The Adams-Novikov E_{2}-term for $\pi_{*}\left(L_{2} S^{0}\right)$ at the prime 2

Katsumi Shimomura ${ }^{1}$, Xiangjun Wang ${ }^{2 \star}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan (e-mail: katsumi@math.kochi-u.ac.jp)
${ }^{2}$ Nankai University, Department of Mathematics, Tianjin 300071, P. R. China (e-mail: xwang@ nankai.edu.cn)

Received: 2 February 2001; in final form: 4 November 2001 /
Published online: 29 April 2002 - (c) Springer-Verlag 2002

Abstract

In this paper we determine the E_{2}-term of the Adams-Novikov spectral sequence converging to the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ of $L_{2^{-}}$ localized sphere spectrum at the prime 2 . The structure of the E_{2}-term indicates that the homotopy group $\pi_{i}\left(L_{2} S^{0}\right)$ is finite except for $i=0,-4$ and -5 .

1 Introduction

Let \mathcal{S}_{p} denote the stable homotopy category of p-local spectra, and \mathcal{L}_{n} the stable homotopy subcategory of $E(n)$-local spectra for the n-th JohnsonWilson spectrum $E(n)$ (cf. [1],[6],[7]). Miller, Ravenel and Wilson [4] introduced the chromatic method to understand the homotopy category \mathcal{S}_{p} through \mathcal{L}_{n}. Bousfield localization provides a retraction $L_{n}: \mathcal{S}_{p} \rightarrow \mathcal{L}_{n}$. The $E(n)$-localization $L_{n} S^{0}$ of the p-local sphere spectrum S^{0} plays as important a role in \mathcal{L}_{n} as the sphere spectrum itself does in \mathcal{S}_{p}. Thus the determination of the homotopy groups $\pi_{*}\left(L_{n} S^{0}\right)$ is one of crucial problems for understanding the stable homotopy category \mathcal{L}_{n}. We obtain some information about the homotopy groups $\pi_{*}\left(S^{0}\right)$ of spheres from $\pi_{*}\left(L_{n} S^{0}\right)$. For example, some relations among α-elements and β-elements are obtained by studying $\pi_{*}\left(L_{1} S^{0}\right)$ and $\pi_{*}\left(L_{2} S^{0}\right)$ ([4], [10], [11], [14]).

Turn to the homotopy groups $\pi_{*}\left(L_{n} S^{0}\right)$. For $n=0, \pi_{*}\left(L_{0} S^{0}\right)=\boldsymbol{Q}$ by Serre [9]. $\pi_{*}\left(L_{1} S^{0}\right)$ is determined in [4] for $p>2$, and in [6] for $p=2$.

[^0]If $n=2$ and $p>3$, then $\pi_{*}\left(L_{2} S^{0}\right)$ is determined in [17]. Hopkins arrived at the chromatic splitting conjecture from this result [3]. One statement of the conjecture says that the fiber F_{n} of $L_{n} S_{p}^{0} \rightarrow L_{K(n)} S^{0}$ decomposes into $2^{n}-1$ nontrivial summands, where S_{p}^{0} denotes the p-completion of S^{0}. This is based on the fact that $F_{2}=\Sigma^{-2} L_{1} S_{p}^{0} \vee \Sigma^{-4} L_{0} S_{p}^{0} \vee \Sigma^{-5} L_{0} S_{p}^{0}$ for $n=2$ and $p>3$ [3], which is predicted from the fact that the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ have three summands $\boldsymbol{Q} / \boldsymbol{Z}_{(p)}$. At the prime 3 , we determined $\pi_{*}\left(L_{2} S^{0}\right)$ in [16] and found only one summand $\boldsymbol{Q} / \boldsymbol{Z}_{(p)}$ in it. We also showed that $F_{2}=\Sigma^{-2} L_{1} S_{3}^{0}$, which is a counter example of the conjecture at the prime 3 .

The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ are computed by the Adams-Novikov spectral sequence $E_{2}^{*}=H^{*} E(2)_{*} \Rightarrow \pi_{*}\left(L_{2} S^{0}\right)$, where H^{*} - denotes the functor $\operatorname{Ext}_{E(2)_{*}(E(2))}^{*}\left(E(2)_{*},-\right)$. In this paper, we determine the E_{2}-term of the Adams-Novikov spectral sequence at the prime 2 (Theorem 2.4). Since summands $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}$ of the E_{2}-term are infinitely 2-divisible, they survive to the E_{∞}-term, and we have three summands $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}$ in the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ (Corollary 2.5). This indicates a possibility that the fiber F_{2} decomposes into 3 summands as in the case $p>3$. The computation of the differentials of this spectral sequence seems much more difficult than it is in the case $p=3$, just as the issue of the existence of elements of Kervaire invariant one is harder at $p=2$ than it is at $p=3$.

We begin by computing the E_{2}-term by the chromatic spectral sequence $E_{1}^{*}=H^{*} M_{0}^{i} \Rightarrow H^{*} E(2)_{*}(i=0,1,2)$ introduced by Miller, Ravenel and Wilson [4]. Here $E(2)_{*}=\boldsymbol{Z}_{(2)}\left[v_{1}, v_{2}^{ \pm 1}\right]$ with $\left|v_{1}\right|=2(p-1)$ and $\left|v_{2}\right|=2\left(p^{2}-1\right)$, and $E(2)_{*}(E(2))$-comodules M_{0}^{i} are defined as follows: Put first $N_{0}^{0}=E(2)_{*}$ and $M_{0}^{0}=p^{-1} E(2)_{*}$. Then define N_{0}^{1} by the short exact sequence

$$
\begin{equation*}
0 \longrightarrow N_{0}^{0} \xrightarrow{\subset} M_{0}^{0} \longrightarrow N_{0}^{1} \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

and put $M_{0}^{1}=v_{1}^{-1} N_{0}^{1} \cdot M_{0}^{2}$ is defined by the short exact sequence

$$
\begin{equation*}
0 \longrightarrow N_{0}^{1} \xrightarrow{\subset} M_{0}^{1} \xrightarrow{f} M_{0}^{2} \longrightarrow 0 . \tag{1.2}
\end{equation*}
$$

Applying the functor H^{*} - to these short exact sequences yields the chromatic spectral sequence. The E_{1}-term $H^{*} M_{0}^{0}$ of the chromatic spectral sequence is \boldsymbol{Q} concentrated at dimension 0 , and $H^{*} M_{0}^{1}$ is given in [4] (see Sect. 4). Now the determination of the Adams-Novikov E_{2}-term $H^{*} E(2)_{*}$ results in the determination of the chromatic E_{1}-term $H^{*} M_{0}^{2}$. Indeed, after determining the E_{1}-term, we observe the long exact sequence associated to (1.2) to see that there is only one non-trivial extension in the spectral sequence (see Sect. 18), and obtain $H^{*} N_{0}^{1}$ (Proposition 18.2) and then $H^{*} E(2)_{*}$ from the long exact sequence associated to (1.1).

Miller, Ravenel and Wilson introduced in [4] the v_{1}-Bockstein spectral sequence $H^{*} M_{2}^{0} \Rightarrow H^{*} M_{1}^{1}$ and the $\bmod p$ Bockstein spectral sequence $H^{*} M_{1}^{1} \Rightarrow H^{*} M_{0}^{2}$ associated to the short exact sequences

$$
\begin{align*}
& 0 \longrightarrow M_{2}^{0} \xrightarrow{\frac{1 / v_{1}}{}} M_{1}^{1} \xrightarrow{v_{1}} M_{1}^{1} \longrightarrow 0, \\
& 0 \longrightarrow M_{1}^{1} \xrightarrow{1 / 2} M_{0}^{2} \xrightarrow{2} M_{0}^{2} \longrightarrow 0 . \tag{1.3}
\end{align*}
$$

Here $M_{2}^{0}=E(2)_{*} /\left(p, v_{1}\right)$, which is also denoted by $K(2)_{*}$, and $M_{1}^{1}=$ $E(2)_{*} /\left(p, v_{1}^{\infty}\right)$. The v-Bockstein spectral sequence $H^{*} M^{\prime} \Rightarrow H^{*} M$ for $\left(v, M^{\prime}, M\right)=\left(v_{1}, M_{2}^{0}, M_{1}^{1}\right)$ or $\left(2, M_{1}^{1}, M_{0}^{2}\right)$ is computed by defining submodules B^{s} of $H^{s} M$ fitting into the exact sequence $H^{s-1} M \xrightarrow{\delta}$ $H^{s} M^{\prime} \xrightarrow{1 / v} B^{s} \xrightarrow{v} B^{s} \xrightarrow{\delta} H^{*} M^{\prime}$. Indeed, such a module B^{s} is shown to equal $H^{s} M$ itself. Generators of B^{s} are obtained as follows: For each generator ξ of $k(v)$-module $H^{s} M^{\prime}$, we have $\xi / v \in H^{s} M$ and pull it back by v as many times as possible to obtain an element $\xi / v^{a(\xi)} \in H^{s} M$ for an integer $a(\xi)$ such that $\delta\left(\xi / v^{a(\xi)}\right) \neq 0$, which is seen to be a generator of $B^{s}\left(k(v)=\boldsymbol{Z} / p\right.$ if $v=v_{1}$, and $=k(1)_{*}=\boldsymbol{Z} / p\left[v_{1}\right]$ if $\left.v=2\right)$. We start the computation of the Bockstein spectral sequences from Ravenel's result:

Theorem (Ravenel [5]). As a $K(2)_{*}$-module,

$$
\begin{array}{ll}
H^{*} M_{2}^{0}=\Lambda\left(\zeta_{2}\right) \bigotimes K(2)_{*}\left\{1, h_{10}, h_{11}, g_{0}, g_{1}, g_{0} h_{11}\right\} & \text { if } p>3 \\
H^{*} M_{2}^{0}=\Lambda\left(\rho_{2}\right) \otimes\left(\boldsymbol{Z} / 2[g] \otimes \Lambda(\beta) \bigotimes M \bigoplus \Lambda(\zeta) \bigotimes \zeta K(2)_{*}\left[h_{0}\right]\right) & \text { if } p=2
\end{array}
$$

where $M=K(2)_{*}\left[h_{10}, h_{11}\right] /\left(h_{10} h_{11}, v_{2} h_{10}^{3}-h_{11}^{3}\right)$, and the elements ρ_{2}, $g, \beta, \zeta, h_{0}, h_{10}$ and h_{11} for $p=2$ have bidegree $(1,0),(4,0),(3,0),(1,0)$, $(1,0),(1,2)$ and $(1,4)$, respectively.

Note that $H^{*} M_{2}^{0}$ is infinite dimensional if $p=2$, since g and h_{0} are the polynomial generators of positive dimensions. In [5], the elements ζh_{0}^{i} are denoted by ζ_{2} for $i=0, \alpha_{0}$ for $i=1, \widetilde{\zeta_{2}}$ for $i=2$ and $\widetilde{\alpha_{0}}$ for $i=3$. The structure of $H^{*} M_{2}^{0}$ at the prime 3 is given by Henn [2] (cf. [12]), which is also infinite dimensional. In order to find the integer $a\left(v_{2}^{p^{i}}\right)$ for the generator $v_{2}^{p^{i}}$ of $H^{0} M_{2}^{0}$, Miller, Ravenel and Wilson introduced in [4] the elements x_{i} (see Sect. 4). Then by these Bockstein spectral sequences, they determined the E_{1}-term $H^{s} M_{0}^{2}$ for $s=0$ and $p>2$. In the same manner, the first author determined $H^{0} M_{0}^{2}$ at $p=2$ in [10]. For the case $s>0, H^{s} M_{0}^{2}$ for $p \geq 3$ is determined in [17] and [16]. For the prime 2, $H^{*} M_{1}^{1}$ is determined in [14]. Here we determine $H^{*} M_{0}^{2}$ at the prime 2 (Theorem 2.3), whose structure is much more complicated than if $p>3$ in that it is infinite dimensional.

The computation is similar but very complicated. If we have a cochain x of $\Omega^{*} E(2)_{*}$ such that $d(x) \equiv 0 \bmod \left(2^{n+1}, v_{1}^{2^{n}}\right)$ for any $n>0$, then
the cohomology class ξ represented by x acts on $H^{*} M_{0}^{2}$. We have such cochains \widetilde{z} and \widetilde{G} in Sect. 2, r in Sect. 4, and R, B and G in Sect. 6, which represent $\widetilde{\zeta}=v_{1} v_{2} \zeta_{2}, v_{1}^{4} g, \widetilde{\zeta} / v_{1}^{4}, \rho_{2}, \beta$ and g, respectively. The action of these elements helps computation. For example, $H^{*} M_{0}^{2}=\widetilde{W}^{*} \otimes \Lambda\left(\rho_{2}\right)$ for a submodule $\widetilde{W}^{*}=\sum_{s} \widetilde{W}^{s}$ in the exact sequence $\widetilde{W}^{s-1} \rightarrow W^{s} \rightarrow \widetilde{W}^{s} \rightarrow$ $\widetilde{W^{s}} \xrightarrow{\delta} W^{s+1}$, where $H^{*} M_{1}^{1}=W^{*} \otimes \Lambda\left(\rho_{2}\right)$. To make the verification easier, we decompose W^{*} into ten submodules $M_{i}=M C_{i} \bigoplus M I_{i}$, and find submodules \widetilde{M}_{i} of $H^{*} M_{0}^{2}$ such that the sequence $0 \rightarrow M C_{i} \xrightarrow{1 / 2} \widetilde{M}_{i} \xrightarrow{2}$ $\widetilde{M}_{i} \xrightarrow{\delta} M I_{i} \rightarrow 0$ is exact. Then we see that $\widetilde{W}^{*}=\sum_{i=1}^{10} \widetilde{M}_{i}$ (Lemma 18.1). We rename M_{i} the i-th letter of $D, E, F, J, K, L, M, N, P, Q$ and define \widetilde{M}_{i} one by one.

These modules are too complicated to write here, and we give hints of these modules. The explicit definitions of these modules are found in the next section. If we put $R M_{i}=\left\{\xi \in H^{*} M_{2}^{0} \mid \xi / 2^{a} v_{1}^{b} \in \widetilde{M}_{i}\right.$ for some a, $b>0\}$, then we have

$$
\begin{aligned}
R D & =\overline{K(2)}_{*}^{(4)}\left\{v_{2}, v_{2} \zeta\right\} \bigoplus \overline{K(2)}_{*}^{(2)}\left\{v_{2} \zeta^{2}\right\} \\
R E & =\overline{K(2)} \\
* & (4) \\
R F & =\left(\overline{K(2)}_{*}^{(4)}\left\{v_{2}^{-1} h_{11}^{2}, v_{2}^{-1} h_{11} \beta, h_{10}^{3}\right\} \bigoplus \overline{K(2)}_{*}^{(2)}\left\{v_{2}^{-1} \zeta\right\}\right. \\
R J & =\zeta \boldsymbol{Z} / 2\left[h_{0}\right] \\
R K & =\boldsymbol{Z} / 2\left\{v_{2}, v_{2} \zeta^{2}, h_{10}^{3}, h_{10}^{3} \beta, v_{2}^{-1} h_{11}^{2}, v_{2}^{-1} h_{11}^{2} \beta\right\} \otimes \boldsymbol{Z} / 2[g] \\
R L & =\left(\boldsymbol{Z} / 2\left[h_{10}\right] /\left(h_{10}^{4}\right) \bigotimes \Lambda(\beta) \bigoplus \overline{K(2)}_{*}^{(4)}\left[h_{10}\right] /\left(h_{10}^{4}\right)\right) \otimes \boldsymbol{Z} / 2[g] \\
& \bigoplus\left(\overline{K(2)}_{*}^{(2)}\left\{\zeta, v_{2} \zeta, v_{2} \zeta^{2}\right\}\right) \bigotimes \boldsymbol{Z} / 2\left[h_{0}\right] \\
R M & =\boldsymbol{Z} / 2\left\{v_{2}^{2}, v_{2}^{3}, v_{2}^{2} h_{10}, v_{2}^{3} h_{10}, v_{2}^{3} h_{11}\right\} \bigotimes \Lambda(\beta) \bigotimes K(2)_{*}^{(4)}[g] \\
R N & =\overline{K(2)})_{*}^{(8)}\left\{1, v_{2} \zeta\right\} \bigoplus \boldsymbol{Z} / 2\left\{v_{2}^{2^{n} s} \zeta \mid n>0, s \equiv-1(4)\right\} \\
R P & =\boldsymbol{Z} / 2\left\{1, v_{2} \zeta^{2}\right\} \\
R Q & =\boldsymbol{Z} / 2\left\{v_{2} \zeta, v_{2} \zeta^{2}\right\}
\end{aligned}
$$

Here $K(2)_{*}^{(n)}=\boldsymbol{Z} / 2\left[v_{2}^{ \pm n}\right]$ and $\overline{K(2)_{*}^{(n)}}=K(2)_{*}^{(n)} \backslash \boldsymbol{Z} / 2$. The module $H^{*} M_{0}^{2}$ is infinite dimensional, since so are the summands $\widetilde{F}, \widetilde{J}, \widetilde{K}, \widetilde{L}$ and \widetilde{M}. The only indecomposable summands of $H^{*} M_{0}^{2}$ which are not finite in every degree are the four summands of $\widetilde{Q} \otimes \Lambda\left(\rho_{2}\right)$, each of which contains a $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}$.

We divide the paper into eighteen sections:

1. Introduction
2. Statement of results
3. Cocycles of the cobar complex $\Omega^{*} A$
4. The Miller-Ravenel-Wilson elements x_{i}
5. $H^{*} M_{0}^{1}$ revisited
6. $H^{*} M_{1}^{1}$ revisited
7. The cocycles R and B
8. The connecting homomorphism on J
9. The connecting homomorphism on K
10. The connecting homomorphism on E
11. The connecting homomorphism on F
12. The connecting homomorphism on D
13. The connecting homomorphism on L
14. The connecting homomorphism on M
15. The connecting homomorphism on N
16. The connecting homomorphism on P
17. The connecting homomorphism on Q
18. The Adams-Novikov E_{2}-terms

In the next section, we state the structure of the chromatic E_{1}-term $H^{*} M_{0}^{2}$ and the Adams-Novikov E_{2}-term $H^{*} E(2)_{*}$ for $\pi_{*}\left(L_{2} S^{0}\right)$ by using explicit generators. The Sects. 3 and 4 are devoted to make some preliminary computation in the cobar complexes for studying the mod 2 Bockstein spectral sequence $H^{*} M_{1}^{1} \Rightarrow H^{*} M_{0}^{2}$. In particular, we construct the cocycles \widetilde{z} and \widetilde{G} of the cobar complex $\Omega^{*} A$ of $A=E(2)_{*}$ over $E(2)_{*}(E(2))$ as well as the cochain r_{1} that is obtained from the generator ρ_{1} of $H^{1} M_{1}^{1}$. In Sect. 5, we define one of $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}$ summands in $H^{1} M_{0}^{2}$ originating from $H^{1} M_{0}^{1}$. We decompose the E_{1}-term $H^{*} M_{1}^{1}$ into the summands in Sect. 6. In the next section, we study some cochains arisen from the structure of $H^{*} M_{1}^{1}$ including the cocycles R on $E(2)_{*} /\left(2^{n+1}, v_{1}^{2^{n}}\right)$ and B on $E(2)_{*} /\left(2^{n+5}, v_{1}^{2^{n+5}}\right)$ for $n \geq 0$, which represent the generators ρ_{2} and β, respectively. In Sects. 8 to 17, we study the behavior of the connecting homomorphism $\delta: H^{*} M_{0}^{2} \rightarrow H^{*+1} M_{1}^{1}$ on each summand of $H^{*} M_{1}^{1}$. Note that each element used to state the results is expressed by its leading term as we did in the previous papers. In the last section, we compute the chromatic spectral sequence, or observe the exact sequence associated to (1.1) and (1.2), to obtain the module $H^{*} N_{0}^{1}$ and prove the theorems on $H^{*} M_{0}^{2}$ and $H^{*} E(2)_{*}$.

Acknowledgements. The authors would like to thank Haynes Miller for the suggestions that make this paper readable.

2 Statement of results

Ravenel showed the structure of $H^{*} M_{2}^{0}=H^{*} K(2)_{*}(c f .[7])$:

$$
\begin{gather*}
H^{*} M_{2}^{0}=\left(K(2)_{*}\left[h_{10}, h_{11}\right] /\left(h_{10} h_{11}, v_{2} h_{10}^{3}-h_{11}^{3}\right) \otimes \Lambda(\beta) \bigotimes \boldsymbol{Z} / 2[g]\right. \tag{2.1}\\
\left.\bigoplus \zeta K(2)_{*}\left[h_{0}\right] \otimes \Lambda(\zeta)\right) \otimes \Lambda\left(\rho_{2}\right)
\end{gather*}
$$

From this, $H^{*} M_{1}^{1}$ is determined in [13]:

$$
\begin{equation*}
H^{*} M_{1}^{1}=\left(\sum_{i=0}^{6} M B_{i}\right) \otimes \Lambda\left(\rho_{2}\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
M B_{0}= & K(1)_{*} / k(1)_{*}\left\{h_{10}^{i}, h_{10}^{i} \beta, \zeta h_{0}^{i}, \zeta^{2} h_{0}^{i}, \widetilde{\zeta} h_{0}^{i}, \zeta \widetilde{\zeta} h_{0}^{i} \mid i=0,1,2,3\right\} \\
& \bigotimes \boldsymbol{Z}[g] \\
M B_{1}= & \left(v_{2} / v_{1}\right) \boldsymbol{Z} / 2\left[v_{2}^{ \pm 2}\right] \otimes \boldsymbol{Z} / 2\left[h_{11}\right] /\left(h_{11}^{3}\right) \otimes \Lambda(\beta) \otimes \boldsymbol{Z} / 2[g] \\
M B_{2}= & \left(v_{2}^{2} / v_{1}^{2}\right) \boldsymbol{Z} / 2\left[v_{1}, v_{2}^{ \pm 4}\right] \otimes \Lambda\left(h_{10}, v_{2} h_{10}, \beta\right) \otimes \boldsymbol{Z} / 2[g] \\
M B_{3}= & \sum_{n>0}\left(v_{2}^{2^{n}} \widetilde{\zeta} / v_{1}^{3 \cdot 2^{n-1}+1}\right) \boldsymbol{Z} / 2\left[v_{1}, v_{2}^{ \pm 2^{n+1}}\right] \otimes \boldsymbol{Z} / 2\left[h_{0}\right] \\
M B_{4}= & \sum_{n>1}\left(v_{2}^{2^{n}} \widetilde{\zeta}^{(n-1)} / v_{1}^{2^{n+1}}\right) \boldsymbol{Z} / 2\left[v_{1}, v_{2}^{ \pm 2^{n+1}}\right] \otimes \boldsymbol{Z} / 2\left[h_{0}\right] \\
M B_{5}= & \sum_{n>1}\left(v_{2}^{2^{n}} / v_{1}^{3 \cdot 2^{n-1}+3}\right) \boldsymbol{Z} / 2\left[v_{1}, v_{2}^{ \pm 2^{n+1}}\right] \\
& \bigotimes \boldsymbol{Z} / 2\left\{v_{1}^{3}, v_{1}^{2} h_{10}, v_{1} h_{10}^{2}, h_{10}^{3}\right\} \otimes \boldsymbol{Z} / 2[g] \\
M B_{6}= & \sum_{n>1}\left(v_{2}^{2^{n}} \widetilde{\zeta}(n-1) / v_{1}^{2^{n+1}+4}\right) \boldsymbol{Z} / 2\left[v_{1}, v_{2}^{ \pm 2^{n+1}}\right] \\
& \bigotimes \boldsymbol{Z} / 2\left\{\widetilde{\zeta}, v_{1} \widetilde{\zeta} h_{0}, v_{1}^{2} \widetilde{\zeta} h_{0}^{2}, v_{1}^{3} \widetilde{\zeta} h_{0}^{3}\right\} \otimes \boldsymbol{Z} / 2[g]
\end{aligned}
$$

Here $\widetilde{\zeta} / v_{1}^{j}$ and $\widetilde{\zeta}^{(n-1)} / v_{1}^{j}$ denote the elements represented by cocycles $\widetilde{z} / v_{1}^{j}$ and $\widetilde{z}^{2 n-1} / v_{1}^{j} \in \Omega^{1} M_{1}^{1}$, respectively, where the cocycle \widetilde{z} is defined in the next section. Note that $\widetilde{\zeta} / v_{1}=0$ and $\widetilde{\zeta}^{(n-1)} / v_{1}^{2^{n-1}}=v_{2}^{2^{n-1}} \zeta^{2^{n-1}}=0$.

