ¢ in the summation run through Z.

D= Y (US”SZ/Q{vg/zvl}EBUQ"SZ/m{UQ"’I45/161)%})

n>2,2fs

@ Z (UgnsZ/2n+2{5/271—1—2,011}@1)2"3Z/4{Z(n—1)g/4v%n+1+2}>

n>2,4|(s—1)

@ > Wz,

n>2,4|(s+1)
E= ZU Z/S{U2/8U1}@Z/4{U2C/4U17UQC/4U1}
@Z/2{v§/2v%7v4/2v?}
F= Zm 2fs Y (Z/8{v2_1h%15/8v1, hio/8v1}
R A 2}) @2y
J=Z/2{¢/2v] | j > 0}QZ/2[ho]
K = (2/8{CC/803, Wy /Svr, Wy B/8u1 }
PZ/4{vy b3, /4v1, 05 BT, 5/ 401}
BZ/2{v2/201}) ®Zlg).
L= Zz‘?:() EEZ
M = Z/2{v2/202,v2/2v1, v3h10 /201, v3 /201, v3hig /201, v3h1 /201 }
RABRZ/2[vy", g,
N = > (i gyerus A, i, k)D Z(n,i,k)eT’—TJr(Z/Uil)A(/n_:;k)

O Amn-10® Y Zmik),

n>3 (n,z,k)ET""

P =Y pons0 Z/272{1/2 20 YD Y Z/2{¢C/ 207,
Q = Q/Z ) {C/v}®A) = {{/2 v | j > 0}@A()

Here

LCo=Y <Z/2{1/2v2j+1 hio/2027FY 12, /2024 13, 20240
j=0
X Z/2[g|QA(5)
BZ/2(C/27 Cho /27 | ] 2 0)QZ/2AWRA)) -
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LCy =Y v3°CZ/2{1/2v}, ho /207, ho /201 }®Z /2|1,

2fs
LCy= 3 w3"°CZ/2Wd){1/203%" "+ ho/203% @2 /2[1),
n>22)s
LCs= Y 3"tz /2d){1/207 %" 1 ho/ 20} Y2 /2[R,
n>2,2fs
LCy= > 03" Z/2Wd){1/203%" 71 1§ /207" Y @2 /2]g).
n>2,2fs
LCs= Y 3" Z/2d|{ho/20} %" 03y /203 11 @2 /2]g),
n>22fs
_— ng n—1 7~ on—1 > on—1
LCs = Y w3 ¢CZ/2[f){hg /207" + hg /201" 1 ®2Z/2]9),
n>22)s
LC7 =Y 03"t ¢CZ /2] {12037 ho /2032 Q2 /2]g),
n>22[s

Z/2" o3 e /2n |
— 2fsm, 3-271<2Pm <32}, n—i<k+1
A(n,i, k) = . i
Z/2k+2{v% S/2k+2’l)% m ‘
2)sm, 3-271<2km <3.20}, n—i>k
A(n,n—1,1) = Z/4{v3"$/40?™ | 2 fsm, 3-2""2 < 2m < 3-2"1}

Z(n,i, k) = Z/282 (3" (U0 okt 2yt |
2)sm, 271 < 2km < 201

—_—

Z(nyiyi) = Z/2i+2{p2 72 0-1) j2i+22% | 9y gy
Z(nyiyi+1) = Z/23Z s 00 /2802 2 ) s,
and subsets of triple integers
T={(nik)€Z3|n>32<i<n—-1,1<k<i+1}
T, - {(nvzvk> eT | (ka) 7é (n_ 1,1),(71— 1,TL— 1)}7
S={(n,i,k) € Z%|n>3,(i,k) = (0,1),(1,1),(1,2)}
T ={(n,i,k) €Ty |n>i+k+1}
Put a module
EM = DOEDFPHIPKPLOMPNPHPPHQ.

Then we have the E';-term of the chromatic spectral sequence.



The Adams-Novikov Fs-term for 7, (L2 S O) at the prime 2 279

Theorem 2.3 The module H *Mg is the tensor product of the exterior al-
gebra A(pz) and EM.

For the Adams-Novikov Fs-term H*FE(2),, we further introduce the
modules:

At = 3" z{u}r 2
1,2 )s>0
C* = 01 Z /207 ){1, o, hio, 16} @Z19)Dvip1 Z/2[vF, h|@A(ho)
K' = (2/16{01(CC/1602) YD Z /8{61 (W8 /801), 03 1o /8)
DZ/4{01(hi/8v1), 61 (vy ' hiy 5/401) YD Z /2{81(v2/2v1)}) ® Z 19,

8
I'=LC,®Y 61(LCy),
1=1

LCy = (Z/2{61(8/207 1), 81(h1oB/207 1), 81 (W30 8/207 1),
j>0
81(hoB8/207 )} R Z /2]g]
D Z/2{C¢/207 M, (Cho /2P Y ®Z /2[1]),
P =3 Z/2{61(¢C/20"")},  and
j>0
Q = Q/Z(2){51(Cg/vil)}-

Let ¢ (resp. d1) denote the connecting homomorphism associated to the
short exact sequence (1.1) (resp. (1.2)).

Theorem 2.4 The Es-term of the Adams-Novikov spectral sequence con-
verging to the homotopy groups m,(L2S®) is isomorphic to the direct sum of
Z 3), 00(A™), 50(CT), padod1(EM), 6001 (EM), do(K'), do(L'), do(P")

and 6o(Q").

Note that the c-elements are in A™ and the 3-elements are in 8o, (]\7 ).
Furthermore, Q/Z 5y summands are dod1(p2Q)@do(Q’).

Corollary 2.5 The homotopy groups m.(L2S®) contain two Q/Z (2) sum-
mands in dimension —4 and one in dimension —5. Furthermore, the group
7i(L2S°) is finite except for i = 0, —4, and —5.

Proof. The differentials on Q/Z (2) vanish since it has no finite index sub-

groups. We see that E21 2, E22 2 and Eg’f4 are all zero, and so nothing
kills the summands. Since the spectrum E/(2) is smashing [8], the Adams-
Novikov spectral sequence has a horizontal vanishing line. Therefore, the
other part follows from the theorem. a
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3 Cocycles of the cobar complex 2* A

Let (A, I") denote the Hopf algebroid (E(2)., £(2).E(2)) = (Z(g)[v1,
v3l], E(2)4[t1, t2, - - 1@ pp E(2)«) associated to the Johnson-Wilson
spectrum F(2). Then the cobar complex 2*M for a right comodule M
with structure map ¢: M — M@ ,I" is a differential graded module
25M = M@ 4I®* with the differential d: 2°M — 25T1M given by
dim) =9¢Y(m)—m,dz) =1z —Alx)+z®landdim Rz Qy) =
dm)@zy+medz)@y —merdy) form € M,z € 2'A
and y € 2°A. Here, A:I" — I'@Q 41" denotes the diagonal map of I.
Note that A is a I'-comodule with the structure map ng. In this paper, we
consider comodules M induced from A and denote the structure map v by
nr. We denote the cohomology of the cobar complex by H*M. Then H* A
is the Es-term of the Adams-Novikov spectral sequence based on E(2)
converging to 7 (L2SY).

Here we write down some of the formulae on the structure maps of the
Hopf algebroid I'.

nr(v1) = v1 + 211,

(3.1) nr(v2) = vo — buit? — 3vity + 2te — 4t3;
Alt)) =t1 @1+ 10t
Alty) =to @141 @] + 1@t —vit1 @ t.

Furthermore, the equation 7z (v3) = 0 in I" implies the relation
(3.2)  wat} + t1nr(v3) + vitd + vivgt? + vivaty + it +13) =0
mod (2) in I" (¢f. [13, (6.10)]). Recall that the generator ¢ (which is denoted
by (7 in [13] and (5 in [4]) is represented by the cochain z = v;l (ta+ ti{’) +
vy 22 e NTA

2 12 .

Lemma 3.3 There is a cocycle Z of 2 A such that Z = vivoz mod (2, v3).

We write E as the homology class of Zz.

