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Appendix to Lecture XVII: Dieudonné theory over perfectoid rings 130
18. Lecture XVIII: v-sheaves associated with perfect and formal schemes 133
19. Lecture XIX: The B+

dR-affine Grassmannian 139
Appendix to Lecture XIX: G-torsors 146
20. Lecture XX: Families of affine Grassmannians 149
21. Lecture XXI: Affine flag varieties 156
Appendix to Lecture XXI: Examples 161
22. Lecture XXII: Vector bundles and G-torsors on the relative Fargues-Fontaine curve 168
23. Lecture XXIII: Moduli spaces of shtukas 174
24. Lecture XXIV: Local Shimura varieties 182
25. Lecture XXV: Integral models of local Shimura varieties 188

Bibliography 195

3





p-adic geometry

Preface

This is a revised version of the lecture notes for the course on p-adic geometry given by P. Scholze
in Fall 2014 at UC Berkeley. At a few points, we have expanded slightly on the material, in particular
so as to provide a full construction of local Shimura varieties and general moduli spaces of shtukas,
along with some applications to Rapoport-Zink spaces, but otherwise we have tried to keep the
informal style of the lectures.

Let us give an outline of the contents:
In the first half of the course (Lectures I-X) we construct the category of diamonds, which are

quotients of perfectoid spaces by so-called pro-étale equivalence relations. In brief, diamonds are
to perfectoid spaces as algebraic spaces are to schemes.

• Lecture I is an introduction, explaining the motivation coming from the Langlands corre-
spondence and moduli spaces of shtukas.

• In Lectures II-V we review the theory of adic spaces [Hub94].

• In Lectures VI-VII we review the theory of perfectoid spaces [Sch12].

• In Lectures VIII-X we review the theory of diamonds [Sch17].

In the second half of the course (Lectures XI-XXV), we define spaces of mixed-characteristic
local shtukas, which live in the category of diamonds. This requires making sense of products like
Spa Qp × S, where S is an adic space over Fp.

• In Lecture XI we give a geometric meaning to Spa Zp × S, where S is a perfectoid space
in characteristic p, and we define the notion of a mixed-characteristic local shtuka.

• In Lectures XII-XV, we study shtukas with one leg, and their connection to p-divisible
groups and p-adic Hodge theory.

• In Lecture XVI, we prove the analogue of Drinfeld’s lemma for the product Spa Qp ×
Spa Qp.

• In Lectures XVIII-XXIII, we construct a moduli space of shtukas for any triple (G, b, {µ1, . . . , µm}),
for any reductive group G/Qp, any σ-conjugacy class b, and any collection of cocharacters
µi. This moduli space is a diamond, which is fibered over the m-fold product of Spa Qp.
Proving this is somewhat technical; it requires the technology of v-sheaves developed in
Lecture XVII.
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6 p-ADIC GEOMETRY

• In Lecture XXIV, we show that our moduli spaces of shtukas specialize (in the case of one
leg) to local Shimura varieties, which in turn specialize to Rapoport-Zink spaces. For this
we have to relate local shtukas to p-divisible groups.

• In Lecture XXV, we address the question of defining integral models for local Shimura
varieties.

Since 2014, some of the material of this course has found its way to other manuscripts which
discuss it in more detail, in particular [Sch17], and we will often refer to these references. In
particular, the proper foundations on diamonds can only be found in [Sch17]; here, we only survey
the main ideas in the same way as in the original lectures. In this way, we hope that this manuscript
can serve as an informal introduction to these ideas.

During the semester at Berkeley, Laurent Fargues formulated his conjecture on the geometriza-
tion of the local Langlands conjecture, [Far16], which is closely related to the contents of this
course, but leads to a radical change of perspective. We have kept the original perspective of the
lecture course in these notes, so that Fargues’ conjecture does not make an explicit appearance.

Acknowledgments. We thank the University of California at Berkeley for the opportunity
to give these lectures and hosting us in Fall 2014. Moreover, we thank all the participants of the
course for their feedback, and we would like to thank especially Brian Conrad and João Lourenço
for very detailed comments and suggestions for improvements. Part of this work was done while
the first author was a Clay Research Fellow.

May 2019 Peter Scholze, Jared Weinstein
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1. Lecture I: Introduction

1.1. Motivation: Drinfeld, L. Lafforgue and V. Lafforgue. The starting point for this
course is Drinfeld’s work [Dri80] on the global Langlands correspondence over function fields. Fix
X/Fp a smooth projective curve, with function field K. The Langlands correspondence for GLn /K
is a bijection π 7→ σ(π) between the following two sets (considered up to isomorphism):

• Cuspidal automorphic representations of GLn(AK), where AK is the ring of adèles of K,
and
• Irreducible representations Gal(K/K)→ GLn(Q`).

Whereas the global Langlands correspondence is largely open in the case of number fields K,
it is a theorem for function fields, due to Drinfeld (n = 2, [Dri80]) and L. Lafforgue (general n,
[Laf02]). The key innovation in this case is Drinfeld’s notion of an X-shtuka (or simply shtuka, if
X is clear from context).

Definition 1.1.1. A shtuka of rank n over an Fp-scheme S is a pair (E , ϕE), where E is a rank n
vector bundle over S×FpX and ϕE : Frob∗S E 99K E is a meromorphic isomorphism which is defined
on an open subset U ⊂ S ×Fp X that is fiberwise dense in X. Here, FrobS : S ×Fp X → S ×Fp X
refers to the product of the pth power Frobenius map on S with the identity on X.

The Langlands correspondence for X is obtained by studying moduli spaces of shtukas.
Suppose we are given a shtuka (E , ϕE) of rank n over S = Spec k, where k is algebraically closed.

We can attach to it the following data:

(1) The collection of points x1, . . . , xm ∈ X(k) where ϕE is undefined. We call these points
the legs of the shtuka.

(2) For each i = 1, . . . ,m, a conjugacy class µi of cocharacters Gm → GLn, encoding the
behaviour of ϕE near xi.

The second item deserves some explanation. Let x ∈ X(k) be a leg of the shtuka, and let
t ∈ OX,x be a uniformizing parameter at x. We have the completed stalks (Frob∗S E)∧x and E∧x .
These are free rank n modules over O∧X,x ∼= k[[t]], whose generic fibers are identified using ϕE . In

other words, we have two k[[t]]-lattices in the same n-dimensional k((t))-vector space.
By the theory of elementary divisors, there exists a basis e1, . . . , en of E∧x such that tk1e1, . . . , t

knen
is a basis of (Frob∗S E)∧x , where k1 ≥ · · · ≥ kn. These integers depend only on the shtuka.
Another way to package this data is as a conjugacy class µ of cocharacters Gm → GLn, via
µ(t) = diag(tk1 , . . . , tkn). Either way, we have one such datum for each of the legs x1, . . . , xm.

Thus there are some discrete data attached to a shtuka: the number of legs m, and the ordered
collection of cocharacters (µ1, . . . , µm). Fixing these, we can define a moduli space ShtGLn,{µ1,...,µm}
whose k-points classify the following data:

(1) An m-tuple of points (x1, . . . , xm) of X(k), together with
(2) A shtuka (E , ϕE) of rank n with legs x1, . . . , xm, for which the relative position of E∧xi and

(Frob∗S E)∧xi is bounded by the cocharacter µi for all i = 1, . . . ,m.

It is known that ShtGLn,{µ1,...,µm} is a Deligne-Mumford stack. Let

f : ShtGLn,{µ1,...,µm} → Xm

map a shtuka onto its m-tuple of legs. One can think of ShtGLn,{µ1,...,µm} as an equal-characteristic
analogue of Shimura varieties, which are fibered over Spec Z (or more generally over SpecOE [1/N ],



8 p-ADIC GEOMETRY

where E is a number field). But of course Shimura varieties are not fibered over anything like
“Spec Z×F1 Spec Z”. In this sense the function field theory is more complete.

One can add level structures to these spaces of shtukas, parametrized by finite closed subschemes
N ⊂ X (that is, effective divisors). A level N structure on (E , ϕE) is then a trivialization of the
pullback of E to N in a way which is compatible with ϕE .

As a result we get a family of stacks ShtGLn,{µ1,...,µm},N and morphisms

fN : ShtGLn,{µ1,...,µm},N → (X\N)m.

The stack ShtGLn,{µ1,...,µm},N carries an action of GLn(ON ), by altering the trivialization of E
on N . The inverse limit lim←−N ShtGLn,{µ1,...,µm},N even admits an action of GLn(AK), via Hecke
correspondences.

Recall that our motivation was the Langlands correspondence, which connects cuspidal auto-
morphic representations of GLn(AK) with `-adic representations of Gal(K/K). To do this, we
consider the middle cohomology of the ShtGLn,{µ1,...,µm},N . Let d be the relative dimension of f ,

and consider the cohomology Rd(fN )!Q`, an étale Q`-sheaf on Xm.
Before carrying out our analysis of Rd(fN )!Q`, let us consider a simpler sort of object, namely a

Q`-sheaf L on Xm, which becomes lisse when restricted to Um for some dense open subset U ⊂ X.
Then we can think of L as a representation of the étale fundamental group π1(Um) on an Q`-vector
space1. Ultimately we want to relate this to π1(U), because this is a quotient of Gal(K/K). There
is a natural homomorphism

π1(Um)→ π1(U)× · · · × π1(U) (m copies).

This map isn’t surjective, because the target has m different Frobenius elements, while the source
only has one. After extending the base field from Fp to Fp, this map indeed becomes surjective.
But (regardless of the base) the map is not injective2.

These problems can be addressed by introducing partial Frobenii. For i = 1, . . . ,m, we have a
partial Frobenius map Fi : X

m → Xm, which is FrobX on the ith factor, and the identity on each
other factor. For an étale morphism V → Xm, let us say that a system of partial Frobenii on V
is a commuting collection of isomorphisms F ∗i V

∼= V over Xm (and whose product is the relative
Frobenius of V → Xm). Finite étale covers of Um equipped with partial Frobenii form a Galois
category, and thus (recall we have already chosen a base point) they are classified by continuous
actions of a profinite group π1(Um/partial Frob.) on a finite set.

Lemma 1.1.2 ([Dri80, Theorem 2.1]). The natural map

π1(Um/partial Frob.)→ π1(U)× · · · × π1(U) (m copies)

is an isomorphism.

The lemma shows that if L is a Q`-local system on Um, which comes equipped with commuting
isomorphisms F ∗i L ∼= L, then L determines a representation of π1(U)m on a Q`-vector space.

1Here and elsewhere in this introduction, we ignore base points.
2The standard counterexample is the Artin-Schreier cover xp − x = st of the product SpecFp[s]×Fp SpecFp[t],

which corresponds to an Fp-valued character of π1(A2
Fp

) which does not factor through π1(A1
Fp

)2. Generally, if X

and Y are connected varieties over an algebraically closed field, the Künneth formula π1(X × Y ) ∼= π1(X)× π(Y ) is
valid in characteristic 0, and in characteristic p if the varieties are proper.



1. LECTURE I: INTRODUCTION 9

Studying the geometry of the moduli space of shtukas, one finds that it (essentially) admits partial
Frobenii morphisms lying over the Fi, and therefore so does its cohomology.

Remark 1.1.3. We cannot literally apply this lemma to our sheaf Rd(fN )!Q` as it is not
constructible (fN is not of finite type, or even quasi-compact) and not a priori lisse on any subset
of the form Um. Drinfeld considers a “bounded” variant of this sheaf and shows that it extends to
a lisse sheaf on (X\N)m.

Passing to the limit over N , one gets a big representation of GLn(AK) × Gal(K/K) × · · · ×
Gal(K/K) on lim−→N

Rd(fN )!Q`. Roughly, the way one expects (the cuspidal part of) this space to
decompose is as follows:

lim−→
N

Rd(fN )!Q` =
⊕
π

π ⊗ (r1◦σ(π))⊗ · · · ⊗ (rm◦σ(π)),

where

• π runs over cuspidal automorphic representations of GLn(AK),
• σ(π) : Gal(K/K)→ GLn(Q`) is the corresponding L-parameter, and
• ri : GLn → GLni is an algebraic representation corresponding to µi. (If the µi are not

minuscule, one should replace Q` with the intersection complex, and then ri would be the
irreducible representation of GLn with heighest weight µi.)

Drinfeld (n = 2, [Dri80]) and L. Lafforgue (general n, [Laf02]) considered the case of m = 2,
with µ1 and µ2 corresponding to the n-tuples (1, 0, . . . , 0) and (0, . . . , 0,−1) respectively. These
cocharacters correspond to the tautological representation r1 : GLn → GLn and its dual r2. Then
they were able to prove the claimed decomposition, and in doing so constructed the Langlands
correspondence π 7→ σ(π).

V. Lafforgue [Laf12] considered general reductive groupsG in place of GLn. There is a definition
of G-shtuka, which involves G-bundles in place of vector bundles. Using moduli of G-shtukas,
[Laf12] produces a correspondence π 7→ σ(π) from cuspidal automorphic representations of G to
L-parameters (though it doesn’t prove the full Langlands conjecture for G). In his work, all of
the moduli spaces ShtG,{µ1,...,µm} (with arbitrarily many legs, and arbitrary cocharacters) are used
simultaneously in a crucial way.

Evidently Frobenius plays an important role in this story. We remark that geometric Langlands
studies the stack BunG of G-bundles on X, even in circumstances where X is a complex curve; there
is no Frobenius in that theory. Our story concerns arithmetic Langlands; it can be reformulated as
a study of BunG together with its Frobenius map.

1.2. The possibility of shtukas in mixed characteristic. It would be desirable to have
moduli spaces of shtukas over number fields, but as we noted earlier, the first immediate problem
is that such a space of shtukas would live over something like Spec Z× Spec Z, where the product
is over F1 somehow.

In this course we will give a rigorous definition of Spec Zp×Spec Zp, the completion of Spec Z×
Spec Z at (p, p). It lives in the world of nonarchimedean analytic geometry, so it should properly be
called Spa Zp × Spa Zp. (The notation Spa refers to the adic spectrum.) Whatever it is, it should
contain Spa Qp × Spa Qp as a dense open subset. As a preview of material to come, we now give
an explicit description of Spa Qp × Spa Qp.
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It may help to first spell out the equal characteristic analogue of these objects, replacing Qp

with the Laurent series field K = Fp((t)). The product SpaOK ×SpaFp SpaOK exists as an adic
space. Let us rename the second copy of OK as Fp[[u]]; then SpaOK ×SpaFp SpaOK ∼= Spa Fp[[t, u]],
the formal open polydisc of dimension 2 over Fp. Within this, SpaK ×SpaFp SpaK is the open
subset defined by tu 6= 0.

Projection onto the first factor presents SpaK ×SpaFp SpaK as the (rigid-analytic) punctured
disc D∗K over K, with coordinate u satisfying 0 < |u| < 1, and t being in the field of constants. But
all the same, the projection onto the second factor presents this adic space as D∗K in a different
way, with the roles of the two variables reversed.

Returning to characteristic 0, we can now present a model for the product Spa Qp × Spa Qp,
specified by picking one of the factors: one copy of Qp appears as the field of scalars, but the other
copy appears geometrically. Consider the open unit disc DQp = {x| |x| < 1} as a subgroup of (the
adic version of) Gm, via x 7→ 1 + x. Then DQp is in fact a Zp-module with multiplication by p
given by x 7→ (1 + x)p − 1, and we consider

D̃Qp = lim←−
x 7→(1+x)p−1

DQp .

After base extension to a perfectoid field, this is a perfectoid space, which carries the structure

of a Qp-vector space. Thus its punctured version D̃∗Qp
= D̃Qp \ {0} has an action of Q×p , and

we consider the quotient D̃∗Qp
/Z×p . Note that this quotient does not exist in the category of adic

spaces!

Definition 1.2.1. Let Spa Qp×Spa Qp = D̃∗Qp
/Z×p , the quotient being taken in a formal sense.

On D̃∗Qp
/Z×p , we have an operator ϕ, corresponding to p ∈ Q×p . Let X = (D̃∗Qp

/Z×p )/ϕZ =

D̃∗Qp
/Q×p . One can define a finite étale cover of X simply as a Q×p -equivariant finite étale cover

of D̃∗Qp
. There is a corresponding profinite group π1(X) which classifies such covers. We have the

following theorem, which is a local version of Drinfeld’s lemma in the case m = 2.

Theorem 1.2.2. We have

π1(X) ∼= Gal(Qp/Qp)×Gal(Qp/Qp).

Similarly, in the case of K = Fp((t)), one can form the quotient X = D∗K/ϕ
Z as an adic space, and

then
π1(X) ∼= Gal(K/K)×Gal(K/K).

This theorem suggests that if one could define a moduli space of Qp-shtukas which is fibered
over products such as Spa Qp × Spa Qp, then its cohomology would produce representations of

Gal(Qp/Qp)×Gal(Qp/Qp).
What would a Qp-shtuka over S look like? It should be a vector bundle E over Spa Qp × S,

together with a meromorphic isomorphism Frob∗S E 99K E . In order for this to make any sense,
we would need to give a geometric meaning to Spa Qp × S (and to FrobS) just as we gave one to
Spa Qp × Spa Qp.

If we turn to the equal characteristic setting for inspiration, the way forward is much clearer.
Let K be a local field of characteristic p, say K = Fp((t)). For a (topologically finite type, let’s
say) adic space S over Spa Fp, the product SpaK×SpaFp S is again an adic space; namely, it is the
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punctured open unit disc over S. One can make sense of G-bundles on this, and thereby one can
define shtukas. Moduli spaces of K-shtukas were studied by Hartl, Pink, Viehmann, and others,
cf. [HP04], [HV11].