Remark. The names of the generators are different from those of [13]. The generators $\zeta h_{0}^{i} / v_{1}^{j}, \widetilde{\zeta} h_{0}^{i} / v_{1}^{j}$ and $\widetilde{\zeta}^{(n)} h_{0}^{i} / v_{1}^{j}$ correspond to $\zeta_{a} g^{b} / v_{1}^{j}$, $v_{2} \zeta_{a} g^{b} / v_{1}^{j-1}$, and $v_{2}^{2^{n}} \zeta_{a} g^{b} / v_{1}^{j-2^{n}}$, respectively, where a and b are integers such that $a=1,2,3,4$ and $i=4 b+a-1$.

In order to state the structure of $H^{*} M_{0}^{2}$, we introduce submodules of it, in which s and t in the summation run through \boldsymbol{Z}.

$$
\begin{aligned}
& \widetilde{D}=\sum_{n \geq 2,2 \chi_{s}}\left(v_{2}^{2^{n} s} \boldsymbol{Z} / 2\left\{v_{2} / 2 v_{1}\right\} \bigoplus v_{2}^{2^{n} s} \boldsymbol{Z} / 16\left\{v_{2}^{2^{n-1}} \zeta \widetilde{\zeta} / 16 v_{1}^{2}\right\}\right) \\
& \bigoplus \sum\left(v_{2}^{2^{n} s} \boldsymbol{Z} / 2^{n+2}\left\{\widetilde{\zeta} / 2^{n+2} v_{1}^{4}\right\} \bigoplus v_{2}^{2^{n} s} \boldsymbol{Z} / 4\left\{\widetilde{\zeta}^{(n-1)} \widetilde{\zeta} / 4 v_{1}^{2^{n+1}+2}\right\}\right) \\
& n \geq 2,4 \mid(s-1) \\
& \bigoplus \quad \sum \quad v_{2}^{2^{n} s} \boldsymbol{Z} / 2^{n+1}\left\{\widetilde{\zeta} / 2^{n+1} v_{1}^{4}\right\}, \\
& n \geq 2,4 \mid(s+1) \\
& \widetilde{E}=\sum_{t} v_{2}^{8 t}\left(\boldsymbol{Z} / 8\left\{v_{2}^{4} / 8 v_{1}^{2}\right\} \bigoplus \boldsymbol{Z} / 4\left\{v_{2}^{6} \widetilde{\zeta} / 4 v_{1}^{2}, v_{2}^{6} \widetilde{\zeta} / 4 v_{1}^{4}\right\}\right. \\
& \left.\bigoplus \boldsymbol{Z} / 2\left\{v_{2}^{4} / 2 v_{1}^{4}, v_{2}^{4} / 2 v_{1}^{6}\right\}\right) \\
& \widetilde{F}=\sum_{n \geq 2,2 \chi_{s}} v_{2}^{2^{n} s}\left(\boldsymbol{Z} / 8\left\{v_{2}^{-1} h_{11}^{2} \beta / 8 v_{1}, h_{10}^{3} / 8 v_{1}\right\}\right. \\
& \left.\bigoplus \boldsymbol{Z} / 4\left\{v_{2}^{-1} h_{11}^{2} / 4 v_{1}, \widetilde{\zeta}^{(n-1)} \widetilde{\zeta} g / 4 v_{1}^{2^{n+1}+2}\right\}\right) \otimes \boldsymbol{Z}[g] \\
& \widetilde{J}=\boldsymbol{Z} / 2\left\{\zeta / 2 v_{1}^{j} \mid j>0\right\} \bigotimes \boldsymbol{Z} / 2\left[h_{0}\right] \\
& \widetilde{K}=\left(\boldsymbol{Z} / 8\left\{\zeta \widetilde{\zeta} / 8 v_{1}^{2}, h_{10}^{3} / 8 v_{1}, h_{10}^{3} \beta / 8 v_{1}\right\}\right. \\
& \bigoplus \boldsymbol{Z} / 4\left\{v_{2}^{-1} h_{11}^{2} / 4 v_{1}, v_{2}^{-1} h_{11}^{2} \beta / 4 v_{1}\right\} \\
& \left.\bigoplus \boldsymbol{Z} / 2\left\{v_{2} / 2 v_{1}\right\}\right) \otimes \boldsymbol{Z}[g] . \\
& \widetilde{L}=\sum_{i=0}^{7} \widetilde{L C}_{i} \\
& \widetilde{M}=\boldsymbol{Z} / 2\left\{v_{2}^{2} / 2 v_{1}^{2}, v_{2}^{2} / 2 v_{1}, v_{2}^{2} h_{10} / 2 v_{1}, v_{2}^{3} / 2 v_{1}, v_{2}^{3} h_{10} / 2 v_{1}, v_{2}^{3} h_{11} / 2 v_{1}\right\} \\
& \bigotimes \Lambda(\beta) \otimes \boldsymbol{Z} / 2\left[v_{2}^{ \pm 4}, g\right], \\
& \tilde{N}=\sum_{(n, i, k) \in T \cup S} \widetilde{A(n, i, k)} \bigoplus \sum_{(n, i, k) \in T^{\prime}-T^{+}}\left(\widetilde{\zeta} / v_{1}^{4}\right) \widetilde{A(n, i, k)} \\
& \left.\bigoplus \sum_{n \geq 3} \hat{A}(\widetilde{n, n-1}, 1) \bigoplus \sum_{(n, i, k) \in T^{+}} \widetilde{Z(n, i, k}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{Q}=\boldsymbol{Q} / \boldsymbol{Z}_{(2)}\left\{\widetilde{\zeta} / v_{1}^{4}\right\} \otimes \Lambda(\zeta)=\left\{\widetilde{\zeta} / 2^{j} v_{1}^{4} \mid j>0\right\} \bigotimes \Lambda(\zeta)
\end{aligned}
$$

Here

$$
\begin{aligned}
\widetilde{L C}_{0}=\sum_{j \geq 0} & \left(\boldsymbol{Z} / 2\left\{1 / 2 v_{1}^{2 j+1}, h_{10} / 2 v_{1}^{2 j+1}, h_{10}^{2} / 2 v_{1}^{2 j+1}, h_{10}^{3} / 2 v_{1}^{2 j+5}\right\}\right. \\
& \otimes \boldsymbol{Z} / 2[g] \bigotimes \Lambda(\beta) \\
& \left.\bigoplus \boldsymbol{Z} / 2\left\{\widetilde{\zeta} / 2 v_{1}^{2 j+1}, \widetilde{\zeta} h_{0} / 2 v_{1}^{2 j+2} \mid j \geq 0\right\} \bigotimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right] \bigotimes \Lambda(\zeta)\right)
\end{aligned}
$$

$$
\widetilde{L C} 1=\sum_{2 \gamma_{s}} v_{2}^{2 s} \widetilde{\zeta} \boldsymbol{Z} / 2\left\{1 / 2 v_{1}^{3}, h_{0} / 2 v_{1}^{2}, h_{0} / 2 v_{1}^{4}\right\} \otimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right],
$$

$$
\widetilde{L C_{2}}=\sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n}} \widetilde{\zeta} \boldsymbol{Z} / 2\left[v_{1}^{2}\right]\left\{1 / 2 v_{1}^{3 \cdot 2^{n-1}+1}, h_{0} / 2 v_{1}^{3 \cdot 2^{n-1}}\right\} \otimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right]
$$

$$
\widetilde{L C}_{3}=\sum_{n \geq 2,2 \gamma_{s}} v_{2}^{2^{n} s+2^{n-1}} \zeta \boldsymbol{Z} / 2\left[v_{1}^{2}\right]\left\{1 / 2 v_{1}^{3 \cdot 2^{n-1}-1}, h_{0} / 2 v_{1}^{3 \cdot 2^{n-1}}\right\} \otimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right]
$$

$$
\widetilde{L C}_{4}=\sum_{n \geq 2,2 \gamma_{s}} v_{2}^{2_{s}} \boldsymbol{Z} / 2\left[v_{1}^{2}\right]\left\{1 / 2 v_{1}^{3 \cdot 2^{n-1}-1}, h_{0}^{3} / 2 v_{1}^{3 \cdot 2^{n-1}}\right\} \otimes \boldsymbol{Z} / 2[g],
$$

$$
\widetilde{L C}_{5}=\sum_{n \geq 2,2 \psi_{s}} v_{2}^{2^{n}} \boldsymbol{Z} / 2\left[v_{1}^{2}\right]\left\{h_{10} / 2 v_{1}^{3 \cdot 2^{n-1}+1}, h_{10}^{2} / 2 v_{1}^{3 \cdot 2^{n-1}+1}\right\} \otimes \boldsymbol{Z} / 2[g]
$$

$$
\widetilde{L C}_{6}=\sum_{n \geq 2,2 \gamma_{s}}^{v_{2}^{2^{n}} s+2^{n-1}} \zeta \tilde{\zeta} \boldsymbol{Z} / 2\left[v_{1}^{2}\right]\left\{h_{0}^{2} / 2 v_{1}^{3 \cdot 2^{n-1}+1}, h_{0}^{3} / 2 v_{1}^{3 \cdot 2^{n-1}}\right\} \otimes \boldsymbol{Z} / 2[g],
$$

$$
\widetilde{L C}_{7}=\sum_{n \geq 2,2 \gamma_{s}} v_{2}^{2^{n} s+2^{n-1}} \zeta \widetilde{\zeta} \boldsymbol{Z} / 2\left[v_{1}^{2}\right]\left\{1 / 2 v_{1}^{3 \cdot 2^{n-1}+3}, h_{0} / 2 v_{1}^{3 \cdot 2^{n-1}+2}\right\} \otimes \boldsymbol{Z} / 2[g],
$$

$$
\widetilde{A(n, i, k)}=\left\{\begin{array}{l}
\boldsymbol{Z} / 2^{n-i}\left\{v_{2}^{2^{n} s} / 2^{n-i} v_{1}^{2^{k} m} \mid\right. \\
\left.2 \nmid s m, \quad 3 \cdot 2^{i-1}<2^{k} m \leq 3 \cdot 2^{i}\right\}, n-i<k+1 \\
\boldsymbol{Z} / 2^{k+2}\left\{v_{2}^{2^{n} s} / 2^{k+2} v_{1}^{2^{k} m} \mid\right. \\
\left.2 \nmid s m, \quad 3 \cdot 2^{i-1}<2^{k} m \leq 3 \cdot 2^{i}\right\}, \quad n-i>k
\end{array}\right.
$$

$$
\hat{A}(n, \overparen{n-1}, 1)=\boldsymbol{Z} / 4\left\{v_{2}^{2^{n} s} / 4 v_{1}^{2 m} \mid 2 \nmid s m, 3 \cdot 2^{n-2}<2 m \leq 3 \cdot 2^{n-1}\right\}
$$

$$
\widetilde{Z(n, i, k)}=\boldsymbol{Z} / 2^{k+2}\left\{v_{2}^{2^{n} s-2^{i}} \widetilde{\zeta}^{(i-1)} / 2^{k+2} v_{1}^{2^{k} m} \mid\right.
$$

$$
\left.2 \nmid s m, \quad 2^{i-1}<2^{k} m \leq 2^{i+1}\right\}
$$

$$
\widetilde{Z(n, i, i)}=\boldsymbol{Z} / 2^{i+2}\left\{v_{2}^{2^{n} s-2^{i}} \widetilde{\zeta}^{(i-1)} / 2^{i+2} v_{1}^{2^{i+1}} \mid 2 \nmid s\right\}
$$

$$
Z(\widetilde{n, i, i}+1)=\boldsymbol{Z} / 2^{i+3}\left\{v_{2}^{2^{n} s-2^{i} \widetilde{\zeta}(i-1)} / 2^{i+3} v_{1}^{2^{i}} \mid 2 \nmid s\right\} .
$$

and subsets of triple integers

$$
\begin{aligned}
T & =\left\{(n, i, k) \in \boldsymbol{Z}^{3} \mid n \geq 3,2 \leq i \leq n-1,1 \leq k \leq i+1\right\} \\
T^{\prime} & =\{(n, i, k) \in T \mid(i, k) \neq(n-1,1),(n-1, n-1)\}, \\
S & =\left\{(n, i, k) \in Z^{3} \mid n \geq 3,(i, k)=(0,1),(1,1),(1,2)\right\} \\
T^{+} & =\left\{(n, i, k) \in T_{0} \mid n>i+k+1\right\}
\end{aligned}
$$

Put a module

$$
E M=\widetilde{D} \oplus \widetilde{E} \oplus \widetilde{F} \oplus \widetilde{J} \oplus \widetilde{K} \oplus \widetilde{L} \oplus \widetilde{M} \oplus \widetilde{N} \oplus \widetilde{P} \oplus \widetilde{Q}
$$

Then we have the E_{1}-term of the chromatic spectral sequence.

Theorem 2.3 The module $H^{*} M_{0}^{2}$ is the tensor product of the exterior algebra $\Lambda\left(\rho_{2}\right)$ and $E M$.

For the Adams-Novikov E_{2}-term $H^{*} E(2)_{*}$, we further introduce the modules:

$$
\begin{aligned}
& \widetilde{A}^{+}=\sum_{i, 2 \chi_{s}>0} \boldsymbol{Z}\left\{v_{1}^{2^{i} s} / 2^{i+2}\right\} \\
& \widetilde{C}^{+}=v_{1} \boldsymbol{Z} / 2\left[v_{1}^{2}\right]\left\{1, h_{10}, h_{10}^{2}, h_{10}^{3}\right\} \bigotimes \boldsymbol{Z}[g] \bigoplus v_{1}^{3} \rho_{1} \boldsymbol{Z} / 2\left[v_{1}^{2}, h_{0}^{2}\right] \otimes \Lambda\left(h_{10}\right) \\
& \widetilde{K}^{\prime}=\left(\boldsymbol{Z} / 16\left\{\delta_{1}\left(\zeta \widetilde{\zeta} / 16 v_{1}^{2}\right)\right\} \bigoplus \boldsymbol{Z} / 8\left\{\delta_{1}\left(h_{10}^{3} \beta / 8 v_{1}\right), v_{2}^{-1} h_{10}^{3} / 8\right\}\right. \\
& \left.\bigoplus \boldsymbol{Z} / 4\left\{\delta_{1}\left(h_{10}^{3} / 8 v_{1}\right), \delta_{1}\left(v_{2}^{-1} h_{11}^{2} \beta / 4 v_{1}\right)\right\} \bigoplus \boldsymbol{Z} / 2\left\{\delta_{1}\left(v_{2} / 2 v_{1}\right)\right\}\right) \otimes \boldsymbol{Z}[g], \\
& \widetilde{L}^{\prime}=\widetilde{L C}_{0}^{\prime} \bigoplus \sum_{i=1}^{8} \delta_{1}\left(\widetilde{L C}_{i}\right), \\
& \widetilde{L C}_{0}^{\prime}=\sum_{j>0}\left(\boldsymbol{Z} / 2\left\{\delta_{1}\left(\beta / 2 v_{1}^{2 j+1}\right), \delta_{1}\left(h_{10} \beta / 2 v_{1}^{2 j+1}\right), \delta_{1}\left(h_{10}^{2} \beta / 2 v_{1}^{2 j+1}\right),\right.\right. \\
& \left.\delta_{1}\left(h_{10}^{3} \beta / 2 v_{1}^{2 j+5}\right)\right\} \bigotimes \boldsymbol{Z} / 2[g] \\
& \left.\bigoplus \boldsymbol{Z} / 2\left\{\widetilde{\zeta} \zeta / 2 v_{1}^{2 j+1}, \widetilde{\zeta} \zeta h_{0} / 2 v_{1}^{2 j+1}\right\} \bigotimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right]\right), \\
& \widetilde{P}^{\prime}=\sum_{j>0} \boldsymbol{Z} / 2\left\{\delta_{1}\left(\zeta \widetilde{\zeta} / 2 v_{1}^{2 j+4}\right)\right\}, \quad \text { and } \\
& \widetilde{Q}^{\prime}=\boldsymbol{Q} / \boldsymbol{Z}_{(2)}\left\{\delta_{1}\left(\zeta \widetilde{\zeta} / v_{1}^{4}\right)\right\} .
\end{aligned}
$$

Let δ_{0} (resp. δ_{1}) denote the connecting homomorphism associated to the short exact sequence (1.1) (resp. (1.2)).

Theorem 2.4 The E_{2}-term of the Adams-Novikov spectral sequence converging to the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ is isomorphic to the direct sum of $\boldsymbol{Z}_{(2)}, \delta_{0}\left(\widetilde{A}^{+}\right), \delta_{0}\left(\widetilde{C}^{+}\right), \rho_{2} \delta_{0} \delta_{1}(E M), \delta_{0} \delta_{1}(\overline{E M}), \delta_{0}\left(\widetilde{K}^{\prime}\right), \delta_{0}\left(\widetilde{L}^{\prime}\right), \delta_{0}\left(\widetilde{P}^{\prime}\right)$ and $\delta_{0}\left(\widetilde{Q}^{\prime}\right)$.

Note that the α-elements are in \widetilde{A}^{+}and the β-elements are in $\delta_{0} \delta_{1}(\widetilde{N})$. Furthermore, $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}$ summands are $\delta_{0} \delta_{1}\left(\rho_{2} \widetilde{Q}\right) \bigoplus \delta_{0}\left(\widetilde{Q}^{\prime}\right)$.

Corollary 2.5 The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ contain two $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}$ summands in dimension -4 and one in dimension -5 . Furthermore, the group $\pi_{i}\left(L_{2} S^{0}\right)$ is finite except for $i=0,-4$, and -5.
Proof. The differentials on $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}$ vanish since it has no finite index subgroups. We see that $E_{2}^{1,-2}, E_{2}^{2,-2}$ and $E_{2}^{0,-4}$ are all zero, and so nothing kills the summands. Since the spectrum $E(2)$ is smashing [8], the AdamsNovikov spectral sequence has a horizontal vanishing line. Therefore, the other part follows from the theorem.

3 Cocycles of the cobar complex $\Omega^{*} A$

Let (A, Γ) denote the Hopf algebroid $\left(E(2)_{*}, E(2)_{*} E(2)\right)=\left(\boldsymbol{Z}_{(2)}\left[v_{1}\right.\right.$, $\left.\left.v_{2}^{ \pm 1}\right], E(2)_{*}\left[t_{1}, t_{2}, \ldots\right] \otimes_{B P_{*}} E(2)_{*}\right)$ associated to the Johnson-Wilson spectrum $E(2)$. Then the cobar complex $\Omega^{*} M$ for a right comodule M with structure map $\psi: M \rightarrow M \bigotimes_{A} \Gamma$ is a differential graded module $\Omega^{s} M=M \bigotimes_{A} \Gamma^{\otimes s}$ with the differential $d: \Omega^{s} M \rightarrow \Omega^{s+1} M$ given by $d(m)=\psi(m)-m, d(x)=1 \otimes x-\Delta(x)+x \otimes 1$ and $d(m \otimes x \otimes y)=$ $d(m) \otimes x \otimes y+m \otimes d(x) \otimes y-m \otimes x \otimes d(y)$ for $m \in M, x \in \Omega^{1} A$ and $y \in \Omega^{s} A$. Here, $\Delta: \Gamma \rightarrow \Gamma \bigotimes_{A} \Gamma$ denotes the diagonal map of Γ. Note that A is a Γ-comodule with the structure map η_{R}. In this paper, we consider comodules M induced from A and denote the structure map ψ by η_{R}. We denote the cohomology of the cobar complex by $H^{*} M$. Then $H^{*} A$ is the E_{2}-term of the Adams-Novikov spectral sequence based on $E(2)$ converging to $\pi_{*}\left(L_{2} S^{0}\right)$.

Here we write down some of the formulae on the structure maps of the Hopf algebroid Γ.

$$
\begin{align*}
\eta_{R}\left(v_{1}\right) & =v_{1}+2 t_{1} \\
\eta_{R}\left(v_{2}\right) & =v_{2}-5 v_{1} t_{1}^{2}-3 v_{1}^{2} t_{1}+2 t_{2}-4 t_{1}^{3} \tag{3.1}\\
\Delta\left(t_{1}\right) & =t_{1} \otimes 1+1 \otimes t_{1} \\
\Delta\left(t_{2}\right) & =t_{2} \otimes 1+t_{1} \otimes t_{1}^{2}+1 \otimes t_{2}-v_{1} t_{1} \otimes t_{1}
\end{align*}
$$

Furthermore, the equation $\eta_{R}\left(v_{3}\right)=0$ in Γ implies the relation

$$
\begin{equation*}
v_{2} t_{1}^{4}+t_{1} \eta_{R}\left(v_{2}^{2}\right)+v_{1} t_{2}^{2}+v_{1}^{2} v_{2} t_{1}^{2}+v_{1}^{3} v_{2} t_{1}+v_{1}^{4}\left(t_{2}+t_{1}^{3}\right) \equiv 0 \tag{3.2}
\end{equation*}
$$

$\bmod (2)$ in $\Gamma(c f .[13,(6.10)])$. Recall that the generator $\zeta($ which is denoted by ζ_{1} in [13] and ζ_{2} in [4]) is represented by the cochain $z=v_{2}^{-1}\left(t_{2}+t_{1}^{3}\right)+$ $v_{2}^{-2} t_{2}^{2} \in \Omega^{1} A$.

