
LECTURES ON EQUIVARIANT STABLE HOMOTOPY THEORY

STEFAN SCHWEDE

Contents

1. Orthogonal spectra 2
2. Equivariant orthogonal spectra 6
3. Equivariant homotopy groups 12
4. Wirthmüller isomorphism and transfers 25
5. Constructions with equivariant spectra 45
6. The tom Dieck splitting 57
7. Fixed points and geometric fixed points 66
8. Power constructions 75
9. Norm construction 78
10. Norm map 86
Index 101
References 104

We review some foundations for equivariant stable homotopy theory in the context of orthogonal G-
spectra. The main reference for this theory is the AMS memoir [17] by Mandell and May; the appendices of
the paper [10] by Hill, Hopkins and Ravenel contain further material, in particular on the norm construc-
tion. At many places, however, our exposition is substantially different from these two sources, compare
Remark 2.7. We do not develop model category aspects of the theory; the relevant references here are
again Mandell-May [17], Hill-Hopkins-Ravenel [10] and the thesis of Stolz [25]. For a general, framework
independent, introduction to equivariant stable homotopy theory, one may consult the survey articles by
Adams [1] and Greenlees-May [9].

We restrict our attention to finite groups (as opposed to compact Lie groups) throughout, which allows to
simplify the treatment at various points. Also, we implicitly only deal with the ‘complete universe’ (which
can be seen from the fact that we stabilize with respect to multiples of the regular representation).

These notes were originally assembled on the occasion of a series of lectures at the Universitat Autònoma
de Barcelona in October, 2010, and then subsequently expanded. They are still incomplete and certainly
contain typos, but hopefully not too many mathematical errors. At some places, proper credit is also still
missing, and will be added later. This survey paper makes no claim to originality. If there is anything new
it may be the particular model for the real bordism spectrum MR as a commutative equivariant orthogonal
ring spectrum in Example 2.14.

Before we start, let us fix some notation and conventions. By a ‘space’ we mean a compactly generated
space in the sense of McCord [18], i.e., a k-space (also called a Kelley space) that is also weakly Hausdorff.
For a finite dimensional R-vector space V we denote by SV the one-point compactification; we consider SV

as a based space with basepoint at infinity. If V is endowed with a scalar product, we denote by D(V ) the
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unit ball and by S(V ) the unit sphere of V . If no other scalar product is specified, then the vector space
Rn is always endowed with the standard scalar product

〈x, y〉 =

n∑
i=1

xiyi .

We write Sn for SRn , the one-point compactification of Rn.
For a finite group G we denote by ρG the regular representation of G, i.e., the free vector space R[G]

with orthonormal basis G. By O(G) we denote the orbit category of G , i.e., the category with objects the
cosets G/H for all subgroups H of G and with morphisms the homomorphisms of left G-sets.

I would like to thanks John Greenlees for being a reliable consultant on equivariant matters and for
patiently answering many of my questions.

1. Orthogonal spectra

Starting from the next section, our category of G-spectra will be the category of orthogonal spectra with
G-action. So before adding group actions, we first review non-equivariant orthogonal spectra.

Definition 1.1. An orthogonal spectrum consists of the following data:

• a sequence of pointed spaces Xn for n ≥ 0,
• a base-point preserving continuous left action of the orthogonal group O(n) on Xn for each n ≥ 0,
• based maps σn : Xn ∧ S1 −→ Xn+1 for n ≥ 0.

This data is subject to the following condition: for all n,m ≥ 0, the iterated structure map

σm : Xn ∧ Sm −→ Xn+m

defined as the composition

(1.2) Xn ∧ Sm
σn ∧Sm−1

// Xn+1 ∧ Sm−1
σn+1∧Sm−2

// · · ·
σn+m−2∧ S1

// Xn+m−1 ∧ S1
σn+m−1 // Xn+m

is O(n) × O(m)-equivariant. Here the orthogonal group O(m) acts on Sm since this is the one-point
compactification of Rm, and O(n) × O(m) acts on the target by restriction, along orthogonal sum, of the
O(n+m)-action. We refer to the space Xn as the n-th level of the orthogonal spectrum X.

A morphism f : X −→ Y of orthogonal spectra consists of O(n)-equivariant based maps fn : Xn −→ Yn
for n ≥ 0, which are compatible with the structure maps in the sense that fn+1 ◦ σn = σn ◦ (fn ∧ S1) for
all n ≥ 0. We denote the category of orthogonal spectra by Sp.

An orthogonal ring spectrum R consists of the following data:

• a sequence of pointed spaces Rn for n ≥ 0
• a base-point preserving continuous left action of the orthogonal group O(n) on Rn for each n ≥ 0
• O(n)×O(m)-equivariant multiplication maps µn,m : Rn ∧Rm −→ Rn+m for n,m ≥ 0, and
• O(n)-equivariant unit maps ιn : Sn −→ Rn for all n ≥ 0.

This data is subject to the following conditions:
(Associativity) The square

Rn ∧Rm ∧Rp
Id∧µm,p //

µn,m∧Id

��

Rn ∧Rm+p

µn,m+p

��
Rn+m ∧Rp µn+m,p

// Rn+m+p

commutes for all n,m, p ≥ 0.
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(Unit) The two composites

Rn ∼= Rn ∧ S0 Rn∧ι0 // Rn ∧R0

µn,0 // Rn

Rn ∼= S0 ∧Rn
ι0∧Rn // R0 ∧Rn

µ0,n // Rn

are the identity for all n ≥ 0.
(Multiplicativity) The composite

Sn+m ∼= Sn ∧ Sm ιn∧ιm−−−−→ Rn ∧Rm
µn,m−−−→ Rn+m

equals the unit map ιn+m : Sn+m −→ Rn+m. (where the first map is the canonical homeomorphism sending
(x, y) ∈ Sn+m to x ∧ y in Sn ∧ Sm).

(Centrality) The diagrams

Rm ∧ Sn
Rm∧ιn //

twist

��

Rm ∧Rn
µm,n // Rm+n

χm,n

��
Sn ∧Rm

ιn∧Rm
// Rn ∧Rm µn,m

// Rn+m

commutes for all m,n ≥ 0. Here χm,n ∈ O(m+n) denotes the permutation matrix of the shuffle permutation
which moves the first m elements past the last n elements, keeping each of the two blocks in order; in
formulas,

(1.3) χm,n(i) =

{
i+ n for 1 ≤ i ≤ m,

i−m for m+ 1 ≤ i ≤ m+ n.

An orthogonal ring spectrum R is commutative if the square

Rm ∧Rn
µm,n //

twist

��

Rm+n

χm,n

��
Rn ∧Rm µn,m

// Rn+m

commutes for all m,n ≥ 0. Note that this commutativity diagram implies the centrality condition above.

Remark 1.4. (i) The higher-dimensional unit maps ιn : Sn −→ Rn for n ≥ 2 are determined by the unit
map ι1 : S1 −→ R1 and the multiplication as the composite

Sn = S1 ∧ . . . ∧ S1 ι1∧...∧ι1−−−−−−→ R1 ∧ . . . ∧R1
µ1,...,1−−−−→ Rn .

The centrality condition implies that this map is Σn-equivariant, but we require that ιn is even O(n)-
equivariant.

(ii) As the terminology suggests, the orthogonal ring spectrum R has an underlying orthogonal spectrum.
We keep the spaces Rn and orthogonal group actions and define the missing structure maps σn : Rn ∧
S1 −→ Rn+1 as the composite µn,1 ◦ (Rn ∧ ι1). Associativity implies that the iterated structure map
σm : Rn ∧ Sm −→ Rn+m equals the composite

Rn ∧ Sm
Rn∧ιm−−−−−→ Rn ∧Rm

µn,m−−−→ Rn+m .

So the iterated structure map is O(n) × O(m)-equivariant, and we have in fact obtained an orthogonal
spectrum.

(iii) Using the internal smash product of orthogonal spectra one can identify the ‘explicit’ definition of an
orthogonal ring spectrum which we just gave with a more ‘implicit’ definition of an orthogonal spectrum R
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together with morphisms µ : R ∧ R −→ R and ι : S −→ R (where S is the sphere spectrum) which are
suitably associative and unital. The ‘explicit’ and ‘implicit’ definitions of orthogonal ring spectra coincide
in the sense that they define isomorphic categories.

A morphism f : R −→ S of orthogonal ring spectra consists of O(n)-equivariant based maps fn :
Rn −→ Sn for n ≥ 0, which are compatible with the multiplication and unit maps in the sense that
fn+mµn,m = µn,m(fn ∧ fm) and fnιn = ιn.

Example 1.5 (Sphere spectrum). The orthogonal sphere spectrum S is given by Sn = Sn, where the
orthogonal group acts as the one-point compactification of its natural action on Rn. The map σn : Sn ∧
S1 −→ Sn+1 is the canonical homeomorphism. This is a commutative orthogonal ring spectrum with
the identity map of Sn as the n-th unit map and the canonical homeomorphism Sn ∧ Sm −→ Sn+m as
multiplication map. The sphere spectrum is the initial orthogonal ring spectrum: if R is any orthogonal
ring spectrum, then a unique morphism of orthogonal ring spectra S −→ R is given by the collection of
unit maps ιn : Sn −→ Rn.

The category of right S-modules is isomorphic to the category of orthogonal spectra, via the forgetful
functor mod-S −→ Sp. Indeed, if X is a orthogonal spectrum then the associativity condition shows that
there is at most one way to define action maps

Xn ∧ Sm −→ Xn+m ,

namely as the iterated structure map σm, and these do define the structure of a right S-module on X.

Primary invariants of an orthogonal spectrum are its homotopy groups: the k-th homotopy group of a
orthogonal spectrum X is defined as the colimit

πk(X) = colimn πk+nXn

taken over the stabilization maps ι : πk+nXn −→ πk+n+1Xn+1 defined as the composite

(1.6) πk+nXn
−∧S1

−−−−−→ πk+n+1

(
Xn ∧ S1

) (σn)∗−−−−−→ πk+n+1Xn+1 .

For large enough n, the set πk+nXn has a natural abelian group structure and the stabilization maps are
homomorphisms, so the colimit πkX inherits a natural abelian group structure. The stable homotopy
category can be obtained from the category of orthogonal spectra by formally inverting the class of π∗-
isomorphisms.

Now we get to the smash product of orthogonal spectra. We define a bimorphism b : (X,Y ) −→ Z from
a pair of orthogonal spectra (X,Y ) to an orthogonal spectrum Z as a collection of based O(p) × O(q)-
equivariant maps

bp,q : Xp ∧ Yq −→ Zp+q

for p, q ≥ 0, such that the bilinearity diagram

(1.7)

Xp ∧ Yq ∧ S1

Xp∧σq

vv
bp,q∧S1

��

Xp∧twist // Xp ∧ S1 ∧ Yq

σp∧Yq

��
Xp ∧ Yq+1

bp,q+1
((

Zp+q ∧ S1

σp+q

��

Xp+1 ∧ Yq

bp+1,q

��
Zp+q+1 Zp+1+q

1×χ1,q

oo

commutes for all p, q ≥ 0.
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We can then define a smash product of X and Y as a universal example of an orthogonal spectrum with
a bimorphism from X and Y . More precisely, a smash product for X and Y is a pair (X ∧ Y, i) consisting
of an orthogonal spectrum X ∧Y and a universal bimorphism i : (X,Y ) −→ X ∧Y , i.e., a bimorphism such
that for every orthogonal spectrum Z the map

(1.8) Sp(X ∧ Y,Z) −→ Bimor((X,Y ), Z) , f 7−→ fi = {fp+q ◦ ip,q}p,q

is bijective.
We have to show that a universal bimorphism out of any pair of orthogonal spectra exists; in other words:

we have to construct a smash product X ∧Y from two given orthogonal spectra X and Y . We want X ∧Y
to be the universal recipient of a bimorphism from (X,Y ), and this pretty much tells us what we have to
do. For n ≥ 0 we define the n-th level (X ∧ Y )n as the coequalizer, in the category of pointed O(n)-spaces,
of two maps

αX , αY :
∨

p+1+q=n

O(n)+ ∧O(p)×1×O(q) Xp ∧ S1 ∧ Yq −→
∨

p+q=n

O(n)+ ∧O(p)×O(q) Xp ∧ Yq .

The wedges run over all non-negative values of p and q which satisfy the indicated relations. The map αX
takes the wedge summand indexed by (p, 1, q) to the wedge summand indexed by (p+ 1, q) using the map

σXp ∧ Id : Xp ∧ S1 ∧ Yq −→ Xp+1 ∧ Yq

and inducing up. The other map αY takes the wedge summand indexed by (p, 1, q) to the wedge summand
indexed by (p, 1 + q) using the composite

Xp ∧ S1 ∧ Yq
Id∧twist−−−−−→ Xp ∧ Yq ∧ S1

Id∧σYq−−−−→ Xp ∧ Yq+1
Id∧χq,1−−−−−→ Xp ∧ Y1+q

and inducing up.
The structure map (X ∧ Y )n ∧ S1 −→ (X ∧ Y )n+1 is induced on coequalizers by the wedge of the maps

O(n)+ ∧O(p)×O(q) Xp ∧ Yq ∧ S1 −→ O(n+ 1)+ ∧O(p)×O(q+1) Xp ∧ Yq+1

induced from Id∧σYq : Xp ∧ Yq ∧ S1 −→ Xp ∧ Yq+1. One should check that this indeed passes to a well-

defined map on coequalizers. Equivalently we could have defined the structure map by moving S1 past Yq,
using the structure map of X (instead of that of Y ) and then shuffling back with the permutation χ1,q; the
definition of (X ∧Y )n+1 as a coequalizer precisely ensures that these two possible structure maps coincide,
and that the collection of maps

Xp ∧ Yq
x∧y 7→1∧x∧y−−−−−−−−→

∨
p+q=n

O(n)+ ∧O(p)×O(q) Xp ∧ Yq
projection−−−−−−→ (X ∧ Y )p+q

forms a bimorphism – and in fact a universal one.
Very often only the object X ∧ Y will be referred to as the smash product, but one should keep in mind

that it comes equipped with a specific, universal bimorphism. We will often refer to the bijection (1.8) as
the universal property of the smash product of orthogonal spectra.

The smash product X ∧ Y is a functor in both variables. It is also symmetric monoidal, i.e., there are
natural associativity respectively symmetry isomorphisms

(X ∧ Y ) ∧ Z −→ X ∧ (Y ∧ Z) respectively X ∧ Y −→ Y ∧X

and unit isomorphisms S ∧X ∼= X ∼= X ∧ S.
We can obtain all the isomorphisms of the symmetric monoidal structure just from the universal property.

Let us choose, for each pair of orthogonal spectra (X,Y ), a smash product X∧Y and a universal bimorphism



6 STEFAN SCHWEDE

i = {ip,q} : (X,Y ) −→ X ∧ Y . For the construction of the associativity isomorphism we notice that the
family {

Xp ∧ Yq ∧ Zr
ip,q∧Zr−−−−−→ (X ∧ Y )p+q ∧ Zr

ip+q,r−−−−→ ((X ∧ Y ) ∧ Z)p+q+r

}
p,q,r≥0

and the family{
Xp ∧ Yq ∧ Zr

Xp∧iq,r−−−−−→ Xp ∧ (Y ∧ Z)q+r
ip,q+r−−−−→ (X ∧ (Y ∧ Z))p+q+r

}
p,q,r≥0

both have the universal property of a tri morphism (whose definition is hopefully clear) out of X, Y and Z.
The uniqueness of representing objects gives a unique isomorphism of orthogonal spectra

αX,Y,Z : (X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z)

such that (αX,Y,Z)p+q+r ◦ ip+q,r ◦ (ip,q ∧ Zr) = ip,q+r ◦ (Xp ∧ iq,r).
The symmetry isomorphism τX,Y : X ∧ Y −→ Y ∧X corresponds to the bimorphism

(1.9)
{
Xp ∧ Yq

twist−−−→ Yq ∧ Xp
iq,p−−→ (Y ∧X)q+p

χq,p−−−→ (Y ∧X)p+q

}
p,q≥0

.

The block permutation χq,p is crucial here: without it the bilinearity diagram (1.7) would not commute
and we would not have a bimorphism. If we restrict the composite τY,X ◦ τX,Y in level p+ q along the map
ip,q : Xp ∧ Yq −→ (X ∧ Y )p+q we get ip,q again. Thus τY,X ◦ τX,Y = IdX∧Y and τY,X is inverse to τX,Y .

The upshot is that the associativity and symmetry isomorphisms make the smash product of orthogonal
spectra into a symmetric monoidal product with the sphere spectrum S as unit object. This product is
closed symmetric monoidal in the sense that the smash product is adjoint to an internal Hom spectrum
(that we discuss in Example 5.12 below), i.e., there is an adjunction isomorphism

Hom(X ∧ Y,Z) ∼= Hom(X,Hom(Y,Z)) .

We remark again that orthogonal ring spectra are the same as monoid objects in the symmetric monoidal
category of orthogonal spectra with respect to the smash product.

2. Equivariant orthogonal spectra

In the rest of these notes we let G denote a finite group. Much of what we explain can be generalized
to compact Lie groups, or to even more general classes of groups, but we’ll concentrate on the finite group
case throughout.

Definition 2.1. • An orthogonal G-spectrum is an orthogonal spectrum equipped with a G-action
through automorphisms of orthogonal spectra.

• An orthogonal G-ring spectrum is an orthogonal ring spectrum equipped with a G-action through
automorphisms of orthogonal ring spectra.

• A morphism of orthogonal G-spectra (respectively orthogonal G-ring spectra) is a morphism of
underlying orthogonal spectra (respectively orthogonal ring spectra) that commutes with the group
action.

If we unravel the definitions, we obtain that an orthogonal G-spectrum consists of pointed spaces Xn

for n ≥ 0, a based left O(n) × G-action on Xn and based structure maps σn : Xn ∧ S1 −→ Xn+1 that
are G-equivariant with respect to the given G-actions on Xn and Xn+1 and the trivial G-action on the
sphere S1. Of course, this data is again subject to the condition that the iterated structure maps σm :
Xn ∧ Sm −→ Xn+m are O(n) × O(m)-equivariant. The iterated structure map σm is then automatically
G-equivariant with respect to the given G-actions on Xn and Xn+m and the trivial G-action on Sm.
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Readers familiar with other accounts of equivariant stable homotopy theory may wonder immediately why
no orthogonal representations of the group G show up in the definition of equivariant spectra. The reason
is that they are secretly already present: the actions of the orthogonal groups encode enough information
so that we can evaluate an orthogonal G-spectrum on a G-representation. We will now spend some time
explaining this in detail.

In the following, an inner product space is a finite dimensional real vector space equipped with a scalar
product. For every orthogonal spectrum X and inner product space V of dimension n we define X(V ), the
value of X on V , as

(2.2) X(V ) = L(Rn, V )+ ∧O(n) Xn

where Rn has the standard scalar product and L(Rn, V ) is the space of linear isometries from Rn to V . The
orthogonal group O(n) acts simply transitively on L(Rn, V ) by precomposition, and X(V ) is the coequalizer
of the two O(n)-actions on L(Rn, V )+ ∧Xn. If V = Rn then there is a canonical homeomorphism

(2.3) Xn −→ X(Rn) , x 7−→ [Id, x] .

In general, any choice of isometry ϕ : Rn −→ V (which amounts to a choice of orthonormal basis of V )
gives rise to a homeomorphism

[ϕ,−] : Xn −→ X(V ) , x 7−→ [ϕ, x] .

Now let us consider a finite group G and an orthogonal G-spectrum X and suppose that V is a G-
representation (i.e., G acts on V by linear isometries). Then X(V ) becomes a G-space by the rule

g · [ϕ, x] = [gϕ, gx] .

We want to stress that the underlying space of X(V ) depends, up to homeomorphism, only on the dimension
of the representation V . However, the G-action on V influences the G-action on X(V ).

The iterated structure maps σm : Xn ∧ Sm −→ Xn+m of an orthogonal G-spectrum X now become
special cases of generalized structure maps

(2.4) σV,W : X(V ) ∧ SW −→ X(V ⊕W ) .

To define σV,W we set m = dim(W ) and choose an isometry γ : Rm −→W . Then

σV,W ([ϕ, x] ∧ w) = [ϕ⊕ γ, σm(x ∧ γ−1(w))] in L(Rn+m, V ⊕W )+ ∧O(n+m) Xn+m = X(V ⊕W ) .

We omit the verification that the map σV,W is well defined and independent of the choice of γ. It is straight-
forward from the definitions that the generalized structure maps are G-equivariant where – in contrast to
the ‘ordinary’ structure maps Xn ∧ Sm −→ Xn+m – here the group G also acts on the representation
sphere SW . The generalized structure map σV,W is also O(V )×O(W )-equivariant, so altogether it is equi-
variant for the semi-direct product group Gn (O(V )×O(W )) formed from the conjugation action of G on
O(V ) and O(W ). Finally, the generalized structure maps are also associative: If we are given a third inner
product space U , then the square

(2.5)

X(V ) ∧ SW ∧ SU
σV,W∧Id //

Id∧∼=
��

X(V ⊕W ) ∧ SU

σV⊕W,U

��
X(V ) ∧ SW⊕U

σV,W⊕U
// X(V ⊕W ⊕ U)

commutes.
We end this section by introducing a piece of notation that will be convenient later. For an orthogonal

G-spectrum, G-representations V,W and a based map f : SV −→ X(V ) (not necessarily equivariant), we
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denote by f �W : SV⊕W −→ X(V ⊕W ) the composite

(2.6) SV⊕W ∼= SV ∧ SW f∧SW−−−−−→ X(V ) ∧ SW σV,W−−−−→ X(V ⊕W ) .

We refer to f �W as the stabilization of f by W . The associativity property of the generalized structure
maps implies the associativity property

(f �W ) � U = f � (W ⊕ U) : SV⊕W⊕U −→ X(V ⊕W ⊕ U) .

Remark 2.7. Let us clarify the relationship between our current definition of an orthogonal G-spectrum
and the one used by Mandell and May in [17] and Hill, Hopkins and Ravenel in [10]. As we shall explain,
the two concepts are not the same, but the two categories are equivalent. This equivalence of categories is
first discussed in [17, Thm. V.1.5], and also appears in [10, Prop. A.19]. This is not the first time such a
non-obvious equivalence of categories appears in equivariant homotopy theory. Segal’s notion of a Γ-space
has two equivariant generalizations in the presence of a finite group G. Segal developed the equivariant
version in the preprint [21], but this paper was never published. In [23], Shimakawa published a detailed
account of the theory of ΓG-spaces, the Γ-space analogue of the IG-spectra of [17]; in [24], Shimakawa
observed that the category of ΓG-spaces is equivalent to the category of Γ-G-spaces (i.e., Γ-spaces with
G-action, the analog of orthogonal spectra with G-action). This equivalence is a close analogue, but with
G-sets as opposed to G-representations, of the equivalence we are about to discuss now.

For us, an orthogonal G-spectrum is simply an orthogonal spectrum with action by the group G; in
particular, our equivariant spectra do not initially assign values to general G-representations. Let us denote,
for the course of this remark, the category of orthogonal spectra with G-action by G-SpO.

The definition of an orthogonal G-spectrum used by Mandell and May refers to a universe U , i.e., a
certain infinite dimensional real inner product space with G-action by linear isometries. However, one
upshot of this discussion is that, up to equivalence of categories, the equivariant orthogonal spectra of [17]
are nevertheless independent of the universe. Mandell and May denote by V (U) the class of all finite
dimensional G-representations that admit a G-equivariant, isometric embedding into the universe U . An
IG-spectrum Y , or orthogonal G-spectrum, in the sense of [17, II Def. 2.6], consists of the following data:

(i) a based G-space Y (V ) for every G-representation V in the class V (U),
(ii) a continuous based G-map

(2.8) L(V,W )+ ∧ Y (V ) −→ Y (W )

for every pair of G-representations V and W in V (U) of the same dimension (where Mandell and May
write I V

G (V,W ) for L(V,W )),
(iii) continuous based G-maps

σV,W : Y (V ) ∧ SW −→ Y (V ⊕W )

for all pairs of G-representation V and W in V (U).

This data is subject to the following conditions:

(a) the action maps (2.8) of the isometries on the values of Y have to be unital and associative;
(b) the action maps (2.8) of the isometries on the values of Y and on representations spheres have to be

compatible with the structure maps σV,W , i.e., the squares

(2.9)

L(V, V ′)+ ∧ L(W,W ′)+ ∧ Y (V ) ∧ SW
⊕∧σV,W //

��

L(V ⊕W,V ′ ⊕W ′)+ ∧ Y (V ⊕W )

��
Y (V ′) ∧ SW ′

σV ′,W ′
// Y (V ′ ⊕W ′)

commute.
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(c) the morphism σV,0 : Y (V )∧S0 −→ Y (V ⊕0) is the composite of the natural isomorphisms Y (V )∧S0 ∼=
Y (V ) and Y (V ) ∼= Y (V ⊕ 0), and the associativity diagram (2.5) commutes.

A morphism f : Y −→ Z of IG-spectra consists of a based continuous G-map f(V ) : Y (V ) −→ Z(V ) for
every V in V (U), strictly compatible with the action by the isometries and the structure maps σV,W . We
denote the category of IG-spectra by IG-Sp.

The definition of IG-spectra above can be cast into an isomorphic, but more compact form, as enriched
functors on a topological G-category JG, compare Theorem II.4.3 of [17] (we also discuss this reformulation
in Example 5.5 below). In the formulation as enriched functors on JG, the structure on the collection of
G-spaces Y (V ) consists of continuous based G-map

J V
G (V,W ) ∧ Y (V ) −→ Y (W )

for every pair of G-representations V and W in V (U) (of possibly different dimensions), where J V
G (V,W )

is the Thom G-space of the orthogonal complement bundle over the G-space L(V,W ). This formulation
combines the actions (2.8) of the linear isometries and the structure maps σV,W into a single piece of
structure, and also simplifies the compatibility conditions. The definition of orthogonal spectra as enriched
functors on the topological G-category JG is also the one used by Hill, Hopkins and Ravenel in [10,
Def. A.13].

We explain the inverse equivalences of categories

G-SpO
P // IG-Sp .
U
oo

A IG-spectrum Y has an ‘underlying’ orthogonal spectrum with G-action UY . Indeed, all trivial G-
representations belong to the class V (U) for any universe U , so an IG-spectrum Y has a value at the
trivial representation Rn, and we set (UY )n = Y (Rn). For V = W = Rn, the action (2.8) of the isometries
specializes to an O(n)-action on (UY )n. The map σRn,Rm : Y (Rn) ∧ Sm −→ Y (Rn+m) is the iterated
structure map of the orthogonal spectrum UY , and it is O(n) × O(m)-equivariant by the special case
V = V ′ = Rn and W = W ′ = Rm of (2.9).

Conversely, given an orthogonal spectrum with G-action X, we can evaluate it on any G-representation
as in (2.2) and equip it with generalized structure maps σV,W as in (2.4). The action (2.8) of a linear
isometry ψ : V −→ W is given by ψ ∧ [ϕ, x] 7→ [ψϕ, x]. Altogether, this defines an IG-spectrum PX from
the orthogonal spectrum with G-action X. The underlying orthogonal G-spectrum UPX gives back what
we started with; more precisely, the canonical homeomorphism (2.3) is a natural isomorphism between X
and UPX.

In the other direction, a natural isomorphism from an IG-spectrum Y to PUY is obtained as follows.
For G-representations V and W of the same dimension the isometry action (2.8) factors over a G-map

L(V,W )+ ∧O(V ) Y (V ) −→ Y (W )

that is an equivariant homeomorphism. In the special case V = Rn we obtain a G-homeomorphism

(UY )(W ) = L(Rn,W )+ ∧O(n) Y (Rn) −→ Y (W )

which is the W -component of a natural isomorphism PUY ∼= Y . So the forgetful functor U and the functor
P of ‘extensions to non-trivial G-representations’ are inverse equivalences of categories.

Since our Definition 2.1 and Definition II.2.6 of [17] define equivalent categories, it is mainly a matter of
taste and convenience in which one to work. The author prefers the present definition because the objects
are freed of all unnecessary baggage. As we explained, the value of an equivariant spectrum on a general n-
dimensional G-representation V can be recovered canonically from the value at the trivial representation Rn
by the formula X(V ) = L(Rn, V )+ ∧O(n) Xn, so there is no need to drag the redundant values along. A
related point is that in the language of IG-spectra the ‘equivariant’ smash product (see Theorem II.3.1
of [17]) may seem more mysterious than it actually is. In fact, in our present setup, the ‘equivariant’ smash
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product is simply the smash product of the underlying non-equivariant orthogonal spectra with diagonal
group action.

2.1. Basic examples.

Example 2.10 (Sphere spectrum). The equivariant sphere spectrum S is given by

Sn = Sn

with action by O(n) from the natural action on Rn and with trivial action of the group G. This does not
mean, however, that G acts trivially on the value S(V ) of S on a general G-representation V . Indeed, the
map

S(V ) = L(Rn, V )+ ∧O(n) S
n −→ SV , [ϕ, x] 7−→ ϕ(x)

is a G-equivariant homeomorphism to the representation sphere of V (which has non-trivial G-action if and
only if V has).

Example 2.11 (Suspension spectra). Every pointed G-space A gives rise to a suspension spectrum Σ∞A
via

(Σ∞A)n = A ∧ Sn .
The orthogonal group acts through the action on Sn, the group G acts through the action on A, and the

structure maps are the canonical homeomorphism (A ∧ Sn) ∧ S1
∼=−→ A ∧ Sn+1. For example, the sphere

spectrum S is isomorphic to the suspension spectrum Σ∞S0 (where G necessarily acts trivially on S0). If
we evaluate the suspension spectrum on a G-representation V we obtain

(Σ∞A)(V ) ∼= A ∧ SV .

This homeomorphism is G-equivariant with respect to the diagonal G-action on the right hand side.

Example 2.12. [Non-equivariant spectra] Every (non-equivariant) orthogonal spectrum X gives rise to a
G-spectrum by letting G act trivially. As in the example of the sphere spectrum above, this does not mean,
however, that G acts trivially on X(V ) for a general G-representation V . For example, if the underlying
inner product space of V is Rn, then X(V ) is Xn with G-action through the representation homomorphism
G −→ O(n).

Example 2.13 (Eilenberg-Mac Lane spectra). Let M be a ZG-module, i.e., an abelian group M with an
additive G-action. The Eilenberg-Mac Lane spectrum HM is defined by

(HM)n = M [Sn] ,

the reduced M -linearization of the n-sphere. The orthogonal group acts through the action on Sn, and the
group G acts through its action on M . The structure map σn : (HM)n ∧ S1 −→ (HM)n+1 is given by

M [Sn] ∧ S1 −→M [Sn+1] ,
(∑

i
ai · xi

)
∧ y 7−→

∑
i
ai · (xi ∧ y) .

If V is a G-representation, then we have a G-equivariant homeomorphism

HM(V ) ∼= M [SV ]

where G acts diagonally on the right, through the action on M and on SV .
The underlying non-equivariant space of M [Sn] is an Eilenberg-Mac Lane space of type (M,n). But

more is true: namely M [Sn] is an equivariant Eilenberg-Mac Lane space for the coefficient system (i.e.,
contravariant functor O(G) −→ Ab) associated to M that assigns the H-fixed points MH to the coset G/H.
Indeed, since G acts trivially on Sn we have (M [Sn])H = (MH)[Sn] for every subgroup H of G. Hence the
homotopy groups of (M [Sn])H vanish in dimensions different from n and the map

MH −→ πn(M [Sn]H)
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that sends m ∈MH to the homotopy class of the H-map

m · − : Sn −→ M [Sn]

is an isomorphism of abelian groups. In particular we see that under this isomorphism the inclusion maps
M [Sn]H −→M [Sn]K correspond to the inclusion MH −→MK , so this is an isomorphism of contravariant
functors on the orbit category O(G). But even more than that is true. As we shall discuss in Example 4.37
below, the Eilenberg-Mac Lane spectrum HM is even an Ω-G-spectrum, and its collection of 0th homotopy
groups realizes the Mackey functor associated to the ZG-module M .

The Eilenberg-Mac Lane functor H can be made into a lax symmetric monoidal functor with respect
to the tensor product of ZG-modules (with diagonal G-action) and the smash product of orthogonal G-
spectra (with diagonal G-action). Indeed, if M and N are ZG-modules, a natural morphism of orthogonal
G-spectra

HM ∧HN −→ H(M ⊗N)

is obtained, by the universal property (1.8), from the bilinear morphism

(HM)m ∧ (HN)n = M [Sm] ∧ N [Sn]

−→ (M ⊗N)[Sm+n] = (H(M ⊗N))m+n

given by (∑
i

mi · xi

)
∧

∑
j

nj · yj

 7−→
∑
i,j

(mi ⊗ nj) · (xi ∧ yj) .

A unit map S −→ HZ is given by the inclusion of generators, and it is equivariant with respect to the
trivial G-action on Z.

As a formal consequence, the Eilenberg-Mac Lane functor H turns a G-ring A into an orthogonal G-ring
spectrum with multiplication map

HA ∧HA −→ H(A⊗A)
Hµ−−−→ HA ,

where µ : A⊗A −→ A is the multiplication in A, i.e., µ(a⊗ b) = ab.

Example 2.14 (Real cobordism). The Thom spectrum representing stably almost complex cobordism, has
a natural structure of C2-orthogonal ring spectrum, where the action of the cyclic group C2 of order two
comes from complex conjugation on the coefficients of unitary matrices.

We first consider the collection of pointed C2-spaces MU = {MUn}n≥0 defined by

MUn = EU(n)+ ∧U(n) S
Cn ,

the Thom space of the tautological complex vector bundle EU(n) ×U(n) Cn over BU(n) = EU(n)/U(n).
Here U(n) is the n-th unitary group consisting of automorphisms of Cn preserving the standard hermitian
scalar product.

There are multiplication maps

µn,m : MUn ∧MUm −→ MUn+m

which are induced from the identification Cn ⊕Cm ∼= Cn+m which is equivariant with respect to the group
U(n) × U(m), viewed as a subgroup of U(n + m) by direct sum of linear maps. For n ≥ 0 there are unit
maps ιn : SCn −→ MUn using the ‘vertex map’ U(n) −→ EU(n). The collection of spaces MUn does
not form an orthogonal spectrum since we only get structure maps MUn ∧ SC −→ MUn+1 involving a
2-sphere SC. The natural structure that the collection of spaces MU has is that of a ‘real spectrum’, as we
explain in Example 7.11 below. We have to modify the construction somewhat to end up with an orthogonal
spectrum.
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We set

MRn = map(SiR
n

,MUn)

where i stands for the imaginary unit. The orthogonal group act by conjugation (via the complexification
map O(n) −→ U(n) on MUn). The group C2 acts on iR by sign, on MUn by complex conjugation and on
the space MRn by conjugation.

Then the product of MU combined with smashing maps gives C2 ×O(n)×O(m)-equivariant maps

MRn ∧MRm = map(SiR
n

,MUn) ∧map(SiR
m

,MUm) −→ map(SiR
n+m

,MUn+m) ∼= MRn+m

f ∧ g 7−→ f · g = µn,m ◦ (f ∧ g) .

We make MR into an orthogonal C2-ring spectrum via the unit maps Sn −→ (MR)n = map(SiR
n

,MUn)
which is adjoint to

Sn ∧ SiR
n ∼= SCn ιn−−→ MUn .

Here we use the C2-equivariant decomposition Cn = 1 ·Rn⊕ i ·Rn to identify SCn with the smash product of
a ‘real’ and ‘imaginary’ n-sphere. Since the multiplications of MU and MR are commutative, the centrality
condition is automatically satisfied. The resulting orthogonal C2-ring spectrum is called the real bordism
spectrum.

The value of the orthogonal spectrum underlying MR on a real inner product space V is given by

MR(V ) = map(SiV , EU(VC)+ ∧U(VC) S
VC) ,

where VC = C⊗R V is the complexification of V , with induced hermitian scalar product.
The (non-equivariant) homotopy groups of MR are given by

πk(MR) = colimn πk+n map(SiR
n

,MUn) ∼= colimn πk+2n(EU(n)+ ∧U(n) S
Cn) ;

so by Thom’s theorem they are isomorphic to the ring of cobordism classes of stably almost complex
k-manifolds. The underlying non-equivariant spectrum of MR is the complex cobordism spectrum. So
even though the individual spaces MRn are not Thom spaces, the orthogonal spectrum which they form
altogether has the ‘correct’ stable homotopy type.

In Example 7.11 we will reinterpret the RO(C2)-graded equivariant homotopy groups of MR as

πC2

k (MR) ∼= colimn [Sk+nC,MUn]C2 .

As we shall also discuss in Example 7.11, the geometric fixed points ΦC2MR of MR are stably equivalent
to the unoriented cobordism spectrum MO.

Essentially the same construction gives a commutative orthogonal C2-ring spectrum MSR whose under-
lying non-equivariant spectrum is a model for special unitary cobordism and whose geometric fixed points
are a model for oriented cobordism MSO.

3. Equivariant homotopy groups

The 0-th equivariant homotopy group πG0 X of an orthogonal G-spectrum X is defined as the colimit

(3.1) πG0 (X) = colimn [SnρG , X(nρG)]G ,

where ρG is the regular representation of G, nρG = ρG⊕· · ·⊕ρG (n copies) and [−,−]G means G-equivariant
homotopy classes of based G-maps. The colimit is taken along stabilization by the regular representation

− � ρG : [SnρG , X(nρG)]G −→ [S(n+1)ρG , X((n+ 1)ρG)]G(3.2)

(this stabilization was defined in (2.6) as f � ρG = σnρG,ρG(f ∧ SρG)).
If k is positive, we define

πGk (X) = πG0 (ΩkX) ;
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if k is negative, we define

πGk (X) = πG0 (sh−kX) .

Obviously, the definition of equivariant homotopy groups makes essential use of the fact that we can evaluate
an orthogonal G-spectrum on a representation (in this case, on multiples of the regular representations),
and that we have generalized structure maps relating these values.

First we observe that the colimit πG0 X is indeed naturally an abelian group. The regular representation
decomposes as ρG = (ρG)G ⊕ ρ̄G ∼= R ⊕ ρ̄G, where ρ̄G is the reduced regular representation, the kernel of
the augmentation map

ρG = R[G] −→ R ,
∑
g∈G

λg · g 7−→
∑
g∈G

λg .

So the representation sphere SnρG decomposes G-equivariantly as a smash product Sn∧Snρ̄G . For n ≥ 1 we
can use the trivial suspension coordinate to define a group structure on the set [SnρG , A]G. For n ≥ 2 there
are two independent trivial suspension coordinates, so the group structure is abelian. Hence the colimit
πG0 X inherits an abelian group structure.

It will be important for the development of the theory to know that a based G-map f : SV −→ X(V ), for
any G-representation V , gives rise to an unambiguously defined element 〈f〉 in πG0 (X) as follows. First we
consider a G-equivariant linear isometric embedding ϕ : V −→W . We let W −ϕ(V ) denote the orthogonal
complement inside W of the image ϕ(V ). Given a G-map f : SV −→ X(V ) we define another G-map
ϕ∗f : SW −→ X(W ) as the composite

(3.3) SW ∼= SV⊕(W−ϕ(V )) f�(W−ϕ(V ))−−−−−−−−−−−−→ X(V ⊕ (W − ϕ(V ))) ∼= X(W )

where we have used ϕ twice to identify V ⊕ (W − ϕ(V )) with W . If ψ : W −→ U is another G-isometric
embedding, then we have

ψ∗(ψ∗f) = (ψϕ)∗f .

We observe that if ϕ is bijective (i.e., an equivariant isometry), then ϕ∗f becomes the ‘ϕ-conjugate’ of f ,
i.e., the composite

SW
ϕ−1

−−−−→ SV
f−−→ X(V )

X(ϕ)−−−−→ X(W ) .

This construction also generalizes the stabilization by a representation. Indeed, when i : V −→ V ⊕W is
the inclusion of the first summand, then i∗f = f �W , the stabilization of f by W in the sense of (2.6).

Given a G-map f : SV −→ X(V ), we choose a linear isometric embedding j : V −→ mρG for suitably
large m and obtain an element

〈f〉 = [j∗f ] ∈ πG0 (X) .

Clearly, for G-homotopic maps f and f ′, the maps j∗f and j∗f
′ are again G-homotopic. It is more subtle

to see that 〈f〉 does not depend on the choice of embedding j, but we will show this now.

Proposition 3.4. Let X be a G-spectrum, V a G-representation and f : SV −→ X(V ) a based G-map.

(i) The class 〈f〉 = [j∗f ] in πG0 (X) is independent of the choice of linear isometric embedding j.
(ii) For every G-equivariant linear isometric embedding ϕ : V −→W we have

〈ϕ∗f〉 = 〈f〉 in πG0 (X).

(iii) For every G-representation W we have 〈f �W 〉 = 〈f〉.

