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We review some foundations for equivariant stable homotopy theory in the context of orthogonal G-
spectra. The main reference for this theory is the AMS memoir [17] by Mandell and May; the appendices of
the paper [10] by Hill, Hopkins and Ravenel contain further material, in particular on the norm construc-
tion. At many places, however, our exposition is substantially different from these two sources, compare
Remark 2.7. We do not develop model category aspects of the theory; the relevant references here are
again Mandell-May [17], Hill-Hopkins-Ravenel [10] and the thesis of Stolz [25]. For a general, framework
independent, introduction to equivariant stable homotopy theory, one may consult the survey articles by
Adams [1] and Greenlees-May [9].

We restrict our attention to finite groups (as opposed to compact Lie groups) throughout, which allows to
simplify the treatment at various points. Also, we implicitly only deal with the ‘complete universe’ (which
can be seen from the fact that we stabilize with respect to multiples of the regular representation).

These notes were originally assembled on the occasion of a series of lectures at the Universitat Autonoma
de Barcelona in October, 2010, and then subsequently expanded. They are still incomplete and certainly
contain typos, but hopefully not too many mathematical errors. At some places, proper credit is also still
missing, and will be added later. This survey paper makes no claim to originality. If there is anything new
it may be the particular model for the real bordism spectrum M R as a commutative equivariant orthogonal
ring spectrum in Example 2.14.

Before we start, let us fix some notation and conventions. By a ‘space’ we mean a compactly generated
space in the sense of McCord [18], i.e., a k-space (also called a Kelley space) that is also weakly Hausdorff.
For a finite dimensional R-vector space V we denote by SV the one-point compactification; we consider SV
as a based space with basepoint at infinity. If V' is endowed with a scalar product, we denote by D(V') the
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unit ball and by S(V') the unit sphere of V. If no other scalar product is specified, then the vector space
R"™ is always endowed with the standard scalar product

n
i=1

We write S™ for S®", the one-point compactification of R™.

For a finite group G we denote by pg the regular representation of G, i.e., the free vector space R[G]
with orthonormal basis G. By O(G) we denote the orbit category of G , i.e., the category with objects the
cosets G/H for all subgroups H of G and with morphisms the homomorphisms of left G-sets.

I would like to thanks John Greenlees for being a reliable consultant on equivariant matters and for
patiently answering many of my questions.

1. ORTHOGONAL SPECTRA

Starting from the next section, our category of G-spectra will be the category of orthogonal spectra with
G-action. So before adding group actions, we first review non-equivariant orthogonal spectra.

Definition 1.1. An orthogonal spectrum consists of the following data:
e a sequence of pointed spaces X, for n > 0,
e a base-point preserving continuous left action of the orthogonal group O(n) on X,, for each n > 0,
e based maps o, : X, A S — X, ;1 for n > 0.
This data is subject to the following condition: for all n,m > 0, the iterated structure map
o™ Xp ANST — Xpam

defined as the composition

(12)  XpASs™ 2l X A s

-2 1
o'n+1/\Sm Ont+m—2/N\ S On+m—1
_— N J— >

Xn+m—1 A Sl Xn+m

is O(n) x O(m)-equivariant. Here the orthogonal group O(m) acts on S™ since this is the one-point
compactification of R™, and O(n) x O(m) acts on the target by restriction, along orthogonal sum, of the
O(n 4+ m)-action. We refer to the space X,, as the n-th level of the orthogonal spectrum X.

A morphism f: X — Y of orthogonal spectra consists of O(n)-equivariant based maps f, : X,, — Y},
for n > 0, which are compatible with the structure maps in the sense that f,, 41 00, = 0, 0 (fu A S?) for
all n > 0. We denote the category of orthogonal spectra by Sp.

An orthogonal ring spectrum R consists of the following data:

a sequence of pointed spaces R,, for n >0

a base-point preserving continuous left action of the orthogonal group O(n) on R,, for each n >0
O(n) x O(m)-equivariant multiplication maps iy m : Ry A Ry — Ry, for n,m > 0, and
O(n)-equivariant unit maps t,, : S™ — R,, for all n > 0.

This data is subject to the following conditions:
(Associativity) The square

Id Apem,p
R, NRpy NRy ————— Ry A Rpgp

un,m/\ldl \L/Jn,m+p
_— >

Rn+m A Rp Lt p Rn+m+p

commutes for all n,m,p > 0.
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(Unit) The two composites

R, n,
R, =R, AS"—™M R ARy—""" SR,

R, n
R, = S°AR, —2"% _ RyAR, —" SR,

are the identity for all n > 0.
(Multiplicativity) The composite
grtm o gnpgm M RA Ry ™ Ry
equals the unit map t,ypm : S™™™ — Rpim. (where the first map is the canonical homeomorphism sending
(z,y) € S™™ to x Ay in S™ A S™).
(Centrality) The diagrams

Ry Aty m,n
Ry NS —2 o R ARy —2" > R

twisti iXm‘n

Sn A\ Rm Rn A\ Rm Rn+m

tn AR,

commutes for all m,n > 0. Here x,,, € O(m+n) denotes the permutation matrix of the shuffle permutation
which moves the first m elements past the last n elements, keeping each of the two blocks in order; in
formulas,

. i+n forl<i<m,
(1.3) Xm.n (i) = {

i—m form+1<i<m-+n.
An orthogonal ring spectrum R is commutative if the square

Hm,n

Rm A Rn —_—> Rm+n

twisti iXm,n

Ru A Ry Rotm

commutes for all m,n > 0. Note that this commutativity diagram implies the centrality condition above.

Remark 1.4. (i) The higher-dimensional unit maps ¢,, : S™ — R,, for n > 2 are determined by the unit
map ¢; : S' — R; and the multiplication as the composite

ST=S8'A.AST A RUA AR LR,
The centrality condition implies that this map is ¥,-equivariant, but we require that ¢, is even O(n)-
equivariant.

(ii) As the terminology suggests, the orthogonal ring spectrum R has an underlying orthogonal spectrum.
We keep the spaces R, and orthogonal group actions and define the missing structure maps o, : R, A
S — R,41 as the composite p, 1 0 (R, A t1). Associativity implies that the iterated structure map
o™ : R, ANS™ — R, equals the composite

Ry Atm Hn,m
Ry AS™ Bl oA Ry M Ry

So the iterated structure map is O(n) x O(m)-equivariant, and we have in fact obtained an orthogonal
spectrum.

(iii) Using the internal smash product of orthogonal spectra one can identify the ‘explicit’ definition of an
orthogonal ring spectrum which we just gave with a more ‘implicit’ definition of an orthogonal spectrum R
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together with morphisms g : RAR — R and ¢ : S — R (where S is the sphere spectrum) which are
suitably associative and unital. The ‘explicit’ and ‘implicit’ definitions of orthogonal ring spectra coincide
in the sense that they define isomorphic categories.

A morphism f : R — S of orthogonal ring spectra consists of O(n)-equivariant based maps f, :
R, — S, for n > 0, which are compatible with the multiplication and unit maps in the sense that

fn+m/~Ln,m - /Jn,m(fn A fm) and fnlfn = lp.

Example 1.5 (Sphere spectrum). The orthogonal sphere spectrum S is given by S, = S™, where the
orthogonal group acts as the one-point compactification of its natural action on R™. The map o, : S™ A
5! — S+l ig the canonical homeomorphism. This is a commutative orthogonal ring spectrum with
the identity map of S™ as the n-th unit map and the canonical homeomorphism S™ A §™ — S?T™ as
multiplication map. The sphere spectrum is the initial orthogonal ring spectrum: if R is any orthogonal
ring spectrum, then a unique morphism of orthogonal ring spectra S — R is given by the collection of
unit maps ¢, : S — R,.

The category of right S-modules is isomorphic to the category of orthogonal spectra, via the forgetful
functor mod-S — Sp. Indeed, if X is a orthogonal spectrum then the associativity condition shows that
there is at most one way to define action maps

X NS — Xogm
namely as the iterated structure map ¢™, and these do define the structure of a right S-module on X.

Primary invariants of an orthogonal spectrum are its homotopy groups: the k-th homotopy group of a
orthogonal spectrum X is defined as the colimit

m(X) = colim, mgpinXn
taken over the stabilization maps ¢ : Tg1nXs — Thtn+1Xn+1 defined as the composite

(on)x

—AS?
(16) Tk4+n Xn /\—> Tk4+n+1 (Xn /\Sl) Thk4+n+1 Xn+1 .

For large enough n, the set m,4, X, has a natural abelian group structure and the stabilization maps are
homomorphisms, so the colimit 7 X inherits a natural abelian group structure. The stable homotopy
category can be obtained from the category of orthogonal spectra by formally inverting the class of m,-
isomorphisms.

Now we get to the smash product of orthogonal spectra. We define a bimorphism b: (X,Y) — Z from
a pair of orthogonal spectra (X,Y) to an orthogonal spectrum Z as a collection of based O(p) x O(q)-
equivariant maps

bpq + XpNYqy — Zpyq

for p,q > 0, such that the bilinearity diagram

XpAtwist

X, ANY, A St X, A STAY,
y bp,gAS! TpAYq
(1.7) Xp A Yyt Zpiq NS Xpr1 A Y,
\ e e
Zptqt1 BT ev— Zpt+1+q

commutes for all p,q > 0.
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We can then define a smash product of X and Y as a universal example of an orthogonal spectrum with
a bimorphism from X and Y. More precisely, a smash product for X and Y is a pair (X AY, ) consisting
of an orthogonal spectrum X AY and a universal bimorphism ¢ : (X,Y) — X AY, i.e., a bimorphism such
that for every orthogonal spectrum Z the map

(1.8) Sp(X ANY,Z) — Bimor((X,Y),Z), f+— fi={fp+q%ip.qtpq

is bijective.

‘We have to show that a universal bimorphism out of any pair of orthogonal spectra exists; in other words:
we have to construct a smash product X AY from two given orthogonal spectra X and Y. We want X AY
to be the universal recipient of a bimorphism from (X,Y’), and this pretty much tells us what we have to
do. For n > 0 we define the n-th level (X AY"),, as the coequalizer, in the category of pointed O(n)-spaces,
of two maps

ax, Qy \/ O(n)+ NO(p)x1x0(q) Xp A StA Y, — \/ O(n)+ NO(p)xO(q) XpNYy .
pt+14+g=n pt+q=n

The wedges run over all non-negative values of p and ¢ which satisfy the indicated relations. The map ax
takes the wedge summand indexed by (p, 1, q) to the wedge summand indexed by (p + 1, ¢) using the map

oX Ald : X, ASTAY, — Xp AY

and inducing up. The other map «y takes the wedge summand indexed by (p, 1, ¢) to the wedge summand
indexed by (p,1 + ¢q) using the composite

Id Atwist Id Axg,1

Id AcY
X, NSt AY, Xy ANY NSt —5 X, A Y X, AYigg

and inducing up.
The structure map (X AY), A St — (X AY),,1 is induced on coequalizers by the wedge of the maps

O(n)+ Nowyxoa) Xp AYg A ST —> O(n + 1)+ Nog)xo(a+1) Xp AYan

induced from Id Ao} : X, A Yy A ST — X, A Y41, One should check that this indeed passes to a well-
defined map on coequalizers. Equivalently we could have defined the structure map by moving S' past Yy,
using the structure map of X (instead of that of Y') and then shuffling back with the permutation x1 4; the
definition of (X AY),41 as a coequalizer precisely ensures that these two possible structure maps coincide,
and that the collection of maps

zAy— 1Az Ay projection

Xp \NY, \/ O(n)s Nowyxow Xp A Yy (X AY)ptq

p+q=n
forms a bimorphism — and in fact a universal one.
Very often only the object X AY will be referred to as the smash product, but one should keep in mind
that it comes equipped with a specific, universal bimorphism. We will often refer to the bijection (1.8) as
the universal property of the smash product of orthogonal spectra.

The smash product X AY is a functor in both variables. It is also symmetric monoidal, i.e., there are
natural associativity respectively symmetry isomorphisms
(XANY)NZ — XANYANZ) respectively XNY — YAX

and unit isomorphisms SA X =2 X =2 X AS.
We can obtain all the isomorphisms of the symmetric monoidal structure just from the universal property.
Let us choose, for each pair of orthogonal spectra (X, Y'), a smash product X AY and a universal bimorphism
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i ={ipq}: (X,Y) — X AY. For the construction of the associativity isomorphism we notice that the
family

7 Zy i T
{Xp AN YyAZy 2 (XAY )y AZe 25 (X AY)A Z)HW}
P,q,r>0
and the family

X ] T i ks
{Xp N YyNZ, Zeltar, XpA (Y AZ)gpr 225 (X A(Y A Z))p+q+r}
P,q,m20
both have the universal property of a ¢rimorphism (whose definition is hopefully clear) out of X, Y and Z.
The uniqueness of representing objects gives a unique isomorphism of orthogonal spectra

axy,z : (X/\Y)/\Z gX/\(Y/\Z)

such that (x,v,z)pt+g+r © iptq,r © (ipg A Zr) = ipgtr © (Xp Nigs).
The symmetry isomorphism 7xy : X ANY — Y A X corresponds to the bimorphism

(1.9) (XA Yy 225 YA X, 25 (Y A X)gsp 225 (VA X)prg ) o
P,920

The block permutation X, is crucial here: without it the bilinearity diagram (1.7) would not commute

and we would not have a bimorphism. If we restrict the composite Ty, x o 7xy in level p + ¢ along the map

ipg: Xp NYy — (X AY)ptq we get iy, again. Thus 7y, x o 7x,y = Idxay and 7y x is inverse to 7x y.

The upshot is that the associativity and symmetry isomorphisms make the smash product of orthogonal
spectra into a symmetric monoidal product with the sphere spectrum S as unit object. This product is
closed symmetric monoidal in the sense that the smash product is adjoint to an internal Hom spectrum
(that we discuss in Example 5.12 below), i.e., there is an adjunction isomorphism

Hom(X AY,Z) &2 Hom(X,Hom(Y,Z2)) .

We remark again that orthogonal ring spectra are the same as monoid objects in the symmetric monoidal
category of orthogonal spectra with respect to the smash product.

2. EQUIVARIANT ORTHOGONAL SPECTRA

In the rest of these notes we let G denote a finite group. Much of what we explain can be generalized
to compact Lie groups, or to even more general classes of groups, but we’ll concentrate on the finite group
case throughout.

Definition 2.1. e An orthogonal G-spectrum is an orthogonal spectrum equipped with a G-action
through automorphisms of orthogonal spectra.
e An orthogonal G-ring spectrum is an orthogonal ring spectrum equipped with a G-action through
automorphisms of orthogonal ring spectra.
e A morphism of orthogonal G-spectra (respectively orthogonal G-ring spectra) is a morphism of
underlying orthogonal spectra (respectively orthogonal ring spectra) that commutes with the group
action.

If we unravel the definitions, we obtain that an orthogonal G-spectrum consists of pointed spaces X,
for n > 0, a based left O(n) x G-action on X,, and based structure maps o, : X,, A S — X, that
are G-equivariant with respect to the given G-actions on X, and X,,y; and the trivial G-action on the
sphere S'. Of course, this data is again subject to the condition that the iterated structure maps o™ :
Xn AS™ — X, are O(n) x O(m)-equivariant. The iterated structure map o™ is then automatically
G-equivariant with respect to the given G-actions on X,, and X, ,, and the trivial G-action on S™.
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Readers familiar with other accounts of equivariant stable homotopy theory may wonder immediately why
no orthogonal representations of the group G show up in the definition of equivariant spectra. The reason
is that they are secretly already present: the actions of the orthogonal groups encode enough information
so that we can evaluate an orthogonal G-spectrum on a G-representation. We will now spend some time
explaining this in detail.

In the following, an inner product space is a finite dimensional real vector space equipped with a scalar
product. For every orthogonal spectrum X and inner product space V' of dimension n we define X (V'), the
value of X on V, as

(2'2) X(V) = L(Rna V)+ /\O(n) Xn

where R™ has the standard scalar product and L(R™, V') is the space of linear isometries from R™ to V. The
orthogonal group O(n) acts simply transitively on L(R™, V') by precomposition, and X (V') is the coequalizer
of the two O(n)-actions on L(R™, V) A X,,. If V' = R" then there is a canonical homeomorphism

(2.3) X, — XR"), 2z +— [Id,z].

In general, any choice of isometry ¢ : R — V (which amounts to a choice of orthonormal basis of V')
gives rise to a homeomorphism

[907*] Xy — X(V)a T [QD,.T}
Now let us consider a finite group G and an orthogonal G-spectrum X and suppose that V is a G-
representation (i.e., G acts on V by linear isometries). Then X (V') becomes a G-space by the rule
g9-le,al = lge,ga] .

We want to stress that the underlying space of X (V') depends, up to homeomorphism, only on the dimension
of the representation V. However, the G-action on V influences the G-action on X (V).

The iterated structure maps ¢™ : X,, A S™ — X, 4 of an orthogonal G-spectrum X now become
special cases of generalized structure maps

(2.4) ovw : X(MIASY — X(Vaew).
To define oy, we set m = dim(W) and choose an isometry v : R™ — W. Then
ovw(p,x] Aw) = [e@y, o™ (z A v Hw))] in LR™™ Ve W), Notntm) Xntm = X(VOW).

We omit the verification that the map oy, is well defined and independent of the choice of . It is straight-
forward from the definitions that the generalized structure maps are G-equivariant where — in contrast to
the ‘ordinary’ structure maps X, A S™ — X, 4., — here the group G also acts on the representation
sphere SW. The generalized structure map oy is also O(V') x O(W)-equivariant, so altogether it is equi-
variant for the semi-direct product group G x (O(V) x O(W)) formed from the conjugation action of G on
O(V) and O(W). Finally, the generalized structure maps are also associative: If we are given a third inner
product space U, then the square

oV, W AId

X(V)ASW A SY XVaew)asy
(2.5) Id /\:l l"'V@W,U
X(V)ASWeu X(Vewal)

oV, WaU

commutes.
We end this section by introducing a piece of notation that will be convenient later. For an orthogonal
G-spectrum, G-representations V, W and a based map f : SV — X (V) (not necessarily equivariant), we
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denote by fo W : SVEW _ X(V @ W) the composite

w
(2.6) SVEW o GV AW N (a8 TV X(Va W) .

We refer to f o W as the stabilization of f by W. The associativity property of the generalized structure
maps implies the associativity property

(foW)oU = fo(WaU) : SVEWO 5 X(VoeWaU).

Remark 2.7. Let us clarify the relationship between our current definition of an orthogonal G-spectrum
and the one used by Mandell and May in [17] and Hill, Hopkins and Ravenel in [10]. As we shall explain,
the two concepts are not the same, but the two categories are equivalent. This equivalence of categories is
first discussed in [17, Thm. V.1.5], and also appears in [10, Prop. A.19]. This is not the first time such a
non-obvious equivalence of categories appears in equivariant homotopy theory. Segal’s notion of a I'-space
has two equivariant generalizations in the presence of a finite group G. Segal developed the equivariant
version in the preprint [21], but this paper was never published. In [23], Shimakawa published a detailed
account of the theory of I'g-spaces, the I'-space analogue of the .Zg-spectra of [17]; in [24], Shimakawa
observed that the category of I'g-spaces is equivalent to the category of I'-G-spaces (i.e., I'-spaces with
G-action, the analog of orthogonal spectra with G-action). This equivalence is a close analogue, but with
G-sets as opposed to G-representations, of the equivalence we are about to discuss now.

For us, an orthogonal G-spectrum is simply an orthogonal spectrum with action by the group G; in
particular, our equivariant spectra do not initially assign values to general G-representations. Let us denote,
for the course of this remark, the category of orthogonal spectra with G-action by G-Sp©.

The definition of an orthogonal G-spectrum used by Mandell and May refers to a universe U, i.e., a
certain infinite dimensional real inner product space with G-action by linear isometries. However, one
upshot of this discussion is that, up to equivalence of categories, the equivariant orthogonal spectra of [17]
are nevertheless independent of the universe. Mandell and May denote by ¥ (U) the class of all finite
dimensional G-representations that admit a G-equivariant, isometric embedding into the universe U. An
Je-spectrum Y, or orthogonal G-spectrum, in the sense of [17, IT Def. 2.6], consists of the following data:

(i) a based G-space Y (V) for every G-representation V in the class ¥ (U),
(ii) a continuous based G-map
(2.8) L(V,W)s AY(V) — Y(W)
for every pair of G-representations V and W in ¥ (U) of the same dimension (where Mandell and May
write £ (V, W) for L(V, W)),
(iii) continuous based G-maps
ovw  YVIASY — Y(Vaw)
for all pairs of G-representation V and W in ¥ (U).
This data is subject to the following conditions:

(a) the action maps (2.8) of the isometries on the values of Y have to be unital and associative;
(b) the action maps (2.8) of the isometries on the values of Y and on representations spheres have to be
compatible with the structure maps oy, i.e., the squares

w DAov,w

LV,VYL ALW, W)L AY(V)AS LVeW,VeW ), ANY(VaeW)

(29 | |

Y (V')A SV Y(V' o W)

UV’,W’

commute.
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(¢) the morphism oo : Y(V)AS? — Y(V @0) is the composite of the natural isomorphisms Y (V) A SY =
Y(V)and Y(V) 2 Y (V @0), and the associativity diagram (2.5) commutes.

A morphism f : Y — Z of Fg-spectra consists of a based continuous G-map f(V) : Y(V) — Z(V) for

every V in ¥ (U), strictly compatible with the action by the isometries and the structure maps oy, . We

denote the category of .Zg-spectra by Zo-Sp.

The definition of Z5-spectra above can be cast into an isomorphic, but more compact form, as enriched
functors on a topological G-category ¢, compare Theorem I1.4.3 of [17] (we also discuss this reformulation
in Example 5.5 below). In the formulation as enriched functors on _Z¢, the structure on the collection of
G-spaces Y (V) consists of continuous based G-map

IV W)AY (V) — V(W)

for every pair of G-representations V and W in # (U) (of possibly different dimensions), where 72 (V, W)
is the Thom G-space of the orthogonal complement bundle over the G-space L(V,W). This formulation
combines the actions (2.8) of the linear isometries and the structure maps oy, into a single piece of
structure, and also simplifies the compatibility conditions. The definition of orthogonal spectra as enriched
functors on the topological G-category _Z¢ is also the one used by Hill, Hopkins and Ravenel in [10,
Def. A.13].

We explain the inverse equivalences of categories

G-Sp° % Za-Sp .

A Fg-spectrum Y has an ‘underlying’ orthogonal spectrum with G-action UY. Indeed, all trivial G-
representations belong to the class ¥ (U) for any universe U, so an Zg-spectrum Y has a value at the
trivial representation R", and we set (UY),, = Y (R"™). For V.= W = R", the action (2.8) of the isometries
specializes to an O(n)-action on (UY),. The map ogngm : Y(R™) A S™ — Y (R"™) is the iterated
structure map of the orthogonal spectrum UY, and it is O(n) x O(m)-equivariant by the special case
V=V'=R"and W =W’ =R"™ of (2.9).

Conversely, given an orthogonal spectrum with G-action X, we can evaluate it on any G-representation
as in (2.2) and equip it with generalized structure maps oy as in (2.4). The action (2.8) of a linear
isometry ¢ : V. — W is given by ¢ A [p, x] — [p, x]. Altogether, this defines an #g-spectrum PX from
the orthogonal spectrum with G-action X. The underlying orthogonal G-spectrum UPX gives back what
we started with; more precisely, the canonical homeomorphism (2.3) is a natural isomorphism between X
and UPX.

In the other direction, a natural isomorphism from an .Zg-spectrum Y to PUY is obtained as follows.
For G-representations V and W of the same dimension the isometry action (2.8) factors over a G-map

L(V,W)4 how) Y (V) — Y(W)
that is an equivariant homeomorphism. In the special case V = R™ we obtain a (G-homeomorphism
(UY)(W) = LR", W)y Ao Y(R") — V(W)

which is the W-component of a natural isomorphism PUY 2 Y. So the forgetful functor U and the functor
P of ‘extensions to non-trivial G-representations’ are inverse equivalences of categories.

Since our Definition 2.1 and Definition I1.2.6 of [17] define equivalent categories, it is mainly a matter of
taste and convenience in which one to work. The author prefers the present definition because the objects
are freed of all unnecessary baggage. As we explained, the value of an equivariant spectrum on a general n-
dimensional G-representation V' can be recovered canonically from the value at the trivial representation R™
by the formula X (V) = L(R",V); Ao(m) Xn, so there is no need to drag the redundant values along. A
related point is that in the language of Zg-spectra the ‘equivariant’ smash product (see Theorem I1.3.1
of [17]) may seem more mysterious than it actually is. In fact, in our present setup, the ‘equivariant’ smash
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product is simply the smash product of the underlying non-equivariant orthogonal spectra with diagonal
group action.

2.1. Basic examples.

Example 2.10 (Sphere spectrum). The equivariant sphere spectrum S is given by
S, = S

with action by O(n) from the natural action on R™ and with trivial action of the group G. This does not
mean, however, that G acts trivially on the value S(V) of S on a general G-representation V. Indeed, the
map

S(V) = LR, V)4 Aom) S* — SV, [p,a] — ()
is a G-equivariant homeomorphism to the representation sphere of V' (which has non-trivial G-action if and
only if V has).

Example 2.11 (Suspension spectra). Every pointed G-space A gives rise to a suspension spectrum X°°A
via

(X*A4), = AANS".
The orthogonal group acts through the action on S™, the group G acts through the action on A, and the
structure maps are the canonical homeomorphism (A A S™) A St =, AA S For example, the sphere
spectrum S is isomorphic to the suspension spectrum >°S° (where G necessarily acts trivially on SY). If
we evaluate the suspension spectrum on a G-representation V' we obtain

(B®A)(V) = AANSY .
This homeomorphism is G-equivariant with respect to the diagonal G-action on the right hand side.
Example 2.12. [Non-equivariant spectra] Every (non-equivariant) orthogonal spectrum X gives rise to a
G-spectrum by letting G act trivially. As in the example of the sphere spectrum above, this does not mean,
however, that G acts trivially on X (V') for a general G-representation V. For example, if the underlying

inner product space of V' is R™, then X (V) is X,, with G-action through the representation homomorphism

G — O(n).

Example 2.13 (Eilenberg-Mac Lane spectra). Let M be a ZG-module, i.e., an abelian group M with an
additive G-action. The Filenberg-Mac Lane spectrum HM is defined by

(HM), = MI[S"],
the reduced M-linearization of the n-sphere. The orthogonal group acts through the action on S™, and the
group G acts through its action on M. The structure map o, : (HM),, A S* — (HM),, is given by
MI[S"| A St — M[S™T] | (Ziai cT) Ny — Zl a; - (x; Ny) .
If V is a G-representation, then we have a G-equivariant homeomorphism
HM(V) = M[SY]

where G acts diagonally on the right, through the action on M and on SV .

The underlying non-equivariant space of M[S"] is an Eilenberg-Mac Lane space of type (M,n). But
more is true: namely M[S™] is an equivariant Eilenberg-Mac Lane space for the coefficient system (i.e.,
contravariant functor O(G) — Ab) associated to M that assigns the H-fixed points M to the coset G/H.
Indeed, since G acts trivially on S™ we have (M[S"])# = (M*)[S"] for every subgroup H of G. Hence the
homotopy groups of (M[S™])# vanish in dimensions different from n and the map

MH — m,(M[S™H)
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that sends m € M* to the homotopy class of the H-map
m-— : S — M[S"]

is an isomorphism of abelian groups. In particular we see that under this isomorphism the inclusion maps
M[S")H — M[S™]¥ correspond to the inclusion M — M so this is an isomorphism of contravariant
functors on the orbit category O(G). But even more than that is true. As we shall discuss in Example 4.37
below, the Eilenberg-Mac Lane spectrum H M is even an Q-G-spectrum, and its collection of Oth homotopy
groups realizes the Mackey functor associated to the ZG-module M.

The Eilenberg-Mac Lane functor H can be made into a lax symmetric monoidal functor with respect
to the tensor product of ZG-modules (with diagonal G-action) and the smash product of orthogonal G-
spectra (with diagonal G-action). Indeed, if M and N are ZG-modules, a natural morphism of orthogonal
G-spectra

HMANHN — H(M®N)

is obtained, by the universal property (1.8), from the bilinear morphism
(HM);y AN (HN),, = M[S™] AN N[S"]
— (M@ N)[S™"] = (H(M & N))min
given by

(Zmi :m) Ao | e Do mi©ng) - (2 Ay) -
i J iJ
A unit map S — HZ is given by the inclusion of generators, and it is equivariant with respect to the
trivial G-action on Z.

As a formal consequence, the Eilenberg-Mac Lane functor H turns a G-ring A into an orthogonal G-ring
spectrum with multiplication map

HANHA — H(A®A) 2% HA
where p: A ® A — A is the multiplication in A, i.e., u(a ® b) = ab.

Example 2.14 (Real cobordism). The Thom spectrum representing stably almost complex cobordism, has
a natural structure of Cy-orthogonal ring spectrum, where the action of the cyclic group Cs of order two
comes from complex conjugation on the coefficients of unitary matrices.

We first consider the collection of pointed Cy-spaces MU = {MU,,},>o defined by

MU, = EU(n)+ AU(n) s s

the Thom space of the tautological complex vector bundle EU(n) Xy () C* over BU(n) = EU(n)/U(n).
Here U(n) is the n-th unitary group consisting of automorphisms of C" preserving the standard hermitian
scalar product.

There are multiplication maps

nm @ MU, AMU,, — MU,1p,

which are induced from the identification C"* @ C™ = C*™ which is equivariant with respect to the group
U(n) x U(m), viewed as a subgroup of U(n 4+ m) by direct sum of linear maps. For n > 0 there are unit
maps ¢, : S — MU, using the ‘vertex map’ U(n) — EU(n). The collection of spaces MU, does
not form an orthogonal spectrum since we only get structure maps MU, A S¢ — MU, involving a
2-sphere SC. The natural structure that the collection of spaces MU has is that of a ‘real spectrum’, as we
explain in Example 7.11 below. We have to modify the construction somewhat to end up with an orthogonal
spectrum.
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We set
MR, = map(S®" MU,)
where 4 stands for the imaginary unit. The orthogonal group act by conjugation (via the complexification
map O(n) — U(n) on MU,,). The group C5 acts on iR by sign, on MU,, by complex conjugation and on
the space M R,, by conjugation.
Then the product of MU combined with smashing maps gives Ca x O(n) x O(m)-equivariant maps

MR, A MR, = map(S™", MU,) Amap(SE", MU,,) — map(S®"", MUpim) = MRyim
f N g — f‘g:l‘n,mo(f/\g)~

We make MR into an orthogonal Cs-ring spectrum via the unit maps S” — (M R),, = map(S™®", MU,,)
which is adjoint to
ST ASE = 8y MU, .
Here we use the Cy-equivariant decomposition C* = 1-R?@i-R" to identify S¢" with the smash product of
a ‘real’ and ‘imaginary’ n-sphere. Since the multiplications of MU and M R are commutative, the centrality
condition is automatically satisfied. The resulting orthogonal Cs-ring spectrum is called the real bordism
spectrum.
The value of the orthogonal spectrum underlying M R on a real inner product space V' is given by

MR(V) = map(S",EU(Ve)+ Avvey S¥°)

where Vg = C ®g V is the complexification of V', with induced hermitian scalar product.
The (non-equivariant) homotopy groups of M R are given by

Tk (MR) = colim,, T4 map(SiRn,MUn) = colimy, Tpyon (EU (1) + Au(n) SCH) ;

so by Thom’s theorem they are isomorphic to the ring of cobordism classes of stably almost complex
k-manifolds. The underlying non-equivariant spectrum of MR is the complex cobordism spectrum. So
even though the individual spaces M R,, are not Thom spaces, the orthogonal spectrum which they form
altogether has the ‘correct’ stable homotopy type.

In Example 7.11 we will reinterpret the RO(Cs)-graded equivariant homotopy groups of MR as

72 (MR) = colim, [S¥+"C, MU, )% .

As we shall also discuss in Example 7.11, the geometric fixed points ®“2 M R of MR are stably equivalent
to the unoriented cobordism spectrum MO.

Essentially the same construction gives a commutative orthogonal Co-ring spectrum M .S R whose under-
lying non-equivariant spectrum is a model for special unitary cobordism and whose geometric fixed points
are a model for oriented cobordism MSO.

3. EQUIVARIANT HOMOTOPY GROUPS
The 0-th equivariant homotopy group 7§ X of an orthogonal G-spectrum X is defined as the colimit

(3.1) 7§ (X) = colim, [S"¢, X (npa)]® ,

where pg is the regular representation of G, npg = pa®---®pg (n copies) and [—, —]¢ means G-equivariant

homotopy classes of based G-maps. The colimit is taken along stabilization by the regular representation
(3.2) —opg ¢ [$"9, X (npa)]® — [SUTVPE X ((n +1)pa)]”
(this stabilization was defined in (2.6) as f ¢ pg = Onpg.pe (f A SP9)).

If k is positive, we define
T (X) = 75 (X)) ;
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if k is negative, we define

7d(X) = n§(sh ™" X) .
Obviously, the definition of equivariant homotopy groups makes essential use of the fact that we can evaluate
an orthogonal G-spectrum on a representation (in this case, on multiples of the regular representations),
and that we have generalized structure maps relating these values.

First we observe that the colimit 7§’ X is indeed naturally an abelian group. The regular representation
decomposes as pc = (pa)? ® pe = R @ pg, where pg is the reduced regular representation, the kernel of
the augmentation map

pe=R[G] — R, D Agr— > Ay
geqG geqG
So the representation sphere S"*¢ decomposes G-equivariantly as a smash product S® AS™P¢. For n > 1 we
can use the trivial suspension coordinate to define a group structure on the set [S"?¢, A]. For n > 2 there
are two independent trivial suspension coordinates, so the group structure is abelian. Hence the colimit
7§’ X inherits an abelian group structure.