Proof of Lemma 3.3. Put y = v} + 8vjvs and

(3.4) z = 773(1)2)751 + téll + vito — U%t% — U?tl.
Then we see the congruence z = wivez mod (2,1}%) by (3.2), and the
equation

(3.5) d(y) = 163
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obtained from the computation in 2! A

d(v}) = (v1 + 2t1)* — o}
= vty + 24v7t] + 32018} + 16t
d(8vyva) = 8(vy + 2t1)(ve — 5v1t% — 3v%t1 + 2ty — 4t§’) — Sv1v9
= —400it} — 240ty + 1601ty — 320187 + 16t17)R(v2).

Then 0 = 16d(2) by (3.5), and we have d(z) = 0. 0

Notation. Hereafter we use underlines on terms to explain the computation.
Underlined terms with the same subscript are canceled out each other.

Lemma 3.6 There are cochains él € Q3Af0r eachi > 0, and Ge A
such that

a) B; = v*B mod (2,v?) and d(B;) = 0 mod (2111, v?").

b) G = viG mod (2,v}) and d(G) = 0.

Here B and G denote representatives of 3 € H*K (2), and g € H*K (2),,
respectively.

Proof. In [13, p.147], it is shown the existence of a cochain W _such that
d(W) = Z®2*® z* + v} B mod (2, v}). The lemma is valid for B; defined
by the equation

dW) =%® ZZ; + B;,

where ZZ; is given by d(2%"') = 2ZZ; mod (V).

In the same way, we define G by the equation d(U) = t1 @t ®t1®1t; +G,
where U is a cochain satisfying d(U) = t; ®t; ®t; @t +v{G mod (2, v7)
(cf [13, p.152]). 0

For the later use, consider a cochain ry € Qv L A given by

(3.7) 1y =7 —t] + 303ty 4+ 201 (83 — t2) — 2tInp(vy tug) + dvitd.
Then we compute
T =2 — t] + 303ty — 2uite + 2013 + 4033
—2t3 (vt — 207 %) (va — V1t + vty + 2t) mod (8)
38) =7 — 3t + 305t1 — 2uite + 40t — 207 wat? + vy M3ty

+4o7 M3 + dv 0t mod (8)

and we see that v?r; € 21 A/(8).
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Lemma 3.9 In the cobar complex 1A,

d(v3) = vi(3r; — 2) — v} (3u1t? + vPty) + 4v3Z  mod (8).
for Z = z 4 vivy 2 (vat? +3) + vivy 2o,
Proof. By (3.8), we have

315‘1L =Z—-r+ 31}%1&1 — QUflvgt% — 22Uty + 4U;202t? + 4vf1t%t2
+4o7 ) + 402 mod (8),

and so

t1 = 3(Z — r1) + vty + 207 oat? 4 201ty + dvy 2uatt 4 v 3
+4o7 M + 402 mod (8).

We then compute mod (8):

d(vz) = v%t‘1 + vl 2 4 4t2 21}1@2@ + 21}%1}27&1 + 4vgty — 2v%t?
—|—41}1t1t2 + 4’Ult1t2
= vt} — vt + 413 — 200t 4 20nR(va)ty + dugty + dvit3ty

= v%t‘lll — vilti + 413 — 2vjv9t? + 203 (Z — ﬁl

—vity + ’U%t%Q
+03t) + dvgty + dv1t3ty

= —vt] + ult? + 412 — 20100t3 + 203 (Z — vity + Uity)
+4voty + 4Ult%t2

=—vi3(zZ, —r)+ U:I))tl + 2vflvzt% + 2u1te, + 4oy 2ogt?

+4v1_1t%t25 +4v; >+ 4v1t16) + vlt + 412 — 2vlv2t%3
+207(2; — vty + v17t12) + duaty + 41;17@25

=03 (3r) — 2) — vity + dvyuat? + dvdty + dvot 4 duit]
—30t3 + 4t3 + 4uoty
=0}(3r1 — 2) — v} (3v1t] + vit1) + 4(v3z + vi (vat] +1]) + vits)

a

Lemma 3.10 In the cobar complex Q2 v;* A, we have

d(Ulvg) = 2r1 + 4vity — 11U%t2 7U1t1 — 8?)1t3
+atd (0" = 207t + 4o R0y ))nR(ve)
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Proof. Note that
(3.11) nr(vrt) = ot = 207 4 4o iR (v ).
The lemma follows from the equations:

r1 = nr(ve)t; — vite + 31}%75% + 21}%751 + 2111752{’

—2t3(vy ! = 207 %ty + 4v; *inr(v; ))nr(ve)  and
d(vive) = 2t1nr(ve) + U1(—51)1t2 3U1t1 + 2ty — 4t3)

by (3.4), (3.7) and (3.11). O
Lemma 3.12 [n the cobar complex £2' A, we have
d(viPvy) = =201 + 1601%t3nR(v2)  mod (32,v1°).

Proof. Since d(v{°v2) = vitd(viv2) + d(vit)nR(viv2), we obtain d(vi®vy)
= 21)%47“1 41)%47“1 + 162}12t3773(v2) by Lemma 3.10 and the definition of
1. O

Lemma 3.13 In the cobar complex QL A, there is a cochain ’0?22 such that
d(W$22) = —2087® Z+ 808X mod (16, 0%)
for some X.

Proof. By [13], there are cochains u and u’ such that d(u) = t; ® 22 mod
(2,v1) and d(viu') = t1 ® Z mod (2,v?). Put v872 = 0§22 + 4v]viu +
4v$u/2. By Lemma 3.3, we compute

d(v87%) = —4vf(v1t11 + t% )2 - 08707
d(4v]viu) = 805t ® v2u + 40703t ® 22 | T2X1)
d(4vf(viu))?) = it @ 22 , T 8v$ X,

mod (16, v$) for some X7 and X. O

4 The Miller-Ravenel-Wilson elements x;

By the definitions of z and 71, we have
(4.1) r= téll +z 4+ U%tl = vot1 + V1 (tz + ti’) mod (2),

which represents the generator p; of H! M7 and will be used in this section.
Define the element y; by

2 -1
y1 = 0] —4v; v

which is x1 1 of [4].
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Lemma 4.2 In vflf, we have
d(y1) = 8v; %ry = 8v 2(t] + Z +vit1) mod (16).
Proof. Noticing the equation (3.11), we compute
d(v%) = 4vit1 + 475%
d(—dvy op) = —4(vr " — 207 + dop iR (v )
X (v — Burts — 3vlty + 2ty — 4t3) + dvy Moy
= 20t7 + 1201t — Svy Mo + 160,143
+8vy 2t1mR(v2) — 160, 2R (vy tog).

Therefore, using the relation ng(ve)t; = Z — 5 — vity + v32 + vit] by
(3.4), the sum is

d(y1) = 32t + 24vits — 16v] 'tz + 1607 1]
—16v; 23R (vy tug) + Sur2(Z — t}).

and we see that the right hand side is 8v; 21 by (3.7). a

Define the elements xz; for ¢ > 1 by

2 3
1 = Uy + V102,

4 2
To = vy + v%vg’ + v?v2,

2 3.22n+1_19 3.22n+1_3

Topt1 = Toy + V] T2 + v} vy (n>0),
2 3.22nt2_19

Ton+2 = Topyq + V) o (n > 0)

Then we compute
Lemma 4.3 In I', we have
d(x1) =v3(r1 +2) mod (2).

Furthermore,

n n— n —~ 1 _]. n n
d(z,) = v} 7> L V37 il (2 ) 032"t mod (2)
forn > 1.
Proof. By (3.1) and Lemma 3.9, we have

d(”%) = U%(Tl +2)+ U?(mt% + v%tl) mod (2) and
d(vive) = vi(v1t3 +vit;) mod (2).