Proof. We start by proving a special case of (ii); loosely speaking we show that conjugation of the G-map
g : SW −→ X(W ) by an automorphism of the representation W is homotopically trivial after stabilization
with W . In more detail: given an automorphism ϕ : W −→ W (i.e., a G-equivariant linear isometry), the
map g and its conjugate ϕ∗g are not generally homotopic, but:
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Claim: For every based continuous G-map g : SW −→ X(W ) the two maps

g �W , (ϕ∗g) �W : SW⊕W −→ X(W ⊕W )

are G-homotopic.
To prove the claim we let i : W −→W ⊕W be the inclusion of the first summand. We define

ψ : [0, 1] −→ [0, 1] by ψ(x) =
√

1− x2

and consider the continuous map

H : W × [0, 1] −→ W ⊕W , (w, t) 7−→

{
(ψ(2t) · ϕ(w), 2t · w) for 0 ≤ t ≤ 1/2,

((2t− 1) · w, ψ(2t− 1) · w) for 1/2 ≤ t ≤ 1.

Then H is a homotopy, through G-equivariant isometric embeddings, from i ◦ ϕ, via the second summand
inclusion, to i. In particular, Ht : W −→ W ⊕W defined by Ht(w) = H(w, t) is a G-equivariant linear
isometric embedding for all t ∈ [0, 1]. So

t 7−→ (Ht)∗g : SW⊕W −→ X(W ⊕W )

is the desired continuous 1-parameter family of G-equivariant based maps, from

(H0)∗g = (i ◦ ϕ)∗g = i∗(ϕ∗g) = (ϕ∗g) �W

to (H1)∗g = i∗g = g �W .
(i) Let j : V −→ mρ and j′ : V −→ m′ρ be two equivariant linear isometric embeddings. We first discuss

the case where m = m′. We choose an equivariant isometry ϕ : mρ −→ mρ such that ϕj = j′. Then we
have

[j′∗f ] = [ϕ∗(j∗f)] = [(ϕ∗(j∗f)) �mρ] = [(j∗f) �mρ] = [j∗f ]

by the claim above for W = mρ and g = j∗f : Smρ −→ X(mρ). In general we can suppose without loss of
generality that m′ = m+n ≥ m. We let i : mρ −→ mρ⊕nρ = (m+n)ρ the inclusion of the first summand.
Then we have

(ij)∗f = i∗(j∗f) = (j∗f) � nρ
and hence

[j′∗f ] = [(ij)∗f ] = [j∗f ] ,

where the first equation is the special case of the previous paragraph.
(ii) If j : W −→ mρ is an equivariant linear isometric embedding, then so is jϕ : V −→ mρ. Since we

can use any equivariant isometric embedding to define the class 〈f〉, we get

〈ϕ∗f〉 = [j∗(ϕ∗f)] = [(jϕ)∗f ] = 〈f〉 .

Part (iii) is a special case of (ii) because f � W = i∗f for the inclusion i : V −→ V ⊕ W of the first
summand. �

Definition 3.5. A morphism f : X −→ Y of orthogonal G-spectra is a π∗-isomorphism if the induced
map πHk (f) : πHk (X) −→ πHk (Y ) is an isomorphism for all integers k and all subgroups H of G. We define
the G-equivariant stable homotopy category Ho(SpG) as the category obtained from the category SpG of
orthogonal G-spectra by formally inverting the π∗-isomorphisms.

The class of π∗-isomorphisms takes part in several model structures on the category of orthogonal G-
spectra: Mandell and May establish a ‘projective’ stable model structure in [17, III Thm. 4.2]. Stolz con-
structs a stable ‘S-model structure’ with the same equivalences, but more cofibrations, in [25, Thm. 2.3.27].
Hill, Hopkins and Ravenel, finally, provide the stable ‘positive complete model structure’ in [10, Prop. B.63].
Hence the tools of homotopical algebra are available for studying and manipulating the G-equivariant stable
homotopy category Ho(SpG).
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Functoriality. We can now discuss the functoriality of the G-equivariant homotopy groups with respect
to change of the group G. We let α : K −→ G be any group homomorphism. We denote by α∗ the
restriction functor from G-spaces to K-spaces (or from G-representations to K-representations) along α,
i.e., α∗X (respectively α∗V ) is the same topological space as X (respectively the same inner product space
α∗V ) endowed with K-action via

k · x = α(k) · x .
Given an orthogonal G-spectrum X we denote by α∗X the orthogonal K-spectrum with the same underlying
orthogonal spectrum as X, but with K-action obtained by restricting the G-action along α. We note that
for every G-representation V , the K-spaces α∗(X(V )) and (α∗X)(α∗V ) are equal (not just isomorphic).

We can define a restriction map

(3.6) α∗ : πG0 (X) −→ πK0 (α∗X)

by restricting everything in sight from the group G to K along α. More precisely, given a G-map f :
SnρG −→ X(nρG) we can consider the K-map

α∗f : Sα
∗(nρG) = α∗ (SnρG) −→ α∗(X(nρG)) = (α∗X)(α∗(nρG)) .

As explained in Proposition 3.4, such a map defines an element in the 0-th K-equivariant homotopy group
of α∗X, and we set

α∗〈f〉 = 〈α∗f〉 ∈ πK0 (α∗X) .

Proposition 3.4 (iii) and the relation

α∗(f � ρG) = (α∗f) � (α∗ρG)

guarantee that the outcome only depends on the class of f in πG0 X.
Clearly the restriction map is additive and for a second group homomorphism β : L −→ K we have

β∗(α∗X) = (αβ)∗X and

β∗ ◦ α∗ = (αβ)∗ : πG0 (X) −→ πL0 ((αβ)∗X) .

For later reference we give another interpretation of the restriction map along an inner automorphism.
For g ∈ G we denote by

cg : G −→ G , γ 7−→ cg(γ) = g−1γg

the conjugation automorphism by g. We observe that for every orthogonal G-spectrum X the map

lXg : c∗gX −→ X , x 7−→ gx

given by left multiplication by g is an isomorphism of orthogonal G-spectra from the restriction of X along
cg to X.

Proposition 3.7. For every G-spectrum X and every g ∈ G, the maps

c∗g : πG0 (X) −→ πG0 (c∗gX) and πG0 (lXg ) : πG0 (c∗gX) −→ πG0 X

are inverse to each other.

Proof. We consider a G-map f : SV −→ X(V ) that represents a class in πG0 X (for example, for V can be
a multiple of the regular representation). The diagram of G-maps

c∗g(S
V )

c∗gf // c∗g(X(V ))

lX(V )
g

��

(c∗gX)(c∗gV )

lXg (c∗gV )

��
Sc
∗
gV

lVg //

(lV
g−1 )∗f

22SV
f // X(V )

X(lV
g−1 )

// X(c∗gV )
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commutes, where lVg , l
X(V )
g and lXg are the left multiplication maps on the representation V , the space

X(V ) respectively the spectrum X. The left square commutes because f is a G-map, and the right square
commutes because the G-action on X(V ) = L(Rn, V )+∧O(n)Xn was defined diagonally, using the G-action
on V and on Xn. So we get

πG0 (lXg )〈c∗gf〉 = 〈lXg (c∗gV ) ◦ (c∗gf)〉 = 〈(lVg−1)∗f〉 = 〈f〉 .

The last equation holds by Proposition 3.4 (ii) because lVg−1 : V −→ c∗gV is an isomorphism of G-
representations. �

If X is a G-spectrum and H subgroup of G, we denote by πHk (X) the H-equivariant homotopy group
of the underlying H-spectrum of X. The collections of groups πHk (X), for H ⊆ G, have a lot of extra
structure, known as a Mackey functor, as H varies over the subgroups of G, It suffices to explain this
structure for k = 0, and two thirds of the structure maps are a special case of the functoriality of the
equivariant homotopy groups in the group.

Restriction. We let H be a subgroup of G. As the name suggests, we obtain a restriction map

resGH : πG0 (X) −→ πH0 (X)

by restricting everything in sight from the group G to H. More formally, we let i : H −→ G denote the
inclusion and we define

resGH = i∗ : πG0 (X) −→ πH0 (i∗X) = πH0 (X) .

We have resGG = Id and restriction is transitive, i.e., for subgroups K ⊆ H ⊆ G we have resHK ◦ resGH = resGK .

Conjugation. For every subgroup H of G and every element g ∈ G the conjugation map

cg : H −→ Hg = g−1Hg , h 7−→ cg(h) = g−1hg

is a group homomorphism; moreover, left multiplication by g is an isomorphism

lXg : c∗gX −→ X

of orthogonal H-spectra from the restriction of the underlying H-spectrum of X along cg to the underlying
H-spectrum. We denote the composite

(3.8) πH
g

0 (X)
c∗g−−→ πH0 (c∗gX)

πH0 (lXg )
−−−−−−→ πH0 (X)

by g∗ and refer to it as the conjugation map.
Conjugation is transitive. Indeed, for g, ḡ ∈ G we have cgḡ = cḡ ◦ cg : H −→ Hgḡ and thus c∗gḡ = c∗g ◦ c∗ḡ

as maps from πH
gḡ

0 X to πH0 (c∗g(c
∗
ḡX)) = πH0 (c∗gḡX). So we deduce

g∗ ◦ ḡ∗ = πH0 (lXg ) ◦ c∗g ◦ πH
g

0 (lXḡ ) ◦ c∗ḡ
= πH0 (lXg ) ◦ πH0 (c∗g(l

X
ḡ )) ◦ c∗g ◦ c∗ḡ = πH0 (lXgḡ) ◦ c∗gḡ = (gḡ)∗

as maps πH
gḡ

0 (X) −→ πH0 (X). Here the second equality is the naturality of the restriction homomorphism
c∗g, and the third equality uses that lXg ◦ c∗g(lXḡ ) = lXgḡ as morphisms c∗gḡX −→ X.

Conjugation yields an action of the Weyl group. Indeed, if g normalizes H, then Hg = H and g∗ is an
automorphism of the group πH0 (X). If moreover g belongs to H, then g∗ is the identity automorphism of
πH0 (X) by Proposition 3.7. So the action of the normalizer NGH of H on πH0 (X) factors over the Weyl
group WH = NGH/H.

Now we discuss various properties of the homotopy groups of G-spectra, for example that looping and
suspending a spectrum shifts homotopy groups, a long exact sequences of homotopy groups associated to a
mapping cone, or that homotopy groups commute with sums and products.
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Let X be a G-spectrum and V a representation. The loop spectrum ΩVX is defined by

(ΩVX)n = ΩV (Xn) = map(SV , Xn) ,

the based mapping space from the sphere SV to the n-th level of X. The group O(n) acts through its
action on Xn and G acts by conjugation, i.e., via (gϕ)(v) = g · ϕ(g−1v) for g : SV −→ Xn, v ∈ SV and
g ∈ G. The structure map is given by the composite

map(SV , Xn) ∧ S1 −→ map(SV , Xn ∧ S1)
map(SV ,σn)−−−−−−−−−→ map(SV , Xn+1)

where the first is an assembly map that sends ϕ ∧ t ∈ map(SV , Xn) ∧ S1 to the map sending v ∈ SV to
ϕ(v) ∧ t.

The suspension SV ∧X is defined by

(SV ∧X)n = SV ∧Xn ,

the smash product of the sphere SV with the n-th level of X. The group O(n) acts through its action on Xn

and G acts diagonally, through the actions on SV and Xn. The structure map is given by the composite

(SV ∧X)n ∧ S1 = SV ∧Xn ∧ S1 SV ∧σn−−−−−−→ SV ∧Xn+1 = (SV ∧X)n+1

For the values on a G-representation V we have

(ΩVX)(W ) ∼= map(SV , X(W )) respectively (SV ∧X)(W ) ∼= SV ∧X(W ) .

Both construction are special cases of mapping spectra from and smash products with a based G-spaces,
compare Example 5.2. We obtain an adjunction between SV ∧ − and ΩV as the special case A = SV

of (5.3).
Now we show that looping and suspending a G-spectrum by a representation sphere shifts the RO(G)-

graded homotopy groups. In particular, looping and suspending by a trivial representation shifts the
Z-graded equivariant homotopy groups. The loop homomorphism starts from the bijection

(3.9) α : [Sk+nρG ,ΩVX(nρG)]G ∼= [SV+k+nρG , X(nρG)]G

defined by sending a representing G-map f : Sk+nρG −→ ΩVX(nρG) to the class of the adjoint f̂ :

SV+k+nρG −→ X(nρG) given by f̂(s∧ t) = f(t)(s), where s ∈ SV , t ∈ Sk+nρG . As n varies, these particular
isomorphisms are compatible with stabilization maps, so they induce an isomorphism

(3.10) α : πGk (ΩVX)
∼=−−→ πGV+k(X)

on colimits. In the special case V = R this becomes a natural isomorphism α : πGk (ΩX) ∼= πG1+k(X).
The maps

SV∧ − : [Sk+nρG , X(nρG)]G −→ [SV+k+nρG , SV∧X(nρG)]G

given by smashing from the left with the identity of SV are compatible with the stabilization process for the
equivariant homotopy groups for X respectively SV∧X, so upon passage to colimits they induce a natural
map of homotopy groups

SV∧ − : πGk (X) −→ πGV+k(SV∧X) ,

which we call the suspension homomorphism.
We let η : X −→ ΩV (SV∧ X) and ε : SV∧ ΩVX −→ X denote the unit respectively counit of the

adjunction (5.3). Then for every map f : Sk+nρG −→ ΩVX(nρG) we have f̂ = ε(nρG) ◦ (SV∧ f) and for
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every map g : Sk+nρG −→ X(nρG) we have SV∧ g = ̂η(nρG) ◦ g. This means that the two triangles
(3.11)

πGk (ΩVX)
α //

SV∧− ''

πGV+k(X) πGk (X)
SV∧− //

πGk (η) &&

πGV+k(SV∧X)

πGV+k(SV∧ ΩVX)

πGV+k(ε)

88

πGk (ΩV (SV∧X))

α

77

commute.

Proposition 3.12. For every orthogonal G-spectrum X, every integer k and every G-representation V the
loop and suspension homomorphisms

(3.13) α : πGk (ΩVX) −→ πGV+k(X) and SV∧ − : πGk (X) −→ πGV+k(SV∧X)

are isomorphisms. Moreover, the unit η : X −→ ΩV (SV∧ X) and counit ε : SV∧ ΩVX −→ X of the
adjunction (5.3) are π∗-isomorphisms.

Proof. We already justified why the loop morphism α is an isomorphism. For the suspension homomorphism
we construct a map

J : πGV+k(SV∧X) −→ πGk (X)

in the other direction. Suppose that g : SV+k+nρ −→ SV∧X(nρ) represents an element in πGV+k(SV∧X),
where we abbreviate ρ = ρG. We consider the composite J(g)

SV+k+nρ g−−→ SV∧X(nρ)
τSV ,X(nρ)−−−−−−−−→ X(nρ) ∧ SV σnρ,V−−−−−→ X(nρ⊕ V )

X(τnρ,V )−−−−−−→ X(V ⊕ nρ) .

If we stabilize g to g � ρ, then the composite J(g) changes to J(g) � ρ. So we can set J([g]) = 〈J(g)〉 and
this is well defined by part (iii) of Proposition 3.4.

For f : Sk+nρ −→ X(nρ) we have J(SV∧ f) = i∗f (defined in (3.3)) where i : nρ −→ V ⊕ nρ is the
inclusion of the second summand. Thus J [SV∧ f ] = 〈i∗f〉 = 〈f〉 = [f ] in πGk (X) by Proposition 3.4 (ii).
The composite in both directions send representatives to a suitable suspensions. So the map J is inverse
to SV∧ − and the suspension homomorphism is an isomorphism.

Since loop and suspension homomorphisms are isomorphism, the triangles (3.11) show that the adjunction
unit and counit induce isomorphisms on πGk for all integers k.

The restriction of ΩVX (respectively SV∧X) to a subgroup H of G is again ΩVX (respectively SV∧X),
where now V denotes the underlying H-representation of V . So by applying the previous argument to the
underlying H-spectrum of X proves that πHk (η) and πHk (ε) are isomorphisms for every subgroup H of G;
hence η and ε are π∗-isomorphisms. �

Example 3.14 (Shift). Let V be a G-representation. The V -shift shV X of a G-spectrum X is given in
level n by the G-space

(shVX)n = X(V ⊕ Rn) .

The orthogonal group O(n) acts through the monomorphism IdV ⊕− : O(Rn) −→ O(V ⊕Rn). The structure

maps of shVX are the generalized structure maps for X. We observe that (shmX)n = X(Rm ⊕ Rn) is

canonically isomorphic to Xm+n, which explains the name ‘shift’. On the n-level of shV X the group O(V )
acts via the inclusion − ⊕ IdRn : O(V ) −→ O(V ⊕ Rn). These levelwise actions commute with all other

structure, so they constitute a continuous left action of the group O(V ) on the spectrum shV X.

As an example, the shift of a suspension spectrum is another suspension spectrum:

shV(Σ∞A) ∼= Σ∞(A ∧ SV ) .
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For another G-representation W we have

(shVX)(W ) ∼= X(V ⊕W )

by a natural G-equivariant homeomorphism, and hence shU (shVX) is isomorphic to shV⊕U X.
Shifting a G-spectrum shifts the homotopy groups in the following sense. We define a natural shift

homomorphism

(3.15) shV : πG0 (X) −→ πGV (shVX)

by sending the class represented by a G-map f : SnρG −→ X(nρG) to the class 〈i∗f〉, where i : nρG −→
V ⊕ nρG is the inclusion of the second summand and

i∗f : SV+nρG −→ X(V ⊕ nρG) = (shVX)(nρG)

is as in (3.3). If we stabilize f to f � ρG then i∗f changes to (i∗f) � ρG. So the assignment shV [f ] = 〈i∗f〉
is well-defined.

The suspension and the shift of an equivariant spectrum are related by a natural morphism λ : SV∧X −→
shVX in level n as the composite

(3.16) SV ∧Xn
twist−−−−→ Xn ∧ SV

σn,V−−−−→ X(Rn ⊕ V )
X(τRn,V )
−−−−−−→ X(V ⊕ Rn) = (shVX)n .

It follows that for every G-representation W the map λ(W ) : SV∧X(W ) −→ (shVX)(W ) is the composite

SV∧X(W )
twist−−−−→ X(W ) ∧ SV σW,V−−−→ X(W ⊕ V )

X(τV,W )−−−−−−→ X(V ⊕W ) = (shVX)(W ) .

Proposition 3.17. Let X be an orthogonal G-spectrum and V a G-representation.

(i) The shift homomorphism

shV : πG0 (X) −→ πGV (shVX)

is an isomorphism.
(ii) The morphism

λ : SV∧X −→ shVX and its adjoint λ̃ : X −→ ΩV (shVX)

are π∗-isomorphisms.

Proof. (i) There is a tautological map in the other direction: we send the class in πGV (shVX) represented

by a G-map g : SV+nρG −→ (shVX)(nρG) to the class

〈g : SV+nρG −→ X(V ⊕ nρG)〉 ∈ πG0 (X) .

In other words: we don’t change the representing map at all and only rewrite the target (shVX)(nρG) as
X(V ⊕ nρG). This is clearly compatible with stabilization by the regular representation, so it descends to

a well-defined map πGV (shVX) −→ πG0 (X). The two maps are inverse to each other by Proposition 3.4 (ii).

(ii) We start by showing that the morphism λ̃ : X −→ ΩV (shVX) induces an isomorphism on πG0 . The
composite

πG0 (X)
πG0 (λ̃)−−−−→ πG0 (ΩV (shVX))

α−−→ πGV (shVX)

with the loop isomorphism (3.10) sends the class represented by a G-map g : Snρ −→ X(nρ) to the class
〈i∗g〉 where i : nρ −→ V ⊕nρ is the inclusion of the second summand. In other words, the composite equals

the shift homomorphism shV that is bijective by part (i). Since the loop and shift homomorphisms are

bijective, so is πG0 (λ̃).
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For k > 0 we have πGk (X) = πG0 (ΩkX), by definition. There is an isomorphism Ωk(ΩV (shVX)) ∼=
ΩV (shV(ΩkX)) that moves the loop coordinates indexed by Rk past those indexed by V and that makes
the diagram

πGk (X)
πGk (λ̃) // πGk (ΩV (shVX)) πG0 (Ωk(ΩV (shVX)))

∼=
��

πG0 (ΩkX)
πG0 (λ̃)

// πG0 (ΩV (shV(ΩkX)))

commute. The lower horizontal map is an isomorphism by the above, hence πGk (λ̃) is an isomorphism

for k > 0. For k < 0 we have πGk (X) = πG0 (sh−kX), and the analogous argument works based on the

isomorphism sh−k(ΩV (shVX)) ∼= ΩV (shV(sh−kX)) that moves the shift coordinates indexed by Rk past

those indexed by V . Hence πGk (λ̃) is an isomorphism for every integer k.
Shifting and looping by V commutes with restriction to subgroups. So the previous result applied

to the restriction of X to a subgroup H of G shows that πHk (λ̃) : πHk (X) −→ πHk (ΩV (shVX)) is an

isomorphism for every integer k. Hence λ̃ is a π∗-isomorphism. The adjoint λ is then also a π∗-isomorphism
by Proposition 3.12. �

As a word of warning we remark that the analog of the map λ in the world of symmetric G-spectra (with
a G-set in place of the G-representation V ) is not generally a π∗-isomorphism. This phenomenon can be
traced back to Proposition 3.4 which has no counterpart in the world of symmetric G-spectra.

Now we introduce an important concept, the notion of ‘G-Ω-spectra’, which encode equivariant infinite
loop spaces.

Definition 3.18. An orthogonal G-spectrum X is a G-Ω-spectrum if for every pair of G-representations
V,W the map σ̃V,W : X(V ) −→ ΩWX(V ⊕ W ) which is adjoint to the generalized structure map
σV,W : X(V ) ∧ SW → X(V ⊕W ) is a weak G-homotopy equivalence.

G-Ω-spectra do not come up so frequently in nature. Some examples are given by Eilenberg-Mac Lane
spectra of ZG-modules (see Examples 2.13 and 4.37) and spectra that arise from very special Γ-G-spaces
by evaluation on spheres.

Shifting preserves G-Ω-spectra: if X is a G-Ω-spectrum and U , V and W are G-representations, then
the map

σ̃U,W : (shVX)(U) −→ ΩW (shVX)(U ⊕W )

for the spectrum shVX is G-homeomorphic to the map

σ̃V⊕U,W : X(V ⊕ U) −→ ΩWX(V ⊕ U ⊕W )

for X, and hence a weak G-equivalence.

Proposition 3.19. For every G-Ω-spectrum X, every k ≥ 0 and every subgroup H of G the map

πk(XH
0 ) −→ πHk (X)

is an isomorphism.

Proof. In the special case where V = nρG and W = ρG are multiples of the regular representation, the
defining property of a G-Ω-spectrum specializes to the fact that the maps

σ̃nρG,ρG : X(nρG) −→ ΩρGX((n+ 1)ρG)

are G-weak equivalences. If we loop by SnρG and take H-equivariant homotopy classes, we see that the
stabilization map

− � ρG : [SnρG , X(nρG)]H −→ [S(n+1)ρG , X((n+ 1)ρG)]H
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is bijective. The group πH0 (X) is the colimit of this sequence, so the upshot is that for every G-Ω-spectrum
X the map

π0(XH
0 ) −→ πH0 (X)

is an isomorphism. Under this isomorphism the restriction maps πH0 (X) −→ πK0 (X) for K ⊂ H correspond
to the map induced by the inclusion XH

0 −→ XK
0 on path components. �

Construction 3.20. We can now indicate how a G-spectrum can be naturally approximated, up to π∗-
isomorphism, by a G-Ω-spectrum. For this purpose we introduce a functor called Q as the mapping telescope
of the sequence
(3.21)

X
λ̃X−−→ Ωρ shρX

Ωρ(λ̃shρ X)−−−−−−−−→ · · · −−→ Ωmρ shmρX
Ωmρ(λ̃shmρ X)−−−−−−−−−−→ Ω(m+1)ρ sh(m+1)ρX −−→ · · · .

Here ρ = ρG is the regular representation of G and λ̃X : X −→ ΩV shVX is the adjoint of the morphism
λX : SV∧ X −→ shVX defined in (3.16). This construction comes with a canonical natural morphism
λ∞X : X −→ QX, the embedding of the initial term into the mapping telescope.

Every morphism in the sequence defining QX is a π∗-isomorphism by Theorem 3.17 (ii). So the morphism
λ∞X : X −→ QX is also a π∗-isomorphism. One has to work a little more to show that the spectrum QX is
a G-Ω-spectrum.

Mapping cone and homotopy fiber. The (reduced) mapping cone Cf of a morphism of based
G-spaces f : A −→ B is defined by

(3.22) Cf = ([0, 1] ∧A) ∪f B .

Here the unit interval [0, 1] is pointed by 0 ∈ [0, 1], so that [0, 1] ∧ A is the reduced cone of A. The group
G acts trivially on the interval. The mapping cone comes with an inclusion i : B −→ Cf and a projection

(3.23) p : Cf −→ S1 ∧A

the projection sends B to the basepoint and is given on [0, 1]∧A by p(x, a) = t(x)∧a where t : [0, 1] −→ S1

is given by t(x) = 2x−1
x(1−x) . What is relevant about the map t is not the precise formula, but that it

passes to a homeomorphism between the quotient space [0, 1]/{0, 1} and the circle S1, and that it satisfies
t(1− x) = −t(x).

The homotopy fiber is the construction ‘dual’ to the mapping cone. The homotopy fiber of a morphism
f : A −→ B of based spaces is the fiber product

F (f) = ∗ ×B B[0,1] ×B A = {(λ, a) ∈ B[0,1] ×A | λ(0) = ∗, λ(1) = f(a)} ,

i.e., the space of paths in B starting at the basepoint and equipped with a lift of the endpoint to A. Again
the group G acts trivially on the interval. As basepoint of the homotopy fiber we take the pair consisting
of the constant path at the basepoint of B and the basepoint of A. The homotopy fiber comes with maps

ΩB
i−−→ F (f)

p−−→ A ;

the map p is the projection to the second factor and the value of the map i on a based loop ω : S1 −→ B is

i(ω) = (ω ◦ t, ∗) .

Proposition 3.24. Let f : A −→ B be a map of based G-spaces. Then the composites

A
f−−→ B

i−−→ Cf and F (f)
p−−→ A

f−−→ B
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are naturally based G-null-homotopic. Moreover, the diagram

CA ∪f CB
pA∪∗

zz

∗∪pB

$$
S1 ∧A

τ∧f
// S1 ∧B

commutes up to natural, based G-homotopy, where τ is the sign involution of S1 given by x 7→ −x.

The proof of Proposition 3.24 is by elementary and explicit homotopies, and we omit it.

Lemma 3.25. Let f : A −→ B and β : Z −→ B be morphisms of based G-spaces such that the composite
iβ : Z −→ Cf is equivariantly null-homotopic. Then there exists a based G-map h : S1∧Z −→ S1∧A such
that (S1 ∧ f) ◦ h : S1 ∧ Z −→ S1 ∧B is equivariantly homotopic to S1 ∧ β.

Proof. Let H : [0, 1] × Z −→ Cf be a based, equivariant null-homotopy of the composite iβ : Z −→ Cf ,
i.e., H takes 0 × Z and [0, 1] × z0 to the basepoint and H(1, x) = i(β(x)) for all x ∈ Z. The composite
pAH : [0, 1] × Z −→ S1 ∧ A then factors as pAH = hpZ for a unique G-map h : S1 ∧ Z −→ S1 ∧ A. We
claim that h has the required property.

To prove the claim we need the G-homotopy equivalence pZ∪∗ : CZ∪1×ZCZ −→ S1∧Z which collapses
the second cone. We obtain a sequence of equalities and G-homotopies

(S1 ∧ f) ◦ h ◦ (pZ ∪ ∗) = (S1 ∧ f) ◦ (pA ∪ ∗) ◦ (H ∪ C(β))

= (τ ∧B) ◦ (τ ∧ f) ◦ (pA ∪ ∗) ◦ (H ∪ C(β))

' (τ ∧B) ◦ (∗ ∪ pB) ◦ (H ∪ C(β))

= (τ ∧B) ◦ (S1 ∧ β) ◦ (∗ ∪ pZ)

= (S1 ∧ β) ◦ (τ ∧ Z) ◦ (∗ ∪ pZ) ' (S1 ∧ β) ◦ (pZ ∪ ∗)

Here H ∪ C(β) : CZ ∪1×Z CZ −→ Cf ∪B CB ∼= CA ∪f CB and τ is the sign involution of S1. The
two homotopies result from Proposition 3.24 applied to f respectively the identity of Z, and we used the
naturality of various constructions. Since the map pZ ∪∗ is a G-homotopy equivalence, this proves that the
map (S1 ∧ f) ◦ h is homotopic to S1 ∧ β. �

Now we can introduce mapping cones and homotopy fibers for orthogonal G-spectra. The mapping cone
Cf of a morphism of orthogonal G-spectra f : X −→ Y is defined by

(3.26) (Cf)n = C(fn) = ([0, 1] ∧Xn) ∪f Yn ,

the reduced mapping cone of fn : Xn −→ Yn. The orthogonal group O(n) acts on (Cf)n through the given
action on Xn and Yn and trivially on the interval. The inclusions in : Yn −→ C(fn) and projections pn :
C(fn) −→ S1 ∧Xn assemble into morphisms of orthogonal G-spectra i : Y −→ Cf and p : Cf −→ S1 ∧X.
For every G-representation V , the G-space (Cf)(V ) is naturally G-homeomorphic to the mapping cone of
the G-map f(V ) : X(V ) −→ Y (V ).

We define a connecting homomorphism δ : πG1+k(Cf) −→ πGk (X) as the composite

(3.27) πG1+k(Cf)
πG1+k(p)
−−−−−−→ πG1+k(S1 ∧X) ∼= πGk (X) ,

where the first map is the effect of the projection p : Cf −→ S1 ∧X on homotopy groups, and the second
map is the inverse of the suspension isomorphism S1 ∧ − : πGk (X) −→ πG1+k(S1 ∧X).

The homotopy fiber F (f) of the morphism f : X −→ Y is the orthogonal spectrum defined by

(3.28) F (f)n = F (fn) ,
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the homotopy fiber of fn : Xn −→ Yn. The group G×O(n) acts on F (f)n through the given action on Xn

and Yn and trivially on the interval. Put another way, the homotopy fiber is the pullback in the cartesian
square of orthogonal G-spectra:

F (f)

��

p // X

(∗,f)

��
Y [0,1]

ω 7→ (ω(0),ω(1))
// Y × Y

The inclusions in : ΩYn −→ F (f)n and projections pn : F (f)n −→ Xn assemble into morphisms of
orthogonal G-spectra i : ΩY −→ F (f) and p : F (f) −→ X. For every G-representation V , the G-space
F (f)(V ) is naturally G-homeomorphic to the homotopy fiber of the G-map f(V ) : X(V ) −→ Y (V ). We
define a connecting homomorphism δ : πG1+k(Y ) −→ πGk (F (f))(f) as the composite

(3.29) πG1+k(Y )
α−1

−−→ πGk (ΩY )
πGk (i)−−−−−→ πGk (F (f)) ,

where α : πGk (ΩY ) −→ πG1+k(Y ) is the loop isomorphism (3.10).

Proposition 3.30. For every morphism f : X −→ Y of orthogonal G-spectra the long sequences of abelian
groups

· · · −→ πGk (X)
f∗−−−→ πGk (Y )

i∗−−→ πGk (Cf)
δ−−−−→ πGk−1(X) −→ · · ·

and

· · · −→ πGk (X)
f∗−−−→ πGk (Y )

δ−−−−→ πGk−1(F (f))
p∗−−−→ πGk−1(X) −→ · · ·

are exact.

Proof. We start with exactness of the first sequence at πGk (Y ). The composite of f : X −→ Y and the
inclusion Y −→ Cf is equivariantly null-homotopic, so it induces the trivial map on πGk . It remains to show
that every element in the kernel of i∗ : πGk (Y ) −→ πGk (Cf) is in the image of f∗. Let β : Sk+nρ −→ Y (nρ)
represent an element in the kernel. By increasing n, if necessary, we can assume that the composite of β
with the inclusion i : Y (nρ) −→ (Cf)(nρ) = C(f(nρ)) is equivariantly null-homotopic. By Lemma 3.25
there is a G-map h : S1 ∧ Sk+nρ −→ S1 ∧X(nρ) such that (S1 ∧ f(nρ)) ◦ h is G-homotopic to S1 ∧ β. The
composite

h̃ : Sk+nρ+1 ∼= Sk+nρ ∧ S1
τ
Sk+nρ,S1

−−−−−−−→ S1 ∧ Sk+nρ h−−−−→ S1 ∧X(nρ)
τS1,X(nρ)−−−−−−→ X(nρ) ∧ S1

then has the property that (f(nρ) ∧ S1) ◦ h̃ is G-homotopic to β ∧ S1. The composite

Sk+nρ+1 h̃−−→ X(nρ) ∧ S1 σnρ,R−−−→ X(nρ⊕ R)

represents an equivariant homotopy class 〈σnρ,R ◦ h̃〉 in πGk (X) and we have

πGk (f)〈σnρ,R ◦ h̃〉 = 〈f(nρ⊕ R) ◦ σnρ,R ◦ h̃〉 = 〈σnρ,R ◦ (f(nρ) ∧ S1) ◦ h̃〉
= 〈σnρ,R ◦ (β ∧ S1)〉 = 〈β � R〉 = 〈β〉 .

So the class represented by β is in the image of f∗ : πGk (X) −→ πGk (Y ).
We now deduce the exactness at πGk (Cf) and πGk−1(X) by comparing the mapping cone sequence for

f : X −→ Y to the mapping cone sequence for the morphism i : Y −→ Cf (shifted to the left). We observe
that the collapse map

∗ ∪ p : Ci ∼= CY ∪f CX −→ S1 ∧X
is an equivariant homotopy equivalence, and thus induces an isomorphism of equivariant homotopy groups.
Indeed, a homotopy inverse

r : S1 ∧X −→ CY ∪f CX
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is defined by the formula

r(s ∧ x) =

{
(2s, x) ∈ CX for 0 ≤ s ≤ 1/2, and

(2− 2s, f(x)) ∈ CY for 1/2 ≤ s ≤ 1,

which is to be interpreted levelwise. We omit the explicit G-homotopies r(∗ ∪ p) ' Id and (∗ ∪ p)r ' Id.
Now we consider the diagram

Cf
ii //

p ##

Ci
pi //

∗∪p

��

S1 ∧ Y

S1 ∧X
S1∧f

99

whose upper row is part of the mapping cone sequence for the morphism i : Y −→ Cf . The left triangle
commutes on the nose and the right triangle commutes up to the G-homotopy. We get a commutative
diagram

πGk (Y )
i∗ // πGk (Cf)

(ii)∗ // πGk (Ci)
δ //

(S−1∧−)◦(∗∪p)∗ ∼=
��

πGk−1(Y )

πGk (Y )
i∗

// πGk (Cf)
δ

// πGk−1(X)
f∗

// πGk−1(Y )

(using, for the right square, the naturality of the suspension isomorphism). By the previous paragraph,
applied to i : Y −→ Cf instead of f , the upper row is exact at πGk (Cf). Since all vertical maps are
isomorphisms, the original lower row is exact at πGk (Cf). But the morphism f was arbitrary, so when
applied to i : Y −→ Cf instead of f , we obtain that the upper row is exact at πGk (Ci). Since all vertical
maps are isomorphisms, the original lower row is exact at πGk−1(X). This finishes the proof of exactness of
the first sequence.

Now we come to why the second sequence is exact. For every n ≥ 0 the sequence F (f)(nρ) =
F (f(nρ)) −→ X(nρ) −→ Y (nρ) is an equivariant homotopy fiber sequence. So for every based G-CW-
complex A, the long sequence of based sets

· · · −→ [A,ΩY (nρ)]G
δ−−→ [A,F (f(nρ))]G

[A,p(nρ)]G−−−−−−−→ [A,X(nρ)]G
[A,f(nρ)]G−−−−−−−→ [A, Y (nρ)]G

is exact. We take A = Sk+nρ and form the colimit over n. Since sequential colimits are exact the resulting
sequence of colimits is again exact, and that proves the second claim. �

Corollary 3.31. (i) For every family of orthogonal G-spectra {Xi}i∈I and every integer k the canonical
map ⊕

i∈I
πk(Xi) −→ πk

(∨
i∈I

Xi

)
is an isomorphism of Mackey functors.

(ii) For every finite indexing set I, every family {Xi}i∈I of orthogonal G-spectra and every integer k the
canonical map

πk

(∏
i∈I

Xi

)
−→

∏
i∈I

πk(Xi)

is an isomorphism of Mackey functors.
(iii) For every finite family of orthogonal G-spectra the canonical morphism from the wedge to the product

is a π∗-isomorphism.
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Proof. (i) We first show the special case of two summands. If X and Y are two orthogonal G-spectra, then
the wedge inclusion iX : X −→ X ∨ Y has a retraction. So for every subgroup H of G the associated long
exact homotopy group sequence of Proposition 3.30 (i) splits into short exact sequences

0 −→ πHk (X)
πHk (iX)−−−−−→ πHk (X ∨ Y )

incl−−→ πHk (C(iX)) −→ 0 .

The mapping cone C(iX) is isomorphic to (CX) ∨ Y and thus G-homotopy equivalent to Y . So we can
replace πHk (C(iX)) by πHk (Y ) and conclude that πHk (X ∨Y ) splits as the sum of πHk (X) and πHk (Y ), via the
canonical map. The case of a finite indexing set I now follows by induction, and the general case follows
since homotopy groups of orthogonal G-spectra commute with filtered colimits.

(ii) The functor X 7→ [Sk+nρG , X(nρG)] commutes with products. For finite indexing sets product are
also sums, which commute with filtered colimits.

(iii) This is a direct consequence of (i) and (ii). More precisely, for finite indexing set I and every integer
k the composite map ⊕

i∈I
πHk (Xi) −→ πHk (

∨
i∈I

Xi) −→ πHk (
∏
i∈I

Xi) −→
∏
i∈I

πHk (Xi)

is an isomorphism, where the first and last maps are the canonical ones. These canonical maps are isomor-
phisms by parts (i) respectively (ii), hence so is the middle map. �

As a word of warning we remark that the functors πGk and πk do not preserve arbitrary products; the
problem is that the sequential colimit involved in the definition of πGk does not commute with arbitrary
products.

4. Wirthmüller isomorphism and transfers

In this section we establish the Wirthmüller isomorphism and discuss the closely related transfer maps
on equivariant homotopy groups. The restriction functor from G-spectra to H-spectra has both a left
adjoint G nH − and a right adjoint mapH(G,−). In classical representation theory of finite groups, the
algebraic analogues of the left and the right adjoint are naturally isomorphic. In equivariant stable homotopy
theory, the best we can hope for is a natural π∗-isomorphism, and that is the content of the Wirthmüller
isomorphism, compare Theorem 4.9 below.

We start with an auxiliary lemma.

Lemma 4.1. Let H be a finite group, W an H-representation and and w ∈ W an H-fixed point. Define
the ‘radius 1 scanning map’ around w by

s[w] : SW −→ SW , x 7−→

{
x−w

1−|x−w| for |x− w| < 1, and

∞ for |x− w| ≥ 1.

Then the scanning map s[w] is H-equivariantly based homotopic to the identity.

Proof. The homotopy

[0, 1]× SW −→ SW , (t, x) 7−→ s[t · w](x)

interpolates between s[0] and s[w]. Another homotopy then interpolates between the identity and the
scaling map s[0]. �

Construction 4.2 (Transfer). We let H be a subgroup of a finite group G. We choose aG-representation W
and a G-equivariant injection

j : G/H −→ W .

Such an injection is determined by the point w = j(H), the image of the preferred coset, and any point
of W whose stabilizer group is H does the job. By scaling the function j, if necessary, we can assume
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without loss of generality that the embedding is wide, i.e., the open unit balls around the image points
i(gH) = g · w are pairwise disjoint.

This data determines a G-equivariant transfer map as follows. The G-map

j : G×H D(W ) −→ W , [g, x] 7−→ g · (w + x)

is an embedding on the open unit balls. So we get a G-equivariant Thom-Pontryagin collapse map

(4.3) tGH : SW −→ GnH SW

that sends the complement of j(G ×H D̊(W )) to the basepoint at infinity and is otherwise given by the
formula

tGH(g · (w + x)) =
g · x

1− |x|
,

where |x| < 1. The map depends on the choice of G-representation W and the wide equivariant embedding j,
but we do not record this dependence in the notation.

Now we need some more notation in order to state and prove the key unstable ingredient for the
Wirthmüller isomorphism, namely Proposition 4.5 below. We let H be a subgroup of a finite group G.
Then the restriction functor i∗ from based G-spaces to based H-space has a left adjoint GnH − and a right
adjoint mapH(G,−). A natural based G-map

(4.4) ΨB : GnH B −→ mapH(G,B)

is defined by

ΨB(g n b)(γ) =

{
γgb if γg ∈ H, and

∗ if γg 6∈ H.

For a based H-space B and a based G-space A, the shearing isomorphism is the G-equivariant homeomor-
phism

(GnH B) ∧A ∼= GnH (B ∧ i∗A) , (g n b) ∧ a 7−→ g n (b ∧ (g−1a)) .

Similarly, the assembly map is the G-map

α : mapH(G,B) ∧A −→ mapH(G,B ∧ i∗A) , α(f ∧ a)(g) = f(g) ∧ ga .