It will be important for the development of the theory to know that a based G-map f : SV — X (V), for
any G-representation V, gives rise to an unambiguously defined element (f) in 7§'(X) as follows. First we
consider a G-equivariant linear isometric embedding ¢ : V.— W. We let W — ¢(V') denote the orthogonal
complement inside W of the image (V). Given a G-map f : SV — X (V) we define another G-map
ouf : SV — X(W) as the composite

(3.3) W gvaW—p(v) _JW=eWD) iy g (W — (V) = X(W)

where we have used ¢ twice to identify V & (W — ¢(V)) with W. If ¢ : W — U is another G-isometric
embedding, then we have

V(U f) = (Pp)uf -
We observe that if ¢ is bijective (i.e., an equivariant isometry), then ¢, f becomes the ‘p-conjugate’ of f,
i.e., the composite

sV, v L oy X9 xawy

This construction also generalizes the stabilization by a representation. Indeed, when ¢ : V — V & W is
the inclusion of the first summand, then i, f = f o W, the stabilization of f by W in the sense of (2.6).

Given a G-map f : SY — X(V), we choose a linear isometric embedding j : V — mpg for suitably
large m and obtain an element

(f) = [if] € 75(X).

Clearly, for G-homotopic maps f and f’, the maps j.f and j.f’ are again G-homotopic. It is more subtle
to see that (f) does not depend on the choice of embedding j, but we will show this now.
Proposition 3.4. Let X be a G-spectrum, V a G-representation and f : SV — X(V) a based G-map.

(i) The class (f) = [j« f] in 7§ (X) is independent of the choice of linear isometric embedding j.

(ii) For every G-equivariant linear isometric embedding ¢ : V. — W we have

{puf) = (f) in 75 (X).

(ili) For every G-representation W we have (f ¢ W) = (f).
Proof. We start by proving a special case of (ii); loosely speaking we show that conjugation of the G-map
g:S" — X (W) by an automorphism of the representation W is homotopically trivial after stabilization

with W. In more detail: given an automorphism ¢ : W — W (i.e., a G-equivariant linear isometry), the
map g and its conjugate ¢.g are not generally homotopic, but:
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Claim: For every based continuous G-map g : S — X (W) the two maps
goW | (peg)oW = SVEW o X(WaW)

are G-homotopic.
To prove the claim we let i : W — W & W be the inclusion of the first summand. We define

¢ [0,1] — [0,1] by  ¢(z)=V1-a?
and consider the continuous map

(¥(2t) - p(w), 2t - w) for 0 <t <1/2,

H:Wx01] — WeWw, (vt — {((2t—1)~w7 Y2t —1)-w) for1/2<t<1.

Then H is a homotopy, through G-equivariant isometric embeddings, from ¢ o ¢, via the second summand
inclusion, to ¢. In particular, Hy : W — W & W defined by Hi(w) = H(w,t) is a G-equivariant linear
isometric embedding for all ¢ € [0,1]. So

t s (Hy)ug : SO — X(WaW)
is the desired continuous 1-parameter family of G-equivariant based maps, from

(Ho)sg = (io@)eg = ix(pxg) = (prg)oW
to (H1)xg=1i.g=goW.

(i) Let j: V — mp and j' : V — m/p be two equivariant linear isometric embeddings. We first discuss
the case where m = m’. We choose an equivariant isometry ¢ : mp — mp such that ¢j = j'. Then we
have
by the claim above for W = mp and g = j.f : S™” — X (mp). In general we can suppose without loss of
generality that m’ = m+n > m. Welet i : mp — mp@®np = (m+n)p the inclusion of the first summand.
Then we have
and hence

fl = [G9)f] = [5:S],
where the first equation is the special case of the previous paragraph.

(ii) If j : W — mp is an equivariant linear isometric embedding, then so is jp : V. — mp. Since we
can use any equivariant isometric embedding to define the class (f), we get

Part (iii) is a special case of (ii) because f o W = i.f for the inclusion i : V. — V & W of the first
summand. O

Definition 3.5. A morphism f : X — Y of orthogonal G-spectra is a m,-isomorphism if the induced
map 7 (f) : 7 (X) — 7 (Y) is an isomorphism for all integers k and all subgroups H of G. We define
the G-equivariant stable homotopy category Ho(Spg) as the category obtained from the category Spg of

orthogonal G-spectra by formally inverting the m, -isomorphisms.

The class of 7, -isomorphisms takes part in several model structures on the category of orthogonal G-
spectra: Mandell and May establish a ‘projective’ stable model structure in [17, IIT Thm. 4.2]. Stolz con-
structs a stable ‘S-model structure’ with the same equivalences, but more cofibrations, in [25, Thm. 2.3.27].
Hill, Hopkins and Ravenel, finally, provide the stable ‘positive complete model structure’ in [10, Prop. B.63].
Hence the tools of homotopical algebra are available for studying and manipulating the G-equivariant stable
homotopy category Ho(Spg).
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Functoriality. We can now discuss the functoriality of the G-equivariant homotopy groups with respect
to change of the group G. We let a : K — G be any group homomorphism. We denote by a* the
restriction functor from G-spaces to K-spaces (or from G-representations to K-representations) along a,
i.e., a*X (respectively a*V) is the same topological space as X (respectively the same inner product space
a*V) endowed with K-action via

k-z = ak) -z .
Given an orthogonal G-spectrum X we denote by a* X the orthogonal K-spectrum with the same underlying
orthogonal spectrum as X, but with K-action obtained by restricting the G-action along . We note that
for every G-representation V', the K-spaces o*(X(V)) and (o*X)(a*V) are equal (not just isomorphic).

We can define a restriction map
(3.6) o (X)) — nf(a*X)

by restricting everything in sight from the group G to K along a. More precisely, given a G-map f :
S™Pé — X (npg) we can consider the K-map
o' f i §70E) — g% (§79) — o (X(npa)) = (0" X)(a* (npa)) -

As explained in Proposition 3.4, such a map defines an element in the 0-th K-equivariant homotopy group
of a* X, and we set

o (f) = (a*f) € w5 (a’X).
Proposition 3.4 (iii) and the relation
a*(fopa) = (@ f)o(a"pa)
guarantee that the outcome only depends on the class of f in 7§ X.
Clearly the restriction map is additive and for a second group homomorphism 3 : L. — K we have
B (a*X) = (af)*X and
Broar = (ap)" : n5(X) — 7g ((aB)'X) .
For later reference we give another interpretation of the restriction map along an inner automorphism.
For g € G we denote by
¢g: G — G, 7 ¢ly) = g g
the conjugation automorphism by g. We observe that for every orthogonal G-spectrum X the map
lg(:c;X—>X, T — gx
given by left multiplication by g is an isomorphism of orthogonal G-spectra from the restriction of X along
cg to X.

Proposition 3.7. For every G-spectrum X and every g € G, the maps

cy (X)) — Wg(c;X) and wg(l;() : wg(c;X) — 7§X

are inverse to each other.

Proof. We consider a G-map f : S¥ — X(V) that represents a class in 75X (for example, for V can be
a multiple of the regular representation). The diagram of G-maps

C;f * * *
c5(SY) (X (V) = (¢ X)(c;V)
z;“‘/)l lz;‘(c;\/)
o~ Y f X(l:_l)
S€9 sV X(V) X(cj;V)
\// &

Uy 1)f



16 STEFAN SCHWEDE

commutes, where l;/,lg{(v) and lg( are the left multiplication maps on the representation V', the space
X (V) respectively the spectrum X. The left square commutes because f is a G-map, and the right square
commutes because the G-action on X (V) = L(R", V), Ao(n) X, was defined diagonally, using the G-action
on V and on X,,. So we get

5 () e f) = (VYo (g f)) = ((-)<f) = (f).

The last equation holds by Proposition 3.4 (ii) because l;/_l : V. — ¢;V is an isomorphism of G-
representations. ‘ O

If X is a G-spectrum and H subgroup of G, we denote by 7! (X) the H-equivariant homotopy group
of the underlying H-spectrum of X. The collections of groups 77,? (X), for H C G, have a lot of extra
structure, known as a Mackey functor, as H varies over the subgroups of G, It suffices to explain this
structure for £ = 0, and two thirds of the structure maps are a special case of the functoriality of the
equivariant homotopy groups in the group.

Restriction. We let H be a subgroup of G. As the name suggests, we obtain a restriction map
resy S (X) — 7 (X)

by restricting everything in sight from the group G to H. More formally, we let ¢ : H — G denote the
inclusion and we define
resG; = it (X)) — wll(i*X) =7l (X) .
H G e

We have resg = Id and restriction is transitive, i.e., for subgroups K C H C G we have resy oresy = resy.

Conjugation. For every subgroup H of G and every element g € G the conjugation map
cg : H — HI = g 'Hg, h — cg(h) = g thg

is a group homomorphism; moreover, left multiplication by ¢ is an isomorphism

X . *

lg + X — X
of orthogonal H-spectra from the restriction of the underlying H-spectrum of X along ¢, to the underlying
H-spectrum. We denote the composite

HY C:; H Wf(lf) H

(33) m (X)) < wfl(GX) S (X
by g« and refer to it as the conjugation map.

Conjugation is transitive. Indeed, for g, € G we have ¢45 = ¢z 0c¢, : H — H99 and thus Cog = C40Cy

as maps from 72" X to ! (c5(cs X)) = mil (¢;5X). So we deduce

99
Jx O Gx = W(?(l;()oc;omﬁqg(l?)ocz
H/ 1 X H/ 11X * * H/ 11X % _
= To (lg )OFO (Cg(lg ))chocg = To (lgg)chg = (gg)*

as maps 71"’ (X) — 7 (X). Here the second equality is the naturality of the restriction homomorphism

¢}, and the third equality uses that )X o ¢ (1) = I as morphisms ¢, X — X.

Conjugation yields an action of the Weyl group. Indeed, if g normalizes H, then HY = H and g, is an
automorphism of the group m{!(X). If moreover g belongs to H, then g, is the identity automorphism of
7t (X) by Proposition 3.7. So the action of the normalizer NoH of H on 7l (X) factors over the Weyl
group WH = NgH/H.

Now we discuss various properties of the homotopy groups of G-spectra, for example that looping and
suspending a spectrum shifts homotopy groups, a long exact sequences of homotopy groups associated to a
mapping cone, or that homotopy groups commute with sums and products.
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Let X be a G-spectrum and V a representation. The loop spectrum QY X is defined by
(QVX)n = QV(Xn) = map(SV,Xn) )

the based mapping space from the sphere SV to the n-th level of X. The group O(n) acts through its
action on X,, and G acts by conjugation, i.e., via (9¢)(v) = g - p(g~'v) for g : SV — X,,, v € SV and
g € G. The structure map is given by the composite
4 SV n
map(SY, X,,) A S — map(SY, X, A SY) M map(SY, X, 11)
where the first is an assembly map that sends ¢ At € map(SY, X,,) A S to the map sending v € S to

o(v) At
The suspension SV A X is defined by

(SYAX), = SY AKX, ,

the smash product of the sphere SV with the n-th level of X. The group O(n) acts through its action on X,
and G acts diagonally, through the actions on SV and X,,. The structure map is given by the composite

\%4
(SYAX)uASY = SYAX ASY 222 VA X = (SYAX)ns

For the values on a G-representation V' we have
(QVX)(W) = map(SY, X(W)) respectively (SYAX)(W) = SV AX(W).

Both construction are special cases of mapping spectra from and smash products with a based G-spaces,
compare Example 5.2. We obtain an adjunction between SY A — and Q" as the special case A = SV
of (5.3).

Now we show that looping and suspending a G-spectrum by a representation sphere shifts the RO(G)-
graded homotopy groups. In particular, looping and suspending by a trivial representation shifts the
Z-graded equivariant homotopy groups. The loop homomorphism starts from the bijection

(3.9) a1 [§500, QY X (npa)|® = [SVHHC, X (npe)]©

defined by sending a representing G-map f : S¥t"r¢ — OV X(npg) to the class of the adjoint f :
SVHktnee s X (npg) given by f(sAt) = f(t)(s), where s € SV, t € S¥+7P¢. As n varies, these particular
isomorphisms are compatible with stabilization maps, so they induce an isomorphism

(3.10) a - wEQVX) = 7¢, . (X)
on colimits. In the special case V = R this becomes a natural isomorphism « : 7 (Q2.X) = 7T1G+k(X).
The maps
SVA =« [SHTPe X (npg)]© — [SYFRTPE VA X (npa)]©
given by smashing from the left with the identity of SV are compatible with the stabilization process for the

equivariant homotopy groups for X respectively SYA X, so upon passage to colimits they induce a natural
map of homotopy groups

SVA - 7d(X) — 7T€+k(5'v/\ X),
which we call the suspension homomorphism.

Welet n: X — QV(SYAX) and € : SYAQVX — X denote the unit respectively counit of the
adjunction (5.3). Then for every map f : S¥*"°¢ — QV X (npg) we have f = e(npg) o (SYA f) and for
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every map g : S*1"¢ — X (npg) we have SVA g = n(@o g. This means that the two triangles
(3.11)

SVA—

T (QVX) : T (X) 5 (X) TG4 (SYA X)
N %k() S () /
G, (SVAQVX) 7G(QY (SVA X))

commute.

Proposition 3.12. For every orthogonal G-spectrum X, every integer k and every G-representation V' the
loop and suspension homomorphisms

(3.13) a (VX)) — 7L (X) and SYA— 7l (X) — 77 L (SYAX)

are isomorphisms. Moreover, the unit n : X — QV(SYA X) and counit € : SYAQVX — X of the
adgunction (5.3) are m,-isomorphisms.

Proof. We already justified why the loop morphism « is an isomorphism. For the suspension homomorphism
we construct a map
J 1 (SYANX) — 7 (X)

in the other direction. Suppose that g : SY*+* — SVA X (np) represents an element in 7/, (SYA X),
where we abbreviate p = pe. We consider the composite J(g)

SVHktnp 9 GVA X (np) IEASLICOIN X(np) A SV 22 X(npa V) Xmp) X(Veanp).
If we stabilize g to g ¢ p, then the composite J(g) changes to J(g) ¢ p. So we can set J([g]) = (J(g)) and
this is well defined by part (iii) of Proposition 3.4.

For f : S¥tnr — X(np) we have J(SVA f) = i.f (defined in (3.3)) where i : np — V @ np is the
inclusion of the second summand. Thus J[SYA f] = (i.f) = (f) = [f] in 7 (X) by Proposition 3.4 (ii).
The composite in both directions send representatives to a suitable suspensions. So the map J is inverse
to SYA — and the suspension homomorphism is an isomorphism.

Since loop and suspension homomorphisms are isomorphism, the triangles (3.11) show that the adjunction
unit and counit induce isomorphisms on 7§’ for all integers k.

The restriction of Q¥ X (respectively SVA X) to a subgroup H of G is again QY X (respectively SVA X),
where now V denotes the underlying H-representation of V. So by applying the previous argument to the
underlying H-spectrum of X proves that 7 (n) and 7/ () are isomorphisms for every subgroup H of G;
hence 1 and € are 7, -isomorphisms. (]

Example 3.14 (Shift). Let V be a G-representation. The V-shift sh” X of a G-spectrum X is given in
level n by the G-space
(sh’X), = X(VaR").

The orthogonal group O(n) acts through the monomorphism Idy &— : O(R™) — O(V@R™). The structure
maps of sh” X are the generalized structure maps for X. We observe that (sh™ X), = X(R™ @ R") is
canonically isomorphic to X, ., which explains the name ‘shift’. On the n-level of sh" X the group o)
acts via the inclusion — @ Idg» : O(V) — O(V @ R™). These levelwise actions commute with all other
structure, so they constitute a continuous left action of the group O(V') on the spectrum sh" X.

As an example, the shift of a suspension spectrum is another suspension spectrum:

sh(2®4) = 5°UASY).
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For another G-representation W we have
shVX)(W) = X(VeWw)

by a natural G-equivariant homeomorphism, and hence ShU(shVX ) is isomorphic to shVeU x.
Shifting a G-spectrum shifts the homotopy groups in the following sense. We define a natural shift
homomorphism

(3.15) sh’ : 7§(X) — 7&(sh¥ X)

by sending the class represented by a G-map f : S""¢ — X(npg) to the class (i, f), where i : npg —
V ® npg is the inclusion of the second summand and

inf o SV — X(V@npg) = (sh' X)(npe)

is as in (3.3). If we stabilize f to f o pg then i, f changes to (i,f) ¢ pg. So the assignment sh [f] = (i, f)
is well-defined.

The suspension and the shift of an equivariant spectrum are related by a natural morphism A : SYAX —
sh” X in level n as the composite

X (Ten,v)
RLLIELEN

(3.16) SYAX, 2B x ASY I X(R e V) X(VeR") = (shX), .

It follows that for every G-representation W the map A(W) : SYA X (W) — (shY X)(W) is the composite

ow,v X(rv,w)
AL

SYA X (W) 2255 x (W) A SV X(WeaV) X(Vaw) =@ "' X)(W).

Proposition 3.17. Let X be an orthogonal G-spectrum and V a G-representation.
(i) The shift homomorphism
sh : 7§(X) — 7§(sh¥ X)

is an tsomorphism.
(ii) The morphism

A SYAX — shYX  and its adjoint A 1 X — QY (shV X)
are m,-isomorphisms.

Proof. (i) There is a tautological map in the other direction: we send the class in 7 (sh” X) represented
by a G-map g : SY+t"¢ — (sh¥ X)(npg) to the class

(g: SV — X(V @npg)) € n§(X) .

In other words: we don’t change the representing map at all and only rewrite the target (shVX )(npa) as

X(V @npg). This is clearly compatible with stabilization by the regular representation, so it descends to

a well-defined map 75 (sh” X) — 7§(X). The two maps are inverse to each other by Proposition 3.4 (ii).
(ii) We start by showing that the morphism X : X — QY (sh” X) induces an isomorphism on 7§. The

composite

7O(X) TN, GOV Y X)) -2 xG(shV X)

with the loop isomorphism (3.10) sends the class represented by a G-map g : S™ — X(np) to the class

(1+g) where i : np — V @ np is the inclusion of the second summand. In other words, the composite equals

the shift homomorphism shY that is bijective by part (i). Since the loop and shift homomorphisms are

bijective, so is 7§ (X).
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For k > 0 we have 7{(X) = 7§(Q2FX), by definition. There is an isomorphism QF(QY (sh” X)) =
QY (shY(2F X)) that moves the loop coordinates indexed by R* past those indexed by V and that makes
the diagram

)

T (X) ————— 1 (2" (sh" X)) === (2"(Q" (sh" X))
w5 (QFX) 7§ (2 (sh¥ (X))

g (X)
commute. The lower horizontal map is an isomorphism by the above, hence 71']?(5\) is an isomorphism
for k > 0. For k < 0 we have 7&(X) = n§ (shfk X), and the analogous argument works based on the
isomorphism sh™*(QV (sh" X)) = Q' (sh(sh ™ X)) that moves the shift coordinates indexed by R* past
those indexed by V. Hence 77,?(5\) is an isomorphism for every integer k.

Shifting and looping by V commutes with restriction to subgroups. So the previous result applied
to the restriction of X to a subgroup H of G shows that 7/ (\) : 7l (X) — 7 (QV(sh” X)) is an
isomorphism for every integer k. Hence Nis a 7 ~-isomorphism. The adjoint A is then also a m,-isomorphism
by Proposition 3.12. O

As a word of warning we remark that the analog of the map A in the world of symmetric G-spectra (with
a G-set in place of the G-representation V') is not generally a x,-isomorphism. This phenomenon can be
traced back to Proposition 3.4 which has no counterpart in the world of symmetric G-spectra.

Now we introduce an important concept, the notion of ‘G-Q2-spectra’, which encode equivariant infinite
loop spaces.

Definition 3.18. An orthogonal G-spectrum X is a G-Q-spectrum if for every pair of G-representations
V,W the map oyw : X(V) — QWX (V & W) which is adjoint to the generalized structure map
ovw: X(V)ASY — X(V @ W) is a weak G-homotopy equivalence.

G-Q-spectra do not come up so frequently in nature. Some examples are given by Eilenberg-Mac Lane
spectra of ZG-modules (see Examples 2.13 and 4.37) and spectra that arise from very special I'-G-spaces
by evaluation on spheres.

Shifting preserves G-Q)-spectra: if X is a G-Q2-spectrum and U, V and W are G-representations, then
the map

Guw : (shVX)(U) — QY (sh X)(U e W)
for the spectrum sh” X is G-homeomorphic to the map

dverw : X(VaU) — QYXVaoUaWw)
for X, and hence a weak G-equivalence.

Proposition 3.19. For every G-Q-spectrum X, every k > 0 and every subgroup H of G the map
m(Xg') — m (X)
is an isomorphism.

Proof. In the special case where V' = npg and W = pg are multiples of the regular representation, the
defining property of a G-Q2-spectrum specializes to the fact that the maps

Onpopa @ X(npa) — WX ((n+1)pa)

are G-weak equivalences. If we loop by S™¢ and take H-equivariant homotopy classes, we see that the
stabilization map
—opa i [S"7, X(npa)|! — [STTVPE X ((n 4 1)pe)]”
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is bijective. The group 7 (X) is the colimit of this sequence, so the upshot is that for every G-Q-spectrum
X the map

mo(Xg') — m'(X)

is an isomorphism. Under this isomorphism the restriction maps 7/ (X) — 7 (X) for K C H correspond
to the map induced by the inclusion X — X on path components. O

Construction 3.20. We can now indicate how a G-spectrum can be naturally approximated, up to =«,-
isomorphism, by a G-Q-spectrum. For this purpose we introduce a functor called @) as the mapping telescope
of the sequence

(3.21)

X 2% QPsh? X

Q° (Aanr x) QTP (Asnmp x)
—_— R

Ly QMP ™ X QmADp g (m+1)p v o

Here p = p¢ is the regular representation of G and Ax : X — QVshY X is the adjoint of the morphism
Ax : SYA X — shV X defined in (3.16). This construction comes with a canonical natural morphism
2§ : X — QX, the embedding of the initial term into the mapping telescope.

Every morphism in the sequence defining QX is a 7, -isomorphism by Theorem 3.17 (ii). So the morphism
2§ : X — QX is also a m,-isomorphism. One has to work a little more to show that the spectrum QX is
a G-{)-spectrum.

Mapping cone and homotopy fiber. The (reduced) mapping cone Cf of a morphism of based
G-spaces f: A — B is defined by

(3.22) Cf = ((0,1]AA)Us B .

Here the unit interval [0, 1] is pointed by 0 € [0, 1], so that [0,1] A A is the reduced cone of A. The group
G acts trivially on the interval. The mapping cone comes with an inclusion ¢ : B — C'f and a projection

(3.23) p:Cf — S'AA

the projection sends B to the basepoint and is given on [0, 1] A A by p(z,a) = t(z) Aa where t : [0,1] — S?
is given by t(z) = ﬁ(gf:i). What is relevant about the map t is not the precise formula, but that it
passes to a homeomorphism between the quotient space [0,1]/{0,1} and the circle S!, and that it satisfies
t(l—2x2) = —t(x).

The homotopy fiber is the construction ‘dual’ to the mapping cone. The homotopy fiber of a morphism
f A — B of based spaces is the fiber product

F(f) = sxgBPU xp A = {(\a) € BOU x A | A0) =+ A1) = f(a)},

i.e., the space of paths in B starting at the basepoint and equipped with a lift of the endpoint to A. Again
the group G acts trivially on the interval. As basepoint of the homotopy fiber we take the pair consisting
of the constant path at the basepoint of B and the basepoint of A. The homotopy fiber comes with maps

OB -5 F(f) 25 A
the map p is the projection to the second factor and the value of the map i on a based loop w : S' — B is
H(w) = (wot,x) .
Proposition 3.24. Let f: A — B be a map of based G-spaces. Then the composites

ALy 0 ad  F(f) ALy
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are naturally based G-null-homotopic. Moreover, the diagram

CA Uy CB

IV%

STAA S'AB

TAf

commutes up to natural, based G-homotopy, where T is the sign involution of S' given by = — —zx.
The proof of Proposition 3.24 is by elementary and explicit homotopies, and we omit it.

Lemma 3.25. Let f : A — B and B : Z — B be morphisms of based G-spaces such that the composite
iB: Z — Cf is equivariantly null-homotopic. Then there exists a based G-map h : S'ANZ — S' A A such
that (S* A f)oh: S*AZ — S A B is equivariantly homotopic to S* A B.

Proof. Let H : [0,1] x Z — Cf be a based, equivariant null-homotopy of the composite i3 : Z — C'f,
ie., H takes 0 x Z and [0,1] X zg to the basepoint and H(1,z) = i(8(x)) for all x € Z. The composite
paH :[0,1] x Z — S' A A then factors as paH = hpz for a unique G-map h: S' A Z — ST A A. We
claim that h has the required property.

To prove the claim we need the G-homotopy equivalence pz U : CZU1xz CZ — S' A Z which collapses
the second cone. We obtain a sequence of equalities and G-homotopies

(S'Af)oho(pzUx) = (STAf)o(paUx)o(HUC(H)
TAB)o(TAf)o(paUx)o(HUC(H))

TAB)o(xUppg)o (HUC(B))

TAB)o(S'AB)o(xUpyz)

S'AB)o(TAZ)o(xUpz) =~ (S'AB)o(pzUx)

Here HUC(B) : CZ Uixz CZ — CfUp CB = CA Uy CB and 7 is the sign involution of S1. The
two homotopies result from Proposition 3.24 applied to f respectively the identity of Z, and we used the

naturality of various constructions. Since the map pz U * is a G-homotopy equivalence, this proves that the
map (S A f) o h is homotopic to St A 5. O

~

(
(
(
(

Now we can introduce mapping cones and homotopy fibers for orthogonal G-spectra. The mapping cone
Cf of a morphism of orthogonal G-spectra f: X — Y is defined by

(3.26) (Chn = Clfn) = ([0, A Xn) Uy Yo,

the reduced mapping cone of f,, : X,, — Y,,. The orthogonal group O(n) acts on (C'f),, through the given
action on X,, and Y;, and trivially on the interval. The inclusions i, : Y, — C(f,) and projections p, :
C(fn) — S* A X,, assemble into morphisms of orthogonal G-spectrai:Y — Cf and p: Cf — ST A X.
For every G-representation V', the G-space (Cf)(V) is naturally G-homeomorphic to the mapping cone of
the G-map f(V): X(V) — Y(V).

We define a connecting homomorphism 6 : «{’,, (Cf) — m/(X) as the composite

7"1G+k(P)

(3.27) T (CF) (ST AX) = T (X)),

where the first map is the effect of the projection p : C'f — S A X on homotopy groups, and the second
map is the inverse of the suspension isomorphism S' A — : 7§ (X) — 7§ (ST A X).

The homotopy fiber F(f) of the morphism f: X — Y is the orthogonal spectrum defined by
(3.28) F(f)n = F(fn) ,
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the homotopy fiber of f,, : X;, — Y,,. The group G x O(n) acts on F(f), through the given action on X,
and Y,, and trivially on the interval. Put another way, the homotopy fiber is the pullback in the cartesian

square of orthogonal G-spectra:

b X

e

yoly_ vy xY
w = (w(0),w(1))

The inclusions i, : QY,, — F(f), and projections p, : F(f), — X, assemble into morphisms of
orthogonal G-spectra i : QY — F(f) and p : F(f) — X. For every G-representation V', the G-space
F(f)(V) is naturally G-homeomorphic to the homotopy fiber of the G-map f(V) : X(V) — Y (V). We
define a connecting homomorphism & : =l (Y) — nf (F(f))(f) as the composite

— 7rG i
(3.29) nfa(Y) S mf(ar) T xR ().
where o : 7 (QY) — 7, (V) is the loop isomorphism (3.10).

Proposition 3.30. For every morphism f: X — Y of orthogonal G-spectra the long sequences of abelian
groups

- — ) o wfy) Lo Ao o ) —
and

G

(X) LA T, g

(V) —2— 7€ (F(f) L 7l (X) — -

are exact.

Proof. We start with exactness of the first sequence at & (Y). The composite of f : X — Y and the
inclusion Y — C'f is equivariantly null-homotopic, so it induces the trivial map on w,?. It remains to show
that every element in the kernel of i, : 75(Y) — 7&(Cf) is in the image of f.. Let 8 : ¥ — Y (np)
represent an element in the kernel. By increasing n, if necessary, we can assume that the composite of 3
with the inclusion i : Y (np) — (Cf)(np) = C(f(np)) is equivariantly null-homotopic. By Lemma 3.25
there is a G-map h : S A S+ — S1 A X (np) such that (S* A f(np)) o h is G-homotopic to S* A 3. The
composite

Tsk+np g1 Tsl.X(np)

ho: Ghtnetl o ghdne \ gl SEASHme Gl A X (np) ——X00 X (np) A ST

then has the property that (f(np) A S') o h is G-homotopic to 8 A S1. The composite

SEFetl () A ST TR X (np @ R)
represents an equivariant homotopy class (o, r © i~z> in ¢ (X) and we have
78 () onpr o h) = (Fnp®R) 0 0upzoh) = (Gupmo (f(np) ASY) o)
= (onpro (BASY)) = (BoR) = (B).

So the class represented by $ is in the image of f. : 7&(X) — 7% (Y).

We now deduce the exactness at 7¢ (C'f) and 7 | (X) by comparing the mapping cone sequence for
f: X — Y to the mapping cone sequence for the morphism ¢ : Y — C'f (shifted to the left). We observe
that the collapse map

*Up : Ci2CY Uy CX — S'AX
is an equivariant homotopy equivalence, and thus induces an isomorphism of equivariant homotopy groups.

Indeed, a homotopy inverse
r: STAX — CY u; CX
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is defined by the formula

r(shz) = (2s,2) €CX for0<s<1/2 and
l@=2s,f(z) eCY for1/2<s<1,
which is to be interpreted levelwise. We omit the explicit G-homotopies r(x Up) ~ Id and (x U p)r ~ 1d.

Now we consider the diagram

Cf Ci—2 s> SUAY
*Up
p SIAS
SYAX

whose upper row is part of the mapping cone sequence for the morphism i : Y — C'f. The left triangle
commutes on the nose and the right triangle commutes up to the G-homotopy. We get a commutative
diagram

(34)«

x

T (V) ———— g (Cf)

i (Y)

7l (C1) —2 7 (V)

(Sl/\—)o(*Up)*\L:

WE(CJC) chG—l(X) 771?—1(3/)

s f
(using, for the right square, the naturality of the suspension isomorphism). By the previous paragraph,
applied to i : Y — Cf instead of f, the upper row is exact at 7 (Cf). Since all vertical maps are
isomorphisms, the original lower row is exact at WE(C f). But the morphism f was arbitrary, so when
applied to i : Y — Cf instead of f, we obtain that the upper row is exact at W,?(Ci). Since all vertical
maps are isomorphisms, the original lower row is exact at W,?_l(X ). This finishes the proof of exactness of
the first sequence.

Now we come to why the second sequence is exact. For every n > 0 the sequence F(f)(np) =
F(f(np)) — X(np) — Y (np) is an equivariant homotopy fiber sequence. So for every based G-CW-
complex A, the long sequence of based sets

G G
[A;p(np)] [A,f(np)]

C s [AQY ()] 2 [AF(f(np)))© [4, X (np)]© [A,Y (np))©

is exact. We take A = S¥*77 and form the colimit over n. Since sequential colimits are exact the resulting
sequence of colimits is again exact, and that proves the second claim. O

Corollary 3.31. (i) For every family of orthogonal G-spectra {X'};c; and every integer k the canonical
map

@ 1, (XY) — m, (\/XZ>
iel iel
is an isomorphism of Mackey functors.
(i) For every finite indexing set I, every family {X*}icr of orthogonal G-spectra and every integer k the
canonical map

Ty, <HXi> — H mp (X7)
iel i€l
is an isomorphism of Mackey functors.
(iii) For every finite family of orthogonal G-spectra the canonical morphism from the wedge to the product
is a T, -isomorphism.
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Proof. (1) We first show the special case of two summands. If X and Y are two orthogonal G-spectra, then
the wedge inclusion ix : X — X VY has a retraction. So for every subgroup H of GG the associated long
exact homotopy group sequence of Proposition 3.30 (i) splits into short exact sequences
H /. .
0 — aff(x) 8 2l vy) B o)) — 0.

The mapping cone C(ix) is isomorphic to (CX) VY and thus G-homotopy equivalent to Y. So we can
replace 7 (C(ix)) by 7 (V) and conclude that /! (X VY') splits as the sum of 7 (X) and 7} (), via the
canonical map. The case of a finite indexing set I now follows by induction, and the general case follows
since homotopy groups of orthogonal G-spectra commute with filtered colimits.

(ii) The functor X ~— [S*¥+"P¢ X (npg)] commutes with products. For finite indexing sets product are
also sums, which commute with filtered colimits.

(iii) This is a direct consequence of (i) and (ii). More precisely, for finite indexing set I and every integer
k the composite map

H (i H j H j H (yri
@Wk (X*) — (\/ X') — m, (HXl) — HWk (X)
iel iel icl icl
is an isomorphism, where the first and last maps are the canonical ones. These canonical maps are isomor-
phisms by parts (i) respectively (ii), hence so is the middle map. O

As a word of warning we remark that the functors 77,? and 7, do not preserve arbitrary products; the
problem is that the sequential colimit involved in the definition of 7r,§ does not commute with arbitrary
products.

4. WIRTHMULLER ISOMORPHISM AND TRANSFERS

In this section we establish the Wirthmiiller isomorphism and discuss the closely related transfer maps
on equivariant homotopy groups. The restriction functor from G-spectra to H-spectra has both a left
adjoint G xz — and a right adjoint map (G, —). In classical representation theory of finite groups, the
algebraic analogues of the left and the right adjoint are naturally isomorphic. In equivariant stable homotopy
theory, the best we can hope for is a natural m -isomorphism, and that is the content of the Wirthmdiiller
isomorphism, compare Theorem 4.9 below.

We start with an auxiliary lemma.