The sum gives us the first one.
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We show the others by induction. By (3.1), (3.2) and (4.1),

vad(v3) + vitinp(v) = vvatt + viting(v3) + vivatt
= v3t2 4 vty + 0§ (ta + )
= v3t5 +vir; mod (2)
We also see that ¢ 173(1)2) =r?+ v%tz + vit{ mod (2) by (3.1) and (4.1).
Since d(v3) = vad(v3) + d(v2)nr(v3), we have
d(v3) = vt3 + viry + vird + Uitd +odt] mod (2)
=uri + 07+ 08t mod (2) by (4.1).

Then the first step d(z2) = v{Z? + v$Z + vilt; mod (2) is obtained as the
sum of

vi(r? +7%) mod (2) and
d(v3vd) = v3(vyr? + 07 4+ 0¥t) mod (2).

Inductively suppose that

2n _H2n—1 .22n_4~ ‘22n_1
d(zan) = v 2° + 03 7+ vl t1 mod (2).
Then mod (2),
2 _ 22n+1~22n 322n+1 8“’2 22n+1 2,9

d(zs,) =vi  z° + Lt ty,

92n+1__ 92n+1_ 2n+1_ 4. 2n+1_
d(U%Q 121U2) = Ui’)? 8"’2 + i’)? 4 T4+ 32 1t13

,22n+1_ o .22n+1 2 22n+1 1
dwi®" Tuy) =] , T t,

and we obtain

d(xony1) = vfznﬂﬂzn + vi"22n+l_43 mod (2).

Squaring this shows

d(23,,) = o] TE 4 o822 mod (2).
Add
d(U%I22n+27125L‘2) = ”Ui)) 22n+1_ 8"“2 + 1 22n+2 4~+ 1 22n+271t1 mod (2)7
and we obtain the case 2n + 2, and the induction completes. a

Remark. In the following, v3" denotes sometimes ,.
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5 H* My revisited
In [4, Th.4.16], it is shown that

H MY = (Sin,ps 2/27207*/272))
@D (v1Z/2[vi?, hio] @A(p1)) DB (Q/Z 2y QA(p1)) -

In this section we study the image of p;/2° (i > 0) under the map
HM} — H'MS.

(5.1)

Lemma 5.2 Consider the formal sum

r=— Y (FLMA62/y) k= 2y —8(Z/y)* + ...

in Q' A for y = v} 4 8vive. Then r = Z/v} mod (2) and it defines a
cocycle r ofﬁlvl_lA/(TL)for anyn > 1.

Proof. In this proof, we make a computation formally. Let log(1 + ) =
> iso(—1)F712* /k, and putr = d(log(y))/16. Note thatng(y) = y+16z
by (3.5). Then d(r) = 0 and

d(log(y))/16 = (nr(log(y)) — log(y))/16
= (log(nr(y)) — log(y))/16
= log(nr(y)/y)/16
= log((y + 162)/y)/16

as desired. O

Proposition 5.3 The generator p1/2"' of Q/Zy C HWOM) =~
Q/Z o DZ/2is represerited by r /2", Furthermore, the map H* M} —
HME sends p1 /22 to (/27201

Proof. By (4.1), p1 /2 is represented by 1 /2v1. Since Z/2v{ is homologous
to r1/2v; by Lemma 4.3, we see the proposition by Lemma 5.2. ad
6 H* M revisited

We give another decomposition of H* M, to make the book keeping easier.

In the following, we decompose each summands MDB; given in (2.2) into
smaller ones.
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Now we consider the submodules of K (1), /k(1),:

Ao = Z/2{1/07 | j > 0}

A, =Z/2{1/v¥ |0 <2j<3-2""1}

At =z 2{1/v¥ |0<2j<3.2""1 42}
A =Z/2{1/v7 |0<2j <3.2"1 —4}

for n > 2. Then MBy is divided into the following seven summands:

LCy = v1Asc{1, h1o, Wy, 1o /01 } R Z /2[9) @ A(B) D Aso {v1, ho}
®Z/2[h]QA(C),
LIy = Ax{h10, h3y, 1o, 9} R Z /2[g @ A(B)BC Ase{v1ho, h3 }
®Z/2[h]QA(C),
JC = (K (1)«/k(1)+&QZ /2[ho],
JI = CK(1)./k(1).QZ/2[ho],
Q = Z/2{/vi}RA()
Ko = Z/2{h},/v}}Q@A(v, B)RZ /2D Z/2{C/v}}RA((), and
P = A @AB)D(C/v1]) A @A(C).

Note that the direct sum MB;EMB; is the tensor product of
Z /2[vF?, g] and the module displayed as follows:

| — 77 A
il

0 4 8 10 16 24

va /1 v v} v

in which the lines of the slope 1 (resp. 1/3, 0) denote the multiplication
by hig (resp. hi1, v1). The module MB1EPMBs, is the direct sum of four
modules

= (KYBKT)RZ/2[q),
Di= > K}
n>2,2/s
Fi= Y vi*(gK{BK})QZ/2[g]
n>22Js

M = M°®QZ/2[vi, g).
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Here

KY = Z/2{v2/v1}QA(B)
K} = Z/2{vy 'hi /1 }@A(B)  and
MO = (Z/Q{vghn/vl,Ug’/vl}@/l(hn)
B Z/2{v3/v1}@A(v1, hig, v2h10)) R A(B)

The module M is displayed as follows:

| T
L

0 24
v3 3 3 /1
MBs5 is the direct sum of
LCy =Y Z/2{v3°C/v}, v3*Cho /v}, v3*Cho v} } R Z /2[hT],
2fs
LI =Y Z/2{v3*Cho/v}, v3*Chi v}, v3*Chi vl } @ 2 /2[hg),
2fs
LCy= > v§"*CAn{1/v1,ho}QZ/2[h]],
n>22fs
LIy= Y v3"*CAn{ho/vi, h}QZ/2[h3],
n>22fs
Dy= Y Z/2{03" (/v }@A])
n>22fs
By =Y 2/208° /o) @A(3)
2fs
Ni= 3 (/o)A and
n>3,2fs
By =Y Z/2{v3*¢/of}.
2fs

Since (") also denotes v2" ' vZ" "¢, we use this in the direct sum-
mands of MB, and MBg. MBy is divided into

LCs= 3 o CAn{on, ho}@Z /2],
n>22)s
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LIy= Y 03"t ¢Ap{viho, R3}QZ /213,
n>22fs

n n—1
NQ: Z ’Ug s+2 CAn

n>22)s

MBs is the direct sum of
LC4 = Z ’U%nSAn{Ulv h(3)}®Z/2[g]a

n>22[s
LCs= Y v Al {vihio, v1h3}RZ/2[g],
n>22)s
LI4 == Z vgnsAn{h107g}®Z/2[gL
n>22)s
_ 2"s A+ 1,2 3
LIs = Z vy Ay {hio, 10} QZ/2]g],
n>22[s
Fy= Y Z/2{v}"hip/v}}@AD)RZ/2l9),
n>22)s
N3 = Z v3 *A, and
n>3,2)s
E3 = Z U%SAQ.
2fs

MBg is the direct sum of
LCs= Y 3" (A {h}/v1, h}Q@Z/2lg),

n>2,2fs

LCr= 3" wd*2 7 A1/, ho}®Z /2],
n>22)s

Llg= Y o2+ A (B} /v1, 9} RZ /2lg],
n>22)s

LI; = Y o3 (A {ho/vr, YR Z/2g),
n>2,2fs

Fr= Y Z/2003 " (g /o? T @A) RZ/2]d)
n>22)s

D= Y Z/2{uF T o @A)
n>24|(s—1)

Di= Y Z/2{u3" " (/@A)

n>3,2[s
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By = 2/2{oi 2o @AW)

2fs
ng n—1
Ni= Y 3" ¢((/vhA,
n>22)s
D >z R4,
n>24|(s+1)
Now put
D=1t Dy E=%1F E, F=2 F, J=JCQJI,
K = KoK, = ST J(LC@LL), and N =37 N,
Then

H* M} = (DOERFHIDEDLOMBNBPHQ) A(p2).