It is straightforward to check that all these maps make the following square commute:

(GnH B) ∧A ΨB∧A //

shear ∼=
��

mapH(G,B) ∧A

α

��
GnH (B ∧ i∗A)

ΨB∧i∗A

// mapH(G,B ∧ i∗A)

In the situation where A = SW is the sphere of a G-representation W into which G/H embeds, the
transfer (4.3) gives rise to another G-map τB : mapH(G,B) ∧ SW −→ G nH (B ∧ Si∗W ) defined as the
composite

mapH(G,B) ∧ SW Id∧tGH−−−−→ mapH(G,B) ∧ (GnH Si
∗W )

shear−−−−→ GnH
(
i∗(mapH(G,B)) ∧ Si

∗W
)

GnH(ε∧Si
∗W )−−−−−−−−−−→ GnH (B ∧ Si

∗W ) .

Here ε is the adjunction counit.
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Proposition 4.5. Let H be a subgroup of a finite group G, and B a based H-space. Then the following
diagram commutes up to G-equivariant based homotopy:

(GnH B) ∧ SW ΨB∧SW //

shear ∼=
��

mapH(G,B) ∧ SW

α

��
τB

tt
GnH (B ∧ Si∗W )

Ψ
B∧Si∗W

// mapH(G,B ∧ Si∗W )

Proof. We start by showing that the upper left triangle in the proposition commutes up to G-homotopy.
Since GnH − is left adjoint to the restriction functor, it suffices to show that the composite

B ∧ Si
∗W ψB∧tGH−−−−−→ mapH(G,B) ∧ (GnH Si

∗W )

shear−−−−→ GnH
(
i∗(mapH(G,B)) ∧ Si

∗W
)

GnH(ε∧Si
∗W )−−−−−−−−−−→ GnH (B ∧ Si

∗W )

is H-equivariantly homotopic to the adjunction unit, where we have expanded the definition of τB . Ex-
panding the definition of the transfer map tGH identifies this composite with the map

B ∧ Si
∗W Id∧s[w]−−−−−→ B ∧ Si

∗W 1n−−−−→ GnH (B ∧ Si
∗W ) ,

the radius 1 scanning map s[w] around the distinguished H-fixed point w = j(H), followed by the adjunction
unit. By Lemma 4.1, the map s[w] is H-equivariantly homotopic to the identity, so the claim follows.

Now we show the commutativity of the lower right triangle. Since mapH(G,−) is right adjoint to the
restriction functor, it suffices to show that the composite

mapH(G,B) ∧ SW Id∧tGH−−−−→ mapH(G,B) ∧ (GnH Si
∗W )

shear−−−−→ GnH
(
i∗(mapH(G,B)) ∧ Si

∗W
)

GnH(ε∧Si
∗W )−−−−−−−−−−→ GnH (B ∧ Si

∗W )
projH−−−−→ B ∧ Si

∗W

is H-equivariantly homotopic to ε∧ Id : mapH(G,B)∧SW −→ B ∧SW , where again we have expanded the
definition of τB . This composite equals the map

ε ∧ s(w) : mapH(G,B) ∧ SW −→ B ∧ SW ;

so again, the claim follows because the scanning map s[w] is H-equivariantly homotopic to the identity. �

Now we can establish the Wirthmüller isomorphism. This isomorphism first appeared in [27, Thm. 2.1]
in the more general context of compact Lie groups. Wirthmüller attributes parts of the ideas to tom Dieck
and his statement that G-spectra define a ‘complete G-homology theory’, amounts to Theorem 4.9 when Y
is a suspension spectrum. The generalization of Wirthmüller’s isomorphism to arbitrary H-spectra is due to
Lewis and May [16, II Thm. 6.2]. Our proof is essentially Wirthmüller’s original argument, but specialized
to finite groups and adapted to orthogonal spectra, which simplifies the exposition somewhat.

Let H be a subgroup of G. Then the restriction functor from orthogonal G-spectra to orthogonal H-
spectra has a left and a right adjoint, and both are essentially given by applying the space level adjoints
GnH − and mapH(G,−) levelwise.

Construction 4.6. We let H be a subgroup of G and Y an orthogonal H-spectrum. The coinduced
G-spectrum is defined levelwise, i.e., by (mapH(G, Y ))n = mapH(G, Yn) with induced action by the orthog-
onal group and induced structure maps. If V is a G-representation, then the G-space mapH(G, Y )(V ) is
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canonically isomorphic to mapH(G, Y (i∗V )). Indeed, a G-equivariant homeomorphism

mapH(G, Y )(V ) = O(Rn, V ) ∧O(n) mapH(G, Yn)(4.7)

−→ mapH(G,O(Rn, V ) ∧O(n) Yn) = mapH(G, Y (i∗V ))

is given by

[ϕ, f ] 7−→ { g 7→ [lg ◦ ϕ, f(g)] }
where dim(V ) = n, ϕ : Rn −→ V is a linear isometry and f : G −→ Yn an H-map and lg : V −→ V is left
translation by g ∈ G. Under the identification (4.7), the generalized structure map σV,W of the spectrum
mapH(G, Y ) becomes the composite

mapH(G, Y (i∗V )) ∧ SW α−−→ mapH(G, Y (i∗V ) ∧ Si
∗W )

mapH(G,σi∗V,i∗W )
−−−−−−−−−−−−→ mapH(G, Y (i∗(V ⊕W ))) .

The left adjoint to the restriction functor from G-spectra to H-spectrum is constructed in a similar way.
For an orthogonal H-spectrum Y we denote by G nH Y the induced G-spectrum with n-th level given by
(GnH Y )n = GnH Yn, with induced action by the orthogonal group and induced structure maps. If V is
a G-representation, then the map

(4.8) GnH Y (i∗V ) ∼= (GnH Y )(V ) , g n [ϕ, y] 7−→ [lg ◦ ϕ, g n y]

is a preferred G-equivariant homeomorphism. Under the identification (4.8), the generalized structure map
σV,W of the spectrum mapH(G, Y ) becomes the composite

(GnH Y (i∗V )) ∧ SW shear−−−→ GnH (Y (i∗V ) ∧ Si
∗W )

GnHσi∗V,i∗W−−−−−−−−−→ GnH Y (i∗(V ⊕W )) .

The G-maps (4.4) for the various levels Yn form a morphism of orthogonal G-spectra ΨY : G nH Y −→
mapH(G, Y ).

Theorem 4.9 (Wirthmüller isomorphism). Let H be a subgroup of a finite group G, and Y an orthogonal
H-spectrum. Then the morphism

ΨY : GnH Y −→ mapH(G, Y )

is a π∗-isomorphism.

Proof. This is a relatively straightforward consequence of Proposition 4.5. We let K be any subgroup of G,
and we start by showing the injectivity of πKk (ΨY ); we give the argument for k ≥ 0, the other cases being
similar. We let x ∈ πKk (GnH Y ) be a class in the kernel of πKk (ΨY ) and we represent it by a based K-map

f : SRk⊕V −→ (GnH Y )(V )

for a suitable K-representation V . By increasing V and stabilizing f , if necessary, we can assume that V
is underlying a G-representation. Then we use the homeomorphism (4.8) to rewrite the target of f as

(GnH Y )(V ) ∼= GnH Y (i∗V ) .

By increasing V even further, if necessary, we can assume that in addition the composite

SRk⊕V f−−→ GnH Y (i∗V )
ΨY (i∗V )−−−−−−→ mapH(G, Y (i∗V ))

is K-equivariantly null-homotopic. Hence the composite

SRk⊕V⊕W f∧SW−−−−−→ (GnH Y (i∗V )) ∧ SW
ΨY (i∗V )∧SW−−−−−−−−−−→ mapH(G, Y (i∗V )) ∧ SW

is K-equivariantly null-homotopic as well.
By Proposition 4.5 the composite

(GnH Y (i∗V )) ∧ SW
ΨY (i∗V )∧SW−−−−−−−−−−→ mapH(G, Y (i∗V )) ∧ SW

τY (i∗V )−−−−−−→ GnH (Y (i∗V ) ∧ Si
∗W )
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is G-equivariantly – and hence also K-equivariantly – homotopic to the shearing homeomorphism; so already

the map f ∧ SW : SRk⊕V⊕W −→ (GnH Y (i∗V )) ∧ SW is K-equivariantly null-homotopic. In particular, f
represents the trivial element in πKk (GnH Y ), and so the map πKk (ΨY ) in injective.

The argument for surjectivity is similar. We let

g : SRk⊕V −→ mapH(G, Y )(V )

be a based K-map that represents any given element of πKk (mapH(G, Y )), for a suitable K-representation V .
By increasing V and stabilizing g, if necessary, we can assume that V is underlying a G-representation.
Then we use the homeomorphism (4.7) to rewrite the target of g as

mapH(G, Y )(V ) ∼= mapH(G, Y (i∗V )) .

The composite

SRk⊕V⊕W g∧SW−−−−−→ mapH(G, Y (i∗V )) ∧ SW
τY (i∗V )−−−−−−→ GnH (Y (i∗V ) ∧ Si

∗W )

GnH(σi∗V,i∗W )
−−−−−−−−−−→ GnH Y (i∗(V ⊕W ))

represents an element x ∈ πKk (GnH Y ). By naturality of the maps Ψ and Proposition 4.5 for B = Y (i∗V ),
the composite

mapH(G, Y (i∗V )) ∧ SW
τY (i∗V )−−−−−−→ GnH (Y (i∗V ) ∧ Si

∗W )

GnH(σi∗V,i∗W )
−−−−−−−−−−→ GnH Y (i∗(V ⊕W ))

ΨY (i∗(V⊕W ))−−−−−−−−→ mapH(G, Y (i∗(V ⊕W )))

is G-equivariantly – and hence also K-equivariantly – homotopic to the composite

mapH(G, Y (i∗V )) ∧ SW α−−→ mapH(G, Y (i∗V ) ∧ Si
∗W )

mapH(G,σi∗V,i∗W )
−−−−−−−−−−−−→ mapH(G, Y (i∗(V ⊕W ))) .

Up to the identification (4.7), this last composite is the generalized structure map of the G-spectrum
mapH(G, Y ), so this shows that the original class represented by g is the image of the class x. So the map
πKk (ΨY ) is surjective, hence bijective. �

The G-equivariant homotopy groups of the coinduced G-spectrum mapH(G, Y ) are isomorphic to the
H-equivariant homotopy groups of Y , by a simple adjointness argument. We claim hat for every integer k
the composite

(4.10) πGk (mapH(G, Y ))
resGH−−−−→ πHk (mapH(G, Y ))

πHk (ev)−−−−−−→ πHk (Y )

is an isomorphism, where ev : mapH(G, Y ) −→ Y is evaluation at 1 ∈ G (also known as the adjunction
counit). Indeed, for every n ≥ 0, the G-equivariant homeomorphism (4.7)

mapH(G, Y )(nρG) ∼= mapH(G, Y (i∗(nρG)))

and the adjunction provide a natural bijection

[Sk+nρG ,mapH(G, Y )(nρG)]G ∼= [Sk+i∗(nρG), Y (i∗(nρG))]H .

These bijections are compatible with stabilization as n increases, and assemble into an isomorphism of
abelian groups

πGk (mapH(G, Y )) = colimn [Sk+nρG ,mapH(G, Y )(nρG)]G ∼= colimn [Sk+i∗(nρG), Y (i∗(nρG))]H .

The restricted representation i∗(ρG) is H-isomorphic to [G : H] · ρH , so the sequence {i∗(nρG)}n≥0 of
restricted regular representations is isomorphic to a cofinal subsequence of the sequence {mρH}m≥0. Hence
the colimit on the right hand side is isomorphic to the group πHk (Y ).

For every subgroup H of G and every orthogonal H-spectrum Y we define a morphism

pr : GnH Y −→ Y
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as the projection onto the preferred wedge summand H nH Y in G nH Y . In other words, the n-th level
prn : GnH Yn −→ Yn is defined by

prn(g n y) =

{
gy if g ∈ H, and

∗ if g 6∈ H.

The projection is a morphism of orthogonal H-spectra (but it is not G-equivariant). The next result is now
essentially a corollary of the Wirthmüller isomorphism.

Proposition 4.11. For every subgroup H of G and every orthogonal H-spectrum Y the composite

πG∗ (GnH Y )
resGH−−−→ πH∗ (GnH Y )

πH∗ (pr)−−−−→ πH∗ (Y ) ,

is an isomorphism.

Proof. The projection pr factors as the composite

GnH Y
ΨY−−−→ mapH(G, Y )

ev−−→ Y ,

where the second morphism is evaluation at 1 (hence the counit of the adjunction); the map in question is
thus equal to

πH∗ (pr) ◦ resGH = πH∗ (ev) ◦ πH∗ (ΨY ) ◦ resGH = πH∗ (ev) ◦ resGH ◦πG∗ (ΨY ) .

Since πH∗ (ev) ◦ resGH is an isomorphism by (4.10), and πG∗ (ΨY ) is the Wirthmüller isomorphism (Theo-
rem 4.9), this proves the claim. �

Now we discuss the transfer maps of equivariant homotopy groups. For a subgroup H of G we construct
two kinds of transfer maps, the external transfer TrGH that is defined and natural for orthogonal H-spectra,
and the internal transfer trGH that is defined and natural for orthogonal G-spectra, In order to distinguish
the two kinds of transfer maps we use a capital ‘T’ for the external transfer and a lower case ‘t’ for the
internal transfer.

Our definition of the external transfer TrGH is essentially as the ‘inverse of the Wirthmüller isomorphism’,
modulo the identification (4.10) of πGk (mapH(G, Y )) with πHk (Y ).

Definition 4.12. Let H be a subgroup of a finite groups G.

(i) For an orthogonal H-spectrum Y the external transfer

(4.13) TrGH : πH∗ (Y ) −→ πG∗ (GnH Y )

is defined as the inverse of the isomorphism πH∗ (pr) ◦ resGH .
(ii) For an orthogonal G-spectrum X the internal transfer

(4.14) trGH : πH∗ (X) −→ πG∗ (X)

is defined as the composite

πH0 (X)
TrGH−−−−→ πG0 (GnH X)

πG0 (act)−−−−−−→ πG0 (X)

of the external transfer for the underlying H-spectrum of X and the effect of the action morphism
GnH X −→ X on G-equivariant homotopy groups.

The definition of the external transfer as the inverse of some easily understood map allows for rather
formal proofs of various properties of the transfer maps. Along these lines we will show below the transitivity
of the transfer maps, the compatibility with restriction along epimorphisms, and the double coset formula.
On the other hand, Definition 4.12 does not reveal the geometric interpretation of the transfer as a Thom-
Pontryagin construction – which is usually taken as the definition of the transfer. We will reconcile these
two approaches now.
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Construction 4.15. We relate that rather abstract definition of the transfer to the more concrete tradi-
tional definition via an equivariant Thom-Pontryagin construction. In fact, this interpretation is already
implicit in the proof of the Wirthmüller isomorphism, which identifies the inverse as coming from the
transfer map (4.3)

tGH : SW −→ GnH Si
∗W .

Let H be a subgroup of G and Y an orthogonal H-spectrum. We let V be an H-representation and
f : SV −→ Y (V ) an H-equivariant based map that represents a class in πH0 (Y ). By enlarging V , if
necessary, we can assume that V = i∗W is the underlying H-representation of a G-representation W . By
enlarging W , if necessary, we can assume moreover that there exists a G-equivariant injection

j : G/H −→ W ,

which amounts to a choice of vector j(H) in W whose stabilizer group is H. As we explained in Construc-
tion 4.2, an associated Thom-Pontryagin collapse map gives rise to the G-equivariant transfer map tGH . The
composite

SW
tGH−−−→ GnH Si

∗W GnHf−−−−→ GnH Y (i∗W ) ∼=(4.8) (GnH Y )(W )

is then a G-equivariant based map and we claim that it represents the external transfer, i.e.,

〈(GnH f) ◦ tGH〉 = TrGH〈f〉 in πG0 (GnH Y ) .

To see this we contemplate the commutative diagram of based H-maps:

SW

s[w] --

tGH // GnH Si
∗W GnHf //

pr

��

GnH Y (i∗W )

pr

��
Si
∗W

f
// Y (i∗W )

The composite pr◦tGH : SW −→ SW is the radius 1 scanning map s[w] around the preferred vector w = j(H),
so pr ◦ tGH is H-equivariantly homotopic to the identity of SW by Lemma 4.1. We conclude that

πH0 (pr)
(
resGH〈(GnH f) ◦ tGH〉

)
= 〈pr ◦ (GnH f) ◦ tGH〉 = 〈f ◦ s[w]〉 = 〈f〉 in πH0 (Y ) .

The external transfer is defined as the inverse of πH0 (pr) ◦ resGH , so this proves the claim.

Now we prove various properties of the external and internal transfer maps. We start with transitivity
with respect to a nested triple of groups K ≤ H ≤ G. In this situation, restricting a G-action to a K-action
can be done in two step, through an intermediate H-action. So the left adjoint G nK − is canonically
isomorphic to the composite of the two partial left adjoints:

κ : GnH (H nK Y ) ∼= GnK Y , g n (hn y) 7−→ (gh)n y ,

and similarly for the various right adjoints.

Proposition 4.16. The external transfer maps are transitive, i.e., for nested subgroups K ≤ H ≤ G and
every orthogonal K-spectrum Y the composite

πK∗ (Y )
TrHK−−−−→ πK∗ (H nK Y )

TrGH−−−−→ πG∗ (GnH (H nK Y ))
πG∗ (κ)−−−−→ πG∗ (GnK Y )

agrees with the external transfer TrGK . The internal transfer maps are transitive, i.e.,

trGH ◦ trHK = trGK : πK∗ (X) −→ πG∗ (X)

for every orthogonal G-spectrum X.
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Proof. The square

GnH (H nK Y )
κ //

prGH
��

GnK Y

prGK
��

H nK Y
prHK

// Y

commutes, where we decorate the wedge summand projections by the groups involved. So

πK∗ (prGK) ◦ resGK ◦πG∗ (κ) ◦ TrGH ◦TrHK = πK∗ (prGK) ◦ πK∗ (κ) ◦ resGK ◦TrGH ◦TrHK

= πK∗ (prHK) ◦ πK∗ (prGH) ◦ resHK ◦ resGH ◦TrGH ◦TrHK

= πK∗ (prHK) ◦ resHK ◦πH∗ (prGH) ◦ resGH ◦TrGH ◦TrHK

= πK∗ (prHK) ◦ resHK ◦TrHK = Id .

Since the composite πG∗ (κ) ◦TrGH ◦TrHK is inverse to πK∗ (prGK) ◦ resGK , it equals TrGK . The transitivity of the
internal transfer maps follows by naturality because for every orthogonal G-spectrum X the square

GnH (H nK X)
κ //

GnH(actHK)

��

GnK X

actGK
��

GnH X
actGH

// X

commutes. Indeed:

trGH ◦ trHK = πG∗ (actGH) ◦ TrGH ◦πH∗ (actHK) ◦ TrHK

= πG∗ (actGH) ◦ πG∗ (GnH actHK) ◦ TrGH ◦TrHK

= πG∗ (actGK) ◦ πG∗ (κ) ◦ TrGH ◦TrHK = actGK ◦ TrGK = trGK . �

Now we study how transfer maps interact with the restriction homomorphism (3.6) of equivariant ho-
motopy groups. The following proposition explains what happens when a transfer is restricted along an
epimorphism. The double coset formula (4.21) below explains what happens when a transfer is restricted
to a subgroup. Every group homomorphism is the composite of an epimorphism and a subgroup inclusion,
so together this can be used to rewrite the composite of a transfer map with the restriction homomorphism
along an arbitrary group homomorphism.

We let α : K −→ G be a surjective homomorphism of finite groups, H a subgroup of G and L = α−1(H).
For every based H-space A the map

K nL ((α|L)∗A) −→ α∗(GnH A) , k n a 7−→ α(k)n a

is a K-equivariant homeomorphism. For an orthogonal H-spectrum Y , these isomorphisms for the various
levels together define an isomorphism of orthogonal K-spectra

ξ : K nL ((α|L)∗Y ) −→ α∗(GnH Y ) .

The next proposition shows that transfer maps are compatible in a straightforward way with restriction
maps along epimorphisms.

Proposition 4.17. Let α : K −→ G be a surjective homomorphism of finite groups, H a subgroup of G
and L = α−1(H).
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(i) For every orthogonal H-spectrum Y the following square commutes:

πH∗ (Y )

(α|L)∗

��

TrGH // πG∗ (GnH Y )

α∗

��
πL∗ ((α|L)∗(Y ))

TrKL

// πK∗ (K nL ((α|L)∗Y ))
πK∗ (ξ)

// πK∗ (α∗(GnH Y ))

(ii) For every orthogonal G-spectrum X the following square commutes:

πH∗ (X)

(α|L)∗

��

trGH // πG∗ (X)

α∗

��
πL∗ (α∗X)

trKL

// πK∗ (α∗X)

Proof. (i) The composite

K nL ((α|L)∗Y )
ξ−−→ α∗(GnH Y )

(α|L)∗(prGH)−−−−−−−−→ (α|L)∗(Y )

equals the wedge summand projection prKL , so

πK∗ (ξ) ◦ TrKL ◦πL∗ ((α|L)∗(prGH)) ◦ resKL = πK∗ (ξ) ◦ TrKL ◦πL∗ (prKL ) ◦ πL∗ (ξ−1) ◦ resKL

= πK∗ (ξ) ◦ TrKL ◦πL∗ (prKL ) ◦ resKL ◦πK∗ (ξ−1)

= πK∗ (ξ) ◦ πK∗ (ξ−1) = Id

is the identity of πK∗ (α∗(GnH Y )). Thus

πK∗ (ξ) ◦ TrKL ◦(α|L)∗ ◦ πH∗ (prGH) ◦ resGH = πK∗ (ξ) ◦ TrKL ◦πL∗ ((α|L)∗(prGH)) ◦ (α|L)∗ ◦ resGH

= πK∗ (ξ) ◦ TrKL ◦πL∗ ((α|L)∗(prGH)) ◦ resKL ◦α∗ = α∗ .

Precomposing with the external transfer TrGH and using Proposition 4.11 shows the first claim. Part (ii)
follows from part (i) and the fact that

K nL ((α|L)∗(Y ))
ξ−−→ α∗(GnH Y )

α∗(act)−−−−−→ α∗Y

is the action map of K on (α|L)∗(Y ). �

A special case of an epimorphism is the conjugation map

cg : H −→ Hg = g−1Hg , h 7−→ cg(h) = g−1hg

induced by an element g ∈ G of the ambient group. We recall from (3.8) that the conjugation map
g∗ : πH

g

0 (X) −→ πH0 (X) is defined as the composite

πH
g

0 (X)
c∗g−−→ πH0 (c∗gX)

πH0 (lXg )
−−−−−−→ πH0 (X)

where lXg : c∗gX −→ X is left translation by g. Proposition 4.17 (ii) applied to K = G and the inner
automorphism α = cg : G −→ G implies the relation

trGH ◦g∗ = trGH ◦πH∗ (lXg ) ◦ c∗g = πG∗ (lXg ) ◦ trGH ◦c∗g = πG∗ (lXg ) ◦ c∗g ◦ trGHg = trGHg

as maps from πH
g

∗ X to πG∗ (X), for every orthogonal G-spectrum X. The last step is the fact that inner
automorphisms induce the identity, compare Proposition 3.7.
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Now we prove the double coset formula for the restriction of a transfer to a subgroup. We let K and H
be subgroups of G and A a based H-space. For every g ∈ G, the map

κg : K nK∩gH (res
gH
K∩gH(c∗gA)) −→ GnH A , k n a 7−→ (kg)n a

is K-equivariant. As usual, cg : gH −→ H is the conjugation homomorphism given by cg(γ) = g−1γg. If
we let g vary in a set of K-H-double coset representatives, the combined map∨

[g]∈K\G/H

K nK∩gH (res
gH
K∩gH(c∗gA))

∨
κg−−−−→ resGK(GnH A)

is a K-equivariant homeomorphism. All this is natural, so we can apply the constructions and maps levelwise
to an orthogonal H-spectrum Y and obtain an analogous morphism of orthogonal K-spectra

κg : K nK∩gH (res
gH
K∩gH(c∗gY )) −→ GnH Y ,

which gives a wedge decomposition of the underlying K-spectrum of G nH Y when g runs over a set of
representatives of all K-H-double cosets.

Proposition 4.18 (External double coset formula). For all subgroups K and H of G and every orthogonal
H-spectrum Y the relation

resGK ◦TrGH =
∑

[g]∈K\G/H

πK∗ (κg) ◦ TrKK∩gH ◦ res
gH
K∩gH ◦c∗g

holds as maps πH∗ (Y ) −→ πK∗ (GnH Y ).

Proof. For g ∈ G we denote by

prg : GnH Y −→ K nK∩gH c∗g(Y )

the morphism of orthogonal K-spectra that is left inverse to κg and sends all K-H-double cosets other than
KgH to the basepoint. The morphism of orthogonal (K ∩ gH)-spectra c∗g(prGH) : c∗g(G nH Y ) −→ c∗g(Y )
equals the composite

c∗g(GnH Y )
lg−−→ GnH Y

prg−−→ K nK∩gH c∗g(Y )
prKK∩gH−−−−−→ c∗g(Y )

where lg is left multiplication by g. So

res
gH
K∩gH ◦c∗g ◦ πH∗ (prGH) ◦ resGH = πK∩

gH
∗ (c∗g(prGH)) ◦ res

gH
K∩gH ◦c∗g ◦ resGH

= πK∩
gH

∗ (prKK∩gH) ◦ πK∩
gH

∗ (prg) ◦ πK∩
gH

∗ (lg) ◦ resGK∩gH ◦c∗g
= πK∩

gH
∗ (prKK∩gH) ◦ πK∩

gH
∗ (prg) ◦ resGK∩gH ◦πG∗ (lg) ◦ c∗g

= πK∩
gH

∗ (prKK∩gH) ◦ πK∩
gH

∗ (prg) ◦ resGK∩gH

We have used various naturality properties and, in the last equation, that inner automorphisms induce the
identity (Proposition 3.7). The external transfer TrGH is inverse to πH∗ (prGH) ◦ resGH , so precomposition with
this external transfer gives

res
gH
K∩gH ◦c∗g = πK∩

gH
∗ (prKK∩gH) ◦ πK∩

gH
∗ (prg) ◦ resGK∩gH ◦TrGH

= πK∩
gH

∗ (prKK∩gH) ◦ resKK∩gH ◦πK∗ (prg) ◦ resGK ◦ TrGH .

Similarly, the transfer map TrKK∩gH is inverse to πK∩
gH

∗ (prKK∩gH) ◦ resKK∩gH , so postcomposition with this
external transfer gives

TrKK∩gH ◦ res
gH
K∩gH ◦c∗g = πK∗ (prg) ◦ resGK ◦ TrGH(4.19)

as maps πH∗ (Y ) −→ πK∗ (K nK∩gH c∗g(Y )).
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The underlying orthogonal K-spectrum of GnH Y is the wedge, indexed over K-H-double coset repre-
sentatives, of the images of the idempotent endomorphisms κg ◦prg of GnH Y . Since equivariant homotopy

groups takes wedges to sums, the identity of πK∗ (G nH Y ) is the sum of the effects of these idempotents.
So we can postcompose the relation (4.19) with πK∗ (κg) and sum over double coset representatives to get
the desired formula:∑

[g]∈K\G/H

πK∗ (κg) ◦ TrKK∩gH ◦ res
gH
K∩gH ◦c∗g =

∑
[g]∈K\G/H

πK∗ (κg ◦ prg) ◦ resGK ◦TrGH = resGK ◦TrGH . �

The double coset formula for the internal transfer maps follows from the external one by naturality
arguments.

Proposition 4.20 (Internal double coset formula). For all subgroups K and H of G and every orthogonal
G-spectrum X the relation

resGK ◦ trGH =
∑

[g]∈K\G/H

trKK∩gH ◦ res
gH
K∩gH ◦g∗

holds as maps πH∗ (X) −→ πK∗ (X).

Proof. We denote by ηG : G nH X −→ X the G-action morphism. If we apply the map πK∗ (ηG) to
the external double coset formula, then the left hand side becomes the composite of internal transfer and
restriction (using that restriction is natural for the the G-morphism ηG). Now we simplify the summands
on the right hand side of the external double coset formula. For every g ∈ G the square of K-morphisms

K nK∩gH (c∗gX)

κg

��

ηK // c∗gX

lXg

��
GnH X

ηG
// X

commutes, where as usual lg is left multiplication by g. So we get

πK∗ (ηG) ◦ πK∗ (κg) ◦ TrKK∩gH ◦ res
gH
K∩gH ◦c∗g = πK∗ (lXg ) ◦ πK∗ (ηK)∗ ◦ TrKK∩gH ◦ res

gH
K∩gH ◦c∗g

= πK∗ (lXg ) ◦ trKK∩gH ◦ res
gH
K∩gH ◦c∗g

= trKK∩gH ◦ res
gH
K∩gH ◦π

gH
∗ (lXg ) ◦ c∗g

= trKK∩gH ◦ res
gH
K∩gH ◦g∗

The second equality is the definition of the internal transfer for the spectrum c∗gX. The third equality is

the fact that transfer and restriction are natural for the G-morphism lXg : c∗gX −→ X. The final relation is

the definition (3.8) of the conjugation map g∗ : πH∗ (X) −→ π
gH
∗ (X). �

The restriction, conjugation and transfer maps make the homotopy groups πHk (X) for varying H into a
Mackey functor. We recall that a Mackey functor for a group G consists of the following data:

• an abelian group M(H) for every subgroup H of G,
• conjugation maps g? : M(H) −→M(gH) for H ⊂ G and g ∈ G, where gH = gHg−1,
• restriction maps resHK : M(H) −→M(K) for K ⊂ H ⊂ G,
• transfer maps trHK : M(K) −→M(H) for K ⊂ H ⊂ G.

This data has to satisfy the following conditions. The unit conditions

resHH = IdM(H) and h? = IdM(H) for h ∈ H
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and transitivity conditions

g? ◦ g′? = (gg′)? , resKL ◦ resHK = resHL and resHK ◦g? = g? ◦ resH
g

Kg

express that facts that the restriction and conjugation maps assemble into a contravariant functor on the
orbit category O(G) of G. The unit conditions trHH = IdM(H) and transitivity conditions

trHK ◦ trKL = trHL and trHK ◦g? = g? ◦ trH
g

Kg

express the fact that the transfer and conjugation maps form a covariant functor on the orbit category
of G. Finally, restriction and transfer are related by the double coset formula. It says that for every pair of
subgroups K,K ′ of H the relation

(4.21) resHK′ ◦ trHK =
∑

[h]∈K′\H/K

trK
′

K′∩hK ◦ res
hK
K′∩hK ◦h?

holds as maps M(K) −→ M(K ′). Here [h] runs over a set of representatives for the double cosets for
K ′\H/K.

Remark 4.22. The definition (3.1) of equivariant homotopy groups of an orthogonal G-spectrum has room
for an extra parameter. Indeed, we can use a G-representation U instead of the regular representation, and
modify (3.1) to

πG,U0 (X) = colimn [SnU , X(nU)]G ,

where the colimit is taken along −�U , stabilization by U . In order to end up with abelian groups we should
assume that UG 6= 0. We can then define a (G,U)-equivariant stable homotopy category by formally

inverting the morphisms of orthogonal G-spectra that induce isomorphisms on the groups πH,Uk for all
integers k and all subgroups H of G.

If we stabilize with a representation U that does not contain all irreducible G-representations, then some
aspects of the theory change. For example, Proposition 3.4 does not hold in full generality anymore, but
only for G-representation V that embed into nU for some n ≥ 1. Also, the Wirthmüller isomorphism may

fail for the U -based homotopy groups πG,U∗ , i.e., the morphism ΨY : GnH Y −→ mapH(G, Y ) need not in

general induce isomorphisms in πG,U∗ . However, an inspection of the proof of Theorem 4.9 shows that

πG,U∗ (ΨY ) : πG,U∗ (GnH Y ) −→ πG,U∗ (mapH(G, Y ))

is an isomorphism if G/H admits a G-equivariant injection into nU for some n ≥ 1.
Also we can in general not construct the transfer maps (4.13) and (4.14) because we may not be ably to

embed a coset G/H equivariantly into a sum of copies of U . So the U -based homotopy groups πG,U0 (X)
will typically admit some, but not all transfers, and they do not form full Mackey functors.

If Ū is another G-representation such that U embeds into a sum of copies of Ū , then the analog (with Ū
instead of the regular representation) of Proposition 3.4 lets us define a preferred homomorphism

πG,U0 (X) −→ πG,Ū0 (X) , [f : SnU −→ X(nU)] 7−→ 〈f〉 .

This homomorphism is natural in X and compatible with restriction to subgroups and with those transfers

that exists for πG,U0 . If Ū also embeds into a sum of copies of U , we get an inverse homomorphism in the
other direction by exchanging the roles of U and Ū . So up to canonical natural isomorphism, the group

πG,U0 X only depends on the ‘universe’ generated by U , i.e., on the infinite dimensional G-representation∞U ,
the direct sum of countably many copies of U . The universes ∞U and ∞Ū are G-isometrically isomorphic

if and only the same irreducible representations embed in U and Ū . So πG,U0 X, and hence the (G,U)-
equivariant stable homotopy category, only depends on the class of irreducible representations contained

in U . Somewhat less obviously, the group πG,U0 X, and in fact the entire G-equivariant stable homotopy
theory based on the universe ∞U , depends on even less, namely only on the set of those subgroups of G
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that occur as stabilizers of vectors in∞U (or what is the same, the set of subgroups H ≤ G such that G/H
embeds G-equivariantly into ∞U). [15, Thm. 1.2].

In these notes, we focus on the most interesting case where U = ρG is the regular representation. Then
∞ρG is a complete universe (i.e., every G-representation embeds into it) and we arrive at what is often
referred to as ‘genuine’ equivariant stable homotopy theory, with full Mackey functor structure on the
equivariant homotopy groups.

The other extreme is where U = R is a trivial 1-dimensional representation. Then ∞U = R∞ has trivial

G-action and is thus called a trivial universe. The homotopy groups πG,R0 X do not support any non-trivial
transfers and the (G,R)-equivariant stable homotopy category is often referred to as the ‘naive’ equivariant
stable homotopy category.

Another case that comes up naturally is the natural representation of the symmetric group Σm on
Rm, by permutation of coordinates; for m ≥ 3 the corresponding universe is neither complete nor trivial.
The corresponding equivariant homotopy groups arise naturally as target of power operation, compare
Remark 8.4 below.

Construction 4.23 (Multiplication by the equivariant stems). The equivariant stable stems πG∗ = πG∗ (S)
form a graded ring with a certain commutativity property that acts on the homotopy groups of every other
G-spectrum X. We denote the action simply by a ‘dot’

(4.24) · : πGk (X)× πGl −→ πGk+l(X) .

The definition is essentially straightforward, but there is one subtlety in showing that the product is well-
defined.

Suppose f : Sk+nρ −→ X(nρ) and g : Sl+mρ −→ Smρ represent classes in πGk (X) respectively πGl (S).
Then we denote by f · g the composite

S(k+l)+(n+m)ρ Id∧τl,nρ∧Id−−−−−−−−→ Sk+nρ ∧ Sl+mρ f∧g−−−−→ X(nρ) ∧ Smρ
σnρ,mρ−−−−−−→ X(nρ+mρ) ∼= X((n+m)ρ) .

When we stabilize the representing maps by the regular representation we have the relations

f · (g � ρG) = (f · g) � ρG = α∗ ((f � ρG) · g)

where α : (n + 1 + m)ρG −→ (n + m + 1)ρG is the automorphism that moves the (n + 1)st copy of the
regular representation past the last m copies; here Proposition 3.4 is used one more time. The upshot is
that the definition

[f ] · [g] = [f · g]

is well-defined. One also checks that the product is biadditive, unital and associative in the sense that for
every orthogonal spectrum X the diagram

πGk (X)× πGl × πGj
·×Id //

Id×·
��

πGk+l(X)× πGj

·
��

πGk (X)× πGl+j ·
// πGk+l+j(X)

commutes.
Finally, in the case X = S the internal multiplication in the equivariant homotopy groups of spheres

is commutative in the graded sense, i.e., we have xy = (−1)klyx for x ∈ πGk and y ∈ πGl . We will prove
this as a special case of a more subtle commutativity property of the external product of ‘RO(G)-graded
homotopy groups’, see (4.30).

The action map (4.24) is a special case of a more general external product

πGk (X) × πGl (Y ) −→ πGk+l(X ∧ Y )
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where G acts diagonally on the smash product X ∧ Y .

The action of the equivariant stable stems on the homotopy groups of a G-spectrum is compatible with
restriction to subgroups, i.e., for all H ⊆ G we have

resGH(x · y) = resGH(x) · resGH(y)

for x ∈ πGk (X) and y ∈ πGl . There is also a formula for the product of two transfers, namely

trGH(x) · trGK(y) =
∑

[g]∈H\G/K

trGH∩gK
(
resHH∩gK(x) · (g∗ resKHg∩K(y))

)
for x ∈ πHk (X) and y ∈ πKl . The special case K = G respectively H = G proves a reciprocity property with
respect to the transfer maps, i.e., we have

(4.25) trGH(x) · y = trGH(x · resGH(y)) and x · trGK(y) = trGK(resGK(x) · y) .

Remark 4.26. The Mackey functors that arise in algebra, for example in group cohomology, often have
the special property that restriction followed by transfer to the same subgroup is multiplication by the
index. In out context, however, trGK ◦ resGK is not in general multiplication by the index [G : K]. Indeed,
the special case of Frobenius reciprocity with y = 1 says that

trGK(resGK(x)) = x · trGK(1)

for all a ∈ πGk (X). The element trGK(1) ∈ πG0 is different from [G : K] · 1, but the map

πG0 = πG0 (S) −→ πG0 (HZ) ∼= Z
induced by the unit morphism S −→ HZ takes trGK(1) to the index [G : K]. So the relation trGK(resGK(x)) =
[G : K] · x does hold in the homotopy Mackey functor of every HZ-module spectrum.

RO(G)-graded homotopy groups. There is a way to index homotopy groups by representations that
is commonly referred to as RO(G)-graded homotopy groups. In this note we will not actually grade by the
group RO(G), i.e., by isomorphism classes of representations, but rather by actual representations. Lewis
and Mandell [13, App. A] show that a strict RO(G)-grading is possible, but it involves coherence issues that
are resolvable because a certain ‘coherence cycle’ is a coboundary, see [13, Prop. A.5]. For a comprehensive
account of the intricacies of RO(G)-gradings we recommend Dugger’s paper [7].

For an orthogonal G-spectrum X and a G-representation V we define

πGV (X) = πG0 (ΩVX) ∼= colimn [SV+nρG , X(nρG)]G .

With this definition we have πGk (X) ∼= πGRk(X). The ‘RO(G)-graded’ homotopy groups admit an external
product

(4.27) · : πGV (X)× πGW (Y ) −→ πGV+W (X ∧ Y )

that is a straightforward generalization of the action (4.24) of the equivariant stable stems on the equivariant
homotopy groups of a G-spectrum. Suppose f : SV+nρ −→ X(nρ) and g : SW+mρ −→ Y (mρ) represent
classes in πGV (X) respectively πGW (Y ). Then we denote by f · g the composite

S(V+W )+(n+m)ρ Id∧τW,nρ∧Id−−−−−−−−→ SV+nρ ∧ SW+mρ f∧g−−−−→ X(nρ) ∧ Y (mρ)

inρ,mρ−−−−−→ (X ∧ Y )(nρ+mρ) = (X ∧ Y )((n+m)ρ) .

The justification that the assignment [f ] · [g] = [f · g] is a well-defined, biadditive, unital and associative is
the same as for the action map (4.24) above.

The Frobenius property of the RO(G)-graded multiplication has the form:

(4.28) tr(x) · y = trGH(x · resGH(y))
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where V and W are G-representations, x ∈ πHi∗V (X) and y ∈ πGWS. The transfer maps on the left hand side
is the one associated to the representation V , the one on the right hand side is the one for V ⊕W .

The external product (4.27) also has a certain commutativity property:

Proposition 4.29. For all orthogonal G-spectra X and Y and all G-representations V and W the square

πGV (X)× πGW (Y )
· //

twist

��

πGV+W (X ∧ Y )

πGV+W (τX,Y )

��
πGV+W (Y ∧X)

τ∗W,V

��
πGW (Y )× πGV (X) ·

// πGW+V (Y ∧X)

commutes. Here τX,Y : X ∧ Y −→ Y ∧X is the symmetry isomorphism of the smash product and τV,W :
V ⊕W −→ W ⊕ V is the isometry τV,W (v, w) = (w, v). In particular, the external product in Z-graded
equivariant homotopy groups satisfies

(4.30) y · x = (−1)kl · (τX,Y )∗(x · y)

for x ∈ πGk (X) and y ∈ πGl (Y ).