Lemma 4.1. Let H be a finite group, W an H-representation and and w € W an H-fized point. Define
the ‘radius 1 scanning map’ around w by

sfw] : SV — SV oz — {% for |z —w| <1, and

00 for jx —w| > 1.
Then the scanning map s[w] is H-equivariantly based homotopic to the identity.
Proof. The homotopy
0,1] x S — SV | (t,2) — s[t-w](x)
interpolates between s[0] and s[w]. Another homotopy then interpolates between the identity and the

scaling map s[0]. O

Construction 4.2 (Transfer). We let H be a subgroup of a finite group G. We choose a G-representation W
and a G-equivariant injection

j: G/H — W.
Such an injection is determined by the point w = j(H), the image of the preferred coset, and any point
of W whose stabilizer group is H does the job. By scaling the function j, if necessary, we can assume
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without loss of generality that the embedding is wide, i.e., the open unit balls around the image points
i(gH) = g - w are pairwise disjoint.
This data determines a G-equivariant transfer map as follows. The G-map

j i GxuDW) — W, gz — g-(w+a)
is an embedding on the open unit balls. So we get a G-equivariant Thom-Pontryagin collapse map
(4.3) t4 . SV — Gxy SV

that sends the complement of j(G x g D(W)) to the basepoint at infinity and is otherwise given by the
formula

g

1— x|’

where |2| < 1. The map depends on the choice of G-representation W and the wide equivariant embedding j,
but we do not record this dependence in the notation.

t5(g- (w+1x)) =

Now we need some more notation in order to state and prove the key unstable ingredient for the
Wirthmiiller isomorphism, namely Proposition 4.5 below. We let H be a subgroup of a finite group G.
Then the restriction functor i* from based G-spaces to based H-space has a left adjoint G x g — and a right
adjoint map® (G, —). A natural based G-map

(4.4) Up : Gxg B — map”(G,B)
is defined by

vgb if yg € H, and

Up(gxb)(v) = .

x ifyge& H.
For a based H-space B and a based G-space A, the shearing isomorphism is the G-equivariant homeomor-
phism

(Gxg B)AA =2 Gxy (BAi*A), (gxb)Aa — gx (bA (g7 a)) .
Similarly, the assembly map is the G-map
a : map” (G,BYAA — map”(G,BAi*A), a(fra)lg) = flg)Aga .

It is straightforward to check that all these maps make the following square commute:

(Gwy BYAA—"EM o mapH(G,B) A A

sheari = i «

G xpg (BNi*A) map? (G, B A i* A)

Ypnaixa

In the situation where A = S" is the sphere of a G-representation W into which G/H embeds, the
transfer (4.3) gives rise to another G-map 75 : map” (G, B) A SV — G xpz (B A S*W) defined as the
composite

G -
map (G, B) A SV LA N map” (G, B) A (G xyg S*W)
S Gy (i (map® (G, B) A ST

G (enSTW)
SRR

Gxyg (BAS™W)Y.

Here € is the adjunction counit.
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Proposition 4.5. Let H be a subgroup of a finite group G, and B a based H-space. Then the following
diagram commutes up to G-equivariant based homotopy:

‘I’B/\SW

(G xg B)ASW map® (G, B) A SW

shear i o / i «

Gxg(BAS™W) ——>map/(G,BAS"W)
BAST*W
Proof. We start by showing that the upper left triangle in the proposition commutes up to G-homotopy.
Since G X g — is left adjoint to the restriction functor, it suffices to show that the composite

;% G ;%
BASTW YENE apH (G BY A (G kg STV

Sy Gy (i (map (G, B) A ST

G SiW -

Xal NSy Gy (BASTW)
is H-equivariantly homotopic to the adjunction unit, where we have expanded the definition of 75. Ex-
panding the definition of the transfer map t% identifies this composite with the map

Id Asw]
e

BASTY BAS™ 25 Gxg (BASTY),

the radius 1 scanning map s[w] around the distinguished H-fixed point w = j(H), followed by the adjunction
unit. By Lemma 4.1, the map s[w] is H-equivariantly homotopic to the identity, so the claim follows.

Now we show the commutativity of the lower right triangle. Since map® (G, —) is right adjoint to the
restriction functor, it suffices to show that the composite

Id At H TV
— map  (G,B)A(Gxg S ™)

shear G X g1 (Z*(mapH(G7B)) A Sz*W)

map’? (G, B) A SV

G Si*W " o ”
CrnlhT ) Gy (BASTW) O, pA gitW

is H-equivariantly homotopic to e AId : map (G, B) A SW — B A SW | where again we have expanded the
definition of 7. This composite equals the map

eAs(w) : map?(G,ByASY — BASY;
so again, the claim follows because the scanning map s[w] is H-equivariantly homotopic to the identity. O

Now we can establish the Wirthmiiller isomorphism. This isomorphism first appeared in [27, Thm. 2.1]
in the more general context of compact Lie groups. Wirthmiiller attributes parts of the ideas to tom Dieck
and his statement that G-spectra define a ‘complete G-homology theory’, amounts to Theorem 4.9 when Y’
is a suspension spectrum. The generalization of Wirthmiiller’s isomorphism to arbitrary H-spectra is due to
Lewis and May [16, IT Thm. 6.2]. Our proof is essentially Wirthmiiller’s original argument, but specialized
to finite groups and adapted to orthogonal spectra, which simplifies the exposition somewhat.

Let H be a subgroup of G. Then the restriction functor from orthogonal G-spectra to orthogonal H-
spectra has a left and a right adjoint, and both are essentially given by applying the space level adjoints
G Xy — and map (G, —) levelwise.

Construction 4.6. We let H be a subgroup of G and Y an orthogonal H-spectrum. The coinduced
G-spectrum is defined levelwise, i.e., by (map” (G,Y)), = map(G,Y,,) with induced action by the orthog-
onal group and induced structure maps. If V is a G-representation, then the G-space map (G,Y)(V) is
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canonically isomorphic to map® (G, Y (i*V)). Indeed, a G-equivariant homeomorphism
(4.7) map™ (G,Y)(V) = O(R",V) Ao(n) map” (G, Y,,)
is given by

[0, 1 — {gllgoe, fl9)]}
where dim(V) = n, ¢ : R* — V is a linear isometry and f: G — Y;, an H-map and I, : V — V is left
translation by g € G. Under the identification (4.7), the generalized structure map oy, of the spectrum
map’ (G,Y) becomes the composite

map™ (G, Y (i*V)) A S % mapf (G, Y (i*V) A §7W) DG w) o SH @Y (Ve W)

The left adjoint to the restriction functor from G-spectra to H-spectrum is constructed in a similar way.
For an orthogonal H-spectrum Y we denote by G x g Y the induced G-spectrum with n-th level given by
(GxgY), =G xpgY,, with induced action by the orthogonal group and induced structure maps. If V' is
a G-representation, then the map

(4.8) GurpgY(@'V) =2 (GxgY)V), gxpyl — [lgop,gxy]

is a preferred G-equivariant homeomorphism. Under the identification (4.8), the generalized structure map
oy,w of the spectrum map’ (G,Y) becomes the composite

GXEO v i*w

(GxpgY@V)ASY 22 Gy (Y(EI*V)ASTW) GuyY(i*(VeWw)).
The G-maps (4.4) for the various levels Y,, form a morphism of orthogonal G-spectra Uy : G xg Y —
map (G,Y).
Theorem 4.9 (Wirthmiiller isomorphism). Let H be a subgroup of a finite group G, and' Y an orthogonal
H -spectrum. Then the morphism

Uy : GxpgY — map?(G,Y)

is a T, -isomorphism.
Proof. This is a relatively straightforward consequence of Proposition 4.5. We let K be any subgroup of G,

and we start by showing the injectivity of w,f (Py); we give the argument for k > 0, the other cases being
similar. We let 2 € 75(G x5 Y) be a class in the kernel of 75 (¥y) and we represent it by a based K-map

FoSEOV Gy Y)(V)

for a suitable K-representation V. By increasing V and stabilizing f, if necessary, we can assume that V'
is underlying a G-representation. Then we use the homeomorphism (4.8) to rewrite the target of f as

(G X g7 Y)(V) ~ G X g Y(Z*V) .
By increasing V' even further, if necessary, we can assume that in addition the composite

Uy (ixv

SRV Lo Gy Y V) XY mapH (G, Y (*V))
is K-equivariantly null-homotopic. Hence the composite

w Uy ey ASW
srrevew I @ uy y(irv)) A s 0

is K-equivariantly null-homotopic as well.
By Proposition 4.5 the composite

map® (G, Y (i*V)) A SV

<V w Ty (i* Vv -
(G wy YV ASW XN (G Y V) A SY XV Gy (Y V) A ST
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is G-equivariantly — and hence also K-equivariantly — homotopic to the shearing homeomorphism; so already
k
the map f ASW : SEOVEW o (G x g Y (i*V)) A SV is K-equivariantly null-homotopic. In particular, f
represents the trivial element in 75 (G x i V), and so the map 7% (¥y ) in injective.
The argument for surjectivity is similar. We let
g : SR*ev map (G, Y)(V)

be a based K-map that represents any given element of 7T£< (mapf (G,Y)), for a suitable K-representation V.
By increasing V' and stabilizing g, if necessary, we can assume that V is underlying a G-representation.
Then we use the homeomorphism (4.7) to rewrite the target of g as

map™ (G, Y)(V) = map™(G,Y([i*V)) .

The composite

o w Ty (i* -
gRrevew 95T b H(G Y (V) ASY Y Gy (YY) A STW)

GXp(oixy,ixw)

Gwg Y@ (Vaw))

represents an element x € 75 (G x i Y). By naturality of the maps ¥ and Proposition 4.5 for B = Y (i*V),
the composite

map” (G, Y (i*V)) A SV XYV Gy (V(FV) A STW)

G g (o v, ixw Ty (i (vow))
R SUSLELLE N

L Gy Y (i* (Ve W)) map™ (G, Y (i*(V @ W)))
is G-equivariantly — and hence also K-equivariantly — homotopic to the composite

o - map’? G,ox v ;* o
map” (G, Y (V) A S %5 map® (G, Y (i*V) A §TW) ZRTETe W) SH (G Y (6 (V @ W)
Up to the identification (4.7), this last composite is the generalized structure map of the G-spectrum
map’ (G,Y), so this shows that the original class represented by g is the image of the class 2. So the map
& (Uy) is surjective, hence bijective. O

The G-equivariant homotopy groups of the coinduced G-spectrum map® (G,Y) are isomorphic to the
H-equivariant homotopy groups of Y, by a simple adjointness argument. We claim hat for every integer k
the composite

resG ‘ﬂ'H ev
(4.10) 7C(map® (G, Y)) —= 7 (map™ (G, Y)) 2, 7l (y)

is an isomorphism, where ev : map” (G,Y) — Y is evaluation at 1 € G (also known as the adjunction
counit). Indeed, for every n > 0, the G-equivariant homeomorphism (4.7)

map” (G,Y)(npa) = map” (G, Y (i*(npg)))
and the adjunction provide a natural bijection
(57476 map™ (G, Y) (np)]7 = [SMH () Y (i (npa))) ™ .

These bijections are compatible with stabilization as n increases, and assemble into an isomorphism of
abelian groups

7 (map™ (G,Y)) = colim, [S¥+*¢ map™ (G, Y)(npe)]® = colim, [S*+ ("°¢) Y (i* (npg))]™ .
The restricted representation ¢*(pg) is H-isomorphic to [G : H] - pm, so the sequence {i*(npg)}n>o of
restricted regular representations is isomorphic to a cofinal subsequence of the sequence {mpp }.m>0. Hence

the colimit on the right hand side is isomorphic to the group 77,? (Y).
For every subgroup H of G and every orthogonal H-spectrum Y we define a morphism

pr : GxgY —Y



30 STEFAN SCHWEDE

as the projection onto the preferred wedge summand H xg Y in G Xz Y. In other words, the n-th level
pr, : G xpgY, — Y, is defined by

gy if g€ H, and
pr,(g xy) = :
x ifge H.

The projection is a morphism of orthogonal H-spectra (but it is not G-equivariant). The next result is now
essentially a corollary of the Wirthmitiller isomorphism.

Proposition 4.11. For every subgroup H of G and every orthogonal H-spectrum Y the composite

G
respr

7S(G xy V) TG wpY) T oy
is an isomorphism.
Proof. The projection pr factors as the composite

GupY —2s map” (G,Y) =5 Y,

where the second morphism is evaluation at 1 (hence the counit of the adjunction); the map in question is
thus equal to

m(pr)oresl = wl(ev) o (Uy)oresl = 7w (ev)orest onl(Wy) .
Since 7w (ev) o res$; is an isomorphism by (4.10), and 7 (¥y ) is the Wirthmiiller isomorphism (Theo-
rem 4.9), this proves the claim. O

Now we discuss the transfer maps of equivariant homotopy groups. For a subgroup H of G we construct
two kinds of transfer maps, the external transfer Trf, that is defined and natural for orthogonal H-spectra,
and the internal transfer tr§ that is defined and natural for orthogonal G-spectra, In order to distinguish
the two kinds of transfer maps we use a capital ‘T’ for the external transfer and a lower case ‘t’ for the
internal transfer.

Our definition of the external transfer Trg is essentially as the ‘inverse of the Wirthmiiller isomorphism’,
modulo the identification (4.10) of ¢ (map (G,Y)) with 7 (V).

Definition 4.12. Let H be a subgroup of a finite groups G.
(i) For an orthogonal H-spectrum Y the external transfer

(4.13) ™Y oY) — 718G xyY)
is defined as the inverse of the isomorphism 7 (pr) o res%.
(ii) For an orthogonal G-spectrum X the internal transfer

(4.14) tr& - rH(X) — 7Y9(X)

is defined as the composite

H Trg G 71'5; (act) G
o (X) —— 715 (Gxg X) ———— 75 (X)
of the external transfer for the underlying H-spectrum of X and the effect of the action morphism
G xg X — X on G-equivariant homotopy groups.

The definition of the external transfer as the inverse of some easily understood map allows for rather
formal proofs of various properties of the transfer maps. Along these lines we will show below the transitivity
of the transfer maps, the compatibility with restriction along epimorphisms, and the double coset formula.
On the other hand, Definition 4.12 does not reveal the geometric interpretation of the transfer as a Thom-
Pontryagin construction — which is usually taken as the definition of the transfer. We will reconcile these
two approaches now.
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Construction 4.15. We relate that rather abstract definition of the transfer to the more concrete tradi-
tional definition via an equivariant Thom-Pontryagin construction. In fact, this interpretation is already
implicit in the proof of the Wirthmiiller isomorphism, which identifies the inverse as coming from the
transfer map (4.3)
tG . SV — Gxg STV,

Let H be a subgroup of G and Y an orthogonal H-spectrum. We let V be an H-representation and
f: SV — Y(V) an H-equivariant based map that represents a class in 7f/(Y). By enlarging V, if
necessary, we can assume that V' = ¢*W is the underlying H-representation of a G-representation W. By
enlarging W, if necessary, we can assume moreover that there exists a G-equivariant injection

j: G/H — W,

which amounts to a choice of vector j(H) in W whose stabilizer group is H. As we explained in Construc-
tion 4.2, an associated Thom-Pontryagin collapse map gives rise to the G-equivariant transfer map t%. The
composite

t$ Sk
SY O Gy 8TV S G YW s (Gxy V(W)
is then a G-equivariant based map and we claim that it represents the external transfer, i.e.,
(Gxpg foth) = TrG(f) in a§(GxuY).
To see this we contemplate the commutative diagram of based H-maps:

G

SW U Gy §W I G Y (W)

lpr

Y (i*W)

f

The composite prot$ : SV — SW is the radius 1 scanning map s[w] around the preferred vector w = j(H),
SO pro tg is H-equivariantly homotopic to the identity of SW by Lemma 4.1. We conclude that

o (pr) (resf (G < f)otf)) = (pro(Gxp fotf) = (fos]) = (f) in x5 (Y).
The external transfer is defined as the inverse of 7/!(pr) o res$, so this proves the claim.
Now we prove various properties of the external and internal transfer maps. We start with transitivity
with respect to a nested triple of groups K < H < @G. In this situation, restricting a G-action to a K-action

can be done in two step, through an intermediate H-action. So the left adjoint G X — is canonically
isomorphic to the composite of the two partial left adjoints:

k: Gxg(HxgY) 2 GxgY , gx(hxy) — (gh)xy,
and similarly for the various right adjoints.

Proposition 4.16. The external transfer maps are transitive, i.e., for nested subgroups K < H < G and
every orthogonal K-spectrum Y the composite

K Trg K Trg Ie 7T*G(I{) a
s (Y) — T, (HIXKY) —_— ﬂ*(GD(H(HD(KY)) —_— W*(GD(KY)

*

agrees with the external transfer Trf( The internal transfer maps are transitive, i.e.,

tr&otrll = 8¢ K (X) — 7E(X)

*

for every orthogonal G-spectrum X .
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Proof. The square
Gxg (HxgY)—"=GxgY

HxgY ————>Y
Prg

commutes, where we decorate the wedge summand projections by the groups involved. So

S (prf) oves onl () o i o Trye = wlf (prff) o mf () o resf o Trfj o Trig
= 75(prl) o 7K (pr§) o rest ores o T o Tril
o5 (pri) o rest o (pr$) o res§ o Tr$ o Trll
= 7fprihoresl ol = 1d .

Since the composite 7& () o Tr o TrK is inverse to 7 (pr§) ores%, it equals TrG The transitivity of the
internal transfer maps follows by naturality because for every orthogonal G-spectrum X the square

Gy (Hxg X)—">Gxg X

GKH(actg)l lactg
Gxyg X T) X
commutes. Indeed:
trGotrl = 78(act$) o Tr$ on (actfl) o Tl

= 7% act§) o 7% (G wyr actll) o Tr o Trit
= 1% act?) onl(k) o TtG o Trll = actf oY = tr§ . O
Now we study how transfer maps interact with the restriction homomorphism (3.6) of equivariant ho-
motopy groups. The following proposition explains what happens when a transfer is restricted along an
epimorphism. The double coset formula (4.21) below explains what happens when a transfer is restricted
to a subgroup. Every group homomorphism is the composite of an epimorphism and a subgroup inclusion,
so together this can be used to rewrite the composite of a transfer map with the restriction homomorphism
along an arbitrary group homomorphism.
We let o : K — G be a surjective homomorphism of finite groups, H a subgroup of G and L = a1 (H).
For every based H-space A the map

Kxr ((a]p)"4A) — o (GxpgA), kxavr— alk)xa

is a K-equivariant homeomorphism. For an orthogonal H-spectrum Y, these isomorphisms for the various
levels together define an isomorphism of orthogonal K-spectra

f : KD(L ((O¢|L)*Y) — O(*(G D(HY).

The next proposition shows that transfer maps are compatible in a straightforward way with restriction
maps along epimorphisms.

Proposition 4.17. Let o : K — G be a surjective homomorphism of finite groups, H a subgroup of G
and L = o~ (H).
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(i) For every orthogonal H-spectrum Y the following square commutes:

el
Trg

m (V) Tl (GxpY)

(alL)*l ia*

m((al)*(Y) Ervas (K %y ((alL)Y) e (@ (G xpY))

(ii) For every orthogonal G-spectrum X the following square commutes:

&
m (X) ¢ (X)

(aL)*l’ J{a*

m(a*X) —x T (@ X)
trp

Proof. (i) The composite

K * 3 * (O“L)*(prfl) *
xr ((e]p)Y) = o*(GxygY) ———— (af[)"(Y)
equals the wedge summand projection prlL( , SO

ﬂf(ﬁ) o Trf owf((ah)*(prg)) o resf = Wf(&) o Trf owf(prf) o 7r*L(§71) o resf

() o Try) oml (pry ) oresy; oml (671)

(€ omf(E™) = 1d

is the identity of 7 (a*(G x5 Y)). Thus
m (&) o T o(aly)* 0wl (prf) ovesfy = wl(€) o Trp omi((af )" (prfy)) o (aln)* o resf;
= m () o Trf om((af)*(pr)) o vesf oa® = o .

Precomposing with the external transfer Trfl and using Proposition 4.11 shows the first claim. Part (ii)
follows from part (i) and the fact that

o™ (act)

Ky (o) (Y) = a*(GxgY) o'y
is the action map of K on (a|r)*(Y). O
A special case of an epimorphism is the conjugation map
g+ H — HI = g 'Hg, h — cg(h) = g thg

induced by an element g € G of the ambient group. We recall from (3.8) that the conjugation map
gs : T (X) — 7l (X) is defined as the composite

c* rH X
(X)) 2y allex) )y qn iy

where l;( i cgX — X is left translation by g. Proposition 4.17 (ii) applied to K = G and the inner
automorphism o = ¢4 : G — G implies the relation

tr§ og, = tr% owf(lg() oc, = ﬂ'f(lf) otr& oc;, = Wf(l;() ocyo trs, = %,

as maps from 77’ X to 7& (X), for every orthogonal G-spectrum X. The last step is the fact that inner
automorphisms induce the identity, compare Proposition 3.7.
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Now we prove the double coset formula for the restriction of a transfer to a subgroup. We let K and H
be subgroups of G and A a based H-space. For every g € G, the map

kg @ K Xgnom (res}%gH(cZA)) — Gxg A, kxa+— (kg)xa

is K-equivariant. As usual, ¢, : YH — H is the conjugation homomorphism given by c,(vy) = g~ 'vg. If
we let g vary in a set of K-H-double coset representatives, the combined map

\/ K Xgnog (resi(%gH(c;A)) BAZIN res% (G x g A)

lgle K\G/H

is a K-equivariant homeomorphism. All this is natural, so we can apply the constructions and maps levelwise
to an orthogonal H-spectrum Y and obtain an analogous morphism of orthogonal K-spectra

kg + K Xknom (res;%gH(c;Y)) — GxgY,

which gives a wedge decomposition of the underlying K-spectrum of G X g Y when g runs over a set of
representatives of all K-H-double cosets.

Proposition 4.18 (External double coset formula). For all subgroups K and H of G and every orthogonal
H-spectrum Y the relation

g
res o Tr§; = g 75 (ky) o Trf o g oresil i ocy
lg]e KANG/H

holds as maps 7 (V) — n5(G x g Y).
Proof. For g € G we denote by

pry : GxpY — K Xgnog C;(Y)
the morphism of orthogonal K-spectra that is left inverse to x4 and sends all K-H-double cosets other than
KgH to the basepoint. The morphism of orthogonal (K N 9H )-spectra c;(prg) ce(GxpY) — cp(Y)
equals the composite

r K
GG wgY) o GugV 25 K wgnoy (V) ZE00 ooy

where [, is left multiplication by g. So

G ﬂgH

resKIwaoc o, (er)oresH = G

c (pr ) o res iy g oct o res

KﬂgH( KnY H( )

01es% ocy

*

9

r,) o,
)

K0?H pr, oresKngHer(lg)oc;

= me (ermﬂH) O, prg) Oresf(mﬂH

We have used various naturality properties and, in the last equation that inner automorphisms induce the
identity (Proposition 3.7). The external transfer & % is inverse to 7 (pr) o res$;, so precomposition with
this external transfer gives

KnY H(

9H . KN9H (K KN9H G G
reSg e OCy = T (Prgnop) © Ty (pr )oresfnap © Tryy
g
= wE T (prne pr) © TS g O (pr ) oresfi o Trfj .

KnY H(

Similarly, the transfer map TergH is inverse to 7; prﬁmgH) ) resflgmgH, so postcomposition with this

external transfer gives
g9
(4.19) Trk g g oresitl, oc; = ﬂ'i{(prg) ores% o Tr$

as maps w1 (V) — w7l (K xgrop ¢ (Y)).
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The underlying orthogonal K-spectrum of G x g Y is the wedge, indexed over K-H-double coset repre-
sentatives, of the images of the idempotent endomorphisms r,opr, of G x g Y. Since equivariant homotopy
groups takes wedges to sums, the identity of 7% (G x g Y) is the sum of the effects of these idempotents.
So we can postcompose the relation (4.19) with 7/ (k,) and sum over double coset representatives to get
the desired formula:

9
E 75 (ky) o Trf o g oresilo i oc; = E 5 (kg o pr,) o res$ o Tr$y = res$ oTr$ . O
lgleK\G/H lgleK\G/H

The double coset formula for the internal transfer maps follows from the external one by naturality
arguments.

Proposition 4.20 (Internal double coset formula). For all subgroups K and H of G and every orthogonal
G-spectrum X the relation

g
res?( o trg = E tr[émH o resK%gH 074
l9]eK\G/H

holds as maps 7 (X) — 7 (X).

Proof. We denote by ¢ : G xy X — X the G-action morphism. If we apply the map 7% (n%) to
the external double coset formula, then the left hand side becomes the composite of internal transfer and
restriction (using that restriction is natural for the the G-morphism 1n%). Now we simplify the summands
on the right hand side of the external double coset formula. For every g € G the square of K-morphisms

K X KN H (C;X)

| :

GIXHX X
n®

commutes, where as usual [, is left multiplication by g. So we get

5 (n

*

G K K
) g

o (kg) 0 Tritmap oTesfhop ocy = it (1) o ¥ (")

w0 Trig g oresthy g oc

= 7K (l;() otrk ,yoresitl, ocy

— Wl oresih omlH () o)

g

= trgmﬂH oresKFrIwH Ogx
The second equality is the definition of the internal transfer for the spectrum c;X. The third equality is
the fact that transfer and restriction are natural for the G-morphism l;( : ;X — X. The final relation is
the definition (3.8) of the conjugation map g, : 72 (X) — 7,7 (X). O

*

The restriction, conjugation and transfer maps make the homotopy groups 7 (X) for varying H into a
Mackey functor. We recall that a Mackey functor for a group G consists of the following data:
an abelian group M (H) for every subgroup H of G,
conjugation maps g, : M(H) — M(9H) for H C G and g € G, where 9H = gHg™!,
restriction maps rest : M(H) — M(K) for K C H C G,
e transfer maps tril : M(K) — M(H) for K C H C G.

This data has to satisfy the following conditions. The unit conditions

I'GSZ = IdM(H) and h* = IdM(H) for hGH
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and transitivity conditions

grog. = (99", resKorestl = res? and restl og, = g, oresit;
express that facts that the restriction and conjugation maps assemble into a contravariant functor on the
orbit category O(G) of G. The unit conditions tril = Id wm(m) and transitivity conditions

g
trifotr® = & and trflog, = g, otrll,

express the fact that the transfer and conjugation maps form a covariant functor on the orbit category
of G. Finally, restriction and transfer are related by the double coset formula. It says that for every pair of
subgroups K, K’ of H the relation

(4.21) rest, otrfl = Z tr?mhK o rCS;(I/(mhK ohy
[(WeK\H/K

holds as maps M(K) — M(K'). Here [h] runs over a set of representatives for the double cosets for
K\H/K.

Remark 4.22. The definition (3.1) of equivariant homotopy groups of an orthogonal G-spectrum has room
for an extra parameter. Indeed, we can use a G-representation U instead of the regular representation, and
modify (3.1) to

7Y (X) = colim, [S"Y, X (nU))® ,
where the colimit is taken along — o U, stabilization by U. In order to end up with abelian groups we should
assume that UY # 0. We can then define a (G,U)-equivariant stable homotopy category by formally
inverting the morphisms of orthogonal G-spectra that induce isomorphisms on the groups W,f’U for all
integers k and all subgroups H of G.

If we stabilize with a representation U that does not contain all irreducible G-representations, then some
aspects of the theory change. For example, Proposition 3.4 does not hold in full generality anymore, but
only for G-representation V' that embed into nU for some n > 1. Also, the Wirthmiiller isomorphism may
fail for the U-based homotopy groups Wf’U, i.e., the morphism ¥y : G xz Y — map (G, Y) need not in
general induce isomorphisms in &, However, an inspection of the proof of Theorem 4.9 shows that

Wf’U(Wy) : ﬂf’U(G xgY) — ﬂ'G’U(mapH(G,Y))

*

is an isomorphism if G/H admits a G-equivariant injection into nU for some n > 1.

Also we can in general not construct the transfer maps (4.13) and (4.14) because we may not be ably to
embed a coset G/H equivariantly into a sum of copies of U. So the U-based homotopy groups 71'3; ’U(X )
will typically admit some, but not all transfers, and they do not form full Mackey functors.

If U is another G-representation such that U embeds into a sum of copies of U, then the analog (with U
instead of the regular representation) of Proposition 3.4 lets us define a preferred homomorphism

SUX) — 7§YX), [f: S — X(U)] — (f) .

This homomorphism is natural in X and compatible with restriction to subgroups and with those transfers
that exists for m; U If U also embeds into a sum of copies of U, we get an inverse homomorphism in the
other direction by exchanging the roles of U and U. So up to canonical natural isomorphism, the group
Wg Ux only depends on the ‘universe’ generated by U, i.e., on the infinite dimensional G-representation ocoU,
the direct sum of countably many copies of U. The universes coU and colU are G-isometrically isomorphic
if and only the same irreducible representations embed in U and U. So 778; UX, and hence the (G,U)-
equivariant stable homotopy category, only depends on the class of irreducible representations contained
in U. Somewhat less obviously, the group 7'('(? Ux , and in fact the entire G-equivariant stable homotopy
theory based on the universe coU, depends on even less, namely only on the set of those subgroups of G
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that occur as stabilizers of vectors in coU (or what is the same, the set of subgroups H < G such that G/H
embeds G-equivariantly into ocoU). [15, Thm. 1.2].

In these notes, we focus on the most interesting case where U = p¢ is the regular representation. Then
ocope is a complete universe (i.e., every G-representation embeds into it) and we arrive at what is often
referred to as ‘genuine’ equivariant stable homotopy theory, with full Mackey functor structure on the
equivariant homotopy groups.

The other extreme is where U = R is a trivial 1-dimensional representation. Then coU = R*° has trivial
G-action and is thus called a trivial universe. The homotopy groups 77(? ®X do not support any non-trivial
transfers and the (G, R)-equivariant stable homotopy category is often referred to as the ‘naive’ equivariant
stable homotopy category.

Another case that comes up naturally is the natural representation of the symmetric group X,, on
R™ . by permutation of coordinates; for m > 3 the corresponding universe is neither complete nor trivial.
The corresponding equivariant homotopy groups arise naturally as target of power operation, compare
Remark 8.4 below.

G

Construction 4.23 (Multiplication by the equivariant stems). The equivariant stable stems 7g = 77 (S)
form a graded ring with a certain commutativity property that acts on the homotopy groups of every other
G-spectrum X. We denote the action simply by a ‘dot’

(4.24) Al (X)) xnf — WE_H(X) .
The definition is essentially straightforward, but there is one subtlety in showing that the product is well-
defined.

Suppose f : ¥ — X(np) and g : STH™P — S™P represent classes in ¢ (X) respectively 7 (S).
Then we denote by f - g the composite

GUAD+(ntm)p AT N ot o glmp_fAI X (np) A S™

Tnp,mp

—22 X(np+mp) =2 X((n+m)p) .
When we stabilize the representing maps by the regular representation we have the relations

f-(gopa) = (f-9)epa = ax((fopa)-9)
where o : (n + 14+ m)pg — (n + m + 1)pg is the automorphism that moves the (n + 1)st copy of the
regular representation past the last m copies; here Proposition 3.4 is used one more time. The upshot is
that the definition
[f1-1g] = [f -4l
is well-defined. One also checks that the product is biadditive, unital and associative in the sense that for
every orthogonal spectrum X the diagram

WE(X) X 7rlG X 7T]G L 7r,§+l(X) x &

WI?(X) X Wﬁrj e — W/?+z+j(X)
commutes.

Finally, in the case X = S the internal multiplication in the equivariant homotopy groups of spheres
is commutative in the graded sense, i.e., we have zy = (—1)*yz for = € 7T]§ and y € 7rlG. We will prove
this as a special case of a more subtle commutativity property of the external product of ‘RO(G)-graded
homotopy groups’, see (4.30).

The action map (4.24) is a special case of a more general external product

T (X) x 7 (Y) — m (X AY)
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where G acts diagonally on the smash product X AY.

The action of the equivariant stable stems on the homotopy groups of a G-spectrum is compatible with
restriction to subgroups, i.e., for all H C G we have

resG(z-y) = res(z) - res(y)
for x € w,? (X)and y € 7TlG. There is also a formula for the product of two transfers, namely
trg (z) -tr%(y) = Z trng (resgmg[{(m) (9 resggﬂK (y))>
[9leH\G/K

for z € 7i(X) and y € 7. The special case K = G respectively H = G proves a reciprocity property with
respect to the transfer maps, i.e., we have

(4.25) trG(z) -y = tr(z-res(y)) and z-ty) = ufresG(z) y) .

Remark 4.26. The Mackey functors that arise in algebra, for example in group cohomology, often have
the special property that restriction followed by transfer to the same subgroup is multiplication by the
index. In out context, however, tr?( oresf( is not in general multiplication by the index [G : K]. Indeed,

the special case of Frobenius reciprocity with y = 1 says that
tr% (resf (z)) = z-tr&(1)
for all a € 7¢(X). The element tr$ (1) € 7§ is different from [G : K] - 1, but the map
¢ = 7§(S) — S (HZ) = 7

induced by the unit morphism S — HZ takes tr% (1) to the index [G : K]. So the relation tr% (res%(z)) =
[G : K] - does hold in the homotopy Mackey functor of every HZ-module spectrum.

RO(G)-graded homotopy groups. There is a way to index homotopy groups by representations that
is commonly referred to as RO(G)-graded homotopy groups. In this note we will not actually grade by the
group RO(G), i.e., by isomorphism classes of representations, but rather by actual representations. Lewis
and Mandell [13, App. A] show that a strict RO(G)-grading is possible, but it involves coherence issues that
are resolvable because a certain ‘coherence cycle’ is a coboundary, see [13, Prop. A.5]. For a comprehensive
account of the intricacies of RO(G)-gradings we recommend Dugger’s paper [7].

For an orthogonal G-spectrum X and a G-representation V we define

(X)) = 7§ (QVX) = colim, [SY ¢, X (npa)]© .
With this definition we have 7§ (X) 2 n¢, (X). The ‘RO(G)-graded’ homotopy groups admit an external
product
(4.27) (X)) x (YY) — w (X AY)

that is a straightforward generalization of the action (4.24) of the equivariant stable stems on the equivariant
homotopy groups of a G-spectrum. Suppose f : SV — X (np) and g : S+™? — Y (mp) represent

classes in 75 (X) respectively 7$,(Y). Then we denote by f - g the composite

SVHAW)+ntm)p MATWnp N, qvtnp ) qWmp IN x50 A Y (mp)

Tnp,mp

—2 (X AY)(np+mp) = (XAY)((n+m)p) .