7 The cocycles R and B

Consider the E(2).-module M (i, j) = E(2)*/(2i,v{), which is also an
E(2),E(2)-comodule if 2°1|;. Then we have the exact sequence

(1) EON s Hoonr(1, ) Y Eetagl M oo,

Lemma 7.2 Every element of H¥°M(1,2") for s = 2,3,4 and n > 4

is dlwszble by 111"72 exceptfor Cho, C% and Cpa if s = 2, B, ChE, C2h0,

vy th’ Chopz and CPpyif s = 3, and g, Chg, C*hg, Bpa, Chipa, (Chopa

and vy, h10P2 ifs =4.

Proof. By (2.2), we see that

HYM{ = Z /2{h1o/v1,v2€ 0]}

H*OM = Z [2{hio/vi, Cho/v1, CC/vi, vy ' hiy fv1, haopa/v1, valpa v}

H>M{ = Z/2{hiy/v},Chi /vi, (Cho/vi, hiopa/vE, Chopa /vt
CCpz/vi, vy by po o1}

ThenImé = 0if s = 2, = Z/2{v, 'h3,} if s = 3, and = Z /2{vy 'hiyp2}

if s = 4, which gives the exceptional elements. .

If /v € H> 2" M} is in the Jimage of 1/v{", then vl Tz e
H* OM(l 2™). So if the element Ul Jx of H® OM(l 2™) is divisible by
”1 ,then 2" — j > 2"~2, We will find elements a:/vl with j > 27 — 272,
There is no such elements in MBiEMDBs, since j < 2. For a gen-

erator vgm@tﬂ)&/v{ of MB;, 2" — 272 < j < 3-2m"1 4 4 and
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6-27(2t +1) +[&] — 2j = —2""!. Here |§;| = 8ifi = 3,=6- 2" if
i=4,=2sifi =5ands =2,3,=0ifi =5ands = 4,and = 6-2""1 48
if # = 6. Then we see that there is no solution if n > 4. In MBy, we have
Wo/vi 2, Cho /ot (ot Cho /ol CC0T T,
hiop/vi 1, Cpa /v, and  (pofui

. _on+1
in H272"" M{,

h?o/vln+3’ﬁ/v2" Ch%/UZ" CQhO/,UQ /1}2 —4-47 Cgh /U2"+4
h3opa/vE +2, Chopa /vy, Cpa/vT", Chopa/vE 4, and  (Cpa/v? T4,

2n+1

in H3— Mll, and

g/v3"  haoB/oF L Chd fo (22 o3, Chd JoF A, CChE fv? T,
OPQ/UQ +3aﬁp2/vl 7<h p2/7)1 7C2h002/7)1 )
Ch3pa/v?" ™, and  (Chopa/v 4,

in H4=2""" M. Since the generators of the form z/v2" are pulled back to
x of H*M (1, 2), we obtain the other exceptional elements. 0

Lemma 7.3 Let z; denote a representative of Chly * of H*° M (1,2"). Then

d(z1) =221 ® 2z mod (4,07")

d(z2) =221 ® 29 + 223 + 2kv;1t1 ®t; ®@t; mod (4, v%n)
d(z3) =221 @ 23+ 2k'v; 't @t @t @ R mod (4,07 )
d(z) =221 @ 24+ 221 ® G mod (4,0%")

for some integers k and k'. Here R represents the generator ps.

. n . . .o . n .
Proof. Since 2z = 2%" is primitive mod (2,v?") and 2 is homologous to
22, the first one is obvious if we replace z1 by z3.

Put d(22) = 2¢,, mod (4, v3" **). Then

cn = k1B +kozs + k3z1 @ 20 + kqvy ' @t @ 1

(7.4)
+kszo @ R+ kgz1 ® 21 @ R+ d(C;L)

mod (2, v}") for some ¢/, by Lemma 7.2. Recall [13, Lemma 6.8] that there
are elements u; such that d(u1) = 21 @t +v122 and d(uz) = t] @ 29 +v123
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mod (2,v?"). Define elements w to fitin d(u;) = 21 ®t1 + v122 + 2w mod
(4,2"). Then

0=221 Q21 Q01 +2t1 @ 20 + ’U1d(22) + 2d(w)
= 2d(21 X ul) + 20121 ® 29 + 2d(UQ) + 2v1 23
+2v1c, + 2d(w)  mod (4,v3").

Comparing with (7.4) shows the second.
In the same manner, we see the others. O

Proposition 7.5 There is a cocycle R, € 2*M (n + 1,2"), which repre-
sents py of HYOM(1,1) = HYOK(2),.

Proof. Suppose first n > 3. Raising a representative of ps of HYK(2), to
23" power yields a representative of py € HV9M (1,23"). Let R denote a
representative of po. Then R? also represents po, and we compute d(R?) =
2R® Rmod (4, v3"). The relation p3 = 0 of H* K (2). shows the existence
of an element S such that d(S) = R® Rmod (2, v3"). Then Ry = R?+2S
satisfies the relation d(R;) = 0 mod (4, v3").

Suppose inductively that there exists a cocycle Ry such that d(Ry)
= 0 mod (2¥, v¥"*7") for k > 1. Then d(R;) = 2F'z mod
(2F+2, v%g’"”*%) for some x, and we see that x represents an element of
H2OM(1,237+272k) Lemma 7.2 shows that = kizy + kez1 ® 21 +
k3z1 Ry, + 2y + d(w) mod (4, 0%3%%) for some cochains y and w. Since
d(x) = 0 mod (4, 25"+272F) we see that

0="ki(21 ® 29+ 23+ kvy 'ty @11 @ 1) + k3z1 ® 21 @ Ry + d(y)

mod (2,92 *") by Lemma 7.3, which implies a relation 0 = k1 (¢2hg +
Ch3 + kuy'h3y) + k3C?py of H3VK(2), and we have k; = 0 = ks.
Therefore, d(Ry,) = 2" k21 ® 21 + d(2Mw) mod (2842 27",
Put Ry, 1 = Ry + 2Fkoz; + 27w and we have d(Rj,;) = 0 mod
(282 2" 7*") 'which completes the induction.

Now take R,, for a representative of p2 and we have the result for n > 3.

If n < 3, just consider the projection M (5,2%) — M(n + 1,2") —
M(1,1). 0

We write R as R,, as long as no confusion arises.

Corollary 7.6 In the cobar complex for M (n + 1, j) with 2"
cochain S such that

J, there is a

d(S)=R®R.
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Proof. Since R is homologous to R? in the cobar complex 2! M (1, 5) for
any j, we have cochains U; and S; such that

d(U;) = R> — R—25; mod (v]).
Now send this by the differential d, and we have
0=2R® R —2d(S;) mod (v])
as desired. O

Lemma 7.7 There is a cochain H such that H = vjvy 'h3, mod (2,v})
and

d(H) =40t ®t1 ®t1 mod (8, Uil)
Proof. Put H = vivy 'd(vat?) — 2vdvy %3ty ® t — 4vyvy ' D. Here D
denotes a cochain such that d(D) = t{ @ t; ® t; + t? ® t? ® 2 mod (2)
given in [13, p.149]. Then, we obtain
d(H) =4vt1 ®t1 ®t; mod (8, 41)%, '1)4).

from computation

d(vivy 'd(vat}))

= v2d(vy 1) @ d(vat?) + (dvity + 4t3) @ vy td(vat?)

= vivy 2 (—uit] + 2t2) ® (—v1t? + 2tp) @ 3

—2005 2 (—u1t3 + 2t2) @ vaty @ty + dvyvy B T @ 3
= 2030, 23 @ 12 @ 17 — 2030, 2 @ty ® 17
—21}?1}5%2 QR + 21}?1}5%% Ruat; @11 + 4vlvglt% Rt Q2

d(—2v3vy 23ty ® t3)

= 2030, (3 QB+ Rt H IRty + @1 @1

d(—4viv, ' D)

= dvpu et ot +H et t)).
mod (8,4v?, v1). Here note that vot; =t} mod (2, v;) in I by (3.2).