Proof. For representing maps f : SV+nρ −→ X(nρ) and g : SW+mρ −→ Y (mρ) the diagram

S(V+W )+(n+m)ρ
Id∧τW,nρ∧Id//

f ·g

,,

τV,W∧Id

��

S(V+nρ)+(W+mρ) f∧g //

τV+nρ,W+mρ

��

X(nρ) ∧ Y (mρ)
i //

twist

��

(X ∧ Y )((n+m)ρ)

(X∧Y )(τnρ,mρ)

��
S(W+V )+(n+m)ρ

Id∧τnρ,mρ
��

(X ∧ Y )((m+ n)ρ)

τX,Y ((m+n)ρ)

��
S(W+V )+(m+n)ρ

Id∧τV,mρ∧Id
//

g·f

22
S(W+mρ)+(V+nρ)

g∧f
// Y (mρ) ∧X(nρ)

i
// (Y ∧X)((m+ n)ρ)

commutes. Passage to homotopy classes gives

[g · f ] =
[
τX,Y ((m+ n)ρ) ◦ (τnρ,mρ)∗

(
(f · g) ◦ (τ−1

V,W ∧ Id)
)]

= (τX,Y )∗

[
(τnρ,mρ)∗

(
(f · g) ◦ (τ−1

V,W ∧ Id)
)]

= (τX,Y )∗ [(f · g) ◦ (τW,V ∧ Id)] = (τX,Y )∗(τ
∗
W,V [f · g]) ,

as claimed.; the third equation uses Proposition 3.4. If V = Rk and W = Rl are trivial G-representations,
then precomposition by τW,V : Rl+k −→ Rk+l induces multiplication by (−1)kl on πGk+l. So the commuta-

tivity relation becomes y · x = (−1)kl · (τX,Y )∗(x · y). �

When we change the group along a homomorphism α : K −→ G, the ‘RO(G)-grading’ changes accord-
ingly. Indeed, by applying the restriction α∗ to representing G-maps we obtain a well-defined restriction
homomorphism

α∗ : πGV (X) −→ πKα∗V (α∗X)
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generalizing the restriction map (3.6).
The conjugation map gets an extra twist in the RO(G)-graded context coming from the fact that also

the indexing representation changes. For a subgroup H of G, a G-spectrum X and g ∈ G, there are really
two different kinds of conjugation maps

(4.31) g? : πHV (X)
c∗g−−→ π

gH
c∗gV

(X) and g∗ : πHV (X)
c∗g−−→ π

gH
V (X) .

The first map g? is defined for any H-representation V as the composite

πHV (X)
c∗g−−→ π

gH
c∗gV

(c∗gX)
(lXg )∗−−−−−→ π

gH
c∗gV

(X) .

The second map g∗ is only defined if V is the restriction to H of a G-representation; g∗ is then the composite

πHV (X)
g?−−−→ π

gH
c∗gV

(X)
(lVg )∗−−−−→ π

gH
V (X) ,

where lVg : c∗gV −→ V is left multiplication by g ∈ G, which is an isomorphism of gH-representations. If

V = Rk with trivial G-action, then c∗gV has trivial action, lVg is the identity and so g? and g∗ coincide and
both specialize to the conjugation map in the integer graded context (3.8).

There are also RO(G)-graded external and internal transfer maps for a subgroup H ⊂ G. These transfer
maps take the form

(4.32) TrGH : πHi∗V (Y ) −→ πGV (GnH Y ) respectively trGH : πHi∗V (X) −→ πGV (X)

for an H-spectrum Y respectively a G-spectrum X. Here V is a G-representation and i∗V is the underlying
H-representation. We emphasize that there are in general many G-representations with the same underlying
H-representation, so there can be many different RO(G)-graded transfer maps with the same source but
different targets.

These RO(G)-graded transfers (4.32) can either be defined by adding the representation V to the con-
struction in the special case (4.13) above. Alternatively, we can define this more general transfer from the
previous transfer (4.13) as the composite

πHi∗V (Y ) = πH0 (Ωi
∗V Y )

TrGH−−−−→ πG0 (GnH (Ωi
∗V Y )) −→ πG0 (ΩV (GnH Y )) = πGV (GnH Y ) .

Here the second map is induced by the morphism of G-spectra G nH (Ωi
∗V Y ) −→ ΩV (G nH Y ) that is

adjoint to the H-morphism

Ωi
∗V Y

Ωi
∗V (η)−−−−−−→ Ωi

∗V (i∗(GnH Y )) = i∗(ΩV (GnH Y )) .

In the RO(G)-graded setting, there are also external and internal double coset formulas; they look almost
the same as in the integer graded context, but a little more care has to be taken with respect to the indexing
representations. The proof is then almost the same as in Proposition 4.18.

Proposition 4.33 (External RO(G)-graded double coset formula). For all subgroups K and H of G, every
orthogonal H-spectrum Y and every G-representation V we have

resGK ◦TrGH =
∑

[g]∈K\G/H

(κg)∗ ◦ TrKK∩gH ◦ res
gH
K∩gH ◦(lVg )∗ ◦ c∗g

as maps πHV (Y ) −→ πKV (GnH Y ).

The internal double coset formula follows from the external one by naturality arguments, in much the
same way as in the integer graded situation in Proposition 4.20, but paying attention to change of indexing
representations. The final formula has the exact same form.
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Proposition 4.34 (Internal RO(G)-graded double coset formula). For all subgroups K and H of G, every
orthogonal G-spectrum X and every G-representation V we have

resGK ◦ trGH =
∑

[g]∈K\G/H

trKK∩gH ◦ res
gH
K∩gH ◦g∗

as maps πHV (X) −→ πKV (X).

Now we discuss the homotopy groups of some of the sample G-spectra with special attention to the
Mackey functor structure. We will discuss the 0-th equivariant stable stems πG0 (S) in some detail in
Section 6, after proving the tom Dieck splitting. The upshot is Theorem 6.14, due to Segal, that identifies
πG0 (S) with the Burnside ring A(G).

Example 4.35 (Cyclic group of order 2). We review some of the features discussed so far in the first
non-trivial case, i.e., for the cyclic group C2 of order 2. The orbit category of C2 = {1, τ} is displayed below
on the left (where only non-identity morphisms are drawn). To the right of it are the values and structure
maps of a Mackey functor M for the group C2

C2/C2 M(C2)

res

��
O(C2) :

C2/e

OO

τ

KK
M(e)

tr

OO

cτ

SS

The transfer map is drawn with a dashed arrow since it does not correspond to any morphism in the orbit
category and is a genuinely stable phenomenon. In this case there is only one interesting instance of the
double coset formula, namely for H = C2 and K = K ′ = e, and that specializes to the relation

res ◦ tr = 1 + cτ .

The group C2 has two irreducible representations, both 1-dimensional, namely the trivial representation 1
and the sign representation σ. The regular representation is isomorphic to C with action by complex
conjugation, and it decomposes as ρC2

∼= 1+σ. So the representation ring RO(C2) is free abelian of rank 2,
and the RO(C2)-grading can be turned into a bigrading. We use the ‘motivic’ grading convention and write

πC2
p,q(X) = πC2

p−q(Ω
qσX) = colimn[S(p−q)+qσ+nρ, X(nρ)]C2 .

The convention reflects the fact that the underlying non-equivariant sphere of S(p−q)+qσ has dimension p.
By Proposition 4.29 the bigraded product in πC2

∗,∗ has a certain commutativity property, namely

(4.36) y · x = (−1)(p−q)(k−l)εql · x · y

for x ∈ πC2
p,q and y ∈ πC2

k,l , where ε = 〈τσ,σ〉 ∈ πC2
0,0 is the class of the twist automorphism of τσ,σ of Sσ+σ.

The inclusion of equivariant maps into all maps gives a restriction homomorphism

i∗ : πC2
p,q −→ πs

p

to the equivariant to the non-equivariant stable stems. We can also define a ‘geometric fixed point map’

Φ : πC2
p,q −→ πs

p−q

by sending the class of a C2-map f : S(p−q)+qσ+nρ −→ Snρ to the class of the fixed point map

fC2 : Sp−q+n ∼= (S(p−q)+qσ+nρ)C2 −→ (Snρ)C2 ∼= Sn ,
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using that the sign representation has no nonzero fixed points and identifying ρC2 ∼= R. The map Φ is
a special case of a more general geometric fixed point map ΦG : πGV+k(X) −→ πdim(V )+k(ΦGX) that we
discuss in (7.4) below.

As we shall show in Theorem 6.14, the group πC2
0,0 is isomorphic to the Burnside ring A(C2) and it is

free abelian of rank 2 with basis given by the class 1 and t = tr(1), the image of the generator 1 under the
transfer map

tr : πs
0 = πe0(S) −→ πC2

0 (S) = πC2
0,0 .

For p = q = 0 the combined map

(i∗,Φ) : πC2
0,0 −→ πs

0 × πs
0

is thus a monomorphism and can be used to deduce relations in the ring πC2
0,0.

The class 1 is represented by the identity of S0 and we have i∗(1) = 1 and Φ(1) = 1. We can find an
unstable representative of the element t by going back to the definition of the transfer. We can embed C2

equivariantly into the sign representation σ by sending 1 ∈ C2 to 1 ∈ R and sending γ ∈ C2 to −1 ∈ R. The
open balls of radius 1 around 1 and -1 are disjoint, so the transfer is represented unstably by the composite

t : Sσ
collapse−−−−−→ C2 × [−1,+1]

C2 × {+1,−1}
∼=−−→ (C2)+ ∧

[−1,+1]

{+1,−1}
∼=−−→ (C2)+ ∧ Sσ

act−−−→ Sσ .

The underlying non-equivariant endomorphism of Sσ = S1 has degree 2, so we have i∗(t) = 2. The map t
takes the two fixed points 0 and ∞ of Sσ to the basepoint, so Φ(t) = 0.

The class ε represented by the twist automorphism of τ : Sσ ∧ Sσ satisfies i∗(ε) = −1 (since Sσ is
non-equivariantly a 1-sphere) and Φ(ε) = 1 (since the fixed point map τC2 is the twist map of the 0-sphere
S0, which is the identity). So we must have

ε = 1− t in πC2
0,0 .

Evidently we have ε2 = 1, so we also obtain the multiplicative relation t2 = 2t in πC2
0,0.

Now that we understand the ring πC2
0,0 we turn to some non-zero bigrading. The Hopf map

η : S(C2) −→ CP1 , (x, y) 7−→ [x : y]

is C2-equivariant with respect to complex conjugation on the coordinates of the unit sphere S(C2) and the
projective line CP1. The unit sphere S(C2) is equivariantly homeomorphic to the representation sphere
Sσ+ρ, where σ is the sign representation on R. Moreover, CP1 is equivariantly homeomorphic to Sρ, so we
can interpret the projection map as a C2-map Sσ+ρ −→ Sρ that represents an element

ηC2 ∈ πC2
σ (S) = πC2

1,1 .

The commutativity relation (4.36) specializes to η2
C2

= ε · η2
C2

.

Under the restriction map i∗ : πC2
1,1 −→ πs

1 to the non-equivariant stable 1-stem, the class ηC2
maps to

the Hopf map η. However, in contrast to its non-equivariant image, the C2-class ηC2 is neither torsion nor
nilpotent. Indeed, the image of ηC2 under the geometric fixed point map (7.4)

Φ : πC2
1,1 −→ πs0

is represented by the fixed points of the map SC ∧ η which turns out to be

S(R2)
ηC2

−−−−→ RP1 .

This is the real Hopf map, so we have Φ(ηC2) = 2 in πs
0
∼= Z. Since Φ is a ring homomorphism this shows

that all powers ηmC2
are elements of infinite order in πC2

m,m.
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We consider the commutative square

(x, y)
_

��

S(C2)
η //

��

CP1

��

[x : y]
_

��
(y, x) S(C2)

η
// CP1 [y : x]

of C2-spaces and equivariant maps. The left vertical map has degree 1 as a non-equivariant map and degree
−1 on fixed points S(C2)C2 = S(R2); so the left vertical map represents −ε in πC2

0,0. The right vertical map
has degree −1 as a non-equivariant map, and it has degree −1 on fixed points, so it represents the class −1
in πC2

0,0. Hence the commutative square implies the relation −ε · ηC2
= −ηC2

; equivalently, we have

t · ηC2 = (1− ε) · ηC2 = 0

in πC2
1,1. Under the restriction map i∗ this relation becomes the familiar relation 2 · η = 0 in the non-

equivariant 1-stem.

Example 4.37 (Eilenberg-Mac Lane spectra). In Example 2.13 we introduced the Eilenberg-Mac Lane
spectrum HM of a ZG-module M . Now we discuss the homotopy groups of HM as a Mackey functor.
From M we can obtain a Mackey functor M with values

M(H) = MH ;

the contravariant functoriality is by inclusion of fixed points and conjugation. The covariant functoriality
is given by algebraic transfer, i.e., for K ⊂ H the map trHK : MK −→MH is given by

trHK(m) =
∑

hK∈H/K

hm .

As we discussed above, the G-space HMn = M [Sn] is an equivariant Eilenberg-Mac Lane space for the
underlying contravariant functor of M . Moreover, the equivariant Eilenberg-Mac Lane spectrum HM of a
ZG-module is even an Ω-G-spectrum. Indeed, when we assign to a finite G-set S the (discrete) G-space M [S]
with diagonal G-action, then we obtain a very special G-Γ-space. So Segal’s equivariant Γ-space machine
applies and shows that HM is a G-Ω-spectrum for the Mackey functor M (see Proposition 4.3 of [21], or [23,
Thm. B] for a published version). Dos Santos reproves this result in [19] with different methods. Either of
these approaches shows that for every G-representation V the G-space HM(V ) = M [SV ] is an equivariant
Eilenberg-Mac Lane space of type (M,V ), i.e., the G-space map(SV ,M [SV ]) has homotopically discrete
fixed points for all subgroups of G and the natural map

MH −→ [SV ,M [SV ]]H = π0 mapH(SV ,M [SV ])

sending m ∈ MH to the homotopy class of m · − : SV −→ M [SV ] is an isomorphism. More generally, for
every G-representation V and every based G-CW-complex L the map

M [L] −→ map(SV ,M [L ∧ SV ])

adjoint to the assembly map M [L] ∧ SV −→M [L ∧ SV ] is a G-weak equivalence.
As for every G-Ω-spectrum, the map

πk(MK) = πk((HM0)K) −→ πKk (HM)

is an isomorphism for all n ≥ 0. Thus the homotopy Mackey functor πk(HM) is trivial for k > 0 (and for
k < 0...), and we have πK0 (HM) ∼= π0((HM0)K) ∼= MK . This is natural in the subgroup K, and for K ⊂ H
the restriction maps πH0 (HM) −→ πK0 (HM) correspond to the inclusion MH −→MK . Moreover, we have
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‘transfer=transfer’, i.e., the topologically defined transfer trHK : πK0 (HM) −→ πH0 (HM) corresponds to the
algebraic transfer MK −→MH . So in summary, we have obtained isomorphism of Mackey functors

π0(HM) ∼= M .

The Mackey functors M arising from ZG-modules M are special, for example because all restriction
maps are injective. A general Mackey functor N also has an Eilenberg-Mac Lane G-spectrum HN that
satisfies

π∗(HN) ∼=

{
N for n = 0, and

0 else.

Moreover, any two orthogonal G-spectra with this property are related by a chain of π∗-isomorphisms.
In other words, the Eilenberg-Mac Lane spectrum of a Mackey functor is unique up to preferred isomor-
phism in the equivariant stable homotopy category Ho(SpG). However, in contrast to the special Mackey
functor arising from ZG-modules, I am not aware of an explicit construction of HN for a general Mackey
functor N . The first construction (in the context of Lewis-May-Steinberger spectra) is due to Lewis, May
and McClure [14] and proceeds by defining an ‘ordinary’ homology theory, defined on equivariant spectra,
with coefficients in the Mackey functor and then using a general representability theorem. A different
construction was later given by dos Santos and Nie [20, Thm. 4.22].

Similarly as in the non-equivariant context, Eilenberg-Mac Lane spectra represent ‘ordinary’ (as opposed
to ‘generalized’) homology and cohomology. More specifically this means that for every Mackey functor N
and everyG-CW-complexA the homotopy group πk(HNA) of the mapping spectrum is naturally isomorphic

to the Bredon cohomology group H−kG (A,N) of A with coefficients in the underlying contravariant O(G)-
functor of N , and the group πk(A∧HN) is naturally isomorphic to the Bredon homology group HG

k (A,N)
of A with coefficients in the underlying covariant O(G)-functor of N .

Example 4.38. Here is a specific example of a K(M,V ). We let the group C2 act on CP∞ by complex
conjugation. We claim that CP∞ is an Eilenberg-Mac Lane space of type (ρ,Z), and hence C2-homotopy
equivalent to the space HZ(Sρ) = Z[Sρ] (here ρ = ρC2 is the regular representation). Since CP∞ is a
non-equivariant K(Z, 2), the underlying space of map(Sρ,CP∞) is homotopically discrete with components
given by Z. To get at the homotopy type of the C2-fixed points we map out of the C2-cofibration

S1 = (Sρ)C2 −→ Sρ

and investigate the resulting Serre fibration

mapC2(Sρ/S1,CP∞) −→ mapC2(Sρ,CP∞) −→ mapC2(S1,CP∞) ∼= map(S1, (CP∞)C2) .

The space Sρ/S1 is C2-homeomorphic to (C2)+∧S2, hence the fiber mapC2(Sρ/S1,CP∞) is homeomorphic
to

mapC2((C2)+ ∧ S2,CP∞) ∼= Ω2CP∞ ,

hence homotopically discrete with π0 isomorphic to Z. Since (CP∞)C2 ∼= RP∞, the base is homeomorphic
to ΩRP∞, hence homotopically discrete with π0 isomorphic to F2. Finally, the short exact sequence

0 −→ Z ∼= [Sρ/S1,CP∞]C2 −→ [Sρ,CP∞]C2 −→ [S1,RP∞] ∼= F2 −→ 0

does not split since the C2-map

Sρ ∼= CP1 incl−−→ CP∞

is an element of infinite order in the middle group whose restriction to fixed points is the inclusion S1 ∼=
RP1 −→ RP∞, hence the generator of [S1,RP∞] and such that twice this class is the image of the generator
from the left group.
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Example 4.39. We close this section with an example of a morphism of G-spectra that is a π∗-isomorphism
of underlying non-equivariant spectra, but not an equivariant π∗-isomorphism We consider the rationalized
sphere spectrum SQ, defined as the homotopy colimit in Ho(SpG) of the sequence

S ·2−→ S ·3−→ S ·4−→ · · · .

The unit map S −→ HQ to the Eilenberg-Mac Lane spectrum of the trivial ZG-module Q extends to a
morphism SQ −→ HQ that is a π∗-isomorphism of underlying non-equivariant spectra. However, we have

πG0 (SQ) = Q⊗ πG0 (S) ∼= Q⊗A(G) ,

the rationalized Burnside ring. For every non-trivial group G, πG0 (SQ) is thus non isomorphic to πG0 (HQ) =
Q.

5. Constructions with equivariant spectra

We discuss various constructions which produce new equivariant orthogonal spectra from old ones.

Example 5.1 (Limits and colimits). The category of orthogonal G-spectra has all limits and colimits, and
they are defined levelwise. Let us be a bit more precise and consider a functor F : J −→ SpG from a small
category J to the category of orthogonal G-spectra. Then we define an orthogonal G-spectrum colimJ F in
level n by

(colimJ F )n = colimj∈J F (j)n ,

the colimit being taken in the category of pointed G×O(n)-spaces. The structure map is the composite

(colimj∈J F (j)n) ∧ S1 ∼= colimj∈J(F (j)n ∧ S1)
colimJ σn−−−−−−→ colimj∈J F (j)n+1 ;

here we exploit that smashing with S1 is a left adjoint, and thus the natural map colimj∈J(F (j)n∧S1) −→
(colimj∈J F (j)n) ∧ S1 is an isomorphism, whose inverse is the first map above.

The argument for inverse limits is similar, but we have to use that structure maps can also be defined in
the adjoint form. We can take

(limJF )n = limj∈JF (j)n ,

and the structure map is adjoint to the composite

limj∈JF (j)n
limJ σ̂n−−−−−→ limj∈JΩ(F (j)n+1) ∼= Ω (limj∈JF (j)n+1) .

Limits and colimits commute with evaluation at a G-representation V , i.e., the G-space (colimJ F )(V ) (re-
spectively (limJF )(V )) is a colimit (respectively limit) of the composite of F with the functor of evaluation
at V .

The inverse limit, calculated levelwise, of a diagram of orthogonal G-ring spectra and homomorphisms
is again an orthogonal G-ring spectrum. In other words, equivariant ring spectra have limits and the
forgetful functor to G-spectra preserves them. Equivariant ring spectra also have co-limits, but they are
not preserved by the forgetful functor.

Example 5.2 (Smash products with and functions from G-space). If A is pointed G-space and X a G-
spectrum, we can define two new G-spectra A ∧ X and XA by smashing with A or taking maps from A
levelwise; the structure maps and actions of the orthogonal groups do not interact with A.

In more detail we set

(A ∧X)n = A ∧Xn respectively (XA)n = XA
n = map(A,Xn)

for n ≥ 0. The group O(n) acts through its action on Xn. The structure map is given by the composite

(A ∧X)n ∧ S1 = A ∧Xn ∧ S1 Id∧σn−−−−−→ A ∧Xn+1 = (A ∧X)n+1
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respectively by the composite

XA
n ∧ S1 −→ (Xn ∧ S1)A

σAn−−−→ XA
n+1

where the first is an assembly map that sends ϕ ∧ t ∈ XA
n ∧ S1 to the map sending a ∈ A to ϕ(a) ∧ t. The

second is application of map(A,−) to the structure map of X. The group G acts on (A ∧X)n = A ∧Xn

diagonally, through the actions on A and Xn. In the other case the group G acts on (XA)n = map(A,Xn)
by conjugation, i.e., via (gϕ)(a) = g · ϕ(g−1a) for g : A −→ Xn, a ∈ A and g ∈ G. For example, the
spectrum A∧ S is equal to the suspension spectrum Σ∞A. For the values on a G-representation V we have

(A ∧X)(V ) ∼= A ∧X(V ) and (XA)(V ) ∼= X(V )A .

Just as the functors A ∧ − and map(A,−) are adjoint on the level of based G-spaces, the two functors
just introduced are an adjoint pair on the level of G-spectra. The adjunction

(5.3) ˆ : SpG(X,Y A)
∼=−−→ SpG(A ∧X,Y )

takes a morphism f : X −→ Y A to the morphism f̂ : A ∧X −→ Y whose n-th level f̂n : A ∧Xn −→ Yn is

given by f̂n(a ∧ x) = fn(x)(a).
We note that if X is a G-Ω-spectrum and A a based G-CW-complex, then XA is again a G-Ω-spectrum.

Indeed, the mapping space functor map(A,−) takes the G-weak equivalence σ̃V,W : X(V ) −→ ΩWX(V ⊕W )
to a G-weak equivalence

XA(V ) = map(A,X(V ))
map(A,σ̃V,W )−−−−−−−−−→ map(A,ΩWX(V ⊕W )) ∼= ΩW (XA(V ⊕W )) .

Loop and suspension with a representation sphere are the special case A = SV of the previous construc-
tion. As we discussed above, the adjunction unit X −→ ΩV (SV∧ X) and counit SV∧ ΩV Y −→ Y are
then π∗-isomorphisms, see Proposition 3.12. As we discussed in (3.10), the group πGk (ΩmX) is naturally
isomorphic to πGm+k(X), and the group πGm+k(Sm ∧X) is naturally isomorphic to πGk (X); so looping and
suspending (by trivial representation spheres) preserves π∗-isomorphism. The next proposition generalizes
this.

Proposition 5.4. Let A be a based G-CW-complex. Then the functor A∧− preserves π∗-isomorphisms of
orthogonal G-spectra. If A is finite, then the functor map(A,−) preserves π∗-isomorphisms of orthogonal
G-spectra.

Proof. We let f : X −→ Y be a π∗-isomorphism of orthogonal G-spectra. We start with the case of a finite
G-CW-complex A and prove by induction on the number of equivariant cells that A ∧ f and map(A, f)
induce isomorphisms on πGk for all integers k.

If A consists only of the basepoint, then A∧X and map(A,X) are trivial and the claims are trivially true.
Now suppose we have shown the claim for a finite based G-CW-complex A and B is obtained from A by
attaching an equivariant n-cell G/H×Dn along its boundary. Then the mapping cone C(i) of the inclusion
i : A −→ B is based G-homotopy equivalent to G/H+ ∧ Sn. So the spectrum C(i) ∧ X is G-homotopy
equivalent to G/H+ ∧Sn ∧X, and hence to Sn ∧ (GnH X). The G-homotopy groups of C(i)∧X are thus
naturally isomorphic to

πGk (Sn ∧ (GnH X)) ∼= πGk−n(GnH X) ∼= πHk−n(X) ,

using the Wirthmüller isomorphism (Theorem 4.9). So smashing with C(i) takes π∗-isomorphisms to πG∗ -
isomorphisms. The mapping cone of the morphism i ∧ X : A ∧ X −→ B ∧ X is naturally isomorphic to
C(i) ∧X; since A ∧ − and C(i) ∧ − take π∗-isomorphisms to πG∗ -isomorphisms, so does B ∧ − by the first
long exact sequence of Proposition 3.30 and the five lemma.
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The induction step for map(A,X) is exactly dual. Since C(i) is homotopy equivalent to G/H+ ∧Sn, the
spectrum map(C(i), X) is homotopy equivalent to map(G/H+,Ω

nX), and hence its G-homotopy groups
are naturally isomorphic to

πGk map(G/H+,Ω
nX) ∼= πHk (ΩnX) ∼= πHn+k(X) .

So the functor map(C(i),−) takes π∗-isomorphisms to πG∗ -isomorphisms. The homotopy fiber of the mor-
phism map(i,X) : map(B,X) −→ map(A,X) is naturally isomorphic to map(C(i), X); since map(A,−)
and map(C(i),−) take π∗-isomorphisms to πG∗ -isomorphisms, so does map(B,−) by the second long exact
sequence of Proposition 3.30 and the five lemma.

Now we let H be an arbitrary subgroup of G. The underlying H-spectrum of A ∧ X respectively
map(A,X) is the smash product of the underlying H-CW-complex of A and the underlying H-spectrum
of X, respectively the spectrum of maps from the underlying H-CW-complex of A to the underlying
H-spectrum of X. Moreover, the restriction of a π∗-isomorphism of G-spectra is a π∗-isomorphism of
H-spectra. So by applying the previous paragraph to the group H instead of G and to the underlying
H-morphism of f shows that πHk (A ∧ f) and πHk (map(A, f)) are isomorphisms for all integers k.

If remains to prove that claim about A ∧ − for infinite G-CW-complexes. Every G-CW-complex is
the filtered colimit, along equivariant h-cofibrations, of its finite G-CW-subcomplexes. Since equivariant
homotopy groups commute with such filtered colimits, we are reduced to the previous case of finite G-CW-
complexes. �

Example 5.5 (Free G-spectra). Given a G-representation V , we define an orthogonal G-spectrum FV
which is ‘freely generated in level V ’. Before we give the formal definition we try to motivate why certain
Thom spaces come up at this point. The guiding principle is that the value FV (W ) should be the based
G-space of ‘all natural maps’ X(V ) −→ X(W ) as X varies over all orthogonal G-spectra. If the dimension
of W is smaller than the dimension V , this space consists only of the basepoint. Otherwise, every linear
isometric embedding α : V −→W gives rise to a linear isometry

(5.6) α̃ : V ⊕ (W − α(V )) ∼= W , α̃(v, w) = α(v) + w .

Using this isometry we obtain a map

X(V ) ∧ SW−α(V ) σV,W−α(V )−−−−−−−−→ X(V ⊕ (W − α(V )))
X(α̃)−−−−→ X(W ) .

Hence for every linear isometric embedding α : V −→ W we get maps X(V ) −→ X(W ) parametrized by
the sphere SW−α(V ) of the orthogonal complement of the image of α. But the resulting maps from X(V )
to X(W ) should also vary continuously with the embedding α, hence the topology on the space L(V,W )
of linear isometric embeddings enters. The easiest way to make all of this precise is to observe that the
orthogonal complements W − α(V ) are the fibers of a vector bundle over L(V,W ) with total space

ξ(V,W ) = { (α,w) ∈ L(V,W )×W | w ⊥ α(V ) } .

The structure map ξ(V,W ) −→ L(V,W ) of this ‘orthogonal complement’ vector bundle is the projection to
the first factor. We let O(V,W ) be the Thom space of the bundle ξ(V,W ), which we define as the one-point
compactification of the total space of ξ(V,W ); because the base space L(V,W ) is compact, the one-point
compactification is equivariantly homeomorphic to the quotient of the disc bundle of ξ(V,W ) by the sphere
bundle.

Up to non-canonical homeomorphism, we can describe the space O(V,W ) differently as follows. If
the dimension of W is smaller than the dimension of V , then the space L(V,W ) is empty and O(V,W )
consists of a single point. Otherwise we can choose a linear isometric embedding α : V −→ W , and we let
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V ⊥ = W − α(V ) denote the orthogonal complement of its image. Then the maps

O(W )/O(V ⊥) −→ L(V,W ) , A ·O(V ⊥) 7−→ A · α and

O(W )+ ∧O(V ⊥) S
V ⊥ −→ O(V,W ) , [A,w] 7−→ A · (α,w)

are homeomorphisms. Put yet another way: if dimV = n and dimW = n+m, then L(V,W ) is homeomor-
phic to the homogeneous space O(n+m)/O(m) and O(V,W ) is homeomorphic to O(n+m)+ ∧O(m) S

m.
Now suppose that X is an orthogonal spectrum and let n = dimV and n+m = dimW . We can define

a continuous based action map

◦ : X(V ) ∧O(V,W ) −→ X(W )(5.7)

x ∧ (α,w) 7−→ X(α̃)(σV,W−α(V )(x ∧ w))

where α̃ : V ⊕ (W − α(V )) −→W was defined in (5.6).
We obtain a map

κ : SW −→ O(V, V ⊕W ) , w 7−→ (iV , (0, w)) ,

as the inclusion of the fiber over iV : V −→ V ⊕W , the inclusion of the first summand. The generalized
structure map σV,W originally defined in (2.4) then coincides with the composite

X(V ) ∧ SW X(V )∧κ−−−−−−→ X(V ) ∧O(V, V ⊕W )
◦−−→ X(W ) .

The action maps are associative: If we are given a third inner product space U , there is a bundle map

ξ(U, V )× ξ(V,W ) −→ ξ(U,W ) , ((β, v), (α,w)) 7−→ (αβ, α(v) + w)

which covers the composition map L(U, V )×L(V,W ) −→ L(U,W ). Passage to Thom spaces gives a based
map

◦ : O(U, V )×O(V,W ) −→ O(U,W )

which is clearly associative. The action is also associative in the sense that the square

X(U) ∧O(U, V ) ∧O(V,W )
◦∧Id //

Id∧◦
��

X(V ) ∧O(V,W )

◦
��

X(U) ∧O(U,W ) ◦
// X(W )

commutes for every triple of inner product spaces.
Now we add group actions to the picture everywhere. Suppose that G is a finite group and X an

orthogonal G-spectrum. Given two G-representations V and W , we let G act on the space L(V,W ) of (not
necessarily equivariant) linear isometric embeddings by conjugation, i.e., for g ∈ G, α : V −→W and v ∈ V
we set

(gα)(v) = g · α(g−1v) .

This action prolongs to an action by bundle isomorphisms on ξ(V,W ) via

g · (α,w) = (gα, gw) ,

and hence passes to a G-action on Thom spaces O(V,W ). The action map (5.7) is then G-equivariant.
One can summarize this discussion as follows. We have defined a based topological G-category O

with objects all G-representations, with based morphism G-space O(V,W ), composition map ◦ and units
1V = (IdV , 0) in O(V, V ). Moreover, for every orthogonal G-spectrum X, the action maps (5.7) make
the collection of G-spaces {X(V )}V into a based continuous G-functor X : O −→ TG to the category of
based G-spaces. The assignment X 7→ {X(V )}V is in fact an equivalence of categories from the category
of orthogonal G-spectra to the category of (based, continuous) G-functors from O to TG. We are not going
to show this.
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The free G-spectrum FV is given in level n by

(FV )n = O(V,Rn) ,

with the above G-action and with O(n)-action through Rn. Since G acts trivially on Rn, the G-action
comes out to

g · (α, x) = (α ◦ (g−1 · −), x)

for α ∈ L(V,Rn) and x ∈ Rn − α(V ). We note that FV consists of a single point in all levels below the
dimension of V . The structure map (FV )n ∧ S1 −→ (FV )n+1 is given by

O(V,Rn) ∧ S1 Id∧κ−−−−→ O(V,Rn)∧O(Rn,Rn+1)
◦−−→ O(V,Rn+1) .

The ‘freeness’ property of FV is made precise as follows: for every G-fixed point x ∈ X(V ) there is a unique
morphism x̂ : FV −→ X of G-spectra such that the map

O(V )+ = (FV )(V )
x̂(V )−−−→ X(V )

sends the identity of V to x. Indeed, the morphism x̂ is given in level n as the composite

O(V,Rn)
x∧−−−−→ X(V ) ∧O(V,Rn)

◦−−→ Xn .

For two G-representations V and W , the smash product FV ∧FW (with diagonal G-action) is canonically
isomorphic to the free G-spectrum FV⊕W . Indeed, a morphism

(5.8) FV ∧ FW −→ FV⊕W

is obtained by the universal property (1.8) from the bimorphism with (p, q)-component

(FV )p ∧ (FW )q = O(V,Rp) ∧O(W,Rq) ⊕−−→ O(V ⊕W,Rp+q) = (FV⊕W )p+q .

In the other direction, a morphism FV⊕W −→ FV ∧ FW is freely generated by the image of the G-fixed
point Id∧ Id under the generalized universal map

FV (V ) ∧ FW (W )
iV,W−−−→ (FV ∧ FW )(V ⊕W ) .

These two maps are inverse to each other.
Smashing a based G-space with the free G-spectrum FV produces a functor

FV : GT −→ SpG , FVA = A ∧ FV .

This functor is left adjoint of the evaluation functor at V . More precisely, for based G-space A and every

based continuous G-map f : A −→ X(V ) there is a unique morphism of G-spectra f̂ : FVA −→ X such
that the composite

A
−∧IdV−−−−−−→ A ∧O(V )+ = (FVA)(V )

f̂(V )−−−→ X(V )

equals f . Indeed, the morphism f̂ is given in level n as the composite

A ∧O(V,Rn)
f∧−−−−→ X(V ) ∧O(V,Rn)

◦−−→ Xn .

We will see in Proposition 5.14 below that the free G-spectrum FVA is π∗-isomorphic to ΩV (Σ∞A), the
V -fold loop spectrum of the suspension spectrum of A. Indeed, a natural map

FVA −→ ΩV (Σ∞A)

is the one freely generated by the adjunction unit A −→ ΩV (A ∧ SV ) = ΩV (Σ∞A)(V ).
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Example 5.9 (Semifree G-spectra). There are somewhat ‘less free’ orthogonal spectra which start from a
pointed GnO(V )-space L as follows. If V is any G-representation then G acts by conjugation on the space
O(V ) of (not necessarily equivariant) isometries. The value X(V ) of an orthogonal G-spectrum at V has
both an action of O(V ) and an action of G that together make up a left action of the semi-direct product
GnO(V ). We claim that the evaluation functor

evV : SpG −→ (GnO(V ))T , X 7−→ X(V )

has a left adjoint which we denote GV . (The evaluation functor evV also has a right adjoint, which will not
discuss.) The spectrum GV L is given by

(GV L)n = O(V,Rn) ∧O(V ) L .

The structure map (GV L)n ∧ S1 −→ (GV L)n+1 is defined by

O(V,Rn) ∧O(V ) L ∧ S1 ∼=
(
O(V,Rn) ∧ S1

)
∧O(V ) L

Id∧κ∧Id−−−−−−→
(
O(V,Rn) ∧O(Rn,Rn+1)

)
∧O(V ) L

◦∧Id−−−−→ O(V,Rn+1) ∧O(V ) L .

We observe that GV L is trivial in all levels below the dimension of V . We refer to GV L as the semifree
G-spectrum generated by L in level V . The values of the semifree spectrum on a general G-representation
W is given by

(GV L)(W ) = O(V,W ) ∧O(V ) L .

Every free G-spectrum is semifree, i.e., there is a natural isomorphism FVA ∼= GV (O(V )+∧A) by ‘canceling
O(V )’; here O(V )+ ∧ A has the diagonal G-action. Every orthogonal G-spectrum is built from semifree
ones, in the sense of a certain coend construction.

Example 5.10 (Mapping spaces). There is a whole space of morphisms between two orthogonal spectra
X and Y . Every morphism f : X −→ Y consists of a family of based O(n)-equivariant maps {fn : Xn −→
Yn}n≥0 which satisfy some conditions. So the set of morphisms from X to Y is a subset of the product
of mapping spaces

∏
n≥0 map(Xn, Yn) and we give it the subspace topology of the (compactly generated)

product topology. We denote this mapping space by map(X,Y ). The morphism space has a natural
basepoint, namely the levelwise constant map at the basepoints.

If X and Y are orthogonal G-spectra, the group G acts by conjugation on the mapping space map(X,Y )
of underlying non-equivariant spectra. The G-fixed points mapG(X,Y ) of this action consists precisely of
the G-equivariant morphism of orthogonal spectra, i.e., the morphism of G-spectra.

For a pointed G-space A and orthogonal G-spectra X and Y we have adjunction G-homeomorphisms

map(A,map(X,Y )) ∼= map(A ∧X,Y ) ∼= map(X,Y A) ,

where the first mapping space is taken in the category T of compactly generated spaces, with conjugation
action by G. For free G-spectra we have G-equivariant isomorphisms

(5.11) map(FVA, Y ) ∼= map(A, Y (V )) .

Here G acts on the right hand side by conjugation with respect to the given actions on A and Y (V ). The
associative and unital composition maps

map(Y,Z) ∧map(X,Y ) −→ map(X,Z)

are G-equivariant (with respect to the diagonal G-action on the left).

Example 5.12 (Internal Hom spectra). Orthogonal spectra have internal function objects: for orthogonal
spectra X and Y we define a orthogonal spectrum Hom(X,Y ) in level n by

Hom(X,Y )n = map(X, shn Y ) .
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The left O(n)-action on shn Y as described in Example 3.14 yields a left O(n)-action on this mapping space.
The structure map σn : Hom(X,Y )n ∧ S1 −→ Hom(X,Y )n+1 is the composite

map(X, shn Y ) ∧ S1 assembly−−−−−→ map(X,S1 ∧ shn Y )
map(X,λshn Y )−−−−−−−−−−→ map(X, shn+1 Y ) ;

here the first map is of ‘assembly type’, i.e., it takes f ∧ t to the map which sends x ∈ X to t ∧ f(x) (for
f : X −→ shn Y and t ∈ S1), and λshn Y : S1 ∧ shn Y −→ sh(shn Y ) = shn+1 Y is the natural morphism
defined in (3.16).

In order to verify that this indeed gives a orthogonal spectrum we describe the iterated structure map.

Let us denote by λ
(m)
Y : Sm ∧ Y −→ shm Y the morphism (3.16) for V = Rm. Then for all k,m ≥ 0 the

diagram

Sk ∧ Sm ∧ Y
Id∧λ(m)

Y //

∼=
��

Sk ∧ shm Y
λ

(k)
shm Y // shk(shm Y )

Sk+m ∧ Y
χk,m∧Id

// Sm+k ∧ Y
λ

(m+k)
Y

// shm+k Y

commutes. This implies that the iterated structure map of the spectrum Hom(X,Y ) equals the composite

map(X, shn Y ) ∧ Sm assembly−−−−−→ map(X,Sm ∧ shn Y )
map(X,λ

(m)
shn Y

)
−−−−−−−−−−→ map(X, shn+m Y )

and is thus O(n) × O(m)-equivariant. The first map is again of ‘assembly type’, i.e., for f : X −→ shn Y
and t ∈ Sm it takes f ∧ t to the map which sends x ∈ X to t ∧ f(x).

If X and Y are G-spectra, then the G-action on Hom(X,Y )n = map(X, shn Y ) makes the mapping spec-
trum Hom(X,Y ) into an orthogonal G-spectrum. For a G-representation V we have a G-homeomorphism

Hom(X,Y )(V ) ∼= map(X, shV Y ) .

Taking function spectrum commutes with shifting in the second variable, i.e., we have isomorphisms

(5.13) Hom(X, shV Y ) ∼= shV Hom(X,Y ) .

Indeed, in level n we have

Hom(X, shV Y )n = map(X, shn(shV Y )) ∼= map(X, shV+n Y )

= Hom(X,Y )(V ⊕ Rn) =
(

shV Hom(X,Y )
)
n
.

The orthogonal group actions and structure maps coincide as well.
The internal function spectrum functor Hom(X,−) is right adjoint to the internal smash product − ∧

X of orthogonal G-spectra (with diagonal G-action). A natural isomorphism of orthogonal G-spectra

Hom(FV , Y ) ∼= shV Y is given at level n by

Hom(FV , Y )n = map(FV , sh
n Y ) ∼= (shn Y )(V ) = Y (Rn ⊕ V )

τRn,V−−−−→ Y (V ⊕ Rn) = (shV Y )n

where the second map is the adjunction bijection described in Example 5.5. This isomorphism is equivariant
for the left actions of O(V ) induced on the source from the right O(V )-action on a free spectrum. In
the special case V = 0 we have F0S

0 = S, which gives a natural isomorphism of orthogonal spectra
Hom(S, Y ) ∼= Y .