Returning to the case K = Qp, we will give a similar meaning to Spa Qp × S whenever S
is a perfectoid space of characteristic p, which lets us define moduli spaces of p-adic shtukas. In
general, these are not representable by perfectoid spaces or classical rigid spaces, but instead they
are diamonds: That is, quotients of perfectoid spaces by pro-étale equivalence relations. A large
part of this course is about the definition of perfectoid spaces and diamonds.

There is an important special case where these moduli spaces of shtukas are classical rigid-
analytic spaces. This is the case of local Shimura varieties. Some examples of these are the
Rapoport-Zink spaces, [RZ96], which are moduli spaces of p-divisible groups. It was recently
suggested by Rapoport-Viehmann, [RV14], that there should exist more general local Shimura
varieties which do not have an interpretation as moduli spaces of p-divisible groups. We will prove
their existence in general, and the comparison to Rapoport-Zink spaces.
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2. Lecture II: Adic spaces

In this lecture and the one that follows, we review the theory of adic spaces as developed by
Huber in [Hub93] and [Hub94].

2.1. Motivation: formal schemes and their generic fibers. To motivate these, let us
recall two familiar categories of geometric objects which arise in nonarchimedean geometry: formal
schemes and rigid-analytic varieties.

Formal schemes. An adic ring is a topological ring carrying the I-adic topology for an ideal I ⊂ A,
called an ideal of definition. (Examples: A = Zp and I = pZp, or A = Zp[[T ]] and I = (p, T ), or A
an arbitrary discrete ring, I = (0).) Note that the topology of A is part of the data, but the ideal
of definition is not, and indeed there may be many ideals of definition. More precisely, for ideals I
and J of A, the I-adic and J-adic topology agree if and only if for some integer n, one has In ⊂ J
and Jn ⊂ I.

For an adic ring A, Spf A is the set of open prime ideals of A; this agrees with SpecA/I for
any ideal of definition I. Spf A is given a topology and a sheaf of topological rings much in the
same way as is done for the usual spectrum of a ring. To wit, for any f ∈ A, one defines the
nonvanishing locus D(f) ⊂ Spf A as usual, and then one declares that the D(f) generate the
topology of Spf A. Furthermore, the structure sheaf OSpf A is defined by setting OSpf A(D(f)) to be
the I-adic completion of A[f−1]. A formal scheme is a topologically ringed space which is locally
of the form Spf A for an adic ring A. In this discussion, we will only consider formal schemes which
locally have a finitely generated ideal of definition.3

The category of formal schemes contains the category of schemes as a full subcategory, via the
functor which carries SpecA to Spf A, where A is considered with its discrete topology.

In applications (especially deformation theory), one often confuses a formal scheme X with its
functor of points R 7→ X(R), where R is an adic ring. A typical example of a formal scheme is
X = Spf Zp[[T ]], the formal open unit disc over Zp; for any adic Zp-algebra R, we have X(R) =
R◦◦, the ideal of topologically nilpotent elements of R. In particular if K/Qp is an extension of
nonarchimedean fields, and K◦ ⊂ K is its ring of integers, X(K◦) = K◦◦ is the open unit disc in
K.

Rigid-analytic spaces. (References: [Con07], [BGR84].) Let K be a nonarchimedean field;
that is, a field complete with respect to a nontrivial non-archimedean absolute value | |. For each
n ≥ 0 we have the Tate K-algebra K〈T1, . . . , Tn〉. This is the completion of the polynomial ring
K[T1, . . . , Tn] under the Gauss norm. Equivalently, K〈T1, . . . , Tn〉 is the ring of formal power series
in T1, . . . , Tn with coefficients in K tending to 0. A K-affinoid algebra is a topological K-algebra
A which is isomorphic to a quotient of some K〈T1, · · · , Tn〉.

Suppose A is a K-affinoid algebra. For a point x ∈ MaxSpecA, the residue field of x is a finite
extension of K, which therefore carries a unique extension of the absolute value | |. For f ∈ A, let

3One reason that this is a useful condition is that the following, surprisingly subtle, lemma holds true.

Lemma 2.1.1 ([Sta, Tag 00M9]). Let A be a ring, let M be an A-module, and let I ⊂ A be a finitely generated
ideal. Then for

M̂ = lim←−M/InM

the I-adic completion of M , one has M̂/IM̂ = M/IM .

This implies that M̂ is I-adically complete. The lemma fails in general if I is not finitely generated.
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f(x) denote the image of f in this residue field, and let |f(x)| denote its absolute value under this
extension. For elements f1, . . . , fn, g ∈ A which generate the unit ideal, let

U

(
f1, . . . , fn

g

)
=

{
x ∈ MaxSpecA

∣∣∣∣ |fi(x)| ≤ |g(x)| , i = 1, . . . , n

}
;

this is called a rational domain. MaxSpecA is given a topology (actually a G-topology) in which
rational domains are open, and one defines a sheaf of K-algebras on MaxSpecA by specifying
its sections over a rational domain. The resulting topologically ringed G-topologized space is a
K-affinoid space; a rational domain in a K-affinoid space is again a K-affinoid space. Finally, a
rigid-analytic space over K is a G-topologized space equipped with a sheaf of K-algebras, which is
locally isomorphic to a K-affinoid space.

A typical example is X = MaxSpec Qp〈T 〉, the rigid closed unit disc over Qp. For an extension
K/Qp, X(K) = K◦. Within X we have the open subset U defined by |T | < 1; thus U is the
rigid open unit disc, and U(K) is the open unit disc in K. The subset U is not a rational subset,
nor is it even an affinoid space; rather it is the ascending union of rational domains U(Tn/p) for
n = 1, 2, . . . .

The two categories are closely linked. There is a generic fiber functor X 7→ Xη from a certain
class of formal schemes over Spf Zp (locally formally of finite type) to rigid-analytic spaces over Qp,
cf. [Ber]. This has the property that X(K◦) = Xη(K) for extensions K/Qp. Recall that an adic
Zp-algebra A is formally of finite type if it is a quotient of Zp[[X1, . . . , Xn]]〈Y1, . . . , Ym〉 for some n,
m.

The image of the formal open disc Spf Zp[[T ]] over Zp under this functor is the rigid open disc
over Qp. Berthelot’s construction is somewhat indirect. It isn’t literally a generic fiber, since Spf Zp
has only one point (corresponding to pZp), so there is no generic point η with residue field Qp.
(One might be tempted to define the generic fiber of Spf Zp[[T ]] as MaxSpec Zp[[T ]][1/p], but the
latter ring is not a Tate algebra, and in any case we do not expect the generic fiber to be an affinoid.
See Section 4.2.)

Our goal is to construct a category of adic spaces which contains both formal schemes and rigid-
analytic spaces as full subcategories. We will use the notation X 7→ Xad to denote the functor from
formal schemes to adic spaces. Objects in the new category will once again be topologically ringed
spaces. But whereas Spf Zp contains only one point, (Spf Zp)

ad has two points: a generic point η
and a special point s. Thus as a topological space it is the same as Spec Zp.

If X is a formal scheme over Spf Zp, then Xad is fibered over (Spf Zp)
ad, and we can define the

adic generic fiber of X by

Xad
η = Xad ×(Spf Zp)ad {η} .

If X is locally formally of finite type, then Xad
η agrees with the adic space attached to Berthelot’s

Xη.
Just as formal schemes are built out of affine formal schemes associated to adic rings, and

rigid-analytic spaces are built out of affinoid spaces associated to affinoid algebras, adic spaces are
built out of affinoid adic spaces, which are associated to pairs of topological rings (A,A+) (where
A+ plays a secondary role). The affinoid adic space associated to such a pair is written Spa(A,A+),
the adic spectrum.

In this lecture we will define which pairs (A,A+) are allowed, and define Spa(A,A+) as a
topological space.
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2.2. Huber rings.

Definition 2.2.1. A topological ring A is Huber4 if A admits an open subring A0 ⊂ A which is
adic with respect to a finitely generated ideal of definition. That is, there exists a finitely generated
ideal I ⊂ A0 such that {In|n ≥ 0} forms a basis of open neighborhoods of 0. Any such A0 is called
a ring of definition of A.

Note that A0 is not assumed to be I-adically complete.5 One can always take the completion

Â of A: Â is Huber and has an open subring Â0 ⊂ Â that is simultaneously the closure of A0 and

the I-adic completion of A0, and Â = Â0 ⊗A0 A, cf. [Hub93, Lemma 1.6].

Example 2.2.2. We give three examples to indicate that adic spaces encompass schemes, formal
schemes, and rigid spaces, respectively.

(1) (Schemes) Any discrete ring A is Huber, with any A0 ⊂ A allowed (take I = 0 as an ideal
of definition).

(2) (Formal schemes) An adic ring A is Huber if it has a finitely generated ideal of definition.
In that case, A0 = A is a ring of definition.

(3) (Rigid spaces) Let A0 be any ring, let g ∈ A0 be a nonzero-divisor, and let A = A0[g−1],
equipped with the topology making {gnA0} a basis of open neighborhoods of 0. This is
Huber, with ring of definition A0 and ideal of definition gA0. For example, if A is a Banach
algebra over a nonarchimedean field K, we can take A0 ⊂ A to be the unit ball, and g ∈ K
any nonzero element with |g| < 1. Then A is a Huber ring of this type.

The Banach algebras relevant to rigid analytic geometry (over a nonarchimedean field K with
ring of integers OK) arise as quotients of the Tate algebra A = K〈T1, . . . , Tn〉, consisting of power
series in T1, . . . , Tn whose coefficients tend to 0. This is a Banach K-algebra with unit ball A0 =
OK〈T1, . . . , Tn〉.

Definition 2.2.3. A subset S of a topological ring A is bounded if for all open neighborhoods
U of 0 there exists an open neighborhood V of 0 such that V S ⊂ U .

In verifying this condition for subsets of Huber rings, one is allowed to shrink U , and without
loss of generality one may assume that U is closed under addition, because after all {In} forms a
basis of open neighborhoods of 0.

Lemma 2.2.4. A subring A0 of a Huber ring A is a ring of definition if and only if it is open
and bounded.

Proof. If A0 is a ring of definition, it is open (by definition). Let U be an open neighborhood
of 0 in A. Without loss of generality U = In, with n� 0. But then of course V = In suffices. For
the converse, see [Hub93, Proposition 1]. �

The following special class of Huber rings will be especially relevant later on.

Definition 2.2.5. A Huber ring A is Tate if it contains a topologically nilpotent unit g ∈ A.
A pseudo-uniformizer in A is a topologically nilpotent unit.

4We propose to use the term Huber ring to replace Huber’s terminology f-adic ring. The latter poses a threat of
confusion when there is also a variable f .

5Throughout, by “complete” we mean “separated and complete”.
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The Tate rings are exactly the rings that arise by the construction of Example (3) above. For
example Qp and Qp〈T 〉 are Tate with pseudo-uniformizer p, but Zp and Zp[[T ]] are not Tate.

Proposition 2.2.6.

(1) If A = A0[g−1] is as in Example (3), then A is Tate.
(2) If A is Tate with topologically nilpotent unit g, and A0 ⊂ A is any ring of definition,

then there exists n large enough so that gn ∈ A0, and then A0 is gn-adic. Furthermore
A = A0[(gn)−1].

(3) Suppose A is Tate with g as above and A0 a ring of definition. A subset S ⊂ A is bounded
if and only if S ⊂ g−nA0 for some n.

Proof. (1) Since g ∈ A = A0[g−1] is a topologically nilpotent unit, A is Tate by definition.
(2) Let I ⊂ A0 be an ideal of definition. Since g is topologically nilpotent, we can replace g

by gn for n large enough to assume that g ∈ I. Since gA0 is the preimage of A0 under the
continuous map g−1 : A→ A, we have that gA0 ⊂ A0 is open, and thus it contains Im for
some m. Thus we have gmA0 ⊂ Im ⊂ gA0, which shows that A0 is g-adic.

It remains to show that A = A0[g−1]. Clearly A0[g−1] ↪→ A. If x ∈ A then gnx → 0
as n → ∞, since g is topologically nilpotent. Thus there exists n with gnx ∈ A0, and
therefore x ∈ A0[g−1].

(3) Left as exercise. �

We remark that if A is a complete Tate ring and A0 ⊂ A is a ring of definition, with g ∈ A0 a
topologically nilpotent unit in A, then one can define a norm |·| : A→ R≥0 by

|a| = inf{n∈Z|gna∈A0}2
n

Thus |g| = 1/2 and |g−1| = 2. Note that this really is a norm: if |a| = 0, then a ∈ gnA0 for all
n ≥ 0, and thus a = 0. Under this norm, A is a Banach ring whose unit ball is A0.

This construction gives an equivalence of categories between the category of complete Tate rings
(with continuous homomorphisms), and the category of Banach rings A that admit an element
g ∈ A×, |g| < 1 such that |g||g−1| = 1 (with bounded homomorphisms).

Remark 2.2.7. A slight generalization of the “Tate” condition has recently been proposed by
Kedlaya, [Ked17b]. A Huber ring A is analytic if the ideal generated by topologically nilpotent ele-
ments is the unit ideal. Any Tate ring is analytic, but the converse does not hold true, cf. [Ked17b,
Example 1.5.7]. We will discuss the relation further after defining the corresponding adic spectra
in Proposition 4.3.1; that discussion will show that the “analytic” condition is in fact more natural.

Definition 2.2.8. Let A be a Huber ring. An element x ∈ A is power-bounded if {xn|n ≥ 0}
is bounded. Let A◦ ⊂ A be the subring of power-bounded elements.

Example 2.2.9. If A = Qp〈T 〉, then A◦ = Zp〈T 〉, which as we have seen is a ring of definition.
However, if A = Qp[T ]/T 2, with ring of definition Zp[T ]/T 2 carrying the p-adic topology, then
A◦ = Zp ⊕QpT . Since A◦ is not bounded, it cannot be a ring of definition.

Proposition 2.2.10. (1) Any ring of definition A0 ⊂ A is contained in A◦.
(2) The ring A◦ is the filtered union of the rings of definition A0 ⊂ A. (The word filtered here

means that any two subrings of definition are contained in a third.)
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Proof. For any x ∈ A0, {xn} ⊂ A0 is bounded, so x ∈ A◦, giving part (1). For part (2),
we check first that the poset of rings of definition is filtered: if A0, A′0 are rings of definition, let
A′′0 ⊂ A be the ring they generate. We show directly that A′′0 is bounded. Let U ⊂ A be an open
neighborhood of 0; we have to find V such that V A′′0 ⊂ U . Without loss of generality, U is closed
under addition. Pick U1 such that U1A0 ⊂ U , and pick V such that V A′0 ⊂ U1.

A typical element of A′′0 is
∑

i xiyi, with xi ∈ A0, yi ∈ A′0. We have(∑
i

xiyi

)
V ⊂

∑
i

(xiyiV ) ⊂
∑
i

(xiU1) ⊂
∑
i

U = U.

Thus V A′′0 ⊂ U and A′′0 is bounded.
For the claim that A◦ is the union of the rings of definition of A, take any x ∈ A◦, and let A0

be any ring of definition. Then A0[x] is still a ring of definition, since it is still bounded. �

Definition 2.2.11. A Huber ring A is uniform if A◦ is bounded, or equivalently A◦ is a ring
of definition.

We remark that if A is separated, Tate, and uniform, then A is reduced. Indeed, assume x ∈ A
is nilpotent and g ∈ A is a topologically nilpotent unit. Then for all n, the element g−nx ∈ A
is nilpotent, and thus powerbounded, so that g−nx ∈ A◦, i.e. x ∈ gnA◦ for all n ≥ 0. If A◦ is
bounded, it carries the g-adic topology, so if A is separated, then A◦ is g-adically separated, so this
implies x = 0.

Definition 2.2.12. (1) Let A be a Huber ring. A subring A+ ⊂ A is a ring of integral
elements if it is open and integrally closed in A, and A+ ⊂ A◦.

(2) A Huber pair is a pair (A,A+), where A is Huber and A+ ⊂ A is a ring of integral elements.

We remark that one often takes A+ = A◦, especially in cases corresponding to classical rigid
geometry. We also note that the subset A◦◦ ⊂ A of topologically nilpotent elements is always
contained in A+. Indeed, if f ∈ A is topologically nilpotent, then fn ∈ A+ for some n as A+ is
open, but then also f ∈ A+ as A+ is integrally closed.

2.3. Continuous valuations. We now define the set of continuous valuations on a Huber
ring, which constitute the points of an adic space.

Definition 2.3.1. A continuous valuation on a topological ring A is a map

|·| : A→ Γ ∪ {0}
into a totally ordered abelian group Γ such that

(1) |ab| = |a| |b|
(2) |a+ b| ≤ max(|a| , |b|)
(3) |1| = 1
(4) |0| = 0
(5) (Continuity) For all γ ∈ Γ lying in the image of |·|, the set {a ∈ A| |a| < γ} is open in A.

(Our convention is that ordered abelian groups Γ are written multiplicatively, and Γ ∪ {0} means
the ordered monoid with γ > 0 for all γ ∈ Γ. Of course, γ0 = 0.)

Two continuous valuations |·|, |·|′ valued in Γ resp. Γ′ are equivalent when it is the case that
|a| ≥ |b| if and only if |a|′ ≥ |b|′. In that case, after replacing Γ by the subgroup generated by the



2. LECTURE II: ADIC SPACES 17

image of A, and similarly for Γ′, there exists an isomorphism Γ ∼= Γ′ such that

Γ ∪ {0}
∼=
��

A

|·| 55

|·|′
))
Γ′ ∪ {0}

commutes, cf. [Hub93, Definition 2.1].