Lemma 3.3 There is a cocycle \widetilde{z} of $\Omega^{1} A$ such that $\widetilde{z} \equiv v_{1} v_{2} z \bmod \left(2, v_{1}^{2}\right)$.
We write $\widetilde{\zeta}$ as the homology class of \widetilde{z}.
Proof of Lemma 3.3. Put $y=v_{1}^{4}+8 v_{1} v_{2}$ and

$$
\begin{equation*}
\widetilde{z}=\eta_{R}\left(v_{2}\right) t_{1}+t_{1}^{4}+v_{1} t_{2}-v_{1}^{2} t_{1}^{2}-v_{1}^{3} t_{1} . \tag{3.4}
\end{equation*}
$$

Then we see the congruence $\widetilde{z} \equiv v_{1} v_{2} z \bmod \left(2, v_{1}^{2}\right)$ by (3.2), and the equation

$$
\begin{equation*}
d(y)=16 \widetilde{z} \tag{3.5}
\end{equation*}
$$

obtained from the computation in $\Omega^{1} A$

$$
\begin{aligned}
d\left(v_{1}^{4}\right) & =\left(v_{1}+2 t_{1}\right)^{4}-v_{1}^{4} \\
& =8 v_{1}^{3} t_{1}+24 v_{1}^{2} t_{1}^{2}+\underline{32 v_{1} t_{1}^{3}}+16 t_{1}^{4} \\
d\left(8 v_{1} v_{2}\right) & =8\left(v_{1}+2 t_{1}\right)\left(v_{2}-5 v_{1} t_{1}^{2}-3 v_{1}^{2} t_{1}+2 t_{2}-4 t_{1}^{3}\right)-8 v_{1} v_{2} \\
& =-40 v_{1}^{2} t_{1}^{2}-24 v_{1}^{3} t_{1}+16 v_{1} t_{2}-\underline{32 v_{1} t_{1}^{3}}+16 t_{1} \eta_{R}\left(v_{2}\right) .
\end{aligned}
$$

Then $0=16 d(\widetilde{z})$ by (3.5), and we have $d(\widetilde{z})=0$.
Notation. Hereafter we use underlines on terms to explain the computation. Underlined terms with the same subscript are canceled out each other.

Lemma 3.6 There are cochains $\widetilde{B}_{i} \in \Omega^{3} A$ for each $i \geq 0$, and $\widetilde{G} \in \Omega^{4} A$ such that
a) $\widetilde{B}_{i} \equiv v_{1}^{4} B \bmod \left(2, v_{1}^{5}\right)$ and $d\left(\widetilde{B}_{i}\right) \equiv 0 \bmod \left(2^{i+1}, v_{1}^{2^{i}}\right)$.
b) $\widetilde{G} \equiv v_{1}^{4} G \bmod \left(2, v_{1}^{5}\right)$ and $d(\widetilde{G})=0$.

Here B and G denote representatives of $\beta \in H^{3} K(2)_{*}$ and $g \in H^{4} K(2)_{*}$, respectively.

Proof. In [13, p.147], it is shown the existence of a cochain W such that $d(W) \equiv \widetilde{z} \otimes z^{4} \otimes z^{4}+v_{1}^{4} B \bmod \left(2, v_{1}^{5}\right)$. The lemma is valid for \widetilde{B}_{i} defined by the equation

$$
d(W)=\widetilde{z} \otimes Z Z_{i}+\widetilde{B}_{i},
$$

where $Z Z_{i}$ is given by $d\left(z^{2^{i+1}}\right) \equiv 2 Z Z_{i} \bmod \left(v_{1}^{2^{i}}\right)$.
In the same way, we define \widetilde{G} by the equation $d(U)=t_{1} \otimes t_{1} \otimes t_{1} \otimes t_{1}+\widetilde{G}$, where U is a cochain satisfying $d(U) \equiv t_{1} \otimes t_{1} \otimes t_{1} \otimes t_{1}+v_{1}^{4} G \bmod \left(2, v_{1}^{5}\right)$ (cf. [13, p.152]).

For the later use, consider a cochain $r_{1} \in \Omega^{1} v_{1}^{-1} A$ given by

$$
\begin{equation*}
r_{1}=\widetilde{z}-t_{1}^{4}+3 v_{1}^{3} t_{1}+2 v_{1}\left(t_{1}^{3}-t_{2}\right)-2 t_{1}^{2} \eta_{R}\left(v_{1}^{-1} v_{2}\right)+4 v_{1}^{2} t_{1}^{2} . \tag{3.7}
\end{equation*}
$$

Then we compute

$$
\begin{align*}
r_{1} \equiv \widetilde{z}- & t_{1}^{4}+3 v_{1}^{3} t_{1}-2 v_{1} t_{2}+2 v_{1} t_{1}^{3}+4 v_{1}^{2} t_{1}^{2} \\
& -2 t_{1}^{2}\left(v_{1}^{-1}-2 v_{1}^{-2} t_{1}\right)\left(v_{2}-v_{1} t_{1}^{2}+v_{1}^{2} t_{1}+2 t_{2}\right) \quad \bmod (8) \\
\equiv & \widetilde{z}-3 t_{1}^{4}+3 v_{1}^{3} t_{1}-2 v_{1} t_{2}+4 v_{1}^{2} t_{1}^{2}-2 v_{1}^{-1} v_{2} t_{1}^{2}+4 v_{1}^{-1} t_{1}^{2} t_{2} \tag{3.8}\\
& +4 v_{1}^{-1} t_{1}^{5}+4 v_{1}^{-2} v_{2} t_{1}^{3} \quad \bmod (8)
\end{align*}
$$

and we see that $v_{1}^{2} r_{1} \in \Omega^{1} A /(8)$.

Lemma 3.9 In the cobar complex $\Omega^{1} A$,

$$
d\left(v_{2}^{2}\right) \equiv v_{1}^{2}\left(3 r_{1}-\widetilde{z}\right)-v_{1}^{3}\left(3 v_{1} t_{1}^{2}+v_{1}^{2} t_{1}\right)+4 v_{2}^{2} Z \quad \bmod (8)
$$

for $Z=z+v_{1} v_{2}^{-2}\left(v_{2} t_{1}^{2}+t_{1}^{5}\right)+v_{1}^{3} v_{2}^{-2} t_{2}$.
Proof. By (3.8), we have

$$
\begin{aligned}
3 t_{1}^{4} \equiv \widetilde{z} & -r_{1}+3 v_{1}^{3} t_{1}-2 v_{1}^{-1} v_{2} t_{1}^{2}-2 v_{1} t_{2}+4 v_{1}^{-2} v_{2} t_{1}^{3}+4 v_{1}^{-1} t_{1}^{2} t_{2} \\
& +4 v_{1}^{-1} t_{1}^{5}+4 v_{1}^{2} t_{1}^{2} \quad \bmod (8)
\end{aligned}
$$

and so

$$
\begin{aligned}
t_{1}^{4} \equiv 3(& \left.\widetilde{z}-r_{1}\right)+v_{1}^{3} t_{1}+2 v_{1}^{-1} v_{2} t_{1}^{2}+2 v_{1} t_{2}+4 v_{1}^{-2} v_{2} t_{1}^{3}+4 v_{1}^{-1} t_{1}^{2} t_{2} \\
& +4 v_{1}^{-1} t_{1}^{5}+4 v_{1}^{2} t_{1}^{2} \quad \bmod (8)
\end{aligned}
$$

We then compute mod (8):

$$
\begin{aligned}
d\left(v_{2}^{2}\right) \equiv & v_{1}^{2} t_{1}^{4}+v_{1}^{4} t_{1}^{2}+4 t_{2}^{2}-2 v_{1} v_{2} t_{1}^{2}+\underline{2 v_{1}^{2} v_{2} t_{1}}+4 v_{2} t_{2}-\underline{2 v_{1}^{3} t_{1}^{3}} \\
& +4 v_{1} t_{1}^{2} t_{2}+\underline{4 v_{1}^{2} t_{1} t_{2}} \\
\equiv & v_{1}^{2} t_{1}^{4}-v_{1}^{4} t_{1}^{2}+4 t_{2}^{2}-2 v_{1} v_{2} t_{1}^{2}+2 v_{1}^{2} \eta_{R}\left(v_{2}\right) t_{1}+4 v_{2} t_{2}+4 v_{1} t_{1}^{2} t_{2} \\
\equiv & v_{1}^{2} t_{1}^{4}-\underline{v_{1}^{4} t_{1}^{2}}+4 t_{2}^{2}-2 v_{1} v_{2} t_{1}^{2}+2 v_{1}^{2}\left(\widetilde{z}-\underline{t}_{1}^{4}-v_{1} t_{2}+\underline{v_{1}^{2} t_{1}^{2}}{ }_{2}\right. \\
& \left.+v_{1}^{3} t_{1}\right)+4 v_{2} t_{2}+4 v_{1} t_{1}^{2} t_{2} \\
\equiv & -v_{1}^{2} t_{1}^{4}+v_{1}^{4} t_{1}^{2}+4 t_{2}^{2}-2 v_{1} v_{2} t_{1}^{2}+2 v_{1}^{2}\left(\widetilde{z}-v_{1} t_{2}+v_{1}^{3} t_{1}\right) \\
& +4 v_{2} t_{2}+4 v_{1} t_{1}^{2} t_{2} \\
\equiv & -v_{1}^{2}\left(3\left(\underline{\widetilde{z}}_{1}-r_{1}\right)+\underline{v_{1}^{3} t_{1}}+\underline{2 v_{1}^{-1} v_{2} t_{1}^{2}}+\underline{2 v_{1} t_{2}}+4 v_{1}^{-2} v_{2} t_{1}^{3}\right. \\
& +4 v_{1}^{-1} t_{1}^{2} t_{2} \\
& \left.+4 v_{1}^{-1} t_{1}^{5}+\underline{4 v_{1}^{2} t_{1}^{2}}\right)+\underline{v_{1}^{4} t_{1}^{2}}+4 t_{2}^{2}-\underline{2 v_{1} v_{2} t_{1}^{2}} \\
& +2 v_{1}^{2}\left(\widetilde{z}_{1}-\underline{v_{1} t_{2}}{ }_{4}+\underline{v_{1}^{3} t_{1}}\right)+4 v_{2} t_{2}+\underline{4 v_{1} t_{1}^{2} t_{2}} \\
\equiv & v_{1}^{2}\left(3 r_{1}-\widetilde{z}\right)-v_{1}^{5} t_{1}+4 v_{1} v_{2} t_{1}^{2}+4 v_{1}^{3} t_{2}+4 v_{2} t_{1}^{3}+4 v_{1} t_{1}^{5} \\
& -3 v_{1}^{4} t_{1}^{2}+4 t_{2}^{2}+4 v_{2} t_{2} \\
\equiv & \left(3 r_{1}-\widetilde{z}\right)-v_{1}^{3}\left(3 v_{1} t_{1}^{2}+v_{1}^{2} t_{1}\right)+4\left(v_{2}^{2} z+v_{1}\left(v_{2} t_{1}^{2}+t_{1}^{5}\right)+v_{1}^{3} t_{2}\right)
\end{aligned}
$$

Lemma 3.10 In the cobar complex $\Omega^{1} v_{1}^{-1} A$, we have

$$
\begin{aligned}
d\left(v_{1} v_{2}\right)=2 & r_{1}+4 v_{1} t_{2}-11 v_{1}^{2} t_{1}^{2}-7 v_{1}^{3} t_{1}-8 v_{1} t_{1}^{3} \\
& +4 t_{1}^{2}\left(v_{1}^{-1}-2 v_{1}^{-2} t_{1}+4 v_{1}^{-2} t_{1}^{2} \eta_{R}\left(v_{1}^{-1}\right)\right) \eta_{R}\left(v_{2}\right)
\end{aligned}
$$

Proof. Note that

$$
\begin{equation*}
\eta_{R}\left(v_{1}^{-1}\right)=v_{1}^{-1}-2 v_{1}^{-2} t_{1}+4 v_{1}^{-2} t_{1}^{2} \eta_{R}\left(v_{1}^{-1}\right) \tag{3.11}
\end{equation*}
$$

The lemma follows from the equations:

$$
\begin{gathered}
r_{1}=\eta_{R}\left(v_{2}\right) t_{1}-v_{1} t_{2}+3 v_{1}^{2} t_{1}^{2}+2 v_{1}^{3} t_{1}+2 v_{1} t_{1}^{3} \\
-2 t_{1}^{2}\left(v_{1}^{-1}-2 v_{1}^{-2} t_{1}+4 v_{1}^{-2} t_{1}^{2} \eta_{R}\left(v_{1}^{-1}\right)\right) \eta_{R}\left(v_{2}\right) \quad \text { and } \\
d\left(v_{1} v_{2}\right)=2 t_{1} \eta_{R}\left(v_{2}\right)+v_{1}\left(-5 v_{1} t_{1}^{2}-3 v_{1}^{2} t_{1}+2 t_{2}-4 t_{1}^{3}\right)
\end{gathered}
$$

by (3.4), (3.7) and (3.11).
Lemma 3.12 In the cobar complex $\Omega^{1} A$, we have

$$
d\left(v_{1}^{15} v_{2}\right) \equiv-2 v_{1}^{14} r_{1}+16 v_{1}^{12} t_{1}^{3} \eta_{R}\left(v_{2}\right) \quad \bmod \left(32, v_{1}^{16}\right)
$$

Proof. Since $d\left(v_{1}^{15} v_{2}\right) \equiv v_{1}^{14} d\left(v_{1} v_{2}\right)+d\left(v_{1}^{14}\right) \eta_{R}\left(v_{1} v_{2}\right)$, we obtain $d\left(v_{1}^{15} v_{2}\right)$ $\equiv 2 v_{1}^{14} r_{1}-4 v_{1}^{14} r_{1}+16 v_{1}^{12} t_{1}^{3} \eta_{R}\left(v_{2}\right)$ by Lemma 3.10 and the definition of r_{1}.
Lemma 3.13 In the cobar complex $\Omega^{1} A$, there is a cochain $\widetilde{v_{1}^{6} \tilde{z}^{2}}$ such that

$$
d\left(\widetilde{v_{1}^{6} \tilde{z}^{2}}\right) \equiv-2 v_{1}^{6} \widetilde{z} \otimes \widetilde{z}+8 v_{1}^{6} X \quad \bmod \left(16, v_{1}^{8}\right)
$$

for some X.
Proof. By [13], there are cochains u and u^{\prime} such that $d(u) \equiv t_{1} \otimes z^{2} \bmod$ $\left(2, v_{1}\right)$ and $d\left(v_{1} u^{\prime}\right) \equiv t_{1} \otimes \widetilde{z} \bmod \left(2, v_{1}^{2}\right)$. Put $\widetilde{v_{1}^{6} \tilde{z}^{2}}=v_{1}^{6} \widetilde{z}^{2}+4 v_{1}^{7} v_{2}^{2} u+$ $4 v_{1}^{6} u^{\prime 2}$. By Lemma 3.3, we compute

$$
\begin{aligned}
d\left(v_{1}^{6} \widetilde{z}^{2}\right) & \equiv-4 v_{1}^{4}\left({\underline{v 1} t_{1}}_{1}+\underline{t}_{2}^{2}\right) \otimes \widetilde{z}^{2}-2 v_{1}^{6} \widetilde{z} \otimes \widetilde{z} \\
d\left(4 v_{1}^{7} v_{2}^{2} u\right) & \equiv 8 v_{1}^{6} t_{1} \otimes v_{2}^{2} u+4 v_{1}^{7} v_{2}^{2}\left(\underline{t_{1} \otimes z_{1}^{2}}+2 X_{1}\right) \\
d\left(4 v_{1}^{4}\left(v_{1} u^{\prime}\right)^{2}\right) & \equiv \underline{4 v_{1}^{4} t_{1}^{2} \otimes \widetilde{z}_{2}^{2}}+8 v_{1}^{6} X_{2}
\end{aligned}
$$

$\bmod \left(16, v_{1}^{8}\right)$ for some X_{1} and X_{2}.

4 The Miller-Ravenel-Wilson elements $\boldsymbol{x}_{\boldsymbol{i}}$

By the definitions of \widetilde{z} and r_{1}, we have

$$
\begin{equation*}
r_{1} \equiv t_{1}^{4}+\widetilde{z}+v_{1}^{3} t_{1} \equiv v_{2} t_{1}+v_{1}\left(t_{2}+t_{1}^{3}\right) \quad \bmod (2) \tag{4.1}
\end{equation*}
$$

which represents the generator ρ_{1} of $H^{1} M_{1}^{0}$ and will be used in this section. Define the element y_{1} by

$$
y_{1}=v_{1}^{2}-4 v_{1}^{-1} v_{2}
$$

which is $x_{1,1}$ of [4].

Lemma 4.2 In $v_{1}^{-1} \Gamma$, we have

$$
d\left(y_{1}\right)=8 v_{1}^{-2} r_{1} \equiv 8 v_{1}^{-2}\left(t_{1}^{4}+\widetilde{z}+v_{1}^{3} t_{1}\right) \quad \bmod (16)
$$

Proof. Noticing the equation (3.11), we compute

$$
\begin{aligned}
d\left(v_{1}^{2}\right)= & 4 v_{1} t_{1}+4 t_{1}^{2} \\
d\left(-4 v_{1}^{-1} v_{2}\right)= & -4\left(v_{1}^{-1}-2 v_{1}^{-2} t_{1}+4 v_{1}^{-2} t_{1}^{2} \eta_{R}\left(v_{1}^{-1}\right)\right) \\
& \quad \times\left(v_{2}-5 v_{1} t_{1}^{2}-3 v_{1}^{2} t_{1}+2 t_{2}-4 t_{1}^{3}\right)+4 v_{1}^{-1} v_{2} \\
= & 20 t_{1}^{2}+12 v_{1} t_{1}-8 v_{1}^{-1} t_{2}+16 v_{1}^{-1} t_{1}^{3} \\
& \quad+8 v_{1}^{-2} t_{1} \eta_{R}\left(v_{2}\right)-16 v_{1}^{-2} t_{1}^{2} \eta_{R}\left(v_{1}^{-1} v_{2}\right)
\end{aligned}
$$

Therefore, using the relation $\eta_{R}\left(v_{2}\right) t_{1}=\widetilde{z}-t_{1}^{4}-v_{1} t_{2}+v_{1}^{2} t_{1}^{2}+v_{1}^{3} t_{1}$ by (3.4), the sum is

$$
\begin{aligned}
& d\left(y_{1}\right)=32 t_{1}^{2}+24 v_{1} t_{1}-16 v_{1}^{-1} t_{2}+16 v_{1}^{-1} t_{1}^{3} \\
&-16 v_{1}^{-2} t_{1}^{2} \eta_{R}\left(v_{1}^{-1} v_{2}\right)+8 v_{1}^{-2}\left(\widetilde{z}-t_{1}^{4}\right) .
\end{aligned}
$$

and we see that the right hand side is $8 v_{1}^{-2} r_{1}$ by (3.7).

Define the elements x_{i} for $i \geq 1$ by

$$
\begin{aligned}
x_{1} & =v_{2}^{2}+v_{1}^{3} v_{2}, \\
x_{2} & =v_{2}^{4}+v_{1}^{3} v_{2}^{3}+v_{1}^{6} v_{2}^{2}, \\
x_{2 n+1} & =x_{2 n}^{2}+v_{1}^{3 \cdot 2^{2 n+1}-12} x_{2}+v_{1}^{3 \cdot 2^{2 n+1}-3} v_{2} \quad(n>0), \\
x_{2 n+2} & =x_{2 n+1}^{2}+v_{1}^{3 \cdot 2^{2 n+2}-12} x_{2} \quad(n>0) .
\end{aligned}
$$

Then we compute
Lemma 4.3 In Γ, we have

$$
d\left(x_{1}\right) \equiv v_{1}^{2}\left(r_{1}+\widetilde{z}\right) \quad \bmod (2)
$$

Furthermore,

$$
d\left(x_{n}\right) \equiv v_{1}^{2^{n}} \widetilde{z}^{2^{n-1}}+v_{1}^{3 \cdot 2^{n}-4} \widetilde{z}+\frac{1+(-1)^{n}}{2} v_{1}^{3 \cdot 2^{n}-1} t_{1} \quad \bmod (2)
$$

for $n>1$.
Proof. By (3.1) and Lemma 3.9, we have

$$
\begin{aligned}
d\left(v_{2}^{2}\right) & \equiv v_{1}^{2}\left(r_{1}+\widetilde{z}\right)+v_{1}^{3}\left(v_{1} t_{1}^{2}+v_{1}^{2} t_{1}\right) \quad \bmod (2) \quad \text { and } \\
d\left(v_{1}^{3} v_{2}\right) & \equiv v_{1}^{3}\left(v_{1} t_{1}^{2}+v_{1}^{2} t_{1}\right) \quad \bmod (2) .
\end{aligned}
$$

The sum gives us the first one.