Change of groups. All of the construction that we have discussed in this section are nicely com-
patible with change of groups. Given a group homomorphism α : K −→ G, we can restrict G-spaces,
G-representations and G-spectra along α, and all of the above constructions commute with this restriction
on the nose (and not just up to isomorphism).
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For example, the restriction functor α∗ : SpG −→ SpK commutes with limits and colimits, and for a
based G-space A and an orthogonal G-spectrum X we have

α∗(A ∧X) = (α∗A) ∧ (α∗X) and α∗(map(A,X)) = map(α∗A,α∗X)

as orthogonal K-spectra.
For a G-representation V we have α∗(SV ) = Sα

∗V and for an orthogonal G-spectrum X we have
α∗(X(V )) = (α∗X)(α∗V ) as K-spaces. Consequently,

α∗(SV∧X) = Sα
∗V∧ (α∗X) , α∗(ΩVX) = Ωα

∗V (α∗X) and α∗(shVX) = shα
∗V (α∗X)

as orthogonal K-spectra. Given another G-representation W we have α∗O(V,W ) = O(α∗V, α∗W ) and
hence the restrictions of a free and semifree spectra are again free:

α∗(FV ) = Fα∗V and α∗(GV L) = Gα∗V (α∗L)

(where α∗L has the same O(V )-action as L). Finally, if Y is another orthogonal G-spectrum, then we have

α∗(map(X,Y )) = map(α∗X,α∗Y ) and α∗(Hom(X,Y )) = Hom(α∗X,α∗Y ) .

We emphasize again that here we always have equality, not just isomorphism.
Our next aim is to show that the free orthogonal G-spectrum FV generated by a G-representation V

behaves like a ‘(−V )-sphere’, a sphere spectrum for the virtual representation −V . More precisely we show:

Proposition 5.14. For every G-representation V the morphism

FV S
V −→ S

adjoint to the identity of SV is a π∗-isomorphism. For every based G-CW-complex A the map

FVA −→ ΩV (Σ∞A)

adjoint to the adjunction unit A −→ ΩV (A ∧ SV ) = (ΩV (Σ∞A))(V ) is a π∗-isomorphism.

Before we prove the proposition, we introduce and analyze a new construction. As before we denote
by L the topological category with objects the inner product spaces Rn for n ≥ 0 and with morphism
space L(Rm,Rn) the space of isometric embedding from Rm to Rn. We denote by GTL the category of
L-G-spaces, i.e., covariant continuous functors from L to the category of pointed G-spaces

Example 5.15 (Smash product with L-G-spaces). Given an L-G-space T : L −→ GT and an orthogonal
G-spectrum X, we can form a new orthogonal G-spectrum T ∧X by setting

(T ∧X)n = T (Rn) ∧Xn

with diagonal action of O(n) and G-action through the action on Xn. The structure map is given by

(T ∧X)n ∧ S1 = T (Rn) ∧Xn ∧ S1 T (ι)∧σn−−−−−→ T (Rn+1) ∧Xn+1 = (T ∧X)n+1

where ι : Rn −→ Rn+1 is the ‘inclusion’ with ι(x) = (x, 0). If A is a pointed G-space and TA the constant
functor with values A, then TA ∧X is equal to A∧X, i.e., this construction reduces to the levelwise smash
product with a G-space as in Example 5.2.

Given any L-G-space T , we can evaluate it on a G-representation V by setting

T (V ) = L(Rn, V )×O(n) T (Rn)

where n = dimV . The group G acts diagonally, via the given action on T (Rn) and the action on V . We
denote by

T (∞ρG) = colimn∈N T (nρG)

the G-space obtained as the sequential colimit over the maps induced by the ‘inclusions’ nρG −→ (n+1)ρG.
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Proposition 5.16. Let X be an orthogonal G-spectrum and T an L-G-space (with a suitable h-cofibration
property). Then the orthogonal G-spectrum T ∧ X is related by a natural chain of π∗-isomorphisms to
T (∞ρG) ∧X.

Now we can give the

Proof of Proposition 5.14. We recall that the value of FV S
V on a G-representation W is given by

(FV S
V )(W ) = O(V,W ) ∧ SV .

After smashing with SV the Thom space O(V,W ) ‘untwists’, i.e., the map

O(V,W ) ∧ SV −→ L(V,W )+ ∧ SW , (α,w) ∧ v 7−→ α ∧ (w + α(v))

is a G-equivariant homeomorphism. As W varies, these homeomorphisms form an isomorphism

FV S
V ∼= L(V,−)+ ∧ S

of orthogonal G-spectra, where the right hand side is the smash product of the L-G-space L(V,−)+ with an
orthogonal spectrum in the sense of Example 5.15. Under this isomorphism the map FV S

V −→ S becomes
the projection L(V,−)+ ∧ S taking L(V,−) objectwise to a point.

By Proposition (5.16) the G-spectrum L(V,−)+ ∧ S is π∗-isomorphic to L(V,∞ρG)+ ∧ S, which is an-
other name for th equivariant suspension spectrum of the G-space L(V,∞ρG). So it suffices to show that
this space, which is a G-CW-complex, is weakly G-contractible. For a subgroup H of G the fixed points
L(V,∞ρG)H is the space of H-equivariant linear isometric embedding from V to ∞ρG. Since the represen-
tation ∞ρG contains V infinitely often, this space is contractible.

For the second statement we exploit that smashing with A preserves π∗-isomorphisms (Proposition 5.4).
So by the first part the map FV (SV ∧ A) −→ Σ∞A is a π∗-isomorphism. Hence its adjoint FVA −→
ΩV (Σ∞A) is a π∗-isomorphism by Proposition 3.12. �

Definition 5.17. A morphism f : X −→ Y of orthogonal G-spectra is a strong level equivalence if for every
G-representation V the map

f(V ) : X(V ) −→ Y (V )

is a G-weak equivalence.

Proposition 5.18. (i) Let f : X −→ Y be a morphism of orthogonal G-spectra with the following prop-
erty: for every n ≥ 0 and every subgroup K of O(n)×G such that K ∩ (O(n)× 1) = 1, the map

fKn : XK
n −→ Y Kn

on K-fixed points is a weak equivalence of spaces. Then f is a strong level equivalence.
(ii) Every strong level equivalence of orthogonal G-spectra is a π∗-isomorphism.

Proof. (i) Let V be a G-representation and set n = dimV . Let α : Rn −→ V by a linear isometry, not
necessarily G-equivariant. We define a homomorphism −α : G −→ O(n) by ‘conjugation by α, i.e., we set

(gα)(x) = α−1(g · α(x))

for g ∈ G and x ∈ Rn. Then we define a new action of G on the space Xn by setting

g ∗ x = (gα, g) · x .
In other words, we restrict the O(n)×G-action on Xn along the monomorphism (−α, Id) : G −→ O(n)×G.
The map

Xn −→ X(V ) , x 7−→ [α, x]

is a homeomorphism, natural in X and G-equivalent with respect to the new action of G on Xn. So for
every subgroup H of G the fixed point space X(V )H is homeomorphic to XK

n where K ⊂ O(n)×G is the
image of H under the monomorphism (−α, Id). The group K satisfies K ∩ (O(n)× 1) = 1, so the map fKn ,
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and hence f(V )H , is a weak equivalence. Since H was any subgroup of G, the map f(V ) : X(V ) −→ Y (V )
is a G-weak equivalence.

(ii) We first treat the case of homotopy groups of dimension 0. By hypothesis the map f(nρ) : X(nρ) −→
Y (nρ) is a G-weak equivalence. Since the representation sphere Snρ can be given a G-CW-structure, the
induced map on mapping spaces

map(Snρ, f) : map(Snρ, X(nρ)) −→ map(Snρ, Y (nρ))

is a G-weak equivalence. Taking H-fixed points and passing to the colimit over n shows that πH0 f :
πH0 (X) −→ πH0 (Y ) is an isomorphism for all subgroups H of G. For dimensions k > 0 we exploit that
(ΩWX)(V ) is naturally G-homeomorphic to ΩWX(V ), so every loop, by any G-representations, of a strong

level equivalence is again a strong level equivalence. For dimensions k < 0 we exploit that (shVX)(W )
is naturally G-homeomorphic to X(V ⊕ W ), so every shift, by any G-representations, of a strong level
equivalence is again a strong level equivalence. �

Proposition 5.19. (i) Let X be a G-Ω-spectrum such that πk(X) = 0 for every integer k. Then for
every G-representation V the space X(V ) is G-weakly contractible.

(ii) Every π∗-isomorphism between G-Ω-spectra is a strong level equivalence.

Proof. (i) See Mandell and May [17, III, Lemma 9.1].
(ii) Let f : X −→ Y be a π∗-isomorphism between G-Ω-spectra. We let F denote the homotopy fiber of

f . The long exact sequence of homotopy groups implies that π∗F = 0. For every G-representation V the
G-space F (V ) is then G-homeomorphic to the homotopy fiber of f(V ) : X(V ) −→ Y (V ). So F is again a
G-Ω-spectrum.

By the Ω-spectrum property, the space X(V ) is G-weakly equivalent to ΩX(V ⊕R) and similarly for Y .
So the map f(V ) is G-weakly equivalent to

Ωf(V ⊕ R) : ΩX(V ⊕ R) −→ ΩX(V ⊕ R) .

Hence we have a homotopy fiber sequence

X(V )H
f(V )H−−−−−→ Y (V )H −→ F (V ⊕ R)H

for every subgroup H of G. By part (i) the space F (V )H is weakly contractible, so f(V )H is a weak
equivalence. �

5.1. Canonical presentation. The canonical presentation is a way to write an orthogonal G-spectrum as
a mapping telescope (homotopy colimit) of desuspended (by certain representations) suspension spectra.

Let X be an orthogonal G-spectrum. We assume that the space X(V ) has the homotopy type of a
G-CW-complex for every G-representation V . This is no real loss of generality since every orthogonal
G-spectrum is strongly level equivalent to a sufficiently cofibrant G-spectrum, which has this property.

We consider two nested G-representations V ⊂ W . The identity of X(V ) is adjoint to a morphism of
G-spectra

iV : FVX(V ) −→ X ,

and similarly for W instead of V . We obtain a commutative square

FW (X(V ) ∧ SW−V )
FWσV,W−V //

'
��

FWX(W )

iW

��
FVX(V )

iV
// X

in which the left vertical morphism is adjoint to the map of G-spaces

X(V ) ∧ SW−V X(V )∧κ−−−−−−→ X(V ) ∧O(V,W ) = (FVX(V ))(W ) .
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We claim that the left vertical morphism is a π∗-isomorphism. Since smashing with the representation sphere
SV detects π∗-isomorphisms, it suffices to show this after smashing with SV . Then the map becomes the
left vertical map in the commutative diagram

FW (X(V ) ∧ SW )
'

**

��

Σ∞X(V )

FV (X(V ) ∧ SV )
'

44

The two diagonal maps are π∗-isomorphisms by Proposition 5.14 and because smashing with X(V ) respec-
tively X(W ) preserves π∗-isomorphisms.

The upshot is that in the homotopy category of G-spectra, we have a morphism

jV,W : FVX(V ) −→ FWX(W )

that satisfies iW jV,W = iV as maps from FVX(V ) to X.
Now we consider a nested sequence of G-representations:

(5.20) V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · ·

As just described this gives rise to a sequence

FV0X(V0)
jV0,V1−−−−→ FV1X(V1)

jV1,V2−−−−→ · · · −→ FVnX(Vn)
jVn,Vn+1−−−−−−→ · · ·

in the homotopy category of G-spectra, together with compatible maps iVn : FVnX(Vn) −→ X. Such data
gives rise to a morphism

hocolimn FVnX(Vn) −→ X

in the homotopy category of orthogonal G-spectra from the homotopy colimit of the sequence.

Proposition 5.21. Suppose that the nested sequence (5.20) of G-representations that is exhausting, i.e.,
every G-representation embeds equivariantly into Vn for large enough n. Then for every orthogonal G-
spectrum X, the map

hocolimn FVnX(Vn) −→ X

is an isomorphism in the homotopy category of orthogonal G-spectra.

Before we give the proof we remark that since FV S
V = FV ∧ Σ∞SV is π∗-isomorphic to the G-sphere

spectrum S, FV is an inverse to the representation sphere SV with respect to the derived smash product
of G-spectra. So we may think of FV as ‘S−V ’, the sphere of the virtual representation −V . With this in
mind, FVX(V ) is S−V ∧X(V ) and the content of the proposition can be summarized as

X ∼= hocolimn S−Vn ∧X(Vn)

in Ho(SpG).

Proof. The given exhaustive sequence and the exhaustive sequence

ρ −→ 2ρ −→ 3ρ −→ . . . −→ nρ −→ . . .

of multiples of the regular representation can be cofinally embedded into each other. So the two resulting
homotopy colimits are isomorphic in Ho(SpG). It thus suffices to consider the nested sequence of regular
representations and show that the map

hocolimn FnρX(nρ) −→ X
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is a π∗-isomorphism. For an integer k and subgroup H of G, the left hand side evaluate to:

πHk (hocolimn FnρX(nρ)) ∼= colimn π
H
k (FnρX(nρ))

∼= colimn π
H
k+nρ (Σ∞X(nρ))

∼= colimn,m[Sk+nρ+mρ, X(nρ) ∧ Smρ]H

∼= colimm π
H
k+mρ(S

mρ ∧X) ∼= πHk (X) �

Let F be a family of subgroups of G, i.e., F is a set of subgroups of G closed under conjugation and
passage to subgroups. We denote by EF any universal space for the family F , i.e., a G-CW-complex such
that the fixed points set (EF)H is contractible for H ∈ F and (EF)H is empty for H 6∈ F .

Example 5.22. Let V be a G-representation. We let FV denote the family of those subgroups H of G
such that V H 6= 0. Let S(∞V ) be the unit sphere in the infinite dimensional representation ∞V =

⊕
N V ;

in other words,

S(∞V ) =
⋃
n≥0

S(nV )

is the union of the unit spheres of nV with the weak topology. Then we have

S(∞V )H = S(∞(V H))

which is empty if H does not belong to FV and an infinite dimensional sphere, hence contractible, for
H ∈ FV . In other words: the space S(∞V ) is a universal space EFV .

Lemma 5.23. Let F be a family of subgroups of G and X an orthogonal G-spectrum. Then for every
subgroup H in the family F the projection EF+ ∧X −→ X induces isomorphisms

πHk (EF+ ∧X)
∼=−−→ πHk (X) .

Proof. For every subgroup H in the family F and every subgroup K of H the map EF −→ ∗ is a weak
equivalence on K-fixed points. Since both sides are H-CW-complexes, the map EF −→ ∗ is an H-homotopy
equivalence. So the map EF+ −→ S0, and hence the map EF+ ∧ X −→ S0 ∧ X ∼= X are H-homotopy
equivalences, and the conclusion follows. �

Proposition 5.24. Let F be a family of subgroups of G. For a morphism f : X −→ Y of orthogonal
G-spectra, the following are equivalent:

(i) For every subgroup H of F the morphism i∗f : i∗X −→ i∗Y is a π∗-isomorphism of H-spectra.
(ii) For every subgroup H of F the induced map πH∗ f : πH∗ (X) −→ πH∗ (Y ) is an isomorphism of graded

homotopy groups.
(iii) The morphism EF+ ∧ f : EF+ ∧X −→ EF+ ∧ Y is a π∗-isomorphism of G-spectra.

Proof. Properties (i) and (ii) are equivalent because for every subgroup K of H the groups πKk (i∗X) and
πKk (X) are naturally isomorphic.

Property (iii) implies property (ii) because of the natural isomorphism πHk (EF+ ∧ X) ∼= πHk (X) of
Lemma 5.23

(i)=⇒(iii) By passage to the mapping cone of f it suffices to show that for all G-spectra X such that
πH∗ (X) = 0 for all H ∈ F the spectrum EF+ ∧ X is π∗-trivial. Since smashing with the G-CW-complex
EF+ preserves π∗-isomorphisms, we may assume that X is a G-Ω-spectrum (for example by using the
construction 3.20). Then for every subgroup H in F and every G-representation V we have X(V )H ' ∗,
by Proposition 5.19. Hence EF+ ∧X(V ) is G-weakly contractible, and thus π∗(EF+ ∧X) = 0. �



LECTURES ON EQUIVARIANT STABLE HOMOTOPY THEORY 57

6. The tom Dieck splitting

Among the simplest kinds of examples of orthogonal G-spectra are suspension spectra of G-spaces. A
G-space is essentially determined by the homotopy types of the fixed point spaces for the various subgroups,
and one can ask if and how the equivariant stable homotopy groups can be obtained from the fixed point
information. The tom Dieck splitting provides an answer to this, and it rewrites the equivariant stable
homotopy groups of a suspension spectrum as a sum of terms, indexed by conjugacy classes of subgroups H,
where the summand indexed by H depends only on the H-fixed points of the original G-space. The sphere
spectrum is an equivariant suspension spectrum, and by applying the tom Dieck splitting to this case we
can identify the G-equivariant stable 0-stem with the Burnside ring of G.

Tom Dieck’s splitting originally appeared in [4, Satz 2] in the more general context of compact Lie groups;
we follow the original proof.

Construction 6.1. We start by introducing the maps whose sum will later turn out to be the isomorphism
of the tom Dieck splitting. We let A be a based G-space and H a subgroup of G. We define a natural
transformation

(6.2) ζH : πWH
∗ (Σ∞(EWH+ ∧AH)) −→ πG∗ (Σ∞A)

where WH = WGH = (NGH)/H is the Weyl group of H which acts on the H-fixed point space of A. The
map ζH is defined as the composite

πWH
∗ (Σ∞(EWH+ ∧AH))

p∗−−−−−→ πNH∗ (Σ∞(EWH+ ∧AH))

i∗−−−−−→ πNH∗ (Σ∞(EWH+ ∧A))

TrGNH−−−−→ πG∗ (GnNH (Σ∞(EWH+ ∧A)))
q∗−−−−−→ πG∗ (Σ∞A)

Here, and in the following, NH = NGH is the normalizer of H in G. The first map is the restriction
homomorphism (3.6) along the projection p : NH −→ (NH)/H = WH. The second map is induced by the
NH-equivariant inclusion i : AH −→ A of the H-fixed points. The third map is the external transfer (4.13).
The fourth map is the effect on equivariant homotopy groups of the morphism of orthogonal G-spectra

q : GnNH (Σ∞(EWH+ ∧A)) −→ Σ∞A

that is adjoint to the morphism of orthogonal NH-spectra

Σ∞(EWH+ ∧A) −→ Σ∞A

induced from the NH-equivariant projection EWH+ ∧A −→ A. To simplify notation we suppress that we
sometimes view EWH and AH as NH-spaces by restriction along the projection p; so more properly we
should be writing p∗(EWH) or p∗(A) in those places.

The following terminology will be useful throughout this section.

Definition 6.3. Let G be a finite group, H a subgroup of G and A a based G-space. Then A is concentrated
at the conjugacy class of H if the K-fixed points AK are contractible for every subgroup K ≤ G that is not
conjugate to H.

We emphasize that in the previous definition we require AK to actually be contractible, in the based
sense, to the basepoint; if we only asked for weak contractibility, some of the arguments below would not
work.
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Proposition 6.4. Let G be a finite group, H a normal subgroup of G and Y a based G-space that is
concentrated at H. Then for every finite based G-CW-complex B the geometric fixed point map

(−)H : mapG(B, Y ) −→ mapG/H(BH , Y H)

that takes a based G-map f : B −→ Y to the restriction to H-fixed points fH : BH −→ Y H is a weak
equivalence and Serre fibration.

Proof. We let A be a G-space that is obtained from a G-subspace A′ by attaching an equivariant cell of
orbit type K, with K different from H. Applying mapG(−, Y ) turns the pushout of G-spaces on the left

G/K × Sn−1

��

// G/K ×Dn

��

mapG(A, Y )

��

// mapG(A′, Y )

��
A′ // A map(Dn

+, Y
K) // map(Sn−1

+ , Y K)

into the pullback square on the right in which both horizontal maps are Serre fibrations. Since Y is
concentrated at H, the space Y K is contractible, hence so are the two mapping spaces in the lower row.
The restriction map mapG(A, Y ) −→ mapG(A′, Y ) is thus a Serre fibration and weak equivalence.

We apply this argument to various G-subcomplexes of B. We let B0 = {a ∈ B | Ga � H} be the
G-subcomplex of all points whose stabilizer group is not contained in H. Since H is normal in G, the fixed
point space BH also forms a G-subcomplex of B. All points a ∈ B − (B0 ∪BH) have their stabilizer group
contained in, but different from, H. So B is obtained from B0 ∪BH by attaching equivariant cells of orbit
type K for K � H. So the restriction map

mapG(B, Y ) −→ mapG(B0 ∪BH , Y )

is a Serre fibration and weak equivalence.
Both B0 and B0 ∩BH are built with G-cells of orbit types K with K 6= H. So the mapping spaces

mapG(B0, Y ) and mapG(B0 ∩BH , Y )

are weakly contractible by the first paragraph. The square of restriction maps

mapG(B0 ∪BH , Y )

��

// mapG(BH , Y )

��
mapG(B0, Y ) // mapG(B0 ∩BH , Y )

is a pullback and all four maps are Serre fibrations. The two mapping spaces in the lower row are weakly con-
tractible, so the upper horizontal restriction map is a weak equivalence and Serre fibration. The geometric
fixed point map in question is thus the composite of two restriction maps

mapG(B, Y ) −→ mapG(B0 ∪BH , Y ) −→ mapG(BH , Y ) = mapG/H(BH , Y H)

both of which are weak equivalences and Serre fibrations. �

We start by proving that statement that will turn out as a special case of the tom Dieck splitting, and
it will also be a main step in the proof.

Proposition 6.5. Let G be a finite group, H a subgroup of G and A a based G-space that is concentrated
at the conjugacy class of H. Then the map

ζH : πWH
∗ (Σ∞(EWH+ ∧AH)) −→ πG∗ (Σ∞A)

is an isomorphism.
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Proof. The map ζH was defined as a composite of four maps. The external transfer map TrGNH :
πNH∗ (Σ∞(EWH+ ∧ A)) −→ πG∗ (G nNH (Σ∞(EWH+ ∧ A))) is an isomorphism by definition. We will
show that in addition (a) the composite i∗ ◦ p∗ of the first two maps is an isomorphism, and (b) the fourth
map q∗ is an isomorphism.

(a) The composite map

i∗ ◦ p∗ : πWH
k (Σ∞(EWH+ ∧AH)) −→ πNHk (Σ∞(EWH+ ∧A))

has a retraction

ΦH : πNHk (Σ∞(EWH+ ∧A)) −→ πWH
k (Σ∞(EWH+ ∧AH))

given by a H-geometric fixed point map:

[f : Sk+V −→ SV ∧ EWH+ ∧A] 7−→ [fH : Sk+V H −→ SV
H

∧ EWH+ ∧AH ]

(here V is any NH-representation). We recall that NH acts on EWH by restriction along p : NH −→WH,
so the subgroup H ≤ NH acts trivially, and (EWH)H = EWH. The maps in the image of i∗ ◦ p∗ are
defined on NH-representations on which H already acts trivially, so ΦH is indeed left inverse to i∗ ◦ p∗.

The NH-space Y = Sm·ρN ∧EWH+ ∧A is concentrated at the normal subgroup H by hypothesis on A,
so Proposition 6.4, applied to G = NH and the G-CW-complex Sk+m·ρN shows that the geometric fixed
point map

ΦH : [Sk+m·ρN , Sm·ρN ∧ EWH+ ∧A]NH −→ [Sk+m·(ρN )H , Sm·(ρN )H ∧ EWH+ ∧AH ]WH

is bijective. Exploiting that (ρNH)H ∼= ρ(NH)/H = ρWH and passing to colimits over m shows that the left

inverse ΦH is bijective. The composite i∗ ◦ p∗ is thus bijective as well.
(b) We show that for every G-representation V the map

q(V ) : (GnNH (Σ∞(EWH+ ∧A)))(V ) −→ (Σ∞A)(V )

is a G-weak equivalence. Hence q induces isomorphisms on G-equivariant stable homotopy groups. Indeed,
we can rewrite the source of q(V ) isomorphically as

(GnNH (Σ∞(EWH+ ∧A)))(V ) ∼= GnNH (Σ∞(EWH+ ∧A)(V ))

= GnNH (EWH+ ∧A ∧ SV )

∼= (GnNH EWH)+ ∧A ∧ SV ,

where the last step uses that A and SV come with a G-action and G acts diagonally on the last smash
product. So we need to show that the projection

q̄ : (GnNH EWH)+ ∧A ∧ SV −→ A ∧ SV

restricts to a weak equivalence on fixed points for every subgroup K ≤ G. The K-fixed points of the source
are given by

(6.6)
(
(GnNH EWH)+ ∧A ∧ SV

)K ∼= ((GnNH EWH)K)+ ∧AK ∧ SV
K

.

When K is not conjugate to H, then AK is contractible, hence so are the spaces (6.6) and (A ∧ SV )K =

AK ∧ SV K . For K = H we observe that

(G×NH EWH)H = {1} × (EWH)H ,

which is contractible because H acts trivially on EWH. So in any case q̄K is a homotopy equivalence. �

The proof of the tom Dieck splitting will depend on the fact that both sides to be compared are G-
homology theories in the following sense.
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Definition 6.7. Let G be a finite group. A G-homology theory is a Z-indexed family of covariant functors

E = {Ek}k∈Z , Ek : (based G-spaces) −→ Ab
equipped with connecting homomorphisms ∂ : E1+k(Cf) −→ Ek(A), natural for based G-maps f : A −→ B,
satisfying the following conditions.

(i) Each functor Ek is G-homotopy invariant, i.e., it has the same image on G-homotopic based maps.
(ii) For every family of {Ai}i∈I of based G-spaces, the canonical map⊕

i∈I
Ek(Ai) −→ Ek(

∨
i∈I

Ai)

is an isomorphism.
(iii) For every based G-map f : A −→ B the sequence

· · · E1+k(i)−−−−−→ E1+k(Cf)
∂−−→ Ek(A)

Ek(f)−−−−→ Ek(B)
Ek(i)−−−→ Ek(Cf)

∂−−→ · · ·
is exact.

A morphism of G-homology theories is a Z-indexed family of natural transformations that commute with
the connecting homomorphisms.

Remark 6.8. Similar as for non-equivariant homology theories, we can draw some immediate consequences
from the defining properties of a G-homology theory.

• Since a wedge of two points (with trivial G-action) is one point, the wedge axiom implies that the
sum map Ek(∗)⊕Ek(∗) −→ Ek(∗) is an isomorphism. This forces Ek(∗) to be trivial for all k, i.e.,
a G-homology theory is ‘reduced’.

• The homotopy invariance implies that each functor Ek takes based G-homotopy equivalences to
isomorphisms.

• For the unique G-map pA : A −→ ∗ to a one point space the reduced mapping cone C(pA) is G-
homeomorphic to the suspension S1∧A. In this case the connecting homomorphism thus specializes
to a suspension isomorphism

E1+k(S1 ∧A) ∼= E1+k(C(pA))
∂−−→ Ek(A) .

• We let (B,A) be a pair of G-spaces, based at a point in A, such that the inclusion i : A −→ B
has the equivariant homotopy extension property. For example, this is the case for relative G-CW-
complexes, or more generally for relative G-cell complexes. Then the quotient map Ci −→ B/A
that collapses the cone of A is a based G-homotopy equivalence, and thus induces isomorphisms
in any G-homology theory. We can thus substitute E∗(Ci) by E∗(B/A) and obtain a long exact
sequence

· · · E1+k(q)−−−−−→ E1+k(B/A) −→ Ek(A)
Ek(i)−−−→ Ek(B)

Ek(q)−−−−→ Ek(B/A) −→ · · ·
where q : B −→ B/A is the projection.

• In the non-equivariant context, generalized homology theories are determined by their coefficient
groups, i.e., the homology groups of a one-point space. In the equivariant context, the role of the
one-point space is played by the discrete coset spaces G/H for all subgroups H ≤ G. More precisely,
we let Φ : E −→ F be a natural transformation of G-homology theories and suppose that for all
H ≤ G and all integers k the map

Φk(G/H+) : Ek(G/H+) −→ Fk(G/H+)

is an isomorphism. Then the map Φk(A) : Ek(A) −→ Fk(A) is an isomorphism for every based
G-CW-complex A and all integers k. The proof is similar as in the non-equivariant case. So in this
sense G-homology theories are determined by the graded coefficient system {E∗(G/H+)}H≤G.
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Example 6.9. Every orthogonal G-spectrum E defines a G-homology theory by setting

(6.10) Ek(A) = πGk (A ∧ E) .

Indeed, homotopy invariance is clear and the wedge axiom follows from Corollary 3.31 (i) and the fact
that smashing with E preserves wedges. Since − ∧ E takes space level mapping cones to mapping cones
of orthogonal G-spectra, the connecting homomorphism (3.27) for the morphism f ∧ E : A ∧ E −→ B ∧ E
of orthogonal G-spectra and the isomorphism C(f ∧ E) ∼= (Cf) ∧ E together provide the connecting
homomorphism

E1+k(Cf) = πG1+k((Cf) ∧ E) −→ πGk (A ∧ E) = Ek(A) .

The long exact sequence is then a special case of the long exact sequence of a mapping cone (Proposi-
tion 3.30).

MoreG-homology theories can be obtained from orthogonalG-spectra by replacing πGk (−) in (6.10) by the
equivariant homotopy groups based on a G-universe that is not necessarily complete, compare Remark 4.22.
The G-homology theories arising as in (6.10) by using complete universes have a special properties of being
‘RO(G)-gradable’.

Here are two specific examples of this construction. For E = S the sphere spectrum the associated
G-homology theory is Ek(A) = πGk (A ∧ S) ∼= πGk (Σ∞A), the equivariant stable homotopy groups of A.
Given a ZG-module M , the Eilenberg-Mac Lane spectrum HM was defined in Example 2.13. For E = HM
the associated G-homology theory (HM)k(A) = πGk (A ∧ HM) is isomorphic to Hk(A,M), the Bredon
homology [3] for the fixed point coefficient system M that sends a subgroup H ≤ G to MH .

Since both sides of the tom Dieck splitting are G-homology theories, one could hope to prove it by
reduction to the case A = G/H+ of orbits. However, that is not the strategy of tom Dieck’s proof; rather,
we use an ‘isotropy separation’ argument to reduce the theorem to the special case of a G-space that is
concentrated at a single conjugacy class of subgroups, in which case the splitting has only one non-zero
summand.

Proposition 6.11. Let G be a finite group and Φ : E −→ F a natural transformation of G-homology
theories. Suppose that Φ(A) : E∗(A) −→ F∗(A) is an isomorphism for all based G-spaces A that are
concentrated at a single conjugacy class. Then Φ(A) : E∗(A) −→ F∗(A) is an isomorphism for all based
G-spaces A.

Proof. We choose a sequence of families of subgroups of G

∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fm−1 ⊂ Fm = all subgroups

such that Fi = Fi−1 ∪ {(Ki)} for some conjugacy class of subgroups (Ki) with Ki 6∈ Fi−1; in particular,
m is the number of conjugacy classes of subgroups, F1 = {e} contains only the trivial groups and Fm−1

is the family of proper subgroups of G. We show by induction on i that the map Φ(A ∧ (EFi)+) :
E∗(A ∧ (EFi)+) −→ F∗(A ∧ (EFi)+) is an isomorphism for all based G-space A. Since Fm contains all
subgroups of G, the space EFm is G-equivariantly contractible, so the projection A ∧ (EFm)+ −→ A is a
G-homotopy equivalence and the last case i = m proves the proposition.

Since F0 is empty, EF0 is the empty G-space and (EF0)+ is a point. Hence A ∧ (EF0)+ is a single
point, and this starts the induction. For i ≥ 1 the universal property of EFi provides a G-map

j : EFi−1 −→ EFi ,
unique up to G-homotopy. Because Fi = Fi−1∪{(Ki)}, the unreduced mapping cone C(j+ : (EFi−1)+ −→
(EFi)+) is then concentrated at the conjugacy class (Ki). Hence the smash product

A ∧ C((EFi−1)+ −→ (EFi)+) ∼= C(A ∧ (EFi−1)+ −→ A ∧ (EFi)+)

is also concentrated at the conjugacy class (Ki). The E-homology groups of A∧ (EFi−1)+, A∧ (EFi)+ and
A∧C(j+) are related by a long exact sequence, and similarly for the F -homology groups. The transformation
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Φ gives compatible maps between the two long exact sequences with isomorphisms at A ∧ (EFi−1)+ (by
induction) and at A ∧ C(j+) (by hypothesis). The 5-lemma then proves the induction step. �

Now we finally state and prove the tom Dieck splitting.

Theorem 6.12 (Tom Dieck splitting). For every based G-space A, the map∑
(H)

ζH :
⊕
(H)

πWH
∗ (Σ∞(EWH+ ∧AH)) −→ πG∗ (Σ∞A)

is an isomorphism, where the sum runs over a set of representatives of all conjugacy classes of subgroups
of G.

Proof. We start with the special case of a based G-space A that is concentrated at one conjugacy class (H).
By Proposition 6.5 the summand indexed by (H) then maps isomorphically onto πG∗ (Σ∞A), so we need to
show that all other summands vanish for such A. We let K be a subgroup of G that is not conjugate to H
and claim that for every WK-representation V the WK-space

(Σ∞(EWK+ ∧AK))(V ) = EWK+ ∧AK ∧ SV

is WK-equivariantly weakly contractible. Indeed, if L is a non-trivial subgroup of the Weyl group WK,
then EWK has no L-fixed points and (EWK+)L consists only of the basepoint. So in this case

(EWK+ ∧AK ∧ SV )L = ((EWK)L)+ ∧ (AK ∧ SV )L = ∗
consists of the basepoint only. On the other hand, for L = e the trivial subgroup of WK, the space
EWK+ ∧ AK ∧ SV is contractible because AK is. This shows the claim that (Σ∞(EWK+ ∧ AK))(V ) is
weakly WK-equivariantly contractible, and hence the stable homotopy groups πWK

∗ (EWK+∧AK) vanish.
Altogether this proves the special case of the tom Dieck splitting when A is concentrated at a single
conjugacy class.

Now we deduce the general case. Taking H-fixed points takes G-homotopies to WH-homotopies and
commutes with wedges and mapping cones; the same is true for EWH+ ∧ −, so the functor

A 7→ πWH
∗ (EWH+ ∧AH) ,

and hence the left hand side of the tom Dieck splitting, is a G-homology theory. The tom Dieck splitting
map is thus a natural transformation between G-homology theories that is an isomorphism for all based
G-spaces that are concentrated at a single conjugacy class. By Proposition 6.11, the transformation is then
an isomorphism in general. �

In the special case A = S0 (with trivial G-action), the left hand side of the tom Dieck splitting involves
the equivariant homotopy groups πWH

∗ (Σ∞+ EWH). We will identify this group in dimension 0. We let W
be any finite group and EW a contractible free W -CW-complex. A chosen point x ∈ EW determines a
W -equivariant action map a : W −→ EW with a(γ) = γx. Since EW is path connected, the W -homotopy
class of a is independent of the choice, hence so is the induced morphism of suspension spectra

ā : W n S = Σ∞+ W −→ Σ∞+ EW .

Proposition 6.13. For every finite group W the composite

π0S
TrWe−−−→ πW0 (W n S)

ā∗−→ πW0 (Σ∞+ EW )

is an isomorphism. In particular, the group πW0 (Σ∞+ EW ) is free abelian of rank 1.

Proof. We use the bar construction model for EW , which is filtered by W -subcomplexes E(i)W with
subquotients equivariantly homeomorphic to

E(i)W/E(i−1)W ∼= W n (W∧i ∧ Si) ;
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for the purposes of the smash product on the right hand side, W is viewed as a pointed set with basepoint 1.
The Wirthmüller and suspension isomorphisms

πWk (W n (Σ∞(W∧i ∧ Si))) ∼= πk(Σ∞(W∧i ∧ Si)) ∼= πk−i(Σ
∞W∧i)

show that the 0-th and 1-st W -equivariant stable homotopy groups of E(i)W/E(i−1)W vanish for i ≥ 2 and
so does the 0-th W -equivariant stable homotopy groups of E(1)W/E(0)W . So the inclusion E(1)W −→ EW
induces an isomorphism

πW0 (Σ∞+ E
(1)W ) ∼= πW0 (Σ∞+ EW ) .

Moreover, the sequence

πW1 (Σ∞+ (E(1)W/E(0)W ))
δ−−→ πW0 (Σ∞+ E

(0)W ) −→ πW0 (Σ∞+ E
(1)W ) −→ 0

is exact. The connecting homomorphism is in fact trivial, so the inclusion E(0)W −→ EW induces an
isomorphism

πW0 (Σ∞+ E
(0)W ) ∼= πW0 (Σ∞+ EW ) .

The claim now follows from the observation that E(0)W is a discrete space with free and transitive W -action,
so that its suspension spectrum Σ∞+ E

(0)W is isomorphic to W n S. �

In the special case A = S0, the tom Dieck splitting becomes an isomorphism between the group πG0 (S)
and the direct sum ⊕

(H)

πWH
0 (Σ∞+ EWH) .

In combination with Proposition 6.13 this shows that for every finite group G the group πG0 (S) is free abelian
of rank the number of conjugacy classes of subgroups of G.

We recall that the Burnside ring A(G) is the Grothendieck group, under direct sum, of isomorphism
classes of finite G-sets; the ring structure is induced by product of G-sets. The additive group of the
Burnside ring A(G) is also free abelian of the same rank as the equivariant 0-stem πG0 (S), so these two groups
are additively isomorphic. Even better, the Mackey functor structure of the equivariant homotopy groups
provide a specific isomorphism, which is moreover natural for restriction along group homomorphisms. A
preferred additive basis of A(G) is given by the classes of the cosets G/H, where H runs through a set of
representatives of the conjugacy classes of subgroups of G. We can thus define a homomorphism

σG : A(G) −→ πG0 (S)

by sending the class [G/H] ∈ A(G) to the element trGH(1), the transfer of the unit element 1 ∈ πH0 (S).
According to the Construction 4.2, a representative G-map of the class trGH(1) is given by the composite

SρG
tr−−→ GnH SρG

act−−→ SρG

where the first map is the transfer map from the Thom-Pontryagin construction. The isomorphism σG :
A(G) −→ πG0 (S) is also natural, in the technical sense of compatibility with restriction and transfer maps.
In particular, the maps σH form an isomorphism of Mackey functors as H ranges over the subgroups of G.
The following theorem is due to Segal [22].

Theorem 6.14. For every finite group G the map σG : A(G) −→ πG0 (S) is an isomorphism of rings. As G
varies, the isomorphisms σG commute with transfer and restriction along group homomorphisms.

Proof. In order to show that σG is an isomorphism, we prove that it sends the preferred basis of the Burnside
ring to the basis of πG0 (S) given by the tom Dieck splitting. We recall that the map ζH is the composition

πWH
0 (Σ∞+ EWH)

p∗−−−→ πNH0 (Σ∞+ EWH)
TrGNH−−−−−→ πG0 (Σ∞+ (G×NH EWH))

q∗−−→ πG0 (S) ,
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where p : NH −→ WH is the projection and q is induced by the unique map G ×NH EWH −→ ∗.
Naturality of the external transfer lets us identify the map ζH with the composite

πWH
0 (Σ∞+ EWH)

p∗−−−→ πNH0 (Σ∞+ EWH)
q′∗−−→ πNH0 (S)

TrGNH−−−−−→ πG0 (GnNH S)
proj−−→ πG0 (S) ,

and hence, by naturality of the restriction homomorphism p∗, with the composite

πWH
0 (Σ∞+ EWH)

q′∗−−→ πWH
0 (S)

p∗−−−→ πNH0 (S)
trGNH−−−−→ πG0 (S) ;

here q′ is the morphism induced by the unique map EWH −→ ∗. Evaluating this on the generator
ā∗(TrWH

e (1)) of the group πWH
0 (Σ∞+ EWH) gives

ζH(ā∗(TrWH
e (1))) = trGNH(p∗(q̄∗(TrWH

e (1))))

= trGNH(q̄∗(p
∗(TrWH

e (1)))) = trGNH(trNHH (p∗H(1))) = trGH(1) .

Here q̄ = q′ ◦ ā : WH nS −→ S is the projection and pH : H −→ e is the unique map, which happens to be
the restriction of the projection p : NH −→WH to H. The second equation is the naturality of restriction
maps and the third equation is the compatibility of transfers with restriction along epimorphisms (compare

Proposition 4.17 (ii)). By Proposition 6.13 and the tom Dieck splitting the classes ζH(ā∗(TrWH
e (1))) form

a basis of πG0 (S) when H ranges over representative of the conjugacy classes of subgroups of G. So this
finishes the identification of the Burnside ring A(G) with πG0 (S) as abelian groups.

Now we check compatibility of the isomorphisms σG with restriction along group homomorphisms. Every
group homomorphism is the composite of an epimorphism followed by a subgroup inclusion. So we show
compatibility with these two types of maps separately. We start with an epimorphism α : K −→ G. The
restriction homomorphism α∗ : A(G) −→ A(K) sends the class of G/H to the class of α∗(G/H), which is
K-isomorphic to K/L. Using Proposition 4.17 (ii) for X = S we deduce that that

α∗(σG[G/H]) = α∗(trGH(1)) = trKL ((α|L)∗(1)) = trKL (1) = σK [K/L] = σK(α∗[G/H]) .