Note that the kernel of |·| is a prime ideal of A.
The continuous valuations are like the multiplicative seminorms of Berkovich’s theory. At this

point we must apologize that continuous valuations are not called “continuous seminorms”, since
after all they are written multiplicatively. On the other hand, we want to consider value groups of
higher rank (and indeed this is the point of departure from Berkovich’s theory), which makes the
use of the word “seminorm” somewhat awkward.

Definition 2.3.2. The adic spectrum Spa(A,A+) is the set of equivalence classes of continuous
valuations |·| on A such that |A+| ≤ 1. For x ∈ Spa(A,A+), write g 7→ |g(x)| for a choice of
corresponding valuation.

The topology on Spa(A,A+) is generated by open subsets of the form{
x
∣∣ |f(x)| ≤ |g(x)| 6= 0

}
,

with f, g ∈ A.

The shape of these open sets is dictated by the desired properties that both {x| |f(x)| 6= 0}
and {x| |f(x)| ≤ 1} be open. These desiderata combine features of classical algebraic geometry and
rigid geometry, respectively.

Huber shows that the topological space Spa(A,A+) is reasonable (at least from the point of
view of an algebraic geometer).

Theorem 2.3.3 ([Hub93, Theorem 3.5 (i)]). The topological space Spa(A,A+) is spectral.

Here, we recall the following definition.

Definition 2.3.4 ([Hoc69]). A topological space T is spectral if the following equivalent con-
ditions are satisfied.

(1) T ∼= SpecR for some ring R.
(2) T ∼= lim←−Ti where {Ti} is an inverse system of finite T0-spaces. (Recall that T0 means

that given any two distinct points, there exists an open set which contains exactly one of
them.)

(3) T is quasicompact, there exists a basis of quasi-compact opens of T which is stable under
finite intersection, and T is sober, i.e. every irreducible closed subset has a unique generic
point.

Example 2.3.5. Let Ti be the topological space consisting of the first i primes (taken to be
closed), together with a generic point whose closure is all of Ti. Let Spec Z→ Ti be the map which
sends the first i primes to their counterparts in Ti, and sends everything else to the generic point.
Then there is a homeomorphism Spec Z ∼= lim←−Ti.

Example 2.3.6. Let R be a discrete ring. Then Spa(R,R) is the set of valuations on R bounded
by 1. We list the points of Spa(Z,Z):
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(1) A point η, which takes all nonzero integers to 1,
(2) A special point sp for each prime p, which is the composition Z→ Fp → {0, 1}, where the

second arrow sends all nonzero elements to 1,
(3) A point ηp for each prime p, which is the composition Z → Zp → pZ≤0 ∪ {0}, where the

second arrow is the usual p-adic absolute value.

Then {sp} is closed, whereas {ηp} = {ηp, sp}, and {η} = Spa(Z,Z).

In general, for a discrete ring R, we have a map SpecR → Spa(R,R), which sends p to the
valuation R → Frac(R/p)→ {0, 1}, where the second map is 0 on 0 and 1 everywhere else. There
is also a map Spa(R,R)→ SpecR, which sends a valuation to its kernel. The composition of these
two maps is the identity on SpecR. Both maps are continuous.

Example 2.3.7. Let K be a nonarchimedean field, let A = K〈T 〉, and let A+ = OK〈T 〉. Then
X = Spa(A,A+) is the adic closed unit disc over K. In general there are five classes of points in
X; these are discussed in detail in [Wed14, Example 7.57]. If K is algebraically closed, spherically
complete and has valuation group R>0, then there are only three classes of points:

• To each x ∈ K with |x| ≤ 1 there corresponds a classical point in X, whose valuation is
described by |f(x)|. Let us simply call this point x.

• For each x ∈ K with |x| ≤ 1 and each r in the interval (0, 1], there is the Gaußpoint xr,
whose valuation is described by

|f(xr)| = sup
y∈D(x,r)

|f(y)| ,

where D(x, r) = {y ∈ K| |x− y| ≤ r}. Then xr only depends on D(x, r).

• For each x ∈ K with |x| ≤ 1, each r ∈ (0, 1], and each sign ±, there is the rank 2 point
xr± , defined as follows. (We must exclude the sign + if r = 1.) We take as our group Γ
the product R>0 × γZ, where the order is lexicographic (with γ > 1). Then if we write
f ∈ A as

∑
n≥0 an(T − x)n with an ∈ K, we set

|f(xr±)| = max
n
|an| rnγ±n.

Then xr+ only depends on D(x, r), whereas xr− only depends on the open ball {y ∈ K| |x− y| < r}.
(The points we have listed here are referred to in [Wed14] and elsewhere as the points of type (1),
(2), and (5) respectively. The points of type (3) and (4) appear when one no longer assumes that
K has value group R>0 or is spherically complete. For the present discussion, those points are a
red herring.) The classical and rank 2 points are closed, and the closure of a Gaußpoint x′ consists
of x together with all rank 2 points xr± ∈ X for which xr = x′. Thus X has Krull dimension 1.

We also remark that X is connected. One might try to disconnect X by decomposing it into
two opens:

U = {|T (x)| = 1}
V =

⋃
ε>0

{|T (x)| ≤ 1− ε}

But neither subset contains the rank 2 point x1− , where x ∈ K is any element with |x| < 1. (Recall
that in the formalism of rigid spaces, the analogues of U and V really do cover MaxSpecK〈T 〉,
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but they do not constitute an admissible covering in the G-topology. In this sense the extra points
appearing in the adic theory allow us to work with an honest topology, rather than a G-topology.)

Example 2.3.8. The adic spectrum reduces to the Zariski-Riemann space in case A = K is
a discrete field. Recall that if K is a discrete field, then a subring R ⊂ K is a valuation ring if
for all f ∈ K×, one of f and f−1 lies in R. If A ⊂ K is any subring, the Zariski-Riemann space
Zar(K,A) is the set of valuation rings R ⊂ K containing A. Each valuation ring R ∈ Zar(K,A)
induces a valuation | |R on K; here the value group Γ| |R is given by K×/R×, and the valuation by

the obvious projection K = K× ∪ {0} → K×/R× ∪ {0}. Conversely, every valuation on K gives
rise to a valuation ring R = {f ∈ K| |f(x)| ≤ 1}; this induces a bijective correspondence between
equivalence classes of valuations and valuation rings. This set is given a topology and sheaf of
rings which makes Zar(K,A) a quasi-compact ringed space, cf. [Mat80, Theorem 10.5]. We get a
homeomorphism Zar(K,A) ∼= Spa(K,A). In the simplest example, if K is a function field with field
of constants k (meaning that K/k is a finitely generated field extension of transcendence degree 1),
then Zar(K, k) is homeomorphic to the normal projective curve over k whose function field is K.

Moreover, we will need the following results about the adic spectrum.

Proposition 2.3.9 ([Hub93, Proposition 3.9]). Let (Â, Â+) be the completion of a Huber pair
(A,A+). Then the natural map is a homeomorphism

Spa(Â, Â+) ∼= Spa(A,A+).

Usually, we will restrict attention to complete Huber pairs. The next proposition shows that
the adic spectrum Spa(A,A+) is “large enough”:

Proposition 2.3.10. Let (A,A+) be a complete Huber pair.

(1) If A 6= 0 then Spa(A,A+) is nonempty.
(2) One has A+ = {f ∈ A| |f(x)| ≤ 1, for all x ∈ X}.
(3) An element f ∈ A is invertible if and only if for all x ∈ X, |f(x)| 6= 0.

Proof. Part (1) is [Hub93, Proposition 3.6 (i)], and part (2) is [Hub93, Lemma 3.3 (i)]. For
part (3), apply part (1) to the separated completion of A/f , noting that if the closure of the ideal
generated by f contains 1, then there is some g ∈ A such that fg − 1 is topologically nilpotent, in
which case fg is invertible, so that f itself is invertible. �
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3. Lecture III: Adic spaces II

Today we define adic spaces. The reference is [Hub94]. Recall from the previous lecture:

(1) A Huber ring is a topological ring A that admits an open subring A0 ⊂ A which is adic
with finitely generated ideal of definition.

(2) A Huber pair is a pair (A,A+), where A is a Huber ring and A+ ⊂ A◦ is an open and
integrally closed subring.

We constructed a spectral topological space X = Spa(A,A+) consisting of equivalence classes of
continuous valuations |·| on A such that |A+| ≤ 1.

3.1. Rational Subsets.

Definition 3.1.1. Let s ∈ A and T ⊂ A a finite subset such that TA ⊂ A is open. We define
the subset

U
(
T
s

)
= {x ∈ X| |t(x)| ≤ |s(x)| 6= 0, for all t ∈ T} .

Subsets of this form are called rational subsets.

Note that rational subsets are open because they are an intersection of a finite collection of
open subsets {|t(x)| ≤ |s(x)| 6= 0}, t ∈ T .

Proposition 3.1.2. The intersection of finitely many rational subsets is again rational.

Proof. Take two rational subsets

U1 = {x| |t(x)| ≤ |s(x)| 6= 0, t ∈ T} , U2 =
{
x|
∣∣t′(x)

∣∣ ≤ ∣∣s′(x)
∣∣ 6= 0, t′ ∈ T ′

}
.

Their intersection is{
x|
∣∣tt′(x)

∣∣ , ∣∣ts′(x)
∣∣ , ∣∣st′(x)

∣∣ ≤ ∣∣ss′(x)
∣∣ 6= 0, t ∈ T, t′ ∈ T ′

}
.

Now we just have to check that the tt′ for t ∈ T , t′ ∈ T ′ generate an open ideal of A. By hypothesis
there exists an ideal of definition I (of some auxiliary ring of definition A0 ⊂ A) such that I ⊂ TA
and I ⊂ T ′A. Then the ideal generated by the tt′ contains I2. �

The following theorem shows that rational subsets are themselves adic spectra.

Theorem 3.1.3 ([Hub94, Proposition 1.3]). Let U ⊂ Spa(A,A+) be a rational subset. Then
there exists a complete Huber pair (A,A+)→ (OX(U),O+

X(U)) such that the map

Spa(OX(U),O+
X(U))→ Spa(A,A+)

factors over U , and is universal for such maps. Moreover this map is a homeomorphism onto U .
In particular, U is quasi-compact.

Proof. (Sketch.) Choose s and T such that U = U(T/s). Choose A0 ⊂ A a ring of definition,
I ⊂ A0 a finitely generated ideal of definition. Now take any (A,A+) → (B,B+) such that
Spa(B,B+)→ Spa(A,A+) factors over U . Then

(1) The element s becomes invertible in B by Proposition 2.3.10 (3), so that we get a map
A[1/s]→ B.

(2) All t/s for t ∈ T are of |·| ≤ 1 everywhere on Spa(B,B+), so that t/s ∈ B+ ⊂ B◦ by
Proposition 2.3.10 (2).
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(3) Since B◦ is the inductive limit of the rings of definition B0, we can choose a B0 which
contains all t/s for t ∈ T . We get a map

A0[t/s|t ∈ T ]→ B0.

Endow A0[t/s|t ∈ T ] with the IA0[t/s|t ∈ T ]-adic topology.

Lemma 3.1.4. This defines a ring topology on A[1/s] making A0[t/s|t ∈ T ] a ring of definition.

The crucial point is to show that there exists n such that 1
sI
n ⊂ A0[t/s|t ∈ T ], so that multi-

plication by 1/s can be continuous. It is enough to show that In ⊂ TA0, which follows from the
following lemma.

Lemma 3.1.5. If T ⊂ A is a subset such that TA ⊂ A is open, then TA0 is open.

Proof. After replacing I with some power we may assume that I ⊂ TA. Write I = (f1, . . . , fk).
There exists a finite set R such that f1, . . . , fk ∈ TR.

Since I is topologically nilpotent, there exists n such that RIn ⊂ A0. Then for all i = 1, . . . , k,
fiI

n ⊂ TRIn ⊂ TA0. Sum this over all i and conclude that In+1 ⊂ TA0. �

Back to the proof of the proposition. We have A[1/s], a (non-complete) Huber ring. Let A[1/s]+

be the integral closure of the image of A+[t/s|t ∈ T ] in A[1/s].
Let (A〈T/s〉, A〈T/s〉+) be its completion, a complete Huber pair. This has the desired universal

property. For the claim that Spa of this pair is homeomorphic to U , use Proposition 2.3.9. �

Definition 3.1.6. Define a presheaf OX of topological rings on Spa(A,A+): If U ⊂ X is
rational, OX(U) is as in the theorem. On a general open W ⊂ X, we put

OX(W ) = lim←−
U⊂W rational

OX(U).

One defines O+
X similarly.

Proposition 3.1.7. For all U ⊂ Spa(A,A+),

O+
X(U) = {f ∈ OX(U)| |f(x)| ≤ 1, all x ∈ U} .

In particular O+
X is a sheaf if OX is.

Proof. It suffices to check this if U is rational, in which case it follows from Proposition 2.3.10 (2).
�

Theorem 3.1.8 ([Hub94, Theorem 2.2]). Let (A,A+) be a complete Huber pair. Then OX is
a sheaf of topological rings in the following situations.

(1) (Schemes) The topological ring A is discrete.
(2) (Formal schemes) The ring A is finitely generated over a noetherian ring of definition.
(3) (Rigid spaces) The topological ring A is Tate and strongly noetherian, i.e. the rings

A〈T1, . . . , Tn〉 =

 ∑
i=(i1,...,in)≥0

aiT
i

∣∣∣∣ ai ∈ A, ai → 0


are noetherian for all n ≥ 0.
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Example 3.1.9. The case A = Cp relevant to rigid geometry is not covered by case 2, because
OCp is not noetherian. But Cp〈T1, . . . , Tn〉 is noetherian, so case 3 applies. The same goes for
A = Cp〈T1, . . . , Tn〉.

Remark 3.1.10. There are examples due to Rost (see [Hub94], end of §1) where OX is not a
sheaf. See [BV16] and [Mih16] for further examples.

Definition 3.1.11. A Huber pair (A,A+) is sheafy if OX is a sheaf of topological rings. (This
implies that O+

X is a sheaf of topological rings as well.)

3.2. Adic spaces. Recall that a scheme is a ringed space which locally looks like the spectrum
of a ring. An adic space will be something similar. First we have to define the adic version of “locally
ringed space”. Briefly, it is a topologically ringed topological space equipped with valuations.

Definition 3.2.1. We define a category (V) as follows. The objects are triples (X,OX , (|·(x)|)x∈X),
where X is a topological space, OX is a sheaf of topological rings, and for each x ∈ X, |·(x)| is
an equivalence class of continuous valuations on OX,x. (Note that this data determines O+

X .)
The morphisms are maps of topologically ringed topological spaces f : X → Y (so that the map
OY (V ) → OX(f−1(V )) is continuous for each open V ⊂ Y ) that make the following diagram
commute up to equivalence for all x ∈ X:

OY,f(x)
//

��

OX,x

��
Γf(x) ∪ {0} // Γx ∪ {0}

An adic space is an object (X,OX , (|·(x)|)x∈X) of (V) that admits a covering by spaces Ui such that
the triple (Ui,OX |Ui , (|·(x)|)x∈Ui) is isomorphic to Spa(Ai, A

+
i ) for a sheafy Huber pair (Ai, A

+
i ).

For sheafy (A,A+), the topological space X = Spa(A,A+) together with its structure sheaf and
continuous valuations is an affinoid adic space, which we continue to write as Spa(A,A+).

Often we will write X for the entire triple (X,OX , (|·(x)|)x∈X). In that case we will use |X| to
refer to the underlying topological space of X.

Proposition 3.2.2 ([Hub94, Proposition 2.1]). The functor (A,A+) 7→ Spa(A,A+) from
sheafy complete Huber pairs to adic spaces is fully faithful.

3.3. The role of A+. We reflect on the role of A+ in the definition of adic spaces. The
subring A+ in a Huber pair (A,A+) may seem unnecessary at first: why not just consider all
continuous valuations on A? For a Huber ring A, let Cont(A) be the set of equivalence classes of
continuous valuations on A, with topology generated by subsets of the form {|f(x)| ≤ |g(x)| 6= 0},
with f, g ∈ A.

Proposition 3.3.1 ([Hub93, Corollary 3.2, Lemma 3.3]).

(1) Cont(A) is a spectral space.
(2) The following sets are in bijection:

(a) The set of subsets F ⊂ Cont(A) of the form
⋂
f∈S {|f | ≤ 1}, as S runs over arbitrary

subsets of A◦.
(b) The set of open and integrally closed subrings A+ ⊂ A◦.
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The map is
F 7→ {f ∈ A| |f(x)| ≤ 1 for all x ∈ F}

with inverse

A+ 7→
{
x ∈ Cont(A)| |f(x)| ≤ 1 for all f ∈ A+

}
.

Thus specifying A+ keeps track of which inequalities have been enforced among the continuous
valuations in Cont(A).

Finally, we can say why A+ is necessary: If U ⊂ Cont(A) is a rational subset and A → B is
the corresponding rational localization, then in general Cont(B) is not equal to U : Instead U is a
strict open subset of it. One needs to specify B+ in addition to keep track of this. We note that
one can moreover not build a theory in which A+ = A◦ holds always, as this condition is not in
general stable under passage to rational subsets.

3.4. Pre-adic spaces. What can be done about non-sheafy Huber pairs (A,A+)? It really is
a problem that the structure presheaf on Spa(A,A+) isn’t generally a sheaf. It ruins any hope of
defining a general adic space as what one gets by gluing together spaces of the form Spa(A,A+);
indeed, without the sheaf property this gluing doesn’t make any sense.