Thus we put d(H) = 4vit) @ t; @1 + 40?C1 mod (8, v}) for some Cy.
Since d(C1) = 0 mod (2, v}), Cy represents an element of H>*M (1,2) =
Z/2{h%0p2, vlvglhflpg}. Since d(vit; ® R) = 2t; ® t; ® R, we may
assume that (1 represents a multiple of vv; 1h%1p2. Checking the above
computation carefully shows that there appears no R and we see that v?C

is homologous to zero. After suitable replacement, we may take C; = 0.
O

Lemma 7.8 There is a cochain C of £23°M (4,2") for n > 4 such that
d(C) = 8G mod (16,v7") and C' represents the element vy 'h3, €
H3OM(1,2"). Furthermore, v1C is bounded in 23°M (3, 2").
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Proof. We have d(H) = vijvy 't; ® t; ® t1 + - - - mod (2). Therefore, we
see that

(7.9)  d(H)=4ut @t @t +33C +8U +8Cy mod (16,0%")

for some Cs, C' = UQ_Itl ®t1 ®t; 4 ...and U in the proof of Lemma 3.6.
Note that d(C) = 0 mod (8,v?") and d(Cs) = 0 mod (2, v}). Then we may
putd(Cy) = v$C3 mod (2) for some Cs. The cochain C3 does not represents

g since g /v is a generator of H*M{. Since we see that d(C) = 8G + 8C3,
we replace the representative G by G 4+ C to obtain the lemma. O

Corollary 7.10 There exists a cocycle G of 2*OM (i + 1,2's) for any i, s
that represents the polynomial generator g.

Lemma 7.11 There is a cochain C' of £2>°M (4,8) for n > 4 such that
d(C") = 8v]vaG mod (16,v%) and C' represents the element vh3, €
H3OM(1,8).

Proof. By Lemmas 3.12 and 7.8, we compute

d(v]vaC)

—20%71 @ C + 8vlv,G mod (16, %)

= 20} @ (d(H) — 4vit; @ t1 @ t1) + 8v]vaG mod (16, v}) by (7.9)
d(2vir, ® H)

= 2vir, ® d(H), since d(vr;) = 0 mod (8) by Lemma 4.2.

Since we see that v3r; ® t; ® t; ® t1 is homologous to UIChS mod (2,v%),
we have the desired cocycle. ad

Lemma 7.12 In the cobar complex 2>M (n + 2,2"H1), there exists a

. n+1__
cochain z, s for n > 3 and odd s such that z, s = v% 41}%” Zz mod

(2,v2""") and
n+l_ 4. n n+1_
d(zns) = 2”+lv% @07 + 2”+lv% D¢
for some X'. Here Z is the element given in Lemma 3.9.

Proof. By Lemma 5.2,

n+1 ng
Ay nr(v3 *)r)
2n+1

=i 7“®d( 3"
_y HO G @ dod)

k>1

k+l—1( )kJrz 124k 4431 1 i
ey (M) sz )

k>11>0
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in 22M (n + 2,2""1). Here we see that
_ . n+1_4 _ Qs n
24k 4+3’L,U% k—3i ® d(v% S)
_ o4k—4+3i 2n+174k73i 24k+3i75 24k+3i75 24k+3i75 2n+274k73i+3s
=2 Ch ® ((v3 + i A )
2"g
—v3 °)

equals zero if 244375 > 4k + 34, which is satisfied when k& > 2 and when
k = 1 and 7 > 2. Therefore,

d(v%"“w% )r)

2n+1—4~ ( ) + 23 2n+1_7v22®d(02n5)

2n+1 ir % ( ) 4+ 9ntlgy, 2n+ 7v2z®(v1v2 5— 4t8)
_ %n+1—4~®d( )+2”+1svfn+l_3 2" — 3~®t8
=02 @ (20 W22 (02 (3r — 2) + 403 2)

_2n+1 2 2 s— 2( ~>Z)+2n+1 2 +1—3 2 s— 3~®t8
=12t 4~®u§ 5= 2(v1(3r—z)+4v22)

_gn+ly, 2"+1—2~® vg =23y — 3)2)
Lontlg, 2n+ —3vgns 3~®t8

Next consider Y = —32ng(vi®vs) +vfv$ /622 for the cochain v922 of Lemma
3.13, and we compute

d(Y) =201'Z® (3r — 2) + 8vj'X
for some X by Lemmas 3.12 and 3.13, which equals
d(Y) = 2022 @ v}(3r — 2) + 8vi2(vit1 + t1)Z @ (3r — 2) + SviiX.

+1 _ n+1_ Mo .
Put zps = 07 nr(v3*)r — 27 207" 193772y and we obtain the
n+1__ n n+1_
lemma. Indeed, 2"t % 3 % 5737 @ t§ is of the form 2"ty % —2x
for some X since Z = vyvez mod (2, v3). O

Lemma 7.13 Suppose n > 4 Then there isa cocycle 2z, of £22°M (n +
1 2") such that zz,, = U1 Yot U1 2y, + 21}%n74W + 2Y5 mod
(4 vl ") for the cochain W in the proof of Lemma 3.6 and cocycles Y;
(i = 1,2) such that Yy represents a linear combination of h%o, 2u1higp2
and hi1pa.

Proof. Lemma 7.12 implies that ¢ = d(z2,1)/2*""! yields a cocycle of
§2°M (n + 1,22"t1) whose leading term is v%2n+1_43 ® v%QnZ. Consider

22n+1 _on

the exact sequence M (n + 1,2") g M(n+1,22"Y — M(n +
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1,220+l _ 2™). Then by the definition of 229, ; we see that c is pulled back
to ¢/ of M(n + 1,2") whose leading term is v} 47 ® v%Qn Z. In fact, we
see that ¢ = 0 in 22M (3n + 3,227 1 — 27) by the computation

2n+1 2n
2" le=d(vf " nr(vy )

Z <k +1i— 1)
k>11>0 L
(_1)k+2'7124k74+3i

22n+1_4k_ S 22n
’ Oh iz @ d(vi )
=0,

since 2" —4 > 3n+ 3 if n > 4. Then there is an isomorphism v§2n: M(n+
1,2") — M (n+1,2") of I'-comodules and we obtain a cocycle 2z, such
that

2%, =0 20 Z + 0 2 X" mod (2,0%")

for some X" Since Z® Z is homologous to Z® 22" mod (2,v?), we replace
it by 2z, such that

2Zp = vf"_45® 24 vf"_QYl + 21)%"_4W +2Y, mod (8,v")

for some Y7 and Ys. Then we have v?" ~2d(Y;) = 2d(Y2) mod (4,v}"),
and Y] represents an element of H**M(1,2) = Z/2{h3,,vihiop2,
h11p2, vlvglh%}. Therefore, we see that d(Yz) = kt; ® t; ® R for some
k € Z /2. Since h%oPQ/'Ul 1S not zero in HlMll, we see that £ = 0. Thus Y;
represents klh%o + 2kovih1gp2 + kshi1p2 + k4vlvglh%1 of H2’4M(2, 2)
for some k; € Z /2. Then we have d(Ys3) = 2]{:411%”_1751 ®t; ®t; by Lemma
7.7.1f ky # 0, then vf”‘ltl ®t1 @t represents an element of H3M (3, 2").
Consider the composite
on
3,2 B w2 s gl

where § is the connecting homomorphism associated to the short exact se-
quence (1.3), which sends v%n*1t1 ®t1 @t to vag/v; by Lemma 7.11. On
the other hand, h3,/8v1 = [t1 ® t; ® t1/8v1] = [d(Y1)/1602"] = 0, which
contradict that vog/v; is a generator. Therefore, k4 = 0. O

Proposition 7.14 There is an element 3 € H>°M (n,2") for each n > 4
which goes to 3 € H¥°M (1, 2") by the projection.