Hence the homomorphisms σG are compatible with restriction along epimorphisms.
The compatibility with restriction to a subgroup K ≤ G follows for the fact that both sides satisfy a

double coset formula. Indeed, for every g ∈ G, the left K-set (KgH)/H is K-isomorphic to K/K ∩ gH, via

K/K ∩ gH −→ (KgH)/H , k · (K ∩ gH) 7−→ kgH .

Hence the underlying K-set of G/H is isomorphic to

resGK(G/H) =
∐

[g]∈K\G/H

resGK((KgH)/H) ∼=
∐

[g]∈K\G/H

K/K ∩ gH

(which is effectively the proof of the double coset formula for Burnside ring Mackey functor). Thus we get

resGK (σG[G/H]) = resGK(trGH(1)) =
∑

[g]∈K\G/H

trKK∩gH(c∗g(resHKg∩H (1)))

=
∑

[g]∈K\G/H

trKK∩gH (1) =
∑

[g]∈K\G/H

σK [K/K ∩ gH] = σK(resGK [G/H]) .

Compatibility with transfers is a consequence of the transitivity of transfers in π0(S) (see Proposi-
tion 4.16) and in the Burnside rings. Indeed, for K ≤ H ≤ G we have

trGH(σH [H/K]) = trGH(trHK(1)) = trGK(1) = σG[G/K] = σG(trGK [G/K]) .

Multiplicativity of σG is a formal consequence of the compatibility with restriction and transfer and the
fact that the multiplication on both sides of σG satisfies reciprocity. Indeed, since σG is additive, it suffices
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to check multiplicativity for products of two basis elements. So we let H and K be two subgroups of G.
Then

σG[G/H] · σG[G/K] = trGH(1) · trGK(1) =(4.25) trGH(resGH(trGK(1)))

= trGH(resGH(σG[G/K])) = σG(trGH(resGH [G/K])) = σG([G/H] · [G/K]) . �

Having identified the ring πG0 (S) one can ask how its elements can be distinguished by invariants. In the
non-equivariant context the degree of a map between spheres provides the answer, and in the equivariant
context the collection of degrees of all fixed point maps serves the same purpose. The situation is slightly
more subtle, though, because the fixed point degrees of an equivariant map between representation spheres
satisfy certain congruences, so they cannot be assigned arbitrarily.

We let C(G) denote the set of class functions, i.e., maps from the set of subgroups of G to the integers that
are constant on conjugacy classes. Every G-map f : SV −→ SV gives rise to a degree function d(f) ∈ C(G)
by

d(f)(K) = deg
(
fK : SV

K

−→ SV
K
)
,

the (non-equivariant) degree of the K-fixed point map. The degree function only depends on the G-
homotopy class of f and is invariant under suspension with any representation sphere. So it descends to a
map

d : πG0 (S) −→ C(G) .

Since the map σG : A(G) −→ πG0 (S) is a ring isomorphism, one can understand the degree map by studying
the composite d ◦ σG : A(G) −→ C(G), and this turns out to be a purely algebraic issue. Indeed, the
degree function associated to σG[G/H] = trGH(1) assigns to the conjugacy class of K the cardinality of the
set (G/H)K . So the composite map

A(G)
σG−−−→ πG0 (S)

d−−→ C(G)

sends a finite G-set S to the function

(d(σG[S]))(K) = |SK |
that counts the number of fixed points. By pure algebra (see for example [5, Sec. 1.2]), the fixed point
counting map d ◦ σG, and hence also degree map d, is injective, and its image has finite index, namely the
product, over conjugacy classes of subgroups (H), of the orders of the Weyl groups WGH.

The image of the degree map d : πG0 (S) −→ C(G), or equivalently the image of d◦σG, can be characterized
in terms of certain explicit congruences. The example G = Cp, the cyclic group of order a prime p, can
serve to illustrate the issue. The Burnside ring A(Cp) is free abelian of rank 2 generated by the classes of
the trivial Cp-sets Cp/Cp and the free Cp-set Cp/e. We have

(|Cp/Cp|, |(Cp/Cp)Cp |) = (1, 1) and (|Cp/e|, |(Cp/e)Cp |) = (p, 0) .

Every finite Cp-set S is isomorphic to a union of copies of Cp/Cp and Cp/e, so the relation

|S| ≡ |SCp | modulo p

holds for all finite Cp-sets S. In general, the image of the ring homomorphism d ◦ σG : A(G) −→ C(G) is
the subring of those class functions ϕ ∈ C(G) that satisfy the congruence

(6.15)
∑

KE(H)≤NGK, H/K cyclic

µ(H/K) · |NGH/NGK ∩NGH| · ϕ(H) ≡ 0 mod |WGH|

for every subgroup K of G, see for example [5, Prop. 1.3.5]. The sum is taken over NGK-conjugacy classes
of subgroups H ≤ G that contain K as a normal subgroup and such that H/K is cyclic; µ(H/K) is the
number of generators of the cyclic group H/K.
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Example 6.16. We illustrate the congruences (6.15) with the example G = Σ3 of the symmetric group
on 3 letters. There are four conjugacy classes of subgroups, namely

e, (12), A3 and Σ3 .

So A(Σ3) and C(Σ3) are free abelian of rank 4, and the index of the monomorphism d ◦ σΣ3
: A(Σ3) −→

C(Σ3) is the product of the orders of the Weyl groups, so it is 6 · 1 · 2 · 1 = 12.
A priori, we get four congruences (6.15), one for each conjugacy class of subgroups, for a class function

ϕ ∈ C(Σ3) to lie in the image. However, the subgroups (12) and Σ3 are self-normalizing, so their Weyl
groups are trivial, and the respective congruence contains no information. For K = e, the sum (6.15) is
over all conjugacy classes of cyclic subgroups of Σ3, and becomes

1 · ϕ(e) + 1 · ϕ((12)) + 2 · ϕ(A3) ≡ 0 mod 6 .

For K = A3, the sum (6.15) has two summands with H = A3 and H = Σ3, and it becomes

1 · ϕ(A3) + 1 · ϕ(Σ3) ≡ 0 mod 2 .

These two congruences are equivalent to the three more basic congruences

ϕ(e) ≡ ϕ(A3) mod 3 , ϕ(e) ≡ ϕ((12)) mod 2 , and ϕ(A3) ≡ ϕ(Σ3) mod 2 .

The group Σ3 is simple enough that one could verify the congruences directly: the following so-called ‘table
of marks’ lists the numbers of fixed points |(G/H)K | of the transitive Σ3-sets, and one can read off the
three congruences between the numbers in the respective columns:

H |(Σ3/H)e| |(Σ3/H)(12)| |(Σ3/H)A3 | |(Σ3/H)Σ3

e 6 0 0 0
(12) 3 1 0 0
A3 2 0 2 0
Σ3 1 1 1 1

7. Fixed points and geometric fixed points

In this section we investigate different kinds of fixed point spectra for orthogonal G-spectra. Each of
these constructions turns an equivariant spectrum into a non-equivariant spectrum by taking fixed points
at an appropriate stage.

7.1. Naive fixed points. We start with the naive fixed points of a G-spectrum X that we denote by XG

and which are simply the categorical fixed points taken levelwise. In other words, we have

(XG)n = XG
n ,

the G-fixed points of the n-th level, with restricted O(n)-action. Since the structure maps σn : Xn∧S1 −→
Xn+1 are G-equivariant for the trivial G-action on S1, they restrict to structure maps

σGn : XG
n ∧ S1 = (Xn ∧ S1)G

σGn−−−→ XG
n+1

for naive fixed point spectrum XG.
One problem with the naive fixed point construction is that it is not homotopy invariant. More precisely,

if f : X −→ Y is a π∗-isomorphism of G-spectra, then the induced map fG : XG −→ Y G is generally
not a π∗-isomorphism of non-equivariant orthogonal spectra. However, naive fixed points take level G-
equivalences to level equivalences, hence they take π∗-isomorphism between G-Ω-spectra (which are level
G-equivalences) to level equivalences of orthogonal spectra. Thus the naive fixed point functor can be
derived by applying it to a π∗-isomorphic replacement by a G-Ω-spectrum.
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7.2. Fixed points. Fortunately, there is a simpler and explicit construction that achieves the same goal.
Given a G-spectrum X we define a new G-spectrum FX by

(FX)n = map(SRn⊗ρ̄G , X(Rn ⊗ ρG)) ,

where ⊗ is short for ⊗R, the tensor product of G-representations. Here the source of the mapping space
uses the reduced regular representation ρ̄G, whereas the target uses the regular representation ρG. As usual,
the group G acts on the mapping space by conjugation. The orthogonal group O(n) acts on (FX)n by
conjugation, through the actions on Rn. The value of FX at a general G-representation V is then given by

(FX)(V ) = map(SV⊗ρ̄G , X(V ⊗ ρG)) .

The structure map (FX)n ∧ S1 −→ (FX)n+1 is the composite

map(SRn⊗ρ̄G , X(Rn ⊗ ρG)) ∧ S1 assembly−−−−−→ map(SRn⊗ρ̄G , X(Rn ⊗ ρG) ∧ S1)

−∧Sρ̄G−−−−−→ map(SRn⊗ρ̄G ∧ Sρ̄G , X(Rn ⊗ ρG) ∧ S1 ∧ Sρ̄G)

∼= map(SRn+1⊗ρ̄G , X(Rn ⊗ ρG) ∧ SρG)

(σRn⊗ρG,ρG )∗−−−−−−−−−−→ map(SRn+1⊗ρ̄G , X(Rn+1 ⊗ ρG))

where among other things we have used the G-equivariant isometry R⊕ ρ̄G ∼= ρG.

Definition 7.1. The fixed point spectrum of an orthogonal G-spectrum X is the orthogonal spectrum
FGX = (FX)G, the naive fixed points of the spectrum FX.

As we shall see now, the homotopy groups of the fixed point spectrum FGX calculate the G-homotopy
groups of X:

Proposition 7.2. For every orthogonal G-spectrum X and integer k the groups πGk (X) and πk(FGX) are
naturally isomorphic.

Proof. We restrict to the case k = 0. The splitting ρG ∼= R ⊕ ρ̄G produces an isometry Rn ⊗ ρG ∼=
Rn⊕ (Rn⊗ ρ̄G) that compactifies to a G-homeomorphism SRn⊗ρG ∼= Sn∧SRn⊗ρ̄G . So we get an adjunction
bijection

[SRn⊗ρG , X(Rn ⊗ ρG)]G ∼= [Sn,map(SRn⊗ρ̄G , X(Rn ⊗ ρG))]G

∼= πn mapG(SRn⊗ρ̄G , X(Rn ⊗ ρG)) = πn(FGX)n .

The second isomorphism uses that G acts trivially on Rn. The bijection is compatible with the stabi-
lization maps that define πG0 (X) from the groups [SnρG , X(nρG)]G respectively π0(FGX) from the groups
πn(FGX)n. �

The naive fixed points and fixed points of an equivariant spectrum are related by a map

(7.3) XG jG−−−→ FGX

that is obtained from a morphism j : X −→ FX of G-spectra by taking naive fixed points. The V -th level

j(V ) : X(V ) −→ map(SV⊗ρ̄G , X(V ⊗ ρG)) = (FX)(V ) .

is adjoint to the G-map

X(V ) ∧ SV⊗ρ̄G
σV,V⊗ρ̄G−−−−−−−→ X(V ⊕ (V ⊗ ρ̄G)) ∼= X(V ⊗ ρG) .

For every Ω-G-spectrum X the morphism j : X −→ FX is thus a strong level equivalence, so it induces a
level equivalence jG : XG −→ FGX of non-equivariant orthogonal spectra. Since the functor X 7→ FGX
also takes π∗-isomorphisms of G-spectra to π∗-isomorphisms (by Proposition 7.2), the fixed point functor
FGX is really a right derived functor of the naive fixed points.
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7.3. Geometric fixed points. Now we discuss another fixed point construction, the geometric fixed points
ΦGX of a G-spectrum X. It is given by

(ΦGX)n = X(Rn ⊗ ρG)G ,

the G-fixed points of the value of X on the tensor product of Rn with the regular representation. The
orthogonal group O(n) acts through Rn. The structure map (ΦGX)n ∧ S1 −→ (ΦGX)n+1 is the map

X(Rn ⊗ ρG)G ∧ S1 ∼= (X(Rn ⊗ ρG) ∧ SρG)
G σGRn⊗ρG,ρG−−−−−−−−→ X((Rn ⊗ ρG)⊕ ρG)G ∼= X(Rn+1 ⊗ ρG)G

using the identification (ρG)G ∼= R.
The fixed points and geometric fixed points are related by a natural map

FGX
ev−−→ ΦGX

of orthogonal spectra. In level n by the map

(FGX)n = mapG(SRn⊗ρ̄G , X(Rn ⊗ ρG)) −→ X(Rn ⊗ ρG)G = (ΦGX)n

evaluates a G-map SRn⊗ρ̄G −→ X(Rn ⊗ ρG) at the G-fixed point 0 ∈ SRn⊗ρ̄G (which is the unique G-fixed
point of SRn⊗ρ̄G other than the basepoint ∞).

The geometric fixed point construction comes with a geometric fixed point map of homotopy groups.
For an orthogonal G-spectrum X and a G-representation V the geometric fixed point map

(7.4) ΦG : πGk+V (X) −→ πk+V G(ΦGX)

is defined by sending the class represented by a G-map f : Sk+V+Rn⊗ρG −→ X(Rn⊗ρG) to the class of the
fixed point map

fG : Sk+V G+n ∼=
(
Sk+V+Rn⊗ρG

)G
−→ X(Rn ⊗ ρG)G = (ΦGX)n .

We have implicitly identified the fixed points (Rn ⊗ ρG)G with Rn. If we stabilize f by the regular repre-
sentation we have (f � ρG)G = fG � R, so this really gives a well-defined map on πGk+VX.

Now we can given another interpretation of the geometric fixed points ΦGX as the fixed point of the
smash product of X with a certain universal G-space. We denote by EP a universal space for the family
of proper subgroups of G. So EP is a G-CW-complex such that the G-fixed points (EP)G are empty and
(EP)H is contractible for every proper subgroup H of G. These properties determine EP uniquely up to
G-homotopy equivalence.

We denote by ẼP the reduced mapping cone of the based G-map EP+ −→ S0 that sends EP to the

non-basepoint of S0. So ẼP is the unreduced suspension of the universal space EP. Fixed points commute
with mapping cones, so the map S0 −→ (ẼP)G is an isomorphism. For proper subgroups H of G the map

(EP)H −→ (S0)H = S0 is a weak equivalence, so the mapping cone (ẼP)H is contractible. This means

that the G-space ẼP is concentrated at the group G, in the sense of Definition 6.3; the smash product of
ẼP with any based G-space is also concentrated at G.

For example, the reduced regular representation ρ̄G has no non-trivial G-fixed points, but (ρ̄G)H 6= 0 for
all proper subgroups H of G. So by Example 5.22, the infinite dimensional unit sphere S(∞ρ̄G) can serve

as the space EP. The ‘infinite representation sphere’ S∞ρ̄ =
⋃
n S

nρ̄ is thus a model for the space ẼP.

The inclusion S0 −→ ẼP induces an isomorphism of G-fixed points S0 ∼= (ẼP)G. So for every based

G-space A the map 0 ∧ − : A −→ ẼP ∧A induces an isomorphism of G-fixed points. Hence also for every
G-spectrum the induced map of geometric fixed points

ΦG(X) ∼= ΦG(ẼP ∧X)
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is an isomorphism. If we compose the evaluation morphism ev : FG(ẼP ∧X) −→ ΦG(ẼP ∧X) with this
isomorphism we obtain a natural map

(7.5) FG(ẼP ∧X)
ev−−→ ΦGX

that we still refer to as ‘evaluation at 0’. An application of Proposition 6.4 (with G = H, Y = ẼP∧X(nρG)

and A = Snρ̄G) to the G-spaces A = Snρ̄G and Y = ẼP ∧X(nρG) yields that the evaluation at 0 (7.5) is a
Serre fibration and weak equivalence in every level n:

Proposition 7.6. For every orthogonal G-spectrum X the natural morphism

FG(ẼP ∧X)
ev−−−→ ΦGX

is a level equivalence and level fibration of orthogonal spectra. Hence the geometric fixed point functor takes
π∗-isomorphisms of G-spectra to π∗-isomorphisms of non-equivariant spectra.

A consequence of the previous proposition is the following isotropy separation sequence. The mapping
cone sequence of based G-CW-complexes

EP+ −→ S0 −→ ẼP
becomes a mapping cone sequence of G-spectra after smashing with any given G-spectrum X. Taking
G-fixed points gives a homotopy cofiber sequence of non-equivariant spectra; after replacing the term
FG(ẼP ∧X) by the level equivalence spectrum ΦGX, we obtain a homotopy cofiber sequence of orthogonal
spectra

FG(EP+ ∧X) −→ FGX −→ ΦGX .

Example 7.7 (Fixed points of suspension spectra). We discuss fixed points and geometric fixed points
for equivariant suspension spectra in more detail. If A is a based G-space, then (Σ∞A)G = Σ∞AG.
The geometric fixed points ΦG(Σ∞A) are also isomorphic to the suspension spectrum Σ∞AG, using the
identification of (ρG)G with R and the induced identification

(ΦG(Σ∞A))n = (A ∧ SnρG)G ∼= AG ∧ (SnρG)G ∼= AG ∧ Sn .
The composite map

(Σ∞A)G
jG−−−→ FG(Σ∞A)

ev−−→ ΦG(Σ∞A)

from naive to geometric fixed points is an isomorphism. Moreover, the effect on (non-equivariant) homotopy
groups of the morphism jG is (naturally isomorphic to) the direct summand inclusion

ζG : π∗(Σ
∞(AG)) −→ πG∗ (Σ∞A)

in the tom Dieck splitting indexed by the group G, compare (6.2). So for suspension spectra, the geometric
fixed point map splits off the summand indexed by the group G in the tom Dieck splitting.

So the fixed point spectrum FG(Σ∞A) contains the suspension spectrum of AG as a summand. However,
the fixed point spectrum typically has extra summands, that can be identified via the tom Dieck splitting
that gives a π∗-isomorphism

FG(Σ∞A) '
∏
(H)

Σ∞
(
EW (H)+ ∧W (H) A

H
)

of orthogonal spectra.

Example 7.8 (Fixed points of free spectra). We discuss fixed points and geometric fixed points for the
free equivariant spectrum FV generated by a G-representation V . For naive fixed points we have

(FV )Gn = O(V,Rn)G =

{
O(V,Rn) if G acts trivially on V , and

∗ if G acts non-trivially on V .



70 STEFAN SCHWEDE

Indeed, O(V,Rn)G is the Thom space of pairs (α, x) where α is a G-equivariant linear isometric embedding
and x is a G-fixed vector in Rn orthogonal to α(V ). If G acts non-trivially on V , then there are no
such equivariant embeddings. In other words, the naive fixed point spectrum FGV is trivial for non-trivial
representation of G, and it is isomorphic to the free orthogonal spectrum FV whenever V is a trivial
representation.

The geometric fixed points ΦG(FV ) are a sphere spectrum of dimension minus the dimension of the
fixed points V G. Indeed, we can apply geometric fixed points to the π∗-isomorphism (by Proposition 5.14)
FV S

V −→ S adjoint to the identity of SV . We obtain π∗-isomorphism

ΦG(FV ) ∧ SV
G ∼= ΦG(FV S

V )
'−−→ ΦG(S) ∼= S .

Hence the adjoint of this map is a π∗-isomorphism

ΦG(FV )
'−−→ ΩV

G

S .

Example 7.9 (Fixed points of coinduced spectra). We determine the naive and geometric fixed point
functor on coinduced spectra mapH(G, Y ) for orthogonal H-spectra Y . The naive fixed points are given by
(mapH(G, Y ))G ∼= Y H . For fixed points there is a stable equivalence

RGH : FHY −→ FG
(
mapH(G, Y )

)
defined as follows. In level n, the map (RGH)n is the composite

(FHY )n = mapH(SRn⊗ρ̄H , Y (Rn ⊗ ρH))
i∗−−→ mapH(SRn⊗ρ̄G , Y (Rn ⊗ ρG))

∼= mapG(SRn⊗ρ̄G ,mapH(G, Y (Rn ⊗ ρG))) = FG
(
mapH(G, Y )

)
n

The first map labeled i∗ is essentially the extension (or prolongation) construction in the sense of (3.3),
along the H-equivariant linear isometric embedding i : ρH −→ ρG, the R-linearization of the inclusion
H −→ G. In more detail: we let U denote the orthogonal complement of ρH in ρG, i.e., the R-subspace
spanned by the elements of G not in H. This induces an H-equivariant linear isometry

Rn ⊗ ρG ∼= (Rn ⊗ ρH)⊕ (Rn ⊗ U) .

The map i∗ then sends a continuous H-equivariant based map f : SRn⊗ρ̄H −→ Y (Rn⊗ρH) to the composite

SRn⊗ρ̄G ∼= SRn⊗ρH ∧ SRn⊗U f∧SRn⊗U

−−−−−−→ Y (Rn ⊗ ρH) ∧ SRn⊗U

σRn⊗ρH,Rn⊗U−−−−−−−−−→ Y ((Rn ⊗ ρH)⊕ (Rn ⊗ U)) ∼= Y (Rn ⊗ ρG) .

The isomorphism in the definition of (RGH)n is the adjunction between restriction from G to H and
mapH(G,−). Inspection of the definitions shows that the following diagram commutes:

πHk (Y )
∼= //

∼=
��

πGk
(
mapH(G, Y )

)
∼=
��

πk(FHY )
πk(RGH)

// πk
(
FG

(
mapH(G, Y )

))
The vertical isomorphisms are the ones given by Proposition 7.2, and the upper horizontal isomorphism
is (4.10). This shows that the morphism RGH is a π∗-isomorphism of (non-equivariant) orthogonal spectra.

Example 7.10 (Fixed points of induced spectra). The naive and geometric fixed point functor vanishes
on induced spectra, i.e., for every proper subgroup H of G and every H-spectrum Y we have

(GnH Y )G = ∗ and ΦG(GnH Y ) = ∗ .
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For geometric fixed points this uses the G-isomorphism (G nH Y )(V ) ∼= G nH (Y (i∗V )) where i∗V is the
restriction of a G-representation V to an H-representation, compare (4.8).

To get at the fixed points of an induced spectrum we exploit the Wirthmüller isomorphism, i.e., the
π∗-isomorphism Φ : (G nH Y ) −→ mapH(G, Y ), compare Theorem 4.9. This morphism induces a π∗-
isomorphism of fixed point spectra

FG(GnH Y )
FGΦ−−−−→ FG(mapH(G, Y )) ' FH(Y )

where the last equivalence is Example 7.9.

Example 7.11 (Geometric fixed points of MR). In Example 2.14 we introduced the real cobordism spec-
trum MR, an orthogonal C2-ring spectrum. We will now identify the C2-equivariant homotopy groups
of MR with a more classical definition and show that the geometric fixed points ΦC2(MR) are stably
equivalent to the unoriented cobordism spectrum MO.

The orthogonal C2-spectrum MR was obtained from a collection MU = {MUn} of spaces by looping
with imaginary spheres. It will make things clearer to reveal the full structure that this collection of spaces
has. By a real spectrum we mean collection of based C2 n U(n)-spaces Yn for n ≥ 0, equipped with based
structure maps τn : Yn ∧ SC −→ Yn+1 for n ≥ 0. Here C2 n U(n) is the semidirect product of the action of
the cyclic group C2 on U(n) by conjugation of unitary matrices. This data is subject to the condition that
for all n,m ≥ 0, the iterated structure map Yn∧SC

m −→ Yn+m is C2n(U(n)×U(m))-equivariant. Here the
group C2 nU(m) acts on Cm in the most obvious way: the C2-factor acts by complex conjugation and the
U(m)-factor via its defining action. The collection of spaces MU = {MUn}n≥0 considered in Example 2.14
form a commutative real ring spectrum.

Every real spectrum Y can be turned into an orthogonal C2-spectrum ΨY as follows. We set

(ΨY )n = map(SiR
n

, Yn) ;

the group C2 ×O(n) acts on iRn by sign (the C2-factor) and the defining action (the O(n)-factor), it acts
on Yn by restriction along the inclusion C2×O(n) −→ C2nU(n), and C2×O(n) acts on the entire mapping
space by conjugation. The structure map σn : (ΨY )n ∧ S1 −→ (ΨY )n+1 is the composite

map(SiR
n

, Yn) ∧ S1 assemble−−−−−→ map(SiR
n

, Yn ∧ S1)

−∧SiR−−−−−→ map(SiR
n

∧ SiR, Yn ∧ S1 ∧ SiR)

∼= map(SiR
n+1

, Yn ∧ SC)
(τn)∗−−−−→ map(SiR

n+1

, Yn+1) .

We use the C2-equivariant decomposition 1 · R⊕ i · R = C to identify S1 ∧ SiR with SC. The real bordism
spectrum MR is a special case of this construction, namely MR = Ψ(MU).

Now we claim that for every real spectrum Y the equivariant homotopy groups and geometric fixed points
of the orthogonal C2-spectrum ΨY can be expressed directly in terms of the real spectrum Y . Firstly, we
claim that for every C2-spectrum of the form ΨY the map

jC2 : (ΨY )C2 −→ FC2(ΨY )

from (7.3) from the naive fixed points to the fixed points is a π∗-isomorphism of orthogonal spectra. The
homotopy groups of the naive fixed points of ΨY can be rewritten as

πk+n

(
(ΨY )C2

n

)
= πk+n mapC2(SiR

n

, Yn) ∼= [Sk+n ∧ SiR
n

, Yn]C2 ∼= [Sk ∧ SCn , Yn]C2 .

The homotopy groups of the fixed points FC2(ΨY ) were identified with the C2-homotopy groups of the
spectrum ΨY in Proposition 7.2. So in the colimit, these isomorphism combine into a natural isomorphism

πC2

k (ΨY ) ∼= colimn [Sk+nC, Yn]C2
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where the colimit is formed along the stabilization maps

[Sk+nC, Yn]C2
−∧SC

−−−−−→ [Sk+(n+1)C, Yn ∧ SC]C2
(τn)∗−−−−→ [Sk+(n+1)C, Yn+1]C2 .

In the example of the real spectrum MU we have MR = Ψ(MU) and this specializes to an isomorphism

πC2

V (MR) = πC2

V Ψ(MU) ∼= colimn [SV+nC,MUn]C2

where V is any C2-representation. These are the groups studied, among others, by Landweber [12] and

Araki [2]; Landweber uses the notation ΩUp,q = πp,q(MU) for the equivariant homotopy group πC2
pσ+q(MR)

where σ is the sign representation.
Now we turn to the geometric fixed points. We define a ‘real’ geometric fixed point functor Φreal on a

real spectrum Y by taking C2-fixed points:

(ΦrealY )n = Y C2
n .

Since the subgroup O(n) of C2 n U(n) commutes with C2, these C2-fixed points are O(n)-invariant and
form an orthogonal spectrum with structure maps

Y C2
n ∧ S1 = Y C2

n ∧ (SC)C2 ∼=
(
Yn ∧ SC)C2 τC2

n−−−−→ Y C2
n+1 .

We shall now define a natural π∗-isomorphism of orthogonal spectra ΦrealY −→ ΦC2(ΨY ). [...]
The value of the orthogonal spectrum underlying ΨY on a real inner product space V is given by

(ΨY )(V ) = map(SiV , Y (VC)) ;

here VC = C⊗R V is the complexification of V , with induced hermitian scalar product, and

Y (VC) = LC(Cn, VC)+ ∧U(n) Yn

where n = dim(V ), and LC(Cn, VC) is the space of C-linear isometries from Cn to VC.
So we have

(ΦC2(ΨY ))n = ((ΨY )(nρ))C2 = mapC2(Sinρ, Y (Cn ⊗ ρ))

where ρ is the regular representation of C2.
In the example of the real spectrum MU we have MUC2

n = MOn, the Thom space of the tautological
real n-place bundle over BO(n). So the geometric fixed points of MR are stably equivalent to the Thom
spectrum for unoriented bordism,

ΦC2(MR) = ΦC2Ψ(MU) ' {MOn}n≥0 = MO .

Theorem 7.12. For a morphism f : X −→ Y of orthogonal G-spectra the following are equivalent:

(i) The morphism f is a π∗-isomorphism.
(ii) For every subgroup H of G the map of H-fixed point spectra FHf : FHX −→ FHY is a stable

equivalence of orthogonal spectra.
(iii) For every subgroup H of G the map of geometric H-fixed point spectra ΦHf : ΦHX −→ ΦHY is a

stable equivalence of orthogonal spectra.

Proof. The equivalence of conditions (i) and (ii) is a direct consequence of the natural isomorphism between
πH∗ X and π∗(F

HX) established in Proposition 7.2.

(ii)=⇒(iii) If f is is a π∗-isomorphism, then so is ẼP ∧ f by Proposition 5.4. Since condition (i) implies

condition (ii) the map FG(ẼP ∧ f) : FG(ẼP ∧X) −→ FG(ẼP ∧ Y ) is a stable equivalence of orthogonal
spectra. So ΦHf : ΦHX −→ ΦHY is a stable equivalence by Proposition 7.6.

(iii)=⇒(ii) We show by induction on the order of the group G. If G is the trivial group, then all three
fixed point constructions coincide (and do not do anything), and there is nothing to show.

If G is a non-trivial group we know by induction hypothesis that the map FHf : FHX −→ FHY is a
stable equivalence for every proper subgroup H of G. In other words, f is a P-equivalence. Proposition 5.24
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lets us conclude that EP+ ∧ f is a π∗-isomorphism of G-spectra. Hence FG(EP+ ∧ f) : FG(EP+ ∧X) −→
FG(EP+ ∧ Y ) is a stable equivalence of non-equivariant spectra. Since ΦGf : ΦGX −→ ΦGY is also a
stable equivalence, the isotropy separation sequence lets us conclude that the map FGf : FGX −→ FGY
on G-fixed points is a stable equivalence. �

Monoidal properties. Naive and geometric fixed points commute with levelwise smash products ‘on
the nose’. In other words, there are natural isomorphisms

(A ∧X)G ∼= AG ∧XG and ΦG(A ∧X) ∼= AG ∧ ΦGX

for every based G-space A and every G-spectrum X.
The three kinds of fixed points construction are lax symmetric monoidal functors. For naive fixed points,

the map

XG ∧ Y G −→ (X ∧ Y )G

arises via the universal property of the smash product from the bilinear morphism

XG
n ∧ Y Gm = (Xn ∧ Ym)G

iGn,m−−−−→ (X ∧ Y )Gn+m .

In the following proposition, the term ‘cofibrant’ refers to spectra built by attaching ‘cells’ of the form
FV (G/H ×Dn)+ for all n ≥ 0, all subgroups H of G and all G-representations V .

Proposition 7.13. The natural map

XG ∧ Y G −→ (X ∧ Y )G .

of naive fixed point spectra is an isomorphism whenever X and Y are cofibrant.

Sketch. By inspection, the claim is true when X and Y are both of the form FVA for a based G-CW-
complex A and G-representation V ; moreover, the claim is stable, in each variable, under wedges, retract
and cobase change along cofibrations. �

A word of warning: the naive fixed point functor is not homotopy invariant, and it has to be right
derived to induce a functor on the equivariant stable homotopy category. However, the smash product of
two G-Ω-spectra is rarely a G-Ω-spectrum, so the isomorphism of the previous proposition does not imply
that the derived fixed point functor (which is modeled by FGX) commutes with smash product in the
homotopy category.

For fixed points, we first observe that the functor F can be made lax symmetric monoidal as follows.
The G-maps

(FX)n ∧ (FY )m = map(Snρ̄G , X(nρG)) ∧map(Smρ̄G , Y (mρG))

∧−−→ map(Snρ̄G ∧ Smρ̄G , X(nρG) ∧ Y (mρG))

inρG,mρG−−−−−−−→ map(S(n+m)ρ̄G , (X ∧ Y )(nρG ⊕mρG))

∼= map(S(n+m)ρ̄G , (X ∧ Y )((n+m)ρG)) = F (X ∧ Y )n+m

form a G-equivariant bimorphism and thus assemble into a morphism of G-spectra

FX ∧ FY −→ F (X ∧ Y ) .

We can combine this with the previous monoidal transformation of naive fixed points and arrive at an
associative, commutative and unital map of orthogonal spectra

FGX ∧ FGY −→ (FX ∧ FY )G −→ F (X ∧ Y )G = FG(X ∧ Y ) .
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For geometric fixed points, finally, the G-maps

(ΦGX)n ∧ (ΦGY )m = X(nρG)G ∧ Y (mρG)G ∼= (X(nρG) ∧ Y (mρG))G

iGnρG,mρG−−−−−−−→ ((X ∧ Y )(nρG ⊕mρG))G

∼= ((X ∧ Y )(n+m)ρG)G = ΦG(X ∧ Y )n+m

assemble into a morphism of orthogonal spectra

ΦGX ∧ ΦGY −→ ΦG(X ∧ Y ) .

Proposition 7.14. The natural map

ΦGX ∧ ΦGY −→ ΦG(X ∧ Y ) .

is a π∗-isomorphism whenever X or Y is a cofibrant orthogonal G-spectrum.

Proof. The proof starts with the special case where X = FVA and Y = FWB are free G-spectra generated
by G-CW-complexes A and B. This case is OK since

ΦG(FVA) ∧ ΦG(FWB) ' FV GA
G ∧ FWGBG ∼= FV G⊕WG(AG ∧BG)

∼= F(V⊕W )G(A ∧B)G ' ΦG(FV⊕WA ∧B) ,

using that ΦG(FV ) is π∗-isomorphic to ΩV
GS, hence to FV G . A cell induction can then be used to work up

to general cofibrant G-spectra. �

Remark 7.15. The geometric fixed points is essentially determined by the properties

(i) ΦG is homotopy invariant
(ii) ΦG(Σ∞A) = Σ∞(AG)

(iii) ΦG commutes with smash products
(iv) ΦG commutes with sequential homotopy colimits.

Indeed, for every G-representation V , the stable equivalence S−V ∧ SV −→ S induces a stable equivalence

ΦG(S−V ) ∧ SV
G ∼= ΦG(S−V ) ∧ ΦG(SV )

∼−−→ ΦG(S−V ∧ SV )
∼−−→ ΦG(S) = S .

So we obtain

ΦG(S−V ) ' S−V
G

.

In other words, if n = dim(V G) is the dimension of the fixed point space of V , the ΦG(S−V ) is a (−n)-sphere.
Now we can consider the canonical presentation of a G-spectrum X with respect to the exhausting

sequence

ρ −→ 2ρ −→ 3ρ −→ . . . −→ nρ −→ . . .

of multiples of the regular representation. By Proposition 5.21 the G-spectrum X is stably equivalent to
the homotopy colimit of the spectra S−nρ ∧X(nρ). So ΦGX is stably equivalent to the mapping telescope
of the spectra

ΦG(S−nρ ∧X(nρ)) ' ΦG(S−nρ) ∧X(nρ)G ' S−n ∧X(nρ)G .

Since the n-th term of the geometric fixed points ΦGX is precisely X(nρ)G, this reproduces the definition
of ΦG.
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8. Power constructions

Given an orthogonal spectrum X, the m-th smash power

X(m) = X ∧ . . . ∧X︸ ︷︷ ︸
m

has a natural action of the symmetric group Σm by permuting the factors. If X is an H-spectrum, the
H-actions of each factor combine into an action of Hm. Altogether we obtain a natural action of the wreath
product Σm oH

Σm oH = Σm nHm

on X(m). We recall that the multiplication on the wreath product is given by

(σ; h1, . . . , hm) · (τ ; k1, . . . , km) = (στ ; hτ(1)k1, . . . , hτ(m)km) .

We can write the action on X(m) symbolically as

(σ; h1, . . . , hm) · (x1 ∧ . . . ∧ xm) = hσ−1(1)xσ−1(1) ∧ . . . ∧ hσ−1(m)xσ−1(m) .

To get the internal smash product in the category of H-spectra we usually restrict this action along the
diagonal embedding H −→ Σm oH,h 7−→ (1;h, . . . , h), but we are going to remember all of the action of
Σm oH. We write PmX for X(m) when we consider it as an orthogonal Σm oH-spectrum and refer to it as
the m-th power of X. The power construction has the following formal properties:

(a)

Pm(S) = S
(b)

PmX ∧ PnX = res
Σm+noH
(ΣmoH)×(ΣnoH)(P

m+nX)

where the restriction is taken along the monomorphism

+ : (Σm oH)× (Σn oH) −→ Σm+n oH
(σ; h1, . . . , hm) + (τ ; hm+1, . . . , hm+n) = (σ + τ ; h1, . . . , hm, hm+1, . . . , hm+n)

(c)

Pm(P kX) = resΣkmoH
Σmo(ΣkoH) P

kmX

Here the restriction is taken along the monomorphism

Σm o (Σk oH) −→ Σkm oH(8.1)

(σ; (τ1;h1), . . . , (τm;hm)) 7−→ (τσ−1(1), h
σ−1(1)) + · · ·+ (τσ−1(m), h

σ−1(m))

where hi = (hi1, . . . , h
i
k) ∈ Hk and the operation ‘+’ is as in (b).

(d)

χ
(m)
X,Y : PmX ∧ PmY ∼= Pm(X ∧ Y )

(e)

Pm(X ∨ Y ) ∼=
m∨
i=0

(Σm)+ ∧Σi×Σm−i P
iX ∧ Pm−iY .

(f)

Pm(H nK Y ) ∼= (Σm oH)nΣmoK (PmY )

for every subgroup K of H and every orthogonal K-spectrum Y .

The most important homotopical properties of the power construction is as follows.
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Theorem 8.2. The power operation functor

Pm : SpH −→ SpΣmoH

takes π∗-isomorphisms between cofibrant H-spectra to π∗-isomorphisms.

Proof. Here is the crucial test case: λV : FV S
V −→ S is one of the generating π∗-isomorphisms. We have

PmS = S, the Σm oH-sphere spectrum. On the other hand,

Pm(FV S
V ) = FVmS

Vm

and the map PmλV becomes λVm , which is a π∗-isomorphism for the group Σm oH. �

Now we construct natural power maps of homotopy groups

(8.3) Pm : πHV (X) −→ πΣmoH
Vm (PmX) .

Here V is a H-representation and V m is the (Σm oH)-representation with action given by

(σ; h1, . . . , hm) · (v1, . . . , vm) = (hσ−1(1)vσ−1(1), . . . , hσ−1(m)vσ−1(m)) .

The construction of the power map is straightforward: if f : SV+nρH −→ X(nρH) is a H-map representing
a class in πHV (X), then the composite

SV
m+nρmH ∼= (SV+nρH )(m) f(m)

−−−−→ X(nρH)(m) inρH,...,nρH−−−−−−−−−→ (X(m))((nρH)m) ∼= (PmX)(nρmH)

is equivariant for the group Σm oH, so it represents an element in πΣmoH
Vm (PmX). Here

iV,...,V : X(V ) ∧ . . . ∧X(V ) −→ (X(m))(V m)

is the (V, . . . , V )-component of the universal multilinear map, which is Σm oH-equivariant. If we stabilize
f to f � ρH : SV⊕(n+1)ρH −→ X((n+ 1)ρH), then the above composite changes into

i(n+1)ρH ,...,(n+1)ρH ◦ (f � ρH)(m) = (inρH ,...,nρH ◦ f (m)) � ρmH .

So the class

Pm[f ] = 〈inρ,...,nρ ◦ f (m)〉 in πΣmoH
Vm (PmX)

only depends on the class of f in πHV (X).

Remark 8.4. As is immediate from the construction, the power map Pm : πHV (X) −→ πΣmoH
Vm (PmX) actu-

ally factors through a modified equivariant stable homotopy group π
ΣmoH,ρmH
Vm (PmX) based on an ‘incomplete

universe’, as discussed in Remark 4.22. This modified homotopy group π
ΣmoH,ρmH
W (Y ) of a Σm oH-spectrum Y

is defined by the same kind of colimit as for the ordinary equivariant homotopy groups, but via iterated
stabilization with the representation ρmH (instead of the regular representation of Σm o H). The modified

homotopy group maps to the homotopy group πΣmoH
W (Y ), but the map is generally not surjective. For

example, for H = e we have ρme = Rm with Σm-action by coordinate permutation. In the case Y = S of

the sphere spectrum the group πΣm
0 (S) is isomorphic to the Burnside ring A(Σm) of the group Σm, whereas

π
Σm,ρ

m
e

0 (S) is the subgroup generated by those Σm-set that can be embedded equivariantly into the natural
Σm-representation on Rm. A coset Σm/H belongs to the restricted Burnside ring if and only if H is the
stabilizer group of some partition of the set {1, . . . ,m} or, equivalent, if H is conjugate to a subgroup of
the form Σi1 × · · · × Σik with i1 + · · ·+ ik = m.
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Now we discuss properties of the power map. The power map x 7→ xm in a commutative ring has the
properties

0m = 0 , 1m = 1 , x0 = 1 , x1 = x , (xk)m = xkm , xm · xn = xm+n ,

(xy)m = xm · ym and (x+ y)m =

m∑
i=0

(
m

i

)
xi · ym−i

All of these properties have analogues for the power construction in equivariant stable homotopy theory.
We obviously have Pm(0) = 0. For the case X = S of the sphere spectrum we have Pm(S) = S and the

unit element 1 ∈ πH0 S exponentiates to Pm(1) = 1 in πΣmoH
0 S. If we restrict the class P 1x ∈ πΣ1oH

V X along
the canonical isomorphism H −→ Σ1 oH that sends h to (1; h) we recover x.