Here are some of our options for how to proceed:

(1) Ignore them. Maybe non-sheafy Huber pairs just don’t appear in nature, so to speak.
(2) It is possible to redefine the structure sheaf on X = Spa(A,A+) so that for a rational

subset U , OX(U) is a henselization rather than a completion. Then one can show that
OX is always a sheaf, cf. e.g. [GR16, Theorem 15.4.26]. However, proceeding this way
diverges quite a bit from the classical theory of rigid spaces.

(3) Construct a larger category of adic spaces using a “functor of points” approach. This is
analogous to the theory of algebraic spaces, which are functors on the (opposite) category
of rings which may not be representable.

We will essentially follow route (1), but we want to say something about (3). This approach
has been introduced in [SW13, Section 2.1].

Let CAff be the category of complete Huber pairs6, where morphisms are continuous homo-
morphisms. Let CAffop be the opposite category. We turn this into a site, where for any rational
cover X = Spa(A,A+) =

⋃
i∈I Ui, the set of maps (OX(Ui),O+

X(Ui))
op → (A,A+)op in CAffop is

a cover, and these generate all covers. An object X = (A,A+)op of CAffop induces a set-valued
covariant functor on CAffop, by (B,B+) 7→ HomCAff((A,A+), (B,B+)). Let SpaY (A,A+) denote
its sheafification; here Y stands for Yoneda.

Now we repeat [SW13, Definition 2.1.5].

Definition 3.4.1. Let F be a sheaf on CAffop, and let (A,A+) be a complete Huber pair with
adic spectrum X = Spa(A,A+). A map F → SpaY (A,A+) is an open immersion if there is an
open subset U ⊂ X such that

F = lim−→
V⊂U

V rational

SpaY (OX(V ),O+
X(V )) .

If f : F → G is any map of sheaves on CAffop, then f is an open immersion if for all complete Huber
pairs (A,A+) with a map SpaY (A,A+)→ G, the fiber product F ×G SpaY (A,A+)→ SpaY (A,A+)

6This notation appears in [SW13], and anyway recall that Huber calls Huber pairs affinoid algebras.
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is an open immersion. Note that open immersions are injective, and we will simply say that F ⊂ G
is open. Finally, a pre-adic space is a sheaf F on CAffop such that

F = lim−→
SpaY (A,A+)⊂F

SpaY (A,A+) .

In the appendix to this lecture, we explain that one can give an equivalent definition of pre-adic
spaces that is closer in spirit to the definition of adic spaces as something like a locally ringed
topological space. In particular, that comparison shows that pre-adic spaces are naturally a full
subcategory of adic spaces.



APPENDIX TO LECTURE III: PRE-ADIC SPACES 25

Appendix to Lecture III: Pre-adic spaces

In this appendix, we give an alternative and slightly more concrete definition of pre-adic spaces.
The reader is advised to skip this appendix.

Recall that the problem is that the structure presheaf on X = Spa(A,A+) can fail to be a sheaf.
This suggests to simply keep the topological space X and use the sheafification Osh

X of OX to arrive

at an object Spash(A,A+) of the category (V), but then one runs into problems. For instance, the
analogue of Proposition 3.2.2 fails, and it seems impossible to describe the maps between affinoids
defined this way. Certainly one does not expect that any morphism f : X = Spash(A,A+) →
Y = Spash(B,B+) in (V) arises from a map of complete Huber pairs (B,B+) → (A,A+). One
could hope however that this is still true locally on X; namely, there might be a rational cover
Ui of Spa(A,A+) such that each f |Ui arises from a map (B,B+) → (OX(Ui),OX(Ui)

+). But one
cannot expect this either: in general one only has a map from B into Osh

X (X), which is a colimit
of topological rings indexed by rational covers of X. This need not arise from a map from B into
any of the rings appearing in the colimit.

Here, our idea is that instead of sheafifying OX in the category of topological rings, one sheafifies
in the category of ind-topological rings. This is the category whose objects are formal colimits of
filtered direct systems Ai, i ∈ I, where each Ai is a topological ring. We will write “ lim−→i

”Ai for
the formal colimit of the Ai. Individual topological rings B become compact in the ind-category,
so that Hom(B, “ lim−→i

”Ai) = lim−→i
Hom(B,Ai).

For an ind-topological ring A = “ lim−→i
”Ai, a continuous valuation on A is defined to be a

compatible system of continuous valuations on all Ai, or equivalently a continuous valuation on the
topological ring lim−→i

Ai.

Definition 3.4.1. Define a category (V )ind as follows. The objects are triples (X,OX , (|·(x)|)x∈X),
where X is a topological space, OX is a sheaf of ind-topological rings, and for each x ∈ X, |·(x)| is
an equivalence class of continuous valuations on OX,x. The morphisms are maps of ind-topologically
ringed topological spaces f : X → Y , which make the following diagram commute up to equivalence:

OY,f(x)
//

��

OX,x

��
Γf(x) ∪ {0} // Γx ∪ {0}

For any Huber pair (A,A+), we define Spaind(A,A+) ∈ (V )ind as the triple (X,Oind
X , (|·(x)|)x∈X),

where X = Spa(A,A+) is the usual topological space, Oind
X is the sheafification of the presheaf OX

in the category of ind-topological rings, and the valuations stay the same.

Definition 3.4.2. A pre-adic space is an object of (V )ind that is locally isomorphic to Spaind(A,A+)
for some complete Huber pair (A,A+).

Let us prove that this agrees with the “Yoneda-style” definition of pre-adic spaces of Defini-
tion 3.4.1; to distinguish them, we temporarily call those Yoneda-adic spaces.

Proposition 3.4.3. For any pre-adic space X ∈ (V )ind, the association

XY : (A,A+)op 7→ Hom(V )ind(Spaind(A,A+), X)
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defines a sheaf on CAffop that is a Yoneda-adic space. This defines an equivalence of categories
between pre-adic spaces and Yoneda-adic spaces that takes Spaind(B,B+) to SpaY (B,B+). Under
this equivalence, an open immersion of pre-adic spaces corresponds to an open immersion of Yoneda-
adic spaces.

Proof. For any rational cover of Spa(A,A+), one can glue Spaind(A,A+) from the correspond-
ing pieces on rational subsets; this implies that XY is indeed a sheaf on CAffop, for any X ∈ (V )ind.

Next, we check that if X = Spaind(B,B+), then XY = SpaY (B,B+). Equivalently, we have to
see that

(A,A+)op 7→ Hom(V )ind(Spaind(A,A+),Spaind(B,B+))

is the sheafification of

(A,A+)op 7→ HomCAffop((A,A+)op, (B,B+)op) = HomCAff((B,B+), (A,A+)) .

First, assume that two maps f, g : (B,B+) → (A,A+) induce the same map Spaind(A,A+) →
Spaind(B,B+). In particular, on global sections, we find that the two maps

B → “ lim−→ ”
X=

⋃
i Ui

eq

∏
i

OX(Ui)→
∏
i,j

OX(Ui ∩ Uj)


induced by f and g agree, where X = Spa(A,A+) and the index sets runs over rational covers of
X. This means that for some rational cover {Ui} of X, the maps B → OX(Ui) induced by f and g
agree, and then the same is true for B+ → O+

X(Ui). But this means that f and g induce the same
element in the sheafification of (A,A+)op 7→ HomCAff((B,B+), (A,A+)).

It remains to see that any map f : Spaind(A,A+)→ Spaind(B,B+) is locally on X = Spa(A,A+)
induced from a map (B,B+) → (A,A+). Arguing as above, one can ensure after passage to a
rational cover that the map B → OSpaind(A,A+)(X) factors over a map B → A, in which case so

does B+ → A+, i.e. we get a map g : (B,B+)→ (A,A+), which induces a map f ′ : Spaind(A,A+)→
Spaind(B,B+). We have to show that f = f ′. As points are determined by the valuations induced
on A resp. B, one sees that the maps f and f ′ agree on topological spaces. It remains to see that the
maps agree on sheaves of ind-topological rings. For any rational subset V ⊂ Y = Spa(B,B+), the

map f ]V : OY (V ) → Oind
X (f−1(V )) is compatible with the map g : B → A, which by the universal

properties of rational subsets means that it is also compatible with the map f ′]V : OY (V ) →
OX(f−1(V )) → Oind

X (f−1(V )), i.e. f ]V = f ′]V . Passing to the sheafification Oind
Y of OY in ind-

topological rings, we get the result.
Now if X ∈ (V )ind is any object and (A,A+) ∈ CAff, one sees that the map

Hom(V )ind(Spaind(A,A+), X) → Hom((Spaind(A,A+))Y , XY )

= Hom(SpaY (A,A+), XY )

is a bijection, as Hom(SpaY (A,A+), XY ) is by the Yoneda lemma the value of XY at (A,A+)op,
which was defined to be Hom(V )ind(Spaind(A,A+), X).

It is clear that open immersions into SpaY (A,A+) correspond bijectively to open subsets of
Spa(A,A+), and then to open subsets of Spaind(A,A+). This implies in particular that if f :
X → X ′ is any open immersion of objects of (V )ind, then the induced map XY → (X ′)Y is an
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open immersion. Indeed, it suffices to check this after replacing X ′ by SpaY (A,A+) (using the last
displayed equation), and then it reduces to the previous assertion.

Thus, for any pre-adic space X ∈ (V )ind, any affinoid open subspace Spaind(A,A+) ⊂ X defines
an open immersion SpaY (A,A+) ⊂ XY , and conversely any open immersion SpaY (A,A+) ⊂ XY

comes from an affinoid open subspace Spaind(A,A+) ⊂ X. To see that XY is a Yoneda-adic space,
it remains to see that

XY = lim−→
Spaind(A,A+)⊂X

SpaY (A,A+) .

First, we check that the map

lim−→
Spaind(A,A+)⊂X

SpaY (A,A+)→ XY

is injective; note that here, the left-hand side is the sheafification of the functor

(B,B+) 7→ lim−→
Spaind(A,A+)⊂X

HomCAff((A,A+), (B,B+)) .

For checking injectivity, take any (B,B+) ∈ CAff, and assume that we have maps (A,A+) →
(B,B+) and (A′, A′+)→ (B,B+) for affinoid open subspaces Spaind(A,A+) ⊂ X, Spaind(A′, A′+) ⊂
X such that the induced maps

SpaY (B,B+)→ SpaY (A,A+)→ XY , SpaY (B,B+)→ SpaY (A′, A′+)→ XY

agree. It follows that the map SpaY (B,B+) → XY factors over the corresponding intersection of
these two open subspaces, which we can cover by subsets SpaY (A′′, A′′+) ⊂ XY that are simulta-
neously rational subsets of SpaY (A,A+) and SpaY (A′, A′+). Thus, replacing (B,B+) by a rational
cover, we find that the two maps to lim−→Spaind(A,A+)⊂X SpaY (A,A+) agree, as both factor over a

common SpaY (A′′, A′′+).
On the other hand, the map

lim−→
Spaind(A,A+)⊂X

SpaY (A,A+)→ XY

of sheaves is surjective, as locally any map to XY factors over SpaY (A,A+) for some such open
subset.

We have already checked that the functor X 7→ XY from pre-adic spaces to Yoneda-adic spaces
satisfies

Hom(V )ind(X,X ′) = Hom(XY , (X ′)Y )

in case X = Spaind(A,A+) is affinoid. In general, arguing as above, we can write

X = lim−→
Spaind(A,A+)⊂X

Spaind(A,A+)

in (V )ind, and this colimit is preserved by the functor X 7→ XY by what was proved above. This
implies the full faithfulness in general. Preservation of open immersions is easy to see.

It remains to prove essential surjectivity, so assume F is a Yoneda-adic space. By Zorn’s
lemma, there is a maximal open immersion F ′ ⊂ F such that F ′ = UY for some pre-adic space
U . If F ′ 6= F , we can find an open immersion V = SpaY (A,A+) ⊂ F that does not factor over
F ′. The intersection of V and F ′ defines an open subspace W ⊂ U . One gets an induced map
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(U tW Spaind(A,A+))Y → F . This is still an open immersion, which contradicts maximality of
F ′. �
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4. Lecture IV: Examples of adic spaces

Today, we will discuss various examples of adic spaces.

4.1. Basic examples. We gather here some examples of adic spaces. For brevity, we write
SpaA := Spa(A,A◦) from now on. Moreover, for any Huber pair, we use the notation Spa(A,A+)
to denote the associated pre-adic space.

• The final object is Spa Z = Spa(Z,Z).

• (The adic closed unit disc) The space Spa Z[T ] = Spa(Z[T ],Z[T ]) represents the functor
X 7→ O+

X(X). Note that if K is a nonarchimedean field, then

Spa Z[T ]× SpaK = SpaK〈T 〉,
which has been discussed in Example 2.3.7, cf. also [Sch12, Example 2.20].

• (The adic affine line) The functor X 7→ OX(X) is also representable, by Spa(Z[T ],Z). If
K is any nonarchimedean field, then

Spa(Z[T ],Z)× SpaK =
⋃
n≥1

SpaK〈$nT 〉

is an increasing union of closed discs |T | ≤ |$|−n. Here $ ∈ K is any pseudo-uniformizer,
i.e. a topologically nilpotent unit. One can check this using the universal property. Indeed,
Spa(Z[T ],Z)×SpaK represents the functor which sends a Huber pair (R,R+) over (K,OK)
to R, and then R is the union of the $−nR+ for n = 1, 2, . . . (since R+ is open and $ is
topologically nilpotent).

Note that between this example and the previous one, it was the ring R+ that made
all the difference!

• (The closure of the adic closed unit disc in the adic affine line) Let K be a nonarchimedean
field, let X = SpaK〈T 〉 be the adic closed unit disc over K, and let Y = Spa(Z[T ],Z) ×
SpaK be the adic affine line over K. Then X ⊂ Y is an open immersion. The closure of
X in Y is Cont(K〈T 〉): this is X together with a rank 2 “boundary point” x+

1 . Explicitly,
let Γ = R>0 × γZ, where 1 < γ < r for all real r < 1. Then x+

1 is defined by∑
n≥0

anT
n 7→ max

n≥0
|an| γn.

Finally, note that Cont(K〈T 〉) = Spa(A,A+), where A = K〈T 〉 and A+ ⊂ A is the subring
of power series

∑
n≥0 anT

n where a0 ∈ OK and |an| < 1 for all n ≥ 1.

• (Fiber products do not exist in general) In the sense of Hom-functors, the product

Spa(Z[T1, T2, . . .],Z)× SpaK

equals
lim−→

(ni)→∞
SpaK〈$n1T1, $

n2T2, . . .〉 .

But in this direct limit, the transition maps are not open immersions; they are given by
infinitely many inequalities |Ti| ≤ |$|−ni . So this direct limit is not representable as an
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adic space. If one restricts the class of Huber pairs to those pairs (A,A+) for which A is
finitely generated over a ring of definition A0 ⊂ A+, then fiber products will always exist
in the category of pre-adic spaces.

• (The open unit disc) Let D = Spa Z[[T ]]. Then

DK := D× SpaK = [D× SpaOK ]×SpaOK SpaK

= SpaOK [[T ]]×SpaOK SpaK

=
⋃
n≥1

SpaK〈T, T
n

$
〉

is the open unit disc over K. This is another adic space, even though we have not proved
the intermediate space SpaOK [[T ]] to be one. This shows the importance of allowing
pre-adic spaces – they may appear as auxiliary objects in some calculations, for example.

• (The punctured open unit disc) Let D∗ = Spa Z((T )). Then

D∗K := D∗ × SpaK = DK\ {T = 0} .

• (The constant adic space associated to a profinite set.) Let S be a profinite set, and let
A = C0(S,Z) be the ring of continuous (thus locally constant) Z-valued functions on S,
with its discrete topology. Then S = SpaA represents the functor X 7→ Hom(|X| , S), and
furthermore |S| = S × |Spa Z|. If K is a nonarchimedean field then SK = S × SpaK is
the constant adic space over K, and |SK | = S. This construction can be globalized to the
case of locally profinite sets S as well.

4.2. Example: the adic open unit disc over Zp. Let us now discuss one example more in
depth. The adic spectrum Spa Zp consists of two points, a special point and a generic point. The
same is true for Spa Fp[[T ]], and more generally for SpaA for any valuation ring A of rank 1.

But now consider Zp[[T ]] with the (p, T )-adic topology; this is a complete regular local ring
of dimension 2. Then Spa Zp[[T ]] falls under case (2) of Theorem 3.1.8. Let us try to describe
X = Spa Zp[[T ]].

There is a unique point xFp ∈ X whose kernel is open. It is the composition Zp[[T ]] → Fp →
{0, 1}, where the second arrow is 1 on nonzero elements. Let Y = X\

{
xFp
}

. All points in Y have
non-open kernel, i.e. they are analytic:

Definition 4.2.1. Let (A,A+) be a Huber pair. A point x ∈ Spa(A,A+) is non-analytic if the
kernel of |·|x is open. Otherwise x is analytic.

Let us discuss the structure of analytic points. Suppose A0 ⊂ A is a ring of definition, and
I ⊂ A0 is an ideal of definition. If x ∈ Spa(A,A+) is analytic, then the kernel of |·|x, not being
open, cannot contain I. Thus there exists f ∈ I such that |f(x)| 6= 0. Let γ = |f(x)| ∈ Γ = Γx.
Since fn → 0 as n → ∞, we must have |f(x)|n → 0. This means that for all γ′ ∈ Γ there exists
n� 0 such that γn < γ′.

Lemma 4.2.2. Let Γ be a totally ordered abelian group, and let γ < 1 in Γ. Suppose that for
all γ′ ∈ Γ there exists n � 0 such that γn < γ′. Then there exists a unique order-preserving
homomorphism Γ→ R>0 which sends γ to 1/2. (The kernel of this map consists of elements which
are “infinitesimally close to 1”.)
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Proof. Exercise. �

As an example, if x has value group Γx = R>0 × δZ where r < δ < 1 for all r ∈ R, r < 1, then
the map Γx → R>0 of the lemma is just the projection, up to scaling.