The justification that the assignment [f]-[g] = [f - g] is a well-defined, biadditive, unital and associative is
the same as for the action map (4.24) above.
The Frobenius property of the RO(G)-graded multiplication has the form:

(4.28) tr(z) -y = trG(z - resG(y))
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where V and W are G-representations, z € 7,(X) and y € 7{,S. The transfer maps on the left hand side
is the one associated to the representation V', the one on the right hand side is the one for V & W.
The external product (4.27) also has a certain commutativity property:

Proposition 4.29. For all orthogonal G-spectra X and Y and all G-representations V' and W the square
(X)) x 1 (V) —— 1 (X AY)
J{F\C/;er(TX,Y)
twist 7T§+W(Y A X)
76 (V) X 7§ (X) ——= 7G4y (Y A X)

commutes. Here Txy : X NY — Y A X is the symmetry isomorphism of the smash product and Tvw :
VeW — W eV is the isometry Tv,w (v,w) = (w,v). In particular, the external product in Z-graded
equivariant homotopy groups satisfies

(4.30) yz = (D (rxy)s(z-y)
forz € 7¢(X) and y € 7 (Y).

Proof. For representing maps f : SV — X (np) and g : S+ — Y (mp) the diagram

I

SWAW)-+(ntm)p AT N GV mp) - (Wtme) I x5y A Y (mp) ———— (X AY)((n+m)p
TV,W/\Idl i XAY ) (Tnp,mp)
SWHV)+(nt+m)p TV fnp,Wtmp twist (XAY)(m+n)p

Id /\Tnp,‘m,pl i‘fx v ((m+n)p)
S(W+V)+(m+n)pImS(W+mp)+(V+np) — Y(mp) A X (np) —— - Y AX)((m+n)p

\—//
g-f

commutes. Passage to homotopy classes gives
l9- 1) = [rxxr(m+mp) o (Tupamp)e ((f 90 (2 A1)

= (TX,Y)* |:(7_np,mp)* ((f . g) o (T‘Z%/V A\ Id))i|
= (tx,y):« [(f - g) o (twy AId)] = (Tx,v)«(T,v[f - 9])

as claimed.; the third equation uses Proposition 3.4. If V = R¥ and W = R! are trivial G-representations,
then precomposition by Ty v : RI*F — RF* induces multiplication by (—1) on wk \;- So the commuta-
tivity relation becomes y - x = (=1)* - (7x y ). (2 - y). O

When we change the group along a homomorphism « : K — G, the ‘RO(G)-grading’ changes accord-
ingly. Indeed, by applying the restriction a* to representing G-maps we obtain a well-defined restriction
homomorphism

a® ﬂg(X) — 7K (0" X)
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generalizing the restriction map (3.6).

The conjugation map gets an extra twist in the RO(G)-graded context coming from the fact that also
the indexing representation changes. For a subgroup H of G, a G-spectrum X and g € G, there are really
two different kinds of conjugation maps

(4.31) g s mH(X) =5 () and g (X)) 5 mA(X).
The first map g, is defined for any H-representation V' as the composite

g 9 * (l;()* 9
(X)) — ch/(ch) —— ﬂcg{/(X).

The second map g, is only defined if V' is the restriction to H of a G-representation; g, is then the composite

\%4
(X)) Lo w0 S x|
where l;/ : ¢V — V is left multiplication by g € G, which is an isomorphism of 9 H-representations. If
V = RF with trivial G-action, then ¢,V has trivial action, l;/ is the identity and so g, and g, coincide and
both specialize to the conjugation map in the integer graded context (3.8).
There are also RO(G)-graded external and internal transfer maps for a subgroup H C G. These transfer
maps take the form

(4.32) ™5 wH, (V) — 7Gxy Y) respectively trg (X)) — 78(X)

for an H-spectrum Y respectively a G-spectrum X. Here V is a G-representation and ¢*V is the underlying
H-representation. We emphasize that there are in general many G-representations with the same underlying
H-representation, so there can be many different RO(G)-graded transfer maps with the same source but
different targets.

These RO(G)-graded transfers (4.32) can either be defined by adding the representation V' to the con-
struction in the special case (4.13) above. Alternatively, we can define this more general transfer from the
previous transfer (4.13) as the composite

Sk & -
) = 7 QYY) T 128Gy (VYY) — aS(QV (G xpY)) = 7Gxy Y) .

Here the second map is induced by the morphism of G-spectra G x5 (VYY) — QY (G xz Y) that is
adjoint to the H-morphism

. Qv -
Oy LD iV Gy V) = QY (G xp Y)) .
In the RO(G)-graded setting, there are also external and internal double coset formulas; they look almost
the same as in the integer graded context, but a little more care has to be taken with respect to the indexing
representations. The proof is then almost the same as in Proposition 4.18.

Proposition 4.33 (External RO(G)-graded double coset formula). For all subgroups K and H of G, every
orthogonal H-spectrum Y and every G-representation V' we have

g
res% o vy = E (Kg)w 0 Trhimgoresdl, O(l;/)* oc,

[9le K\NG/H
as maps T (Y) — 8 (G xg Y).

The internal double coset formula follows from the external one by naturality arguments, in much the
same way as in the integer graded situation in Proposition 4.20, but paying attention to change of indexing
representations. The final formula has the exact same form.
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Proposition 4.34 (Internal RO(G)-graded double coset formula). For all subgroups K and H of G, every
orthogonal G-spectrum X and every G-representation V' we have

9
res%; o trg = E trgﬂgH ) resK%gH 0gx
lgle KANG/H

as maps i (X) — 78 (X).

Now we discuss the homotopy groups of some of the sample G-spectra with special attention to the
Mackey functor structure. We will discuss the 0-th equivariant stable stems 7§(S) in some detail in
Section 6, after proving the tom Dieck splitting. The upshot is Theorem 6.14, due to Segal, that identifies

7§ (S) with the Burnside ring A(G).

Example 4.35 (Cyclic group of order 2). We review some of the features discussed so far in the first
non-trivial case, i.e., for the cyclic group Cs of order 2. The orbit category of Cy = {1, 7} is displayed below
on the left (where only non-identity morphisms are drawn). To the right of it are the values and structure
maps of a Mackey functor M for the group Cy

C3/Cs M(C»)
0(02) : T res Ttr
\
Cy/e M(e)
TQ cr

The transfer map is drawn with a dashed arrow since it does not correspond to any morphism in the orbit
category and is a genuinely stable phenomenon. In this case there is only one interesting instance of the
double coset formula, namely for H = C5 and K = K’ = e, and that specializes to the relation

resotr = 1+c¢, .

The group C5 has two irreducible representations, both 1-dimensional, namely the trivial representation 1
and the sign representation o. The regular representation is isomorphic to C with action by complex
conjugation, and it decomposes as pc, = 14 0. So the representation ring RO(C?) is free abelian of rank 2,
and the RO(C5)-grading can be turned into a bigrading. We use the ‘motivic’ grading convention and write

T(X) = 752,(Q77X) = colim, [SPTDITT X (np)] P .

The convention reflects the fact that the underlying non-equivariant sphere of S®~9+49 has dimension p.
By Proposition 4.29 the bigraded product in ﬂfi has a certain commutativity property, namely

(4.36) yox = (—1)F0GDal. 5.y

for z € wgz and y € w,ff, where € = (7, ,) € rgg is the class of the twist automorphism of 7, , of S7*7.

The inclusion of equivariant maps into all maps gives a restriction homomorphism

i 7o

S
p,q ﬂ-P

to the equivariant to the non-equivariant stable stems. We can also define a ‘geometric fixed point map’
. C s
Q:omE — M

by sending the class of a Co-map f : SP—D+ao+ne __, G0 6 the class of the fixed point map

O . gpmatn o (S(pfq)+qo+np)02 N (SnP)C2 ~ gn
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using that the sign representation has no nonzero fixed points and identifying p“2 = R. The map ® is
a special case of a more general geometric fixed point map ®¢ : 7r€+,€(X) — 7rdim(v)+k(<I>GX) that we
discuss in (7.4) below.

As we shall show in Theorem 6.14, the group 77(()’: 2 is isomorphic to the Burnside ring A(C3) and it is
free abelian of rank 2 with basis given by the class 1 and ¢ = tr(1), the image of the generator 1 under the
transfer map

tr ;@ =7(S) — 7$E(S) = ﬂ'g%.
For p = ¢ = 0 the combined map
(¢, @) : wg% — Wy X T,

is thus a monomorphism and can be used to deduce relations in the ring wg 3

The class 1 is represented by the identity of S and we have i*(1) = 1 and ®(1) = 1. We can find an
unstable representative of the element ¢ by going back to the definition of the transfer. We can embed Cs
equivariantly into the sign representation ¢ by sending 1 € C5 to 1 € R and sending v € C3 to —1 € R. The
open balls of radius 1 around 1 and -1 are disjoint, so the transfer is represented unstably by the composite

collapse O X [—1,+1} o [—174‘1} =] o act
Goxrn,—1p BN Ty T (GBS

The underlying non-equivariant endomorphism of S° = S has degree 2, so we have i*(t) = 2. The map ¢
takes the two fixed points 0 and co of S to the basepoint, so ®(¢) = 0.

The class ¢ represented by the twist automorphism of 7 : S7 A S7 satisfies i*(¢) = —1 (since S7 is
non-equivariantly a 1-sphere) and ®(g) = 1 (since the fixed point map 7¢2 is the twist map of the 0-sphere
S0, which is the identity). So we must have

t . S° S7 .

_ : Ca
e =1—t in 0.0 -

Evidently we have €2 = 1, so we also obtain the multiplicative relation t?> = 2t in w((;: 5

Now that we understand the ring 71'(()’: ¢ we turn to some non-zero bigrading. The Hopf map
n: S(C) — CP', (2,y) — [z:Y]

is Cy-equivariant with respect to complex conjugation on the coordinates of the unit sphere S(C?) and the
projective line CP!. The unit sphere S (C?) is equivariantly homeomorphic to the representation sphere
S+ where o is the sign representation on R. Moreover, CP! is equivariantly homeomorphic to S?, so we
can interpret the projection map as a Co-map S°tP — S° that represents an element

c
no, € mg*(S) =3 .
The commutativity relation (4.36) specializes to ng, = ¢ - ng, .

Under the restriction map ¢* : 7716: 3 — 7 to the non-equivariant stable 1-stem, the class nc, maps to
the Hopf map 1. However, in contrast to its non-equivariant image, the Cs-class n¢, is neither torsion nor
nilpotent. Indeed, the image of n¢, under the geometric fixed point map (7.4)

D ’7'('16:21 —
is represented by the fixed points of the map S A 5 which turns out to be
C:
S(R?) 5 RP'.

This is the real Hopf map, so we have ®(n¢,) = 2 in 7§ = Z. Since ® is a ring homomorphism this shows

that all powers ¢ are elements of infinite order in wfn%m.
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We consider the commutative square

(xf) S<<c2>—”>6f1 [xjm
(y.z)  S(C)———=CP'  [y:4]

of Cs-spaces and equivariant maps. The left vertical map has degree 1 as a non-equivariant map and degree
—1 on fixed points S(C2)“2 = S(R?); so the left vertical map represents —¢ in 71'007%. The right vertical map
has degree —1 as a non-equivariant map, and it has degree —1 on fixed points, so it represents the class —1
in 71'06: §. Hence the commutative square implies the relation —¢ - ne, = —n¢,; equivalently, we have

t-nc, = (1_6)'7702 =0

in 7r1021 Under the restriction map ¢* this relation becomes the familiar relation 2 - n = 0 in the non-
equivariant 1-stem.

Example 4.37 (Eilenberg-Mac Lane spectra). In Example 2.13 we introduced the Eilenberg-Mac Lane
spectrum HM of a ZG-module M. Now we discuss the homotopy groups of HM as a Mackey functor.
From M we can obtain a Mackey functor M with values

M(H) = M";

the contravariant functoriality is by inclusion of fixed points and conjugation. The covariant functoriality
is given by algebraic transfer, i.e., for K C H the map trfl : MX — M is given by

trif(m) = Z hm .

hKEeH/K

As we discussed above, the G-space HM, = M[S™] is an equivariant Eilenberg-Mac Lane space for the
underlying contravariant functor of M. Moreover, the equivariant Eilenberg-Mac Lane spectrum HM of a
ZG-module is even an Q-G-spectrum. Indeed, when we assign to a finite G-set S the (discrete) G-space M[S]
with diagonal G-action, then we obtain a very special G-I'-space. So Segal’s equivariant I'-space machine
applies and shows that HM is a G-Q-spectrum for the Mackey functor M (see Proposition 4.3 of [21], or [23,
Thm. B] for a published version). Dos Santos reproves this result in [19] with different methods. Either of
these approaches shows that for every G-representation V the G-space HM (V) = M[SV] is an equivariant
Eilenberg-Mac Lane space of type (M, V), i.e., the G-space map(S", M[SY]) has homotopically discrete
fixed points for all subgroups of G and the natural map

M — SV, M[SY] = mymap® (SV, M[SV])

sending m € M* to the homotopy class of m - — : SV — M[SY] is an isomorphism. More generally, for
every G-representation V and every based G-CW-complex L the map

ML) — map(SY, M[LASY))
adjoint to the assembly map M[L] A SV — M[L A SV] is a G-weak equivalence.
As for every G-Q-spectrum, the map
(M) = m(HMo)®) — o (HM)

is an isomorphism for all n > 0. Thus the homotopy Mackey functor z,,(HM) is trivial for k£ > 0 (and for
k <0...), and we have 7 (HM) = mo((H My)®) = M*X. This is natural in the subgroup K, and for K C H
the restriction maps m{! (HM) — 7 (HM) correspond to the inclusion M —s MX. Moreover, we have
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‘transfer=transfer’, i.e., the topologically defined transfer trif : 7f(HM) — nl! (HM) corresponds to the
algebraic transfer M¥ — MH. So in summary, we have obtained isomorphism of Mackey functors

mo(HM) = M .

The Mackey functors M arising from ZG-modules M are special, for example because all restriction
maps are injective. A general Mackey functor N also has an Eilenberg-Mac Lane G-spectrum HN that
satisfies

N for n =0, and

0 else.

7, (HN) = {

Moreover, any two orthogonal G-spectra with this property are related by a chain of 7 -isomorphisms.
In other words, the Eilenberg-Mac Lane spectrum of a Mackey functor is unique up to preferred isomor-
phism in the equivariant stable homotopy category Ho(Sp¢g). However, in contrast to the special Mackey
functor arising from ZG-modules, I am not aware of an explicit construction of HN for a general Mackey
functor N. The first construction (in the context of Lewis-May-Steinberger spectra) is due to Lewis, May
and McClure [14] and proceeds by defining an ‘ordinary’ homology theory, defined on equivariant spectra,
with coefficients in the Mackey functor and then using a general representability theorem. A different
construction was later given by dos Santos and Nie [20, Thm. 4.22].

Similarly as in the non-equivariant context, Eilenberg-Mac Lane spectra represent ‘ordinary’ (as opposed
to ‘generalized’) homology and cohomology. More specifically this means that for every Mackey functor N
and every G-CW-complex A the homotopy group 7 (HN*) of the mapping spectrum is naturally isomorphic
to the Bredon cohomology group H&’“(A7 N) of A with coefficients in the underlying contravariant O(G)-
functor of N, and the group 7 (A A HN) is naturally isomorphic to the Bredon homology group HS (A, N)
of A with coefficients in the underlying covariant O(G)-functor of N.

Example 4.38. Here is a specific example of a K(M,V). We let the group Cy act on CP* by complex
conjugation. We claim that CP° is an Eilenberg-Mac Lane space of type (p,Z), and hence Cy-homotopy
equivalent to the space HZ(S?) = Z[S”] (here p = pc, is the regular representation). Since CP* is a
non-equivariant K (Z, 2), the underlying space of map(S?, CP*) is homotopically discrete with components
given by Z. To get at the homotopy type of the Cs-fixed points we map out of the Cs-cofibration

St=(9)" — 5°
and investigate the resulting Serre fibration
map“2(5”/S*,CP>®) — map®?(S°,CP™) — map“?(S!, CP>) = map(S*, (CP™)?) .

The space S” /S is Cy-homeomorphic to (Cy); A S?, hence the fiber map®2(S? /S, CP*) is homeomorphic
to

map©2((Cy)4 A S?,CP>®) = Q>CP™ ,
hence homotopically discrete with 7y isomorphic to Z. Since (CP*°)¢2 = RP*, the base is homeomorphic
to QRP°°, hence homotopically discrete with my isomorphic to Fy. Finally, the short exact sequence

0 — Z=[S/S',CP®|% — [§P,CP™]%2 — [SL,RP™]=TF, — 0
does not split since the Cy-map
s#=cp' 29 Cp>
is an element of infinite order in the middle group whose restriction to fixed points is the inclusion S! =

RP' — RP, hence the generator of [S', RP*] and such that twice this class is the image of the generator
from the left group.
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Example 4.39. We close this section with an example of a morphism of G-spectra that is a m,-isomorphism
of underlying non-equivariant spectra, but not an equivariant m -isomorphism We consider the rationalized
sphere spectrum SQ, defined as the homotopy colimit in Ho(Spg) of the sequence

s 3s 3 s
The unit map S — HQ to the Eilenberg-Mac Lane spectrum of the trivial ZG-module Q extends to a
morphism SQ — HQ that is a m,-isomorphism of underlying non-equivariant spectra. However, we have

T (SQ) = Q@7 (S) 2 Qe A(G),

the rationalized Burnside ring. For every non-trivial group G, 7§ (SQ) is thus non isomorphic to 7§ (HQ) =

Q.

5. CONSTRUCTIONS WITH EQUIVARIANT SPECTRA
We discuss various constructions which produce new equivariant orthogonal spectra from old ones.

Example 5.1 (Limits and colimits). The category of orthogonal G-spectra has all limits and colimits, and
they are defined levelwise. Let us be a bit more precise and consider a functor F' : J — Spg from a small
category J to the category of orthogonal G-spectra. Then we define an orthogonal G-spectrum colim; F' in
level n by

(colimy F'),, = colimjcs F(j)n ,
the colimit being taken in the category of pointed G x O(n)-spaces. The structure map is the composite

colimj oy,

(colimjes F(j)n) A S* 22 colimje s (F(j)n A ST) colimje ;s F'(j)n+1 ;

here we exploit that smashing with S is a left adjoint, and thus the natural map colim;c j(F(j)n A S') —
(colimjes F(§)n) A S' is an isomorphism, whose inverse is the first map above.
The argument for inverse limits is similar, but we have to use that structure maps can also be defined in
the adjoint form. We can take
(im s F),, = limjesF(j)n ,

and the structure map is adjoint to the composite

limje yQF(5)ny1) = Q (imje s F(j)nt1) -

Limits and colimits commute with evaluation at a G-representation V', i.e., the G-space (colimj F)(V) (re-
spectively (lim;F')(V)) is a colimit (respectively limit) of the composite of F' with the functor of evaluation
at V.

The inverse limit, calculated levelwise, of a diagram of orthogonal G-ring spectra and homomorphisms
is again an orthogonal G-ring spectrum. In other words, equivariant ring spectra have limits and the
forgetful functor to G-spectra preserves them. Equivariant ring spectra also have co-limits, but they are
not preserved by the forgetful functor.

limy 6,

limje s F(j)n

Example 5.2 (Smash products with and functions from G-space). If A is pointed G-space and X a G-
spectrum, we can define two new G-spectra A A X and X“ by smashing with A or taking maps from A
levelwise; the structure maps and actions of the orthogonal groups do not interact with A.

In more detail we set

(ANX), = ANX, respectively (XY, = Xf = map(4, X,)
for n > 0. The group O(n) acts through its action on X,,. The structure map is given by the composite

Id Aoy,
—_—

(ANX),ASY = ANX, NS ANXpy1 = (ANX)ng
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respectively by the composite
A
XAASY — (X, ASHA T XA

where the first is an assembly map that sends ¢ At € X' A S! to the map sending a € A to ¢(a) At. The
second is application of map(A, —) to the structure map of X. The group G acts on (AN X), = AN X,
diagonally, through the actions on A and X,,. In the other case the group G acts on (X4),, = map(4, X,,)
by conjugation, i.e., via (9¢)(a) = g - p(g ta) for g : A — X,,, a € A and g € G. For example, the
spectrum A AS is equal to the suspension spectrum %°° A. For the values on a G-representation V' we have

(ANX)V) =2 AANX(V) and  (XH)(V) =2 X(V)A.

Just as the functors A A — and map(A4, —) are adjoint on the level of based G-spaces, the two functors
just introduced are an adjoint pair on the level of G-spectra. The adjunction

(5.3) Y Spe(X, YY) =5 Spa(AAX,Y)

takes a morphism f : X — Y4 to the morphism f : AN X — Y whose n-th level fn TANX, — Y, s
given by fu(a A z) = ful2)(a).

We note that if X is a G-Q-spectrum and A a based G-CW-complex, then X4 is again a G-Q-spectrum.
Indeed, the mapping space functor map(A, —) takes the G-weak equivalence Gy : X (V) — QW X(VoW)
to a G-weak equivalence

XAV = map(A, X(V)) DAV (A4, Q7 X (Vo W) = oW (XA @ W) .

Loop and suspension with a representation sphere are the special case A = SV of the previous construc-
tion. As we discussed above, the adjunction unit X — QV(SVA X) and counit SYA QY — Y are
then 7,-isomorphisms, see Proposition 3.12. As we discussed in (3.10), the group 7' (Q2™X) is naturally
isomorphic to WSH_k(X), and the group wg+k(Sm A X) is naturally isomorphic to 7{'(X); so looping and
suspending (by trivial representation spheres) preserves 7, -isomorphism. The next proposition generalizes
this.

Proposition 5.4. Let A be a based G-CW-complex. Then the functor AN\ — preserves w,-isomorphisms of
orthogonal G-spectra. If A is finite, then the functor map(A,—) preserves m,-isomorphisms of orthogonal
G-spectra.

Proof. Welet f: X — Y be a m,-isomorphism of orthogonal G-spectra. We start with the case of a finite
G-CW-complex A and prove by induction on the number of equivariant cells that A A f and map(A4, f)
induce isomorphisms on 7r,§ for all integers k.

If A consists only of the basepoint, then AA X and map(A, X) are trivial and the claims are trivially true.
Now suppose we have shown the claim for a finite based G-CW-complex A and B is obtained from A by
attaching an equivariant n-cell G/H x D™ along its boundary. Then the mapping cone C(7) of the inclusion
i : A — B is based G-homotopy equivalent to G/H A S™. So the spectrum C(i) A X is G-homotopy
equivalent to G/H A S™ A X, and hence to S™ A (G x i X). The G-homotopy groups of C(i) A X are thus
naturally isomorphic to

TS A Gy X)) =2 af (GxygX) = ol (X)),

using the Wirthmiiller isomorphism (Theorem 4.9). So smashing with C(i) takes r,-isomorphisms to 7¢-

isomorphisms. The mapping cone of the morphism i A X : AN X — B A X is naturally isomorphic to
C(i) A X; since AN — and C(i) A — take 7 -isomorphisms to m&-isomorphisms, so does B A — by the first
long exact sequence of Proposition 3.30 and the five lemma.
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The induction step for map(A, X) is exactly dual. Since C(i) is homotopy equivalent to G/Hy A S™, the
spectrum map(C(i), X) is homotopy equivalent to map(G/H,2"X), and hence its G-homotopy groups
are naturally isomorphic to

i map(G/Hp, Q"X) = m (Q"X) 2 ml (X)) .

So the functor map(C(i), —) takes r,-isomorphisms to 7&-isomorphisms. The homotopy fiber of the mor-
phism map(é, X) : map(B, X) — map(A, X) is naturally isomorphic to map(C(i), X); since map(A, —)
and map(C(i), —) take ,-isomorphisms to m&-isomorphisms, so does map(B, —) by the second long exact
sequence of Proposition 3.30 and the five lemma.

Now we let H be an arbitrary subgroup of G. The underlying H-spectrum of A A X respectively
map(A, X) is the smash product of the underlying H-CW-complex of A and the underlying H-spectrum
of X, respectively the spectrum of maps from the underlying H-CW-complex of A to the underlying
H-spectrum of X. Moreover, the restriction of a m, -isomorphism of G-spectra is a m, -isomorphism of
H-spectra. So by applying the previous paragraph to the group H instead of G and to the underlying
H-morphism of f shows that 77 (A A f) and 7 (map(A, f)) are isomorphisms for all integers k.

If remains to prove that claim about A A — for infinite G-CW-complexes. Every G-CW-complex is
the filtered colimit, along equivariant h-cofibrations, of its finite G-CW-subcomplexes. Since equivariant
homotopy groups commute with such filtered colimits, we are reduced to the previous case of finite G-CW-
complexes. O

Example 5.5 (Free G-spectra). Given a G-representation V, we define an orthogonal G-spectrum Fy
which is ‘freely generated in level V’. Before we give the formal definition we try to motivate why certain
Thom spaces come up at this point. The guiding principle is that the value Fy (W) should be the based
G-space of ‘all natural maps’ X (V) — X (W) as X varies over all orthogonal G-spectra. If the dimension
of W is smaller than the dimension V', this space consists only of the basepoint. Otherwise, every linear
isometric embedding o : V — W gives rise to a linear isometry

(5.6) a:VeW-—aV) 2 W, avw) = a)+w.
Using this isometry we obtain a map

OV, W—a(V) X(a)
E—

X(V)A SV XVeW-al)) X(W) .

Hence for every linear isometric embedding o : V. — W we get maps X (V) — X (W) parametrized by
the sphere S (V) of the orthogonal complement of the image of a. But the resulting maps from X (V)
to X (W) should also vary continuously with the embedding «, hence the topology on the space L(V, W)
of linear isometric embeddings enters. The easiest way to make all of this precise is to observe that the

orthogonal complements W — a(V') are the fibers of a vector bundle over L(V, W) with total space
VW) = {{ayw) eL(V.W)x W [w La(V)} .

The structure map &(V, W) — L(V, W) of this ‘orthogonal complement’ vector bundle is the projection to
the first factor. We let O(V, W) be the Thom space of the bundle £(V, W), which we define as the one-point
compactification of the total space of £(V,W); because the base space L(V, W) is compact, the one-point
compactification is equivariantly homeomorphic to the quotient of the disc bundle of £(V, W) by the sphere
bundle.

Up to non-canonical homeomorphism, we can describe the space O(V, W) differently as follows. If
the dimension of W is smaller than the dimension of V', then the space L(V,W) is empty and O(V, W)
consists of a single point. Otherwise we can choose a linear isometric embedding o : V. — W, and we let
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V1L =W — a(V) denote the orthogonal complement of its image. Then the maps
oWw)/o(V+) — L(V,W), A-O(WVt) — A-a  and
OW)s Aoy SV — O(V,W), [Aw] — A-(a,w)

are homeomorphisms. Put yet another way: if dimV = n and dim W = n+m, then L(V, W) is homeomor-
phic to the homogeneous space O(n +m)/O(m) and O(V, W) is homeomorphic to O(n +m) 1 Ao(m) S™.

Now suppose that X is an orthogonal spectrum and let n = dimV and n +m = dim W. We can define
a continuous based action map

(5.7) o: X(V)AOWV, W) — X (W)
z A (a,w) — X(@)(ov,w—aw)(@Aw))
where & : V& (W — a(V)) — W was defined in (5.6).
We obtain a map
k: SV — oWV, Vew), w — (iv,(0,w)),
as the inclusion of the fiber over iy : V. — V & W, the inclusion of the first summand. The generalized
structure map oy, originally defined in (2.4) then coincides with the composite

XWV)ASY XY A0V e W) 2 X(W) .
The action maps are associative: If we are given a third inner product space U, there is a bundle map
U V) x &V, W) — LUW) ., ((Bv), (q,w)) — (af, a(v) +w)

which covers the composition map L(U, V) x L(V, W) — L(U, W). Passage to Thom spaces gives a based
map

o : O(U,V)x O(V,W) — O(U,W)
which is clearly associative. The action is also associative in the sense that the square

X(U)AOU, V) AOV, W) s X (V) A OV, W)

mol l

X({U)ANOU,W) X (W)

o

commutes for every triple of inner product spaces.

Now we add group actions to the picture everywhere. Suppose that G is a finite group and X an
orthogonal G-spectrum. Given two G-representations V' and W, we let G act on the space L(V, W) of (not
necessarily equivariant) linear isometric embeddings by conjugation, i.e., forg € G,a: V — W andv e V
we set

(Ya)(v) = g-alg™tv) .

This action prolongs to an action by bundle isomorphisms on £(V, W) via
9-(a,w) = (Yo, gw) ,

and hence passes to a G-action on Thom spaces O(V,W). The action map (5.7) is then G-equivariant.

One can summarize this discussion as follows. We have defined a based topological G-category O
with objects all G-representations, with based morphism G-space O(V, W), composition map o and units
ly = (Idy,0) in O(V,V). Moreover, for every orthogonal G-spectrum X, the action maps (5.7) make
the collection of G-spaces {X(V)}y into a based continuous G-functor X : O — T¢ to the category of
based G-spaces. The assignment X — {X(V)}y is in fact an equivalence of categories from the category
of orthogonal G-spectra to the category of (based, continuous) G-functors from O to Tg. We are not going
to show this.
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The free G-spectrum Fy is given in level n by
(Fv)n = O(V,R"),
with the above G-action and with O(n)-action through R™. Since G acts trivially on R"™, the G-action
comes out to
g- (OZ,.’E) = (ao (g_l : —),1')

for o € L(V,R™) and z € R™ — (V). We note that Fy consists of a single point in all levels below the
dimension of V. The structure map (Fy ), A S* — (Fy')n11 is given by

OV, R")AS' 2%, O(V,R")AOR",R"H!) 2 O(V,R™) .

The ‘freeness’ property of Fy is made precise as follows: for every G-fixed point z € X (V') there is a unique
morphism & : Fyy — X of G-spectra such that the map

(V)

O(V)+ = (Fv)(V) X(V)

sends the identity of V' to x. Indeed, the morphism Z is given in level n as the composite

AN

O(V,R") 2= X(V)AO(V,R") = X, .

For two G-representations V and W, the smash product Fy A Fy (with diagonal G-action) is canonically
isomorphic to the free G-spectrum Fy g . Indeed, a morphism

(58) FV/\FW —)F\/@W

is obtained by the universal property (1.8) from the bimorphism with (p, ¢)-component
(Fy)p A (Fw)g = O(V,R?) AO(W,R?) <5 O(V & W,R"™) = (Fyow)piq -

In the other direction, a morphism Fyqgw — Fy A Fy is freely generated by the image of the G-fixed
point Id A Id under the generalized universal map

v,w

These two maps are inverse to each other.
Smashing a based G-space with the free G-spectrum Fy produces a functor

Fy GT — Spg, FvA :A/\Fv.

This functor is left adjoint of the evaluation functor at V. More precisely, for based G-space A and every
based continuous G-map f : A — X (V) there is a unique morphism of G-spectra f : Fiy A — X such
that the composite

A =Y Ao, = (Fr AV LY x )

equals f. Indeed, the morphism f is given in level n as the composite
ANO(V,RY) 25 X(V)AO(V,RY) 25 X, .

We will see in Proposition 5.14 below that the free G-spectrum Fy A is &, -isomorphic to 2V (X A), the
V-fold loop spectrum of the suspension spectrum of A. Indeed, a natural map

FyA — QV(2®A)
is the one freely generated by the adjunction unit A — QV (A A SV) = QV(Z>®A4)(V).
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Example 5.9 (Semifree G-spectra). There are somewhat ‘less free’ orthogonal spectra which start from a
pointed G x O(V')-space L as follows. If V' is any G-representation then G acts by conjugation on the space
O(V) of (not necessarily equivariant) isometries. The value X (V') of an orthogonal G-spectrum at V' has
both an action of O(V) and an action of G that together make up a left action of the semi-direct product
G x O(V). We claim that the evaluation functor

evy : Spe — (GxO(V)T, X+ X(V)

has a left adjoint which we denote Gy . (The evaluation functor evy also has a right adjoint, which will not
discuss.) The spectrum Gy L is given by

(GvL)n = O(V,R") Aoy L .
The structure map (Gy L), A S* — (Gy L)1 is defined by
O(V,R™) Aoy LA ST = (O(V,R™) ASY) Aowvy L

Id AkAId
EE—

(O(V7 Rn) A O(Rn,RnJrl)) /\O(V) L
ML OV, R™Y) Ao L -
We observe that Gy L is trivial in all levels below the dimension of V. We refer to Gy L as the semifree
G-spectrum generated by L in level V. The values of the semifree spectrum on a general G-representation
W is given by

(GvL)(W) = O(V, W) Now) L.
Every free G-spectrum is semifree, i.e., there is a natural isomorphism Fyy A = Gy (O(V) A A) by ‘canceling
O(V)’; here O(V)4 A A has the diagonal G-action. Every orthogonal G-spectrum is built from semifree
ones, in the sense of a certain coend construction.

Example 5.10 (Mapping spaces). There is a whole space of morphisms between two orthogonal spectra
X and Y. Every morphism f: X — Y consists of a family of based O(n)-equivariant maps {f, : X,, —
Y. }n>0 which satisfy some conditions. So the set of morphisms from X to Y is a subset of the product
of mapping spaces [, -, map(X,,Y,) and we give it the subspace topology of the (compactly generated)
product topology. We denote this mapping space by map(X,Y). The morphism space has a natural
basepoint, namely the levelwise constant map at the basepoints.

If X and Y are orthogonal G-spectra, the group G acts by conjugation on the mapping space map(X,Y)
of underlying non-equivariant spectra. The G-fixed points map®(X,Y’) of this action consists precisely of
the G-equivariant morphism of orthogonal spectra, i.e., the morphism of G-spectra.

For a pointed G-space A and orthogonal G-spectra X and Y we have adjunction G-homeomorphisms

map(A, map(X,Y)) = map(AAX,Y) = map(X,Y?),

where the first mapping space is taken in the category T of compactly generated spaces, with conjugation
action by G. For free G-spectra we have G-equivariant isomorphisms

(5.11) map(FyA,Y) = map(4,Y(V)) .

Here G acts on the right hand side by conjugation with respect to the given actions on A and Y (V). The
associative and unital composition maps

map(Y, Z) Amap(X,Y) — map(X,Z2)
are G-equivariant (with respect to the diagonal G-action on the left).