The power map is transitive in the sense of the composition formula

Pm(P kx) = resΣkmoH
Σmo(ΣkoH)(P

kmx)

in the group π
Σmo(ΣkoH)

(V k)m
Pm(P kX). Here we used the fact that Pm(P kX) is the restriction of P kmX along

the monomorphism (8.1) from Σm o (Σk oH) to Σkm oH and (V k)m is the restriction of V km along the same
monomorphism.

The power map interacts nicely with the external product: we have

(Pmx) · (Pnx) = res
Σm+noH
(ΣmoH)×(ΣnoH)(P

m+nx)

in the group π
(ΣmoH)×(ΣnoH)
Vm+n (PmX ∧PnX), using that PmX ∧PnX is the restriction of Pm+nX along the

monomorphism + : (Σm oH)× (Σn oH) −→ Σm+n oH and V m ⊕ V n is the restriction of V m+n along the
same monomorphism.

Moreover, for classes x ∈ πHV (X) and y ∈ πHW (Y ) we have the product formula

(8.5) (χ
(m)
X,Y )∗ ((Pmx) • (Pmy)) = Pm(x • y)

in the group πΣmoH
(V⊕W )mP

m(X ∧ Y ), where χ
(m)
X,Y : PmX ∧ PmY ∼= Pm(X ∧ Y ) is the shuffling isomorphism

and V m⊕Wm ∼= (V ⊕W )m given by shuffling factors respectively summands. For x, y ∈ πHV (X) the power
operation satisfies the sum formula

(8.6) Pm(x+ y) =

m∑
i=0

tri,m−i(P
ix · Pm−iy) .

The dot on the right hand side refers to the external product

· : πΣioH
V i (P iX) × π

Σm−ioH
Vm−i (Pm−iX) −→ π

(ΣioH)×(Σm−ioH)

V i⊕V j (P iX ∧ Pm−iX)

and

tri,m−i : π
(ΣioH)×(Σm−ioH)

V i⊕Vm−i (P iX ∧ Pm−iX) −→ πΣmoH
Vm (PmX)

is the RO(G)-graded internal transfer map (4.32) for the monomorphism + : (Σi oH)×(Σm−i oH) −→ Σm oH,
using that the restriction of PmX along this monomorphism is P iX ∧Pm−iX and the restriction of V m is
V i ⊕ V m−i.

If K is a subgroup of H and y ∈ πKV (X), then we have

Pm(trHK y) = trΣmoH
ΣmoK(Pmy) .

Power operations are compatible with restriction: for every group homomorphism α : K −→ H and
every H-spectrum X we have

Pm(α∗X) = (Σm o α)∗(PmX) and (α∗V )m = (Σm o α)∗(V m)
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as Σm oK-spectra respectively Σm oK-representations and the square

πHV (X)
Pm //

α∗

��

πΣmoH
Vm (PmX)

(Σmoα)∗

��
πKα∗V (α∗X)

Pm
// πΣmoK
α∗Vm(Pm(α∗X))

commutes.
Power operations also commute with conjugation: If H is a subgroup of G and g ∈ G we set ∆(g) =

(1; g, . . . , g) ∈ Σm oG. Then (c∗gV )m = c∗∆(g)(V
m) as Σm oH-representation and for every G-spectrum Xthe

square

πHV (X)
Pm //

g?

��

πΣmoH
Vm (PmX)

∆(g)?

��
π
gH
c∗gV

X
Pm

// πΣmogH
(c∗gV )m(PmX)

commutes.

9. Norm construction

In this section we review the norm construction for equivariant orthogonal spectra. The norm construc-
tion and norm map, also known as ‘multiplicative transfer’, were first introduced by Evens in the algebraic
context of group cohomology [8]. In the context of equivariant stable homotopy theory, multiplicative norm
maps were first studied by Greenlees and May in [9], and the norm construction was first developed by Hill,
Hopkins and Ravenel [10]. Again, our exposition is a little different from the ones in [9, 10].

We are given a group G, a subgroup H of G and an H-spectrum X. The multiplicative norm NG
HX is

a certain G-spectrum whose underlying H-spectrum is a [G : H]-fold smash product of copies of H. The
multiplicative norm construction is strong symmetric monoidal, i.e., equipped with coherent isomorphisms

NG
HX ∧ NG

HY
∼= NG

H (X ∧ Y ) .

So if R is an H-ring spectrum, then NG
HR becomes a G-ring spectrum via the composite

NG
HR ∧ NG

HR
∼= NG

H (R ∧R)
NGHµ−−−−→ NG

HR ,

and NG
HR is commutative whenever R is. Moreover, for commutative equivariant ring spectra, the functor

NG
H is left adjoint to the restriction of commutative G-ring spectra to commutative H-ring spectra.
The most important homotopical property of the norm functor is that it takes π∗-isomorphism between

cofibrant H-spectra to π∗-isomorphism of G-spectra, so it allows a derived functor

NG
H : Ho(SpH) −→ Ho(SpG)

that is still strong symmetric monoidal.

Motivation. The norm construction is a multiplicative version of induction from a subgroup to a larger
group. In order to motivate the construction of the norm functor we review induction from a subgroup H
to a supergroup G in the context of representations.

If V is an H-representation, then the induced G-representation is

GnH V = R[G]⊗R[H] V .
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Additively G nH V is a direct sum of [G : H] copies of H. We can define an explicit decomposition by
choosing an ordered set

(g1, g2, . . . , gm)

of representatives for the right cosets of H in G, where m = [G : H] is the index of H in G. A specific
R-linear isomorphism is then given by

α : V m −→ GnH V , (v1, . . . , vm) 7−→
m∑
i=1

givi

(this isomorphism is in general not H-linear). This decomposition depends on the chosen coset represen-
tatives, and the G-action on the right hand side does not a priori correspond to anything on the left hand
side.

Now we ‘average’ over all possible collections of coset representatives and thereby obtain a version of V m

equipped with a canonical G-action. Since V is an H-representation, V m is naturally a representation over
the wreath product

Σm oH = Σm nHm

with multiplication given by

(σ; h1, . . . , hm) · (τ ; k1, . . . , km) = (στ ; hτ(1)k1, . . . , hτ(m)km) .

The action on V m is given by the formula

(σ; h1, . . . , hm) · (v1, . . . , vm) = (hσ−1(1)vσ−1(1), . . . , hσ−1(m)vσ−1(m)) .

We let 〈G : H〉 denote the set of all systems of coset representatives for H in G. So an element of 〈G : H〉
is an m-tuple (g1, . . . , gm) ∈ Gm such that

G =

m⋃
i=1

giH

as sets. The group G acts from the left on 〈G : H〉 by

γ · (g1, . . . , gm) = (γg1, . . . , γgm) .

The wreath product Σm oH acts on 〈G : H〉 from the right by

(g1, . . . , gm) · (σ; h1, . . . , hm) = (gσ(1)h1, . . . , gσ(m)hm) ;

this right action of Σm oH is free and transitive. We can now form

NG
HV = 〈G : H〉 ×ΣmoH V m

which becomes a G-representation by

γ · [g1, . . . , gm; v1, . . . , vm] = [γg1, . . . , γgm; v1, . . . , vm] .

Lemma 9.1. The map

NG
HV = 〈G : H〉 ×ΣmoH V m −→ GnH V , [g1, . . . , gm; v1, . . . , vm] 7−→

m∑
i=1

givi

is G-equivariant isomorphism.

The point of this reinterpretation of the induction functor is that the construction NG
HV can be performed

in any symmetric monoidal category and it yields a functor from H-objects to G-objects. The norm
construction in equivariant stable homotopy theory is the special case of the category of orthogonal spectra
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under smash product. So we now run the analogous story ‘multiplicatively’, i.e., we replace m-fold direct
sum by m-fold tensor or smash product. Given an orthogonal spectrum X, the m-th smash power

X(m) = X ∧ . . . ∧X︸ ︷︷ ︸
m

has a natural action of the symmetric group Σm by permuting the factors. If X is an H-spectrum, the
H-actions of each factor combine into an action of Hm. Altogether we obtain a natural action of the wreath
product Σm oH on X(m). To get the internal smash product in the category of H-spectra we usually restrict
this action along the diagonal embedding H −→ Σm o H,h 7−→ (1;h, . . . , h), but now we are going to do
something different.

Definition 9.2. Let H be a subgroup of G and X an orthogonal H-spectrum. The norm NG
HX is the

orthogonal G-spectrum given by

NG
H = 〈G : H〉+ ∧ΣmoH X(m) .

The following properties are immediate from the construction:

(i) Since Σm oH acts freely and transitively on the set 〈G : H〉 of coset representatives, the underlying
orthogonal spectrum of NG

HX is isomorphic to X(m). Indeed, if (g1, . . . , gm) is one system of coset
representatives, then the map

X(m) [g1,...,gm; −]−−−−−−−−−→ 〈G : H〉+ ∧ΣmoH X(m) = NG
HX

is an isomorphism of orthogonal spectra.
(ii) The norm functor commutes with smash products up to coherently associative, unital and commutative

isomorphism. Indeed, ‘reshuffling the factors’ provides an isomorphism of orthogonal spectra

χ
(m)
X,Y : (X ∧ Y )(m) ∼= X(m) ∧ Y (m)

that is Σm oH-equivariant (with diagonal Σm oH-action on the right hand side). So upon application
of 〈G : H〉+ ∧ΣmoH − we obtain an isomorphism of orthogonal G-spectra

NG
H (X ∧ Y ) = 〈G : H〉+ ∧ΣmoH (X ∧ Y )(m)

−→
(
〈G : H〉+ ∧ΣmoH X(m)

)
∧
(
〈G : H〉+ ∧ΣmoH Y (m)

)
= NG

HX ∧NG
HY

[ḡ; (x1 ∧ y1) ∧ . . . ∧ (xm ∧ ym)] 7−→
[ḡ; x1 ∧ . . . ∧ xm] ∧ [ḡ; y1 ∧ . . . ∧ ym]

(iii) As consequence of the previous item we get that for every H-ring spectrum R the norm NG
HR is a

G-ring spectrum with multiplication

NG
HR ∧ NG

HR
∼= HG

H(R ∧R)
NGHµ−−−−→ NG

HR .

If the multiplication of R is commutative, so is the multiplication of NG
HR. Hence NG

H passes to a
functor from commutative H-ring spectra to commutative G-ring spectra, and as such it is left adjoint
to restriction from G to H.

(iv) The norm construction is transitive, i.e., for K ⊂ H ⊂ G and every orthogonal K-spectrum X, the
G-spectra NG

H (NH
KX) and NG

KX are naturally isomorphic. Moreover, the collection of isomorphisms
NG
H (NH

KX) −→ NG
KX (to be defined below) is itself transitive, in the sense that for every quadruple

of nested groups L ⊂ K ⊂ H ⊂ G the two composite isomorphism from NG
H (NH

K (NK
L X)) to NG

LX
are equal.

The construction of the transitivity isomorphism starts from the map

〈G : H〉 × 〈H : K〉m −→ 〈G : K〉 , ((g1, . . . , gm), (h̄1, . . . , h̄m)) 7−→ (gih
i
j)1≤i≤m,1≤j≤n ,
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where m = [G : H], n = [H : K] and h̄i = (hi1, . . . , h
i
n). This factors over a well-defined map

〈G : H〉 ×ΣmoH 〈H : K〉m −→ 〈G : K〉

that is equivariant for the left G-action and for the right action of the group Σm o (Σn oK). that is
equivariant for the left G-action and for the right action of the group Σm o (Σn oK). On the target the
larger group Σmn oK acts from the right, and the map induces a morphism of orthogonal G-spectra

NG
H (NH

KX) = 〈G : H〉+ ×ΣmoH

(
〈H : K〉+ ∧ΣnoK X(n)

)(m)

∼= (〈G : H〉 ×ΣmoH 〈H : K〉m)+ ∧Σmo(ΣnoK) (X(n))(m)

−→ 〈G : K〉+ ∧ΣmnoK X(mn) = NG
KX

To check that this map is an isomorphism we use that the underlying non-equivariant orthogonal
spectra of both sides are isomorphic to an nm-fold smash power of X. Indeed, if (g1, . . . , gm) is a
system of coset representatives for H in G and (h1, . . . , hn) is a system of coset representatives for K
in H, then (gihj)1≤i≤m,1≤j≤n is a system of coset representatives for K in G. Moreover, the diagram

(X(n))(m)
[h1,....hn; −](m)

//

[gihj ; −]

,,

(NH
KX)(m)

[g1,...,gm; −] // NG
H (NH

KX)

��
NG
KX

commutes, and so the right vertical map is an isomorphism since the other three maps are.

Remark 9.3. Since Σm oH acts freely and transitively on the set 〈G : H〉 of coset representatives, the map

(9.4) X(m) [g1,...,gm; −]−−−−−−−−−→ 〈G : H〉+ ∧ΣmoH X(m) = NG
HX

is an isomorphism of orthogonal spectra for every system of coset representatives ḡ = (g1, . . . , gm). We can
transfer the G-action on NG

HX along this isomorphism into a G-action on X(m). The transferred G-action

on X(m) has the following explicit description. The chosen coset representatives ḡ define a monomorphism

(9.5) Ψ : G −→ Σm oH by γ · ḡ = ḡ ·Ψ(γ) ,

using that the right action of Σm o H on 〈G : H〉 is free. More explicitly the components of the element
Φ(γ) = (σ; h1, . . . , hm) are determined by

γgi = gσ(i)hi

for i = 1, . . . ,m. We can restrict the Σm o H-action on X(m) to a G-action along the monomorphism Ψ,
and then the isomorphism (9.4) is G-equivariant. In other words, NG

HX is naturally isomorphic, as a G-

spectrum, to Ψ∗(X(m)). So we recover the point of view adopted by Evens [8] and Greenlees-May [9], who
define the norm construction by choosing a set of coset representatives and restricting along the resulting
homomorphism Ψ.

Remark 9.6. As we already indicated, the norm construction makes sense in any category C equipped
with a symmetric monoidal product �. Indeed, for every H-object X in C, object

X(m) = X� · · ·�X︸ ︷︷ ︸
m

is acted upon by Σm oH and we can set

NG
HX = 〈G : H〉nΣmoH X(m) .
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(This definition implicitly claims the existence of a certain coequalizer inn C, which exists because we can
for example take the object Ψ∗X(m), where Ψ : G −→ Σm o H is the monomorphism (9.5) defined from
any choice of coset representatives.) The formal properties (i)–(iv) above carry over with the same formal
proofs. Besides the category of orthogonal spectra under smash product there are some other cases where
we need the associated norm construction:

(a) In the category of sets under disjoint union, the norm construction is isomorphic to induction. Indeed,
for every finite H-set S the map

〈G : H〉nΣmoH ({1, . . . ,m} × S) −→ G×H S

defined by

[g1, . . . , gm; (i, s)] 7−→ gis

is G-equivariant bijection.
(b) We consider the category of bases sets, based spaces or orthogonal spectra under wedge. The the

norm construction is again is isomorphic to induction because the map

〈G : H〉nΣmoH ({1, . . . ,m}+ ∧X) −→ GnH X

defined as in the previous example is G-equivariant bijection.
(c) There is a ‘multiplicative’ version of the last two examples. We again consider the category of sets,

based spaces or orthogonal spectra, but this time under cartesian product. A G-equivariant isomorphism

〈G : H〉nΣmoH Xm −→ mapH(G,X)

is then given by

[g1, . . . , gm; x1, . . . , xm] 7−→ [hgi 7→ hxi] .

Here we use that every element of G is uniquely of the form hgi for one of the coset representatives gi and
a unique element h ∈ H.

Let H be a subgroup of G, X an orthogonal H-spectrum and V an H-representation. In the following
we shall need a natural map

(9.7) JX,V : NG
H (X(V )) −→ (NG

HX)(GnH V )

that relates the space level norm construction (with respect to smash product) of the based H-space X(V )
to the value of the spectrum level norm NG

HX at the induced representation. The construction of this map
starts from the (V, . . . , V )-component of the universal multilinear map

iV,...,V : X(V ) ∧ . . . ∧X(V ) −→ (X(m))(V m)

which is Σm oH-equivariant. On the target the wreath product acts diagonally for the two actions on the
spectrum X(m) and the representation V m. We compose the induced map 〈G : H〉nΣmoH iV,...,V with the
homeomorphism [...]

〈G : H〉nΣmoH (X(m)(V m)) ∼= (〈G : H〉nΣmoH X(m))(〈G : H〉 ×ΣmoH V m) = (NG
HX)(GnH V )

and obtain the map JX,V .

Example 9.8. We consider the free orthogonal H-spectrum FV generated by an H-representation V . A
morphism of orthogonal G-spectra

FGnHV −→ NG
H (FV )

is freely generated by the image of the point Id
(m)
V under the map

NG
HO(V ) = NG

H (FV (V ))
JFV ,V−−−−−→ (NG

HFV )(GnH V ) .
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We claim that this morphisms is an isomorphism. Indeed, repeated use of the canonical isomorphism
FV⊕W ∼= FV ∧ FW defined in (5.8) with V = W gives an isomorphism

FVm ∼= F
(m)
V

of Σm oH-spectra. Application of 〈G : H〉nΣmoH− gives a sequence of isomorphisms of orthogonal G-spectra

FGnHV = F〈G:H〉nΣmoHV
m ∼= 〈G : H〉nΣmoH FVm

∼= 〈G : H〉nΣmoH F
(m)
V = NG

H (FV )

(where we used Lemma 9.1 to identify 〈G : H〉nΣmoH V
m with the induced representation GnH V ). More

generally, the free spectrum generated by a based H-space A norms as

NG
H (FVA) ∼= FGnHV (NG

HA)

where NG
HA is the space level norm construction of A.

This argument generalizes to semifree spectra as follows. We let V be an H-representation and L a based
H n O(V )-space. The semifree spectrum GV L generated by L in level V was introduced in Example 5.9.
There is then a natural isomorphism

GGnHV

(
O(GnH V )+ ∧NGHO(V ) N

G
HL
)
∼= NG

H (GV L) .

The semifree spectrum on left hand side needs to be explained. Here NG
HL is the space level norm construc-

tion of the underlying H-space of L. The normed space NG
HL comes with an action of the normed group

NG
HO(V ), so that altogether the semidirect product G nNG

HO(V ) acts on NG
HL. We extend the action of

NG
HO(V ) along the monomorphism NG

HO(V ) −→ O(G nH V ) (or, equivalently, extend the G nNG
HO(V )-

action along GnNG
HO(V ) −→ GnO(GnH V )) and then form the semifree G-spectrum in level GnH V .

Example 9.9. We discuss an example relevant to the solution by Hill, Hopkins and Ravenel of the Kervaire
invariant problem [10]. In Examples 2.14 and 7.11 we discussed the commutative C2-ring spectrum MR
whose underlying non-equivariant spectrum is the complex cobordism spectrum and whose geometric fixed
point spectrum is stably equivalent to the unoriented cobordism spectrum MO.

Hill, Hopkins and Ravenel consider the spectrum

MU (4) = NC8

C2
(MR) ,

the norm of MR along the unique monomorphism C2 −→ C8 of the cyclic group of order 2 into the cyclic
group of order 8. Then the underlying C2-spectrum of MU (4) is

MR ∧MR ∧MR ∧MR .

If t is a generator of C8, we can take {1, t, t2, t3} as a set of coset representatives for C2. The associated
monomorphism Φ : C8 −→ Σ4 o C2 sends the generator t to the element

Φ(t) = ((1234); 1, 1, 1, τ) ∈ Σ4 n C4
2 = Σ4 o C2 ,

where C2 = {1, τ}. That means that the action of the generator t on MR ∧MR ∧MR ∧MR is given by
complex conjugation of the last factor, followed a cyclic permutation of the factors; symbolically, we have

t · (x1 ∧ x2 ∧ x3 ∧ x4) = x̄4 ∧ x1 ∧ x2 ∧ x3 .

To be completely honest, one has to admit that setting MU (4) = NC8

C2
(MR) is oversimplifying matters.

Indeed, we simultaneously want certain formal properties and we want to be able to control the equivariant
homotopy type of MU (4). To achieve this, we have to feed into the norm construction a commutative C2-ring
spectrum whose underlying C2-spectrum, is sufficiently cofibrant (or rather flat). I doubt that the specific
model MR defined in Example 2.14 is sufficiently cofibrant. So one has to construct another commutative
C2-ring spectrum MRc, sufficiently cofibrant, and a multiplicative π∗-isomorphism MRc −→MR and then

take MU (4) = NC8

C2
(MRc). This is possible, but I am not aware of a construction that avoids discussing
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positive model structure on equivariant spectra and equivariant ring spectra. The necessary details can be
found in Appendix B of the paper [10] by Hill, Hopkins and Ravenel.

Now we get to the key homotopical property of the norm construction:

Proposition 9.10. Let H be a subgroup of G. Then the norm functor

NG
H : SpH −→ SpG

takes π∗-isomorphisms between cofibrant H-spectra to π∗-isomorphisms of G-spectra. Hence the norm func-
tor descends to a functor

NG
H : Ho(SpH) −→ Ho(SpG)

on homotopy categories.

Proof. We just give part of the argument. The π∗-isomorphisms of H-spectra are generated, in a suitable
sense, by weak H-equivalences between based H-spaces and by the morphisms λV : FV S

V −→ S, adjoint
to the identity of SV , for all H-representations V .

So we consider a weak H-equivalence f : A −→ B between based H-CW-complexes. We have a natural
isomorphism

NG
H (Σ∞A) ∼= Σ∞(NG

HA) ,

whereNG
HA is the space level norm construction with respect to smash product, i.e., NG

HA = 〈G : H〉+∧ΣmoH
A(m). Raising an equivariant space to them-th power takes weakH-equivalences to weak ΣmoH-equivalence,
so this settles the case of suspension spectra of equivariant CW-complexes.

The case of the π∗-isomorphism λV : FV S
V −→ S is handled as follows. As explained in Example 9.8,

the normed spectrum HH
G FV is isomorphic to the free G-spectrum FGnHV of the induced representation

GnH V . Similarly, NG
H (SV ) is isomorphic to the sphere SGnHV of the induced representation, so altogether

we can identify
NG
H (FV S

V ) ∼= FGnHV S
GnHV

as G-spectra. Under this identification and NG
HS ∼= S, the morphism NG

HλV : NG
H (FV S

V ) −→ NG
HS becomes

the morphism λGnHV : FGnHV S
GnHV −→ S, which is a π∗-isomorphism of G-spectra by Proposition 5.14.

Now we may attempt to run the usual ‘cell induction argument’; a problem is then that the norm functor
is not ‘additive’ (it does not commute with colimits), but rather a ‘power construction’. So there is more
to say when analyzing the effect of NG

H on a cell attachment, but we stop here for the time being. �

Our next topic is the relationship between the norm construction and geometric fixed points. This
relationship is given by a natural morphism of non-equivariant spectra

(9.11) ∆ : ΦHX −→ ΦG(NG
HX)

that is a stable equivalence whenever X is a cofibrant H-spectrum.
For every based H-space A, the diagonal map ∆ : AH −→ (NG

HA)G is a homeomorphism. For every
orthogonal H-spectrum X, the special case V = nρH of the map (9.7) is an O(n)-equivariant map

JX,nρH : NG
H (X(nρH)) −→ (NG

HX)(nρG) ,

where we have used that the induced representation G nH ρH is canonically isomorphic to the regular
representation of G. So by combining the two maps we obtain a based continuous,

(ΦHX)n = X(nρH)H ∼= (NG
H (X(nρH)))G

JGX,nρH−−−−−−→ ((NG
HX)(nρG))G = (ΦG(NG

HX))n

As n varies these maps make up the morphism ∆ : ΦHX −→ ΦG(NG
HX).

Proposition 9.12. For every cofibrant orthogonal H-spectrum X the map

∆ : ΦHX −→ ΦG(NG
HX)

is a π∗-isomorphism of orthogonal spectra.
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Proof. Again we only check two crucial special cases. First, if X = Σ∞A is the suspension spectrum of an
H-CW-complex A, then ΦHX = ΦH(Σ∞A) ∼= Σ∞AH and

ΦG(NG
HX) = ΦG(NG

H (Σ∞A)) ∼= ΦG(Σ∞(NG
HA)) ∼= Σ∞(NG

HA)G ∼= Σ∞AH .

Here we use that G-fixed points of the space level norm construction NG
HA are isomorphic to H-fixed points

of A. We conclude that the map ∆ : ΦH(Σ∞A) −→ ΦG(NG
H (Σ∞A)) is an isomorphism, so in particular a

π∗-isomorphism.
If X = FV is the free H-spectrum generated by an H-representation V , then, loosely speaking, ΦHFV is

a ‘−V H -sphere’, whereas NG
HFV

∼= FGnH , and so ΦG(NG
HFV ) is a ‘−(GnH V )G-sphere’. Since the G-fixed

points of the induced representation are naturally isomorphic to the H-fixed points of V , this shows the
claim for X = FV .

More formally, we argue as follows. Since the norm construction preserves π∗-isomorphisms between
cofibrant spectra, the class of cofibrant H-spectra X for which ∆ : ΦHX −→ ΦG(NG

HX) is a π∗-isomorphism
is closed under π∗-isomorphisms. Proposition 5.14 provides a π∗-isomorphism FV S

V −→ S. Since the sphere
spectrum is an equivariant suspension spectrum, so the claim holds for S by the first paragraph, and hence
for the H-spectrum FV S

V . In the commutative diagram

SV
H ∧ ΦHFV

SV
H
∧∆ //

∼=
��

SV
H ∧ ΦG(NG

HFV )

∼=
��

ΦH(FV S
V )

∆
// ΦG(NG

H (FV S
V ))

∼= // ΦG(FGnHV S
GnHV )

three of the five maps are isomorphisms, and the lower horizontal morphism is a π∗-isomorphism by the

above. So the map SV
H ∧∆ is SV

H ∧∆ is a π∗-isomorphism, hence so is ∆ : ΦHFV −→ ΦG(NG
HFV ). �

As we mentioned at the beginning of this section, the norm construction, when extended to commutative
equivariant ring spectra, is left adjoint to the restriction functor from commutative G-ring spectra to
commutative H-ring spectra. Again, this is a formal argument that works in any symmetric monoidal
category. Given a commutative G-ring spectrum R, we define a morphism of commutative G-ring spectra

ε : NG
H (i∗R) −→ R

as follows. For every system of coset representatives ḡ = (g1, . . . , gm) we define

εḡ : R(m) −→ R

as the composite

R(m) (g1·−)∧...∧(gm·−)−−−−−−−−−−−−−→ R(m) µ−−−−→ R

where µ is the iterated multiplication morphism of R. For every element κ ∈ Σm oH the composite

R(m) κ·−−→ R(m) εḡ−−→ R

equals εḡκ, so the morphisms εḡ assemble into a morphism of orthogonal spectra

ε : NG
HR = 〈G : H〉nΣmoH R(m) −→ R .

Clearly, if we follow εḡ by left multiplication by an element γ ∈ G, we obtain εγḡ, so the morphism ε is
G-equivariant. Moreover, the morphism ε is multiplicative.

Proposition 9.13. The norm functor NG
H from commutative orthogonal H-ring spectra to commutative

orthogonal G-ring spectra is left adjoint to the restriction functor with respect to the morphism ε : NG
HR −→

R as adjunction counit.
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Proof. We have to show that for every commutative orthogonal H-ring spectrum S, every commutative
orthogonal G-ring spectrum R and every morphism f : NG

HS −→ R of orthogonal G-ring spectra, there is

a unique morphism f̂ : S −→ R of orthogonal H-ring spectra such that f = ε ◦ (NG
H f̂). �

10. Norm map

The norm construction for equivariant spectra comes with norm functions on equivariant homotopy
groups. We discuss an ‘internal’ version of the norm map for commutative orthogonal G-ring spectra; there
is also an ‘external’ norm map, that we briefly touch on in Remark 10.13. In the following we let H be a
subgroup of G and R a commutative orthogonal G-ring spectrum. The aim of this section is to define and
study a norm map normG

H : πHV R −→ πGGnHV (R) for every H-representation V .

The norm of an element x ∈ πHV R is essentially a restriction of the m-th power Pm(x) to R, where
m = [G : H] is the index of H in G. In more detail, we will define a homomorphism

〈G|−〉 : πΣmoH
Vm (PnR) −→ πGGnHV (R)

and then define the norm map by

(10.1) normG
H(x) = 〈G|Pm(x)〉 .

We construct the homomorphism 〈G|−〉 and the norm map normG
H in a slightly more general situation.

Construction 10.2. We let H a subgroup of G and S ⊆ G be an H-invariant subset, i.e., a subset such
that S ·H = S. For a commutative orthogonal G-ring spectrum R we will now define a homomorphism

〈S|−〉 : πΣnoH
V n (PnR) −→ π

G〈S〉
SnHV (R)

where G〈S〉 = {γ ∈ G | γ · S = S} is the stabilizer subgroup of S and n = |S/H| is the index of S, i.e., the
number of disjoint H-cosets that make up S. We will then define a norm map

normS
H : πHV R −→ π

G〈S〉
SnHVR by normS

H(x) = 〈S|Pnx〉 .

The morphisms 〈S|−〉 and the norm map normS
H are natural for homomorphism of commutative orthogonal

G-ring spectra.
For the construction we choose an H-basis of S, i.e., an ordered n-tuple (g1, . . . , gn) of elements in disjoint

H-cosets that satisfy

S =

n⋃
i=1

giH .

The stabilizer group G〈S〉 acts from the left on the set 〈S : H〉 of all such H-bases of S by

γ · (g1, . . . , gn) = (γg1, . . . , γgn) .

The wreath product Σn oH acts freely and transitively on 〈S : H〉 from the right by

ḡ · (σ; h1, . . . , hn) = (g1, . . . , gn) · (σ; h1, . . . , hn) = (gσ(1)h1, . . . , gσ(n)hn) .

The chosen basis then determines a monomorphism Ψḡ : G〈S〉 −→ Σn oH by requiring that

γ · ḡ = ḡ ·Ψḡ(γ) .

We can then define a G〈S〉-equivariant linear isometry

iḡ : Ψ∗ḡ(V
n) −→ S nH V , (v1, . . . , vn) 7−→

n∑
i=1

gi ⊗ vi .

Moreover, for every commutative orthogonal G-ring spectrum R we can define a G〈S〉-equivariant morphism
of orthogonal spectra εḡ : Ψ∗ḡ(P

nR) −→ R as the composite

Ψ∗ḡ(P
nR)

(g1·−)∧...∧(gn·−)−−−−−−−−−−−−−→ R(n) µ−−−−→ R
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where µ is the iterated multiplication morphism of R. So we can finally define the homomorphism 〈S|−〉
associated to an H-invariant subset S of G as the composite

πΣnoH
V n (PnR)

Ψ∗ḡ−−−→ π
G〈S〉
Ψ∗ḡ(V n)(Ψ

∗
ḡ(P

nR))
(εḡ)∗−−−−→ π

G〈S〉
Ψ∗ḡ(V n)(R)

(iḡ)∗−−−−→ π
G〈S〉
SnHV (R) .

If S happens to be a subgroup of G containing H, then G〈S〉 = S and so the morphism 〈S|−〉 and the
norm map normS

H take values in πSSnHV (R). In particular, if S = G is the full group G, then 〈G|−〉 and

normG
H take values in πGGnHV (R).

The construction of the homomorphism 〈S|−〉 involved a choice of H-basis for S, but we have:

Proposition 10.3. Let H be a subgroup of G, S an H-invariant subset of G and R a commutative orthog-

onal G-ring spectrum. The homomorphism 〈S|−〉 : πΣnoH
V n (PnR) −→ π

G〈S〉
SnHV (R) and the norm map normS

H

are independent of the choice of H-basis of S.

Proof. Suppose that ḡ is one H-basis of S. Then any other H-basis is of the form ḡω for a unique ω ∈ Σn oH.
We have Ψḡω = cω ◦Ψḡ, where cω(γ) = ω−1γω. This implies

Ψḡω = cω ◦Ψḡ : G〈S〉 −→ Σn oH

Ψ∗ḡω = Ψ∗ḡ ◦ c∗ω : πΣnoH
V n (Y ) −→ πΣnoH

Ψ∗ḡω(V n)(Ψ
∗
ḡωY ) = πΣnoH

Ψ∗ḡ(c∗ω(V n))(Ψ
∗
ḡ(c
∗
ωY ))

iḡω = iḡ ◦Ψ∗ḡ(l
V n

ω ) : Ψ∗ḡω(V n) = Ψ∗ḡ(c
∗
ω(V n)) −→ S nH V

εḡω = εḡ ◦Ψ∗ḡ(l
PmR
ω ) : Ψ∗ḡω(PmR) = Ψ∗ḡ(c

∗
ω(PmR)) −→ R

Thus we get

iḡω∗ ◦ εḡω∗ ◦Ψ∗ḡω = (iḡ∗(Ψ
∗
ḡ(l

V n

ω ))∗) ◦ (εḡ∗(Ψ
∗
ḡ(l

PmR
ω ))∗) ◦ (Ψ∗ḡc

∗
ω)

= iḡ∗ ◦ εḡ∗ ◦ (Ψ∗ḡ(l
V n

ω ))∗ ◦Ψ∗ḡ ◦ (lP
mR

ω )∗ ◦ c∗ω
= iḡ∗ ◦ εḡ∗ ◦Ψ∗ḡ ◦ (lV

n

ω )∗ ◦ (lP
mR

ω )∗ ◦ c∗ω
= iḡ∗ ◦ εḡ∗ ◦Ψ∗ḡ ◦ ω∗ = iḡ∗ ◦ εḡ∗ ◦Ψ∗ḡ

We have used the naturality properties of various constructions and, in the last equation, the fact that
conjugation by an inner automorphism is the identity on equivariant homotopy groups. �

The various properties of the power construction imply corresponding properties of the norm map.
Given any H-invariant subset S of G, the stabilizers of S and its complement Sc = G− S agree,

G〈S〉 = G〈Sc〉 .

Moreover, the induced representation G nH V is the orthogonal, G〈S〉-equivariant direct sum of the sub-
spaces S nH V and Sc nH V ; so we have an internal product

· : π
G〈S〉
SnHV (R) × π

G〈Sc〉
ScnHV (R) −→ π

G〈S〉
GnHV (R) .

add:

g? ◦ normS
H = norm

gS
gH ◦g?

Proposition 10.4. Let S be an H-invariant subset of G and R a commutative orthogonal G-ring spectrum.

The norm maps normS
H : πHV (R) −→ π

G〈S〉
SnHV (R) have the following properties.

(i) We have

normS
H(0) = 0 , normS

H(1) = 1 , norm∅H(x) = 1 and normH
H(x) = x .
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(ii) For every g ∈ G we have

normgS
H = (lg)∗ ◦ g? ◦ normS

H

where lg : c∗g(S nH V ) −→ gS nH V is the G〈gS〉-linear isometry defined by lg(s ⊗ v) = gs ⊗ v. In

particular we have normgH
H (x) = (ig)∗(g?x).

(iii) (Consistency) Given nested subgroups H ⊆ K ⊆ G and an H-invariant subset S of K, we have
K〈S〉 ⊆ G〈S〉 and the norm maps relative to K and G are related by

normS
H = res

G〈S〉
K〈S〉 ◦ normS

H

where the norm on the left hand side is formed relative to K and the norm on the right hand side is
formed relative to G.

(iv) (Transitivity) The norm maps are transitive, i.e., for subgroups K ⊆ H ⊆ G, every K-invariant
subset T of H and every H〈T 〉-invariant subset S of G

normS
H〈T 〉 ◦normT

K = res
G〈ST 〉
G〈S〉 ◦ normST

K

as maps from πHV (R) to πG(ST )nKV (R), using the identification S nH〈T 〉 (T nK V ) ∼= (ST )nK V .

(v) (Union) Let S and T be disjoint H-invariant subsets of G. Then

(res
G〈S〉
G〈S〉∩G〈T 〉 normS

H(x)) · (res
G〈T 〉
G〈S〉∩G〈T 〉 normT

H(x)) = res
G〈S∪T 〉
G〈S〉∩G〈T 〉 normS∪T

H (x) .

(vi) (External multiplicativity) The norm maps are multiplicative with respect to external product: for two
commutative G-ring spectra R, R̄ and classes x ∈ πHV (R) and x̄ ∈ πHW (R̄) we have

(normS
H x) · (normS

H x̄) = normS
H(x · x̄)

in π
G〈S〉
SnH(V⊕W )(R ∧ R̄).

(vii) (Internal multiplicativity) The norm maps are multiplicative with respect to internal product: x ∈
πHV (R) and y ∈ πHW (R) we have

(normS
H x) · (normS

H y) = normS
H(x · y)

in π
G〈S〉
SnH(V⊕W )(R).

(viii) (Double coset formula) For every H-invariant subset S and every subgroup K of G〈S〉 we have:

res
G〈S〉
K ◦ normS

H =
∏

[g]∈K\S/H

normK
K∩gH ◦g? ◦ resHKg∩H

as maps from πHV (R) to πKSnHV (R). Here [g] runs over a system of representatives of all K-H-orbits
of S and we use the K-linear isometry⊕

[g]∈K\S/H

K nK∩gH (c∗gV ) ∼= S nH V

to identify the indexing representations of both sides.
(ix) (Sum) For x, y ∈ πHV (R) the relation

normG
H(x+ y) =

∑
[S]

trGG〈S〉 (normS
H(x) · normG−S

H (y))

holds in πGGnHV (R). The sum runs over a set of representatives S of all orbits of the left G-action on
the set of H-invariant subsets of G.



LECTURES ON EQUIVARIANT STABLE HOMOTOPY THEORY 89

Proof. (i) We have normS
H(0) = 〈S|Pn(0)〉 = 〈S|0〉 = 0. In the case R = S of the G-sphere spectrum and

with V = R0 we have Pn(S) = S and Pn(1) = 1. Also, in this case G〈S〉 acts trivially on the representation
and on PnS = S, so the maps Ψ∗ḡ, εḡ and iḡ involved in the definition of 〈S|−〉 are all identity maps. So we

get normS
H(1) = 〈S|Pn(1)〉 = 〈S|1〉 = 1 in π

G〈S〉
0 S. For an arbitrary commutative G-ring spectrum we then

have normS
H(1) = 1 by naturality of the norm map. The empty H-invariant set has index 0 and stabilizer

group G〈∅〉 = G. We have Σ0 oH = e, the trivial group, and P 0R = S is the sphere spectrum. Moreover,

〈∅|−〉 : πe0S −→ πG0 R sends the unit element 1 to the unit in πG0 R. So we have norm∅H(x) = 〈∅|1〉 = 1.
For S = H we can choose the unit 1 as the H-basis, and this choice yields that 〈H|−〉 is the restriction
along the canonical isomorphism H −→ Σ1 o H that sends h to (1; h). The restriction of P 1x along this
isomorphism is x, so we get normH

H(x) = 〈H|P 1x〉 = x.
(ii) If ḡ = (g1, . . . , gn) is an H-basis of S, then gḡ = (gg1, . . . , ggn) is an H-basis of gS. We have

G〈gS〉 = gG〈S〉 and the homomorphism Ψgḡ : G〈gS〉 −→ Σn oH is equal to the composite Ψgḡ = Ψḡ ◦ cg.

〈gS|−〉 = igḡ ◦ εgḡ ◦Ψ∗gḡ

= (lg)∗ ◦ c∗g(iḡ) ◦ lRg ◦ c∗g(εḡ) ◦ c∗g ◦Ψ∗g

= (lg)∗ ◦ lRg ◦ c∗g(iḡ) ◦ c∗g ◦ εḡ ◦Ψ∗ḡ

= (lg)∗ ◦ lRg ◦ c∗g ◦ iḡ ◦ εḡ ◦Ψ∗ḡ = (lg)∗ ◦ g? ◦ 〈S|−〉

The second equation uses that

εgḡ = lRg ◦ c∗g(εḡ) : Ψ∗gḡ(P
nR) = c∗g(Ψ

∗
ḡ(P

nR)) −→ R and

igḡ = lg ◦ c∗g(iḡ) : Ψ∗gḡ(V
n) = c∗g(Ψ

∗
ḡ(V

n)) −→ (gS)nH V

where lg : c∗g(S nH V ) −→ gS nH V is the G〈gS〉-linear isometry with lg(s⊗ v) = gs⊗ v. Composing this
relation with Pn gives

normgS
H = 〈gS|−〉 ◦ Pn = (lg)∗ ◦ g? ◦ 〈S|−〉 ◦ Pn = (lg)∗ ◦ g? ◦ normS

H .

In the special case S = H the map normH
H is the identity and the isometry lg : c∗g(H nH V ) −→ gH nH V

agrees with ig (where implicitly we used the tautological isometry between HnH V and V ). So the relation
specializes to

normgH
H = (ig)∗ ◦ g? .