We show the others by induction. By (3.1), (3.2) and (4.1),

$$
\begin{aligned}
v_{2} d\left(v_{2}^{2}\right)+v_{1}^{2} t_{1} \eta_{R}\left(v_{2}^{2}\right) & \equiv v_{1}^{2} v_{2} t_{1}^{4}+v_{1}^{2} t_{1} \eta_{R}\left(v_{2}^{2}\right)+v_{1}^{4} v_{2} t_{1}^{2} \\
& \equiv v_{1}^{3} t_{2}^{2}+v_{1}^{5} v_{2} t_{1}+v_{1}^{6}\left(t_{2}+t_{1}^{3}\right) \\
& \equiv v_{1}^{3} t_{2}^{2}+v_{1}^{5} r_{1} \quad \bmod (2)
\end{aligned}
$$

We also see that $t_{1}^{2} \eta_{R}\left(v_{2}^{2}\right) \equiv r_{1}^{2}+v_{1}^{2} t_{2}^{2}+v_{1}^{4} t_{1}^{4} \bmod (2)$ by (3.1) and (4.1). Since $d\left(v_{2}^{3}\right)=v_{2} d\left(v_{2}^{2}\right)+d\left(v_{2}\right) \eta_{R}\left(v_{2}^{2}\right)$, we have

$$
\begin{aligned}
d\left(v_{2}^{3}\right) & \equiv v_{1}^{3} t_{2}^{2}+v_{1}^{5} r_{1}+v_{1} r_{1}^{2}+v_{1}^{3} t_{2}^{2}+v_{1}^{5} t_{1}^{4} \quad \bmod (2) \\
& \equiv v_{1} r_{1}^{2}+v_{1}^{5} \widetilde{z}+v_{1}^{8} t_{1} \quad \bmod (2) \quad \text { by }(4.1)
\end{aligned}
$$

Then the first step $d\left(x_{2}\right) \equiv v_{1}^{4} \widetilde{z}^{2}+v_{1}^{8} \widetilde{z}+v_{1}^{11} t_{1} \bmod (2)$ is obtained as the sum of

$$
\begin{aligned}
d\left(x_{1}^{2}\right) & \equiv v_{1}^{4}\left(r_{1}^{2}+\widetilde{z}^{2}\right) \quad \bmod (2) \quad \text { and } \\
d\left(v_{1}^{3} v_{2}^{3}\right) & \equiv v_{1}^{3}\left(v_{1} r_{1}^{2}+v_{1}^{5} \widetilde{z}+v_{1}^{8} t_{1}\right) \quad \bmod (2)
\end{aligned}
$$

Inductively suppose that

$$
d\left(x_{2 n}\right) \equiv v_{1}^{2^{2 n}} \widetilde{z}^{2^{2 n-1}}+v_{1}^{3 \cdot 2^{2 n}-4} \widetilde{z}+v_{1}^{3 \cdot 2^{2 n}-1} t_{1} \quad \bmod (2)
$$

Then mod (2),

$$
\begin{aligned}
& d\left(x_{2 n}^{2}\right) \equiv v_{1}^{2^{2 n+1}} \widetilde{z}^{2^{2 n}}+\underline{v}^{3 \cdot 2^{2 n+1}-8} \widetilde{z}_{1}^{2}+\underline{v_{1}^{3 \cdot 2^{2 n+1}-2} t_{1}^{2}} \\
& d\left(v_{1}^{3 \cdot 2^{2 n+1}-12} x_{2}\right) \equiv \underline{v}_{1}^{3 \cdot 2^{2 n+1}-8} \widetilde{z}_{1}^{2}+v_{1}^{3 \cdot 2^{2 n+1}-4} \widetilde{z}+\underline{v}_{1}^{3 \cdot 2^{2 n+1}-1} t_{1_{1}} \\
& d\left(v_{1}^{3 \cdot 2^{2 n+1}-3} v_{2}\right) \equiv \underline{v_{1}^{3 \cdot 2^{2 n+1}-2} t_{1}^{2}}{ }_{2}+\underline{v}^{3 \cdot 2^{2 n+1}-1} t_{1}
\end{aligned}
$$

and we obtain

$$
d\left(x_{2 n+1}\right) \equiv v_{1}^{2^{2 n+1}} \widetilde{z}^{2 n}+v_{1}^{3 \cdot 2^{2 n+1}-4} \widetilde{z} \quad \bmod (2)
$$

Squaring this shows

$$
d\left(x_{2 n+1}^{2}\right) \equiv v_{1}^{2^{2 n+2}} \widetilde{z}^{2 n+1}+\underline{v}^{3 \cdot 2^{2 n+2}-8} \widetilde{z}_{a}^{2} \quad \bmod (2)
$$

Add
$d\left(v_{1}^{3 \cdot 2^{2 n+2}-12} x_{2}\right) \equiv \underline{v}^{3 \cdot 2^{2 n+1}-8} \widetilde{z}_{a}^{2}+v_{1}^{3 \cdot 2^{2 n+2}-4} \widetilde{z}+v_{1}^{3 \cdot 2^{2 n+2}-1} t_{1} \quad \bmod (2)$, and we obtain the case $2 n+2$, and the induction completes.

Remark. In the following, $v_{2}^{2^{n}}$ denotes sometimes x_{n}.

$5 H^{*} M_{0}^{1}$ revisited

In [4, Th.4.16], it is shown that

$$
\begin{align*}
H^{*} M_{0}^{1}= & \left(\sum_{i>0, p \nmid s} \boldsymbol{Z} / 2^{i+2}\left\{v_{1}^{2^{i} s} / 2^{i+2}\right\}\right) \tag{5.1}\\
& \bigoplus\left(v_{1} \boldsymbol{Z} / 2\left[v_{1}^{ \pm 2}, h_{10}\right] \otimes \Lambda\left(\rho_{1}\right)\right) \bigoplus\left(\boldsymbol{Q} / \boldsymbol{Z}_{(2)} \otimes \Lambda\left(\rho_{1}\right)\right)
\end{align*}
$$

In this section we study the image of $\rho_{1} / 2^{i}(i>0)$ under the map $H^{1} M_{0}^{1} \rightarrow H^{1} M_{0}^{2}$.

Lemma 5.2 Consider the formal sum

$$
r=-\frac{1}{16} \sum_{k \geq 1}(-1)^{k}(16 \widetilde{z} / y)^{k} / k=\widetilde{z} / y-8(\widetilde{z} / y)^{2}+\ldots
$$

in $\Omega^{1} v_{1}^{-1} A$ for $y=v_{1}^{4}+8 v_{1} v_{2}$. Then $r \equiv \widetilde{z} / v_{1}^{4} \bmod (2)$ and it defines a cocycle r of $\Omega^{1} v_{1}^{-1} A /\left(2^{n}\right)$ for any $n>1$.

Proof. In this proof, we make a computation formally. Let $\log (1+x)=$ $\sum_{k>0}(-1)^{k-1} x^{k} / k$, and put $r=d(\log (y)) / 16$. Note that $\eta_{R}(y)=y+16 \widetilde{z}$ by (3.5). Then $d(r)=0$ and

$$
\begin{aligned}
d(\log (y)) / 16 & =\left(\eta_{R}(\log (y))-\log (y)\right) / 16 \\
& =\left(\log \left(\eta_{R}(y)\right)-\log (y)\right) / 16 \\
& =\log \left(\eta_{R}(y) / y\right) / 16 \\
& =\log ((y+16 \widetilde{z}) / y) / 16
\end{aligned}
$$

as desired.
Proposition 5.3 The generator $\rho_{1} / 2^{n+1}$ of $\boldsymbol{Q} / \boldsymbol{Z}_{(2)} \subset H^{1,0} M_{0}^{1} \cong$ $\boldsymbol{Q} / \boldsymbol{Z}_{(2)} \bigoplus \boldsymbol{Z} / 2$ is represented by $r / 2^{n+1}$. Furthermore, the map $H^{1} M_{0}^{1} \rightarrow$ $H^{1} M_{0}^{2}$ sends $\rho_{1} / 2^{n+2}$ to $\widetilde{\zeta} / 2^{n+2} v_{1}^{4}$.

Proof. By (4.1), $\rho_{1} / 2$ is represented by $r_{1} / 2 v_{1}^{4}$. Since $\widetilde{z} / 2 v_{1}^{4}$ is homologous to $r_{1} / 2 v_{1}^{4}$ by Lemma 4.3, we see the proposition by Lemma 5.2.

$6 H^{*} M_{1}^{1}$ revisited

We give another decomposition of $H^{*} M_{1}^{1}$ to make the book keeping easier. In the following, we decompose each summands $M B_{i}$ given in (2.2) into smaller ones.

Now we consider the submodules of $K(1)_{*} / k(1)_{*}$:

$$
\begin{aligned}
A_{\infty} & =\boldsymbol{Z} / 2\left\{1 / v_{1}^{2 j} \mid j>0\right\} \\
A_{n} & =\boldsymbol{Z} / 2\left\{1 / v_{1}^{2 j} \mid 0<2 j \leq 3 \cdot 2^{n-1}\right\} \\
A_{n}^{+} & =\boldsymbol{Z} / 2\left\{1 / v_{1}^{2 j} \mid 0<2 j \leq 3 \cdot 2^{n-1}+2\right\} \\
A_{n}^{-} & =\boldsymbol{Z} / 2\left\{1 / v_{1}^{2 j} \mid 0<2 j \leq 3 \cdot 2^{n-1}-4\right\}
\end{aligned}
$$

for $n \geq 2$. Then $M B_{0}$ is divided into the following seven summands:

$$
\begin{aligned}
L C_{0}= & v_{1} A_{\infty}\left\{1, h_{10}, h_{10}^{2}, h_{10}^{3} / v_{1}^{4}\right\} \bigotimes \boldsymbol{Z} / 2[g] \bigotimes \Lambda(\beta) \bigoplus \widetilde{\zeta} A_{\infty}\left\{v_{1}, h_{0}\right\} \\
& \bigotimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right] \bigotimes \Lambda(\zeta) \\
L I_{0}= & A_{\infty}\left\{h_{10}, h_{10}^{2}, h_{10}^{3}, g\right\} \bigotimes \boldsymbol{Z} / 2[g] \otimes \Lambda(\beta) \bigoplus \widetilde{\zeta} A_{\infty}\left\{v_{1} h_{0}, h_{0}^{2}\right\} \\
& \bigotimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right] \bigotimes \Lambda(\zeta) \\
J C= & \zeta K(1)_{*} / k(1)_{*} \bigotimes \boldsymbol{Z} / 2\left[h_{0}\right] \\
J I= & \zeta^{2} K(1)_{*} / k(1)_{*} \bigotimes \boldsymbol{Z} / 2\left[h_{0}\right] \\
Q= & \boldsymbol{Z} / 2\left\{\widetilde{\zeta} / v_{1}^{4}\right\} \bigotimes \Lambda(\zeta) \\
K_{0}= & \boldsymbol{Z} / 2\left\{h_{10}^{3} / v_{1}^{3}\right\} \bigotimes \Lambda\left(v_{1}^{2}, \beta\right) \bigotimes \boldsymbol{Z} / 2[g] \bigoplus \boldsymbol{Z} / 2\left\{\widetilde{\zeta} / v_{1}^{2}\right\} \bigotimes \Lambda(\zeta), \quad \text { and } \\
P= & A_{\infty} \bigotimes \Lambda(\beta) \bigoplus\left(\widetilde{\zeta} / v_{1}^{4}\right) A_{\infty} \bigotimes \Lambda(\zeta)
\end{aligned}
$$

Note that the direct sum $M B_{1} \bigoplus M B_{2}$ is the tensor product of $\boldsymbol{Z} / 2\left[v_{2}^{ \pm 4}, g\right]$ and the module displayed as follows:

in which the lines of the slope 1 (resp. $1 / 3,0$) denote the multiplication by h_{10} (resp. h_{11}, v_{1}). The module $M B_{1} \bigoplus M B_{2}$ is the direct sum of four modules

$$
\begin{aligned}
K_{1} & =\left(K_{1}^{0} \bigoplus K_{1}^{2}\right) \otimes \boldsymbol{Z} / 2[g] \\
D_{1} & =\sum_{n \geq 2,2 \nless s} v_{2}^{2^{n} s} K_{1}^{0} \\
F_{1} & =\sum_{n \geq 2,2 \nless s} v_{2}^{2^{n} s}\left(g K_{1}^{0} \bigoplus K_{1}^{2}\right) \otimes \boldsymbol{Z} / 2[g] \\
M & =M^{0} \otimes \boldsymbol{Z} / 2\left[v_{2}^{ \pm 4}, g\right]
\end{aligned}
$$

Here

$$
\begin{aligned}
& K_{1}^{0}=\boldsymbol{Z} / 2\left\{v_{2} / v_{1}\right\} \bigotimes \Lambda(\beta) \\
& K_{1}^{2}=\boldsymbol{Z} / 2\left\{v_{2}^{-1} h_{11}^{2} / v_{1}\right\} \bigotimes \Lambda(\beta) \quad \text { and } \\
& M^{0}=\left(\boldsymbol{Z} / 2\left\{v_{2} h_{11} / v_{1}, v_{2}^{3} / v_{1}\right\} \bigotimes \Lambda\left(h_{11}\right)\right. \\
& \left.\quad \bigoplus \boldsymbol{Z} / 2\left\{v_{2}^{2} / v_{1}^{2}\right\} \bigotimes \Lambda\left(v_{1}, h_{10}, v_{2} h_{10}\right)\right) \bigotimes \Lambda(\beta)
\end{aligned}
$$

The module M^{0} is displayed as follows:

$M B_{3}$ is the direct sum of

$$
\begin{aligned}
& L C_{1}=\sum_{2 \nmid s} \boldsymbol{Z} / 2\left\{v_{2}^{2 s} \widetilde{\zeta} / v_{1}^{3}, v_{2}^{2 s} \widetilde{\zeta} h_{0} / v_{1}^{2}, v_{2}^{2 s} \widetilde{\zeta} h_{0} / v_{1}^{4}\right\} \otimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right], \\
& L I_{1}=\sum_{2 \nmid s} \boldsymbol{Z} / 2\left\{v_{2}^{2 s} \widetilde{\zeta} h_{0} / v_{1}^{3}, v_{2}^{2 s} \widetilde{\zeta} h_{0}^{2} / v_{1}^{2}, v_{2}^{2 s} \widetilde{\zeta} h_{0}^{2} / v_{1}^{4}\right\} \otimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right],
\end{aligned}
$$

$$
\begin{aligned}
& L I_{2}=\sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n} s} \widetilde{\zeta} A_{n}\left\{h_{0} / v_{1}, h_{0}^{2}\right\} \bigotimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right], \\
& D_{2}=\sum_{n \geq 2,2 \gamma_{s}} \boldsymbol{Z} / 2\left\{v_{2}^{2^{n} s} \widetilde{\zeta} / v_{1}^{4}\right\} \bigotimes \Lambda\left(v_{1}^{2}\right) \\
& E_{1}=\sum_{2 \gamma s} \boldsymbol{Z} / 2\left\{v_{2}^{2 s} \widetilde{\zeta} / v_{1}^{4}\right\} \bigotimes \Lambda\left(v_{1}^{2}\right) \\
& N_{1}=\sum_{n \geq 3,2 \nmid s} v_{2}^{2^{n}}\left(\widetilde{\zeta} / v_{1}^{4}\right) A_{n}^{-} \quad \text { and } \\
& E_{2}=\sum_{2 \gamma_{s}} \boldsymbol{Z} / 2\left\{v_{2}^{4 s} \widetilde{\zeta} / v_{1}^{6}\right\} .
\end{aligned}
$$

Since $\widetilde{\zeta}^{(n-1)}$ also denotes $v_{1}^{2^{n-1}} v_{2}^{2^{n-1}} \zeta$, we use this in the direct summands of $M B_{4}$ and $M B_{6} . M B_{4}$ is divided into

$$
L C_{3}=\sum_{n \geq 2,2 \gamma_{s}} v_{2}^{2^{n} s+2^{n-1}} \zeta A_{n}\left\{v_{1}, h_{0}\right\} \bigotimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right]
$$

$$
\begin{aligned}
L I_{3} & =\sum_{n \geq 2,2 \gamma_{s}} v_{2}^{2^{n} s+2^{n-1}} \zeta A_{n}\left\{v_{1} h_{0}, h_{0}^{2}\right\} \otimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right] \\
N_{2} & =\sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n} s+2^{n-1}} \zeta A_{n}
\end{aligned}
$$

$M B_{5}$ is the direct sum of

$$
\begin{aligned}
L C_{4} & =\sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n} s} A_{n}\left\{v_{1}, h_{0}^{3}\right\} \otimes \boldsymbol{Z} / 2[g], \\
L C_{5} & =\sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n} s} A_{n}^{+}\left\{v_{1} h_{10}, v_{1} h_{10}^{2}\right\} \otimes \boldsymbol{Z} / 2[g], \\
L I_{4} & =\sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n} s} A_{n}\left\{h_{10}, g\right\} \otimes \boldsymbol{Z} / 2[g], \\
L I_{5} & =\sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n} s} A_{n}^{+}\left\{h_{10}^{2}, h_{10}^{3}\right\} \otimes \boldsymbol{Z} / 2[g], \\
F_{2} & =\sum_{n \geq 2,2 \nmid s} \boldsymbol{Z} / 2\left\{v_{2}^{2^{n} s} h_{10}^{3} / v_{1}^{3}\right\} \otimes \Lambda\left(v_{1}^{2}\right) \otimes \boldsymbol{Z} / 2[g] \\
N_{3} & =\sum_{n \geq 3,2 \nmid s} v_{2}^{2^{n} s} A_{n} \text { and } \\
E_{3} & =\sum_{2 \nmid s} v_{2}^{4 s} A_{2} .
\end{aligned}
$$

$M B_{6}$ is the direct sum of

$$
\begin{aligned}
& L C_{6}=\sum_{n \geq 2,2 \chi_{s}} v_{2}^{2^{n} s+2^{n-1}} \zeta \widetilde{\zeta} A_{n}\left\{h_{0}^{2} / v_{1}, h_{0}^{3}\right\} \otimes \boldsymbol{Z} / 2[g], \\
& L C_{7}=\sum_{n \geq 2,2 \gamma_{s}} v_{2}^{2^{n} s+2^{n-1}} \zeta \widetilde{\zeta} A_{n}^{+}\left\{1 / v_{1}, h_{0}\right\} \bigotimes \boldsymbol{Z} / 2[g], \\
& L I_{6}=\sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n} s+2^{n-1}} \zeta \tilde{\zeta} A_{n}\left\{h_{0}^{3} / v_{1}, g\right\} \bigotimes \boldsymbol{Z} / 2[g], \\
& L I_{7}=\sum_{n \geq 2,2 \gamma_{s}} v_{2}^{2^{n} s+2^{n-1}} \zeta \widetilde{\zeta} A_{n}^{+}\left\{h_{0} / v_{1}, h_{0}^{2}\right\} \otimes \boldsymbol{Z} / 2[g], \\
& F_{3}=\sum_{n \geq 2,2 \gamma_{s}} \boldsymbol{Z} / 2\left\{v_{2}^{2^{n} s+2^{n-1}} \zeta \widetilde{\zeta} g / v_{1}^{3 \cdot 2^{n-1}+4}\right\} \bigotimes \Lambda\left(v_{1}^{2}\right) \otimes \boldsymbol{Z} / 2[g] \\
& D_{3}=\sum_{n \geq 2,4 \mid(s-1)} \boldsymbol{Z} / 2\left\{v_{2}^{2^{n} s+2^{n-1}} \zeta \widetilde{\zeta} / v_{1}^{3 \cdot 2^{n-1}+4}\right\} \bigotimes \Lambda\left(v_{1}^{2}\right) \\
& D_{4}=\sum_{n \geq 3,2 \nmid s} \boldsymbol{Z} / 2\left\{v_{2}^{2^{n} s+2^{n-1}} \zeta \widetilde{\zeta} / v_{1}^{4}\right\} \bigotimes \Lambda\left(v_{1}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
E_{4} & =\sum_{2 \gamma_{s}} \boldsymbol{Z} / 2\left\{v_{2}^{4 s+2} \zeta \widetilde{\zeta} / v_{1}^{4}\right\} \bigotimes \Lambda\left(v_{1}^{2}\right) \\
N_{4} & =\sum_{n \geq 2,2 \chi_{s}} v_{2}^{2^{n} s+2^{n-1}} \zeta\left(\widetilde{\zeta} / v_{1}^{4}\right) A_{n}^{-} \\
& \bigoplus \sum_{n \geq 2,4 \mid(s+1)} \boldsymbol{Z} / 2\left\{v_{2}^{2^{n} s+2^{n-1}} \zeta \widetilde{\zeta} / v_{1}^{3 \cdot 2^{n-1}+4}\right\} \otimes \Lambda\left(v_{1}^{2}\right)
\end{aligned}
$$

Now put

$$
\begin{gathered}
D=\sum_{i=1}^{4} D_{i}, \quad E=\sum_{i=1}^{4} E_{i}, \quad F=\sum_{i=1}^{3} F_{i}, \quad J=J C \bigoplus J I \\
K=K_{0} \bigoplus K_{1}, \quad L=\sum_{i=0}^{7}\left(L C_{i} \bigoplus L I_{i}\right), \quad \text { and } \quad N=\sum_{i=1}^{4} N_{i}
\end{gathered}
$$

Then

$$
H^{*} M_{1}^{1}=(D \bigoplus E \oplus F \oplus J \oplus K \oplus L \oplus M \oplus N \oplus P \oplus Q) \otimes \Lambda\left(\rho_{2}\right)
$$

7 The cocycles R and B

Consider the $E(2)_{*}$-module $M(i, j)=E(2)_{*} /\left(2^{i}, v_{1}^{j}\right)$, which is also an $E(2)_{*} E(2)$-comodule if $2^{i-1} \mid j$. Then we have the exact sequence

$$
\begin{equation*}
H^{s-1,0} M_{1}^{1} \xrightarrow{\delta} H^{s, 0} M(1, j) \xrightarrow{1 / v_{1}^{j}} H^{s,-2 j} M_{1}^{1} \xrightarrow{v_{1}^{j}} H^{s, 0} M_{1}^{1} \tag{7.1}
\end{equation*}
$$

Lemma 7.2 Every element of $H^{s, 0} M\left(1,2^{n}\right)$ for $s=2,3,4$ and $n>4$ is divisible by $v_{1}^{2^{n-2}}$ except for $\zeta h_{0}, \zeta^{2}$ and $\zeta \rho_{2}$ if $s=2, \beta, \zeta h_{0}^{2}, \zeta^{2} h_{0}$, $v_{2}^{-1} h_{10}^{3}, \zeta h_{0} \rho_{2}$ and $\zeta^{2} \rho_{2}$ if $s=3$, and $g, \zeta h_{0}^{3}, \zeta^{2} h_{0}^{2}, \beta \rho_{2}, \zeta h_{0}^{2} \rho_{2}, \zeta^{2} h_{0} \rho_{2}$ and $v_{2}^{-1} h_{10}^{3} \rho_{2}$ if $s=4$.

Proof. By (2.2), we see that

$$
\begin{aligned}
& H^{1,0} M_{1}^{1}=\boldsymbol{Z} / 2\left\{h_{10} / v_{1}, v_{2} \zeta / v_{1}^{3}\right\} \\
& H^{2,0} M_{1}^{1}=\boldsymbol{Z} / 2\left\{h_{10}^{2} / v_{1}^{2}, \widetilde{\zeta} h_{0} / v_{1}^{4}, \zeta \widetilde{\zeta} / v_{1}^{4}, v_{2}^{-1} h_{11}^{2} / v_{1}, h_{10} \rho_{2} / v_{1}, v_{2} \zeta \rho_{2} / v_{1}^{3}\right\} \\
& H^{3,0} M_{1}^{1}=\boldsymbol{Z} / 2\left\{h_{10}^{3} / v_{1}^{3}, \widetilde{\zeta} h_{0}^{2} / v_{1}^{4}, \zeta \widetilde{\zeta} h_{0} / v_{1}^{4}, h_{10}^{2} \rho_{2} / v_{1}^{2}, \widetilde{\zeta} h_{0} \rho_{2} / v_{1}^{4}\right. \\
&\left.\zeta \widetilde{\zeta} \rho_{2} / v_{1}^{4}, v_{2}^{-1} h_{11}^{2} \rho_{2} / v_{1}\right\} .
\end{aligned}
$$

Then $\operatorname{Im} \delta=0$ if $s=2,=\boldsymbol{Z} / 2\left\{v_{2}^{-1} h_{10}^{3}\right\}$ if $s=3$, and $=\boldsymbol{Z} / 2\left\{v_{2}^{-1} h_{10}^{3} \rho_{2}\right\}$ if $s=4$, which gives the exceptional elements.