Thus, any analytic point x gives rise to a continuous valuation x̃ : A→ R≥0.

Definition 4.2.3. A nonarchimedean field is a complete nondiscrete topological field K whose
topology is induced by a nonarchimedean norm | | : K → R≥0.

For an analytic point x ∈ X, let K(x) be the completion of Frac(A/ ker |·|x) with respect to
| |x. The lemma shows that if x is analytic, then K(x) is a nonarchimedean field. At non-analytic
points of x, we endow K(x) = Frac(A/ ker |·|x) with the discrete topology. (In the situation of
the special point xFp of our example, K(xFp) = Fp.) Note that x endows K(x) moreover with a

continuous valuation, or equivalently with an open and bounded valuation subring K(x)+ ⊂ K(x).

Definition 4.2.4 ([Hub96, Definition 1.1.5]). An affinoid field is a Huber pair (K,K+) where
K is either a nonarchimedean field or a discrete field, and K+ is an open and bounded valuation
subring.

We note that this definition makes crucial use of the second component of a Huber pair. This
leads to a different perspective on the adic spectrum, akin to regarding SpecA as equivalence classes
of maps from A into fields.

Proposition 4.2.5 ([Hub96, pp. 40-41]). Let (A,A+) be a Huber pair. Points of Spa(A,A+)
are in bijection with maps (A,A+)→ (K,K+) to affinoid fields such that the subfield of K generated
by the image of A → K is dense. If x ∈ Spa(A,A+) is an analytic point corresponding to a
map (A,A+) → (K(x),K(x)+), then generalizations y of x in Spa(A,A+) correspond to maps
(A,A+) → (K(y),K(y)+) with K(y) = K(x) and K(y)+ ⊃ K(x)+. In particular, the set of
generalizations of x forms a totally ordered chain of length given by the rank of the valuation x,
and the maximal generalization corresponds to the rank-1-valuation x̃ introduced above.

Let us return to our example Y = X\
{
xFp
}

, with X = Spa Zp[[T ]]. For x ∈ Y, we have that
|T (x)| and |p(x)| cannot both be zero. Both are elements of the value group which are topologically
nilpotent. We can measure their relative position as an element of [0,∞].

Proposition 4.2.6. There is a unique continuous map

κ : |Y| → [0,∞]

characterized by the following property: κ(x) = r if and only for all rational numbers m/n > r,
|T (x)|n ≥ |p(x)|m, and for all m/n < r, |T (x)|n ≤ |p(x)|m. The map κ is surjective.

Proof. (Sketch.) Any x ∈ Y is analytic, so there exists a maximal generalization x̃ which is
real-valued. We define

κ(x) =
log |T (x̃)|
log |p(x̃)|

∈ [0,∞].

The numerator and denominator both lie in [−∞, 0), with at most one being equal to −∞, so the
quotient is indeed well-defined in [0,∞]. The continuity, uniqueness, and surjectivity of the map is
left as an exercise. �
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T = 0

p = 0

xQp

xFp((T ))
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κ

∞

0

Figure 1. A depiction of Spa Zp[[T ]]. The two closed subspaces Spa Fp[[T ]] and
Spa Zp appear as the x-axis and y-axis, respectively. Their intersection is the unique
non-analytic point xFp of SpaA. The complement of xFp in Spa Zp[[T ]] is the adic
space Y, on which the continuous map κ : Y → [0,∞] is defined.

We have κ(x) = 0 if and only if |p(x)| = 0, which is to say that |·|x factors through Fp[[T ]].
Similarly κ(x) = ∞ if and only if |·|x factors through Zp[[T ]] → Zp, T 7→ 0. For an interval
I ⊂ [0,∞], we define YI as the interior of κ−1(I).

An important subspace of Y is Y(0,∞], which is to say the locus p 6= 0. This is the generic
fiber of Spa Zp[[T ]] over Spa Zp. It is not quasi-compact (otherwise its image under κ would lie in
a compact interval), and in particular it is not affinoid.

The failure of the generic fiber Y(0,∞] to be affinoid may be surprising. One might think that the
fiber of Spa Zp[[T ]] → Spa Zp over Spa(Qp,Zp) should be something like Spa(Zp[[T ]][1/p],Zp[[T ]]).
The trouble arises when we consider what topology to put on Zp[[T ]][1/p]. If we give Zp[[T ]][1/p]
the topology induced from the (p, T )-adic topology of Zp[[T ]], the result is not even a Huber ring!
(The sequence p−1Tn approaches 0, but never enters Zp[[T ]], and so Zp[[T ]] is not an open subring.)
Another explanation for this failure is that Zp[[T ]][1/p] would have to be Tate (as p is a topologically
nilpotent unit), but we have seen that any ring of definition of a Tate ring has ideal of definition
generated by one element, in this case p.

We could also give Zp[[T ]][1/p] the topology induced from the p-adic topology on Zp[[T ]]. The
result is a Tate ring, but it does not receive a continuous ring homomorphism from Zp[[T ]] (with the
(p, T )-adic topology), since Tn → 0 in the latter but not the former. Thus Spa(Zp[[T ]][1/p],Zp[[T ]])
cannot be the desired generic fiber.
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To review: the generic fiber of Spa Zp[[T ]]→ Spa Zp is an adic space Y(0,∞] which is not quasi-
compact. We can exhibit an explicit cover by rational subsets of Spa Zp[[T ]]. Suppose x ∈ Y(0,∞].
Since T is topologically nilpotent in Zp[[T ]], we have |Tn(x)| → 0. But also |p(x)| 6= 0, by definition
of Y(0,∞]. Therefore there exists n � 0 such that |Tn(x)| ≤ |p(x)|, which is to say that x belongs
to

Y[1/n,∞] = Spa Qp〈T, Tn/p〉 .

This is indeed a rational subset, because (Tn, p) is an open ideal. The Y[1/n,∞] exhaust Y(0,∞]. Put
another way, we have exhibited the open disc {|T | < 1} over Qp by an ascending union of affinoid

subsets
{
|T | ≤ |p|1/n

}
.

To complete the picture of Y, we discuss an affinoid neighborhood of the point xFp((T )) ∈ Y, the
unique point sent to 0 by κ. This is the point where p = 0 and T 6= 0. Let U = Y[0,1] be the rational
subset {|p(x)| ≤ |T (x)| 6= 0}. Then OX(U) is the completion of Zp[[T ]][1/T ] with respect to the T -
adic topology on Zp[[T ]][p/T ]. One might call this Zp[[T ]]〈p/T 〉[1/T ], an unfortunately complicated
name. It is still a Tate ring, because T is topologically nilpotent. But it does not contain a
nonarchimedean field! Thus one cannot make sense of it in the world of classical rigid spaces.
Recently, adic spaces of this form have been given the name “pseudorigid spaces”, cf. [JN16],
[Lou17], and have found applications to the study of the boundary of the eigencurve and more
general eigenvarieties, [AIP17], [JN16]. Lourenço’s results [Lou17] will play an important role in
Section 18.4.

As we progress in the course, we will encounter adic spaces similar to Y which are built out of
much stranger rings, but for which the picture is essentially the same. Finally, we remark that the
entire picture has a characteristic p analogue, in which Zp is replaced with Fp[[t]]; one would begin
with X = Spa Fp[[t, T ]] and remove its sole non-analytic point to obtain an analytic adic space Y.
This object retains all of the features of its mixed characteristic counterpart, including the map κ,
but has the additional feature that the roles played by t and T are completely symmetric.

4.3. Analytic points. The following proposition clarifies the relations between analytic rings
and Tate rings.

Proposition 4.3.1. Let (A,A+) be a complete Huber pair.

(1) The Huber ring A is analytic, cf. Remark 2.2.7, if and only if all points of Spa(A,A+) are
analytic.

(2) A point x ∈ Spa(A,A+) is analytic if and only if there is a rational neighborhood U ⊂
Spa(A,A+) of x such that OX(U) is Tate.

Proof. Let X = Spa(A,A+). Let I ⊂ A be the ideal generated by the topologically nilpotent
elements. Then a point x ∈ X is analytic if and only if x does not lie in the vanishing locus of I.
Indeed, if x is nonanalytic, there is some topologically nilpotent element which does not vanish at x;
conversely, if all topologically nilpotent elements vanish on x, then x defines a continuous valuation
of A/I, which is a discrete ring. Thus, X is analytic if and only if I = A, i.e. A is analytic. This is
(1).

For (2), let x ∈ X be an analytic point. We need to show that there exists a rational neighbor-
hood U of x such that OX(U) is Tate. Let I ⊂ A0 be as usual. Take f ∈ I be such that |f(x)| 6= 0.
Then {g ∈ A| |g(x)| ≤ |f(x)|} is open (by the continuity of the valuations). This means that there
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exists n so that this set contains In. Write In = (g1, . . . , gk). Then

U = {y| |gi(y)| ≤ |f(y)| 6= 0}
is a rational subset. On U , the function f is a unit (because it is everywhere nonzero), but it must
also be topologically nilpotent, because it is contained in I.

Conversely, suppose x ∈ X has a rational neighborhood U = U(T/s) such that OX(U) is Tate;
we claim that x is analytic. Assume otherwise; then ker(|·|x) contains I ⊂ A0. Now suppose
f ∈ OX(U) is a topologically nilpotent unit. Then there exists m ≥ 1 such that fm lies in the
closure of IA0[t/s|t ∈ T ] in OX(U). Since x lies in U , the valuation |·|x extends to OX(U), and
since it is continuous, we must have |fm(x)| = 0. This is a contradiction, since f is a unit in
OX(U). �

In particular, this allows us to define the notion of analytic points for any pre-adic space.

Definition 4.3.2. Let X be a pre-adic space. A point x ∈ X is analytic if there is some open
affinoid neighborhood U = Spa(A,A+) ⊂ X of x such that A is Tate. Moreover, X is analytic if
all of its points are analytic.

Proposition 4.3.3. Let f : Y → X be a map of analytic pre-adic spaces. Then |f | : |Y | → |X|
is generalizing. If f is quasicompact and surjective, then |f | is a quotient mapping, i.e. a subset of
|X| is open if and only if its preimage in |Y | is open.

Proof. For the first part, cf. [Hub96, Lemma 1.1.10], for the second [Sch17, Lemma 2.5]. �

Analytic Huber rings are “as good as” Banach algebras over nonarchimedean fields, for example:

Proposition 4.3.4 ([Hub93, Lemma 2.4(i)]). Analytic Huber rings satisfy Banach’s open
mapping theorem. That is, if A is an analytic Huber ring, and M and N are complete Banach
A-modules, then any continuous surjective map M → N is also open.
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5. Lecture V: Complements on adic spaces

Today’s lecture is a collection of complements in the theory of adic spaces.

5.1. Adic morphisms.

Definition 5.1.1. A morphism f : A→ B of Huber rings is adic if for one (hence any) choice
of rings of definition A0 ⊂ A, B0 ⊂ B with f(A0) ⊂ B0, and I ⊂ A0 an ideal of definition, f(I)B0

is an ideal of definition.
A morphism (A,A+)→ (B,B+) of Huber pairs is adic if A→ B is.

For example, the maps corresponding to rational subsets are adic.

Lemma 5.1.2. If A is Tate, then any f : A→ B is adic.

Proof. If A contains a topologically nilpotent unit $, then f($) ∈ B is also a topologically
nilpotent unit, and thus B is Tate as well. By Proposition 2.2.6(2), B contains a ring of definition
B0 admitting f($)nB0 as an ideal of definition for some n ≥ 1. This shows that f is adic. �

In fact, one has the following geometric characterization of adic maps.

Proposition 5.1.3 ([Hub93, Proposition 3.8]). A map (A,A+)→ (B,B+) of complete Huber
pairs is adic if and only if Spa(B,B+)→ Spa(A,A+) carries analytic points to analytic points.

In particular, the previous lemma holds more generally when A is analytic.

Definition 5.1.4. A map f : Y → X of pre-adic spaces is analytic if it carries analytic points
to analytic points.

The next proposition shows that pushouts exist in the category of (complete) Huber pairs when
maps are adic.

Proposition 5.1.5. (1) If (A,A+)→ (B,B+) is adic, then pullback along the associated
map of topological spaces Spa(B,B+)→ Spa(A,A+) preserves rational subsets.

(2) Let (B,B+)← (A,A+)→ (C,C+) be a diagram of Huber pairs where both morphisms are
adic. Let A0, B0, C0 be rings of definition compatible with the morphisms, and let I ⊂ A0

be an ideal of definition. Let D = B ⊗A C, and let D0 be the image of B0 ⊗A0 C0 in D.
Make D into a Huber ring by declaring D0 to be a ring of definition with ID0 as its ideal of
definition. Let D+ be the integral closure of the image of B+⊗A+C+ in D. Then (D,D+)
is a Huber pair, and it is the pushout of the diagram in the category of Huber pairs.

Proof. In part (1), it is enough to observe that if TA is open for some finite subset T ⊂ A,
then I ⊂ TA for some ideal of definition I ⊂ A0, in which case IB0 ⊂ B0 is also an ideal of
definition, thus open, and so TB ⊃ IB is open. Part (2) follows easily from the definitions. �

Remark 5.1.6. If the objects in the diagram were complete Huber pairs, then after completing
(D,D+), one would obtain the pushout of the diagram in the category of complete Huber pairs,
and one also has Spa(D,D+) = Spa(B,B+)×Spa(A,A+) Spa(C,C+).

Remark 5.1.7. An example of a non-adic morphism of Huber rings is Zp → Zp[[T ]]. We claim
that, as indicated in the last lecture, the diagram (Zp[[T ]],Zp[[T ]]) ← (Zp,Zp) → (Qp,Zp) has no
pushout in the category of Huber pairs. Suppose it did, say (D,D+); then we have a morphism

(D,D+)→ (Qp〈T, T
n

p 〉,Zp〈T,
Tn

p 〉)
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for each n ≥ 1. On the other hand, we have that T ∈ D is topologically nilpotent, and 1/p ∈ D.
Therefore Tn/p → 0 in D; now since D+ ⊂ D is open we have Tn/p ∈ D+ for some n. But then
D+ cannot admit a morphism to Zp〈T, Tn+1/p〉, contradiction.

5.2. Analytic adic spaces. We discuss some recent results from [BV16], [Mih16], [KL15]
and [Ked17b]. Let (A,A+) be an analytic Huber pair, and let X = Spa(A,A+). It turns out that
there is a very general criterion for sheafyness. Recall that A is uniform if A◦ ⊂ A is bounded.

Theorem 5.2.1 (Berkovich, [Ber93]). For A uniform, the map

A→
∏

x∈Spa(A,A+)

K(x)

is a homeomorphism of A onto its image. Here K(x) is the completed residue field. Moreover,

A◦ =
{
f ∈ A|f ∈ OK(x), ∀x ∈ X

}
.

Remark 5.2.2. The theorem also follows from A+ = {f ∈ A| |f(x)| ≤ 1, ∀x ∈ X}.

Corollary 5.2.3. Let ÕX be the sheafification of OX . If A is uniform, then A→ H0(X, ÕX)
is injective.

Proof. Indeed, the H0 maps into
∏
xK(x), into which A maps injectively. �

In general, uniformity does not guarantee sheafyness, but a strengthening of the uniformity
condition does.

Definition 5.2.4. A complete analytic Huber pair (A,A+) is stably uniform if OX(U) is uni-
form for all rational subsets U ⊂ X = Spa(A,A+).

Theorem 5.2.5 ([BV16, Theorem 7], [KL15, Theorem 2.8.10], [Mih16], [Ked17b]). If the
complete analytic Huber pair (A,A+) is stably uniform, then it is sheafy.

Moreover, sheafyness, without any extra assumptions, implies other good properties.

Theorem 5.2.6 ([KL15, Theorem 2.4.23], [Ked17b]). If the complete analytic Huber pair
(A,A+) is sheafy, then H i(X,OX) = 0 for i > 0.

The strategy of the proof is to use combinatorial arguments going back to Tate to reduce
to checking everything for a simple Laurent covering X = U ∪ V , where U = {|f | ≤ 1} and

V = {|f | ≥ 1} (plus one other similar case if A is not Tate). Then OX(U) = A〈T 〉/(T − f) and

OX(V ) = A〈S〉/(Sf − 1). We have OX(U ∩ V ) = A〈T, T−1〉/(T − f). We need to check that the
Čech complex for this covering is exact. It is

0→ A→ A〈T 〉/(T − f)⊕A〈S〉/(Sf − 1)
α→ A〈T, T−1〉/(T − f)→ 0.

Lemma 5.2.7. (1) The map α is surjective.
(2) If A is uniform, then the ideals (T −f) ⊂ A〈T 〉, (Sf−1) ⊂ A〈S〉 and (T −f) ⊂ A〈T, T−1〉

are closed, and the kernel of α is A.

Proof. 1) is clear. For 2), the hard part is to show that the ideals are closed. By Theorem 5.2.1,
the norm on A〈T 〉 is the supremum norm, and then for all f ∈ A〈T 〉,

|f |A〈T 〉 = sup
x∈Spa(A,A+)

|f |K(x)〈T 〉 .
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For each x ∈ Spa(A,A+), the norm on K(x)〈T 〉 is the Gaußnorm, and it is multiplicative.
We claim that for all g ∈ A〈T 〉, |(T − f)g|A〈T 〉 ≥ |g|A〈T 〉. By the above, it is enough to prove

this when A is replaced by K(x). But then the norm is multiplicative, and |T − f |K(x)〈T 〉 = 1, so
we get the result. Using this observation, it is easy to see that the ideal generated by T − f is
closed. �

Moreover, there is a good theory of vector bundles.