(iii) The notion of H-basis for S is absolute, i.e., does not depend on whether S is viewed as a subset
of K or of G. So we can use the same H-basis of S for the construction of 〈S|−〉 relative to K or G, and

obtain 〈S|−〉 = res
G〈S〉
K〈S〉 ◦〈S|−〉 where the left hand side is relative to K and the right hand side is relative

to G. Precomposing with the power operation gives the desired consistency relation for the norm maps.
(iv) Suppose that k = 〈H : K〉 is the index of K in H. We choose a K-basis h̄ = (h1, . . . , hl) for T and

an H〈T 〉-basis ḡ = (g1, . . . , gn) of S. Then

ḡh̄ = (g1h1, . . . , g1hl, g2h1, . . . , g2hl, . . . , gnh1, . . . , gnhl)

is a K-basis of ST . With respect to this basis, the restriction of the homomorphism Ψḡh̄ : G〈ST 〉 −→ Σln oK
to the subgroup G〈S〉 equals the composite map

G〈S〉 Ψḡ−−−→ Σn oH〈T 〉
ΣnoΨh̄−−−−→ Σn o (Σl oK) −−−→ Σln oK

where the last homomorphism was defined in (8.1). We have

res
G〈ST 〉
G〈S〉 (Ψ∗gh(P lnR)) = Ψ∗g((Σn oΨh)∗(resΣlnoH

Σno(ΣloK)(P
lnR))

= Ψ∗g((Σn oΨh)∗(Pn(P lR))) = Ψ∗ḡ(P
n(Ψ∗h̄(P lR)))
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as G〈S〉-spectra and

res
G〈ST 〉
G〈S〉 (εgh) = εg ◦ (Ψ∗g(P

nεh))

as G〈S〉-equivariant morphisms from

res
G〈ST 〉
G〈S〉 (Ψ∗gh(P lnR)) = Ψ∗ḡ(P

n(Ψ∗h̄(P lR)))

to R. Similarly, we have

res
G〈ST 〉
G〈S〉 (igh) = ig ◦ (Ψ∗g(P

nih))

as G〈S〉-isometries from

res
G〈ST 〉
G〈S〉 (Ψ∗gh(V ln)) = Ψ∗ḡ(P

n(Ψ∗h̄(V l)))

to (ST )nK V . Moreover,

res
G〈ST 〉
G〈S〉 Ψ∗ḡh̄(P lnx) = Ψ∗ḡ((Σn oΨh̄)∗(res

ΣlnoK
Σn(ΣloK)(P

lnx)))

= Ψ∗ḡ((Σn oΨh̄)∗(Pn(P lx))) = Ψ∗ḡ(P
n(Ψ∗h̄(P lx)))

in the group

π
G〈S〉
Ψ∗gh(V ln)

(Ψ∗gh(P lnR)) = π
G〈S〉
Ψ∗g((Ψ∗h(V l))n)

(Ψ∗ḡ(P
n(Ψ∗h̄(P lX)))) .

Putting all of this together yields

res
G〈ST 〉
G〈S〉 (normST

K (x)) = res
G〈ST 〉
G〈S〉 〈ST |P

lnx〉

= res
G〈ST 〉
G〈S〉

(
iḡh̄(εḡh̄)Ψ∗ḡh̄(P lnx))

)
= (ig ◦ (Ψ∗g(P

nih))) ◦ res
G〈ST 〉
G〈S〉

(
(εḡh̄)Ψ∗ḡh̄(P lnx))

)
= (ig ◦ (Ψ∗g(P

nih))) ◦ (εg ◦ (Ψ∗g(P
nεh))) ◦ res

G〈ST 〉
G〈S〉

(
Ψ∗ḡh̄(P lnx))

)
= ig ◦ εg ◦Ψ∗g(P

nih) ◦Ψ∗g(P
nεh) ◦ (Ψ∗ḡ(P

n(Ψ∗h̄(P lx))))

= ig ◦ εg ◦Ψ∗ḡ(P
n(ihεhΨ∗h̄(P lx)))

= ig ◦ εg ◦Ψ∗ḡ(P
n(normT

K(x))) = normS
H〈T 〉(normT

K(x))

(v)
(vi) The composite

Ψ∗ḡ(P
n(R ∧ R̄))

Ψ∗ḡ(χ
(m)

R,R̄
)

−−−−−−−→ Ψ∗ḡ(P
nR ∧ PnR̄) = Ψ∗ḡ(P

nR) ∧Ψ∗ḡ(P
nR̄)

εḡ∧εḡ−−−−→ R ∧ R̄

equals the morphism εḡ : Ψ∗ḡ(P
n(R ∧ R̄)) −→ R ∧ R̄ and the composite

Ψ∗ḡ((V ⊕W )n) ∼= Ψ∗ḡ(V
n)⊕Ψ∗ḡ(W

n)
iḡ⊕iḡ−−−→ (S nH V )⊕ (S nH W ) ∼= S nH (V ⊕W )

equals the morphism iḡ : Ψ∗ḡ((V ⊕ W )n) −→ S nH (V ⊕ W ). Together with naturality of the external
product on equivariant homotopy groups this implies that the diagram

πΣnoH
V n (PnR)× πΣnoH

Wn (PnR̄)
• //

〈S|−〉×〈S|−〉
��

πΣnoH
V n⊕Wn(PnR ∧ PnR̄) ∼=

(χ
(n)

R,R̄
)∗
// πΣnoH
V n⊕Wn(Pn(R ∧ R̄))

〈S|−〉
��

π
G〈S〉
SnHV (R)× πG〈S〉SnHW (R̄) •

// πGSn(V⊕W )(R ∧ R̄)
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commutes. So we get

normS
H(x) • normS

H(x̄) = 〈S|Pn(x)〉 • 〈S|Pn(x̄)〉 = 〈S|(χ(n)

R,R̄
)∗((P

nx) • (Pnx̄))〉

= 〈S|Pn(x • x̄)〉 = normS
H(x • x̄)

using the product formula (8.5) for the power map.
(vii) For every commutative orthogonal G-ring spectrum R the multiplication map µ : R ∧R −→ R is a

homomorphism of commutative G-ring spectra. So naturality of the norm yields

normS
H(x · y) = normS

H(µ∗(x • y)) = µ∗(normS
H(x • y))

=(iv) µ∗(normS
H(x) • normS

H(y)) = normS
H(x) · normS

H(y) .

(viii) The set S is the disjoint union of its K-H-orbits. By the union property (v) we have

res
G〈S〉
K normS

H(x) =
∏

T∈K\S/H

res
G〈T 〉
K normT

H(x) .

So it suffices to show that

res
G〈T 〉
K ◦normT

H = normK
K∩gH ◦ resHKg∩H ◦g?

for any representative g ∈ T .
We let κ̄ = (κ1, . . . , κn) be coset representatives for K ∩ gH in K. Then κ̄g = (κ1g, . . . , κng) is an

H-basis for KgH. Moreover, the restriction of Ψκ̄g : G〈KgH〉 −→ Σn oH to K is the composite

K
Ψκ̄−−−→ Σn o (K ∩ gH)

c∆(g)−−−−→ Σn o (Kg ∩H)
incl−−−→ Σn oH ,

where ∆(g) = (1; g, . . . , g) ∈ Σn oG. This implies that

Ψ∗κ̄g(P
nR) = Ψ∗κ̄(c∗∆(g)(P

nR))

as K-spectra and

Ψ∗κ̄g(V
n) = Ψ∗κ̄(c∗∆(g)(V

n)) = Ψ∗κ̄((c∗gV )n)

as K-representations. Then we have

res
G〈KgH〉
K 〈KgH|−〉 = res

G〈KgH〉
K ◦iκ̄g ◦ εκ̄g ◦Ψ∗κ̄g = iκ̄g ◦ εκ̄g ◦ res

G〈KgH〉
K ◦Ψ∗κ̄g

= αg ◦ iκ̄ ◦ εκ̄ ◦ (Ψ∗κ̄(lP
nR

∆(g)))∗ ◦Ψ∗κ̄ ◦ c∗∆(g) ◦ resΣnoH
Σno(Kg∩H)

= αg ◦ (iκ̄ ◦ εκ̄ ◦Ψ∗κ̄) ◦ (lP
nR

∆(g))∗ ◦ c
∗
∆(g)) ◦ resΣnoH

Σno(Kg∩H)

= αg ◦ 〈K|−〉 ◦∆(g)? ◦ resΣnoH
Σno(Kg∩H)

The third equation uses that

εκ̄g = εκ̄ ◦Ψ∗κ̄(lP
nR

∆(g)) : Ψ∗κ̄g(P
nR) = Ψ∗κ̄(c∗∆(g)(P

nR)) −→ R and

iκ̄g = αg ◦ iκ̄ : Ψ∗κ̄g(V
n) = Ψ∗κ̄((c∗gV )n) −→ (KgH)nH V

where αg : K nK∩gH (c∗gV ) −→ (KgH)nH V is the K-linear isometry with αg(k ⊗ v) = kg ⊗ v. From this
the desired formula follows easily with the help of two naturality properties of the power operation:

res
G〈KgH〉
K ◦ normKgH

H = res
G〈KgH〉
K ◦〈KgH|−〉 ◦ Pn

= αg ◦ 〈K|−〉 ◦∆(g)? ◦ resΣnoH
Σno(Kg∩H) ◦P

n

= αg ◦ 〈K|−〉 ◦∆(g)? ◦ Pn ◦ resHKg∩H

= αg ◦ 〈K|−〉 ◦ Pn ◦ g? ◦ resHKg∩H

= αg ◦ normK
K∩gH ◦g? res

gH
K∩gH .
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To sum up, we have shown

res
G〈S〉
K ◦ normS

H =
∏

KgH∈K\S/H

res
G〈KgH〉
K normKgH

H (x) = α∗ ◦
∏

[g]∈K\S/H

normK
K∩gH ◦g? ◦ resHKg∩H

where

α =
∑

αg :
⊕

[g]∈K\S/G

Kg nKg∩H (c∗gV ) −→ S nH V .

(ix) The sum formula is mainly a consequence of the sum formula for the m-th power operation and
the additive double coset formula. However, getting all the details straight requires a certain amount of
notation and bookkeeping.

We consider any H-invariant subset S of G such that |S/H| = i. We choose a complete set of coset
representatives ḡ whose first i components are an H-basis of S. Then the monomorphism Ψḡ : G −→ Σm oH
restricts to a monomorphism Ψḡ : G〈S〉 −→ Σi,m−i oH. We write 〈S, Sc|−〉 for the composite

π
Σi,m−ioH
Vm (PmR)

Ψ∗ḡ−−−→ π
G〈S〉
Ψ∗ḡ(Vm)(Ψ

∗
ḡ(P

mR))
(εḡ)∗−−−−→ π

G〈S〉
Ψ∗ḡ(Vm)(R)

(iḡ)∗−−−−→ π
G〈S〉
GnHV (R) .

The same arguments as in Proposition 10.3 show that the map ΨS,Sc is independent of the choice of ḡ. We
claim that this map satisfies

(10.5) 〈S, Sc|a · b〉 = 〈S|a〉 · 〈Sc|b〉

for a ∈ πΣioH
V i (P iR) and b ∈ πΣm−ioH

Vm−i (Pm−iR), as well as

〈G| tri,m−i(z)〉 =
∑

[S], |S/H|=i

trGG〈S〉 ◦〈S, S
c|z〉(10.6)

for all z ∈ πΣi,m−ioH
Vm (PmR), where tri,m−i is the RO(G)-graded internal transfer map from π

Σi,m−ioH
Vm (PmR)

to πΣmoH
Vm (PmR) . The sum runs over a set of representatives S of all left G-orbits of those H-invariant

subsets of cardinality i · |H|.
Given these two properties, the sum formula follows easily:

normG
H(x+ y) = 〈G|Pm(x+ y)〉 =

m∑
i=0

〈G| tri,m−i(P ix · Pm−iy)〉

(10.6) =

m∑
i=0

∑
[S], |S/H|=i

trGG〈S〉〈S, S
c|P ix · Pm−iy〉

(10.5) =

m∑
i=0

∑
[S], |S/H|=i

trGG〈S〉
(
〈S|P ix〉 · 〈Sc|Pm−iy〉

)
=

m∑
i=0

∑
[S], |S/H|=i

trGG〈S〉
(
normS

H(x) · normG−S
H (y)

)
where the second relation is the sum formula (8.6) for the power operation. So we need to show (10.5)
and (10.6).

Proof of (10.5). We choose one particular complete set of coset representatives ḡ for H in G. We let
ḡ = (g1, . . . , gm) be an H-basis of G such that ḡS = (g1, . . . , gi) is an H-basis of S, and hence ḡS

c

=
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(gi+1, . . . , gm) is an H-basis of Sc. Then G〈S〉 = G〈Sc〉 and the square of group homomorphisms

G〈S〉
(ΨḡS ,ΨḡSc )

//

incl.

��

(Σi oH)× (Σm−i oH)

∼=
��

G
Ψḡ

// Σi,m−i oH

commutes. Hence the diagram

πΣioH
V i (P iR)× πΣm−ioH

Vm−i (Pm−iR)
· //

Ψ∗
ḡS
×Ψ∗

ḡS
c

��

ΨS×ΨSc

��

π
Σi,m−ioH
Vm (PmR)

Ψ∗ḡ

��

ΨS,Sc

��

π
G〈S〉
Ψ∗
ḡS

(V i)(Ψ
∗
ḡS (P iR))× πG〈S

c〉
Ψ∗
ḡS
c (Vm−i)(Ψ

∗
ḡSc

(Pm−iR))
· //

(εḡS )∗×(ε
ḡS
c )∗

��

π
G〈S〉
Ψ∗ḡ(Vm)(Ψ

∗
ḡ(P

mR))

(εḡ)∗

��
π
G〈S〉
Ψ∗
ḡS

(V i)(R)× πG〈S
c〉

Ψ∗
ḡS
c (Vm−i)(R)

(iḡS )∗×(i
ḡS
c )∗

��

·
// πG〈S〉Ψ∗ḡ(Vm)(R)

(iḡ)∗

��
π
G〈S〉
SnHV (R)× πG〈S

c〉
ScnHV (R) ·

// πG〈S〉GnHV (R)

commutes by the various naturality properties of external and internal product. This is (10.5).
Proof of (10.6). This is an instance of the double coset formula, suitably reinterpreted. The bookkeeping

is complicated by the fact that we are simultaneously changing all three parameters of an equivariant
homotopy group, namely the group, the spectrum and the indexing representation. We fix one particular
complete set ḡ = (g1, . . . , gm) of coset representatives for H in G, with associated monomorphism Ψḡ :
G −→ Σm oH. The monomorphism Ψḡ factors as an isomorphism Ψ̄ḡ : G −→ Ψḡ(G) = Ḡ onto its image

followed by the inclusion i : Ḡ −→ Σm oH; so Ψ∗ḡ = Ψ̄∗ḡ ◦ resΣmoH
Ḡ

. Thus 〈G|−〉 is the composite

πΣmoH
Vm (PmR)

resΣmoH
Ḡ−−−−−−→ πḠVm(PmR)

Ψ̄∗ḡ−−−→ πGΨ̄∗ḡ(Vm)(P
mR)

(εḡ)∗−−−−→ πGΨ̄∗ḡ(Vm)(R)
(iḡ)∗−−−−→ πGGnHV (R) .

The double coset formula (4.21) gives

〈G| tri,m−i〉 = iḡ∗ ◦ εḡ∗ ◦ Ψ̄∗ḡ ◦ resΣmoH
Ḡ

◦ tri,m−i

=
∑

[ω]∈Ḡ\(ΣmoH)/(Σi,m−ioH)

iḡ∗ ◦ εḡ∗ ◦ Ψ̄∗ḡ ◦ trḠḠ∩ω(Σi,m−ioH) ◦ω∗ ◦ res
Σi,m−ioH
Ḡω∩(Σi,m−ioH)

Now we rewrite the summands that occur in this formula. For ω = (σ; h1, . . . , hm) ∈ Σm oH and we can
define an H-invariant subset with exactly i right H-orbits by

S(ω) =

i⋃
j=1

(ḡω)j ·H =

i⋃
j=1

gσ(j) ·H ,

the H-invariant subset generated by the first i components of ḡω. For τ ∈ Σi,m−i oH we have

S(ωτ) = S(ω) ,
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so the H-invariant set S(ω) depends only on the right Σi,m−i-coset of ω. The isomorphism Ψ̄ḡ : G −→ Ḡ
restricts to an isomorphism of G〈S(ω)〉 onto Ḡ ∩ω (Σi,m−i oH), so we get

Ψ∗ḡ ◦ trḠḠ∩ω(Σi,m−ioH) ◦ω∗ ◦ res
Σi,m−ioH
Ḡω∩(Σi,m−ioH)

= trGG〈S(ω)〉 ◦Ψ̄
∗
ḡ ◦ ω∗ ◦ res

Σi,m−ioH
Ḡω∩(Σi,m−ioH)

= trGG〈S(ω)〉 ◦Ψ̄
∗
ḡ ◦ (lV

m

ω )∗ ◦ (lP
mR

ω )∗ ◦ c∗ω ◦ res
Σi,m−ioH
Ḡω∩(Σi,m−ioH)

= trGG〈S(ω)〉 ◦(Ψ̄ḡ(l
Vm

ω ))∗ ◦ (Ψ̄∗ḡ(l
PmR
ω ))∗ ◦ Ψ̄∗ḡ ◦ c∗ω ◦ res

Σi,m−ioH
Ḡω∩(Σi,m−ioH)

= trGG〈S(ω)〉 ◦(Ψ̄ḡ(l
Vm

ω ))∗ ◦ (Ψ̄∗ḡ(l
PmR
ω ))∗ ◦ Ψ̄∗ḡω

We have used that Ψḡω = cω ◦Ψḡ and hence Ψ∗ḡω = Ψ∗ḡ ◦ c∗ω. We also have

iḡω = iḡ ◦ Ψ̄∗ḡ(l
Vm

ω ) : Ψ̄∗ḡω(V m) = Ψ∗ḡ(c
∗
ω(V m)) −→ GnH V

εḡω = εḡ ◦ Ψ̄∗ḡ(l
PmR
ω ) : Ψ∗ḡω(PmR) = Ψ∗ḡ(c

∗
ω(PmR))) −→ R

so if we compose the previous relation with iḡ∗ ◦ εḡ∗ we get

iḡ∗ ◦ εḡ∗ ◦ Ψ̄∗ḡ◦ trḠḠ∩ω(Σi,m−ioH) ◦ω∗ ◦ res
Σi,m−ioH
Ḡω∩(Σi,m−ioH)

= iḡ∗ ◦ εḡ∗ ◦ trGG〈S(ω)〉 ◦(Ψ̄ḡ(l
Vm

ω ))∗ ◦ (Ψ̄∗ḡ(l
PmR
ω ))∗ ◦ Ψ̄∗ḡω

= trGG〈S(ω)〉 ◦iḡ∗ ◦ (Ψ̄ḡ(l
Vm

ω ))∗ ◦ εḡ∗ ◦ (Ψ̄∗ḡ(l
PmR
ω ))∗ ◦ Ψ̄∗ḡω

= trGG〈S(ω)〉 ◦iḡω∗ ◦ εḡω∗ ◦ Ψ̄∗ḡω = trGG〈S(ω)〉 ◦〈S(ḡω), S(ḡω)c|−〉

Now we sum up over a set of double coset representatives. For γ ∈ G we have γḡ = ḡΨḡ(γ) and hence

S(Ψḡ(γ) · ω) = γ · S(ω) .

So the assignment ω 7−→ S(ω) induces a G-equivariant bijection

Ψ∗ḡ (Σm oH/Σi,m−i oH) −→ { H-invariant subsets of G of cardinality i · |H| } ,

and thus a bijection between the Ḡ-(Σi,m−i oH)-double cosets in Σm oH and the G-orbits of H-invariant
subsets of cardinality i · |H|. So we conclude that

ΨG ◦ tri,m−i =
∑

[ω]∈Ḡ\(ΣmoH)/(Σi,m−ioH)

iḡ∗ ◦ εḡ∗ ◦ Ψ̄∗ḡ ◦ trḠḠ∩ω(Σi,m−ioH) ◦ω∗ ◦ res
Σi,m−ioH
Ḡω∩(Σi,m−ioH)

=
∑

[ω]∈Ḡ\(ΣmoH)/(Σi,m−ioH)

trGG〈S(ω)〉 ◦〈S(ḡω), S(ḡω)c|−〉 =
∑

[S], |S/H|=i

trGG〈S〉 ◦〈S, S
c|−〉 .

This justifies the relation (10.6) and concludes the proof of the sum formula. �

Remark 10.7. We observe that for every H-invariant subset S, the stabilizer group G〈S〉 contains the
intersection of all H-conjugates, i.e., ⋂

g∈G

gH ⊆ G〈S〉 .

Indeed, gH is the stabilizer of the orbit gH. So the elements in the intersection stabilize all H-orbits, hence
all H-invariant subsets.

The empty subset of G is unique within its G-orbit, and by property (i) its contribution to the sum
formula (ix) is

norm∅H(x) · normG
H(y) = 1 · normG

H(y) = normG
H(y) .



LECTURES ON EQUIVARIANT STABLE HOMOTOPY THEORY 95

Similarly, the contribution from the subset G is normG
H(x). On the other hand, for every proper H-invariant

subset (i.e., different from ∅ and G), the group G〈S〉 is a proper subgroup of G. We conclude that the
obstruction to additivity of the norm map

normG
H(x+ y) − normG

H(x) − normG
H(y)

is a sum of transfers from the proper subgroups that contain the intersection of all H-conjugates.

Example 10.8. We look at the sum formula in the smallest non-trivial example, i.e., when the subgroup H
has index 2 in G. Then G has four H-invariant subsets ∅, H,G−H and G. The empty subset respectively
G are unique in their respective G-orbits and contribute normG

H(y) respectively normG
H(x). The other two

H-invariant subsets H and G−H are in the same G-orbit, and we have

normG−H
H (y) = normτH

H (y) = lτ (τ?(y))

where τ is any element in G−H. We can pick H as the representative of the G-orbit {H,G−H} and the
corresponding contribution to the sum formula is then

trGH
(

normH
H(x) · normG−H

H (y)
)

= trGH (x · (τ∗(y)))

where τ is any element in G−H. So altogether the sum formula for x, y ∈ πHV (R) becomes

normG
H(x+ y) = normG

H(x) + trGH(x · (lτ (τ?(y)))) + normG
H(y)

in πGG×HV (R), where trGH : πV (R) −→ πGGnHV (R) is the RO(G)-graded transfer map (4.32).

The most important special case of the norm construction is when S = G is the entire group. For easier
reference we summarize the properties that apply to this special case in the following proposition.

Proposition 10.9. Let H be a subgroup of G and R a commutative orthogonal G-ring spectrum. The norm
map normG

H : πHV (R) −→ πGGnHV (R) have the following properties.

(i) We have normG
H(0) = 0, normG

H(1) = 1 and normG
G(x) = x.

(ii) (Transitivity) The norm maps are transitive, i.e., for subgroups K ⊆ H ⊆ G and x ∈ πKV (R) we have

normG
H(normH

K(x)) = normG
K(x)

in πGGnKV (R), using the identification GnH (H nK V ) ∼= GnK V .
(iii) The norm maps are multiplicative with respect to external product: for two commutative G-ring spectra

R, R̄ and classes x ∈ πHV (R) and x̄ ∈ πHW (R̄) we have

(normG
H x) · (normG

H ȳ) = normG
H(x · x̄)

in πGGnH(V⊕W )(R ∧ R̄).

(iv) The norm maps are multiplicative with respect to internal product: x ∈ πHV (R) and y ∈ πHW (R) we
have

(normG
H x) · (normG

H y) = normG
H(x · y)

in πGGnH(V⊕W )(R).

(v) (Double coset formula) for two subgroup H and K of G and a homotopy class x ∈ πHV (R) we have:

resGK ◦normG
H =

∏
[g]∈K\G/H

normK
K∩gH ◦g? ◦ resHKg∩H

as maps from πHV (R) to πKGnHV (R). Here [g] runs over a system of double coset representatives and
we use the K-linear isometry ⊕

[g]∈K\G/H

K nK∩gH (c∗gV ) ∼= GnH V

to identify the indexing representations of both sides.
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(vi) (Sum) For x, y ∈ πHV R the relation

normG
H(x+ y) =

∑
[S]

trGG〈S〉 (normS
H(x) · normG−S

H (y))

holds in πGGnHV (R). The sum runs over a set of representatives S of all orbits of the left G-action on
the set of H-invariant subsets of G.

(vii) The norm map is compatible with the geometric fixed point map in the sense that the square

πHV (R)
normG

H //

ΦH

��

πGGnHV (R)

ΦG

��
πV H (ΦHR)

tr ◦∆∗
// π(GnHV )G(ΦGR)

commutes, where ∆ : ΦHR −→ ΦGR was defined in (9.11) and i : V H ∼= (G nH V )G is the transfer
isomorphism given by tr(v) =

∑
[g]∈G/H g ⊗ v.

Proof. (vii) Let consider an H-map f : SV+nρ −→ X(nρ) that represents an element in πHV (X), where
ρ = ρH is the regular representation of H. The m-th smash power

f (m) : SmV+nmρ = (SV+nρ)(m) −→ (X(nρ))(m)

is then Σm oH-equivariant. We compare the restrictions of this Σm oH-map to fixed points for the subgroup
Φ(G) and for the whole wreath product group:

(SV+nρ)H
fH //

diag. ∼=
��

R(nρ)H

diag.∼=
��

∆n

oo

(
(SV+nρ)(m)

)ΣmoH (f(m))
ΣmoH

//
(
R(nρ)(m)

)ΣmoH (i[m])ΣmoH
// (R(m)(nρm))ΣmoH

��(
Φ∗((SV+nρ)(m))

)G
(Φ∗(f(m)))

G

//
(
Φ∗(R(nρ)(m))

)G
(Φ∗i[m])G

// (Φ∗(R(m)(nρm)))G

(
SGnHV+nρG

)G
(NormG

H f)G
// ((NG

HR)(nρG))G

The clockwise composite is a representative for the class (πk∆)(ΦH [f ]), and the counter-clockwise composite

is a representative for ΦG(NormG
H [f ]). Since the diagram commutes, these two classes agree. �

Remark 10.10. The algebraic structure on the 0-th equivariant homotopy groups of a commutative G-ring
spectrum can be packaged differently and more conceptually into the form of a TNR-functor in the sense
of Tambara [26]; here the acronym stands form ‘Transfer, Norm and Restriction’.

Example 10.11 (Sphere spectrum). The sphere spectrum S is a commutative orthogonal G-ring spectrum
for every group G. For all H ⊆ G the restriction of the G-sphere spectrum is the H-sphere spectrum. We
claim that under the isomorphism between the Burnside ring and the equivariant 0-stem, the norm map

normG
H : πH0 (S) −→ πG0 (S)
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becomes the multiplicative norm of Burnside rings. More generally we claim that for every H-invariant
subset S of G the diagram

A(H)
normS

H //

Ψ

��

A(G〈S〉)

Ψ
��

πH0 (S)
normS

H

// πG〈S〉0 (S)

commutes, where the upper map arises by sending the class of a finite H-set X to the class of the G-
set mapH(S,X). In particular, the norm map on equivariant stable stems corresponds to the assignment
X 7→ mapH(G,X).

We quickly recall how the norm map normG
H : A(H) −→ A(G) is defined. This is basically the norm

construction in the category of finite sets under cartesian product, but since norming is not additive, the
extension from finite H-sets to the Burnside ring A(H) requires justification. For this purpose we consider
the product set

A(H) =
∏
n≥0

A(Σn oH) .

We endow A(H) with a new binary operation ? given by

((si) ? (tj))n =
∑
i+j=n

trΣnoH
(Σi×Σj)oH(si · uj) .

The operation ? is evidently commutative and associative and has as neutral element the sequence 1 with

1n =

{
1 for n = 0, and

0 for n > 0.

So A(H) becomes a commutative monoid under ?. Given a finite H-set X, the n-th power Xn is a Σn oH-set
and we have

(X q Y )n ∼= qi+j=n Σn oH ×Σi,j oH Xi × Y j

as Σn oH-sets. In other words, the ‘power series’

P (X) = ([Xn])n≥0 in A(H) satisfies P (X q Y ) = P (X) ? P (Y ) .

Since X0 is a one-element set, it represents the multiplicative unit in A(e) = A(Σ0 oH), and so the power
series P (X) is invertible with respect to ?. So by the universal property of the Burnside ring, there is a
unique map

P : A(H) −→ A(H)

that agrees with the power series on finite H-sets and satisfies P (x + y) = (Px) ? (Py). We denote by
Pm : A(H) −→ A(Σm oH) the composite of P with the projection the the m-th factor.

We claim that this power construction corresponds to the power construction for the equivariant sphere
spectra, i.e., for every m ≥ 0 the square

A(H)
Pm //

Ψ

��

A(Σm oH)

Ψ
��

πH0 (S)
Pm

// πΣmoH
0 (S)
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commutes. Since both power maps have the same behavior on sums, it suffices to check this for the classes
of the cosets H/K that generate A(H) as an abelian group. We have

Pm(Ψ(H/K)) = Pm(trHK(1)) = trΣmoH
ΣmoK(Pm(1)) = trΣmoH

ΣmoK(1)

= Ψ((Σm oH)/(Σm oK)) = Ψ(Pm(H/K))

using that (H/K)m is isomorphic to (Σm oH)/(Σm oK) as a Σm oH-set.
Now suppose that H is a subgroup of a group G and S is an H-invariant subset of G of index n. We

define the map

〈S|−〉 = 〈S : H〉 ×ΣnoH − : A(Σn oH) −→ A(G〈S〉)
by balanced product over Σn oH with the set 〈S : H〉 of H-bases of S (which has commuting left G〈S〉-action
and right Σn o H-actions as explained in Construction 10.2). For any choice of H-basis ḡ of S and every
Σn oH-set Y the map

Ψ∗ḡY
[ḡ,−]−−−→ 〈S : H〉 ×ΣnoH Y

is a natural isomorphism of G〈S〉-sets. The identification between Burnside rings and and equivariant zero
stems commutes with restriction homomorphism, so the square

A(Σn oH)
〈S|−〉=Ψ∗ḡ //

Ψ
��

A(G〈S〉)

Ψ
��

πΣnoH
0 (S)

〈S|−〉=Ψ∗ḡ

// πG〈S〉0 (S)

commutes because [...].
The norm map normS

H on Burnside rings is now the composite

A(H)
Pn−−−→ A(Σn oH)

〈S|−〉−−−−−→ A(G〈S〉) .

The norm map normG
H is the special case where S = G is the entire group. Since the identification between

Burnside rings and and equivariant zero stems commutes with power operations and with the maps 〈S|−〉,
it commutes with the norm maps as well. If we unravel the definitions, we see that for every H-set X,
the element normS

H(X) in A(G〈S〉) is represented by 〈S : H〉 ×ΣnoH Xn which naturally isomorphic, as a
G〈S〉-set, to mapH(S,X), by the map

mapH(S,X) −→ 〈S : H〉 ×ΣnoH Xn

ϕ 7−→ [g1, . . . , gn; ϕ(g1), . . . , ϕ(gn)] .

Here (g1, . . . , gn) is any H-basis of S, but the map is independent of this basis.

Example 10.12 (Eilenberg-Mac Lane spectra). Let A be a commutative ring with a G-action by ring
automorphisms. Then the Eilenberg-Mac Lane spectrum HA, defined in Example 2.13, is a commutative
orthogonal G-ring spectrum. All equivariant homotopy groups of HA are concentrated in dimension 0 and
we have πK0 (HA) = AK for every subgroup K of G. We claim that the norm map coincides with the
multiplicative transfer. More generally, we claim that for every K-invariant subset S of G the diagram

AK
normS

K //

��

AG〈S〉

��
πK0 (HA)

normS
K

// πG〈S〉0 (HA)
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commutes, where the upper horizontal map is defined by

normS
K(a) =

∏
gK∈S

ga ,

where the product is taken over a K-basis of S. The norm map is the special case S = G, where we have

normG
K(a) =

∏
gK∈G/K

ga .

Remark 10.13 (External norm map). The norm map for equivariant homotopy groups of commutative
orthogonal ring spectrum can be obtained from a more general external norm map on RO(G)-graded
homotopy groups that has the form of:

(10.14) NormS
H : πHV (X) −→ π

G〈S〉
SnHV (NS

HX) .

Here S an H-invariant subset of G, V is an H-representation, S nH V the induced G〈S〉-representation, X
is an H-spectrum and

NS
HX = 〈S : H〉ΣnoHPnX

is the norm construction based on the invariant subset S of index n = [S : H]. For S = G this gives
the external norm map for the norm construction NG

HX in the sense of Section 9. The ‘internal’ norm
map (10.1) is then obtained from the external norm map for X = R by postcomposing with the effect of
the adjunction counit ε : NG

HR −→ R.
The construction of the external norm map is the same as for the internal norm map, except that the

morphism εḡ : Ψ∗ḡ(P
nR) −→ R has no analog and does not occur. So the external norm map is the

composite

πHV (X)
Pn−−−→ πΣnoH

V n (PnX)
Ψ∗ḡ−−−→ π

G〈S〉
Ψ∗ḡ(V n)(Ψ

∗
ḡ(P

nX))
iḡ∗−−−→ π

G〈S〉
SnHV (NS

HX)

where ḡ is a choice of H-basis for S with associated monomorphism Ψḡ : G〈S〉 −→ Σm oH (and the map
does not depend on this choice).

The external norm map has various properties that are analogues, or rather precursors, of corresponding
properties of the internal norm map:

(i) We have NormS
H(0) = 0 and NormH

H(x) = x. When X = S is the H-sphere spectrum, we have

NS
HS = S, the G-sphere spectrum, and NormS

H(1) = 1 in π
G〈S〉
0 S.

(ii) The external norm maps are transitive, i.e., for subgroups K ⊆ H ⊆ G we have

NormG
H ◦NormH

K = NormG
K : πHV (X) −→ πGGnKV (NG

KX) .

Here we used the identification G nH (H nK V ) ∼= G nK V and the transitivity isomorphism
NG
H (NG

KX) ∼= NG
KX.

(iii) The norm map is multiplicative with respect to external product: for two orthogonal H-spectra X
and Y and classes x ∈ πHV X and y ∈ πHWY we have

(NormG
H x) · (NormG

H y) = NormG
H(x · y)

in the group πGGnH(V⊕W )N
G
H (X ∧ Y ), using the identification NG

HX ∧ NG
HY

∼= NG
H (X ∧ Y ) and

(GnH V )⊕ (GnH W ) ∼= GnH (V ⊕W ).
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(iv) The external norm map is also compatible with the geometric fixed point map in the sense that the
square

πHV (X)
NormG

H //

ΦH

��

πGG×HV (NG
HX)

ΦG

��
πk(ΦHX)

π∗∆
// πk(ΦG(NG

HX))

commutes, where k = dim(V H) = dim(G ×H V )G and the morphism ∆ : ΦHX −→ ΦG(NG
HX) was

defined in (9.11).

We will not prove the ‘external’ forms of these formulas; they can be guessed by systematically ‘exter-
nalizing’ the proofs for the internal norm map.
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FGX, fixed points 67

FV , free orthogonal G-spectrum generated in level V
49

FV A, free orthogonal spectrum generated by A 49

G-spectrum

free, 47

G nH Y , induced spectrum 28

GV L, semifree orthogonal G-spectrum 50

HM , Eilenberg-Mac Lane spectrum 10

JX,V , natural map NG
H (X(V )) −→ (NG

HX)(G nH V )

82

MO, unoriented cobordism spectrum 71

MR, real cobordism spectrum 11

PmX, m-th power of X 75

RO(G)-graded homotopy groups, 38

S(V ), unit sphere of V 2

SV , one-point compactification of V 1

XG, naive fixed points 66

∆, natural morphism ΦHX −→ ΦG(NG
HX) 84

Ho(SpG), G-equivariant stable homotopy category 14

Hom(X,Y ), 50

NormG
H , external norm map 99

O(G), orbit category of G 2

ΦGX, geometric fixed points 68

Σ∞, suspension spectrum 10

TrGH , external transfer 30

πk, homotopy group 4

α∗, restriction along group homomorphism 15

L, category of inner product spaces and isometric

embeddings 52

L(V,W ), space of linear isometries 47

O(V,W ), Thom space of orthogonal complement bundle

47

ρ̄G, reduced regular representation of G 13

χm,n, shuffle permutation 3

ηC2
, C2-equivariant Hopf map 42

evV , evaluation functor at level V 50

ι, 4

κ, map SW −→ O(V, V ⊕W ) 48

λX , natural morphism SV ∧X −→ shV X 19

〈G|−〉, homomorphism πΣmoH
Vm (PnR) −→ πG

GnHV (R)

86

S, sphere spectrum 10

map(X,Y ), mapping space 50

mapH(G, Y ), coinduced spectrum 27

normG
H , norm map 86

πG
V , V -graded equivariant homotopy group 38

πG
k , equivariant homotopy group 12

ρG, regular representation of G 2

shV , shift homomorphism πG
0 X −→ πG

V (shV X) 19

Sp, category of orthogonal spectra 2

〈G : H〉, set of coset representatives 79

〈S|−〉, norm operator πH
V R −→ π

G〈S〉
SnHV R 86

ẼP, 68

trGH , internal transfer 30

ξ(V,W ), orthogonal complement vector bundle 47

ζH , summand inclusion in tom Dieck splitting 57

f �W , stabilization of f by W 8

g∗, conjugation map on equivariant homotopy groups

16, conjugation map 40

g?, conjugation map on RO(G)-graded homotopy 40

action map, 48

assembly map, 26

bilinearity diagram

of a bimorphism, 4

bimorphism, 4

Bredon homology, 61

Burnside ring, 63

cobordism spectrum

real, 11, 71, 83

unoriented, 71

coinduced spectrum, 27

colimit

of orthogonal G-spectra, 45

composition formula

for norm map, 77

conjugation map, 33

on RO(G)-graded homotopy groups, 40

on equivariant homotopy groups, 16, 33

connecting homomorphism, 22, 23

in a G-homology theory, 60

degree, 65

double coset formula, 36

external, 34

external RO(G)-graded, 40

for internal norm map, 88, 95

internal, 35

internal RO(G)-graded, 41

Eilenberg-Mac Lane spectrum, 10, 43, 98

of a ZG-module, 10, 61

of a Mackey functor, 44

exhausting sequence, 55

fixed points, 67

geometric, 68

naive, 66

of a free spectrum, 70

of a suspension spectrum, 69

of coinduced spectra, 70

of induced spectra, 71

free G-spectrum, 47

function spectrum, 50

G-homology theory, 59

G-Ω-spectrum, 20

101



102 STEFAN SCHWEDE

generalized structure map

of an orthogonal G-spectrum, 7

geometric fixed point map, 41, 68

geometric fixed points, 68

of a free spectrum, 70

of a normed spectrum, 84

of a suspension spectrum, 69

of coinduced spectra, 70

of induced spectra, 71

homology theory

equivariant, 59

homotopy fiber, 21

homotopy group, 4, 12

RO(G)-graded, 38

of a shift, 19

of a suspended spectrum, 18

of a wedge, 24

of an orthogonal G-spectrum, 12

Hopf map, 42

induced spectrum, 28

inner product space, 7

invariant subset, 86

isotropy separation sequence, 69

L-G-space, 52

level

of an orthogonal spectrum, 2

level equivalence

strong, 53

limit

of orthogonal G-ring spectra, 45

of orthogonal G-spectra, 45

linearization

of a space, 10

long exact sequence

of homotopy groups, 23

loop spectrum, 17, 46

map, 50

mapping cone, 21, 22

mapping space, 50

morphism

of orthogonal spectra, 2

multiplication

in stable stems, 37

naive fixed points, 66

norm, 80

multiplicative, 78

of a free spectrum, 82

of a semifree spectrum, 83

norm map, 86

external, 99

for Eilenberg-Mac Lane spectra, 98

for equivariant sphere spectra, 96

orbit category, 2

orthogonal G-ring spectrum, 6

orthogonal G-spectrum, 6

semifree, 50, 83

orthogonal function spectrum, 101

orthogonal ring spectrum, 2

commutative, 3

orthogonal spectrum, 2

π∗-isomorphism, 14

power map

composition formula, 77

product formula, 77

sum formula, 77

product

on RO(G)-graded homotopy groups, 38

on equivariant homotopy groups

external, 37

product formula

for norm map, 77

real bordism spectrum, 11, 71, 83

real spectrum, 71

reciprocity, 38

regular representation, 2

reduced, 13

restriction map

on RO(G)-graded homotopy groups, 39

on equivariant homotopy groups, 15, 16

ring spectrum

orthogonal, see also orthogonal ring spectrum

semifree orthogonal G-spectrum, 50

shearing isomorphism, 26

shift, 18

shift homomorphism, 19

smash product, 5

of a G-space and orthogonal G-spectrum, 45

of an L-space and orthogonal spectrum, 52

spectrum

orthogonal, see also orthogonal spectrum

sphere spectrum, 4, 61

equivariant, 10

stabilization

of a map by a representation, 8

stabilization map, 4

stable homotopy category

G-equivariant, 14

strong level equivalence, 53

structure map

generalized, 7

sum formula

for power map, 77

suspension, 17, 46

suspension isomorphism

for homotopy groups, 17

in a G-homology theory, 60

suspension spectrum, 10

TNR-functor, 96

tom Dieck splitting, 57, 69
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transfer

external, 30, 57

internal, 30
on RO(G)-graded homotopy groups, 40

on equivariant homotopy groups, 30

transfer map, 31

unit maps, 3

universal property
of smash product, 5

universe, 36, 61

complete, 37
trivial, 37

Wirthmüller isomorphism, 28
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