Proof. Consider a commutative diagram with exact sequences
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2

H*°M(n,2") H*M(n+1,2") — H*°M(1,2")
-
Pr H>*" M(n +1,27) Pr
pr
H*°M(1,2™) 2 H*M(2,2") —— H>*M(1,2")
-

B M(2,2M)

where § denotes the connecting homomorphism associated to the short exact
2TL

sequence 0 — M (i,2") N M (i,2%") — M(i,2") — 0. We denote an
element represented by 2z, by CC e H*>'M(n + 1,2"). By Lemma
7.13, we see that pr(&f) = U1 *4CC + 02 ~2€, + 2& for some &; such
that &, is a linear combination of hlo, 2u1 h10p2 and h11 pa. Since ¢ sends
&1 to zero, 5(pr(§()) = 2+ 26(£2) and so prd(pr((()) = 0. Therefore,
we see that pr(25) = 0 for 283 = 5((() € H3OM(n + 1,2") such that
pr(2ﬂ) 283 + 25(&2). Thus we obtain 3 € H3°M(n,2") such that
20 = 2ﬂ as desired. O

Lemma 7.15 Let B denote a cochain that represents (3 of the above lemma.
Then there is a cochain W such that d(W) = Z ® Z Z5 + viB + 4v, W1 +
203Ws mod (8, v}) for some cochains W;, where Wy represents a linear
combination of h3y, v2¢%ho and vaChop.

Proof. As in the proof of Lemma 3.6, we have a cochain W such that
(7.16) dW) =Z® ZZ4 +viB + 2X; + 202 X

for some cochains X and X5. Then we have 0 = 2d(X;) + 2U%d(X2) mod
(8,v?") under the differential d, which shows that X7 + v? X, represents
an element of H38M (2,4). We read off that H3: 8]\4(1 4) is the Z/2-
module generated by h%,p2, vih3,, Chg, CChg, Chopg, CCpa, vIh3,pa, and
vivy hnpg from the structure (2.1) of H*K(2).. (Here v1v2(3 is taken
away since d(v1v23) = vy 2h1y ﬁ ) Therefore, we see that 2X; represents
a linear comblnatlon of vy hlo, 4(Ch0, 4Qh0p2 and 2C(p2, and 2v1X2 is a
multiple of v$vy 'h?, pe. If we consider the equation (7.16) mod (8,v%),

then we see that 2.X; represents a linear combination of 4v; h10 4¢ C ho and
4( hop2, since d sends those generators to zero except for & (2( Cp2) = viBpo.

Here 9 denotes the connecting homomorphism associated to the short exact
sequence 0 — M (1,8) 4 M(3,8) — M(2,8) — 0.Now put vy W = X

and Wy = X5, and we see the lemma. O
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8 The connecting homomorphism on J

Proposition 8.1 For the connecnng homomorphism 6 : H *MO —
H* MY, 6(Chi/2v]) = C2hi vl + (i + j)ChiTE Jvl for each i > 0 and
j>0.

Proof. Putt? = t; ®---®t; € 2'A. Then 2@t /v{™7 represents Chi /v
of HZ“M1 Take an integer n to be 2" ~! > i+ j, and we compute d(z%" ®

$90 /41T = 22 @ 22" @ P /20T 4 (34 )22 @ 00T oyttt
0

The above proposition implies immediately the following

Lemma 8.2 We have the exact sequence

0—J02 T 275 010

9 The connecting homomorphism on K

Consider the submodules KC' and K I:

KC = Z/2{hy/v1, vy b1 /01 }QAB)QZ/2[9) D Z /2{v2/v1, (v}
K1 = Z/2{vag/v1, b}y /v}} QABYQZ/2(9)B Z /2{C/vi, va3 v }.
Then K = KIPKC.

Proposition 9.1 For the generators of KC, we have

L. 8(ho/8v1) = v2g/v1

2. 6(vy 'hiy/4v) = B /o3

3. 8(h3yB/8v1) = vafg/u1

4. 6(vy W2, 8/4v1) = hioB/v?

5. 8(vz/2v1) = val Jv1 = (v}
6. 5(¢C/8v}) = vafB/0n

Proof. We prove them one by one.

1. Lemma 7.11 shows this.

2. This follows from Lemma 7.7.

3. By Proposition 7.14, §(£3) = §(¢)3 forany &€ € H* M2. Therefore, this
follows from the first one.

4. This also follows from Proposition 7.14 and the second one.
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e

This is shown in [10].
6. Note that » = v;*Z mod (8) and d(r) = 0 by Lemma 5.2. Then we
compute

d(yrr ® 226/16) =r®zZ® z26/2v? +y12® Z7Z5/8.

for 1, of Lemma 4.2 and Z Z5 of Lemma 3.6. We see that the first term
is bounded by computation:

A7 2% /28) = (m + %) ®Z® 22 /208
d(Z* ® z25/4v?) =ZRZI® 225/211?1 +72®z
dW?/20%) =22 @ 2 ® 2:24/211?2.

24 24 6
® z /21}12

On the other hand, by Lemma 7.15, we see that
d(yyW/8v}) = 112 @ ZZ5/8v; + vaB/2v1 + W1 /2u;

as desired. O

Note that Corollary 7.10 implies the following

Lemma 9.2 U&({/in{) = x /v fori < 3, then 5(591/2%{) = xg'/vf
forl > 0.

Now these imply immediately the following

Lemma 9.3 We have the exact sequence

0 KCBAR 2K - KI—o0.

10 The connecting homomorphism on £

Consider the submodules EC and EI:
EC = Z)2{v¥s )0 W3¢ /0% | st € Z,2fs,j=1,2,3,5' =1,2}

EI:Z/2{U2SC/01> t+2C/ Uy v”gsHCC/U%j |
s,te Z,2)s,j =1,2}.

Then E = EI@PEC, and we have the exact sequence.

Lemma 10.1 We have the exact sequence

0—BCLAE2E S BT —0.

This follows immediately from the following:
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Proposition 10.2 For the generators of EC, we have
L. 5(vy°/8v7) = UQSC/Ul
2 ool /20 = oI (j=2,3)
3. 6(u5"0C/ 40ty = 3HOCCT (1 =1,2)

Proof. The first two equations are shown in [10, Lemma 3.17].
For the third, we compute by Lemma 3.9,

d(3OZ/8uy’) = d(oy SOz 8u)
(10.3) = j(} + vit1) ® o507 207
—0§H () +2) @ Z/80P 2 + 88 Z @ Z /207
If j = 1, then the first term is v8t+5t4 ® ’UQZ/Q’U%, since
d(w§™7Z/207) = (ni] +vit) @ v50Z/207 + 05 © 720},

Suppose that j = 2. Then d(v %HA‘( 1509)Z/160vi0) =

v§t+4Z ® v1v2Z/20? + v2t+4r1 ® z/8u% by Lemma 3.12 and

d(v t+4ﬁ/16?/1) = ®@ o5 122 /200 4 (vy og) (1 + 2) ® 52/4”1
8t+4Z® /203 — oS Z R Z/8vi + 05 TOZ® % /20]. Notice that 22 /4vf =

0. These imply that the second term of (10.3) is homologous to an element

of the form z/2v} withz € I'Q 4TI 0

11 The connecting homomorphism on F’

Consider the submodules F'C' and F'I such that F' = FC@FI:

FC= 3 3" (2/2{v5 13 /01 }QA(B)

n>22)s

DZ/2{hy /o1, (" Vg0 ) @2 /20y
FI= Y o3 (2/2{vag/01}@A(9)

n>2,2fs
-~ n+41
DZ/2{h v}, Vg /07 Y ) ®2/21g)
Lemma 11.1 We have the exact sequence

0 FCAF 2 F 5 Fr—50.

This follows from Lemma 9.2 and
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Proposition 11.2 The connecting homomorphism 0 acts on the generators

ofﬁ as follows :
L. S(v3"57Ih2, JAvy) = v3 o h3, v}
2. 503" 3, B/8v1) = v3 (DG o
3. 3(v3"*hiy/8v1) = 3" SHQ/Ul
4 63" g 4 2) = o By oy

Proof. We prove them one by one.