If $x / v_{1}^{j} \in H^{s,-2^{n+1}} M_{1}^{1}$ is in the image of $1 / v_{1}^{2^{n}}$, then $v_{1}^{2^{n}-j} x \in$ $H^{s, 0} M\left(1,2^{n}\right)$. So if the element $v_{1}^{2^{n}-j} x$ of $H^{s, 0} M\left(1,2^{n}\right)$ is divisible by $v_{1}^{2^{n-2}}$, then $2^{n}-j \geq 2^{n-2}$. We will find elements x / v_{1}^{j} with $j>2^{n}-2^{n-2}$. There is no such elements in $M B_{1} \bigoplus M B_{2}$, since $j \leq 2$. For a generator $v_{2}^{2^{m}(2 t+1)} \xi_{i} / v_{1}^{j}$ of $M B_{i}, 2^{n}-2^{n-2}<j \leq 3 \cdot 2^{m-1}+4$ and
$6 \cdot 2^{m}(2 t+1)+\left|\xi_{i}\right|-2 j=-2^{n+1}$. Here $\left|\xi_{i}\right|=8$ if $i=3,=6 \cdot 2^{m-1}$ if $i=4,=2 s$ if $i=5$ and $s=2,3,=0$ if $i=5$ and $s=4$, and $=6 \cdot 2^{m-1}+8$ if $i=6$. Then we see that there is no solution if $n \geq 4$. In $M B_{0}$, we have

$$
\begin{gathered}
h_{10}^{2} / v_{1}^{2^{n}+2}, \zeta h_{0} / v_{1}^{2^{n}}, \zeta^{2} / v_{1}^{2^{n}}, \widetilde{\zeta} h_{0} / v_{1}^{2^{n}+4}, \zeta \widetilde{\zeta} / v_{1}^{2^{n}+4} \\
h_{10} \rho_{2} / v_{1}^{2^{n}+1}, \zeta \rho_{2} / v_{1}^{2^{n}}, \quad \text { and } \widetilde{\zeta} \rho_{2} / v_{1}^{2^{n}+4}
\end{gathered}
$$

in $H^{2,-2^{n+1}} M_{1}^{1}$,

$$
\begin{gathered}
h_{10}^{3} / v_{1}^{2^{n}+3}, \beta / v_{1}^{2^{n}}, \zeta h_{0}^{2} / v_{1}^{2^{n}}, \zeta^{2} h_{0} / v_{1}^{2^{n}}, \widetilde{\zeta} h_{0}^{2} / v_{1}^{2^{n}+4}, \zeta \widetilde{\zeta} h_{0} / v_{1}^{2^{n}+4} \\
h_{10}^{2} \rho_{2} / v_{1}^{2^{n}+2}, \zeta h_{0} \rho_{2} / v_{1}^{2^{n}}, \zeta^{2} \rho_{2} / v_{1}^{2^{n}}, \widetilde{\zeta} h_{0} \rho_{2} / v_{1}^{2^{n}+4}, \quad \text { and } \quad \zeta \widetilde{\zeta} \rho_{2} / v_{1}^{2^{n}+4}
\end{gathered}
$$

in $H^{3,-2^{n+1}} M_{1}^{1}$, and

$$
\begin{gathered}
g / v_{1}^{2^{n}}, h_{10} \beta / v_{1}^{2^{n}+1}, \zeta h_{0}^{3} / v_{1}^{2^{n}}, \zeta^{2} h_{0}^{2} / v_{1}^{2^{n}}, \widetilde{\zeta} h_{0}^{3} / v_{1}^{2^{n}+4}, \zeta \widetilde{\zeta} h_{0}^{2} / v_{1}^{2^{n}+4}, \\
h_{10}^{3} \rho_{2} / v_{1}^{2^{n}+3}, \beta \rho_{2} / v_{1}^{2^{n}}, \zeta h_{0}^{2} \rho_{2} / v_{1}^{2^{n}}, \zeta^{2} h_{0} \rho_{2} / v_{1}^{2^{n}} \\
\widetilde{\zeta} h_{0}^{2} \rho_{2} / v_{1}^{2^{n}+4}, \quad \text { and } \quad \zeta \widetilde{\zeta} h_{0} \rho_{2} / v_{1}^{2^{n}+4},
\end{gathered}
$$

in $H^{4,-2^{n+1}} M_{1}^{1}$. Since the generators of the form $x / v_{1}^{2^{n}}$ are pulled back to x of $H^{*} M(1,2)$, we obtain the other exceptional elements.

Lemma 7.3 Let z_{i} denote a representative of ζh_{0}^{i-1} of $H^{i, 0} M\left(1,2^{n}\right)$. Then

$$
\left.\begin{array}{rl}
d\left(z_{1}\right) & \equiv 2 z_{1} \otimes z_{1} \quad \bmod \left(4, v_{1}^{2^{n}}\right) \\
d\left(z_{2}\right) & \equiv 2 z_{1} \otimes z_{2}+2 z_{3}+2 k v_{2}^{-1} t_{1} \otimes t_{1} \otimes t_{1}
\end{array} \quad \bmod \left(4, v_{1}^{2^{n}}\right)\right)
$$

for some integers k and k^{\prime}. Here R represents the generator ρ_{2}.
Proof. Since $z_{1}=z^{2^{n}}$ is primitive $\bmod \left(2, v_{1}^{2^{n}}\right)$ and z_{1} is homologous to z_{1}^{2}, the first one is obvious if we replace z_{1} by z_{1}^{2}.

Put $d\left(z_{2}\right) \equiv 2 c_{n} \bmod \left(4, v_{1}^{2^{n+2}}\right)$. Then

$$
\begin{gather*}
c_{n} \equiv k_{1} B+k_{2} z_{3}+k_{3} z_{1} \otimes z_{2}+k_{4} v_{2}^{-1} t_{1} \otimes t_{1} \otimes t_{1} \\
+k_{5} z_{2} \otimes R+k_{6} z_{1} \otimes z_{1} \otimes R+d\left(c_{n}^{\prime}\right) \tag{7.4}
\end{gather*}
$$

$\bmod \left(2, v_{1}^{2^{n}}\right)$ for some c_{n}^{\prime} by Lemma 7.2. Recall [13, Lemma 6.8] that there are elements u_{i} such that $d\left(u_{1}\right) \equiv z_{1} \otimes t_{1}+v_{1} z_{2}$ and $d\left(u_{2}\right) \equiv t_{1} \otimes z_{2}+v_{1} z_{3}$
$\bmod \left(2, v_{1}^{2^{n}}\right)$. Define elements w to fit in $d\left(u_{1}\right) \equiv z_{1} \otimes t_{1}+v_{1} z_{2}+2 w \bmod$ $\left(4, v_{1}^{2^{n}}\right)$. Then

$$
\begin{aligned}
& 0 \equiv 2 z_{1} \otimes z_{1} \otimes t_{1}+2 t_{1} \otimes z_{2}+v_{1} d\left(z_{2}\right)+2 d(w) \\
& \equiv 2 d\left(z_{1} \otimes u_{1}\right)+2 v_{1} z_{1} \otimes z_{2}+2 d\left(u_{2}\right)+2 v_{1} z_{3} \\
&+2 v_{1} c_{n}+2 d(w) \quad \bmod \left(4, v_{1}^{2 n}\right)
\end{aligned}
$$

Comparing with (7.4) shows the second.
In the same manner, we see the others.
Proposition 7.5 There is a cocycle $R_{n} \in \Omega^{1} M\left(n+1,2^{n}\right)$, which represents ρ_{2} of $H^{1,0} M(1,1)=H^{1,0} K(2)_{*}$.

Proof. Suppose first $n>3$. Raising a representative of ρ_{2} of $H^{1,0} K(2)_{*}$ to $2^{3 n}$ power yields a representative of $\rho_{2} \in H^{1,0} M\left(1,2^{3 n}\right)$. Let R denote a representative of ρ_{2}. Then R^{2} also represents ρ_{2}, and we compute $d\left(R^{2}\right) \equiv$ $2 R \otimes R \bmod \left(4, v_{1}^{3 n}\right)$. The relation $\rho_{2}^{2}=0$ of $H^{*} K(2)_{*}$ shows the existence of an element S such that $d(S) \equiv R \otimes R \bmod \left(2, v_{1}^{3 n}\right)$. Then $R_{1}=R^{2}+2 S$ satisfies the relation $d\left(R_{1}\right) \equiv 0 \bmod \left(4, v_{1}^{3 n}\right)$.

Suppose inductively that there exists a cocycle R_{k} such that $d\left(R_{k}\right)$ $\equiv 0 \bmod \left(2^{k+1}, v_{1}^{2^{3 n+2-2 k}}\right)$ for $k \geq 1$. Then $d\left(R_{k}\right) \equiv 2^{k+1} x \bmod$ $\left(2^{k+2}, v_{1}^{2^{3 n+2-2 k}}\right)$ for some x, and we see that x represents an element of $H^{2,0} M\left(1,2^{3 n+2-2 k}\right)$. Lemma 7.2 shows that $x \equiv k_{1} z_{2}+k_{2} z_{1} \otimes z_{1}+$ $k_{3} z_{1} R_{k}+2 y+d(w) \bmod \left(4, v_{1}^{2^{3 n-2 k}}\right)$ for some cochains y and w. Since $d(x) \equiv 0 \bmod \left(4,2^{3 n+2-2 k}\right)$, we see that

$$
0=k_{1}\left(z_{1} \otimes z_{2}+z_{3}+k v_{2}^{-1} t_{1} \otimes t_{1} \otimes t_{1}\right)+k_{3} z_{1} \otimes z_{1} \otimes R_{k}+d(y)
$$

$\bmod \left(2, v_{1}^{2^{3 n-2 k}}\right)$ by Lemma 7.3, which implies a relation $0=k_{1}\left(\zeta^{2} h_{0}+\right.$ $\left.\zeta h_{0}^{2}+k v_{2}^{-1} h_{10}^{3}\right)+k_{3} \zeta^{2} \rho_{2}$ of $H^{3,0} K(2)_{*}$ and we have $k_{1}=0=k_{3}$. Therefore, $d\left(R_{k}\right) \equiv 2^{k+1} k_{2} z_{1} \otimes z_{1}+d\left(2^{k+1} w\right) \bmod \left(2^{k+2}, v_{1}^{2^{3 n-2 k}}\right)$. Put $R_{k+1}=R_{k}+2^{k} k_{2} z_{1}+2^{k+1} w$ and we have $d\left(R_{k+1}\right) \equiv 0 \bmod$ $\left(2^{k+2}, v_{1}^{2^{3 n-2 k}}\right)$, which completes the induction.

Now take R_{n} for a representative of $\widetilde{\rho_{2}}$ and we have the result for $n>3$.
If $n \leq 3$, just consider the projection $M\left(5,2^{4}\right) \rightarrow M\left(n+1,2^{n}\right) \rightarrow$ $M(1,1)$.

We write R as R_{n} as long as no confusion arises.
Corollary 7.6 In the cobar complex for $M(n+1, j)$ with $2^{n} \mid j$, there is a cochain S such that

$$
d(S)=R \otimes R
$$

Proof. Since R is homologous to R^{2} in the cobar complex $\Omega^{1} M(1, j)$ for any j, we have cochains U_{j} and S_{j} such that

$$
d\left(U_{j}\right) \equiv R^{2}-R-2 S_{j} \quad \bmod \left(v_{1}^{j}\right)
$$

Now send this by the differential d, and we have

$$
0 \equiv 2 R \otimes R-2 d\left(S_{j}\right) \quad \bmod \left(v_{1}^{j}\right)
$$

as desired.
Lemma 7.7 There is a cochain H such that $H \equiv v_{1}^{3} v_{2}^{-1} h_{11}^{2} \bmod \left(2, v_{1}^{4}\right)$ and

$$
d(H) \equiv 4 v_{1} t_{1} \otimes t_{1} \otimes t_{1} \quad \bmod \left(8, v_{1}^{4}\right)
$$

Proof. Put $H=v_{1}^{2} v_{2}^{-1} d\left(v_{2} t_{1}^{2}\right)-2 v_{1}^{3} v_{2}^{-2} t_{1}^{2} t_{2} \otimes t_{1}^{2}-4 v_{1} v_{2}^{-1} D$. Here D denotes a cochain such that $d(D) \equiv t_{1}^{4} \otimes t_{1} \otimes t_{1}+t_{1}^{2} \otimes t_{1}^{2} \otimes t_{1}^{2} \bmod (2)$ given in [13, p.149]. Then, we obtain

$$
d(H) \equiv 4 v_{1} t_{1} \otimes t_{1} \otimes t_{1} \quad \bmod \left(8,4 v_{1}^{2}, v_{1}^{4}\right)
$$

from computation

$$
\begin{aligned}
& d\left(v_{1}^{2} v_{2}^{-1} d\left(v_{2} t_{1}^{2}\right)\right) \\
& \equiv v_{1}^{2} d\left(v_{2}^{-1}\right) \otimes d\left(v_{2} t_{1}^{2}\right)+\left(4 v_{1} t_{1}+4 t_{1}^{2}\right) \otimes v_{2}^{-1} d\left(v_{2} t_{1}^{2}\right) \\
& \equiv v_{1}^{2} v_{2}^{-2}\left(-v_{1} t_{1}^{2}+2 t_{2}\right) \otimes\left(-v_{1} t_{1}^{2}+2 t_{2}\right) \otimes t_{1}^{2} \\
& \quad-2 v_{1}^{2} v_{2}^{-2}\left(-v_{1} t_{1}^{2}+2 t_{2}\right) \otimes v_{2} t_{1} \otimes t_{1}+4 v_{1} v_{2}^{-1} t_{1}^{2} \otimes t_{1}^{2} \otimes t_{1}^{2} \\
& \equiv 2 v_{1}^{3} v_{2}^{-2} t_{1}^{3} \otimes t_{1}^{2} \otimes t_{1}^{2}-2 v_{1}^{3} v_{2}^{-2} t_{1}^{2} \otimes t_{2} \otimes t_{1}^{2} \\
& \quad-2 v_{1}^{3} v_{2}^{-2} t_{2} \otimes t_{1}^{2} \otimes t_{1}^{2}+2 v_{1}^{3} v_{2}^{-2} t_{1}^{2} \otimes v_{2} t_{1} \otimes t_{1}+4 v_{1} v_{2}^{-1} t_{1}^{2} \otimes t_{1}^{2} \otimes t_{1}^{2} \\
& d\left(-2 v_{1}^{3} v_{2}^{-2} t_{1}^{2} t_{2} \otimes t_{1}^{2}\right) \\
& \equiv 2 v_{1}^{3} v_{2}^{-2}\left(t_{1}^{3} \otimes t_{1}^{2}+t_{1} \otimes t_{1}^{4}+t_{1}^{2} \otimes t_{2}+t_{2} \otimes t_{1}^{2}\right) \otimes t_{1}^{2} \\
& d\left(-4 v_{1} v_{2}^{-1} D\right) \\
& \equiv-4 v_{1} v_{2}^{-1}\left(t_{1}^{4} \otimes t_{1} \otimes t_{1}+t_{1}^{2} \otimes t_{1}^{2} \otimes t_{1}^{2}\right)
\end{aligned}
$$

$\bmod \left(8,4 v_{1}^{2}, v_{1}^{4}\right)$. Here note that $v_{2} t_{1} \equiv t_{1}^{4} \bmod \left(2, v_{1}\right)$ in Γ by (3.2).
Thus we put $d(H) \equiv 4 v_{1} t_{1} \otimes t_{1} \otimes t_{1}+4 v_{1}^{2} C_{1} \bmod \left(8, v_{1}^{4}\right)$ for some C_{1}. Since $d\left(C_{1}\right) \equiv 0 \bmod \left(2, v_{1}^{2}\right), C_{1}$ represents an element of $H^{3,4} M(1,2)=$ $\boldsymbol{Z} / 2\left\{h_{10}^{2} \rho_{2}, v_{1} v_{2}^{-1} h_{11}^{2} \rho_{2}\right\}$. Since $d\left(v_{1} t_{1} \otimes R\right)=2 t_{1} \otimes t_{1} \otimes R$, we may assume that C_{1} represents a multiple of $v_{1} v_{2}^{-1} h_{11}^{2} \rho_{2}$. Checking the above computation carefully shows that there appears no R and we see that $v_{1}^{2} C_{1}$ is homologous to zero. After suitable replacement, we may take $C_{1}=0$.

Lemma 7.8 There is a cochain C of $\Omega^{3,0} M\left(4,2^{n}\right)$ for $n>4$ such that $d(C) \equiv 8 G \bmod \left(16, v_{1}^{2^{n}}\right)$ and C represents the element $v_{2}^{-1} h_{10}^{3} \in$ $H^{3,0} M\left(1,2^{n}\right)$. Furthermore, $v_{1} C$ is bounded in $\Omega^{3,0} M\left(3,2^{n}\right)$.

Proof. We have $d(H) \equiv v_{1}^{4} v_{2}^{-1} t_{1} \otimes t_{1} \otimes t_{1}+\cdots \bmod (2)$. Therefore, we see that

$$
\begin{equation*}
d(H) \equiv 4 v_{1} t_{1} \otimes t_{1} \otimes t_{1}+y_{1}^{2} C+8 U+8 C_{2} \quad \bmod \left(16, v_{1}^{2^{n}}\right) \tag{7.9}
\end{equation*}
$$

for some $C_{2}, C=v_{2}^{-1} t_{1} \otimes t_{1} \otimes t_{1}+\ldots$ and U in the proof of Lemma 3.6. Note that $d(C) \equiv 0 \bmod \left(8, v_{1}^{2^{n}}\right)$ and $d\left(C_{2}\right) \equiv 0 \bmod \left(2, v_{1}^{4}\right)$. Then we may put $d\left(C_{2}\right) \equiv v_{1}^{4} C_{3} \bmod (2)$ for some C_{3}. The cochain C_{3} does not represents g since g / v_{1} is a generator of $H^{4} M_{1}^{1}$. Since we see that $d(C) \equiv 8 G+8 C_{3}$, we replace the representative G by $G+C_{3}$ to obtain the lemma.
Corollary 7.10 There exists a cocycle G of $\Omega^{4,0} M\left(i+1,2^{i} s\right)$ for any i, s that represents the polynomial generator g.

Lemma 7.11 There is a cochain C^{\prime} of $\Omega^{3,0} M(4,8)$ for $n>4$ such that $d\left(C^{\prime}\right) \equiv 8 v_{1}^{7} v_{2} G \bmod \left(16, v_{1}^{8}\right)$ and C^{\prime} represents the element $v_{1}^{7} h_{10}^{3} \in$ $H^{3,0} M(1,8)$.

Proof. By Lemmas 3.12 and 7.8, we compute

$$
\begin{aligned}
& d\left(v_{1}^{7} v_{2} C\right) \\
& \equiv-2 v_{1}^{6} r_{1} \otimes C+8 v_{1}^{7} v_{2} G \quad \bmod \left(16, v_{1}^{8}\right) \\
& \equiv-2 v_{1}^{2} r_{1} \otimes\left(d(H)-4 v_{1} t_{1} \otimes t_{1} \otimes t_{1}\right)+8 v_{1}^{7} v_{2} G \bmod \left(16, v_{1}^{8}\right) \text { by }(7.9) \\
& d\left(2 v_{1}^{2} r_{1} \otimes H\right) \\
& \equiv 2 v_{1}^{2} r_{1} \otimes d(H), \quad \text { since } d\left(v_{1}^{2} r_{1}\right) \equiv 0 \bmod (8) \text { by Lemma } 4.2
\end{aligned}
$$

Since we see that $v_{1}^{3} r_{1} \otimes t_{1} \otimes t_{1} \otimes t_{1}$ is homologous to $v_{1}^{6} \widetilde{\zeta} h_{0}^{3} \bmod \left(2, v_{1}^{8}\right)$, we have the desired cocycle.