Example 5.12 (Internal Hom spectra). Orthogonal spectra have internal function objects: for orthogonal
spectra X and Y we define a orthogonal spectrum Hom(X,Y) in level n by

Hom(X,Y), = map(X,sh"Y).
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The left O(n)-action on sh™ Y as described in Example 3.14 yields a left O(n)-action on this mapping space.
The structure map o, : Hom(X,Y),, A S' — Hom(X,Y),41 is the composite

assembly map(X,Ashn y)
i AL LUR SN

map(X,sh” Y) A S? map(X, S* Ash”Y) map(X,sh"™Y) ;

here the first map is of ‘assembly type’, i.e., it takes f A ¢ to the map which sends z € X to t A f(z) (for
f:X —sh"Y and t € 1), and Agny : ST Ash™Y — sh(sh”Y) = sh""! Y is the natural morphism
defined in (3.16).

In order to verify that this indeed gives a orthogonal spectrum we describe the iterated structure map.
Let us denote by /\g/m) : S™AY — sh™Y the morphism (3.16) for V' = R™. Then for all k,m > 0 the
diagram
1d AAS™ A

SEANS™AY Sk Ash™Y

:i

Sk+m ANY W Sm+k ANY W Shm+k Y
Xk,m )‘ym

sh¥(sh™Y)

commutes. This implies that the iterated structure map of the spectrum Hom(X,Y") equals the composite

map(X A5 3 )
h” Y map(X, Shn-i-m Y)

assembly

map(X,sh"Y) A S™ map(X,S™ Ash™Y)

and is thus O(n) x O(m)-equivariant. The first map is again of ‘assembly type’; i.e., for f: X — sh"Y
and t € S™ it takes f At to the map which sends x € X to t A f(z).

If X and Y are G-spectra, then the G-action on Hom(X,Y),, = map(X,sh" Y') makes the mapping spec-
trum Hom(X,Y) into an orthogonal G-spectrum. For a G-representation V' we have a G-homeomorphism

Hom(X,Y)(V) = map(X,sh"Y) .
Taking function spectrum commutes with shifting in the second variable, i.e., we have isomorphisms
(5.13) Hom(X,sh"Y) = sh"Hom(X,Y) .
Indeed, in level n we have

Hom(X,sh"'Y),

map(X,sh™(sh”Y)) = map(X,sh” ™ Y)
Hom(X,Y)(V&R") = (sh”Hom(X,Y)) .

The orthogonal group actions and structure maps coincide as well.

The internal function spectrum functor Hom (X, —) is right adjoint to the internal smash product — A
X of orthogonal G-spectra (with diagonal G-action). A natural isomorphism of orthogonal G-spectra
Hom(Fy,Y) = sh"Y is given at level n by

Hom(Fy,Y), = map(Fy,sh"Y) = (sh"Y)(V) = YR*®V) % V(VOR") = (sh'Y),

where the second map is the adjunction bijection described in Example 5.5. This isomorphism is equivariant
for the left actions of O(V) induced on the source from the right O(V')-action on a free spectrum. In
the special case V = 0 we have FpS° = S, which gives a natural isomorphism of orthogonal spectra
Hom(S,Y) =Y.

Change of groups. All of the construction that we have discussed in this section are nicely com-
patible with change of groups. Given a group homomorphism « : K — G, we can restrict G-spaces,
G-representations and G-spectra along «, and all of the above constructions commute with this restriction
on the nose (and not just up to isomorphism).
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For example, the restriction functor a* : Spg —> Spx commutes with limits and colimits, and for a
based G-space A and an orthogonal G-spectrum X we have

a(ANX) = (AN (0" X) and o (map(4, X)) = map(a™A4,a"X)

as orthogonal K-spectra.

For a G-representation V we have a*(SV) = SV and for an orthogonal G-spectrum X we have
a*(X(V)) = (a*X)(a*V) as K-spaces. Consequently,

o (SYAX) = SYVA(a*X), of(QVX) = Q*V(a*X) and o*(shVX) = sh® V(a*X)
as orthogonal K-spectra. Given another G-representation W we have o*O(V, W) = O(a*V,a*W) and
hence the restrictions of a free and semifree spectra are again free:
o (Fy) = Farv and a*(GyL) = Gorv(a™L)
(where a* L has the same O(V')-action as L). Finally, if Y is another orthogonal G-spectrum, then we have
o (map(X,Y)) = map(a*X,a’Y) and a*(Hom(X,Y)) = Hom(a"X, oY) .

We emphasize again that here we always have equality, not just isomorphism.

Our next aim is to show that the free orthogonal G-spectrum Fy generated by a G-representation V
behaves like a ‘(—V')-sphere’, a sphere spectrum for the virtual representation —V. More precisely we show:

Proposition 5.14. For every G-representation V the morphism
FySY — S
adjoint to the identity of SV is a w,-isomorphism. For every based G-CW-complex A the map
FyA — QV(S%A)
adjoint to the adjunction unit A — QV(AASY) = (QV(Z*°A))(V) is a 7, -isomorphism.
Before we prove the proposition, we introduce and analyze a new construction. As before we denote
by L the topological category with objects the inner product spaces R™ for n > 0 and with morphism

space L(R™,R™) the space of isometric embedding from R™ to R™. We denote by GTY the category of
L-G-spaces, i.e., covariant continuous functors from L to the category of pointed G-spaces

Example 5.15 (Smash product with L-G-spaces). Given an L-G-space T : L — GT and an orthogonal
G-spectrum X, we can form a new orthogonal G-spectrum T'A X by setting

(ThX), = TR")ANX,
with diagonal action of O(n) and G-action through the action on X,,. The structure map is given by

T On
(TAX)WASY = TR A X, ASE WA,
where ¢ : R" — R™*! is the ‘inclusion’ with «(z) = (z,0). If A is a pointed G-space and T4 the constant
functor with values A, then T4 A X is equal to A A X, i.e., this construction reduces to the levelwise smash
product with a G-space as in Example 5.2.

TR ™M A X1 = (TAX)pi1

Given any L-G-space T, we can evaluate it on a G-representation V' by setting
T(V) = L(an V) ><O(n) T(Rn)
where n = dim V. The group G acts diagonally, via the given action on T(R™) and the action on V. We
denote by
T(ocopg) = colim,en T'(npg)
the G-space obtained as the sequential colimit over the maps induced by the ‘inclusions’ npg — (n+1)pg.
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Proposition 5.16. Let X be an orthogonal G-spectrum and T an L-G-space (with a suitable h-cofibration
property). Then the orthogonal G-spectrum T A X s related by a natural chain of w,-isomorphisms to
T(copa) N X.

Now we can give the

Proof of Proposition 5.14. We recall that the value of Fy/SY on a G-representation W is given by
(FySVY(W) = O(V,IW)ASY .
After smashing with SV the Thom space O(V, W) ‘untwists’, i.e., the map
OV,W)ASY — LV,W)LASY | (a,w)Av — aA(w+a(v))
is a G-equivariant homeomorphism. As W varies, these homeomorphisms form an isomorphism
FySY = L(V,-), AS

of orthogonal G-spectra, where the right hand side is the smash product of the L-G-space L(V, —); with an
orthogonal spectrum in the sense of Example 5.15. Under this isomorphism the map Fy,SYV — S becomes
the projection L(V,—)1 A'S taking L(V, —) objectwise to a point.

By Proposition (5.16) the G-spectrum L(V,—); A'S is m,-isomorphic to L(V,00pg)+ A S, which is an-
other name for th equivariant suspension spectrum of the G-space L(V, copg). So it suffices to show that
this space, which is a G-CW-complex, is weakly G-contractible. For a subgroup H of G the fixed points
L(V,00pc)H is the space of H-equivariant linear isometric embedding from V to copg. Since the represen-
tation ocopg contains V' infinitely often, this space is contractible.

For the second statement we exploit that smashing with A preserves m,-isomorphisms (Proposition 5.4).
So by the first part the map Fy(SY A A) — ¥4 is a 7, -isomorphism. Hence its adjoint FiyA —
QV(X>A) is a m,-isomorphism by Proposition 3.12. O

Definition 5.17. A morphism f: X — Y of orthogonal G-spectra is a strong level equivalence if for every
G-representation V' the map

fV) + X(V) — Y(V)
is a G-weak equivalence.

Proposition 5.18. (i) Let f : X — Y be a morphism of orthogonal G-spectra with the following prop-
erty: for every n > 0 and every subgroup K of O(n) x G such that K N (O(n) x 1) =1, the map
fExE — vk

on K-fixed points is a weak equivalence of spaces. Then f is a strong level equivalence.

(ii) Ewery strong level equivalence of orthogonal G-spectra is a w,-isomorphism.

Proof. (i) Let V' be a G-representation and set n = dimV. Let a : R — V by a linear isometry, not
necessarily G-equivariant. We define a homomorphism —® : G — O(n) by ‘conjugation by «, i.e., we set
(9*)(@) = a™H(g- a(2))

for g € G and z € R™. Then we define a new action of G on the space X,, by setting

grx = (9%.9) .
In other words, we restrict the O(n) x G-action on X,, along the monomorphism (—%,1d) : G — O(n) x G.
The map
X, — X(V), zr—|o,2]
is a homeomorphism, natural in X and G-equivalent with respect to the new action of G on X,,. So for
every subgroup H of G the fixed point space X (V) is homeomorphic to XX where K C O(n) x G is the
image of H under the monomorphism (—%,1d). The group K satisfies K N (O(n) x 1) = 1, so the map fX,
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and hence f(V)H, is a weak equivalence. Since H was any subgroup of G, the map f(V): X (V) — Y (V)
is a G-weak equivalence.

(ii) We first treat the case of homotopy groups of dimension 0. By hypothesis the map f(np) : X (np) —
Y (np) is a G-weak equivalence. Since the representation sphere S™ can be given a G-CW-structure, the
induced map on mapping spaces

map(S™, f) : map(S™, X (np)) — map(S™, Y (np))

is a G-weak equivalence. Taking H-fixed points and passing to the colimit over n shows that 7' f :
7 (X) — 7wl (Y) is an isomorphism for all subgroups H of G. For dimensions k > 0 we exploit that
(Y X)(V) is naturally G-homeomorphic to Q" X (V), so every loop, by any G-representations, of a strong
level equivalence is again a strong level equivalence. For dimensions & < 0 we exploit that (shVX Y(W)
is naturally G-homeomorphic to X(V @ W), so every shift, by any G-representations, of a strong level

equivalence is again a strong level equivalence. (|

Proposition 5.19. (i) Let X be a G-Q-spectrum such that m,,(X) = 0 for every integer k. Then for
every G-representation V the space X (V') is G-weakly contractible.
(ii) FEvery m,-isomorphism between G-Q-spectra is a strong level equivalence.

Proof. (i) See Mandell and May [17, III, Lemma 9.1].

(ii) Let f : X — Y be a 7,-isomorphism between G-{2-spectra. We let F' denote the homotopy fiber of
f. The long exact sequence of homotopy groups implies that m,F' = 0. For every G-representation V the
G-space F (V) is then G-homeomorphic to the homotopy fiber of f(V) : X(V) — Y(V). So F is again a
G-Q-spectrum.

By the Q-spectrum property, the space X (V') is G-weakly equivalent to QX (V @ R) and similarly for Y.
So the map f(V) is G-weakly equivalent to

Qf(VeR) : QX(VaeR) — QX(VeR).
Hence we have a homotopy fiber sequence

gt H H
X(V)? —— Y (V)" — F(VeR)
for every subgroup H of G. By part (i) the space F(V) is weakly contractible, so f(V)¥ is a weak
equivalence. O

5.1. Canonical presentation. The canonical presentation is a way to write an orthogonal G-spectrum as
a mapping telescope (homotopy colimit) of desuspended (by certain representations) suspension spectra.
Let X be an orthogonal G-spectrum. We assume that the space X (V) has the homotopy type of a
G-CW-complex for every G-representation V. This is no real loss of generality since every orthogonal
G-spectrum is strongly level equivalent to a sufficiently cofibrant G-spectrum, which has this property.
We consider two nested G-representations V' C W. The identity of X (V') is adjoint to a morphism of
G-spectra
AV FvX(V) — X s
and similarly for W instead of V. We obtain a commutative square

Fwov,w—v

Fw (X (V) A SYV=Y) Fyw X (W)

Ni liw

FyX (V) : X

%

in which the left vertical morphism is adjoint to the map of G-spaces

XN X (V) AO(V, W) = (Fy X(V))(W) .

X(V)yASW=YV
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We claim that the left vertical morphism is a 7, -isomorphism. Since smashing with the representation sphere
SV detects  -isomorphisms, it suffices to show this after smashing with SY. Then the map becomes the
left vertical map in the commutative diagram

Fw (X(V)AS™)

Fy(X(V)ASY)

The two diagonal maps are m -isomorphisms by Proposition 5.14 and because smashing with X (V') respec-
tively X (W) preserves m,-isomorphisms.
The upshot is that in the homotopy category of G-spectra, we have a morphism

jvw @ FvX(V) — Fw X (W)

that satisfies iy jv,w = iv as maps from Fyy X (V) to X.
Now we consider a nested sequence of G-representations:

(5.20) VocViCc---CV,C---
As just described this gives rise to a sequence

v, vy Jvy,Vy IV, Vit

Fy,X(Vp) —= Fp,X(V)) —= -+ — Fy, X(V,)
in the homotopy category of G-spectra, together with compatible maps iy, : Fy, X (V,,) — X. Such data

gives rise to a morphism

hocolim,, Fy, X(V,,) — X
in the homotopy category of orthogonal G-spectra from the homotopy colimit of the sequence.
Proposition 5.21. Suppose that the nested sequence (5.20) of G-representations that is exhausting, i.e.,

every G-representation embeds equivariantly into V,, for large enough n. Then for every orthogonal G-
spectrum X, the map

hocolim,, Fy, X(V,,) — X

is an isomorphism in the homotopy category of orthogonal G-spectra.

Before we give the proof we remark that since Fy, SV = Fyy A XSV is 7 -isomorphic to the G-sphere
spectrum S, Fy, is an inverse to the representation sphere SV with respect to the derived smash product
of G-spectra. So we may think of Fy as ‘S~"’, the sphere of the virtual representation —V. With this in
mind, Fyy X (V) is SV A X (V) and the content of the proposition can be summarized as

X = hocolim,, S~V A X(V;,)
in Ho(Spg).
Proof. The given exhaustive sequence and the exhaustive sequence
p— 20 — 3p — ... —np — ...

of multiples of the regular representation can be cofinally embedded into each other. So the two resulting
homotopy colimits are isomorphic in Ho(Spg). It thus suffices to consider the nested sequence of regular
representations and show that the map

hocolim,, F,,,X(np) — X
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is a m,-isomorphism. For an integer k£ and subgroup H of G, the left hand side evaluate to:
7 (hocolim,, F,,X (np)) = colim, 7f! (F,,X (np))
= colim, 7r,€1+np (XX (np))
colim,, ,,,[S*TPFT™P X (np) A S™)H
s

= colimmwf+mp(5mpAX) = (X) U

1

Let F be a family of subgroups of G, i.e., F is a set of subgroups of G closed under conjugation and
passage to subgroups. We denote by EF any universal space for the family F, i.e., a G-CW-complex such
that the fixed points set (EF)H is contractible for H € F and (EF)H is empty for H ¢ F.

Example 5.22. Let V be a G-representation. We let Fy denote the family of those subgroups H of G
such that V# #£ 0. Let S(coV) be the unit sphere in the infinite dimensional representation coV = @y V;
in other words,

S(coV) = U S(nV)

n>0

is the union of the unit spheres of nV with the weak topology. Then we have
S(eeV) = S(eo(VH))

which is empty if H does not belong to Fy and an infinite dimensional sphere, hence contractible, for
H € Fy. In other words: the space S(coV) is a universal space EFy .

Lemma 5.23. Let F be a family of subgroups of G and X an orthogonal G-spectrum. Then for every
subgroup H in the family F the projection EF, N X — X induces isomorphisms

TH(EF.ANX) — #fl(X) .

Proof. For every subgroup H in the family F and every subgroup K of H the map EF — x is a weak
equivalence on K-fixed points. Since both sides are H-CW-complexes, the map EF — % is an H-homotopy
equivalence. So the map EF, — S°, and hence the map EF, A X — S° A X = X are H-homotopy
equivalences, and the conclusion follows. O

Proposition 5.24. Let F be a family of subgroups of G. For a morphism f : X — Y of orthogonal
G-spectra, the following are equivalent:

(i) For every subgroup H of F the morphism i*f : i*X — i*Y is a w,-isomorphism of H-spectra.
(ii) For every subgroup H of F the induced map w2 f : 7 (X) — 7H(Y) is an isomorphism of graded
homotopy groups.
(iii) The morphism EFy A f: EF4 NX — EF, AY is a 7, -isomorphism of G-spectra.

Proof. Properties (i) and (ii) are equivalent because for every subgroup K of H the groups 7% (i*X) and
78 (X)) are naturally isomorphic.

Property (iii) implies property (ii) because of the natural isomorphism 7 (EF; A X) = 7/ (X) of
Lemma 5.23

(i)=(iii) By passage to the mapping cone of f it suffices to show that for all G-spectra X such that
7H(X) = 0 for all H € F the spectrum EF, A X is 7, -trivial. Since smashing with the G-CW-complex
EF, preserves m, -isomorphisms, we may assume that X is a G-Q-spectrum (for example by using the
construction 3.20). Then for every subgroup H in F and every G-representation V we have X (V) ~ x,
by Proposition 5.19. Hence EF; A X (V) is G-weakly contractible, and thus 7, (EF A X) = 0. O
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6. THE TOM DIECK SPLITTING

Among the simplest kinds of examples of orthogonal G-spectra are suspension spectra of G-spaces. A
G-space is essentially determined by the homotopy types of the fixed point spaces for the various subgroups,
and one can ask if and how the equivariant stable homotopy groups can be obtained from the fixed point
information. The tom Dieck splitting provides an answer to this, and it rewrites the equivariant stable
homotopy groups of a suspension spectrum as a sum of terms, indexed by conjugacy classes of subgroups H,
where the summand indexed by H depends only on the H-fixed points of the original G-space. The sphere
spectrum is an equivariant suspension spectrum, and by applying the tom Dieck splitting to this case we
can identify the G-equivariant stable 0-stem with the Burnside ring of G.

Tom Dieck’s splitting originally appeared in [4, Satz 2] in the more general context of compact Lie groups;
we follow the original proof.

Construction 6.1. We start by introducing the maps whose sum will later turn out to be the isomorphism
of the tom Dieck splitting. We let A be a based G-space and H a subgroup of G. We define a natural
transformation

(6.2) ¢y o VH(S(EWH, A AT)) — 78(2°A)
where WH = WgH = (NgH)/H is the Weyl group of H which acts on the H-fixed point space of A. The
map (g is defined as the composite
aWVH (s (EWH, A AH)) 2 aNH(50(BWH, A AT
— L pNH(S®(EWH, A A))

rG
Ry 7 GG wm (S (EWHy A A)))
—  7G(z>A)
Here, and in the following, NH = NgH is the normalizer of H in G. The first map is the restriction
homomorphism (3.6) along the projection p: NH — (NH)/H = WH. The second map is induced by the

N H-equivariant inclusion i : A¥ — A of the H-fixed points. The third map is the external transfer (4.13).
The fourth map is the effect on equivariant homotopy groups of the morphism of orthogonal G-spectra

q : GXnpg (EOO(EWH+ A A)) — XA
that is adjoint to the morphism of orthogonal N H-spectra
S®(EWHNA) — XA

induced from the N H-equivariant projection FEW H, A A — A. To simplify notation we suppress that we
sometimes view EW H and A as NH-spaces by restriction along the projection p; so more properly we
should be writing p*(EW H) or p*(A) in those places.

The following terminology will be useful throughout this section.

Definition 6.3. Let G be a finite group, H a subgroup of G and A a based G-space. Then A is concentrated
at the conjugacy class of H if the K-fixed points AX are contractible for every subgroup K < G that is not
conjugate to H.

We emphasize that in the previous definition we require A¥ to actually be contractible, in the based
sense, to the basepoint; if we only asked for weak contractibility, some of the arguments below would not
work.
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Proposition 6.4. Let G be a finite group, H a normal subgroup of G and Y a based G-space that is
concentrated at H. Then for every finite based G-C'W-complex B the geometric fixed point map

(=)" : map®(B,Y) — map®/H(BH vH)

that takes a based G-map f : B — Y to the restriction to H-fized points f7 : BH — YH s a weak
equivalence and Serre fibration.

Proof. We let A be a G-space that is obtained from a G-subspace A’ by attaching an equivariant cell of
orbit type K, with K different from H. Applying map®(—,Y) turns the pushout of G-spaces on the left

G/K x S"' —= G/K x D" map®(4,Y) map®(A’)Y)
A— A map(D%}, Y K) —— map(Si_l,YK)

into the pullback square on the right in which both horizontal maps are Serre fibrations. Since Y is
concentrated at H, the space Y is contractible, hence so are the two mapping spaces in the lower row.
The restriction map map®(4,Y) — map%(A’,Y) is thus a Serre fibration and weak equivalence.

We apply this argument to various G-subcomplexes of B. We let By = {a € B | G, ¢« H} be the
G-subcomplex of all points whose stabilizer group is not contained in H. Since H is normal in G, the fixed
point space B also forms a G-subcomplex of B. All points a € B — (B U Bf) have their stabilizer group
contained in, but different from, H. So B is obtained from By U B¥ by attaching equivariant cells of orbit
type K for K < H. So the restriction map

map®(B,Y) — map®(ByUB)Y)

is a Serre fibration and weak equivalence.
Both By and By N B are built with G-cells of orbit types K with K # H. So the mapping spaces

map®(By,Y) and map®(By N B,Y)
are weakly contractible by the first paragraph. The square of restriction maps

map®(By U B?Y) ———= map®(BHY)

| l

map®(By,Y) ——— map®(By N BH,Y)

is a pullback and all four maps are Serre fibrations. The two mapping spaces in the lower row are weakly con-
tractible, so the upper horizontal restriction map is a weak equivalence and Serre fibration. The geometric
fixed point map in question is thus the composite of two restriction maps

map®(B,Y) — map®(ByUBYY) — map®(B,Y) = map®/H#(BH yH)
both of which are weak equivalences and Serre fibrations. O

We start by proving that statement that will turn out as a special case of the tom Dieck splitting, and
it will also be a main step in the proof.

Proposition 6.5. Let G be a finite group, H a subgroup of G and A a based G-space that is concentrated
at the conjugacy class of H. Then the map

Cy o VH(E®(EWH, AAT)) — 78(2>*A)

is an isomorphism.
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Proof. The map (y was defined as a composite of four maps. The external transfer map Tr% o
aNH(2(EWH, A A)) — 78(G xyg (B°(EWH, A A))) is an isomorphism by definition. We will
show that in addition (a) the composite i, o p* of the first two maps is an isomorphism, and (b) the fourth
map ¢, is an isomorphism.

(a) The composite map

ivop* : mVH(R°(EWHL AAT)) — 7 H(S°(EWH, A A))
has a retraction
O . ANH(S(EWH, ANA)) — a/ T(Z°(EWH, A AT))
given by a H-geometric fixed point map:
[f : S*V — SV AEWH, AA] — [f7: S8V 5 sV N EWH, A AF)

(here V is any N H-representation). We recall that N H acts on EW H by restriction along p : NH — WH,
so the subgroup H < NH acts trivially, and (EWH)® = EWH. The maps in the image of i, o p* are
defined on N H-representations on which H already acts trivially, so ® is indeed left inverse to i, o p*.

The N H-space Y = S™PN N EW H, A A is concentrated at the normal subgroup H by hypothesis on A,
so Proposition 6.4, applied to G = NH and the G-CW-complex S¥+7 PN shows that the geometric fixed
point map

H o [ghtmen gmon A EWH A ANE s [ghtmen)™ gm (o)™ A pWH, A AH]WH

is bijective. Exploiting that (pyg)f = p(NH)/H = pwH and passing to colimits over m shows that the left
inverse ®¥ is bijective. The composite i, o p* is thus bijective as well.
(b) We show that for every G-representation V' the map

q(V) = (Gxyu BF(EWHLAA)))(V) — (BFA)(V)

is a G-weak equivalence. Hence ¢ induces isomorphisms on G-equivariant stable homotopy groups. Indeed,
we can rewrite the source of ¢(V') isomorphically as

(G X NH (EOO(EWH+ A A)))(V) e X NH (EOO(EWH+ N A)(V))
= Gxyg (EWH NANSY)
(Gxyg EWH), NAANSY |

1

where the last step uses that A and SV come with a G-action and G acts diagonally on the last smash
product. So we need to show that the projection

G: (Gxyg EWH) . NAANSY — AASY

restricts to a weak equivalence on fixed points for every subgroup K < G. The K-fixed points of the source
are given by

(6.6) (G xngw EWH) ANAN SV)K ~ (G xyg EWH) ), A AK A SV

When K is not conjugate to H, then AX is contractible, hence so are the spaces (6.6) and (A A SV)EK =
AK A SV For K = H we observe that

(G xyg EWH)? = {1} x (EWH)" |
which is contractible because H acts trivially on EW H. So in any case ¢® is a homotopy equivalence. [

The proof of the tom Dieck splitting will depend on the fact that both sides to be compared are G-
homology theories in the following sense.
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Definition 6.7. Let G be a finite group. A G-homology theory is a Z-indexed family of covariant functors

E={E;}rez, Er : (based G-spaces) — Ab

equipped with connecting homomorphisms 9 : E144(Cf) — Ej(A), natural for based G-maps f : A — B,
satisfying the following conditions.

(i) Each functor Ej is G-homotopy invariant, i.e., it has the same image on G-homotopic based maps.

(ii) For every family of {4;};ecr of based G-spaces, the canonical map

P Ev4) — En(\ A)

i€l i€l

is an isomorphism.

(iii) For every based G-map f : A — B the sequence

E141(1) Ex(f) Ey(4)

Evn(Ch) -2 ByA) = BuB) 2 o) 2

is exact.

A morphism of G-homology theories is a Z-indexed family of natural transformations that commute with
the connecting homomorphisms.

Remark 6.8. Similar as for non-equivariant homology theories, we can draw some immediate consequences
from the defining properties of a G-homology theory.

e Since a wedge of two points (with trivial G-action) is one point, the wedge axiom implies that the

sum map FEj(x) @& Ey(x) — Ej(x) is an isomorphism. This forces Ej(*) to be trivial for all k, i.e.,
a G-homology theory is ‘reduced’.

The homotopy invariance implies that each functor E} takes based G-homotopy equivalences to
isomorphisms.

For the unique G-map p4 : A — * to a one point space the reduced mapping cone C(p4) is G-
homeomorphic to the suspension S' A A. In this case the connecting homomorphism thus specializes
to a suspension isomorphism

Eri(S'AA) = Ei(Clpa) 2 Er(4) .

We let (B, A) be a pair of G-spaces, based at a point in A, such that the inclusion i : A — B
has the equivariant homotopy extension property. For example, this is the case for relative G-CW-
complexes, or more generally for relative G-cell complexes. Then the quotient map Ci — B/A
that collapses the cone of A is a based G-homotopy equivalence, and thus induces isomorphisms
in any G-homology theory. We can thus substitute F.(C%) by E.(B/A) and obtain a long exact
sequence

Eiyk(9)

E (i) Ex(q)

Er1(B/A) — Ei(A)
where ¢ : B — B/A is the projection.

In the non-equivariant context, generalized homology theories are determined by their coefficient
groups, i.e., the homology groups of a one-point space. In the equivariant context, the role of the
one-point space is played by the discrete coset spaces G/H for all subgroups H < G. More precisely,
we let ® : E — F be a natural transformation of G-homology theories and suppose that for all
H < G and all integers k the map

Ou(G/H,) : E(G/H,) — Fu(G/H)

is an isomorphism. Then the map ®x(A) : Ex(A) — Fi(A) is an isomorphism for every based
G-CW-complex A and all integers k. The proof is similar as in the non-equivariant case. So in this
sense G-homology theories are determined by the graded coefficient system {E.(G/Hy)}u<a-

E(B) En(BJ/A) — -+
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Example 6.9. Every orthogonal G-spectrum FE defines a G-homology theory by setting
(6.10) En(A) = 7$(ANE).

Indeed, homotopy invariance is clear and the wedge axiom follows from Corollary 3.31 (i) and the fact
that smashing with F preserves wedges. Since — A E takes space level mapping cones to mapping cones
of orthogonal G-spectra, the connecting homomorphism (3.27) for the morphism fAE: AANE — BAE
of orthogonal G-spectra and the isomorphism C(f A E) = (Cf) A E together provide the connecting
homomorphism
Bk (Cf) =i ((CHNE) — 7 (ANE) = Ex(A) .

The long exact sequence is then a special case of the long exact sequence of a mapping cone (Proposi-
tion 3.30).

More G-homology theories can be obtained from orthogonal G-spectra by replacing 7&(—) in (6.10) by the
equivariant homotopy groups based on a G-universe that is not necessarily complete, compare Remark 4.22.
The G-homology theories arising as in (6.10) by using complete universes have a special properties of being
‘RO(G)-gradable’.

Here are two specific examples of this construction. For E = S the sphere spectrum the associated
G-homology theory is E(A) = 75 (AAS) = 7Y(X°A), the equivariant stable homotopy groups of A.
Given a ZG-module M, the Eilenberg-Mac Lane spectrum H M was defined in Example 2.13. For E = HM
the associated G-homology theory (HM);(A) = 7¢(A A HM) is isomorphic to Hy(A, M), the Bredon
homology [3] for the fixed point coefficient system M that sends a subgroup H < G to M.

Since both sides of the tom Dieck splitting are G-homology theories, one could hope to prove it by
reduction to the case A = G/H, of orbits. However, that is not the strategy of tom Dieck’s proof; rather,
we use an ‘isotropy separation’ argument to reduce the theorem to the special case of a G-space that is
concentrated at a single conjugacy class of subgroups, in which case the splitting has only one non-zero
summand.

Proposition 6.11. Let G be a finite group and ® : E — F a natural transformation of G-homology
theories. Suppose that ®(A) : E.(A) — F.(A) is an isomorphism for all based G-spaces A that are
concentrated at a single conjugacy class. Then ®(A) : E.(A) — F.(A) is an isomorphism for all based
G-spaces A.

Proof. We choose a sequence of families of subgroups of G
=FgCFLC- -+ C Fm_1 C Fm = all subgroups

such that F; = F;_1 U {(K;)} for some conjugacy class of subgroups (K;) with K; € F;_1; in particular,
m is the number of conjugacy classes of subgroups, F; = {e} contains only the trivial groups and F,,,_1
is the family of proper subgroups of G. We show by induction on 4 that the map ®(A A (EF;)4) :
E.(AN(EF;)y) — F.(ANA (EF;)+) is an isomorphism for all based G-space A. Since F,, contains all
subgroups of G, the space EF,, is G-equivariantly contractible, so the projection A A (EF,,);+ — Ais a
G-homotopy equivalence and the last case i« = m proves the proposition.

Since Fy is empty, EFy is the empty G-space and (EFp)4 is a point. Hence A A (EFp)4 is a single
point, and this starts the induction. For ¢4 > 1 the universal property of EF; provides a G-map

Jj o EFioa — EF;,
unique up to G-homotopy. Because F; = F;_1 U{(K;)}, the unreduced mapping cone C(j1 : (EF;—1)+ —
(EF;)+) is then concentrated at the conjugacy class (K;). Hence the smash product
ANC(EFi—1)+ — (E]:i).;,_) = C(A A (Efi_1)+ — AN (E]:z).;,_)
is also concentrated at the conjugacy class (K;). The E-homology groups of AA(EF;—1)+, AN(EF;)+ and
ANC(j4) are related by a long exact sequence, and similarly for the F-homology groups. The transformation



62 STEFAN SCHWEDE

® gives compatible maps between the two long exact sequences with isomorphisms at A A (EF;—1)+ (by
induction) and at A A C(j) (by hypothesis). The 5-lemma then proves the induction step. O

Now we finally state and prove the tom Dieck splitting.
Theorem 6.12 (Tom Dieck splitting). For every based G-space A, the map
> i s @ AV (ER(EWHL AAT)) — 28(S*4)
(H) (H)
is an isomorphism, where the sum rTuns over a set of representatives of all conjugacy classes of subgroups
of G.

Proof. We start with the special case of a based G-space A that is concentrated at one conjugacy class (H).
By Proposition 6.5 the summand indexed by (H) then maps isomorphically onto 7& (X% A), so we need to
show that all other summands vanish for such A. We let K be a subgroup of G that is not conjugate to H
and claim that for every W K-representation V' the W K-space

(B°(EWK, NAK)Y V) = EWK, ANAK ASY
is W K-equivariantly weakly contractible. Indeed, if L is a non-trivial subgroup of the Weyl group WK,
then EW K has no L-fixed points and (EW K )* consists only of the basepoint. So in this case
(EWK NAKASYYE = (EWK)) A (A ASY)E = «

consists of the basepoint only. On the other hand, for L = e the trivial subgroup of WK, the space
EWK, AN AKX A SV is contractible because A% is. This shows the claim that (X°(EW K, A AK))(V) is
weakly W K -equivariantly contractible, and hence the stable homotopy groups 7'V & (EW K A AX) vanish.
Altogether this proves the special case of the tom Dieck splitting when A is concentrated at a single
conjugacy class.

Now we deduce the general case. Taking H-fixed points takes G-homotopies to W H-homotopies and
commutes with wedges and mapping cones; the same is true for EW H A —, so the functor

A aVH(EWH, A AT

and hence the left hand side of the tom Dieck splitting, is a G-homology theory. The tom Dieck splitting
map is thus a natural transformation between G-homology theories that is an isomorphism for all based
G-spaces that are concentrated at a single conjugacy class. By Proposition 6.11, the transformation is then
an isomorphism in general. O

In the special case A = S° (with trivial G-action), the left hand side of the tom Dieck splitting involves
the equivariant homotopy groups 7}V # (XFEWH). We will identify this group in dimension 0. We let W
be any finite group and EW a contractible free W-CW-complex. A chosen point z € EW determines a
W-equivariant action map a : W — EW with a(y) = yx. Since EW is path connected, the W-homotopy
class of a is independent of the choice, hence so is the induced morphism of suspension spectra

a: WxS=XFW — XTEW .
Proposition 6.13. For every finite group W the composite
T w _
108 —= 7V (W xS) 5 xV (SCEW)
is an isomorphism. In particular, the group W(‘)’V(EfEW) is free abelian of rank 1.