Theorem 5.2.8 ([KL15, Theorem 2.7.7], [Ked17b]). Let (A,A+) be a sheafy analytic Huber
pair and X = Spa(A,A+). The functor from finite projective A-modules to locally finite free OX-
modules is an equivalence.

It is not immediately clear how to get a good theory of coherent sheaves on adic spaces, but
in [KL16], [Ked17b], Kedlaya-Liu define a category of OX -modules which are “pseudo-coherent”,
with good properties. We will not use these results.

The strategy of proof of the theorem is to reduce to simple Laurent coverings, and then imitate
the proof of Beauville-Laszlo [BL95], who prove the following lemma.

Lemma 5.2.9. Let R be a commutative ring, let f ∈ R be a non-zero-divisor, and let R̂ be
the f -adic completion of R. Then the category of R-modules M where f is not a zero-divisor is

equivalent to the category of pairs (M
R̂
,M [f−1], β), where M

R̂
is an R̂-module such that f is not a

zero-divisor, MR[f−1] is an R[f−1]-module, and β : M
R̂

[f−1] → MR[f−1] ⊗R R̂ is an isomorphism.
Under this equivalence, M is finite projective if and only if M

R̂
and MR[f−1] are finite projective.

This does not follow from fpqc descent because of two subtle points: R→ R̂ might not be flat

if R is not noetherian, and also we have not included a descent datum on R̂⊗R R̂.

5.3. Cartier divisors. For later use, we include a discussion of Cartier divisors on adic spaces,
specialized to the case of interest.

Definition 5.3.1. An adic space X is uniform if for all open affinoid U = Spa(R,R+) ⊂ X,
the Huber ring R is uniform.

Note that if X is an analytic adic space, then X is uniform if and only if X is covered by open
affinoid U = Spa(R,R+) with R stably uniform.

Definition 5.3.2. Let X be a uniform analytic adic space. A Cartier divisor on X is an ideal
sheaf I ⊂ OX that is locally free of rank 1. The support of a Cartier divisor is the support of
OX/I.

Proposition 5.3.3. Let (R,R+) be a stably uniform analytic Huber pair, and let X = Spa(R,R+).
If I ⊂ OX is a Cartier divisor, then its support Z ⊂ X is a nowhere dense closed subset of X. The
map I 7→ I = I · OX induces a bijective correspondence between invertible ideals I ⊂ R such that
the vanishing locus of I in X is nowhere dense and Cartier divisors on X.

Proof. First, note that by Theorem 5.2.8, any Cartier divisor is of the form I ⊗R OX for an
invertible ideal I ⊂ R. We need to see that the map I⊗ROX → OX is injective as a map of sheaves
on X if and only if the vanishing locus of I is nowhere dense. By localization, we can assume that
I = (f) is principal. If the vanishing locus contains an open subset, then on this open subset, f = 0
as X is uniform, so the map f : OX → OX is not injective. Conversely, we have to see that f is
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a nonzerodivisor if its vanishing locus Z ⊂ X is nowhere dense. Assume fg = 0 for some g ∈ R.
The locus S = {g = 0} ⊂ X is closed and contains X \ Z. In other words, X \ S is an open subset
of X that is contained in Z; as Z is nowhere dense, this implies that S = X. Therefore g vanishes
at all points of X, which implies g = 0 by uniformity. �

Proposition 5.3.4. Let X be a uniform analytic adic space and I ⊂ OX a Cartier divisor with
support Z and j : U = X \ Z ↪→ X. There are injective maps of sheaves

OX ↪→ lim−→
n

I⊗−n ↪→ j∗OU .

Proof. We may assume X = Spa(R,R+) and I = fOX for some nonzerodivisor f ∈ R whose
vanishing locus Z is nowhere dense, and check on global sections. Then we get the maps

R→ R[f−1]→ H0(U,OU ) .

It suffices to see that R→ H0(U,OU ) is injective. But if g ∈ R vanishes on U , then the vanishing
locus of g is a closed subset containing U , which implies that it is all of X as Z is nowhere dense.
By uniformity, g = 0. �

Definition 5.3.5. In the situation of Proposition 5.3.4, a function f ∈ H0(U,OU ) is meromor-
phic along the Cartier divisor I ⊂ OX if it lifts (necessarily uniquely) to H0(X, lim−→n

I⊗−n).

Remark 5.3.6. A Cartier divisor is not in general determined by its support, and also this
meromorphy condition depends in general on the Cartier divisor and not only its support.

We note that if I ⊂ OX is a Cartier divisor, one can form the quotient OX/I. There may
or may not be an adic space Z ⊂ X whose underlying space is the support of OX/I and with
OZ = OX/I.

Definition 5.3.7. Let X be a uniform analytic adic space. A Cartier divisor I ⊂ OX on X
with support Z is closed if the triple (Z,OX/I, (| · (x)|, x ∈ Z)) is an adic space.

The term closed Cartier divisor is meant to evoke a closed immersion of adic spaces; moreover,
the next proposition shows that it is equivalent to asking that I ↪→ OX has closed image.

Proposition 5.3.8. Let X be a uniform analytic adic space. A Cartier divisor I ⊂ OX is
closed if and only if the map I(U) ↪→ OX(U) has closed image for all open affinoid U ⊂ X. In
that case, for all open affinoid U = Spa(R,R+) ⊂ X, the intersection U ∩ Z = Spa(S, S+) is an
affinoid adic space, where S = R/I and S+ is the integral closure of the image of R+ in S.

Proof. The condition on closed image can be checked locally. If the Cartier divisor is closed,
then in particular (OX/I)(U) is separated on an open cover of X, which means that I(U) ↪→ OX(U)
has closed image.

Conversely, assume that I(U) ↪→ OX(U) has closed image for all U ⊂ X; we want to see that
the Cartier divisor is closed. We can assume X = Spa(R,R+) is affinoid. The ring S = R/I is then
separated and complete, and is thus a complete Huber ring. Let S+ be the integral closure of the
image of R+ in S. Then Z = Spa(S, S+)→ X = Spa(R,R+) is a closed immersion on topological
spaces (with image the support of the Cartier divisor), and we get a natural map of topological
sheaves OX/I → OZ . It is now easy to see that this is an isomorphism on rational subsets of X
by repeating the above argument. �
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Remark 5.3.9. We make the warning that if A is Tate and stably uniform, X = Spa(A,A+)
and one has a Cartier divisor corresponding to a regular element f ∈ A for which the ideal fA ⊂ A
is closed, it does not follow that I = fOX ↪→ OX is a closed Cartier divisor, cf. [Ked17b, Example
1.4.8]. The problem is that one has to check that fOX(U) ↪→ OX(U) has closed image also on
rational subsets, and this may in general fail. For a specific example, consider the affinoid subset
X = X ∗Γ(p∞)(ε)a of the modular curve at infinite level, and the function given by the Hodge–Tate

period map, in the notation of [Sch15b]. Looking at the Shilov boundary (which is contained in
the supersingular locus), one checks that it is a non-zerodivisor generating a closed ideal; however,
on the open subset X ∗Γ(p∞)(0)a, it vanishes on a whole connected component.
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6. Lecture VI: Perfectoid rings

Today we begin discussing perfectoid spaces. Let p be a fixed prime throughout.

6.1. Perfectoid Rings. Recall that a Huber ring R is Tate if it contains a topologically
nilpotent unit; such elements are called pseudo-uniformizers. The following definition is due to
Fontaine [Fon13].

Definition 6.1.1. A complete Tate ring R is perfectoid if R is uniform and there exists a
pseudo-uniformizer $ ∈ R such that $p|p in R◦, and such that the pth power Frobenius map

Φ: R◦/$ → R◦/$p

is an isomorphism.

Remark 6.1.2. One can more generally define when an analytic Huber ring is perfectoid, see
[Ked17b]. There are also notions of integral perfectoid rings, e.g. [BMS16, Section 3], [GR16]. In
this course, we will only consider perfectoid Tate rings; one could generalize most if not everything
to perfectoid analytic Huber rings (in any case, the resulting categories of perfectoid spaces are
equivalent). Being analytic is, however, critical for our purposes.

Hereafter we use the following notational convention. If R is a ring, and I, J ⊂ R are ideals
containing p such that Ip ⊂ J , then Φ: R/I → R/J will refer to the ring homomorphism x 7→ xp.

Remark 6.1.3. Let us explain why the isomorphism condition above is independent of $. For
any complete Tate ring R and pseudo-uniformizer $ satisfying $p|p in R◦, the Frobenius map
Φ: R◦/$ → R◦/$p is necessarily injective. Indeed, if x ∈ R◦ satisfies xp = $py for some y ∈ R◦
then the element x/$ ∈ R lies in R◦ since its pth power does. Thus, the isomorphism condition
on Φ in Definition 6.1.1 is really a surjectivity condition. In fact, this surjectivity condition is
equivalent to the surjectivity of the Frobenius map

R◦/p→ R◦/p .

Clearly, if the Frobenius on R◦/p is surjective, then so is Φ: R◦/$ → R◦/$p. Conversely, if
Φ: R◦/$ → R◦/$p is surjective, then by successive approximation, any element x ∈ R◦ can be
written in the form

x = xp0 +$pxp1 +$2pxp2 + . . .

with all xi ∈ R◦, in which case

x− (x0 +$x1 +$2x2 + . . .)p ∈ pR◦ .

Remark 6.1.4. The nonarchimedean field Qp is not perfectoid, even though the Frobenius map
on Fp is an isomorphism. The problem is that there is no topologically nilpotent element $ ∈ Zp
whose pth power divides p. More generally, a discretely valued non-archimedean field K cannot be
perfectoid. Indeed, if $ is a pseudo-uniformizer as in Definition 6.1.1, then $ is a non-zero element
of the maximal ideal, so the quotients K◦/$ and K◦/$p are Artin local rings of different lengths
and hence they cannot be isomorphic.

Example 6.1.5. The following are examples of perfectoid Tate rings.

(1) The cyclotomic extension Qcycl
p , the completion of Qp(µp∞).

(2) The completion of Fp((t))(t
1/p∞), which we will write as Fp((t

1/p∞)).

(3) Qcycl
p 〈T 1/p∞〉. This is defined as A[1/p], where A is the p-adic completion of Zcycl

p [T 1/p∞ ].
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(4) (An example which does not live over a field). Recall from our discussion in Section 4.2
the ring Zp[[T ]]〈p/T 〉[1/T ], which is Tate with pseudo-uniformizer T , but which does not
contain a nonarchimedean field. One can also construct a perfectoid version of it,

R = Zcycl
p [[T 1/p∞ ]]〈(p/T )1/p∞〉[1/T ].

Here we can take $ = T 1/p, because $p = T divides p in R◦.

Proposition 6.1.6. Let R be a complete Tate ring with pR = 0. The following are equivalent:

(1) R is perfectoid.
(2) R is perfect.

Here, perfect means that Φ: R→ R is an isomorphism of rings.

Proof. We have seen above that R is perfectoid if and only if it is uniform and Φ: R◦ → R◦

is surjective (as now R◦ = R◦/p). The latter is equivalent to Φ: R → R being surjective, and
uniformity implies that R is reduced, so that Φ: R→ R is an isomorphism.

It remains to see that if R is a perfect complete Tate ring, then R is uniform. For this, pick
any ring of definition R0 ⊂ R. Then Φ(R0) ⊂ R is open by Banach’s open mapping theorem, so

that $R0 ⊂ Φ(R0) for some choice of pseudo-uniformizer $. But then Φ−1(R0) ⊂ $−1/pR0, and

so Φ−2(R0) ⊂ $−1/p2
Φ−1(R0) ⊂ $−1/p2−1/pR0, etc. . This shows that in fact R′0 =

⋂
n Φ−n(R0) ⊂

$−1R0 is bounded, and therefore is a ring of definition, on which Φ is an isomorphism. But then
R◦◦ ⊂ R′0, and so R◦ ⊂ $−1R◦◦ ⊂ $−1R′0 is bounded. �

Definition 6.1.7. A perfectoid field is a perfectoid Tate ring R which is a nonarchimedean
field.

Remark 6.1.8. By [Ked17a], a perfectoid Tate ring R whose underlying ring is a field is a
perfectoid field.

Proposition 6.1.9. Let K be a nonarchimedean field. Then K is a perfectoid field if and only
if the following conditions hold:

(1) K is not discretely valued,
(2) |p| < 1, and
(3) Φ: OK/p→ OK/p is surjective.

Proof. The conditions are clearly necessary. Conversely, if K is not discretely valued, one can
find $ ∈ K× with |$| < 1 such that $p|p in OK , by taking the valuation small enough. �

Theorem 6.1.10 ([Sch12, Theorem 6.3],[KL15, Theorem 3.6.14]). Let (R,R+) be a Huber
pair such that R is perfectoid. Then for all rational subsets U ⊂ X = Spa(R,R+), OX(U) is again
perfectoid. In particular, (R,R+) is stably uniform, hence sheafy by Theorem 5.2.5.

The hard part of Theorem 6.1.10 is showing that OX(U) is uniform. The proof of this fact
makes essential use of the process of tilting.

6.2. Tilting.

Definition 6.2.1. Let R be a perfectoid Tate ring. The tilt of R is

R[ = lim←−
x 7→xp

R,
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given the inverse limit topology. A priori this is only a topological multiplicative monoid. We give
it a ring structure where the addition law is

(x(0), x(1), . . .) + (y(0), y(1), . . .) = (z(0), z(1), . . .)

where
z(i) = lim

n→∞
(x(i+n) + y(i+n))p

n ∈ R.

Lemma 6.2.2. The limit z(i) above exists and defines a ring structure making R[ a topological
Fp-algebra that is a perfect complete Tate ring. The subset R[◦ of power-bounded elements is given
by the topological ring isomorphism

R[◦ = lim←−
x 7→xp

R◦ ∼= lim←−
Φ

R◦/p ∼= lim←−
Φ

R◦/$,

where $ ∈ R is a pseudo-uniformizer which divides p in R◦. Furthermore there exists a pseudo-
uniformizer $ ∈ R with $p|p in R◦ that admits a sequence of pth power roots $1/pn, giving rise to

an element $[ = ($,$1/p, . . .) ∈ R[◦, which is a pseudo-uniformizer of R[. Then R[ = R[◦[1/$[].

Proof. (Sketch.) Certainly the p-th power map on R[ is an isomorphism by design. Let $0

be a pseudo-uniformizer of R. Let us check that the maps

lim←−
Φ

R◦ → lim←−
Φ

R◦/p→ lim←−
Φ

R◦/$0

are bijective. The essential point is that any sequence (x0, x1, . . .) ∈ lim←−Φ
R◦/$0 lifts uniquely to a

sequence (x0, x1, . . .) ∈ lim←−Φ
R◦. Here x(i) = limn→∞ x

pn

n+i, where xj ∈ R◦ is any lift of xj . (For the

convergence of that limit, note that if x ≡ y (mod $n
0 ), then xp ≡ yp (mod $n+1

0 ).) This shows

that we get a well-defined ring R[◦.
Now assume that $p

0|p in R◦. Any preimage of $0 under R[◦ = lim←−Φ
R◦/$p

0 → R◦/$p
0 is an

element $[ with the right properties. It is congruent to $0 modulo $p
0, and therefore it is also a

pseudo-uniformizer. Then $ = $[] is the desired pseudo-uniformizer of R◦. �

Remark 6.2.3. In the special case that R = K is a perfectoid field, the construction of K[ is
due to Fontaine, [Fon82], as an intermediate step towards his construction of p-adic period rings.

Here, K[ is a complete nonarchimedean field with absolute value defined by f 7→
∣∣f ]∣∣, where | | is

the absolute value on K.

Example 6.2.4. Let Qcycl
p be the completion of Qp(µp∞). Then Qcycl

p is a perfectoid field.
Let ζp, ζp2 , . . . be a compatible system of pth power roots of 1. Then t = (1, ζp, ζp2 , . . . ) − 1 is a

pseudouniformizer of (Qcycl
p )[. In fact (Qcycl

p )[ = Fp((t
1/p∞)), the t-adic completion of the perfect

field Fp(t
1/p∞). Note that Z×p = Gal(Qp(µp∞)/Qp) acts on Qcycl

p and therefore on Fp((t
1/p∞)).

Explicitly, the action of γ ∈ Z×p carries t onto (1 + t)γ − 1.

We have a continuous and multiplicative (but not additive) map R[ → lim←−R→ R by projecting

onto the zeroth coordinate; call this f 7→ f ]. This projection defines a ring isomorphism R[◦/$[ ∼=
R◦/$. By topological nilpotence conditions, the integrally closed open subrings of R[◦ and R◦

correspond exactly to the integrally closed subrings of their common quotients modulo $[ and $.
This defines an inclusion-preserving bijection between the sets of open integrally closed subrings of
R[◦ and R◦. This correspondence can be made more explicit:
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Lemma 6.2.5. The set of rings of integral elements R+ ⊂ R◦ is in bijection with the set of rings
of integral elements R[+ ⊂ R[◦, via R[+ = lim←−x 7→xp R

+. Also, R[+/$[ = R+/$.

The following two theorems belong to a pattern of “tilting equivalence”.

Theorem 6.2.6 ([KL15], [Sch12]). Let (R,R+) be a perfectoid Huber pair, with tilt (R[, R[+).

There is a homeomorphism X = Spa(R,R+) ∼= X[ = Spa(R[, R[+) sending x to x[, where
∣∣f(x[)

∣∣ =∣∣f ](x)
∣∣. This homeomorphism preserves rational subsets. For any rational subset U ⊂ X with image

U [ ⊂ X[, the complete Tate ring OX(U) is perfectoid with tilt OX[(U [).