Lemma 7.12 In the cobar complex $\Omega^{2} M\left(n+2,2^{n+1}\right)$, there exists a cochain $z_{n, s}$ for $n>3$ and odd s such that $z_{n, s} \equiv v_{1}^{2^{n+1}-4} v_{2}^{2^{n}} \widetilde{z} \bmod$ ($\left.2, v_{1}^{2^{n+1}}\right)$ and

$$
d\left(z_{n, s}\right)=2^{n+1} v_{1}^{2^{n+1}-4} \widetilde{z} \otimes v_{2}^{2^{n}} Z+2^{n+1} v_{1}^{2^{n+1}-2} X^{\prime}
$$

for some X^{\prime}. Here Z is the element given in Lemma 3.9.
Proof. By Lemma 5.2,

$$
\begin{aligned}
& d\left(v_{1}^{2^{n+1}} \eta_{R}\left(v_{2}^{2^{n} s}\right) r\right) \\
& =v_{1}^{2^{n+1}} r \otimes d\left(v_{2}^{2^{n} s}\right) \\
& =\sum_{k \geq 1} \frac{(-16)^{k-1}}{k} v_{1}^{2^{n+1}}(\widetilde{z} / y)^{k} \otimes d\left(v_{2}^{2^{n} s}\right) \\
& =\sum_{k \geq 1} \sum_{i \geq 0}\binom{k+i-1}{i} \frac{(-1)^{k+i-1} 2^{4 k-4+3 i}}{k} v_{1}^{2^{n+1}-4 k-3 i} v_{2}^{i} \widetilde{z} \otimes d\left(v_{2}^{2^{n} s}\right)
\end{aligned}
$$

in $\Omega^{2} M\left(n+2,2^{n+1}\right)$. Here we see that

$$
\begin{aligned}
& 2^{4 k-4+3 i} v_{1}^{2^{n+1}-4 k-3 i} \otimes d\left(v_{2}^{2^{n} s}\right) \\
& =2^{4 k-4+3 i} v_{1}^{2^{n+1}-4 k-3 i} \otimes\left(\left(v_{2}^{2^{4 k+3 i-5}}+v_{1}^{2^{4 k+3 i-5}} A^{2^{4 k+3 i-5}}\right)^{2^{n+2-4 k-3 i+3} s}\right. \\
& \left.-v_{2}^{2^{n} s}\right)
\end{aligned}
$$

equals zero if $2^{4 k+3 i-5} \geq 4 k+3 i$, which is satisfied when $k \geq 2$ and when $k=1$ and $i \geq 2$. Therefore,

$$
\begin{aligned}
& d\left(v_{1}^{2^{n+1}} \eta_{R}\left(v_{2}^{2^{n} s}\right) r\right) \\
& =-v_{1}^{2^{2+1}-4} \widetilde{z} \otimes d\left(v_{2}^{2^{n} s}\right)+2^{3} v_{1}^{2^{n+1}-7} v_{2} \widetilde{z} \otimes d\left(v_{2}^{2^{n} s}\right) \\
& =-v_{1}^{2^{n+1}-4} \widetilde{z} \otimes d\left(v_{2}^{2^{n} s}\right)+2^{n+1} s v_{1}^{2^{n+1}-7} v_{2} \widetilde{z} \otimes\left(v_{1}^{4} v_{2}^{2^{n} s-4} t_{1}^{8}\right) \\
& =-v_{1}^{2^{n+1}-4} \widetilde{z} \otimes d\left(v_{2}^{2^{n} s}\right)+2^{n+1} s v_{1}^{2^{n+1}-3} v_{2}^{2^{n} s-3} \widetilde{z} \otimes t_{1}^{8} \\
& =v_{1}^{2^{n+1}-4} \widetilde{z} \otimes\left(2^{n-1} v_{2}^{2^{n} s-2}\left(v_{1}^{2}(3 r-\widetilde{z})+4 v_{2}^{2} Z\right)\right. \\
& \left.\quad-2^{n+1} v_{1}^{2} v_{2}^{2^{n} s-2}(3 r-\widetilde{z}) Z\right)+2^{n+1} s v_{1}^{2^{n+1}-3} v_{2}^{2^{n} s-3} \widetilde{z} \otimes t_{1}^{8} \\
& =2^{n-1} v_{1}^{2^{n+1}-4} \widetilde{z} \otimes v_{2}^{2^{n} s-2}\left(v_{1}^{2}(3 r-\widetilde{z})+4 v_{2}^{2} Z\right) \\
& \quad-2^{n+1} v_{1}^{2^{n+1}-2} \widetilde{z} \otimes v_{2}^{2^{n} s-2}(3 r-\widetilde{z} Z) \\
& \quad+2^{n+1} s v_{1}^{2^{n+1}-3} v_{2}^{2^{n} s-3} \widetilde{z} \otimes t_{1}^{8}
\end{aligned}
$$

Next consider $Y=-3 \widetilde{z} \eta_{R}\left(v_{1}^{15} v_{2}\right)+v_{1}^{8} \widetilde{v_{1}^{6} \tilde{z}^{2}}$ for the cochain $\widetilde{v_{1}^{6} \tilde{z}^{2}}$ of Lemma 3.13, and we compute

$$
d(Y)=2 v_{1}^{14} \widetilde{z} \otimes(3 r-\widetilde{z})+8 v_{1}^{14} X
$$

for some X by Lemmas 3.12 and 3.13, which equals

$$
d(Y)=2 v_{1}^{12} \widetilde{z} \otimes v_{1}^{2}(3 r-\widetilde{z})+8 v_{1}^{12}\left(v_{1} t_{1}+t_{1}^{2}\right) \widetilde{z} \otimes(3 r-\widetilde{z})+8 v_{1}^{14} X
$$

Put $z_{n, s}=v_{1}^{2^{n+1}} \eta_{R}\left(v_{2}^{2^{n} s}\right) r-2^{n-2} v_{1}^{2^{n+1}-16} v_{2}^{2^{n} s-2} Y$ and we obtain the lemma. Indeed, $2^{n+1} s v_{1}^{2^{n+1}-3} v_{2}^{2^{n} s-3} \widetilde{z} \otimes t_{1}^{8}$ is of the form $2^{n+1} v_{1}^{2^{n+1}-2} X$ for some X since $\tilde{z} \equiv v_{1} v_{2} z \bmod \left(2, v_{1}^{2}\right)$.

Lemma 7.13 Suppose $n>4$. Then there is a cocycle $\widetilde{z z_{n}}$ of $\Omega^{2} M(n+$ $1,2^{n}$) such that $\widetilde{z z_{n}} \equiv v_{1}^{2^{n}-4} \widetilde{z} \otimes z^{4}+v_{1}^{2^{n}-2} Y_{1}+2 v_{1}^{2^{n}-4} W+2 Y_{2} \bmod$ $\left(4, v_{1}^{2^{n}}\right)$ for the cochain W in the proof of Lemma 3.6 and cocycles Y_{i} $(i=1,2)$ such that Y_{1} represents a linear combination of $h_{10}^{2}, 2 v_{1} h_{10} \rho_{2}$ and $h_{11} \rho_{2}$.

Proof. Lemma 7.12 implies that $c=d\left(z_{2 n, 1}\right) / 2^{2 n+1}$ yields a cocycle of $\Omega^{2} M\left(n+1,2^{2 n+1}\right)$ whose leading term is $v_{1}^{2^{2 n+1}-4} \widetilde{z} \otimes v_{2}^{2^{2 n}} Z$. Consider the exact sequence $M\left(n+1,2^{n}\right) \xrightarrow{v_{1}^{2^{2 n+1}-2^{n}}} M\left(n+1,2^{2 n+1}\right) \longrightarrow M(n+$
$\left.1,2^{2 n+1}-2^{n}\right)$. Then by the definition of $z z_{2 n, 1}$ we see that c is pulled back to c^{\prime} of $M\left(n+1,2^{n}\right)$ whose leading term is $v_{1}^{2^{n}-4} \widetilde{z} \otimes v_{2}^{2^{2 n}} Z$. In fact, we see that $c=0$ in $\Omega^{2} M\left(3 n+3,2^{2 n+1}-2^{n}\right)$ by the computation

$$
\begin{aligned}
2^{2 n+1} c= & d\left(v_{1}^{2^{2 n+1}} \eta_{R}\left(v_{2}^{2^{2 n}}\right) r\right) \\
= & \sum_{k \geq 1} \sum_{i \geq 0}\binom{k+i-1}{i} \\
& \frac{(-1)^{k+i-1} 2^{4 k-4+3 i}}{k} v_{1}^{2^{2 n+1}-4 k-3 i} v_{2}^{i} \widetilde{z} \otimes d\left(v_{2}^{2^{2 n} s}\right) \\
= & 0
\end{aligned}
$$

since $2^{n}-4 \geq 3 n+3$ if $n>4$. Then there is an isomorphism $v_{2}^{2^{2 n}}: M(n+$ $\left.1,2^{n}\right) \rightarrow M\left(n+1,2^{n}\right)$ of Γ-comodules and we obtain a cocycle ${\widetilde{z z_{n}}}^{\prime}$ such that

$$
\widetilde{z z_{n}}{ }^{\prime} \equiv v_{1}^{2^{n}-4} \widetilde{z} \otimes Z+v_{1}^{2^{n}-2} X^{\prime \prime} \quad \bmod \left(2, v_{1}^{2^{n}}\right)
$$

for some $X^{\prime \prime}$. Since $\widetilde{z} \otimes Z$ is homologous to $\widetilde{z} \otimes z^{2^{5}} \bmod \left(2, v_{1}^{2}\right)$, we replace it by $\widetilde{z z_{n}}$ such that

$$
\widetilde{z z_{n}} \equiv v_{1}^{2^{n}-4} \widetilde{z} \otimes z^{2^{5}}+v_{1}^{2^{n}-2} Y_{1}+2 v_{1}^{2^{n}-4} W+2 Y_{2} \quad \bmod \left(8, v_{1}^{2^{n}}\right)
$$

for some Y_{1} and Y_{2}. Then we have $v_{1}^{2^{n}-2} d\left(Y_{1}\right) \equiv 2 d\left(Y_{2}\right) \bmod \left(4, v_{1}^{2^{n}}\right)$, and Y_{1} represents an element of $H^{2,4} M(1,2)=\boldsymbol{Z} / 2\left\{h_{10}^{2}, v_{1} h_{10} \rho_{2}\right.$, $\left.h_{11} \rho_{2}, v_{1} v_{2}^{-1} h_{11}^{2}\right\}$. Therefore, we see that $d\left(Y_{2}\right) \equiv k t_{1} \otimes t_{1} \otimes R$ for some $k \in \boldsymbol{Z} / 2$. Since $h_{10}^{2} \rho_{2} / v_{1}$ is not zero in $H^{1} M_{1}^{1}$, we see that $k=0$. Thus Y_{1} represents $k_{1} h_{10}^{2}+2 k_{2} v_{1} h_{10} \rho_{2}+k_{3} h_{11} \rho_{2}+k_{4} v_{1} v_{2}^{-1} h_{11}^{2}$ of $H^{2,4} M(2,2)$ for some $k_{i} \in \boldsymbol{Z} / 2$. Then we have $d\left(Y_{2}\right) \equiv 2 k_{4} v_{1}^{2^{n}-1} t_{1} \otimes t_{1} \otimes t_{1}$ by Lemma 7.7. If $k_{4} \not \equiv 0$, then $v_{1}^{2^{n}-1} t_{1} \otimes t_{1} \otimes t_{1}$ represents an element of $H^{3} M\left(3,2^{n}\right)$. Consider the composite

$$
H^{3} M\left(3,2^{n}\right) \xrightarrow{1 / 8 v_{2}^{2}} H^{3} M_{0}^{2} \xrightarrow{\delta} H^{4} M_{1}^{1}
$$

where δ is the connecting homomorphism associated to the short exact sequence (1.3), which sends $v_{1}^{2^{n}-1} t_{1} \otimes t_{1} \otimes t_{1}$ to $v_{2} g / v_{1}$ by Lemma 7.11. On the other hand, $h_{10}^{3} / 8 v_{1}=\left[t_{1} \otimes t_{1} \otimes t_{1} / 8 v_{1}\right]=\left[d\left(Y_{1}\right) / 16 v_{1}^{2^{n}}\right]=0$, which contradict that $v_{2} g / v_{1}$ is a generator. Therefore, $k_{4}=0$.

Proposition 7.14 There is an element $\beta \in H^{3,0} M\left(n, 2^{n}\right)$ for each $n>4$ which goes to $\beta \in H^{3,0} M\left(1,2^{n}\right)$ by the projection.

Proof. Consider a commutative diagram with exact sequences

where δ denotes the connecting homomorphism associated to the short exact sequence $0 \rightarrow M\left(i, 2^{n}\right) \xrightarrow{v_{1}^{2^{n}}} M\left(i, 2^{2 n}\right) \rightarrow M\left(i, 2^{n}\right) \rightarrow 0$. We denote an element represented by $\widetilde{z z}_{n}$ by $\widetilde{\zeta \zeta} \in H^{2,2^{n+1}} M\left(n+1,2^{n}\right)$. By Lemma 7.13, we see that $\operatorname{pr}(\widetilde{\zeta \zeta})=v_{1}^{2^{n}-4} \widetilde{\zeta} \zeta+v_{1}^{2^{n}-2} \xi_{1}+2 \xi_{2}$ for some ξ_{i} such that ξ_{1} is a linear combination of $h_{10}^{2}, 2 v_{1} h_{10} \rho_{2}$ and $h_{11} \rho_{2}$. Since δ sends ξ_{1} to zero, $\delta(\operatorname{pr}(\widetilde{\zeta \zeta}))=2 \beta+2 \delta\left(\xi_{2}\right)$ and so $\operatorname{pr} \delta(\operatorname{pr}(\widetilde{\zeta \zeta}))=0$. Therefore, we see that $\operatorname{pr}(\widetilde{2 \beta})=0$ for $\widetilde{2 \beta}=\delta(\widetilde{\zeta \zeta}) \in H^{3,0} M\left(n+1,2^{n}\right)$ such that $\operatorname{pr}(\widetilde{2 \beta})=2 \beta+2 \delta\left(\xi_{2}\right)$. Thus we obtain $\beta \in H^{3,0} M\left(n, 2^{n}\right)$ such that $2 \beta=\widetilde{2 \beta}$ as desired.

Lemma 7.15 Let B denote a cochain that represents β of the above lemma. Then there is a cochain W such that $d(W) \equiv \widetilde{z} \otimes Z Z_{5}+v_{1}^{4} B+4 v_{1} W_{1}+$ $2 v_{1}^{2} W_{2} \bmod \left(8, v_{1}^{8}\right)$ for some cochains W_{i}, where W_{1} represents a linear combination of $h_{10}^{3}, v_{2} \zeta^{2} h_{0}$ and $v_{2} \zeta h_{0} \rho_{2}$.

Proof. As in the proof of Lemma 3.6, we have a cochain W such that

$$
\begin{equation*}
d(W)=\widetilde{z} \otimes Z Z_{4}+v_{1}^{4} B+2 X_{1}+2 v_{1}^{2} X_{2} \tag{7.16}
\end{equation*}
$$

for some cochains X_{1} and X_{2}. Then we have $0 \equiv 2 d\left(X_{1}\right)+2 v_{1}^{2} d\left(X_{2}\right) \bmod$ ($8, v_{1}^{2^{n}}$) under the differential d, which shows that $X_{1}+v_{1}^{2} X_{2}$ represents an element of $H^{3,8} M(2,4)$. We read off that $H^{3,8} M(1,4)$ is the $Z / 2-$ module generated by $h_{11}^{2} \rho_{2}, v_{1} h_{10}^{3}, \widetilde{\zeta} h_{0}^{2}, \widetilde{\zeta} \zeta h_{0}, \widetilde{\zeta} h_{0} \rho_{2}, \widetilde{\zeta} \zeta \rho_{2}, v_{1}^{2} h_{10}^{2} \rho_{2}$, and $v_{1}^{3} v_{2}^{-1} h_{11}^{2} \rho_{2}$ from the structure (2.1) of $H^{*} K(2)_{*}$. (Here $v_{1} v_{2} \beta$ is taken away since $\delta\left(v_{1} v_{2} \beta\right)=v_{1}^{2} h_{11} \beta$.) Therefore, we see that $2 X_{1}$ represents a linear combination of $v_{1} h_{10}^{3}, 4 \widetilde{\zeta} \zeta h_{0}, 4 \widetilde{\zeta} h_{0} \rho_{2}$ and $2 \widetilde{\zeta} \zeta \rho_{2}$, and $2 v_{1}^{2} X_{2}$ is a multiple of $v_{1}^{3} v_{2}^{-1} h_{11}^{2} \rho_{2}$. If we consider the equation (7.16) $\bmod \left(8, v_{1}^{8}\right)$, then we see that $2 X_{1}$ represents a linear combination of $4 v_{1} h_{10}^{3} 4 \widetilde{\zeta} \zeta h_{0}$ and $4 \widetilde{\zeta} h_{0} \rho_{2}$, since δ sends those generators to zero except for $\delta\left(2 \widetilde{\zeta} \zeta \rho_{2}\right)=v_{1}^{4} \beta \rho_{2}$. Here δ denotes the connecting homomorphism associated to the short exact sequence $0 \rightarrow M(1,8) \xrightarrow{4} M(3,8) \rightarrow M(2,8) \rightarrow 0$. Now put $v_{1} W_{1}=X_{1}$ and $W_{2}=X_{2}$, and we see the lemma.

8 The connecting homomorphism on J

Proposition 8.1 For the connecting homomorphism $\delta: H^{*} M_{0}^{2} \rightarrow$ $H^{*+1} M_{1}^{1}, \delta\left(\zeta h_{0}^{i} / 2 v_{1}^{j}\right)=\zeta^{2} h_{0}^{i} / v_{1}^{j}+(i+j) \zeta h_{0}^{i+1} / v_{1}^{j}$ for each $i \geq 0$ and $j>0$.
Proof. Put $t_{1}^{\otimes i}=t_{1} \otimes \cdots \otimes t_{1} \in \Omega^{i} A$. Then $z \otimes t_{1}^{\otimes i} / v_{1}^{i+j}$ represents $\zeta h_{0}^{i} / v_{1}^{j}$ of $H^{i+1} M_{1}^{1}$. Take an integer n to be $2^{n-1}>i+j$, and we compute $d\left(z^{2^{n}} \otimes\right.$ $\left.t_{1}^{\otimes i} / 4 v_{1}^{i+j}\right)=z^{2^{n-1}} \otimes z^{2^{n-1}} \otimes t_{1}^{\otimes i} / 2 v_{1}^{i+j}+(i+j) z^{2^{n}} \otimes t_{1}^{\otimes(i+1)} / 2 v_{1}^{i+j+1}$.

The above proposition implies immediately the following
Lemma 8.2 We have the exact sequence

$$
0 \longrightarrow J C \xrightarrow{1 / 2} \widetilde{J} \xrightarrow{2} \widetilde{J} \xrightarrow{\delta} J I \longrightarrow 0 .
$$

9 The connecting homomorphism on K

Consider the submodules $K C$ and $K I$:

$$
\begin{aligned}
K C & =\boldsymbol{Z} / 2\left\{h_{10}^{3} / v_{1}, v_{2}^{-1} h_{11}^{2} / v_{1}\right\} \bigotimes \Lambda(\beta) \bigotimes \boldsymbol{Z} / 2[g] \bigoplus \boldsymbol{Z} / 2\left\{v_{2} / v_{1}, \zeta \widetilde{\zeta} / v_{1}^{2}\right\} \\
K I & =\boldsymbol{Z} / 2\left\{v_{2} g / v_{1}, h_{10}^{3} / v_{1}^{3}\right\} \bigotimes \Lambda(\beta) \bigotimes \boldsymbol{Z} / 2[g] \bigoplus \boldsymbol{Z} / 2\left\{\widetilde{\zeta} / v_{1}^{2}, v_{2} \beta / v_{1}\right\}
\end{aligned}
$$

Then $K=K I \bigoplus K C$.
Proposition 9.1 For the generators of $K C$, we have

1. $\delta\left(h_{10}^{3} / 8 v_{1}\right)=v_{2} g / v_{1}$
2. $\delta\left(v_{2}^{-1} h_{11}^{2} / 4 v_{1}\right)=h_{10}^{3} / v_{1}^{3}$
3. $\delta\left(h_{10}^{3} \beta / 8 v_{1}\right)=v_{2} \beta g / v_{1}$
4. $\delta\left(v_{2}^{-1} h_{11}^{2} \beta / 4 v_{1}\right)=h_{10}^{3} \beta / v_{1}^{3}$
5. $\delta\left(v_{2} / 2 v_{1}\right)=v_{2} \zeta / v_{1}=\widetilde{\zeta} / v_{1}^{2}$
6. $\quad \delta\left(\zeta \widetilde{\zeta} / 8 v_{1}^{2}\right)=v_{2} \beta / v_{1}$

Proof. We prove them one by one.

1. Lemma 7.11 shows this.
2. This follows from Lemma 7.7.
3. By Proposition 7.14, $\delta(\xi \beta)=\delta(\xi) \beta$ for any $\xi \in H^{*} M_{0}^{2}$. Therefore, this follows from the first one.
4. This also follows from Proposition 7.14 and the second one.
5. This is shown in [10].
6. Note that $r \equiv v_{1}^{-4} \widetilde{z} \bmod (8)$ and $d(r)=0$ by Lemma 5.2. Then we compute

$$
d\left(y_{1} r \otimes z^{2^{6}} / 16\right)=r_{1} \otimes \widetilde{z} \otimes z^{2^{6}} / 2 v_{1}^{6}+y_{1} \tilde{z} \otimes Z Z_{5} / 8 .
$$

for y_{1} of Lemma 4.2 and $Z Z_{5}$ of Lemma 3.6. We see that the first term is bounded by computation:

$$
\begin{aligned}
& d\left(x_{1} \tilde{z} \otimes z^{2^{5}} / 2 v_{1}^{8}\right)=\left(r_{1}+\widetilde{\underline{z}}_{1}\right) \otimes \widetilde{z} \otimes z^{2^{5}} / 2 v_{1}^{6} \\
& d\left(\widetilde{z}^{2} \otimes z^{2^{5}} / 4 v_{1}^{6}\right)=\widetilde{z} \otimes \widetilde{z} \otimes z^{2^{5}} / 2 v_{1}^{6} \\
& d\left(W^{2} / 2 v_{1}^{6}\right)=\widetilde{z}^{2} \otimes z^{2^{4}} \otimes z^{2^{4}} / 2 v_{1}^{6} \\
& z^{2^{4}} \otimes{z^{4}}^{4} / 2 v_{1}^{6}
\end{aligned}
$$

On the other hand, by Lemma 7.15, we see that

$$
d\left(y_{1} W / 8 v_{1}^{4}\right)=y_{1} \widetilde{z} \otimes Z Z_{5} / 8 v_{1}^{4}+v_{2} B / 2 v_{1}+W_{1} / 2 v_{1}
$$

as desired.
Note that Corollary 7.10 implies the following
Lemma 9.2 If $\delta\left(\xi / 2^{i} v_{1}^{j}\right)=\chi / v_{1}^{k}$ for $i \leq 3$, then $\delta\left(\xi g^{l} / 2^{i} v_{1}^{j}\right)=\chi g^{l} / v_{1}^{k}$ for $l \geq 0$.