Proof. We use the bar construction model for EW, which is filtered by W-subcomplexes EMW with
subquotients equivariantly homeomorphic to

EOW/EC-VW =~ W x (WNASY ;
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for the purposes of the smash product on the right hand side, W is viewed as a pointed set with basepoint 1.
The Wirthmiiller and suspension isomorphisms

TV (W x (B°(WN A SY))) =2 mp (WA ASY) 2 1 (BN
show that the 0-th and 1-st W-equivariant stable homotopy groups of F (i)W/ EG=DW vanish for i > 2 and
so does the 0-th W-equivariant stable homotopy groups of E(l)W/E(O)W. So the inclusion EOW — EW
induces an isomorphism
oV (SCPEMW) = iV (STEW) .
Moreover, the sequence

A (=R (EOW/EOW)) s 2V (STEOW) — 2V (STEOW) — 0
is exact. The connecting homomorphism is in fact trivial, so the inclusion EOW — EW induces an
isomorphism
o (EFEOW) = iV (STEW) .

The claim now follows from the observation that E(OW is a discrete space with free and transitive W-action,
so that its suspension spectrum ZfE(O)W is isomorphic to W x S. O

In the special case A = S, the tom Dieck splitting becomes an isomorphism between the group 7TOG (S)
and the direct sum
P (ETEWH) .
(H)

In combination with Proposition 6.13 this shows that for every finite group G the group 7§’ (S) is free abelian
of rank the number of conjugacy classes of subgroups of G.

We recall that the Burnside ring A(G) is the Grothendieck group, under direct sum, of isomorphism
classes of finite G-sets; the ring structure is induced by product of G-sets. The additive group of the
Burnside ring A(G) is also free abelian of the same rank as the equivariant 0-stem 7§ (S), so these two groups
are additively isomorphic. Even better, the Mackey functor structure of the equivariant homotopy groups
provide a specific isomorphism, which is moreover natural for restriction along group homomorphisms. A
preferred additive basis of A(G) is given by the classes of the cosets G/H, where H runs through a set of
representatives of the conjugacy classes of subgroups of G. We can thus define a homomorphism

oc : AG) — 75(S)

by sending the class [G/H] € A(G) to the element tr%(1), the transfer of the unit element 1 € 7/(S).
According to the Construction 4.2, a representative G-map of the class tr$ (1) is given by the composite

gra B, G g 8PS act,  gre

where the first map is the transfer map from the Thom-Pontryagin construction. The isomorphism og :
A(G) — 7§(S) is also natural, in the technical sense of compatibility with restriction and transfer maps.
In particular, the maps oy form an isomorphism of Mackey functors as H ranges over the subgroups of G.

The following theorem is due to Segal [22].
Theorem 6.14. For every finite group G the map o¢ : A(G) — 7§ (S) is an isomorphism of rings. As G

varies, the isomorphisms og commute with transfer and restriction along group homomorphisms.

Proof. In order to show that o is an isomorphism, we prove that it sends the preferred basis of the Burnside
ring to the basis of wg (S) given by the tom Dieck splitting. We recall that the map (g is the composition

* I‘G
AWHEREWH) 2 nNH(STEWH) —N0, 285G x xy EWH)) —25 7§(S)
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where p : NH — WH is the projection and ¢ is induced by the unique map G xyyg EWH — .
Naturality of the external transfer lets us identify the map (g with the composite

* ’ rG roi
aWHEREWH) 2 pVH(STEWH) 2 2VH(S) SN, 280G wyy S) 2 78(S)

and hence, by naturality of the restriction homomorphism p*, with the composite

’ * rG
WHETEWH) £ alVH(S) Lo mdH(s) S, 16(S)

here ¢’ is the morphism induced by the unique map FWH — x. Evaluating this on the generator

a.(Tr! (1)) of the group 7§/ (XX EW H) gives

C(an(Te (1)) = ufp (™ (@ (T (1))
= (@ (T (1) = ufpteyg?(pu1) = tf1).

Here §=¢ oa: WH x S — S is the projection and py : H — e is the unique map, which happens to be
the restriction of the projection p: NH — W H to H. The second equation is the naturality of restriction
maps and the third equation is the compatibility of transfers with restriction along epimorphisms (compare
Proposition 4.17 (ii)). By Proposition 6.13 and the tom Dieck splitting the classes Cz (@, (Tr!V (1)) form
a basis of 7§ (S) when H ranges over representative of the conjugacy classes of subgroups of G. So this
finishes the identification of the Burnside ring A(G) with 7§ (S) as abelian groups.

Now we check compatibility of the isomorphisms o with restriction along group homomorphisms. Every
group homomorphism is the composite of an epimorphism followed by a subgroup inclusion. So we show
compatibility with these two types of maps separately. We start with an epimorphism « : K — G. The
restriction homomorphism o* : A(G) — A(K) sends the class of G/H to the class of o*(G/H), which is
K-isomorphic to K/L. Using Proposition 4.17 (ii) for X = S we deduce that that

a*(oc[G/H)) = a*(tfi(1) = tf((al)* (1) = (1) =ox[K/L] = ox(a’[G/H]) .

Hence the homomorphisms o are compatible with restriction along epimorphisms.
The compatibility with restriction to a subgroup K < G follows for the fact that both sides satisfy a
double coset formula. Indeed, for every g € G, the left K-set (KgH)/H is K-isomorphic to K/K NY9H, via

K/KNYH — (KgH)/H, k-(KNYH) — kgH .
Hence the underlying K-set of G/H is isomorphic to
res(G/H) = ][] res (KgH)/H) = ] K/KN9H
[g]eK\G/H [g]eK\G/H

(which is effectively the proof of the double coset formula for Burnside ring Mackey functor). Thus we get

res (0g[G/H]) = resf (0 (1) = Y tri o (€ (reston (1))
[g)eK\G/H
= > trmon (1) = > ox[K/KNIH] = ox(res%[G/H]) .
[9)eK\G/H 9l K\G/H

Compatibility with transfers is a consequence of the transitivity of transfers in m,(S) (see Proposi-
tion 4.16) and in the Burnside rings. Indeed, for K < H < G we have

i (on[H/K]) = (1)) = 0%(1) = 06[G/K] = oc(tZ[G/K]) .

Multiplicativity of o¢ is a formal consequence of the compatibility with restriction and transfer and the
fact that the multiplication on both sides of o satisfies reciprocity. Indeed, since o¢ is additive, it suffices
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to check multiplicativity for products of two basis elements. So we let H and K be two subgroups of G.
Then

06|G/H] - 06[G/K] = trfj(1) - tr§(1) =(s5) trf(resfi(trf(1)))
= trfj (resfi (06[G/K])) = oc(trfi(ves[G/K])) = oc(G/H]-[G/K]). O

Having identified the ring 7§ (S) one can ask how its elements can be distinguished by invariants. In the
non-equivariant context the degree of a map between spheres provides the answer, and in the equivariant
context the collection of degrees of all fixed point maps serves the same purpose. The situation is slightly
more subtle, though, because the fixed point degrees of an equivariant map between representation spheres
satisfy certain congruences, so they cannot be assigned arbitrarily.

We let C'(G) denote the set of class functions, i.e., maps from the set of subgroups of G to the integers that
are constant on conjugacy classes. Every G-map f : SV — SV gives rise to a degree function d(f) € C(G)
by

A(f)(K) = deg (55 8V — sV

the (non-equivariant) degree of the K-fixed point map. The degree function only depends on the G-
homotopy class of f and is invariant under suspension with any representation sphere. So it descends to a
map
d : 7§(S) — C(Q).

Since the map o¢ : A(G) — 7§ (S) is a ring isomorphism, one can understand the degree map by studying
the composite d o o : A(G) — C(G), and this turns out to be a purely algebraic issue. Indeed, the
degree function associated to og[G/H] = tr$% (1) assigns to the conjugacy class of K the cardinality of the
set (G/H)X. So the composite map

AG) 2% 78(S) L C(G)
sends a finite G-set S to the function
(d(oa[S))(K) = ||

that counts the number of fixed points. By pure algebra (see for example [5, Sec.1.2]), the fixed point
counting map d o o, and hence also degree map d, is injective, and its image has finite index, namely the
product, over conjugacy classes of subgroups (H), of the orders of the Weyl groups Wg H.

The image of the degree map d : 7§ (S) — C(G), or equivalently the image of doog, can be characterized
in terms of certain explicit congruences. The example G = (), the cyclic group of order a prime p, can
serve to illustrate the issue. The Burnside ring A(C),) is free abelian of rank 2 generated by the classes of
the trivial Cp-sets C),/C)p and the free Cp-set Cp,/e. We have

(ICo/Cpl, [(Cp/Cp) 7)) = (1,1)  and  (ICp/el, |(Cp/e)*]) = (p,0) -
Every finite C)p-set S is isomorphic to a union of copies of C,/C, and Cj/e, so the relation
IS| = |S°| modulo p

holds for all finite C)-sets S. In general, the image of the ring homomorphism d o o¢ : A(G) — C(G) is
the subring of those class functions ¢ € C(G) that satisfy the congruence

(6.15) 3 W(H/K) - INgH/NgK N\ NgH|- o(H) = 0 mod |WgH|
KJ(H)SNgK, H/K cyclic

for every subgroup K of G, see for example [5, Prop. 1.3.5]. The sum is taken over NgK-conjugacy classes
of subgroups H < G that contain K as a normal subgroup and such that H/K is cyclic; u(H/K) is the
number of generators of the cyclic group H/K.
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Example 6.16. We illustrate the congruences (6.15) with the example G = 33 of the symmetric group
on 3 letters. There are four conjugacy classes of subgroups, namely

e, (12), A3 and Xg3.

So A(X3) and C(X3) are free abelian of rank 4, and the index of the monomorphism d o oy, : A(X3) —
C(X3) is the product of the orders of the Weyl groups, so it is 6-1-2-1 = 12.

A priori, we get four congruences (6.15), one for each conjugacy class of subgroups, for a class function
p € C(X3) to lie in the image. However, the subgroups (12) and X3 are self-normalizing, so their Weyl
groups are trivial, and the respective congruence contains no information. For K = e, the sum (6.15) is
over all conjugacy classes of cyclic subgroups of X3, and becomes

1-p(e) + 1-9((12)) + 2-¢(A3) = 0 mod 6 .
For K = As, the sum (6.15) has two summands with H = A3 and H = X3, and it becomes
1-0(A3) + 1-9(23) = 0 mod 2.
These two congruences are equivalent to the three more basic congruences
p(e) = p(As) mod 3, @()=p((12) mod 2, and  o(As) = p(S5) mod 2.

The group X3 is simple enough that one could verify the congruences directly: the following so-called ‘table
of marks’ lists the numbers of fixed points |(G/H)X| of the transitive ¥3-sets, and one can read off the
three congruences between the numbers in the respective columns:

H_||(Ss/H)| |(8s/H)™)| |(8s/H)| |(S5s/H)™

e 6 0 0 0
(12) 3 1 0 0
As 2 0 2 0
s 1 1 1 1

7. FIXED POINTS AND GEOMETRIC FIXED POINTS

In this section we investigate different kinds of fixed point spectra for orthogonal G-spectra. Each of
these constructions turns an equivariant spectrum into a non-equivariant spectrum by taking fixed points
at an appropriate stage.

7.1. Naive fixed points. We start with the naive fized points of a G-spectrum X that we denote by X
and which are simply the categorical fixed points taken levelwise. In other words, we have

(XG)n = Xv? )
the G-fixed points of the n-th level, with restricted O(n)-action. Since the structure maps o, : X,, A ST —
X, 41 are G-equivariant for the trivial G-action on S', they restrict to structure maps

o‘G
of ¢ XEASt = (X, A9 —— X&,

n

for naive fixed point spectrum X&.

One problem with the naive fixed point construction is that it is not homotopy invariant. More precisely,
if f: X — Y is a 7 ,-isomorphism of G-spectra, then the induced map f¢ : X¢ — Y% is generally
not a m,-isomorphism of non-equivariant orthogonal spectra. However, naive fixed points take level G-
equivalences to level equivalences, hence they take m,-isomorphism between G-2-spectra (which are level
G-equivalences) to level equivalences of orthogonal spectra. Thus the naive fixed point functor can be
derived by applying it to a 7, -isomorphic replacement by a G-Q-spectrum.
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7.2. Fixed points. Fortunately, there is a simpler and explicit construction that achieves the same goal.
Given a G-spectrum X we define a new G-spectrum F X by
(FX)n = map(§*"®7¢, X(R" @ pq)) ,

where ® is short for ®g, the tensor product of G-representations. Here the source of the mapping space

uses the reduced regular representation pg, whereas the target uses the regular representation pg. As usual,

the group G acts on the mapping space by conjugation. The orthogonal group O(n) acts on (FX), by

conjugation, through the actions on R™. The value of F'X at a general G-representation V' is then given by
(FX)(V) = map(SV®P, X(V @ pc)) -

The structure map (FX), A S' — (FX),41 is the composite

assembly
E——

map(S™ ®7¢, X(R" ® pg)) A S* map (5™ #7¢, X (R" @ pe) A S')

AT nap(SRT®PS A §PS | X (R @ pg) A S A 579)
= map(SRnH@ﬁG, X(R" ® pa) A SPE)

(‘ﬂR"@pG,pg)*

map($¥" 974, X (R"! @ pg))
where among other things we have used the G-equivariant isometry R & pg = pg-

Definition 7.1. The fized point spectrum of an orthogonal G-spectrum X is the orthogonal spectrum
FGX = (FX)%, the naive fixed points of the spectrum FX.

As we shall see now, the homotopy groups of the fixed point spectrum F&X calculate the G-homotopy
groups of X:

Proposition 7.2. For every orthogonal G-spectrum X and integer k the groups 7 (X) and mx(FYX) are

naturally isomorphic.

Proof. We restrict to the case & = 0. The splitting pg = R & pg produces an isometry R"” ® pg =
R™ @ (R" ® p) that compactifies to a G-homeomorphism S®"®rc 2= §7 A GR"®Pc S0 we get an adjunction
bijection

[S*" P, X(R™ @ pg)]? 22 [S", map(S™"#7¢, X (R" ® pg))]”
7, map® (S¥®P¢ X (R" @ pg)) = T (FOX), .

The second isomorphism uses that G acts trivially on R™. The bijection is compatible with the stabi-
lization maps that define 7§'(X) from the groups [S™*¢, X (npg)] respectively mo(FX) from the groups
Tn(FEX),. O

1%

The naive fixed points and fixed points of an equivariant spectrum are related by a map
(7.3) x¢ 22, pox
that is obtained from a morphism j : X — F'X of G-spectra by taking naive fixed points. The V-th level
J(V) © X(V) — map(8YVeP, X (V@ pg)) = (FX)(V) .
is adjoint to the G-map
X(V) A SVere XVe(Vep)) 2 XV®pg) .

For every -G-spectrum X the morphism j : X — F X is thus a strong level equivalence, so it induces a
level equivalence j¢ : X¢ — FGX of non-equivariant orthogonal spectra. Since the functor X — FGX
also takes m -isomorphisms of G-spectra to m.-isomorphisms (by Proposition 7.2), the fixed point functor
F&X is really a right derived functor of the naive fixed points.

IV.VRba



68 STEFAN SCHWEDE

7.3. Geometric fixed points. Now we discuss another fixed point construction, the geometric fixed points
®CX of a G-spectrum X. It is given by

(®°X), = X(R"® pa)® ,

the G-fixed points of the value of X on the tensor product of R™ with the regular representation. The
orthogonal group O(n) acts through R™. The structure map (®¢X),, A S — (#X),, 11 is the map

O‘Gn
XR"®pc)¥ AST & (X(R"® pg) ASPe)e 22906 o X((R™ ® pe) @ pe)® = X (R @ pe)C

using the identification (pg)¢ = R.
The fixed points and geometric fixed points are related by a natural map

FOX 25 99X
of orthogonal spectra. In level n by the map
(FEX), = map®(S*"®7¢ X (R" @ pg)) — X(R"@pa)® = (#9X),

evaluates a G-map S®"®7¢ — X(R" ® pg) at the G-fixed point 0 € S®"®P¢ (which is the unique G-fixed
point of S®"®P¢ other than the basepoint co).

The geometric fixed point construction comes with a geometric fixed point map of homotopy groups.
For an orthogonal G-spectrum X and a G-representation V the geometric fixed point map

(7.4) Y ¢ 7wl (X)) — mepve(P9X)

is defined by sending the class represented by a G-map f : SFTVHR"®c _ X(R" @ pe) to the class of the
fixed point map

n G
JO i SRV 2 (SRRSO ) T X (R @ pe) = (99X),

We have implicitly identified the fixed points (R" ® pg)® with R™. If we stabilize f by the regular repre-
sentation we have (f o pg)® = f¢ o R, so this really gives a well-defined map on 7rkG+VX.

Now we can given another interpretation of the geometric fixed points ®“X as the fixed point of the
smash product of X with a certain universal G-space. We denote by EP a universal space for the family
of proper subgroups of G. So EP is a G-CW-complex such that the G-fixed points (EP)Y are empty and
(EP)H is contractible for every proper subgroup H of G. These properties determine EP uniquely up to
G-homotopy equivalence.

We denote by EP the reduced mapping cone of the based G-map EP, — S° that sends EP to the
non-basepoint of S°. So EP is the unreduced suspension of the universal space EP. Fixed points commute
with mapping cones, so the map S* — (EP)G is an isomorphism. For proper subgroups H of G the map
(EP)H — (S%)H = 50 is a weak equivalence, so the mapping cone (EP)™ is contractible. This means
that the G-space EP is concentrated at the group G, in the sense of Definition 6.3; the smash product of
EP with any based G-space is also concentrated at G.

For example, the reduced regular representation pg has no non-trivial G-fixed points, but (pg)* # 0 for
all proper subgroups H of G. So by Example 5.22, the infinite dimensional unit sphere S(copg) can serve
as the space EP. The ‘infinite representation sphere’ S°7 =, S"” is thus a model for the space EP.

The inclusion S° —s EP induces an isomorphism of G-fixed points S° = (EP)C. So for every based
G-space A the map 0A —: A — EP A A induces an isomorphism of G-fixed points. Hence also for every
G-spectrum the induced map of geometric fixed points

PC(X) = Y (EP AX)
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is an isomorphism. If we compose the evaluation morphism ev : FE(EP A X) — ®F(EP A X) with this
isomorphism we obtain a natural map
(7.5) FYEPAX) 25 09X

that we still refer to as ‘evaluation at 0’. An application of Proposition 6.4 (with G = H, Y = EPAX (npg)
and A = S"P¢) to the G-spaces A = S"7¢ and Y = EP A X (npg) yields that the evaluation at 0 (7.5) is a
Serre fibration and weak equivalence in every level n:

Proposition 7.6. For every orthogonal G-spectrum X the natural morphism
FYEPAX) 25 09X
is a level equivalence and level fibration of orthogonal spectra. Hence the geometric fixed point functor takes

T, -isomorphisms of G-spectra to m.-isomorphisms of non-equivariant spectra.

A consequence of the previous proposition is the following isotropy separation sequence. The mapping
cone sequence of based G-CW-complexes

EP, — S° — EP

becomes a mapping cone sequence of G-spectra after smashing with any given G-spectrum X. Taking
G-fixed points gives a homotopy cofiber sequence of non-equivariant spectra; after replacing the term
FG(EP/\X ) by the level equivalence spectrum ®“ X, we obtain a homotopy cofiber sequence of orthogonal
spectra

FE(EPLAX) — FYX — 09X .

Example 7.7 (Fixed points of suspension spectra). We discuss fixed points and geometric fixed points
for equivariant suspension spectra in more detail. If A is a based G-space, then (£®°A4)¢ = £®°AC,
The geometric fixed points ®F(X>A) are also isomorphic to the suspension spectrum YA, using the
identification of (pg) with R and the induced identification

(BC(X°A)), = (ANS™WE)E =2 AG A (SnPe)d = A9 A G7
The composite map

.G
(A Lo FYE>A) 2 9% (n>A)
from naive to geometric fixed points is an isomorphism. Moreover, the effect on (non-equivariant) homotopy
groups of the morphism j¢ is (naturally isomorphic to) the direct summand inclusion
(o : m(EF(A%) — 7O(54)

in the tom Dieck splitting indexed by the group G, compare (6.2). So for suspension spectra, the geometric
fixed point map splits off the summand indexed by the group G in the tom Dieck splitting.

So the fixed point spectrum F'% (3> A) contains the suspension spectrum of A% as a summand. However,
the fixed point spectrum typically has extra summands, that can be identified via the tom Dieck splitting
that gives a m,-isomorphism

FE(S®A) ~ [[ =% (EW(H)4 Awar) AY)
(H)
of orthogonal spectra.

Example 7.8 (Fixed points of free spectra). We discuss fixed points and geometric fixed points for the
free equivariant spectrum Fy generated by a G-representation V. For naive fixed points we have
O(V,R™) if G acts trivially on V', and

(Fv)g = O(V,RMY = . S
* if G acts non-trivially on V.
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Indeed, O(V,R™)% is the Thom space of pairs (c, ) where « is a G-equivariant linear isometric embedding
and z is a G-fixed vector in R™ orthogonal to «(V). If G acts non-trivially on V, then there are no
such equivariant embeddings. In other words, the naive fixed point spectrum F‘g is trivial for non-trivial
representation of G, and it is isomorphic to the free orthogonal spectrum Fy whenever V is a trivial
representation.

The geometric fixed points ®¢(Fy/) are a sphere spectrum of dimension minus the dimension of the
fixed points V. Indeed, we can apply geometric fixed points to the r,-isomorphism (by Proposition 5.14)
Fy SV — S adjoint to the identity of SV. We obtain m,-isomorphism

(P A SV = oC(FySY) =5 39(S) =S .
Hence the adjoint of this map is a m,-isomorphism
3 (Fy) = Vs,

Example 7.9 (Fixed points of coinduced spectra). We determine the naive and geometric fixed point
functor on coinduced spectra map? (G, Y) for orthogonal H-spectra Y. The naive fixed points are given by
(mapf (G, Y))% = YH. For fixed points there is a stable equivalence

RE + F'Y — F¢ (map”(G,Y))
defined as follows. In level n, the map (R%), is the composite
(FTY), = map™ (S¥"#7% Y (R" @ pyy)) = map™ (S¥" 9 Y (R" ® pg;))
map® (S*"®7¢ map” (G, Y (R" ® ps))) = F¢ (map”(G,Y)),

1%

The first map labeled i, is essentially the extension (or prolongation) construction in the sense of (3.3),
along the H-equivariant linear isometric embedding i : pg — pg, the R-linearization of the inclusion
H — G. In more detail: we let U denote the orthogonal complement of py in pg, i.e., the R-subspace
spanned by the elements of G not in H. This induces an H-equivariant linear isometry

R"®peg = R"®@pu)® (R"QU) .
The map i, then sends a continuous H-equivariant based map f : S¥"®1 — Y(R"®py) to the composite

R"®pc ~ oR"®pn n cR'@U FAST OV n R"QU
S ~ S NS —— YR"®@pg)AS

T V(R ®pn) @ (RO U)) = YR ® po) -

The isomorphism in the definition of (R%), is the adjunction between restriction from G to H and
map’ (G, —). Inspection of the definitions shows that the following diagram commutes:

TH(Y) = ¢ (map? (G,Y))

| i~

T (FAY) ————m, (FG (mapH(G, Y)))

T (RS)

IR

The vertical isomorphisms are the ones given by Proposition 7.2, and the upper horizontal isomorphism
is (4.10). This shows that the morphism R% is a m,-isomorphism of (non-equivariant) orthogonal spectra.

Example 7.10 (Fixed points of induced spectra). The naive and geometric fixed point functor vanishes
on induced spectra, i.e., for every proper subgroup H of G and every H-spectrum Y we have

(GxgY)? =% and O9(GuxpgY) = x.
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For geometric fixed points this uses the G-isomorphism (G x g Y)(V) = G x gy (Y (i*V)) where ¢*V is the
restriction of a G-representation V' to an H-representation, compare (4.8).

To get at the fixed points of an induced spectrum we exploit the Wirthmiiller isomorphism, i.e., the
m,-isomorphism ® : (G xg Y) — map(G,Y), compare Theorem 4.9. This morphism induces a -
isomorphism of fixed point spectra

G
FOGxyY) 225 FGmap”(G,Y)) ~ FH(Y)
where the last equivalence is Example 7.9.

Example 7.11 (Geometric fixed points of M R). In Example 2.14 we introduced the real cobordism spec-
trum MR, an orthogonal Cs-ring spectrum. We will now identify the Cs-equivariant homotopy groups
of MR with a more classical definition and show that the geometric fixed points ®“2(MR) are stably
equivalent to the unoriented cobordism spectrum MO.

The orthogonal Cs-spectrum M R was obtained from a collection MU = {MU,} of spaces by looping
with imaginary spheres. It will make things clearer to reveal the full structure that this collection of spaces
has. By a real spectrum we mean collection of based Cy x U(n)-spaces Y, for n > 0, equipped with based
structure maps 7, : Y, A S¢ — Y, 11 for n > 0. Here Cy x U (n) is the semidirect product of the action of
the cyclic group Cy on U(n) by conjugation of unitary matrices. This data is subject to the condition that
for all n,m > 0, the iterated structure map Y, ASC" — ¥, is Cy x (U(n) x U(m))-equivariant. Here the
group Cy X U(m) acts on C™ in the most obvious way: the Cy-factor acts by complex conjugation and the
U(m)-factor via its defining action. The collection of spaces MU = {MU,, },>o considered in Example 2.14
form a commutative real ring spectrum.

Every real spectrum Y can be turned into an orthogonal Cs-spectrum WY as follows. We set

(BY),, = map(S®",Y,) ;

the group C2 x O(n) acts on iR™ by sign (the Cy-factor) and the defining action (the O(n)-factor), it acts
on Y, by restriction along the inclusion Cy x O(n) — C2x U(n), and Cy x O(n) acts on the entire mapping
space by conjugation. The structure map o,, : (¥Y),, A St — (VY),,;; is the composite

map(S™®"¥,) A S assemble, map(S™®”, ¥, A S
iR

EACIN map(SiRn ASE Y, ASYA SiR)

=} map(SiRnH,Yn ) YN map(SﬂR"H,YnH) .

We use the Co-equivariant decomposition 1-R @ i-R = C to identify S* A S'® with SC. The real bordism
spectrum M R is a special case of this construction, namely MR = ¥(MU).

Now we claim that for every real spectrum Y the equivariant homotopy groups and geometric fixed points
of the orthogonal Cs-spectrum WY can be expressed directly in terms of the real spectrum Y. Firstly, we
claim that for every Cs-spectrum of the form WY the map

% (I — FO (DY)

from (7.3) from the naive fixed points to the fixed points is a m.-isomorphism of orthogonal spectra. The
homotopy groups of the naive fixed points of ¥Y can be rewritten as

Tk+n ((\I]Y)SZ) = 7rk+nmap02(SiRnaYn) = [Sk+n/\SiRn,Yn]C2 = [SkASCH,Yn]C2 .

The homotopy groups of the fixed points F¢2(¥Y) were identified with the Co-homotopy groups of the
spectrum VY in Proposition 7.2. So in the colimit, these isomorphism combine into a natural isomorphism

T2 (WY) 2 colim,, [SFH"CY, ]
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where the colimit is formed along the stabilization maps
[S’”"C, Yn]c2 —AS¢ [S}c+(n+1)(c, Y, A SC]CQ (Tn )« [SkJr(nJrl)(C, Yn+1]02 )

In the example of the real spectrum MU we have MR = U(MU) and this specializes to an isomorphism
2 (MR) = 7$2W(MU) 2 colim, [SV"C, MU, |

where V' is any Ch-representation. These are the groups studied, among others, by Landweber [12] and
Araki [2]; Landweber uses the notation QY = 7, o(MU) for the equivariant homotopy group 71'502 4q(MR)
where ¢ is the sign representation.

Now we turn to the geometric fixed points. We define a ‘real’ geometric fixed point functor ®** on a
real spectrum Y by taking Cs-fixed points:

((I)realy)n _ Yncz .

Since the subgroup O(n) of Cy x U(n) commutes with Cs, these Co-fixed points are O(n)-invariant and
form an orthogonal spectrum with structure maps

762
YEAS = YO A(SO)® = (Y, AS9) T v
We shall now define a natural m,-isomorphism of orthogonal spectra ®°2Y — &2 (¥Y). [..]

The value of the orthogonal spectrum underlying ¥Y on a real inner product space V' is given by
(WY)(V) = map(S",Y(Ve)) ;
here Ve = C ®g V is the complexification of V', with induced hermitian scalar product, and
Y (Vo) = LEC™, Ve)s Augm) Ya

where n = dim(V), and LE(C", Vi) is the space of C-linear isometries from C" to V.
So we have

(@7 (0Y)), = (2Y)(np))* = map($™,Y(C" @ p))

where p is the regular representation of Cj.

In the example of the real spectrum MU we have MUS? = MO,,, the Thom space of the tautological
real n-place bundle over BO(n). So the geometric fixed points of MR are stably equivalent to the Thom
spectrum for unoriented bordism,

2 (MR) = ®2U(MU) ~ {MO,},>0 = MO .

Theorem 7.12. For a morphism f: X — Y of orthogonal G-spectra the following are equivalent:
(i) The morphism f is a w, -isomorphism.
(ii) For every subgroup H of G the map of H-fized point spectra FHf : FEX — FHY is a stable
equivalence of orthogonal spectra.
(iii) For every subgroup H of G the map of geometric H-fized point spectra ®f : ®HX — ®HY is a
stable equivalence of orthogonal spectra.

Proof. The equivalence of conditions (i) and (ii) is a direct consequence of the natural isomorphism between
72X and 7, (FH X) established in Proposition 7.2.

(ii)==(iii) If f is is a m,-isomorphism, then so is EP A f by Proposition 5.4. Since condition (i) implies
condition (ii) the map FE(EP A f) : FS(EP A X) — FG(EP AY) is a stable equivalence of orthogonal
spectra. So @ f: ® X — ®HY is a stable equivalence by Proposition 7.6.

(iii)==(ii) We show by induction on the order of the group G. If G is the trivial group, then all three
fixed point constructions coincide (and do not do anything), and there is nothing to show.

If G is a non-trivial group we know by induction hypothesis that the map F7f : FEX — FHY is a
stable equivalence for every proper subgroup H of GG. In other words, f is a P-equivalence. Proposition 5.24
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lets us conclude that EPy A f is a m,-isomorphism of G-spectra. Hence F¢(EP, A f) : FE(EPy A X) —
FEG(EP, AY) is a stable equivalence of non-equivariant spectra. Since ®¢f : ®¢X — ®FY is also a
stable equivalence, the isotropy separation sequence lets us conclude that the map F¢f : F¢X — FCY
on G-fixed points is a stable equivalence. O

Monoidal properties. Naive and geometric fixed points commute with levelwise smash products ‘on
the nose’. In other words, there are natural isomorphisms

(ANX)Y = A9AXY  and @%(AAX) =2 ACADCX

for every based G-space A and every G-spectrum X.
The three kinds of fixed points construction are lax symmetric monoidal functors. For naive fixed points,
the map

XEAYE — (X AY)C
arises via the universal property of the smash product from the bilinear morphism

el
XOAYS = (X, AY)¢ —22 (X AY)C

n+m *

In the following proposition, the term ‘cofibrant’ refers to spectra built by attaching ‘cells’ of the form
Fy(G/H x D™)4 for all n > 0, all subgroups H of G and all G-representations V.

Proposition 7.13. The natural map
XCAYY — (XAY)Y .
of naive fized point spectra is an isomorphism whenever X and Y are cofibrant.

Sketch. By inspection, the claim is true when X and Y are both of the form Fy A for a based G-CW-
complex A and G-representation V'; moreover, the claim is stable, in each variable, under wedges, retract
and cobase change along cofibrations. O

A word of warning: the naive fixed point functor is not homotopy invariant, and it has to be right
derived to induce a functor on the equivariant stable homotopy category. However, the smash product of
two G-Q-spectra is rarely a G-Q-spectrum, so the isomorphism of the previous proposition does not imply
that the derived fixed point functor (which is modeled by F&X) commutes with smash product in the
homotopy category.

For fixed points, we first observe that the functor F' can be made lax symmetric monoidal as follows.
The G-maps

(FX)n A (FY)p = map(S™°, X (npg)) A map(S™7¢,Y (mpg))
5 map(S"79 A S™¢, X (npa) AY (mpc))
TG, map(SUHTE (X AY) (npe @ mpg))
= map(STT™PE (X AY)((n+m)pc)) = F(X AY )nim
form a G-equivariant bimorphism and thus assemble into a morphism of G-spectra
FXANFY — F(XAY).

We can combine this with the previous monoidal transformation of naive fixed points and arrive at an
associative, commutative and unital map of orthogonal spectra

FCXANFCY — (FXAFY)Y — F(XAY)Y=FYXAY).
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For geometric fixed points, finally, the G-maps
(@CX ) A (PYY ) = X (np6) AY (mpe)© = (X (npe) NY (mpa))©

iG
npg.mpg

(X AY)(npg ® mpg))©
= (X AY)(n+m)pe)® = SH(XAY )i

assemble into a morphism of orthogonal spectra

PEX NPCY — BE(XAY).
Proposition 7.14. The natural map

PEX ANDCY — BE(XAY).
is a me-1somorphism whenever X orY is a cofibrant orthogonal G-spectrum.

Proof. The proof starts with the special case where X = Fyy A and Y = Fy B are free G-spectra generated
by G-CW-complexes A and B. This case is OK since

OC(Fy A) AN ®C(FwB) ~ FycA% A FyeBY = Fyegwe(AY A BY)
Fyvew)ye(AANB)Y ~ % (FyowANAB),

I

using that ®%(Fy ) is m,-isomorphic to QVGS, hence to Fya. A cell induction can then be used to work up
to general cofibrant G-spectra. (]

Remark 7.15. The geometric fixed points is essentially determined by the properties

(i) ®% is homotopy invariant
(i) @C(T>®A) = £>®(AY)
(iii) ®“ commutes with smash products
(iv) ®¢ commutes with sequential homotopy colimits.