Note that this theorem implies stable uniformity, and thus sheafyness. Note that in characteris-
tic p, it is clear that the perfectness condition is preserved under rational localization, and we have
seen that this implies uniformity in Proposition 6.1.6. To transfer this information to the general
case (and thus prove the final sentence of the last theorem), one uses the following theorem.

Theorem 6.2.7 ([KL15], [Sch12]). Let R be a perfectoid ring with tilt R[. Then there is an

equivalence of categories between perfectoid R-algebras and perfectoid R[-algebras, via S 7→ S[.

Let us describe the inverse functor in Theorem 6.2.7, along the lines of Fontaine’s Bourbaki
talk, [Fon13]. In fact we will answer a more general question. Given a perfectoid algebra R in
characteristic p, what are all the untilts R] of R? Let us start with a pair (R,R+).

Lemma 6.2.8. Let (R], R]+) be an untilt of (R,R+); i.e. a perfectoid Tate ring R] together with

an isomorphism R][ → R, such that R]+ and R+ are identified under Lemma 6.2.5.

(1) There is a canonical surjective ring homomorphism

θ : W (R+) → R]+∑
n≥0

[rn]pn 7→
∑
n≥0

r]np
n

(2) The kernel of θ is generated by a nonzero-divisor ξ of the form ξ = p+[$]α, where $ ∈ R+

is a pseudo-uniformizer, and α ∈W (R+).

We remark that there is no assumption that an untilt of R should have characteristic 0. In
particular R itself is an untilt of R, corresponding to ξ = p.

Definition 6.2.9. An ideal I ⊂W (R+) is primitive of degree 1 if I is generated by an element
of the form ξ = p+ [$]α, with $ ∈ R+ a pseudo-uniformizer and α ∈W (R+).

Lemma 6.2.10. Any element ξ ∈ W (R+) of the form ξ = p + [$]α, with $ ∈ R+ a pseudo-
uniformizer and α ∈W (R+), is a non-zerodivisor.

Proof. Assume that ξ
∑

n≥0[cn]pn = 0. Modulo [$], this reads
∑

n≥0[cn]pn+1 ≡ 0 (mod [$]),

meaning that all cn ≡ 0 (mod $). We can then divide all cn by $, and induct. �

Proof. (of Lemma 6.2.8) Fix $ ∈ R+ a pseudo-uniformizer such that $] ∈ R]+ satisfies
($])p|p. For part (1), it is enough to check that θ is a ring map modulo ($])m for any m ≥ 1. For
this, we use that the m-th ghost map

W (R]+)→ R]+/($])m : (x0, x1, . . .) 7→
m∑
n=0

xp
m−n
n pn
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factors uniquely over W (R]+/$]), by obvious congruences; the induced map W (R]+/$]) →
R]+/($])m must be a ring homomorphism. Now the composite

W (R+)→W (R+/$) = W (R]+/$])→ R]+/($])m ,

where the first map is given by the m-th component map R+ = lim←−x 7→xp R
]+/$] → R]+/$], is

a ring map, which we claim is equal to θ modulo ($])m. This is a direct verification from the
definitions.

For surjectivity of θ, we know that R+ → R]+/$] is surjective, which shows that θ mod [$] is
surjective. As everything is [$]-adically complete, this implies that θ is surjective.

For part (2), we claim that there exists f ∈ $R+ such that f ] ≡ p (mod p$]R]+). Indeed,
consider α = p/$] ∈ R]+. There exists β ∈ R+ such that β] ≡ α (mod pR]+). Then ($β)] =
$]α ≡ p (mod p$]R]+). Take f = $β.

Thus we can write p = f ] + p$]
∑

n≥0 r
]
npn, with rn ∈ R+. We can now define ξ = p − [f ] −

[$]
∑

n≥0[rn]pn+1, which is of the desired form, and which lies in the kernel of θ. Finally we need to

show that ξ generates ker(θ). For this, note that θ induces a surjective map f : W (R+)/ξ → R]+.
It is enough to show that f is an isomorphism modulo [$]. But

W (R+)/(ξ, [$]) = W (R+)/(p, [$]) = R+/$ = R]+/$] ,

as desired. �

From here, one gets the following theorem, which implies Theorem 6.2.7.

Theorem 6.2.11 ([KL15], [Fon13]). There is an equivalence of categories between:

(1) Perfectoid Tate-Huber pairs (S, S+)
(2) Triples (R,R+,J ), where (R,R+) is a perfectoid Tate-Huber pair of characteristic p and
J ⊂W (R+) is primitive of degree 1.

In one direction the map is (S, S+) 7→ (S[, S[+, ker θ), and in the other, it is (R,R+,J ) 7→
(W (R+)[[$]−1]/J ,W (R+)/J ).

6.3. Sousperfectoid rings. Theorem 6.1.10 states that if (R,R+) is a Huber pair with R
perfectoid, then (R,R+) is stably uniform, and thus sheafy. It will be useful to extend this theorem
to a slightly broader class of Huber pairs. The following definition and results are due to Hansen–
Kedlaya.

Definition 6.3.1. Let R be a complete Tate-Zp-algebra. Then R is sousperfectoid if there

exists a perfectoid Tate ring R̃ with an injection R ↪→ R̃ that splits as topological R-modules.

Example 6.3.2.

(1) Any perfectoid ring is sousperfectoid.

(2) A Tate algebra R = Qp〈T 〉 is sousperfectoid, by taking R̃ = Qcycl
p 〈T 1/p∞〉.

The class of sousperfectoid rings has good stability properties.

Proposition 6.3.3. Let R be a complete Tate-Zp-algebra with a ring of integral elements R+ ⊂
R, and assume that R is sousperfectoid.

(1) If U ⊂ X = Spa(R,R+) is a rational subset, then OX(U) is sousperfectoid.
(2) If S is a finite étale R-algebra, then S is sousperfectoid.
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(3) For all n ≥ 0, the ring R〈T1, . . . , Tn〉 is sousperfectoid.

Proof. Choose a perfectoid Tate ring R̃ with an injection R ↪→ R̃ that splits as topological R-

modules, and let R̃+ ⊂ R̃ be a ring of integral elements containing R+. Let X̃ = Spa(R̃, R̃+)→ X =

Spa(R,R+), and let Ũ ⊂ X̃ be the preimage of U . Then R̃⊗̂ROX(U) = O
X̃

(Ũ) is a perfectoid Tate
ring, of which OX(U) is a topological OX(U)-module direct summand, so OX(U) is sousperfectoid.

Similarly, if S is a finite étale R-algebra, then S̃ = R̃ ⊗R S = R̃⊗̂RS is a perfectoid Tate ring

by Theorem 7.4.5 (1) below, and again S is a topological S-module direct summand of S̃, so S is

sousperfectoid. Finally, the same argument applies to R〈T1, . . . , Tn〉 ↪→ R̃〈T 1/p∞

1 , . . . , T
1/p∞
n 〉. �

In particular, we get the following proposition.

Proposition 6.3.4. Let (R,R+) be a Tate-Huber pair such that R is sousperfectoid. Then
(R,R+) is stably uniform, and thus sheafy.

Proof. As being sousperfectoid is stable under rational localization by the previous propo-

sition, it is enough to see that R is uniform. If R̃ is a perfectoid ring as in the definition, it is

enough to see that R◦ ↪→ R̃◦, as R̃◦ is bounded and the map R → R̃ is strict (as it splits as
topological R-modules). But an element is powerbounded if and only if for all maps R → K to a

nonarchimedean field, the image is powerbounded. Now the map K → R̃⊗̂RK is still injective, as

it splits as topological K-vector spaces. This implies that R̃⊗̂RK 6= 0, and so it admits a map to

a nonarchimedean field L. If f ∈ R maps into R̃◦, it maps into OL, and thus into OL ∩K = OK ,
as desired. �
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7. Lecture VII: Perfectoid spaces

This is the second lecture on perfectoid spaces. Recall that a perfectoid Tate ring R is a
complete, uniform Tate ring containing a pseudo-uniformizer $ such that $p|p in R◦ and such that
Φ: R◦/$ → R◦/$p is an isomorphism.

7.1. Perfectoid spaces: definition and tilting equivalence. We also talked about tilting.
Suppose (R,R+) is a Huber pair, with R perfectoid. Let R[ = lim←−x 7→xp R, a perfectoid ring of

characteristic p, together with a map R[ → R of multiplicative monoids, f 7→ f ]. In the last
lecture, we said a few words about the proof of the following theorem.

Theorem 7.1.1. A Huber pair (R,R+) with R perfectoid is sheafy. Let X = Spa(R,R+),

X[ = Spa(R[, R[+); then there is a homeomorphism X → X[, x 7→ x[, which preserves rational

subsets. It is characterized by
∣∣f(x[)

∣∣ =
∣∣f ](x)

∣∣. Moreover for a rational subset U ⊂ X with image

U [ ⊂ X[, the complete Tate ring OX(U) is perfectoid with tilt OX[(U [).

Definition 7.1.2. A perfectoid space is an adic space covered by affinoid adic spaces Spa(R,R+)
with R perfectoid.

Remark 7.1.3. If (R,R+) is some sheafy Tate-Huber pair for which Spa(R,R+) is a perfectoid
space, it is not clear whether R has to be perfectoid (although it is fine if we are in characteristic p).
See [BV16] for a discussion. This means that the term “affinoid perfectoid space” is ambiguous;
we will always mean a space of the form Spa(R,R+), where R is perfectoid.

The tilting process glues to give a functor X 7→ X[ from perfectoid spaces to perfectoid spaces
of characteristic p. Moreover, the tilting equivalence geometrizes.

Theorem 7.1.4. For any perfectoid space X with tilt X[, the functor Y 7→ Y [ induces an
equivalence between the categories of perfectoid spaces over X resp. X[.

7.2. Why do we study perfectoid spaces? Let us put forward a certain philosophy here,
which indicates that perfectoid spaces may arise even when one is only interested in classical objects.

If X is a perfectoid space, all topological information (e.g. |X|, and even Xét as discussed

below) can be recovered from X[. However X[ forgets the structure morphism X → Spa Zp. The
following will be made precise in the next two lectures: The category of perfectoid spaces over Qp

is equivalent to the category of perfectoid spaces X of characteristic p together with a “structure
morphism X → Qp”.

Remarkably, we can still carry out this procedure if X is not perfectoid, but rather is an
arbitrary analytic adic space over Zp. We will see in (8.2) that there is always a perfectoid space

X̃ and a pro-étale covering X̃ → X. For example, if X = Spa Qp〈T±1〉 is the “unit circle”, this

has a pro-étale covering by the perfectoid space X̃ = Spa Qcycl
p 〈T±1/p∞〉, this being the inverse

limit of the finite étale covers Xn = Spa Qp(ζpn)〈T±1/pn〉. Then we can tilt X̃ to arrive at X̃[, a
perfectoid space in characteristic p, which inherits a descent datum corresponding to the original

cover X̃ → X. In this way, one can “access” all analytic adic spaces over Zp using pro-étale descent
from perfectoid spaces in characteristic p. This leads us to the notion of a diamond, introduced in
(8.1).
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7.3. The equivalence of étale sites. The tilting equivalence extends to the étale site of a
perfectoid space. That is, if X is a perfectoid space then there is an equivalence Xét

∼= X[
ét. First

we discuss the case where X is a single point.

Theorem 7.3.1 ([FW79], [KL15, Theorem 3.5.6], [Sch12]). Let K be a perfectoid field with

tilt K[.

(1) If L/K is finite, then L is perfectoid.

(2) The functor L 7→ L[ is an equivalence of categories between finite extensions of K and

finite extensions of K[ which preserves degrees. Thus, the absolute Galois groups of K
and K[ are isomorphic.

A related result is the following.

Theorem 7.3.2 ([Tat67], [GR03, Section 6.6]). Let K be a perfectoid field and L/K a finite
extension. Then OL/OK is almost finite étale.

For the precise meaning of almost finite étale, which is somewhat technical, we refer to [Sch12,
Section 4]. What Tate actually proved (for certain perfectoid fields K) is that if tr : L→ K is the
trace map, then tr(OL) contains mK , the maximal ideal of OK .

Example 7.3.3. Say K = Qp(p
1/p∞)∧, a perfectoid field. Let L = K(

√
p) (and assume

p 6= 2). Let Kn = Qp(p
1/pn) and Ln = Kn(

√
p). Note that p1/2pn ∈ Ln, because p1/2pn =

(p1/pn)(pn+1)/2p−1/2, and that

OLn = OKn [p1/2pn ] = OKn [x]/(x2 − p1/pn).

Let f(x) = x2−p1/pn . The different ideal δLn/Kn is the ideal of OLn generated by f ′(p1/2pn), which

is p1/2pn . The p-adic valuation of δLn/Kn is 1/2pn, which tends to 0 as n → ∞. Inasmuch as the
different measures ramification, this means that the extensions Ln/Kn are getting less ramified as
n→∞.

In other words, one can almost get rid of ramification along the special fiber by passing to
a tower whose limit is perfectoid. This is what Tate does (using the cyclotomic tower) to do
computations in Galois cohomology, which is an essential part of p-adic Hodge theory.

In fact Theorem 7.3.2 implies Theorem 7.3.1, as observed in [Sch12]. The equivalence between

finite étale algebras over K and K[ goes according to the diagram, all of whose arrows are equiva-
lences (which uses the notations of [Sch12]). Here we use the notion of almost OK-algebras, written
OaK-algebras, which are algebra objects in the symmetric monoidal category of almost OK-modules
introduced in the next section.

{fin. ét. K-algebras} Theorem 7.3.2 // {fin. ét. OaK-algebras} // {fin. ét. (OK/$)a-algebras}

{fin. ét. K[-algebras} {fin. ét. Oa
K[-algebras}Theorem 7.3.2oo {fin. ét. (OK[/$[)a-algebras}oo

Philosophically, properties of K extend “almost integrally” to OK , which one can then pass to
OK/$ and tilt to the other side.
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SpecR

SpecR[

SpecR+/$ SpecR[+/$[

Figure 2. A (not to be taken too seriously) depiction of the tilting process for a
perfectoid ring R. The blue figure represents SpecR+ and the red figure represents
SpecR[+. Objects associated with R can “almost” be extended to R+ and then
reduced modulo $. But then R+/$ = R[+/$[, so one gets an object defined over

R[+/$[. The process can be reversed on the R[ side, so that one gets a tilted object

defined over R[.

7.4. Almost mathematics, after Faltings. Let R be a perfectoid Tate ring.

Definition 7.4.1. An R◦-module M is almost zero if $M = 0 for all pseudo-uniformizers $.
Equivalently, if $ is a fixed pseudo-uniformizer admitting pth power roots, then M is almost zero
if $1/pnM = 0 for all n. (Similar definitions apply to R+-modules.)

Example 7.4.2. (1) If K is a perfectoid field, then the residue field k = OK/mK is almost
zero. (A general almost zero module is a direct sum of such modules.)

(2) If R is perfectoid and R+ ⊂ R◦ is any ring of integral elements, then R◦/R+ is almost zero.
Indeed, if $ is a pseudo-uniformizer, and x ∈ R◦, then $x is topologically nilpotent. Since
R+ is open, there exists n with ($x)n ∈ R+, so that $x ∈ R+ by integral closedness.

Note that extensions of almost zero modules are almost zero. Thus the category of almost zero
modules is a thick Serre subcategory of the category of all modules, and one can take the quotient.

Definition 7.4.3. The category of almost R◦-modules, written R◦a-mod, is the quotient of the
category of R◦-modules by the subcategory of almost zero modules.

One can also define R+a-mod, but the natural map R◦a-mod→ R+a-mod is an equivalence.

Theorem 7.4.4. Let (R,R+) be a perfectoid Tate-Huber pair, and let X = Spa(R,R+). (Thus
by Kedlaya-Liu, H i(X,OX) = 0 for i > 0.) Then H i(X,O+

X) is almost zero for i > 0, and

H0(X,O+
X) = R+.

Proof. By tilting one can reduce to the case of pR = 0. We will show that for any finite
rational covering X =

⋃
i Ui, all cohomology groups of the Cech complex

C• : 0→ R+ →
∏
i

O+
X(Ui)→

∏
i,j

O+
X(Ui ∩ Uj)→ · · ·
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are almost zero. We know that C•[1/$] (replace O+
X with OX everywhere) is exact. Now we use

Banach’s Open Mapping Theorem: each cohomology group of C• is killed by a power of $. (From
the exactness of C•[1/$] one deduces formally that each cohomology group is $-power-torsion,
but we assert that there is a single power of $ which kills everything. For the complete argument,
see [Sch12, Proposition 6.10].)

Since R is perfect, Frobenius induces isomorphisms on all cohomology groups of C•. So if these

are killed by $n, they are also killed by all the $n/pk , so they are almost zero. �

This is a typical strategy: bound the problem up to a power of $, and then use Frobenius to
shrink the power to zero.

Theorem 7.4.5 ([Fal02a],[KL15],[Sch12]). Let R be perfectoid with tilt R[.

(1) For any finite étale R-algebra S, S is perfectoid.
(2) Tilting induces an equivalence

{Finite étale R-algebras} → {Finite étale R[-algebras}
S 7→ S[

(3) (Almost purity) For any finite étale R-algebras S, the algebra S◦ is almost finite étale over
R◦.

The line of argument is to prove (2) and deduce (1) and (3) (by proving them in characteristic
p). Let us sketch the proof of (2). We reduce to the case of perfectoid fields via the following

argument. Let x ∈ X = Spa(R,R+) with residue field K(x), and similarly define K(x[). Then we

have K(x)[ = K(x[).