Now these imply immediately the following
Lemma 9.3 We have the exact sequence

$$
0 \longrightarrow K C \xrightarrow{1 / 2} \widetilde{K} \xrightarrow{2} \widetilde{K} \longrightarrow K I \longrightarrow 0 .
$$

10 The connecting homomorphism on E

Consider the submodules $E C$ and $E I$:

$$
\begin{aligned}
& E C=\boldsymbol{Z} / 2\left\{v_{2}^{4 s} / v_{1}^{2 j}, v_{2}^{8 t+6} \widetilde{\zeta} / v_{1}^{2 j^{\prime}} \mid s, t \in \boldsymbol{Z}, 2 \nmid s, j=1,2,3, j^{\prime}=1,2\right\} \\
& E I=\boldsymbol{Z} / 2\left\{v_{2}^{4 s} \widetilde{\zeta} / v_{1}^{6}, v_{1}^{8 t+2} \widetilde{\zeta} / v_{1}^{2 j^{\prime}}, v_{2}^{4 s+2} \widetilde{\zeta} / v_{1}^{2 j^{\prime}} \mid\right. \\
&\left.s, t \in \boldsymbol{Z}, 2 \nmid s, j^{\prime}=1,2\right\} .
\end{aligned}
$$

Then $E=E I \bigoplus E C$, and we have the exact sequence.
Lemma 10.1 We have the exact sequence

$$
0 \longrightarrow E C \xrightarrow{1 / 2} \widetilde{E} \xrightarrow{2} \widetilde{E} \xrightarrow{\delta} E I \longrightarrow 0 .
$$

This follows immediately from the following:

Proposition 10.2 For the generators of $E C$, we have

1. $\delta\left(v_{2}^{4 s} / 8 v_{1}^{2}\right)=v_{2}^{4 s} \widetilde{\zeta} / v_{1}^{6}$
2. $\quad \delta\left(v_{2}^{4 s} / 2 v_{1}^{2 j}\right)=v_{2}^{4 s-2} \widetilde{\zeta} / v_{1}^{2 j-2} \quad(j=2,3)$
3. $\delta\left(v_{2}^{8 t+6} \widetilde{\zeta} / 4 v_{1}^{2 j}\right)=v_{2}^{8 t+6} \zeta \widetilde{\zeta} / v_{1}^{2 j} \quad(j=1,2)$

Proof. The first two equations are shown in [10, Lemma 3.17].
For the third, we compute by Lemma 3.9,

$$
\begin{align*}
& d\left(v_{2}^{8 t+6} \widetilde{z} / 8 v_{1}^{2 j}\right) \equiv d\left(v_{1}^{4-2 j} v_{2}^{8 t+6} \widetilde{z} / 8 v_{1}^{4}\right) \\
& \quad \equiv j\left(t_{1}^{2}+v_{1} t_{1}\right) \otimes v_{2}^{8 t+6} \widetilde{z} / 2 v_{1}^{2 j+2} \tag{10.3}\\
& \quad-v_{2}^{8 t+4}\left(r_{1}+\widetilde{z}\right) \otimes \widetilde{z} / 8 v_{1}^{2 j-2}+v_{2}^{8 t+6} Z \otimes \widetilde{z} / 2 v_{1}^{2 j}
\end{align*}
$$

If $j=1$, then the first term is $v_{2}^{8 t+5} t_{1}^{4} \otimes v_{2} z / 2 v_{1}^{2}$, since

$$
d\left(v_{2}^{8 t+7} \widetilde{z} / 2 v_{1}^{5}\right) \equiv\left(v_{1} t_{1}^{2}+v_{1}^{2} t_{1}\right) \otimes v_{2}^{8 t+6} \widetilde{z} / 2 v_{1}^{5}+v_{2}^{8 t+5} t_{1}^{4} \otimes \widetilde{z} / 2 v_{1}^{3}
$$

Suppose that $j=2$. Then $d\left(v_{2}^{8 t+4}\left(v_{1}^{15} v_{2}\right) \widetilde{z} / 16 v_{1}^{16}\right)=$
$v_{2}^{8 t+4} Z \otimes v_{1} v_{2} \widetilde{z} / 2 v_{1}^{2}+v_{2}^{8 t+4} r_{1} \otimes \widetilde{z} / 8 v_{1}^{2}$ by Lemma 3.12 and $d\left(v_{2}^{8 t+4} \widetilde{z}^{2} / 16 y_{1}\right)=r_{1} \otimes v_{2}^{8 t+4} \widetilde{z}^{2} / 2 v_{1}^{6}+\left(v_{1}^{-1} v_{2}\right)\left(r_{1}+\widetilde{z}\right) \otimes \widetilde{z}^{2} / 4 v_{1}^{2}+$ $v_{2}^{8 t+4} Z \otimes \widetilde{z}^{2} / 2 v_{1}^{2}-v_{2}^{8 t+4} \widetilde{z} \otimes \widetilde{z} / 8 v_{1}^{2}+v_{2}^{8 t+5} \widetilde{z} \otimes \widetilde{z} / 2 v_{1}^{5}$. Notice that $\widetilde{z}^{2} / 4 v_{1}^{2}=$ 0 . These imply that the second term of (10.3) is homologous to an element of the form $x / 2 v_{1}^{3}$ with $x \in \Gamma \bigotimes_{A} \Gamma$.

11 The connecting homomorphism on F

Consider the submodules $F C$ and $F I$ such that $F=F C \bigoplus F I$:

$$
\begin{aligned}
F C= & \sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n} s}\left(\boldsymbol{Z} / 2\left\{v_{2}^{-1} h_{11}^{2} / v_{1}\right\} \otimes \Lambda(\beta)\right. \\
& \left.\bigoplus \boldsymbol{Z} / 2\left\{h_{10}^{3} / v_{1}, \widetilde{\zeta}^{(n-1)} \widetilde{\zeta} g / v_{1}^{2^{n+1}+2}\right\}\right) \otimes \boldsymbol{Z} / 2[g] \\
F I= & \sum_{n \geq 2,2 \gamma_{s}} v_{2}^{2^{n} s}\left(\boldsymbol{Z} / 2\left\{v_{2} g / v_{1}\right\} \otimes \Lambda(\beta)\right. \\
& \left.\bigoplus \boldsymbol{Z} / 2\left\{h_{10}^{3} / v_{1}^{3}, \widetilde{\zeta}^{(n-1)} \widetilde{\zeta} g / v_{1}^{2^{n+1}+4}\right\}\right) \otimes \boldsymbol{Z} / 2[g] .
\end{aligned}
$$

Lemma 11.1 We have the exact sequence

$$
0 \longrightarrow F C \xrightarrow{1 / 2} \widetilde{F} \xrightarrow{2} \widetilde{F} \xrightarrow{\delta} F I \longrightarrow 0 .
$$

This follows from Lemma 9.2 and

Proposition 11.2 The connecting homomorphism δ acts on the generators of F as follows :
1.

$$
\delta\left(v_{2}^{2^{n} s-1} h_{11}^{2} / 4 v_{1}\right)=v_{2}^{2^{n} s} h_{10}^{3} / v_{1}^{3}
$$

2. $\quad \delta\left(v_{2}^{2^{n} s-1} h_{11}^{2} \beta / 8 v_{1}\right)=v_{2}^{2^{n} s} \widetilde{\zeta}^{(n-1)} \widetilde{\zeta} g / v_{1}^{2^{n+1}+4}$
3. $\quad \delta\left(v_{2}^{2^{n} s} h_{10}^{3} / 8 v_{1}\right)=v_{2}^{2^{n} s+1} g / v_{1}$
4. $\delta\left(v_{2}^{2^{n}} \widetilde{\zeta}^{(n-1)} \widetilde{\zeta} g / 4 v_{1}^{2^{n+1}+2}\right)=v_{2}^{2^{n} s+1} \beta g / v_{1}$

Proof. We prove them one by one.

1. This follows from the second one of Proposition 9.1.
2. Suppose that $n>4$. Then $d\left(v_{2}^{2^{n}}\right) \equiv 0 \bmod \left(16, y_{1}^{2}\right)$. For the cochain H of Lemma 7.7 and the cocycle B of Lemma 7.14, we have $d\left(v_{2}^{2^{n} s} B \otimes H / 16 y_{1}^{2}\right)=v_{2}^{2^{n} s} B \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{3}+v_{2}^{2^{n} s} B \otimes H_{1} / 2 v_{1}^{4}$ $+v_{2}^{2^{n} s+1} B \otimes H_{2} / 2 v_{1}^{3}$.

We also have
$d\left(v_{2}^{2^{n} s} W \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{7}\right)=v_{2}^{2^{n} s}\left(\widetilde{z} \otimes Z Z_{4}+v_{1}^{4} B\right) \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{7}$ for W of Lemma 7.14. Since $Z Z_{4} \equiv z^{8} \otimes z^{8} \bmod \left(2, v_{1}^{8}\right)$, (11.3)

$$
\begin{aligned}
& d\left(v_{2}^{2^{n}} s \widetilde{z}^{2^{n-1}} \otimes \widetilde{z} \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{2^{n+1}+7}\right) \\
& =v_{1}^{2^{n}} v_{2}^{2^{n}(s-1)} \widetilde{z}^{2^{n-1}} \otimes \widetilde{z}^{2^{n-1}} \otimes \widetilde{z} \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{2^{n+1}+7} \\
& \quad+2 t_{1} \otimes v_{2}^{2^{n} s} \widetilde{z}^{2^{n-1}} \otimes \widetilde{z} \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{2^{n+1}+8} \\
& \quad+2 v_{1}^{2^{n-1}} v_{2}^{2^{n-1}(2 s-1)} \widetilde{z}^{2^{n-2}} \otimes \widetilde{z}^{(n-1)} \otimes \widetilde{z} \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{2^{n+1}+7} \\
& \quad+2 v_{2}^{2^{n} s} \widetilde{z}^{2^{n-1}} \otimes \widetilde{z}^{2^{n-1}} \otimes \widetilde{z} \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{2^{n+1}+7} \\
& =v_{2}^{2^{n}} z^{2^{n-1}} \otimes z^{2^{n-1}} \otimes \widetilde{z} \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{7} \\
& \quad+\quad t_{1} \otimes v_{2}^{2^{n} s \widetilde{z}^{2^{n-1}} \otimes \widetilde{z} \otimes t_{1} \otimes t_{1} \otimes t_{1} / 2 v_{1}^{2^{n+1}+8}} \\
& \quad+v_{1}^{2^{n-1}} v_{2}^{2^{n-1}(2 s-1)} \widetilde{z}^{2^{n-2}} \otimes \widehat{z}^{(n-1)} \otimes \widetilde{z} \otimes t_{1} \otimes t_{1} \otimes t_{1} / 2 v_{1}^{2^{n+1}+7} \\
& \quad \quad+v_{2}^{2^{n} s} \widetilde{z}^{2^{n-1}} \otimes \widetilde{z}^{2 n-1} \otimes \widetilde{z} \otimes t_{1} \otimes t_{1} \otimes t_{1} / 2 v_{1}^{2^{n+1}+7} .
\end{aligned}
$$

This shows that $v_{2}^{2^{n}} B \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{3}$ is homologous to $v_{2}^{2^{n} s} \widetilde{z}^{2^{n-1}} \otimes$ $\widetilde{z} \otimes t_{1} \otimes t_{1} \otimes t_{1} \otimes t_{1} / 2 v_{1}^{2^{n+1}+8}$, as desired.
For $n=4$,

$$
\begin{aligned}
& d\left(v_{2}^{16 s} B \otimes H / 16 y_{1}^{2}\right) \\
& =v_{2}^{16 s-2}\left(r_{1}+\widetilde{z}\right) \otimes B \otimes H / 2 v_{1}^{2}+v_{2}^{16 s} B \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{3} \\
& \quad+v_{2}^{16 s} B \otimes H_{1} / 2 v_{1}^{4}+v_{2}^{16 s+1} B \otimes H_{2} / 2 v_{1}^{3}
\end{aligned}
$$

and we obtain the same result. For $n=3$,

$$
\begin{aligned}
& d\left(v_{2}^{8 s} B \otimes H / 16 y_{1}^{2}\right) \\
& =v_{2}^{8 s-2}\left(r_{1}+\widetilde{z}\right) \otimes B \otimes H / 4 v_{1}^{2}+v_{2}^{8 s-1} d\left(v_{2}\right) \otimes B \otimes H / 2 v_{1}^{4} \\
& \quad+v_{2}^{8 s} B \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{3}+v_{2}^{8 s} B \otimes H_{1} / 2 v_{1}^{4}+v_{2}^{8 s+1} B \otimes H_{2} / 2 v_{1}^{3}
\end{aligned}
$$

and $H \equiv 0 \bmod \left(4, v_{1}^{2}\right)$, which implies the same result as the above one. Similarly, for $n=2$,

$$
\begin{aligned}
& d\left(v_{2}^{4 s} B \otimes H / 16 y_{1}^{2}\right) \\
& =v_{2}^{4 s-2}\left(r_{1}+\widetilde{z}\right) \otimes B \otimes H / 8 v_{1}^{2}+v_{2}^{4 s-1} d\left(v_{2}\right) \otimes B \otimes H / 4 v_{1}^{4} \\
& \quad+v_{2}^{4 s} B \otimes t_{1} \otimes t_{1} \otimes t_{1} / 4 v_{1}^{3}+v_{2}^{4 s} B \otimes H_{1} / 2 v_{1}^{4}+v_{2}^{4 s+1} B \otimes H_{2} / 2 v_{1}^{3}
\end{aligned}
$$

and the congruence $H \equiv 0 \bmod \left(4, v_{1}^{2}\right)$ also shows the result.
3. This follows from the first one of Proposition 9.1.
4. The cocycle $x / 2$ that represents $v_{2}^{2^{n}} s+2^{n-1} \zeta \widetilde{\zeta} g / 2 v_{1}^{2^{n+1}+2}$ is homologous to $v_{2}^{2^{n}} t_{1} \otimes t_{1} \otimes t_{1} \otimes B / 4 v_{1}$ by (11.3). The equation 3 above indicates the existence of a cochain c such that $d(c)=v_{2}^{2^{n} s+1} g / 2 v_{1}$ and the leading term of c is $v_{2}^{2^{n}} t_{1} \otimes t_{1} \otimes t_{1} / 16 v_{1}$. Then $d(x / 8)=d(c \otimes B)=$ $v_{2}^{2^{n} s+1} g \otimes B / 2 v_{1}$ as desired.

12 The connecting homomorphism on D

Proposition 12.1 The connecting homomorphism δ behaves as follows :

1. $\delta\left(v_{2}^{2^{n} s} \widetilde{\zeta}^{(n-1)} \widetilde{\zeta} / 4 v_{1}^{2^{n+1}+2}\right)=v_{2}^{2^{n} s+1} \beta / v_{1} \quad s=4 t+1$
2. $\delta\left(v_{2}^{2^{n-1}(4 t+3)} \zeta \widetilde{\zeta} / 16 v_{1}^{2}\right)=v_{2}^{2^{n-1}(4 t+3)+1} \beta / v_{1} \quad$ for $n \geq 3$
3. $\quad \delta\left(v_{2}^{2^{n} s+1} / 2 v_{1}\right)=v_{2}^{2^{n} s} \widetilde{\zeta} / v_{1}^{2}$
4. $\quad \delta\left(v_{2}^{2^{n}} \stackrel{\widetilde{\zeta}}{ } / 2^{n+2} v_{1}^{4}\right)=v_{2}^{2^{n} s} \widetilde{\zeta}^{(n-1)} \widetilde{\zeta} / v_{1}^{2^{n+1}+4} \quad s \equiv 1(4)$

$$
\delta\left(v_{2}^{2^{n} s} \widetilde{\zeta} / 2^{n+1} v_{1}^{4}\right)=v_{2}^{2^{n} s} \zeta \widetilde{\zeta} / v_{1}^{4} \quad s \equiv-1(4)
$$

Proof.

1. First we note that $v_{2}^{2^{n}(4 t+1)} \widetilde{z}^{2^{n-1}} \otimes \widetilde{z} / 2 v_{1}^{2^{n+1}+2}$ is homologous to $v_{2}^{2^{n+2} t+2^{n}} z^{2^{n}} \otimes \widetilde{z} / 4 v_{1}^{2}$ by

$$
\begin{aligned}
& d\left(v_{2}^{2^{n+1}(2 t+1)} \widetilde{z} / 4 v_{1}^{3 \cdot 2^{n}+2}\right) \\
& =v_{2}^{2^{n}(4 t+1)} \widetilde{z}^{2^{n-1}} \otimes \widetilde{z} / 2 v_{1}^{2^{n+1}+2}+v_{2}^{2^{n+2}} t \widetilde{z}^{2^{n}} \otimes \widetilde{z} / 4 v_{1}^{2^{n}+2}
\end{aligned}
$$

We compute

$$
\begin{aligned}
& d\left(v_{2}^{2^{n}(4 t+1)} \widetilde{z}^{2^{n-1}} \otimes \widetilde{z} / 8 v_{1}^{2^{n+1}+2}\right) \\
& =d\left(v_{2}^{2^{n+2} t+2^{n}} z^{2^{n}} \otimes \widetilde{z} / 16 v_{1}^{2}\right) \\
& =d\left(v_{2}^{2^{n+2} t+2^{n}}\right) \otimes z^{2^{n}} \otimes \widetilde{z} / 16 v_{1}^{2}+v_{2}^{2^{n+2} t+2^{n}} d\left(z^{2^{n}} \otimes \widetilde{z} / 16 v_{1}^{2}\right)
\end{aligned}
$$

If $n>3, d\left(v_{2}^{2^{n}}\right) \equiv 0 \bmod \left(16, v_{1}^{2}\right)$. If $n=3$, then $d\left(v_{2}^{8}\right) \equiv 8 v_{1} v_{2}^{7} t_{1}^{2}$ $\bmod \left(16, v_{1}^{2}\right)$. Therefore, this follows from Proposition 9.1.6 if $n \geq 3$. For the case $n=2$, it also follows from Proposition 9.1.6, since $\widetilde{z} \equiv$ $2\left(v_{2}^{-1} t_{3}+t_{1} t_{2}\right) \bmod \left(4, v_{1}\right)$.
2. This is similar to the above one.
3. This is immediate from Proposition 9.1.5.
4. Lemma 7.12 shows

$$
\begin{equation*}
d\left(z_{n, s} / 2^{n+2} v_{1}^{2^{n+1}}\right)=\widetilde{z} \otimes v_{2}^{2^{n} s} Z / 2 v_{1}^{4}+X^{\prime} / 2 v_{1}^{2} \tag{12.2}
\end{equation*}
$$

which implies the case $s \equiv-1 \bmod p$.
Since $H^{2,3 \cdot 2^{n+1}} M_{1}^{1}=\boldsymbol{Z} / 2\left\{v_{2}^{2^{n}-1} h_{11}^{2} / v_{1}, \quad v_{2}^{2^{n}+2^{n-1}} \zeta \rho_{2} / v_{1}^{3 \cdot 2^{n-1}}\right.$, $\left.v_{2}^{2^{n}+2^{n-1}} \zeta \widetilde{\zeta} / v_{1}^{3 \cdot 2^{n-1}+4}\right\}$, the right hand side of (12.2) for $s=1$ is bounded, and so we have an element $U / 2$ such that $r \eta_{R}\left(v_{2}^{2^{n}}\right) / 2^{n+2}$ $-v_{2}^{2^{n}-2} Y / 16 v_{1}^{16}+U / 2$ is a cocycle. Then by (11.3), we see the case where $s=1$. In other words, there is a cochain $X=r \eta_{R}\left(v_{2}^{2^{n}}\right) / 2^{n+3}-$ $v_{2}^{2^{n}-2} Y / 32 v_{1}^{16}+U / 4+U^{\prime} / 2$ for some U^{\prime} and $d(X)=v_{2}^{2^{n}+2^{n-1}} z \otimes$ $\widetilde{z} / v_{1}^{3 \cdot 2^{n-1}+4}+\cdots$. Since we compute that $X \otimes d\left(v_{2}^{2^{n+2}}\right)=0$, we have $d\left(v_{2}^{2^{n+2}} X\right)=v_{2}^{2^{n+2}} d(X)$, and obtain the case $s \equiv 1 \bmod (4)$.

Consider the submodules $D C$ and $D I$ such that $D=D C \bigoplus D I$:

$$
\begin{aligned}
D C= & \sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n} s} \boldsymbol{Z} / 2\left\{v_{2} / v_{1}, \widetilde{\zeta} / v_{1}^{4}, v_{2}^{2^{n-1}} \zeta \widetilde{\zeta} / v_{1}^{2}\right\} \\
& \bigoplus \sum_{n \geq 2,4 \mid(s-1)} v_{2}^{2^{n} s} \boldsymbol{Z} / 2\left\{\widetilde{\zeta}^{(n-1)} \widetilde{\zeta} / v_{1}^{2^{n+1}+2}\right\} \\
D I= & \sum_{n \geq 2,2 \nmid s} v_{2}^{2^{n} s} \boldsymbol{Z} / 2\left\{v_{2} \beta / v_{1}, \widetilde{\zeta} / v_{1}^{2}, v_{2}^{2^{n-1}} \zeta \widetilde{\zeta} / v_{1}^{4}\right\} \\
& \bigoplus \sum_{n \geq 2,4 \mid(s-1)} v_{2}^{2^{n} s} \boldsymbol{Z} / 2\left\{\widetilde{\zeta}^{(n-1)} \widetilde{\zeta} / v_{1}^{2^{n+1}+4}\right\}
\end{aligned}
$$

Then we see the following
Lemma 12.3 We have the exact sequence

$$
0 \longrightarrow D C \xrightarrow{1} / 2 \widetilde{D} \xrightarrow{2} \widetilde{D} \xrightarrow{\delta} D I \longrightarrow 0 .
$$

13 The connecting homomorphism on L

Note that $\widetilde{L}=(1 / 2)_{*}(L C)$ for the map $(1 / 2)_{*}: H^{*} M_{1}^{1} \longrightarrow H^{*} M_{0}^{2}$. We compute the δ-image of each element of \widetilde{L}.
Proposition 13.1 For each element of \widetilde{L}, we have

$$
\delta(\xi)=\xi h_{0}+\cdots
$$

Proof. Suppose that ξ is represented by an element $x / 2 v_{1}^{2 j+1}$. Then we compute $d\left(x / 4 v_{1}^{2 j+1}\right)=t_{1} / 2 v_{1}^{2 j+2} \otimes x+x^{\prime} / 2 v_{1}^{2 j+1}$ for $d(x)=2 x^{\prime}$, since $d\left(v_{1}\right)=2 t_{1}$. The part \cdots is an element represented by $x^{\prime} / v_{1}^{2 j+1}$.
Corollary 13.2 The connecting homomorphism induces an isomorphism $\delta: \widetilde{L} \rightarrow L I$.
Proof. Since $L I_{i}=h_{0} L C_{i}$ if $i \neq 1$ and $=\widetilde{\zeta} L C_{1}$ if $i=1$, the above lemma shows an isomorphism $L C_{i} \rightarrow L I_{i}$ for each i.
Lemma 13.3 We have the exact sequence

$$
0 \longrightarrow L C \xrightarrow{1 / 2} \widetilde{L} \xrightarrow{2} \widetilde{L} \xrightarrow{\delta} L I \longrightarrow 0 .
$$

Proof. Since each generator of $L I$ is not trivial, the isomorphism δ of Corollary 13.2 implies that each generator of \widetilde{L} is not trivial, which shows that the homomorphism $1 / 2$ is a monomorphism. Since $1 / 2$ is an epimorphism by definition, we see that $1 / 2$ is an isomorphism.