Indeed, for every G-representation V, the stable equivalence S~V A SV — S induces a stable equivalence
PG(STVYASVT 2 aC(SV) A BP(SY) s dC(STV ASY) = 29(S)=S.
So we obtain
dG(S7V) ~ STV,

In other words, if n = dim(V ¢) is the dimension of the fixed point space of V, the ®¢(S~") is a (—n)-sphere.
Now we can consider the canonical presentation of a G-spectrum X with respect to the exhausting
sequence

p — 20 — 3p — ... —np — ...
of multiples of the regular representation. By Proposition 5.21 the G-spectrum X is stably equivalent to

the homotopy colimit of the spectra S~ A X (np). So ®¢X is stably equivalent to the mapping telescope
of the spectra

PE(ST A X(np)) ~ BY(ST)AX(np)¢ ~ ST A X(np)© .

Since the n-th term of the geometric fixed points ®&X is precisely X (np)®, this reproduces the definition
of ®C.
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8. POWER CONSTRUCTIONS
Given an orthogonal spectrum X, the m-th smash power

XM — XA AX
——

m

has a natural action of the symmetric group >, by permuting the factors. If X is an H-spectrum, the
H-actions of each factor combine into an action of H™. Altogether we obtain a natural action of the wreath
product ¥, ! H

YSmlH = X, x H™
on X (™) We recall that the multiplication on the wreath product is given by

(05 hyeoo s hm) - (75 k1, oo k) = (075 heqykrs o hemykm)
We can write the action on X (™) symbolically as
(o5 hiyoooshm) - (1 Ao Axy) = ho-—l(l)fro-—l(l) VAN hg—l(m)xa—l(m) .

To get the internal smash product in the category of H-spectra we usually restrict this action along the
diagonal embedding H — X,,  H,h — (1; h, ..., h), but we are going to remember all of the action of
Y L H. We write P™X for X (™) when we consider it as an orthogonal ,, ¢ H-spectrum and refer to it as
the m-th power of X. The power construction has the following formal properties:

(a)
P"(S)=S
(b)
m n _ EmnlH m-+n
P"X ANP"X = res(z,:rzH)x(EnzH)(P X)
where the restriction is taken along the monomorphism
+: CntH)X (B tH) — Sl H
(0'; hl,...,hm) + (7’; hm+1,...,hm+n) e (O’-i—T; hly--whwmhm-&-l;n-,hm+n)
(c)
m( pk SpmlH km
P™(P'X) = reSEfnz(Esz) P X
Here the restriction is taken along the monomorphism

(8.1) S L (Ep tH) — Zpm U H
—1 —1
(J; (7—1; hl)v ceey (Tm; hm)) — (7-0'_1(1), h? (1)) et (To_l(m)a h? (m))
where h' = (hi,...,h}) € H* and the operation ‘+’ is as in (b).

WY - PPXAP"Y = PP(XAY)
P"(XVY) = \/ (Sm)t Asixz,_, PPXAP™TY .

PM(HxgY) = (Zpmt H) 5,5 (P™Y)
for every subgroup K of H and every orthogonal K-spectrum Y.

The most important homotopical properties of the power construction is as follows.
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Theorem 8.2. The power operation functor

P™ : Spy — Sps,aH

m

takes m,-isomorphisms between cofibrant H -spectra to m,-isomorphisms.

Proof. Here is the crucial test case: Ay : FyySY — S is one of the generating 7,-isomorphisms. We have
P™S =8, the ¥, ¢ H-sphere spectrum. On the other hand,

P (FySY) = FymSYV"

and the map P™ Ay becomes Aym, which is a 7, -isomorphism for the group %, ! H. (]

Now we construct natural power maps of homotopy groups
(8.3) P (X)) — mp(PTX) .
Here V is a H-representation and V™ is the (X,, ! H)-representation with action given by
(05 hiy oo hm) - (V15 0m) = (ho1(1)Vo-1(1)5 -+ Ro—1(m)Vo—1(m)) -

The construction of the power map is straightforward: if f : SV+"P# — X (npy) is a H-map representing

a class in 7 (X)), then the composite

m m (m) Tnpp,... np
§VTnedi 2 (VEnen)(m) Ly X (npyg)m) L, (X0 (npp)™) = (PTX) (npl)

is equivariant for the group X,, ! H, so it represents an element in ﬂ‘z}ﬁlH(PmX ). Here

ivi.v : X(V)ALAXV) — (XM)Yyvm™)

is the (V,...,V)-component of the universal multilinear map, which is %, ! H-equivariant. If we stabilize
fto fopg:SVOm+tra s X ((n+ 1)pg), then the above composite changes into

intDprtes(nt D © (0 p1)™ = (ingsr,cmpw © F™) 0 Pl -
So the class
P™[f] = <inp,...,np0f(m)> in W‘E/Z',‘LZH(P’”X)
only depends on the class of f in 7 (X).

Remark 8.4. As is immediate from the construction, the power map P™ : i (X) — mym™ (P X)) actu-

ally factors through a modified equivariant stable homotopy group w‘%iﬁzH’p}’n (P™X) based on an ‘incomplete

universe’, as discussed in Remark 4.22. This modified homotopy group FEV"”ZH’p H (Y) of a X, H-spectrum Y’

is defined by the same kind of colimit as for the ordinary equivariant homotopy groups, but via iterated
stabilization with the representation p7; (instead of the regular representation of ¥,, ¢ H). The modified
homotopy group maps to the homotopy group W%’LZH(Y), but the map is generally not surjective. For
example, for H = e we have p]' = R™ with ¥,,-action by coordinate permutation. In the case ¥ =S of
the sphere spectrum the group 7™ (S) is isomorphic to the Burnside ring A(%,,) of the group %,,, whereas

7% e (S) is the subgroup generated by those 3,,-set that can be embedded equivariantly into the natural
Y n-representation on R™. A coset X,,/H belongs to the restricted Burnside ring if and only if H is the
stabilizer group of some partition of the set {1,...,m} or, equivalent, if H is conjugate to a subgroup of
the form ¥;, x .-+ x 3;, with iy + -+ i =m.
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Now we discuss properties of the power map. The power map x — z™ in a commutative ring has the
properties

0m=0, 1m=1, 2°=1, zl=az, (@Hm=2"  gm. 2" =amm,

m
xy)"t =a™ - y™ and z+y™ = <m>o:zymZ
() o= (]
All of these properties have analogues for the power construction in equivariant stable homotopy theory.
We obviously have P™(0) = 0. For the case X = S of the sphere spectrum we have P™(S) = S and the
unit element 1 € 7{’S exponentiates to P (1) = 1 in 7o ™"'S. I we restrict the class Plz € W‘E,IZHX along
the canonical isomorphism H — %7 ! H that sends h to (1; h) we recover z.
The power map is transitive in the sense of the composition formula

P™(Prz) = resg ) (PP )

in the group W(E‘}",;Z)(f’“ZH)Pm(PkX). Here we used the fact that P™(P*X) is the restriction of P* X along
the monomorphism (8.1) from 3,2 (X3 0 H) to Sgm L H and (VF)™ is the restriction of V*™ along the same
monomorphism.
The power map interacts nicely with the external product: we have
m 7 Sm4nlH pe
(P™z) - (P"z) = res(EJZH)X(anH)(P )

in the group W&ET,T:?)X(Z"ZH)(P”LX A P"X), using that P™X A P"X is the restriction of P™T"X along the

monomorphism + : (X, 0 H) X (X 0 H) — Y UH and V™ @ V™ is the restriction of V™™ along the
same monomorphism.
Moreover, for classes z € m{f (X) and y € n{i-(Y') we have the product formula

(8.5) (D) (P7a) o (P™y)) = P ey)
in the group W(X:‘}"égv)um(X AY), where ng?x)f : PMX ANP™Y 2 P™(X AY) is the shuffling isomorphism

and V" @ W™ = (V& W)™ given by shuffling factors respectively summands. For z,y € m{ (X) the power
operation satisfies the sum formula

(8.6) P"(x+vy) = Z tr;m_i(P'z - P y) .
i=0

The dot on the right hand side refers to the external product

T (PX) x myn(ProiX) s g (DX Gt (piy g pri)

and
Wimei o (P A PPiX) s apnt (P X)

is the RO(G)-graded internal transfer map (4.32) for the monomorphism + : (X;0H) X (E,—itH) — X0 H,
using that the restriction of P™X along this monomorphism is P*X A P™~*X and the restriction of V™ is
Vigym=i,
If K is a subgroup of H and y € m& (X), then we have
P™(trify) =ty (P™y) -
Power operations are compatible with restriction: for every group homomorphism « : K — H and
every H-spectrum X we have

P™"(a*X) = (L) (P™X) and (@*V)"™ = (Zpnta)" (V™)



78 STEFAN SCHWEDE
as X, ! K-spectra respectively X, { K-representations and the square

ﬂ-‘l/{ (X) P—m> WV:‘VYZIZH(PmX)

a*l l(zmla)*

iy (0" X) ——— marpn (P (@ X))
commutes.

Power operations also commute with conjugation: If H is a subgroup of G and g € G we set A(g) =
(15 g,---,9) € G- Then (c; V)™ = c*A(g)(Vm) as X, ! H-representation and for every G-spectrum Xthe
square

il (X) — s (P X)

l J{A(g)*
H x
V

Ty S (PTX)

commutes.

9. NORM CONSTRUCTION

In this section we review the norm construction for equivariant orthogonal spectra. The norm construc-
tion and norm map, also known as ‘multiplicative transfer’, were first introduced by Evens in the algebraic
context of group cohomology [8]. In the context of equivariant stable homotopy theory, multiplicative norm
maps were first studied by Greenlees and May in [9], and the norm construction was first developed by Hill,
Hopkins and Ravenel [10]. Again, our exposition is a little different from the ones in [9, 10].

We are given a group G, a subgroup H of G and an H-spectrum X. The multiplicative norm NGX is
a certain G-spectrum whose underlying H-spectrum is a [G : H]-fold smash product of copies of H. The
multiplicative norm construction is strong symmetric monoidal, i.e., equipped with coherent isomorphisms

NSX ANSY = NS(XAY).

So if R is an H-ring spectrum, then NgR becomes a G-ring spectrum via the composite

G
NSR A NSR = NS(RAR) ', NSR,

and NgR is commutative whenever R is. Moreover, for commutative equivariant ring spectra, the functor
N§ is left adjoint to the restriction of commutative G-ring spectra to commutative H-ring spectra.

The most important homotopical property of the norm functor is that it takes 7, -isomorphism between
cofibrant H-spectra to 7, -isomorphism of G-spectra, so it allows a derived functor

NS : Ho(Spyg) — Ho(Spg)

that is still strong symmetric monoidal.

Motivation. The norm construction is a multiplicative version of induction from a subgroup to a larger
group. In order to motivate the construction of the norm functor we review induction from a subgroup H
to a supergroup G in the context of representations.

If V is an H-representation, then the induced G-representation is

GxxgV = R[G] ®R[H]V~
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Additively G xg V is a direct sum of [G : H]| copies of H. We can define an explicit decomposition by
choosing an ordered set

(gla927 s 7gm)

of representatives for the right cosets of H in G, where m = [G : H] is the index of H in G. A specific
R-linear isomorphism is then given by

m
a V" — GxgV ., (vi,...,0m) —> Zgivi
i=1

(this isomorphism is in general not H-linear). This decomposition depends on the chosen coset represen-
tatives, and the G-action on the right hand side does not a priori correspond to anything on the left hand
side.

Now we ‘average’ over all possible collections of coset representatives and thereby obtain a version of V™
equipped with a canonical G-action. Since V is an H-representation, V" is naturally a representation over
the wreath product

with multiplication given by
(05 hayoo s hm) - (75 k1, oo k) = (075 heqyka, o hemykm)
The action on V™ is given by the formula
(O’; hl, ey hm) : ('Ul, e ,'Um) = (h0—1(1)vg—1(1), ey hg—l(m)va—l(m)) .

We let (G : H) denote the set of all systems of coset representatives for H in G. So an element of (G : H)
is an m-tuple (g1, ..., 9m) € G™ such that

as sets. The group G acts from the left on (G : H) by

v (915 9m) = (91 Y9m) -

The wreath product 3, H acts on (G : H) from the right by

(91; s 7gm) : (Uy hla EREE) hm) = (ga(l)h17 s agd(m)hm) 5
this right action of ¥, ! H is free and transitive. We can now form

NEV = (G:H)xg, g V™

which becomes a G-representation by

Yo lg1y s Gms Uiy s Om] = [YG1s e YGmi UV1ye ey Um) -
Lemma 9.1. The map

m
NGV = (G:H) x5, g V™ — GXgV, (g1, 1 Gmi Vly-eesUm] — Zgivi
i=1

is G-equivariant isomorphism.

The point of this reinterpretation of the induction functor is that the construction NGV can be performed
in any symmetric monoidal category and it yields a functor from H-objects to G-objects. The norm
construction in equivariant stable homotopy theory is the special case of the category of orthogonal spectra
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under smash product. So we now run the analogous story ‘multiplicatively’, i.e., we replace m-fold direct
sum by m-fold tensor or smash product. Given an orthogonal spectrum X, the m-th smash power
XM = XA AX
—_—
m

has a natural action of the symmetric group ¥, by permuting the factors. If X is an H-spectrum, the
H-actions of each factor combine into an action of H™. Altogether we obtain a natural action of the wreath
product ,,0H on X (™). To get the internal smash product in the category of H-spectra we usually restrict
this action along the diagonal embedding H — %, { H,h — (1;h,...,h), but now we are going to do
something different.

Definition 9.2. Let H be a subgroup of G and X an orthogonal H-spectrum. The norm NgX is the
orthogonal G-spectrum given by
Nfi = (G:H)y Agam X

The following properties are immediate from the construction:

(i) Since X,, 0 H acts freely and transitively on the set (G : H) of coset representatives, the underlying
orthogonal spectrum of NSX is isomorphic to X (™. Indeed, if (g1,-.-,9m) is one system of coset
representatives, then the map

xOm) Jgngms 7 (G:H)y As,ym X™ = NGX

is an isomorphism of orthogonal spectra.
(ii) The norm functor commutes with smash products up to coherently associative, unital and commutative
isomorphism. Indeed, ‘reshuffling the factors’ provides an isomorphism of orthogonal spectra

WY (X AY)m = xm) Ay )

that is X, { H-equivariant (with diagonal %,,? H-action on the right hand side). So upon application
of (G: H)y As,, g — we obtain an isomorphism of orthogonal G-spectra

NG(XAY) = (G HYy A (X AV
— (<G : H>+ As, 1 H X(m)) A\ (<G : H>+ Ax

[g; ('rl/\yl)/\"'/\(xm/\ym)] —
[G iAo Azm] A G Y1 A A Y]

" Y<m>) — NSXANSY

ml

(iii) As consequence of the previous item we get that for every H-ring spectrum R the norm N§R is a
G-ring spectrum with multiplication
G Gp ~ G Niin G
NFR AN NgR = H(RANR) —— NpzR.
If the multiplication of R is commutative, so is the multiplication of N§R. Hence NG passes to a
functor from commutative H-ring spectra to commutative G-ring spectra, and as such it is left adjoint
to restriction from G to H.

(iv) The norm construction is transitive, i.e., for K C H C G and every orthogonal K-spectrum X, the
G-spectra NG (NEX) and N¢ X are naturally isomorphic. Moreover, the collection of isomorphisms
NG(NEX) — NEX (to be defined below) is itself transitive, in the sense that for every quadruple
of nested groups L C K C H C G the two composite isomorphism from N§(NZ(NEKX)) to N¢X
are equal.

The construction of the transitivity isomorphism starts from the map

(G:H)yx (H:K)" — (G:K), ((g1,---:gm): (h',...,k™)) — (gih})1<i<m.1<j<n »
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where m = [G : H], n = [H : K] and h* = (hi,..., h%). This factors over a well-defined map
(G:H)xx,u (H:K)" — (G:K)

that is equivariant for the left G-action and for the right action of the group X, (3, K). that is
equivariant for the left G-action and for the right action of the group ¥,, (2,1 K). On the target the
larger group X, ! K acts from the right, and the map induces a morphism of orthogonal G-spectra

m

(m)
NS(NEX) = (G: H)y xs,1 (<H Ky As, i X(”))

IR

(G H) xs,0m (H : K)™) 1 As, s, (X))

— (G K) 4 Aspax X = NEX
To check that this map is an isomorphism we use that the underlying non-equivariant orthogonal
spectra of both sides are isomorphic to an nm-fold smash power of X. Indeed, if (g1,...,gm) is a

system of coset representatives for H in G and (hq, ..., hy) is a system of coset representatives for K
in H, then (g;h;)1<i<m,1<j<n is a system of coset representatives for K in G. Moreover, the diagram

hayeihin; =]

[9150sGm; —]

(X )t (NE X)) N§(NEX)

|

NEX

lgih;; —]

commutes, and so the right vertical map is an isomorphism since the other three maps are.

Remark 9.3. Since X, 1 H acts freely and transitively on the set (G : H) of coset representatives, the map

(9.4) x(m) _1grgmi 71 (G:H); Ay,g X™ = N§X
is an isomorphism of orthogonal spectra for every system of coset representatives g = (g1, ..., gm). We can

transfer the G-action on N§X along this isomorphism into a G-action on X (m) The transferred G-action
on X (™ has the following explicit description. The chosen coset representatives § define a monomorphism
(9.5) Uv:G— X,H by v-g = g-¥(y),
using that the right action of X, ! H on (G : H) is free. More explicitly the components of the element
®(v) = (03 hi,. .., hy) are determined by

V9 = Go(i)hi

for i = 1,...,m. We can restrict the X, ! H-action on X (™ to a G-action along the monomorphism ¥,
and then the isomorphism (9.4) is G-equivariant. In other words, NgX is naturally isomorphic, as a G-
spectrum, to U*(X (™). So we recover the point of view adopted by Evens [8] and Greenlees-May [9], who
define the norm construction by choosing a set of coset representatives and restricting along the resulting
homomorphism V.

Remark 9.6. As we already indicated, the norm construction makes sense in any category C equipped
with a symmetric monoidal product [J. Indeed, for every H-object X in C, object

xm — x0...0X
S ——

is acted upon by X, ! H and we can set

N$X = (G:H)xs g X™ .
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(This definition implicitly claims the existence of a certain coequalizer inn C, which exists because we can
for example take the object U*X (™ where ¥ : G — ¥, { H is the monomorphism (9.5) defined from
any choice of coset representatives.) The formal properties (i)—(iv) above carry over with the same formal
proofs. Besides the category of orthogonal spectra under smash product there are some other cases where
we need the associated norm construction:

(a) In the category of sets under disjoint union, the norm construction is isomorphic to induction. Indeed,
for every finite H-set S the map

<GH> XS, H ({1,,m} X S) — Gxyg S
defined by
91, gm: (i, 8)] — gis
is G-equivariant bijection.

(b) We consider the category of bases sets, based spaces or orthogonal spectra under wedge. The the
norm construction is again is isomorphic to induction because the map

(G: H) Xy, H ({1,...,m}+/\X) — Gxg X

defined as in the previous example is G-equivariant bijection.
(c) There is a ‘multiplicative’ version of the last two examples. We again consider the category of sets,
based spaces or orthogonal spectra, but this time under cartesian product. A G-equivariant isomorphism

(G:H)xs, g X™ — map’(G, X)
is then given by
(915 s Gm; T1,-. ., Tm] — [hg; — hay] .
Here we use that every element of GG is uniquely of the form hg; for one of the coset representatives g; and

a unique element h € H.

Let H be a subgroup of G, X an orthogonal H-spectrum and V an H-representation. In the following
we shall need a natural map

(9.7) Jxyv + NF(X(V) — (NGX)(GxgV)

that relates the space level norm construction (with respect to smash product) of the based H-space X (V)
to the value of the spectrum level norm NSX at the induced representation. The construction of this map
starts from the (V... ,V)-component of the universal multilinear map

ivi.v : X(V)A L AX(V) — (XM)(vm)

which is ¥, { H-equivariant. On the target the wreath product acts diagonally for the two actions on the
spectrum X ™) and the representation V™. We compose the induced map (G: H) X, 1 iy, v with the
homeomorphism [...]

(G: H) xg,om (XUWV™) = (G H) xs,an X")(G: H) xg,,m V™) = (NGX)(Gxpg V)
and obtain the map Jx v .

Example 9.8. We consider the free orthogonal H-spectrum Fy generated by an H-representation V. A
morphism of orthogonal G-spectra
Fowyv — N§(Fy)

is freely generated by the image of the point Id%,m) under the map

Jry v

N{O(V) = Ng(Fy(V)) (NGFV)(Gxu V).
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We claim that this morphisms is an isomorphism. Indeed, repeated use of the canonical isomorphism
Fygw = Fy A Fy defined in (5.8) with V = W gives an isomorphism
va F‘(/m)

of ¥, H-spectra. Application of (G : H) s, — gives a sequence of isomorphisms of orthogonal G-spectra

1%

FGI><HV = F<G!H>l><2mzHVm = <GH> X, H va
= (G H) xy,an BV = NE(Fy)

(where we used Lemma 9.1 to identify (G : H) x5, ,g V™ with the induced representation G x iy V'). More
generally, the free spectrum generated by a based H-space A norms as

N§(FyA) = Faw,v(NGA)

where N§ A is the space level norm construction of A.

This argument generalizes to semifree spectra as follows. We let V' be an H-representation and L a based
H x O(V)-space. The semifree spectrum Gy L generated by L in level V' was introduced in Example 5.9.
There is then a natural isomorphism

Gawuv (0(G wu V)i Angow) NGL) = NE(GVL) |

The semifree spectrum on left hand side needs to be explained. Here NEL is the space level norm construc-
tion of the underlying H-space of L. The normed space N§ L comes with an action of the normed group
NSGO(V), so that altogether the semidirect product G x NGO(V) acts on NGL. We extend the action of
NSO(V) along the monomorphism N§O(V) — O(G x g V) (or, equivalently, extend the G x NSO(V)-
action along G x NGO(V) — G x O(G x g V)) and then form the semifree G-spectrum in level G x g V.

Example 9.9. We discuss an example relevant to the solution by Hill, Hopkins and Ravenel of the Kervaire
invariant problem [10]. In Examples 2.14 and 7.11 we discussed the commutative Cy-ring spectrum MR
whose underlying non-equivariant spectrum is the complex cobordism spectrum and whose geometric fixed
point spectrum is stably equivalent to the unoriented cobordism spectrum MO.

Hill, Hopkins and Ravenel consider the spectrum

MUW = NS*(MR),
2
the norm of M R along the unique monomorphism Cy — Cy of the cyclic group of order 2 into the cyclic
group of order 8. Then the underlying Cy-spectrum of MU is
MRANMRANMRAMR R .

If ¢ is a generator of Cg, we can take {1,¢,#2 13} as a set of coset representatives for Cy. The associated
monomorphism ¢ : Cg — 34! C5 sends the generator ¢t to the element

O(t) = ((1234); 1,1,1,7) € Lyx Cy =%421Cy ,

where Cy = {1,7}. That means that the action of the generator t on MRAMRAN MR A MR is given by
complex conjugation of the last factor, followed a cyclic permutation of the factors; symbolically, we have

t~(£€1/\1’2/\f£3/\$4) = .’E4/\I1/\SE2A1‘3 .

To be completely honest, one has to admit that setting MU® = Ng2B (M R) is oversimplifying matters.
Indeed, we simultaneously want certain formal properties and we want to be able to control the equivariant
homotopy type of MU . To achieve this, we have to feed into the norm construction a commutative Ca-ring
spectrum whose underlying Cy-spectrum, is sufficiently cofibrant (or rather flat). I doubt that the specific
model M R defined in Example 2.14 is sufficiently cofibrant. So one has to construct another commutative
C5-ring spectrum M R€, sufficiently cofibrant, and a multiplicative x,-isomorphism M R® — M R and then
take MU = Ngj (MR°). This is possible, but I am not aware of a construction that avoids discussing
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positive model structure on equivariant spectra and equivariant ring spectra. The necessary details can be
found in Appendix B of the paper [10] by Hill, Hopkins and Ravenel.

Now we get to the key homotopical property of the norm construction:
Proposition 9.10. Let H be a subgroup of G. Then the norm functor
Nf : Spy — Spc

takes 7, -isomorphisms between cofibrant H-spectra to mw,-isomorphisms of G-spectra. Hence the norm func-
tor descends to a functor

N§ : Ho(Spy) — Ho(Spe)
on homotopy categories.

Proof. We just give part of the argument. The m,-isomorphisms of H-spectra are generated, in a suitable
sense, by weak H-equivalences between based H-spaces and by the morphisms Ay : FyySY — S, adjoint
to the identity of SV, for all H-representations V.

So we consider a weak H-equivalence f: A — B between based H-CW-complexes. We have a natural
isomorphism

NG (E®4) = D=(NGA),
where NIC{;A is the space level norm construction with respect to smash product, i.e., NEA =(G:H); Ny, 0
A Raising an equivariant space to the m-th power takes weak H-equivalences to weak ¥, H-equivalence,
so this settles the case of suspension spectra of equivariant CW-complexes.

The case of the 7 -isomorphism Ay : Fy,SY — S is handled as follows. As explained in Example 9.8,
the normed spectrum Hg Fy is isomorphic to the free G-spectrum Fgy v of the induced representation
G x g V. Similarly, N§(SV) is isomorphic to the sphere S“*#V of the induced representation, so altogether
we can identify

Ng(FVSV) ~ FGIXHVSGMHV
as G-spectra. Under this identification and NS = S, the morphism NGy : NG (FyySY) — N§S becomes
the morphism Agy ,v : FGKHVSG“HV — S, which is a & -isomorphism of G-spectra by Proposition 5.14.

Now we may attempt to run the usual ‘cell induction argument’; a problem is then that the norm functor
is not ‘additive’ (it does not commute with colimits), but rather a ‘power construction’. So there is more
to say when analyzing the effect of Ng on a cell attachment, but we stop here for the time being. O

Our next topic is the relationship between the norm construction and geometric fixed points. This
relationship is given by a natural morphism of non-equivariant spectra
(9.11) A X — Y(NGX)
that is a stable equivalence whenever X is a cofibrant H-spectrum.

For every based H-space A, the diagonal map A : A# — (NGA)Y is a homeomorphism. For every
orthogonal H-spectrum X, the special case V = npp of the map (9.7) is an O(n)-equivariant map

Txmpn  Nij(X(npm)) — (NX)(npa)
where we have used that the induced representation G Xy pg is canonically isomorphic to the regular

representation of G. So by combining the two maps we obtain a based continuous,

G

(@ X)0 = X(npm)" = (NF(X(npm)))® 0 (NGX)(np6))® = (89 (N X)),
As n varies these maps make up the morphism A : 7 X — @G(NICjX).
Proposition 9.12. For every cofibrant orthogonal H-spectrum X the map
A oflx — Y(NGX)

18 a Ty-1somorphism of orthogonal spectra.
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Proof. Again we only check two crucial special cases. First, if X = ¥°°A is the suspension spectrum of an
H-CW-complex A, then @7 X = @ (£ A) =2 51 AH and

PE(NGX) = dY(NG(ZXA)) = dF(RX(NGA)) = RX(NGA)E = n>4H

Here we use that G-fixed points of the space level norm construction N§ A are isomorphic to H-fixed points
of A. We conclude that the map A : ®7(E°A4) — ®F(NG(X>®A)) is an isomorphism, so in particular a
Ty-isomorphism.

If X = Fy is the free H-spectrum generated by an H-representation V, then, loosely speaking, ® Fy is
a ‘—VH_gphere’, whereas NG Fy = Fgy,,, and so ®9(NGFy) is a ‘—(G x g V)%-sphere’. Since the G-fixed
points of the induced representation are naturally isomorphic to the H-fixed points of V', this shows the
claim for X = Fy .

More formally, we argue as follows. Since the norm construction preserves m, -isomorphisms between
cofibrant spectra, the class of cofibrant H-spectra X for which A : @7 X — % (NG X) is a m,-isomorphism
is closed under 7,-isomorphisms. Proposition 5.14 provides a 7,-isomorphism Fy SV — S. Since the sphere
spectrum is an equivariant suspension spectrum, so the claim holds for S by the first paragraph, and hence
for the H-spectrum Fy,SY. In the commutative diagram

sV an

SV AGHE, SV NG (NG Fy)

O (Fy V) — = DO (NG (FYSY)) — > 06 (Fa v SOV

three of the five maps are isomorphisms, and the lower horizontal morphism is a 7,-isomorphism by the
above. So the map SVTAAIS SV  AAisa my-isomorphism, hence so is A : @7y, — @G(NgFV). O

As we mentioned at the beginning of this section, the norm construction, when extended to commutative
equivariant ring spectra, is left adjoint to the restriction functor from commutative G-ring spectra to
commutative H-ring spectra. Again, this is a formal argument that works in any symmetric monoidal
category. Given a commutative G-ring spectrum R, we define a morphism of commutative G-ring spectra

¢ : N§G@*R) — R
as follows. For every system of coset representatives § = (g1, ..., gm) we define
€ R™ — R

as the composite

R(m) (g91-=)A . Algm-—) R B R

where p is the iterated multiplication morphism of R. For every element x € 3,,, ! H the composite

Rm) £, pim) %, p
equals €5,, so the morphisms €5 assemble into a morphism of orthogonal spectra
€ : NSR=(G:H)xs,,u R™ — R.

Clearly, if we follow €5 by left multiplication by an element v € G, we obtain €,5, so the morphism ¢ is
G-equivariant. Moreover, the morphism € is multiplicative.

Proposition 9.13. The norm functor Ng from commutative orthogonal H-ring spectra to commutative
orthogonal G-ring spectra is left adjoint to the restriction functor with respect to the morphism e : NER —
R as adjunction counit.
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Proof. We have to show that for every commutative orthogonal H-ring spectrum S, every commutative
orthogonal G-ring spectrum R and every morphism f : NﬁS — R of orthogonal G-ring spectra, there is

a unique morphism f : S — R of orthogonal H-ring spectra such that f = ¢ o (Ngf) d

10. NORM MAP

The norm construction for equivariant spectra comes with norm functions on equivariant homotopy
groups. We discuss an ‘internal’ version of the norm map for commutative orthogonal G-ring spectra; there
is also an ‘external’ norm map, that we briefly touch on in Remark 10.13. In the following we let H be a

subgroup of G and R a commutative orthogonal G-ring spectrum. The aim of this section is to define and

study a norm map norm% : 7 R — ngxHV(R) for every H-representation V.

The norm of an element x € 7{ R is essentially a restriction of the m-th power P™(z) to R, where
m =[G : H] is the index of H in G. In more detail, we will define a homomorphism
SmtH ( pn
(Gl=) : mn™ (P"R) — 76y, v (R)
and then define the norm map by
(10.1) norm% (z) = (G|P™(z)) .

We construct the homomorphism (G|—) and the norm map norm% in a slightly more general situation.

Construction 10.2. We let H a subgroup of G and S C G be an H-invariant subset, i.e., a subset such
that S- H = S. For a commutative orthogonal G-ring spectrum R we will now define a homomorphism
S lH n G(S
(S|-) : mprt(P"R) — 7o ) (R)
where G(S) = {y € G | v- S = S} is the stabilizer subgroup of S and n = |S/H]| is the index of S, i.e., the
number of disjoint H-cosets that make up S. We will then define a norm map
normy, : THR — ﬂ?é‘?vR by normyy (z) = (S|P"x) .

The morphisms (S|—) and the norm map norm% are natural for homomorphism of commutative orthogonal
G-ring spectra.

For the construction we choose an H -basis of S, i.e., an ordered n-tuple (g1, .. ., gn) of elements in disjoint
H-cosets that satisfy

i=1
The stabilizer group G(S) acts from the left on the set (S : H) of all such H-bases of S by

V(g1 0n) = (V91,5 79n) -

The wreath product ¥, ¢ H acts freely and transitively on (S : H) from the right by

g- (07 h17 s 7hn) = (917 s agn) ’ (U) h17 R hn) = (gU(l)h17 s 7g0'(n)h7l) .
The chosen basis then determines a monomorphism ¥; : G(S) — X,, ¢t H by requiring that

19 = 5 0y0)
We can then define a G(S)-equivariant linear isometry
ig : \If:-;(V”) — SxgV, (v1,...,0,) —> Z gi ®v; .
i=1

Moreover, for every commutative orthogonal G-ring spectrum R we can define a G(S)-equivariant morphism

of orthogonal spectra €5 : W5 (P"R) — R as the composite

v (PprR) DN p) kR
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where p is the iterated multiplication morphism of R. So we can finally define the homomorphism (S|—)
associated to an H-invariant subset S of G as the composite
S H [ pn Y5 G(S *(pn (€3) G(S (ig)« G(S
T (PPR) —1 mGi (WH(PTR)) =2 70 (R) 2 7 (R)
If S happens to be a subgroup of G containing H, then G(S) = S and so the morphism (S|—) and the
norm map normy, take values in 7§, 1 (R). In particular, if S = G is the full group G, then (G|—) and

norm§; take values in 7&, 1 (R).
The construction of the homomorphism (S|—) involved a choice of H-basis for S, but we have:

Proposition 10.3. Let H be a subgroup of G, S an H-invariant subset of G and R a commutative orthog-
onal G-ring spectrum. The homomorphism (S|—) : W‘E/ZZH(P"R) — ﬂg;b;;v(R) and the norm map norm?,

are independent of the choice of H-basis of S.

Proof. Suppose that g is one H-basis of S. Then any other H-basis is of the form gw for a unique w € ¥, H.
We have W5, = ¢, o U5, where ¢, (7) = w™'yw. This implies

qlgw = CwO\I/g : G<S> — EnzH

* * * Y lH S lH * Y lH * [ %
vy, = Vroc, coonty) — W‘I’S:(V”)(\Ij?‘*’y) = ”xpgéc;(\/"))(\llg(cwy))
igw = GgoWr(LY") o WE(VM) = Wi(ch(V™) — SxpV

o = o ULy« Wi (P™R) = Ui(c,(P™R)) — R

Thus we get

. * : * V" * (1P R * %
tgwy © €gw, © \I’gw - (Zg*(\llg(lw ))*) ° (€§*<\P§(lw ))*) o (lllgcw)
= ig, 0€g, 0 (W5(I )0 Wy 0 (1" F)uoc],
= ig, 06, 0o () o (I )0 cf,
= ig, 06z, oViow, = ig oe5 oWy
We have used the naturality properties of various constructions and, in the last equation, the fact that
conjugation by an inner automorphism is the identity on equivariant homotopy groups. O

The various properties of the power construction imply corresponding properties of the norm map.
Given any H-invariant subset S of G, the stabilizers of S and its complement S¢ = G — S agree,

G(S) = G(S°) .