1. This follows from the second one of Proposition 9.1.
2. Suppose that n > 4. Then d(v3") = 0 mod (16, %?). For the cochain H
of Lemma 7.7 and the cocycle B of Lemma 7.14, we have

d(v3'*B® H/16y?) = v3 °B ® t @t @t1/4v3 + 03B @ Hy/20}
+v2" B ® Hy /203,

‘We also have

d(v3" W @t @t @t /4]) = 03 S(ZQZZy+viB) @t @t @ty /4v]

for W of Lemma 7.14. Since ZZ4 = 2® ® 2% mod (2,v%),
(11.3)
A} @wzot ot @t /4P )

— o2l TV e 2 T @t ot @t /4l T
12, @vE P T QIR @t @ty AT T

—|—2v2n ' ;n (28_1)Z32n 2 @21 @7 111 ® t1/4v2 T

1202 T 92 @it ot @t /4T
=022 2T QI Ot @ty /4]

+@ud 2 T RIQ L @t ®t /207 T8

n— n—1 — n—
4o )T BT T gz D @it @t @t /200 1T

Fo2 2 T @R T It @t ®t /2P,

This shows thatv3 * B ®t; @ t; ®t1/4v} is homologous to v%nsiﬁn_l ®
ZRU 1Rt ® t1/2v%n+1+8, as desired.
For n = 4,
d(vi® B @ H/16y})
=0 2(r +2) @ B H/2v} + v} B ot @t ® t1 /403
+v3% B @ Hy /20t + v B ® Hy /203
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and we obtain the same result. For n = 3,

d(v§*B ® H/16y3)
=057 2(r1 +2) ® B® H/40? + 055 1d(ve) ® B ® H/2v}
+S Bt @t @t /403 + 5B @ Hy /20! + 05T B © Hy /203

and H = 0 mod (4, v}), which implies the same result as the above one.
Similarly, for n = 2,

d(v3*B ® H/16y?)
=0y 2(r; +2) @ B® H/8v? +vy" 'd(v2) ® B® H/4v]
+ B @t ®t; @t /403 + 5B @ Hy/2vf +vy* T B @ Hy/20}

and the congruence H = 0 mod (4,v?) also shows the result.

. This follows from the first one of Proposition 9.1.

. The cocycle /2 that represents v2 ° 2" C (g / 2vln+1 is homologous
to v2 "SRt ® B/4v; by (11 3). The equation 3 above indicates

the existence of a cochaln ¢ such that d(c) = v2 “T1g/2v; and the
leading term of cis v3 “t; ® t; ® t1/16v;. Then d(x/S) =d(c®B) =
v2" g ® B/2v; as desired. 0

12 The connecting homomorphism on D

Proposition 12.1 The connecting homomorphism § behaves as follows :

1. (25<n 1C/4 2“++2) 28“6/1/1 s=dt+1

2. 8 W 1602) = o2 I forn > 3

3. 33"t f201) = 03¢/}

4, §(v3"5C/22ud) = w3 DT s =1 ()
5(v3"3¢/2mHud) = v3"CC /vt s=—1(4)

Proof.

1. First we note that vg (4t+1)

n+2 n ~
vy 22" @ Z/40? by

-1 ~ n+1 .
2 ® 2/21)% *2 is homologous to

d(vgn+1(2t+1)g/4v3.2n+2>

27 (4t41) ~n—1 nt1 n+2 .
:U2(+);2 ® F/202" 2 L 22 g 342 2,



The Adams-Novikov Fa-term for . (L2S) at the prime 2 303

We compute

d( ; (4t+1)~2" E/8U%n+1+2)

=d " :5/16@%)

= d(¥ ) ® 22" @ 7/160% + 02 (22 @ 7/1602).
Ifn > 3,d(v3") = 0 mod (16,v3). If n = 3, then d(v§) = Svvit?
mod (16, v?). Therefore, this follows from Proposition 9.1.6 if n > 3.
For the case n = 2, it also follows from Proposition 9.1.6, since z =
2(vy 'tz 4 t1t2) mod (4,v;).

2. This is similar to the above one.

This is immediate from Proposition 9.1.5.
4. Lemma 7.12 shows

(12.2) A(2n,s /27207 = 2@ 03" Z/ 201 + X' /203

»

which implies the case s = —1 mod p.

Since H232""'Ml = Z/2{v2"7'h3 Juy, 02T 'Cpo Jod?

v%n+2n71§5/vf'2n71+4}, the right hand side of (12.2) for s = 1 is

bounded, and so we have an element U/2 such that rng(v3")/2"+2
v2 %Y /160{% 4 U/2 is a cocycle. Then by (11.3), we see the case

Where s = 1. In other words, there is a cochain X = rng(vs )/2"+3 —

"2y /32016 4+ U/4 + U’ /2 for some U’ and d(X) = 3"*2" 2 ®

vy
Z/u3 "+4 4 ... Since we compute that X ® d(v 2n“) = 0, we have
d(v

vy
2" X = v§n+2d(X), and obtain the case s = 1 mod (4). O

Consider the submodules DC and DI such that D = DCE@DI:
DC= Y v3"Z/2uvafvr,¢/v} 03" (C/o}
n>22)s

D Y w3zl I

n>24|(s—1)

Z 3" Z /2{vaB )1, (o}, 03 (L vt}

n>2,2fs

@ > ez 2V

n>2,4|(s—1)
Then we see the following

Lemma 12.3 We have the exact sequence

0 — DC - /2D -2 D -2 DI —> 0.



304 K. Shimomura, X. Wang

13 The connecting homomorphism on L

Note that L = (1/2),(LC) for the map (1/2),: H*M}! —s H*M2. We
compute the J-image of each element of L.

Proposition 13.1 For each element of L, we have

5(6) = tho+ -+
Proof. Suppose that £ is represented by an element x/2v;”"". Then we
compute d(z /407 = 11 /209 @ & + 2/ /20271 for d(x) = 227, since

d(v1) = 2t1. The part - - - is an element represented by z’/ vfj + 0

25+1

Corollary 13.2 The connecting homomorphism induces an isomorphism
0:L — LI

Proof. Since L1; = hoLC; if i # 1 and = ZLCl if 7 = 1, the above lemma
shows an isomorphism LC; — LI; for each i. O
Lemma 13.3 We have the exact sequence

01027 2T 11—,

Proof. Since each generator of LI is not trivial, the isomorphism ¢ of Corol-
lary 13.2 implies that each generator of L is not trivial, which shows that
the homomorphism 1/2 is a monomorphism. Since 1/2 is an epimorphism
by definition, we see that 1/2 is an isomorphism. 0

14 The connecting homomorphism on M

We begin with factoring M into the direct sum of M C and M I. Consider
the submodules M C' and M I:

MC = Z/2{v2 v} v /v1,v3h10/v1, Vs V1, V3 hio V1, Usht Jv1 }
RAB)RZ/2[v5", ]
MI = Z/2{v3hi1 /v, v3hi0/v}, v2hi for,0 hm/v%, >hdo /i,
Shio/01}@AB)RZ/2[v5, g]
Then we have
Proposition 14.1 For the generators of M C, we have
8(v3/207) = vah11 /v
§(v3/201) = v3hio/v?
3(v3hio/2v1) = v3hip/v]
§(v3/201) = v3hio/v?
3(v3hio/201) = vihiy/v}
§(v3hi1/2v1) = vshig/v1.
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Proof. The first, the second and the fourth equations are shown in [10, Lemma
3.17]. The third and the fifth are obtained immediately from the second and
the fourth ones, since h is represented by ¢; which is primitive. The last one
is also follows from the fourth. In fact, v3h1o/v? is represented by v3ry /v?
by (4.1) and hi; is represented by 3 + vt1, and v3r; ® (2 + vity)/v? is
homologous to v3t; ® t]/v1 by d(vita/vi + v3t3ta/v1). 0

This is displayed as follows:

IRV SR
K>

v3 /vi v3 Jv1

We see the following lemma by using Lemma 7.14.

Lemma 14.2 We have the exact sequence

0— MC A2 =% MT —> 0.