14 The connecting homomorphism on M

We begin with factoring M into the direct sum of $M C$ and $M I$. Consider the submodules $M C$ and $M I$:

$$
\begin{gathered}
M C=\boldsymbol{Z} / 2\left\{v_{2}^{2} / v_{1}^{2}, v_{2}^{2} / v_{1}, v_{2}^{2} h_{10} / v_{1}, v_{2}^{3} / v_{1}, v_{2}^{3} h_{10} / v_{1}, v_{2}^{3} h_{11} / v_{1}\right\} \\
\bigotimes \Lambda(\beta) \bigotimes \boldsymbol{Z} / 2\left[v_{2}^{ \pm 4}, g\right] \\
M I=\boldsymbol{Z} / 2\left\{v_{2}^{2} h_{11} / v_{1}^{2}, v_{2}^{2} h_{10} / v_{1}^{2}, v_{2} h_{11}^{2} / v_{1}, v_{2}^{3} h_{10} / v_{1}^{2}, v_{2}^{3} h_{10}^{2} / v_{1}^{2}\right. \\
\left.v_{2}^{3} h_{10}^{2} / v_{1}\right\} \bigotimes \Lambda(\beta) \bigotimes \boldsymbol{Z} / 2\left[v_{2}^{ \pm 4}, g\right]
\end{gathered}
$$

Then we have
Proposition 14.1 For the generators of $M C$, we have

$$
\begin{aligned}
\delta\left(v_{2}^{2} / 2 v_{1}^{2}\right) & =v_{2} h_{11} / v_{1} \\
\delta\left(v_{2}^{2} / 2 v_{1}\right) & =v_{2}^{2} h_{10} / v_{1}^{2} \\
\delta\left(v_{2}^{2} h_{10} / 2 v_{1}\right) & =v_{2}^{2} h_{10}^{2} / v_{1}^{2} \\
\delta\left(v_{2}^{3} / 2 v_{1}\right) & =v_{2}^{3} h_{10} / v_{1}^{2} \\
\delta\left(v_{2}^{3} h_{10} / 2 v_{1}\right) & =v_{2}^{3} h_{10}^{2} / v_{1}^{2} \\
\delta\left(v_{2}^{3} h_{11} / 2 v_{1}\right) & =v_{2}^{3} h_{10}^{2} / v_{1} .
\end{aligned}
$$

Proof. The first, the second and the fourth equations are shown in [10, Lemma 3.17]. The third and the fifth are obtained immediately from the second and the fourth ones, since h_{10} is represented by t_{1} which is primitive. The last one is also follows from the fourth. In fact, $v_{2}^{3} h_{10} / v_{1}^{2}$ is represented by $v_{2}^{2} r_{1} / v_{1}^{2}$ by (4.1) and h_{11} is represented by $t_{1}^{2}+v_{1} t_{1}$, and $v_{2}^{2} r_{1} \otimes\left(t_{1}^{2}+v_{1} t_{1}\right) / v_{1}^{2}$ is homologous to $v_{2}^{2} t_{1} \otimes t_{1}^{4} / v_{1}$ by $d\left(v_{2}^{3} t_{2} / v_{1}^{2}+v_{2}^{2} t_{1}^{2} t_{2} / v_{1}\right)$.

This is displayed as follows:

We see the following lemma by using Lemma 7.14.

Lemma 14.2 We have the exact sequence

$$
0 \longrightarrow M C \xrightarrow{\frac{1 / 2}{M}} \widetilde{ } \quad \widetilde{M} \xrightarrow{\delta} M I \longrightarrow 0 .
$$

15 The connecting homomorphism on N

We introduce subsets of the set of triple integers:

$$
\begin{aligned}
T & =\left\{(n, i, k) \in \boldsymbol{Z}^{3} \mid n \geq 3,2 \leq i \leq n-1,1 \leq k \leq i+1\right\} \\
T^{\prime} & =\{(n, i, k) \in T \mid(i, k) \neq(n-1,1),(n-1, n-1)\} \\
S & =\left\{(n, i, k) \in \boldsymbol{Z}^{3} \mid n \geq 3,(i, k)=(0,1),(1,1),(1,2)\right\} \\
T^{+} & =\left\{(n, i, k) \in T_{0} \mid n>i+k+1\right\} \\
T^{-} & =\left\{(n, i, k) \in T_{0} \mid n \leq i+k+1\right\}
\end{aligned}
$$

Here $(T \cup S) \cap\left(\{n\} \times \boldsymbol{Z}^{2}\right)$ for each n is described as follows:

Consider the modules

$$
\begin{aligned}
& A(n, i, k)=\boldsymbol{Z} / 2\left\{v_{2}^{2^{n} s} / v_{1}^{2^{k} m} \mid 2 \nmid s m, \quad 3 \cdot 2^{i-1}<2^{k} m \leq 3 \cdot 2^{i}\right\}, \\
& \hat{A}(n, n-1,1)=\boldsymbol{Z} / 2\left\{v_{2}^{2^{n} s} / v_{1}^{2 m} \mid\right. \\
&\left.2 \nmid s m, \quad 3 \cdot 2^{n-2}<2 m \leq 3 \cdot 2^{n-1}-4\right\}, \\
& Z(n, i, k)=\boldsymbol{Z} / 2\left\{v_{2}^{2^{i}\left(2^{n-i} s-1\right)} \widetilde{\zeta}^{(i-1)} / v_{1}^{2^{k} m} \mid\right. \\
&\left.\quad 2 \nmid s m, \quad 2^{i-1}<2^{k} m \leq 2^{i+1}\right\} \quad \text { for } i>k, \\
& \hat{Z}(n, n-1,1)=\boldsymbol{Z} / 2\left\{v_{2}^{2^{n-1}(2 s-1)} \widetilde{\zeta}^{(n-2)} / v_{1}^{2 m} \mid\right. \\
&\left.\quad 2 \nmid s m, \quad 2^{n-2}<2 m \leq 2^{n}-4\right\} \\
& Z(n, i, i)=\boldsymbol{Z} / 2\left\{v_{2}^{\left.2^{n} s-2^{i} \widetilde{\zeta}^{(i-1)} / v_{1}^{2^{i+1}} \mid 2 \nmid s\right\},}\right. \\
& Z(n, i, i+1)=\boldsymbol{Z} / 2\left\{v_{2}^{\left.2^{n} s-2^{i} \widetilde{\zeta}^{(i-1)} / v_{1}^{2^{i}} \mid 2 \nmid s\right\} .}\right.
\end{aligned}
$$

Then N_{i} 's are rewritten as follows:

$$
\begin{aligned}
N_{3} & =\sum_{(n, i, k) \in T \cup S} A(n, i, k) \\
N I_{1} & =\sum_{(n, i, k) \in T^{+} \cup S}\left(\widetilde{\zeta} / v_{1}^{4}\right) A(n, i, k) \\
N C_{1} & =\sum_{(n, i, k) \in T^{\prime}-T^{+}}\left(\widetilde{\zeta} / v_{1}^{4}\right) A(n, i, k) \bigoplus \sum_{n \geq 3}\left(\widetilde{\zeta} / v_{1}^{4}\right) \hat{A}(n, n-1,1) \\
N I_{2} & =\sum_{(n, i, k) \in T^{-}} Z(n, i, k) \\
N C_{2} & =\sum_{(n, i, k) \in T^{+}} Z(n, i, k) \\
N_{4} & =\sum_{(n, i, k) \in T^{\prime}}\left(\widetilde{\zeta} / v_{1}^{4}\right) Z(n, i, k) \bigoplus \sum_{n \geq 3}\left(\widetilde{\zeta} / v_{1}^{4}\right) \hat{Z}(n, n-1,1),
\end{aligned}
$$

in which $N_{i}=N I_{i} \bigoplus N C_{i}$ for $i=1,2$. Now N is divided into two direct summands:

$$
\begin{gathered}
N I=N I_{1} \bigoplus N I_{2} \bigoplus N_{4} \\
N C=N_{3} \bigoplus N C_{1} \bigoplus N C_{2} .
\end{gathered}
$$

We read off the following from [10, Lemma 3.17].
Proposition 15.1 The connecting homomorphism δ behaves as follows :

$$
\begin{aligned}
\delta(\widetilde{A(n, i, k)}) & = \begin{cases}\left(\widetilde{\zeta} / v_{1}^{4}\right) A(n, i, k) & n>i+k+1 \\
Z(n, i, k) & n \leq i+k+1\end{cases} \\
\left.\delta\left(\left(\widetilde{\zeta} / v_{1}^{4}\right) \widetilde{A(n, i, k}\right)\right) & =\left(\widetilde{\zeta} / v_{1}^{4}\right) Z(n, i, k)
\end{aligned} \quad \text { for } n \leq i+k+1 .
$$

Proof. The first equation is shown in [10, Lemma 3.17], and the second and the third ones are verified by Proposition 5.3.

For the last, note that

$$
d\left(x_{2}^{2^{n} s}\right) \equiv 2^{n-i} s v_{1}^{2^{i}} v_{2}^{2^{n} s-2^{i}} \widetilde{\zeta}^{2^{i-1}}+\cdots \quad \bmod \left(v_{1}^{3 \cdot 2^{i}}\right)
$$

obtained from Lemma 4.3, where \cdots denotes an element divisible by 2^{n-i+1}. If we write $2^{n-i} s x(n, i, k)$ as the right hand side, then $d(x(n, i, k)) \equiv 0$ $\bmod \left(v_{1}^{3 \cdot 2^{i}}\right)$. If $k<i$, we compute

$$
\begin{aligned}
d\left(v_{2}^{2^{n} s-2^{i}} \widetilde{\zeta}^{(i-1)} / 2^{k+3} v_{1}^{2^{k} m}\right) & =d\left(x(n, i, k) / 2^{k+3} v_{1}^{2^{k} m+2^{i}}\right) \\
& =r \otimes x(n, i, k) / 2 v_{1}^{2^{k} m+2^{i}+4}
\end{aligned}
$$

which is homologous to $\widetilde{z} \otimes x(n, i, k) / 2 v_{1}^{2^{k}} m+2^{i}+4$. In the same way we see the cases for $k=i$ and $i+1$. In fact, the exponent $2^{k} m+2^{i}$ of v_{1} of the denominator is divisible by 2^{i+1} (resp. 2^{i}) if $k=i($ resp. $k=i+1)$.

Lemma 15.2 We have the exact sequence

$$
0 \longrightarrow N C \xrightarrow{1 / 2} \tilde{N} \xrightarrow{2} \tilde{N} \xrightarrow{\delta} N I \longrightarrow 0 .
$$

This is displayed as follows:

16 The connecting homomorphism on P

Proposition 16.1 The connecting homomorphism δ acts as follows:

$$
\begin{aligned}
\delta\left(1 / 2^{n+2} v_{1}^{2^{n}}\right) & =\widetilde{\zeta} / v_{1}^{2^{n}+4} \\
\delta\left(\zeta \widetilde{\zeta} / 2 v_{1}^{2 j+4}\right) & =\beta / v_{1}^{2 j}
\end{aligned}
$$

Proof. By Lemma 4.2, we see that $d\left(1 / 2^{n+3} y_{1}^{2^{n-1}}\right)=r_{1} / 2 v_{1}^{2^{n}+4}$. Lemma 4.3 shows that $r_{1} / 2 v_{1}^{2^{n}+4}$ is homologous to $\widetilde{z} / 2 v_{1}^{2^{n}+4}$, which implies the first equation.

Take $n>2 j+4$. Then, we obtain the second by the computation

$$
\begin{aligned}
d\left(\widetilde{z} \otimes z^{2^{n+1}} / 4 v_{1}^{2 j+4}\right) & =\widetilde{z} \otimes z^{2^{n}} \otimes z^{2^{n}} / 2 v_{1}^{2 j+4} \\
d\left(W / 2 v_{1}^{2 j+4}\right) & =\left(\widetilde{z} \otimes z^{2^{n}} \otimes z^{2^{n}}+v_{1}^{4} B\right) / 2 v_{1}^{2 j+4},
\end{aligned}
$$

where W is the one of Lemma 7.14.

Put $P C=A_{\infty} \bigoplus\left(\zeta \widetilde{\zeta} / v_{1}^{4}\right) A_{\infty}$ and $P I=\left(\widetilde{\zeta} / v_{1}^{4}\right) A_{\infty} \bigoplus \beta A_{\infty}$. Then we have

Lemma 16.2 We have the exact sequence

$$
0 \longrightarrow P C \xrightarrow{1 / 2} \widetilde{P} \xrightarrow{2} \widetilde{P} \xrightarrow{\delta} P I \longrightarrow 0 .
$$

17 The connecting homomorphism on Q

By Lemma 7.13, we have a cocycle $\widetilde{z z}_{n-1} / 2^{n} v_{1}^{2^{n-1}} \in \Omega^{2,0} M_{0}^{2}$, which represents $\widetilde{\zeta} \zeta / 2^{n} v_{1}^{4} \in H^{2,0} M_{0}^{2}$.

Proposition 17.1 The connecting homomorphism $\delta: H^{*} M_{0}^{2} \quad \longrightarrow$ $H^{*+1} M_{1}^{1}$ acts trivially on $\widetilde{\zeta} / 2^{n} v_{1}^{4}$ and $\widetilde{\zeta} \zeta / 2^{n} v_{1}^{4}$ for each n.

Proof. By the definition of $\delta, \delta\left(\widetilde{\zeta} / 2^{n} v_{1}^{4}\right)=0$ follows from Proposition 5.3. The other half follows from Lemma 7.13.

Lemma 17.2 There is an exact sequence

$$
0 \longrightarrow Q \xrightarrow{1 / 2} \widetilde{Q} \xrightarrow{2} \widetilde{Q} \xrightarrow{\delta} 0
$$

18 The Adams-Novikov E_{2}-terms

We begin with restating the lemma given in [4, Remark 3.11].
Lemma 18.1 Suppose that $H^{*} M_{1}^{1}$ is a direct sum of submodules M_{i} which is also a direct sum of two modules $M I_{i}$ and $M C_{i}$. If we have a submodule \widetilde{M}_{i} of $H^{*} M_{0}^{2}$ in an exact sequence

$$
\begin{equation*}
0 \longrightarrow M C_{i} \xrightarrow{1 / 2} \widetilde{M}_{i} \xrightarrow{2} \widetilde{M}_{i} \longrightarrow M I_{i} \longrightarrow 0 \tag{18.2}
\end{equation*}
$$

for each i, where $1 / 2(x)=x / 2$, then $H^{*} M_{0}^{2}$ is the direct sum of \widetilde{M}_{i}.
Proof of Theorem 2.3. Take M_{i} to be X and $\rho_{2} X$ for $X=D, E, F, J, K$, L, M, N, P and Q. Then we have the theorem from Lemmas 12.3, 10.1, 11.1, 8.2, 9.3, 13.3, 14.2, 15.2, 16.2, 17.2 and Proposition 7.5.

Consider the exact sequences

$$
\cdots \longrightarrow H^{*-1} M_{0}^{2} \xrightarrow{\delta_{1}} H^{*} N_{0}^{1} \xrightarrow{i_{1}} H^{*} M_{0}^{1} \xrightarrow{j_{1}} H^{*} M_{0}^{2} \longrightarrow \cdots,
$$

associated to the short exact sequence (1.2). Consider the submodules \widetilde{A} and \widetilde{C} of $H^{*} M_{0}^{1}$:

$$
\widetilde{A}=\sum_{i, 2 \gamma_{s}} \boldsymbol{Z}\left\{v_{1}^{2^{i} s} / 2^{i+2}\right\}, \quad \widetilde{C}=v_{1} \boldsymbol{Z} / 2\left[v_{1}^{ \pm 2}, h_{10}\right] \otimes \Lambda\left(\rho_{1}\right) .
$$

Note that $H^{*} M_{0}^{1}=\widetilde{A} \oplus \widetilde{C} \oplus \boldsymbol{Q} / \boldsymbol{Z}_{(2)} \otimes \Lambda\left(\rho_{1}\right)$ by (5.1). Furthermore, divide \widetilde{C} into the direct sum of the six submodules \widetilde{C}_{i} given by

$$
\begin{gathered}
\widetilde{C}_{1}=v_{1} \boldsymbol{Z} / 2\left[v_{1}^{2}\right]\left\{1, h_{10}, h_{10}^{2}, h_{10}^{3}\right\} \otimes \boldsymbol{Z}[g], \quad \widetilde{C}_{2}=v_{1}^{3} \rho_{1} \boldsymbol{Z} / 2\left[v_{1}^{2}, h_{0}^{2}\right], \\
\widetilde{C}_{3}=v_{1}^{3} \rho_{1} h_{10} \boldsymbol{Z} / 2\left[v_{1}^{2}, h_{0}^{2}\right], \quad \widetilde{C}_{4}=v_{1} A_{\infty}\left\{1, h_{10}, h_{10}^{2}, h_{10}^{3}\right\} \otimes \boldsymbol{Z}[g], \\
\widetilde{C}_{5}=v_{1}^{3} \rho_{1} A_{\infty}\left[h_{0}^{2}\right] \quad \text { and } \quad \widetilde{C}_{6}=v_{1}^{3} \rho_{1} h_{10} A_{\infty}\left[h_{0}^{2}\right]
\end{gathered}
$$

Then the module \widetilde{A} yields submodule $\widetilde{A}^{+}=\sum_{i, 2 \gamma_{s}>0} \boldsymbol{Z}\left\{v_{1}^{2_{s}^{i s}} / 2^{i+2}\right\}$ of $H^{0} N_{0}^{1}$ and kills the first summand of \widetilde{P}. Note that j_{1} assigns ρ_{1} to $\widetilde{\zeta} / v_{1}^{4}$ by Proposition 5.3. The direct sum $\widetilde{C}^{+}=\sum_{i=1}^{3} \widetilde{C}_{i}$ is pulled back to $H^{*} N_{0}^{1}$ by i_{1} and $\sum_{i=4}^{6} \widetilde{C}_{i}$ kills the submodule $(1 / 2)_{*}\left(v_{1} A_{\infty}\left\{1, h_{10}\right.\right.$, $\left.\left.h_{10}^{2}, h_{10}^{3} / v_{1}^{4}\right\} \otimes \boldsymbol{Z}[g] \bigoplus \widetilde{\zeta} A_{\infty}\left\{v_{1}, h_{0}\right\} \otimes \boldsymbol{Z} / 2\left[h_{0}^{2}\right]\right)$ of $(1 / 2)_{*}\left(L C_{0}\right)$. Furthermore, $h_{10}^{3} / 2 v_{1}$ in \widetilde{K} is in the image of j_{1} and $h_{10}^{3} / 2 v_{1}^{3}$ yields $\boldsymbol{Z} / 8$ summand of $H^{3} N_{0}^{1}$. In fact, the cochain C of $\Omega^{3} N_{0}^{1}$ given in Lemma 7.8 defines an element $v_{2}^{-1} h_{10}^{3} / 8 \in H^{3} N_{0}^{1}$ such that $\delta_{1}\left(v_{2}^{-1} h_{11}^{2} / 4 v_{1}\right)=v_{2}^{-1} h_{10}^{3} / 4$ for $v_{2}^{-1} h_{11}^{2} / 4 v_{1} \in \widetilde{K}$ and $i_{1}\left(v_{2}^{-1} h_{10}^{3} / 2\right)=h_{10}^{3} / 2 v_{1}^{3}$ by (7.9). The submodule $\boldsymbol{Q} / \boldsymbol{Z}_{(2)} \otimes \Lambda\left(\rho_{1}\right)$ of $H^{*} M_{0}^{1}$ also yields $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}$ and kills the first summand of \widetilde{Q}. We also put

$$
\overline{E M}=\widetilde{D} \oplus \widetilde{E} \oplus \widetilde{F} \oplus \widetilde{J} \oplus \widetilde{M} \oplus \widetilde{N}
$$

Therefore, we have
Proposition 18.3 The module $H^{*} N_{0}^{1}$ is the direct sum of $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}, \widetilde{A}^{+}$, $\widetilde{C}^{+}, \rho_{2} \delta_{1}(E M), \delta_{1}(\overline{E M}), \widetilde{K}^{\prime}, \widetilde{L}^{\prime}, \widetilde{P}^{\prime}$ and \widetilde{Q}^{\prime}. Here the modules are given in Sect. 2.

Proof of Theorem 2.4. Consider the exact sequence

$$
\cdots \longrightarrow H^{*} N_{0}^{1} \xrightarrow{\delta_{0}} H^{*+1} N_{0}^{0} \longrightarrow H^{*+1} M_{0}^{0} \longrightarrow \cdots .
$$

Here $H^{*} N_{0}^{0}=H^{*} E(2)_{*}$ is the Adams-Novikov E_{2}-term converging to the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$. Since $H^{s} M_{0}^{0}=\boldsymbol{Q}$ concentrated at dimension zero, the above sequence splits into the exact sequence $0 \rightarrow H^{0} N_{0}^{0} \rightarrow$ $\boldsymbol{Q} \rightarrow H^{0} N_{0}^{1} \xrightarrow{\delta} H^{1} N_{0}^{0} \rightarrow 0$ and the isomorphism $\delta: H^{s} N_{0}^{1}=H^{s+1} N_{0}^{0}$ for $s>0$. The first sequence yields $\boldsymbol{Z}_{(2)}$ and kills $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}$, and we have the E_{2}-term.

References

1. A. K. Bousfield, The localization of spectra with respect to homology, Topology, $\mathbf{1 8}$ (1979), 257-281
2. H.-W. Henn, Centralizers of elementary abelian p-subgroups and mod- p cohomology of profinite groups, Duke Math. J. 91 (1998), 561-585
3. M. Hovey, Bousfield localization functors and Hopkins' chromatic splitting conjecture, Contemporary Math. 181, 225-250
4. H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516
5. D. C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), 287-297
6. D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414
7. D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, New York, 1986
8. D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Ann. of Math. Studies, 128, Princeton University Press, 1992
9. J.-P. Serre, Groupes d'homotopie et classes de groupes abelian, Ann. of Math. $\mathbf{5 8}$ (1953), 258-294
10. K. Shimomura, Novikov's Ext ${ }^{2}$ at the prime 2, Hiroshima Math. J. 11 (1981), 499-513
11. K. Shimomura, On the Adams-Novikov spectral sequence and products of β-elements, Hiroshima Math. J. 16 (1986), 209-224
12. K. Shimomura, The homotopy groups of the L_{2}-localized Toda-Smith spectrum $V(1)$ at the prime 3, Trans. Amer. Math. Soc. 349 (1997), 1821-1850
13. K. Shimomura, The Adams-Novikov E_{2}-term for computing $\pi_{*}\left(L_{2} V(0)\right)$ at the prime 2, Topology and its Applications 96 (1999), 133-152
14. K. Shimomura, On the action of β_{1} in the stable homotopy of spheres at the prime 3 , Hiroshima Math. J. 30 (2000), 345-362
15. K. Shimomura, H. Tamura, Non-triviality of some compositions of β-elements in the stable homotopy of the Moore spaces, Hiroshima Math. J. 16 (1986), 121-133
16. K. Shimomura, X. Wang, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ at the prime 3 , to appear in Topology
17. K. Shimomura, A. Yabe, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$, Topology 34 (1995), 261289

[^0]: * The second author was supported by Japanese Monbusho scholarship and partially supported by NSFC of China grant No. 10171049.