Moreover, the induced representation G x g V' is the orthogonal, G(S)-equivariant direct sum of the sub-
spaces S X V and S°¢ x g V; so we have an internal product

G(S G(se (s
C 7TS1><<H>V(R) X 7TS“<I><H>V(R) — 7TG[<><11>,V(R>-
add:

g
Jx © norm% = normg% 00y

Proposition 10.4. Let S be an H-invariant subset of G and R a commutative orthogonal G-ring spectrum.
The norm maps normsy : m (R) — ngiizv(R) have the following properties.
(i) We have

normz(0) =0, mnormy(1) =1, norm%(z)=1 and normi(z)==z.
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(ii) For every g € G we have

norm%s = (lg)s0gso norm}g{
where ly = c;(S xuy V) — g8 xu V is the G(gS)-linear isometry defined by l,(s ® v) = gs @ v. In

particular we have norm%y’ (z) = (ig)« (gx).

(iii) (Consistency) Given nested subgroups H C K C G and an H-invariant subset S of K, we have

K(S) C G(S) and the norm maps relative to K and G are related by

s
normy, = res K<< S>> onormy,

where the norm on the left hand side is formed relative to K and the norm on the right hand side is
formed relative to G.

(iv) (Transitivity) The norm maps are transitive, i.e., for subgroups K C H C G, every K-invariant

subset T of H and every H(T)-invariant subset S of G

s T _ G(ST) ST
HOI‘IHH<T>OHOI‘H1K = I'GSG<S> onormK

as maps from i (R) to 7T(GST)><KV(R)7 using the identification S % gpy (T x g V) =2 (ST) xg V.

(v) (Union) Let S and T be disjoint H-invariant subsets of G. Then

G(s (T G(SuT
(reSGES;ﬁCXT) norm’y (z)) - (resaésgmG@) normy(z)) = resGES;ng;< >norm%UT(x) .

(vi) (External multiplicativity) The norm maps are multzplzcatwe with respect to external product: for two

commutative G-ring spectra R, R and classes x € il (R) and & € wil,(R) we have
(norm?; ) - (normy; ) = normy (z - Z)

o @(s)
m T

S;H(V@W)(RAR)'

(vii) (Internal multiplicativity) The norm maps are multiplicative with respect to internal product: x €

7 (R) and y € 7il.(R) we have

(norm?; x) - (norm?y y) = normi(x - %)

o as)
M T, (vew) (R).

(viii) (Double coset formula) For every H-invariant subset S and every subgroup K of G(S) we have:

G(S
resK< )o norm% = H normgmgH 0gy © resggmH
lgleK\S/H

as maps from w{} (R) to w§, (R). Here [g] runs over a system of representatives of all K-H-orbits
of S and we use the K-linear isometry

@ KD(KQQH(CZV) = SIXHV
lgleK\S/H

to identify the indexing representations of both sides.

(ix) (Sum) For z,y € nil (R) the relation

norm% (z + y) Z trG normH( ) - normg S(y))

holds in ngHV(R)' The sum runs over a set of representatives S of all orbits of the left G-action on

the set of H-invariant subsets of G.
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Proof. (i) We have normy, (0) = (S|P"(0)) = (S|0) = 0. In the case R = S of the G-sphere spectrum and
with V = RY we have P*(S) = S and P"(1) = 1. Also, in this case G(S) acts trivially on the representation
and on P"S =, so the maps V7, ¢; and i3 involved in the definition of (S|—) are all identity maps. So we
get norm¥,(1) = (S|P*(1)) = (S|1) = 1 in 7r§<S>S. For an arbitrary commutative G-ring spectrum we then
have norm%(l) = 1 by naturality of the norm map. The empty H-invariant set has index 0 and stabilizer
group G(()) = G. We have ¥g! H = e, the trivial group, and P°R = S is the sphere spectrum. Moreover,
(0]-) : 7S — 7§’ R sends the unit element 1 to the unit in 7$'R. So we have norm% (z) = ([1) = 1.
For S = H we can choose the unit 1 as the H-basis, and this choice yields that (H|—) is the restriction
along the canonical isomorphism H — ;! H that sends h to (1; h). The restriction of Plz along this
isomorphism is x, so we get norm#(z) = (H|P'z) = z.

(ii)) f g = (91,..-,9n) is an H-basis of S, then gg = (9g1,...,99,) is an H-basis of gS. We have
G(gS) =9G(S) and the homomorphism ¥ .5 : G(¢9S) — X, 1 H is equal to the composite ¥z = U;0¢q.

(gS|=) = dggoegg0 ‘I'zg

g

= (ly) 0 cilig) ol 0 ci(eg) oo
= (ly) ol 0 &lig) o ¢ o eg 0T
( ’

= lg)*olé%oc oigoego Wy = (lg)«0gxo(S]—)

The second equation uses that

€gg = I oci(eg) Wi (P"R)=c;(Vi(P"R)) — R and

igg = lgocglig) : Wo(V") = (V") — (95) xuV
where [y : c;(S xg V) — gS x g V is the G(gS)-linear isometry with [,(s ® v) = gs ® v. Composing this
relation with P™ gives

norm%s = (gS|=)oP" = (lg)x0gs0(S|—)oP" = (lg)*og*onorm% .

In the special case S = H the map norm{ is the identity and the isometry I, : ¢;(H xg V) — gH xg V.
agrees with 4, (where implicitly we used the tautological isometry between H x i V' and V). So the relation
specializes to
gH ;
normy; = (ig)« © g« -

(iii) The notion of H-basis for S is absolute, i.e., does not depend on whether S is viewed as a subset
of K or of G. So we can use the same H-basis of S for the construction of (S|—) relative to K or G, and
obtain (S|—) = resf{i‘z% o(S|—) where the left hand side is relative to K and the right hand side is relative
to G. Precomposing with the power operation gives the desired consistency relation for the norm maps.

(iv) Suppose that k = (H : K) is the index of K in H. We choose a K-basis h = (hq,...,h;) for T and
an H(T)-basis § = (g1,...,gn) of S. Then

gh = (gihi,..., g1, gahas. .o g2, ooy guha, ..o gnlu)
is a K-basis of ST'. With respect to this basis, the restriction of the homomorphism W 5 : G(ST) — ¥, K
to the subgroup G(S) equals the composite map

G1S) s HTY 2 v (B0 K) —— Sl K

where the last homomorphism was defined in (8.1). We have

G(ST) /x ) ) )
reSGES> >(\I/gh(PlnR)) = VI ((Zn 20 Wh) (resgibzglzK)(PlnR))

= V(S Ws)*(PM(P'R))) = Wi (P"(V;(P'R)))
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as G(S)-spectra and
G(ST *
resGés> >(egh) = €g0 (W (P"en))
as G(S)-equivariant morphisms from

G(S « n .
feSG§s>T>( sn(PR)) = Wi(P™(U;(P'R)))

to R. Similarly, we have
G(ST) ;. . -
resgisy (ign) = ig o (V5(P"in))
as G(S)-isometries from

resg§§>T>( (VM) = WE(P(TE(VY))

to (ST) x k¢ V. Moreover,
resgiay | Wi (Pa) = W5((Sn 0 W5)" (resy (% o (P))
= Ur((Zn 0 03) (P (P'z))) = Wi(P"(T}(P'x)))
in the group
P Sy (Wi (P R)) = w5l (B3P (5 (PX))))
Putting all of this together yields
ST

resgg;‘m(normK (x)) = resgég;[ (ST|P'™x)
= resgg)ﬂ(gh( WY (Pl"x)))
= (ig 0 (W(P i) ovesgisy” ((ega) Wy (P"))
W5 (P"in))) o (e 0 (W (P"er)) oxesyis, (W (P")))
= igoeg o UH(P"iy) o Ui (P"ey) 0 (W(P™(V;(P'x))))
= ig0€40 \I/g(P”(zheh\I/}—L(Pl:E)))
= igoego\ll;f(P"(norm[T((x))) = norm%<T>(norm7;((m))

(v)

(vi) The composite

* (m)
V5 (X r) egN\eg

UH(P"(R A R)) UH(P"RAP"R) = UL(P"R)AVL(P"R) " RAR

equals the morphism e; : W%(P"(R A R)) — R A R and the composite
V(VeW)) = UV e (W) 220 (Sxp Ve (Sxa W) = Sxg (Ve W)

equals the morphism ig : VZ((V @ W)") — S xg (V & W). Together with naturality of the external
product on equivariant homotopy groups this implies that the diagram

ot (PP R) x (PP R) — s myntf (PPRA PPR) — > mnt (P"(RAR))

<S>X<S|>l l<5|>

G(s s 5 _
7TS><<H>V(R) X 775><<H>W(R) S TSwvew) (B A R)
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commutes. So we get

norm (2) e norm () = (S|P"(2)) » (SIP™(@)) = (S|(L ). (P"x) o (P"))

= (S|P"(x eZ)) = norm%p(zeZ)
using the product formula (8.5) for the power map.

(vii) For every commutative orthogonal G-ring spectrum R the multiplication map p: RAR — R is a
homomorphism of commutative G-ring spectra. So naturality of the norm yields

norm (z - y) = norms (. (z o)) = p.(normf(z o))
() (o () @ norm (y)) = norms (x) - norms (y) -

(viii) The set S is the disjoint union of its K-H-orbits. By the union property (v) we have

G(s (T
1“esK< >n0rm§[(x) = H resK< >norm§(x).
TeK\S/H
So it suffices to show that
G(T) T _ K orest o
resy NOImy = NOrMpng 7 O T€SKgn Ox

for any representative g € T.
We let & = (k1,...,Kn) be coset representatives for K N9H in K. Then kg = (K1g,...,kng) is an
H-basis for KgH. Moreover, the restriction of Wz, : G(KgH) — %, H to K is the composite

K 25 S (Kn9H) 2295 v (K9nH) 24 5,01,
where A(g) = (1; g,...,9) € ¥, 1 G. This implies that
Vg (P"R) = WE(cp (g (P R))
as K-spectra and
Ueg(V") = WElea (V") = TrllegV)"™)

as K-representations. Then we have

G(KgH G(KgH) _. , G(KgH
1resK< g ><KgH|—> = 1resK< gH) Oigg 0 €rg 0 Uiy = frg O €xy O resK< gH) oWr
_ g . * * * Y lH
= Q7 O1g O€g O (\Ij (lA(g)))* © \IJR OCA(g) © resznz(}{gmH)

nl

= a’o(igoez o ¥y)o (ZA(Q))* ° C*A(g)) °© re% zfﬁmm
— a%0 (K|} o Alg). ovesSrif
The third equation uses that

erg = €xo UE(IA() : WE (P"R) = Vi(ch(P"R) — R and

irg = afoig s VR, (V) =WE((V)") — (KgH) xuV
where a9 : K X gnop (c;V) — (KgH) x g V is the K-linear isometry with a?(k ® v) = kg ® v. From this
the desired formula follows easily with the help of two naturality properties of the power operation:

resg’;(KgH) onormggH = res]GéKgH> o(KgH|-)o P"

Y lH n

ad o (K|—)oA(g)so reszn;(KmH) oP

afd o (K|—) o A(g),o P orest, y
-

Yo (K

= a9 onorm& , og.res L,y

)oP"og, OfengH
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To sum up, we have shown

G(S G(KgH KgH
resK( ) onormy = H resK( gH) normy Y7 (z) = a,o H norm® -,y 0g, orest,
KgHEK\S/H lg]e K\S/H

where

= Zag : @ K9 xKgmH(c;V) — SxgV.
[g]eK\S/G

(ix) The sum formula is mainly a consequence of the sum formula for the m-th power operation and
the additive double coset formula. However, getting all the details straight requires a certain amount of
notation and bookkeeping.

We consider any H-invariant subset S of G such that |S/H| = i. We choose a complete set of coset
representatives g whose first ¢ components are an H-basis of S. Then the monomorphism V5 : G — %, 0 H
restricts to a monomorphism U; : G(S) — %, ,,—; L H. We write (S, S°|—) for the composite

i m—ilH m 4 G(S * m (E’)* G{(S ('L’)* G(S
o (P R) — wGS L (U5 (PMR)) = w5l (R) = G (R)

The same arguments as in Proposition 10.3 show that the map ¥g g is independent of the choice of g. We
claim that this map satisfies

(10.5) (S,5%a-b) = (Sl|a)-(S°b)

for a € 7rZ M (PiR) and b e WVZZ QZH(Pm ‘R), as well as

(10.6) (G| trim—i(2)) = Z trg<s> o(S, S z)
(8], 1S/ H|=i
for all z € 7TV1 " ZZH(PmR), where tr; ,,—; is the RO(G)-graded internal transfer map from W‘%’ mitH (P™R)
to W‘Z/MZH(P'”R) . The sum runs over a set of representatives S of all left G-orbits of those H-invariant
subsets of cardinality i - |H|.
Given these two properties, the sum formula follows easily:

norm% (z + y) (G|P™(x +y)) Z (G tr;m—i( x - P™ly)
=0

(10.6) = Z Z tr§<s><5, S|P’z - P™'y)

=0 [5], |S/H|=i

on =Y D b (81P) - (SP)

i=0 (3], |/H|=i

= Z Z trg<s) (norm%( ) - normg S(y))

=0 [S], |S/H|=i

where the second relation is the sum formula (8.6) for the power operation. So we need to show (10.5)
and (10.6).

Proof of (10.5). We choose one particular complete set of coset representatives g for H in G. We let
g = (91,...,9m) be an H-basis of G such that g° = (g1,...,9;) is an H-basis of S, and hence g =
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(gi+1,---,9m) is an H-basis of S¢. Then G(S) = G(S¢) and the square of group homomorphisms

(Vys,¥ 5¢)

(Bt H) x (Bpm—i L H)

md_l i:

G Yim—i VH
o, g
commutes. Hence the diagram
i (PIR) x mym= i (PmiR) ' myan (P R)
Wls XU se vy

G(S * i G(S°© * m—1 . G(S * m
o (25 (PTR)) x %< tmeiy (Thse (PPIR)) —— g3 (U3(P™R))

71—\I/.;s(vi ge (V=) g
(Egs)* X(egs‘:)* (€5)«
G(S) G(S%) G(S)
oxWse = vy () X T sy (B) ~ Tz () (F) W se
(i58) X (igse) (ig)
G(S G(s® G(S
”S[i;v(R) X 7Tsc<><H>V(R) ; WGL;iV(R)

commutes by the various naturality properties of external and internal product. This is (10.5).

Proof of (10.6). This is an instance of the double coset formula, suitably reinterpreted. The bookkeeping
is complicated by the fact that we are simultaneously changing all three parameters of an equivariant
homotopy group, namely the group, the spectrum and the indexing representation. We fix one particular
complete set § = (g1,...,9m) of coset representatives for H in G, with associated monomorphism ¥j :
G — %,  H. The monomorphism ¥; factors as an isomorphism ¥; : G — ¥;(G) = G onto its image

followed by the inclusion i : G — %,, 1 H; so W% = W* o resg"‘ZH. Thus (G|—) is the composite

reS);mlH ~ v €5 )% 15)%
mnt (P R) 25— 1 (PP R) —5 7 o (P R) — 2% 7€ o (R) ~25 7 (R)

The double coset formula (4.21) gives

—_ STES S H
(Gltrim—i) = ig, o€z, 0W;o0 res, Ot m—s
_ . B T, % G i m—itH
- Z Zg* © 69* © \Ijg © terw(Zi,m*izH) OWx © reséwm(ziﬂn—izH)
[WIEG\(EmtH) /(Si,m—itH)
Now we rewrite the summands that occur in this formula. For w = (o3 hy,...,hy) € 3, VH and we can

define an H-invariant subset with exactly ¢ right H-orbits by

i i

Sw) = | (w);-H = U 9oy H ,

j=1
the H-invariant subset generated by the first ¢ components of gw. For 7 € ¥; ,,,—; { H we have

S(wr) = Sw),
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so the H-invariant set S(w) depends only on the right 3; ,—;-coset of w. The isomorphism U, : G — G
restricts to an isomorphism of G(S(w)) onto G N* (X; m—; L H), so we get
G Yim—ilH - G Tk Yi,m—ilH

W5 0 WG (s, o) O OTESGUw, am) = TGSy OVg Owr O TeSET
G T, % vm P™R * Xim—ilH

= Gy o¥g o (o )wo(ly Maocgoressilig

G T vm Tx(1P"R STE] * Xim—ilH

= trG(S(w)) o(qlg(lw ))* o (‘llgaw ))* © \Ijg O C, OTeS 5

Gwﬁ(Ei,m,i?H)
= tr 50y (Tl ))w 0 (T35 )0 T

w qw
We have used that Vg, = ¢, o ¥; and hence W7, = W7 ocj. We also have
igw = igoWL(LY") L WE (V™) = Wi (V™) — GxgV
o = oW (UL R) L WL (PTR) = Wi(cL(P"R) — R
so if we compose the previous relation with iz o€z, we get

Ei mfizH
O o) =
e reSG“m(zi,mfﬂH)

= g, 0 €5, 0 &5y o(Wa (Il ))w 0 (W31 F))u 0 U7,
= G 50 ©ig, © (P51 ))s 065, 0 (V51" H))u 0 U7,

= G 5()) Ogws © €, © Vhy = 18 50 (9 (Fw), S(Gw)‘|-)

. O * G
ig, O €5, © \I/go trGﬂ“(Zi,mfﬂH)

Now we sum up over a set of double coset representatives. For v € G we have vg = g¥;(y) and hence
S(Wy(7)-w) = 7-S) .
So the assignment w — S(w) induces a G-equivariant bijection
Ve (S VH /Y m—i tH) — { H-invariant subsets of G' of cardinality i - [H| } ,

and thus a bijection between the G’—(Zi}m,i ! H)-double cosets in ¥, ! H and the G-orbits of H-invariant
subsets of cardinality 7 - |H|. So we conclude that

. = . e Yim—ilH
UG otr ey = Z ig, O €5, © \I/g o trgmw(zi,miim) oWy OTESe s )
[WIEG\(EmtH)/ (Zi,m—itH)
= Z trg<5(w)> o(S(gw), S(gw)°|—) = Z trg<s> (S, 8°-) .
[W]EGN(BmtH) /(Di,m—itH) (S, 1S/ H|=i
This justifies the relation (10.6) and concludes the proof of the sum formula. ]

Remark 10.7. We observe that for every H-invariant subset S, the stabilizer group G(S) contains the
intersection of all H-conjugates, i.e.,

(?H < G(S).
geG
Indeed, 9 H is the stabilizer of the orbit gH. So the elements in the intersection stabilize all H-orbits, hence
all H-invariant subsets.
The empty subset of G is unique within its G-orbit, and by property (i) its contribution to the sum
formula (ix) is

norm% (z) - norm%(y) = 1-norm$(y) = norm%(y) .
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Similarly, the contribution from the subset G is norm% (). On the other hand, for every proper H-invariant
subset (i.e., different from () and G), the group G(S) is a proper subgroup of G. We conclude that the
obstruction to additivity of the norm map

norm% (z +y) — norm$ (z) — norm% (y)

is a sum of transfers from the proper subgroups that contain the intersection of all H-conjugates.

Example 10.8. We look at the sum formula in the smallest non-trivial example, i.e., when the subgroup H
has index 2 in G. Then G has four H-invariant subsets (), H,G — H and G. The empty subset respectively
G are unique in their respective G-orbits and contribute normg(y) respectively normg(m). The other two

H-invariant subsets H and G — H are in the same G-orbit, and we have

normng(y) = normj’ (y) = I (1(y))

where 7 is any element in G — H. We can pick H as the representative of the G-orbit {H,G — H} and the
corresponding contribution to the sum formula is then

trfj (normjj(x) - normf7—"(y)) = trfj (- (n(y))

where 7 is any element in G — H. So altogether the sum formula for z,y € 7 (R) becomes

normf (z +y) = normf(x) + trf(z- (I+(7u(y)))) + normf(y)

in &, (R), where tr§; : my(R) — &,/ (R) is the RO(G)-graded transfer map (4.32).

The most important special case of the norm construction is when S = G is the entire group. For easier
reference we summarize the properties that apply to this special case in the following proposition.

Proposition 10.9. Let H be a subgroup of G and R a commutative orthogonal G-ring spectrum. The norm

map norm$ : m (R) — TI'gKHV(R) have the following properties.

(i) We have norm%(0) = 0, norm% (1) = 1 and norm&(z) = z.
(ii) (Transitivity) The norm maps are transitive, i.e., for subgroups K C H C G and x € m& (R) we have

norm% (norm# (z)) = norm% (z)

in 7&, v (R), using the identification G x gy (H xg V) =2 G xg V.
(iii) T he norm maps are multiplicative with respect to external product: for two commutative G-ring spectra
R, R and classes x € m (R) and € il (R) we have
(norm% z) - (norm% 7) = norm§(x - z)

in ﬂng(V@W)(R AR).
(iv) The morm maps are multiplicative with respect to internal product: = € m{f(R) and y € 7 (R) we
have
(norm% z) - (norm% y) = norm§ (x - y)
G
in WGKH(VGBW)(R)'
v) (Double coset formula) for two subgroup H and K of G and a homotopy class x € it (R) we have:
1%
res% onorm$, = H norm% -,y og, orest,
lo]eK\G/H

as maps from w{f (R) to n§,, (R). Here [g] runs over a system of double coset representatives and
we use the K-linear isometry

@ KD(ngH(C;V) = G[XHV
[9le K\G/H

to identify the indexing representations of both sides.
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(vi) (Sum) For z,y € mil R the relation
norm% (z + y) Z trG normH( ) - norm& % (y))
holds in WgKHV(R). The sum runs over a set of representatives S of all orbits of the left G-action on

the set of H-invariant subsets of G.
(vil) The norm map is compatible with the geometric fixed point map in the sense that the square

G
norm gy

i (R) G v (R)
mya (O R) ——— TGxuv)e (PCR)

commutes, where A : @7 R —s ®CR was defined in (9.11) and i : VI = (G x g V)€ is the transfer
isomorphism given by tr(v) = Z[g]GG/H g .

Proof. (vii) Let consider an H-map f : SV — X(np) that represents an element in 7i(X), where
p = pg is the regular representation of H. The m-th smash power
f(m) : SmV+nmp — (SV—HLp)(m) N (X(np))(m)

is then 3, ! H-equivariant. We compare the restrictions of this ¥, ! H-map to fixed points for the subgroup
®(@G) and for the whole wreath product group:

FH
V4np\H H
(S ) R(np) ~
diag.l: Zidiag.
S (f(m))szH S H (i[Wl])E'm.ZH

|

(¢*((Sv+np)(m)))0 W (@*(R(np)(m)))c W) (@*(R(m)(npm)))

G

(SGD(HV+’RPG>G ((NgR)(an))G<—J

(Normg ne

The clockwise composite is a representative for the class (7, A)(®[f]), and the counter-clockwise composite

is a representative for ®(Norm%[f]). Since the diagram commutes, these two classes agree. O

Remark 10.10. The algebraic structure on the 0-th equivariant homotopy groups of a commutative G-ring
spectrum can be packaged differently and more conceptually into the form of a TNR-functor in the sense
of Tambara [26]; here the acronym stands form ‘Transfer, Norm and Restriction’.

Example 10.11 (Sphere spectrum). The sphere spectrum S is a commutative orthogonal G-ring spectrum
for every group G. For all H C G the restriction of the G-sphere spectrum is the H-sphere spectrum. We
claim that under the isomorphism between the Burnside ring and the equivariant 0-stem, the norm map

norm$ : w(S) — 7§(S)
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becomes the multiplicative norm of Burnside rings. More generally we claim that for every H-invariant
subset S of G the diagram

AH) M A(GLS))
7 () ———— 15 (S)

commutes, where the upper map arises by sending the class of a finite H-set X to the class of the G-
set map’ (S, X). In particular, the norm map on equivariant stable stems corresponds to the assignment
X — map? (G, X).

We quickly recall how the norm map norm$ : A(H) — A(G) is defined. This is basically the norm
construction in the category of finite sets under cartesian product, but since norming is not additive, the
extension from finite H-sets to the Burnside ring A(H) requires justification. For this purpose we consider
the product set

AH) = [ ASnH) .
n>0
We endow A(H) with a new binary operation x given by
()% (8)), = > s (50 - wg) -
i+j=n

The operation x is evidently commutative and associative and has as neutral element the sequence 1 with

1 - 1 for n =0, and
=10 forn > 0.

So A(H) becomes a commutative monoid under . Given a finite H-set X, the n-th power X" is a ,, 0 H-set
and we have

(XIY)" = Uipjmn Sp 0 H X5, 0 X' x YV
as Y, { H-sets. In other words, the ‘power series’
P(X) = ((X"Dn>o in A(H) satisfies P(XIIY) = P(X)*xP(Y) .

Since XU is a one-element set, it represents the multiplicative unit in A(e) = A(Xo ¢ H), and so the power
series P(X) is invertible with respect to x. So by the universal property of the Burnside ring, there is a
unique map

P . A(H) — A(H)

that agrees with the power series on finite H-sets and satisfies P(xz + y) = (Pz) * (Py). We denote by
P™: A(H) — A(X,, ! H) the composite of P with the projection the the m-th factor.

We claim that this power construction corresponds to the power construction for the equivariant sphere
spectra, i.e., for every m > 0 the square
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commutes. Since both power maps have the same behavior on sums, it suffices to check this for the classes
of the cosets H/K that generate A(H) as an abelian group. We have

P™U(H/K)) = P™(trjl(1)) = trgmii(P™(1) = trgmii(1)
— V(S H)/(Sm 1K) = U(P™(H/K))

using that (H/K)™ is isomorphic to (3,, 1 H)/ (X 1 K) as a X, ! H-set.
Now suppose that H is a subgroup of a group G and S is an H-invariant subset of G of index n. We
define the map
(S|-)=(S:H)xs,g— : AXZ,1H) — A(G(S))
by balanced product over ¥, H with the set (S : H) of H-bases of S (which has commuting left G(S)-action

and right 3,, ! H-actions as explained in Construction 10.2). For any choice of H-basis g of S and every
Yn U H-set Y the map

vy 2 (9 HY s Y
is a natural isomorphism of G(S)-sets. The identification between Burnside rings and and equivariant zero
stems commutes with restriction homomorphism, so the square

(8]-)=v;
A(Z, L H) A(G(S))

. N
SntH G(S)
7r S) ————— S
S g ©)
commutes because [...].
The norm map norm% on Burnside rings is now the composite

n S —
Ay 2 A H) 22 aes)
The norm map normfl is the special case where S = G is the entire group. Since the identification between
Burnside rings and and equivariant zero stems commutes with power operations and with the maps (S|—),
it commutes with the norm maps as well. If we unravel the definitions, we see that for every H-set X,
the element norm?;(X) in A(G(S)) is represented by (S : H) xx, iz X™ which naturally isomorphic, as a

G(S)-set, to map® (S, X), by the map
map™ (S, X) — (S:H) xs,,qg X"
¢ = (g1 gn 0(91)s - 0(9n)]
Here (g1,...,9n) is any H-basis of S, but the map is independent of this basis.

Example 10.12 (Eilenberg-Mac Lane spectra). Let A be a commutative ring with a G-action by ring
automorphisms. Then the Eilenberg-Mac Lane spectrum H A, defined in Example 2.13, is a commutative
orthogonal G-ring spectrum. All equivariant homotopy groups of H A are concentrated in dimension 0 and
we have 7f(HA) = AK for every subgroup K of G. We claim that the norm map coincides with the
multiplicative transfer. More generally, we claim that for every K-invariant subset S of G the diagram

AK normf( AG<S>
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commutes, where the upper horizontal map is defined by

normsy (a) = H ga ,
gKeSs

where the product is taken over a K-basis of S. The norm map is the special case S = G, where we have

norm% (a) = H ga .
gKeG/K

Remark 10.13 (External norm map). The norm map for equivariant homotopy groups of commutative
orthogonal ring spectrum can be obtained from a more general external norm map on RO(G)-graded
homotopy groups that has the form of:

(10.14) Norm% : i (X) — mei (N5X) .

Here S an H-invariant subset of G, V' is an H-representation, S X iy V the induced G(S)-representation, X
is an H-spectrum and

NoX = (S:H)s, uP"X

is the norm construction based on the invariant subset S of index n = [S : H]. For S = G this gives
the external norm map for the norm construction N§X in the sense of Section 9. The ‘internal’ norm
map (10.1) is then obtained from the external norm map for X = R by postcomposing with the effect of
the adjunction counit € : NICjR — R.

The construction of the external norm map is the same as for the internal norm map, except that the
morphism ¢; : UZ(P"R) — R has no analog and does not occur. So the external norm map is the
composite

H pP" S H vg G(s X ig. G(s s
W (X) <= it (PrX) — wgll (U (P X)) == 76 (NG X)
where g is a choice of H-basis for S with associated monomorphism U5 : G(S) — X,, 1 H (and the map
does not depend on this choice).
The external norm map has various properties that are analogues, or rather precursors, of corresponding
properties of the internal norm map:

(i) We have Norm%(0) = 0 and Norm#(z) = . When X = S is the H-sphere spectrum, we have
NZS =S, the G-sphere spectrum, and Normfl(l) =1in 7TOG<S>S.

(ii) The external norm maps are transitive, i.e., for subgroups K C H C G we have
Norm% o Norm# = Norm% : 7 (X) — ﬂ'ngv(NgX).
Here we used the identification G Xy (H X V) & G Xg V and the transitivity isomorphism
NG(NGX) = NEX.

(iii) The norm map is multiplicative with respect to external product: for two orthogonal H-spectra X
and Y and classes x € 7 X and y € m{Y we have

(Norm% z) - (Norm% y) = Norm% (z - y)

in the group ngH(V@W)NE(X AY), using the identification NG X A NGY = NS(X AY) and
GxxagV)e(GxgW)=Gxy (Ve W).
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(iv) The external norm map is also compatible with the geometric fixed point map in the sense that the

square

Norm§,
W\I}[(X> = > ﬂ-ngV(NgX>

(P X) (P9 (NG X))

T

commutes, where k = dim(VH) = dim(G x g V)¢ and the morphism A : ®7X — ®%(N§X) was
defined in (9.11).

We will not prove the ‘external’ forms of these formulas; they can be guessed by systematically ‘exter-

nalizing’ the proofs for the internal norm map.
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Normg7 external norm map 99
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o, restriction along group homomorphism 15

unoriented, 71
coinduced spectrum, 27
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of orthogonal G-spectra, 45
composition formula
for norm map, 77
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on RO(G)-graded homotopy groups, 40
on equivariant homotopy groups, 16, 33
connecting homomorphism, 22, 23
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86
S, sphere spectrum 10
map(X,Y), mapping space 50
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normf]7 norm map 86

71"(/;, V-graded equivariant homotopy group 38
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naive, 66

of a free spectrum, 70

of a suspension spectrum, 69
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of induced spectra, 71
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generalized structure map

of an orthogonal G-spectrum, 7
geometric fixed point map, 41, 68
geometric fixed points, 68

of a free spectrum, 70

of a normed spectrum, 84

of a suspension spectrum, 69

of coinduced spectra, 70

of induced spectra, 71

homology theory
equivariant, 59
homotopy fiber, 21
homotopy group, 4, 12
RO(G)-graded, 38
of a shift, 19
of a suspended spectrum, 18
of a wedge, 24
of an orthogonal G-spectrum, 12
Hopf map, 42

induced spectrum, 28

inner product space, 7

invariant subset, 86

isotropy separation sequence, 69

L-G-space, 52
level
of an orthogonal spectrum, 2
level equivalence
strong, 53
limit
of orthogonal G-ring spectra, 45
of orthogonal G-spectra, 45
linearization
of a space, 10
long exact sequence
of homotopy groups, 23
loop spectrum, 17, 46

map, 50
mapping cone, 21, 22
mapping space, 50
morphism

of orthogonal spectra, 2
multiplication

in stable stems, 37

naive fixed points, 66
norm, 80

multiplicative, 78

of a free spectrum, 82

of a semifree spectrum, 83
norm map, 86

external, 99

for Eilenberg-Mac Lane spectra, 98

for equivariant sphere spectra, 96

orbit category, 2
orthogonal G-ring spectrum, 6
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orthogonal G-spectrum, 6
semifree, 50, 83

orthogonal function spectrum, 101

orthogonal ring spectrum, 2
commutative, 3

orthogonal spectrum, 2

T -isomorphism, 14

power map
composition formula, 77
product formula, 77
sum formula, 77

product
on RO(G)-graded homotopy groups, 38
on equivariant homotopy groups

external, 37

product formula

for norm map, 77

real bordism spectrum, 11, 71, 83
real spectrum, 71
reciprocity, 38
regular representation, 2
reduced, 13
restriction map
on RO(G)-graded homotopy groups, 39
on equivariant homotopy groups, 15, 16
ring spectrum
orthogonal, see also orthogonal ring spectrum

semifree orthogonal G-spectrum, 50
shearing isomorphism, 26
shift, 18
shift homomorphism, 19
smash product, 5
of a G-space and orthogonal G-spectrum, 45
of an L-space and orthogonal spectrum, 52
spectrum
orthogonal, see also orthogonal spectrum
sphere spectrum, 4, 61
equivariant, 10
stabilization
of a map by a representation, 8
stabilization map, 4
stable homotopy category
G-equivariant, 14
strong level equivalence, 53
structure map
generalized, 7
sum formula
for power map, 77
suspension, 17, 46
suspension isomorphism
for homotopy groups, 17
in a G-homology theory, 60
suspension spectrum, 10

TNR-functor, 96
tom Dieck splitting, 57, 69
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transfer
external, 30, 57
internal, 30
on RO(G)-graded homotopy groups, 40
on equivariant homotopy groups, 30
transfer map, 31

unit maps, 3
universal property
of smash product, 5
universe, 36, 61
complete, 37
trivial, 37

Wirthmiiller isomorphism, 28
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