15 The connecting homomorphism on NV

We introduce subsets of the set of triple integers:

T n,i, k)€ Z¥|n>32<i<n-11<k<i+1}
nlak €T|(Z k)#( _171)7( _1777'_1)}7

{( )
{( )
{(n,i,k) € Z%|n>3,(i,k) = (0,1),(1,1),(1,2)}
{( )
{( )

n,i, k) €Ty |n>i+k+1}
n,i, k) €Ty |n<i+k+1}

Here (T'U S) N ({n} x Z?) for each n is described as follows:
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ng

Consider the modules

A(n,i k) = Z/2{v3" jo¥™ |2 f sm, 3-271 < 2Fm < 3. 21},

A(n,n -1,1) = Z/2{v2n5/vfm |
2 ) sm,

3.2 2 <om <320 g,

Z(TL, i, k‘) _ Z/Q{Ugi@"_is—l)E(i—l)/v%km ’

2 ) sm,

2071 < 2k < 21} fori > k,

Z(nyn—1,1) = Z/2{u?" BVn=2) j2m |

2 ) sm,

22 < 2m < 2" — 4}

Z(n,i,i) = Z/2{v} *"H D o 2 ) s},
Z(n,iyi+1) = Z/2{v3" 2D ¥ |2 s},

Then N;’s are rewritten as follows:

Z Aln, i, k)

(n,3,k)eTUS

N3 =

NLi= > (C/vDA(n,ik)
(n,g,k)eTtus

NC; = >
(n,i,k)eT’' =T+

NI, = Z Z(n,i, k)
(nyi,k)eT—

NCy= > Z(n,ik)
(nyi,k)eT+

Ny =

(nyg,k)eT’

Z (g/vil)Z(nv i, k)@ Z(E/vil>2<nv n-—

n>3

(E/U%)A(TL, iv k)@ Z(g/vil)fi(nv n— 17 1)

n>3

11),
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in which N; = NI;@NC; fori = 1,2. Now N is divided into two direct
summands:

NI =NL@NLPN,
NC = Ns@NCPNCs.

We read off the following from [10, Lemma 3.17].

Proposition 15.1 The connecting homomorphism § behaves as follows :

5(A(n, i, k) =

—— (/oD AMm,i k) n>i+k+1
Z(n,i, k) n<i+k+1

5(C/oh) A0, k) = (/o) Z(n,ik) forn <i+k+1

S((C/v)A(n,n = 1,1)) = (¢/v})Z(n,n - 1,1)

§(Z(n,i k) = ((/vHZ(n,i k) forn>i+k+ 1

Proof. The first equation is shown in [10, Lemma 3.17], and the second and
the third ones are verified by Proposition 5.3.
For the last, note that

d(z3") = 2"_isv%ivgls_2iz2i71 +--- mod (vi”z)
obtained from Lemma 4.3, where - - - denotes an element divisible by on—itl,

If we write 2" "sx(n, i, k) as the right hand side, then d(z(n,i,k)) = 0
mod (v$?"). If k < i, we compute

ng_ i~i— km . km i
d(vf 72070 )2k 302 ™y = d(a(n, i, k) /28T 30d T

=r®x(n,i, k:)/QU%km"'Qi'*'4

which is homologous to Z® x(n, 7, k:)/2vfkm+2i+4. In the same way we see
the cases for k£ = ¢ and 7 + 1. In fact, the exponent 2Fm, + 2% of vy of the
denominator is divisible by 2/T! (resp. 2¢) if k = i (resp. k = i + 1). a
Lemma 15.2 We have the exact sequence

00— NCLAN 2NN — 0.

This is displayed as follows:
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Ny N,

¢/vi ¢nm

¢/ =Y

16 The connecting homomorphism on P

Proposition 16.1 The connecting homomorphism § acts as follows:
6(1/2 ") = (o
0(¢CC/207 ™) = By’

Proof. By Lemma 4.2, we see that d(1/2"+3y%n71) = 71/20" T Lemma
4.3 shows that r1 /202" is homologous to Z/2v?" T4, which implies the

first equation.
Take n > 2j 4 4. Then, we obtain the second by the computation

d(zZ® z2n+l/4v%j+4) =322 ® z2n/21)fj+4

d(W/207H) = (Z @ 22" @ 22" +uiB) /207,

where W is the one of Lemma 7.14. O
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Put PC = Aco@®((/v}) Ase and PI = ({/v}) Ase@®BAne. Then we
have

Lemma 16.2 We have the exact sequence

0—PCAPp 2P % pr—so

17 The connecting homomorphism on Q

1

By Lemma 7.13, we have a cocycle 2z,_1/2"0?" " € 0229MZ, which

represents C</2”1)4 € H>OMg.

Proposition 17.1 The connecting homomorphism § : H*M3 —
H*FLML acts trivially on ¢ /2™t and (¢ /2™t for each n.

Proof. By the definition of 8, §(C/ 2"v) = 0 follows from Proposition 5.3.
The other half follows from Lemma 7.13. ad

Lemma 17.2 There is an exact sequence

0—030-%50-"50.

18 The Adams-Novikov E5-terms

We begin with restating the lemma given in [4, Remark 3.11].

Lemma 18.1 Suppose that H* M} is a direct sum of submodules M; which
is also a direct sum of two modules M I; and MC;. If we have a submodule
M; of H *Mg in an exact sequence

(18.2) 0 — MC; A0, 2 M, — ML — 0

for each i, where 1/2(z) = x/2, then H* M¢ is the direct sum of M.

Proof of Theorem 2.3. Take M; tobe X and po X for X = D, E, F, J, K,
L, M, N, P and Q). Then we have the theorem from Lemmas 12.3, 10.1,
11.1,8.2,9.3,13.3, 14.2, 15.2, 16.2, 17.2 and Proposition 7.5. O

Consider the exact sequences

RN H*—IMQ H*Nl 11 H*Ml J1 H*MO e
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2}§sociated to the short exact sequence (1.2). Consider the submodules Aand
C of H*Mj:

A=Y Z{f"/2%2), C=u1Z/20f% ho@A(p).
Y
Note that H*Mg = K@é@Q/Z Y& A(p1) by (5.1). Furthermore, di-

vide C into the direct sum of the six submodules C’l given by
Cy = v Z/2[vi{1, ho, hip, hiy}QZ]g], Cy = vip Z/2[v7, hi,
Cs = viprhioZ /2[v, ki), Cy = v14s {1, hio, hip, 1o} Q Z[g),
Cs = vip1Asc|h3] and  Cg = v}pihioAsc|h]

Then the module A yields submodule A+ = Yiops0Z {v¥'s /2i+2}
of HON{ and kills the first summand of P. Note that ]1 assigns p; to

/ v] by Proposition 5.3. The direct sum ct = Z C is pulled back
to H*N0 by i and Z C; kills the submodule (1/2) (v1Asc{1, h10,

hio. hio/vi}®Zlg ]@CAoo{Ula ho}@®2/2[h§]) of (1/2).(LCo). Further-
more, h3,/2v; in K is in the image of j; and h3,/2v3 yields Z /8 summand

of H 3N0 In fact, the cochain C' of QSNO given in Lemma 7.8 defines an
element vy, h10/8 € H3Ng such that & (vy 'h?, /4vy) = vy thi,/4 for

vy 'h3,/4v; € K and zl(vg '13,/2) = h3,/20} by (7.9). The submodule
Q/Z 5@ A(p1) of H* M also yields Q/ Z () and kills the first summand

of (). We also put

EM = DEPFPIPMEBN.
Therefore, we have
Proposition 18.3 The module H*N{ is the direct sum of Q/Z (2) AT,
C*, p261(EM), 6:(EM), K', L', P’ and Q'. Here the modules are given
in Sect. 2.

Proof of Theorem 2.4. Consider the exact sequence
s HPND 2% R IND s g

Here H*N{ = H*E(2). is the Adams-Novikov Ey-term converging to the
homotopy groups 7. (L2S°). Since H*M{ = Q concentrated at dlmensmn
zero, the above sequence splits into the exact sequence 0 — HON{

Q — H°N} % H'N? — 0 and the isomorphism §: HSN} = HS+1N8
for s > 0. The first sequence yields Z ;) and kills Q /Z (2)» and we have the
FEy-term. O
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