Lemma 7.4.6.

2- lim−→
U3x
{finite étale OX(U)-algebras} → {finite étale K(x)-algebras}

is an equivalence.

Remark 7.4.7. One has here a directed system of categories Ci, indexed by a filtered category
I, with functors Fij : Ci → Cj for each morphism i→ j in I. The 2-limit C = 2- lim−→Ci is a category
whose objects are objects of any Ci. If Xi and Xj belong to Ci and Cj , respectively, then

HomC(Xi, Xj) = lim−→
i,j→k

HomCk(Fik(Xi), Fjk(Xj)),

the limit being taken over pairs of morphisms from i and j into a common third object k.

Admitting the lemma for the moment, we can complete this to a diagram

2- lim−→U3x{finite étale OX(U)-algebras} //

��

{finite étale K(x)-algebras}

��
2- lim−→U3x{finite étale OX[(U)-algebras} // {finite étale K(x)[-algebras}

Thus we get equivalences locally at every point, which we can glue together to deduce (2) (using
Theorem 5.2.8 for example). It remains to address Lemma 7.4.6. This rests on the following
theorem.
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Theorem 7.4.8 ([Elk73], [GR03]). Let A be a Tate ring such that A is “topologically henselian”.
That is, for a ring of definition A0 ⊂ A, $ ∈ A0 a pseudo-uniformizer, then A0 is henselian along
$A0. Then the functor

{finite étale A-algebras} → {finite étale Â-algebras}
B 7→ B̂ = B ⊗A Â

is an equivalence.

As a corollary, let Ai be a filtered directed system of complete Tate rings, A∞ = l̂im−→Ai. Then

2- lim−→{finite étale Ai-algebras} ∼= {finite étale lim−→Ai-algebras}
∼= {finite étale A∞-algebras.}

To deduce Lemma 7.4.6 from Theorem 7.4.8, it remains to show that K(x) = ̂lim−→OX(U), for

the topology making lim−→O
+
X(U) open and bounded. We have

0→ I → lim−→
x∈U
O+
X(U)→ K(x)+

where the last arrow has dense image. We claim that $ is invertible in I. If f ∈ O+
X(U) is such

that |f(x)| = 0, then V = {|f(x)| ≤ |$|} is an open neighborhood of x, and then f ∈ $O+
X(V ),

and so f ∈ $I. Thus the $-adic completion of lim−→O
+
X(U) is K(x)+.

7.5. The étale site. Finally, we define the étale site of perfectoid spaces.

Definition 7.5.1. (1) A morphism f : X → Y of perfectoid spaces is finite étale if for all
Spa(B,B+) ⊂ Y open, the pullback X ×Y Spa(B,B+) is Spa(A,A+), where A is a finite
étale B-algebra, and A+ is the integral closure of the image of B+ in A.

(2) A morphism f : X → Y is étale if for all x ∈ X there exists an open U 3 x and V ⊃ f(U)
such that there is a diagram

U �
� open //

f |U   

W

finite étale~~
V

(3) An étale cover is a jointly surjective family of étale maps.

The following proposition shows that this has the expected properties. We note that this
characterization of étale maps does not hold true in the world of schemes, but it does in the case
of analytic adic spaces, by [Hub96, Lemma 2.2.8].

Proposition 7.5.2. (1) Compositions of (finite) étale morphisms are (finite) étale.
(2) Pullbacks of (finite) étale morphisms are (finite) étale.
(3) If g and gf are (finite) étale, then so is f .

(4) f is (finite) étale if and only if f [ is (finite) étale.

In particular, we get the following corollary showing that the étale site is invariant under tilting.

Corollary 7.5.3. There exists an étale site Xét, such that naturally Xét
∼= X[

ét, and H i(Xét,O+
X)

is almost zero for i > 0 for affinoids X.
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8. Lecture VIII: Diamonds

8.1. Diamonds: motivation. Today we discuss the notion of a diamond. The idea is that
there should be a functor

{analytic adic spaces over Zp} → {diamonds}
X 7→ X♦

which “forgets the structure morphism to Zp”. For a perfectoid space X, the functor X 7→ X[ has

this property, so the desired functor should essentially be given by X 7→ X[ on such objects. In
general, if X/Zp is an analytic adic space, then X is pro-étale locally perfectoid:

X = Coeq(X̃ ×X X̃ ⇒ X̃),

where X̃ → X is a pro-étale (in the sense defined below) perfectoid cover; one can then show

that the equivalence relation R = X̃ ×X X̃ is also perfectoid (as it is pro-étale over X̃), at least

after passing to a uniform completion. Then the functor should send X to Coeq(R[ ⇒ X̃[). The
only question now is, what category does this live in? (There is also the question of whether
this construction depends on the choices made.) Whatever this object is, it is pro-étale under a

perfectoid space in characteristic p, namely X̃[.

Example 8.1.1. If X = Spa(Qp), then a pro-étale perfectoid cover of X is X̃ = Spa(Qcycl
p ).

Then R = X̃ ×X X̃ is essentially X̃ × Z×p , which can again be considered as a perfectoid space,

and so X♦ should be the coequalizer of X̃[ × Z×p ⇒ X̃[, which comes out to be the quotient

Spa((Qcycl
p )[)/Z×p , whatever this means.

8.2. Pro-étale morphisms. The desired quotient in Example 8.1.1 exists in a category of
sheaves on the site of perfectoid spaces with pro-étale covers. So our next task is to define pro-étale
morphisms between perfectoid spaces.

Definition 8.2.1. A morphism f : Spa(B,B+) → Spa(A,A+) of affinoid perfectoid spaces is
affinoid pro-étale if

(B,B+) = ̂lim−→(Ai, A
+
i )

is a completed filtered colimit of pairs (Ai, A
+
i ) with Ai perfectoid, such that

Spa(Ai, A
+
i )→ Spa(A,A+)

is étale. A morphism f : X → Y of perfectoid spaces is pro-étale if it is locally (on the source and
target) affinoid pro-étale.

Example 8.2.2. An important example of pro-étale morphisms comes from profinite sets. If X
is any perfectoid space and S is a profinite set, we can define a new perfectoid space X × S as the
inverse limit of X × Si, where S = lim←−i Si is the inverse limit of finite sets Si. Then X × S → X is
pro-étale. This construction extends to the case that S is locally profinite.

Remark 8.2.3. Pro-étale morphisms are not necessarily open. For instance, we could have
Y = SK = Spa(K,OK) × S for a perfectoid field K and profinite set S, and f : X → Y could be
the inclusion of a point X = Spa(K,OK)× {x}, x ∈ S. Indeed, this is the completed inverse limit
of morphisms Spa(K,OK)×Ui → Y , where Ui ⊂ S is an open and closed subset and

⋂
i Ui = {x}.
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Lemma 8.2.4 ([Sch17, Proposition 7.10]). Let

Spa(A∞, A
+
∞)

((

Spa(B∞, B
+
∞)

vv
Spa(A,A+)

be a diagram of affinoid pro-étale morphisms of affinoid perfectoid spaces, where (A∞, A
+
∞) =

̂lim−→i∈I(Ai, A
+
i ) is as in the definition, and similarly (B∞, B

+
∞) = ̂lim−→j∈J(Bj , B

+
j ). Then

HomSpa(A,A+)(Spa(A∞, A
+
∞),Spa(B∞, B

+
∞))

= lim←−
J

lim−→
I

HomSpa(A,A+)

(
Spa(Ai, A

+
i ),Spa(Bj , B

+
j )
)
.

Proof. (Sketch.) Without loss of generality J is a singleton, and we can write (B,B+) =
(B∞, B

+
∞). Now have to check that

Hom(Spa(A∞, A
+
∞),Spa(B,B+)) = lim−→

I

Hom(Spa(Ai, A
+
i ),Spa(B,B+))

(where all Homs are over (A,A+)). This can be checked locally on Spa(B,B+). An étale morphism
is locally a composition of rational embeddings and finite étale morphisms. So without loss of
generality f : Spa(B,B+)→ Spa(A,A+) is one of these.

(1) If f is a rational embedding: let U = Spa(B,B+) ↪→ Spa(A,A+), then the fact that
Spa(A∞, A

+
∞)→ Spa(A,A+) factors over U implies that there exists i such that Spa(Ai, A

+
i )→

Spa(A,A+) factors over U . Indeed, we can apply the following quasi-compactness argu-
ment, which applies whenever one wants to show that a “constructible” algebro-geometric
property applies to a limit of spaces if and only if it applies to some stage of the limit.

Topologically we have Spa(A∞, A
+
∞) = lim←−i Spa(Ai, A

+
i ), and thus

Spa(A∞, A
+
∞)\ {preimage of U} = lim←−

(
Spa(Ai, A

+
i )\ {preimage of U}

)
The right-hand side is an inverse limit of spaces which are closed in a spectral space, thus
spectral, and so they are compact and Hausdorff for the constructible topology. If the
inverse limit is empty, one of the terms has to be empty: this is a version of Tychonoff’s
theorem, see [RZ10, Proposition 1.1.4]. We get that Spa(Ai, A

+
i ) equals the preimage of

U for some i.
(2) Suppose that f is finite étale. Recall from Theorem 7.4.8 that

{finite étale A∞-algebras} = 2- lim−→{finite étale Ai-algebras}

This shows that

HomA(B,A∞) = HomA∞(B ⊗A∞, A∞)

= lim−→
i

HomAi(B ⊗Ai, Ai)

= lim−→
i

HomA(B,Ai).

�
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Proposition 8.2.5 ([Sch17, Lemma 7.11]). (1) Compositions of pro-étale maps are pro-
étale.

(2) If

X

g   

f // Y
h

��
Z

is a diagram of perfectoid spaces where g and h are pro-étale, then f is pro-étale.
(3) Pullbacks of pro-étale morphisms are pro-étale. (Note: the category of affinoid perfectoid

spaces has all connected limits. In particular fiber products of perfectoid spaces exist.)

Unfortunately, the property of being pro-étale cannot be checked pro-étale locally on the target.
Still, we can define the pro-étale site.7

Definition 8.2.6 (The big pro-étale site). Consider the following categories:

• Perfd, the category of perfectoid spaces.
• Perf ⊂ Perfd, the subcategory of perfectoid spaces in characteristic p.
• Xproét, the category of perfectoid spaces pro-étale over X, where X is any perfectoid space.

We endow each of these with the structure of a site by saying that a collection of morphisms
{fi : Yi → Y } is a covering (a pro-étale cover) if the fi are pro-étale, and if for all quasi-compact
open U ⊂ Y , there exists a finite subset IU ⊂ I, and quasicompact open subsets Ui ⊂ Yi for i ∈ IU ,
such that U = ∪i∈IU fi(Ui).

Remark 8.2.7. It is not good enough to demand merely that the fi are a topological cover.
For instance, let X be a pro-finite set considered as a perfectoid space over some perfectoid field in
characteristic p, and let Xi → X be a pro-étale morphism whose image is the point i ∈ X, as in
Remark 8.2.3. The finiteness criterion in Definition 8.2.6 prevents the Xi → X from constituting a
cover in Perfd. The same issue arises for the fpqc topology on the category of schemes: if X is an
affine scheme, the collection of flat quasi-compact maps SpecOX,x → X for x ∈ X is generally not
an fpqc cover.

Proposition 8.2.8 ([Sch17, Corollary 8.6]). Let X be a perfectoid space.

(1) The presheaves OX ,O+
X defined on Perfd by X 7→ OX(X),O+

X(X) are sheaves. If X is

affinoid, then H i(Xproét,OX) = 0, and H i(Xproét,O+
X) is almost zero.

(2) The presheaf on Perfd defined by hX(Y ) = Hom(Y,X) is a sheaf on the pro-étale site.
(That is, all representable presheaves are sheaves, or equivalently the pro-étale site is sub-
canonical.)

Proof. (1) Without loss of generality X = Spa(R,R+) is a perfectoid affinoid. (This reduction
proceeds because OX and O+

X are already sheaves for the analytic topology.) Furthermore, we need

only check the sheaf property and almost vanishing of Čech cohomology relative to affinoid pro-étale
covers Y → X, where Y = Spa(R∞, R

+
∞), where (R∞, R

+
∞) is the completion of lim−→j

(Rj , R
+
j ).

Fix a pseudo-uniformizer $ ∈ R. We claim that the Čech complex

0→ R+/$ → R+
∞/$ → · · ·

7We ignore set-theoretic difficulties. They can be resolved by fixing a suitable cutoff cardinal, cf. [Sch17].
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is almost exact. The complex
0→ R+/$ → R+

j /$ → · · ·
is almost exact, because H i(Xét,O+

X/$) is almost zero for i > 0 (is and R+/$ for i = 0). Now
we can take a direct limit over j. A filtered direct limit of almost exact sequences is almost exact.
Thus,

0→ R+ → R+
∞ → · · ·

is almost exact (all terms are $-torsion free and $-adically complete), which gives the claim about
the almost vanishing of the higher cohomology of O+

X . Now invert $ to get that OX is a pro-étale

sheaf, whose higher cohomology is zero. This implies that O+
X is also a sheaf, as O+

X ⊂ OX is the
subsheaf given by functions of absolute value at most 1 everywhere.

(2) We can reduce to the case that X = Spa(R,R+) and Y = Spa(S, S+) are affinoid. Let
{fi : Yi → Y } be a pro-étale cover, on which one has compatible maps Yi → X. We get a map
R→ H0(Yproét,OY ) = S (asOY is a pro-étale sheaf), and similarly a map R+ → S+, as desired. �

8.3. Definition of diamonds. Recall that our intuitive definition of diamonds involved the
tilting functor in case of perfectoid spaces of characteristic 0. For this reason, diamonds will be de-
fined as certain pro-étale sheaves on the category Perf ⊂ Perfd of perfectoid spaces of characteristic
p.

In the following, we will denote the sheaf on Perf represented by a perfectoid space X of
characteristic p by X itself.

Definition 8.3.1. A diamond is a pro-étale sheaf D on Perf such that one can write D = X/R
as a quotient of a perfectoid space X of characteristic p by an equivalence relation R ⊂ X×X such
that R is a perfectoid space with s, t : R→ X pro-étale.

Remark 8.3.2. This definition is similar to the definition of algebraic spaces as quotients of
schemes by étale equivalence relations.

Let us analyze this definition. What are the conditions on a pair (R,X) such that X/R defines
a diamond with induced equivalence relation R = X ×X/R X? First, we need that R injects into
X ×X.

Definition/Proposition 8.3.3 ([Sch17, Proposition 5.3]). Let f : Y → X be a map of
perfectoid spaces. The following conditions are equivalent.

(1) For all perfectoid spaces T , the map Hom(T, Y )→ Hom(T,X) is injective.
(2) For all perfectoid affinoid fields (K,K+), the map Y (K,K+)→ X(K,K+) is injective.
(3) For all algebraically closed affinoid fields (C,C+), the map Y (C,C+) → X(C,C+) is

injective.
(4) The map |Y | → |X| is injective, and for all y ∈ Y with image x ∈ X, the map K(y) →

K(x) is an isomorphism.
(5) The map |Y | → |X| is injective, and for all perfectoid spaces T , the map

Hom(T, Y )→ Hom(T,X)×C0(|T |,|X|) C
0(|T |, |Y |)

is a bijection, where C0(−,−) denotes the set of continuous maps.

The map f is an injection if it satisfies these equivalent conditions.

Now we get the following result.
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Proposition 8.3.4 ([Sch17, Proposition 11.3]). Let X be a perfectoid space of characteristic
p, and let R be a perfectoid space with two pro-étale maps s, t : R→ X such that the induced map
R→ X ×X is an injection making R an equivalence relation on X. Then D = X/R is a diamond
and the natural map R→ X ×D X is an isomorphism.

The following results will allow us to make sense of absolute products like Spa Qp × Spa Qp in
the world of diamonds, as promised in the introduction.

Lemma 8.3.5. The (absolute) product of two perfectoid spaces of characteristic p is again a
perfectoid space.

Remark 8.3.6. Note that Perf lacks a final object, so an absolute product is not a fiber product.

Proof. It suffices to show that the product of two affinoid perfectoid spaces of characteristic
p is again an affinoid perfectoid space. Let X = Spa(A,A+) and Y = Spa(B,B+) be two affinoid
perfectoid spaces, with pseudo-uniformizers $ ∈ A and $′ ∈ B. For each m,n ≥ 1, we define a

topology on A⊗Fp B, using the ring of definition (A◦ ⊗Fp B
◦)
[
$m⊗1
1⊗$′ ,

1⊗($′)n

$⊗1

]
, equipped with its

$⊗ 1-adic topology (this coincides with the 1⊗$′-adic topology). Let (A⊗Fp B)+ be the integral

closure of A+⊗FpB
+ in A⊗FpB. Then (A⊗FpB, (A⊗FpB)+) is a Huber pair; we let (Cm,n, C

+
m,n)

be its completion. Then Cm,n is a perfect complete Tate ring, so that by Proposition 6.1.6, Cm,n
is a perfectoid ring, and Spa(Cm,n, C

+
m,n) is a perfectoid space.

Form′ ≥ m and n′ ≥ n there is a natural open immersion Spa(Cm,n, C
+
m,n)→ Spa(Cm′,n′ , C

+
m′,n′).

We claim that the union of these over all pairs (m,n) represents the product X × Y . Indeed, sup-
pose (R,R+) is a complete Huber pair, and f : (A,A+)→ (R,R+) and g : (B,B+)→ (R,R+) are
morphisms. Since the sequences f($)m/g($′) and g($′)n/f($) both approach 0 in R, there must
exist m,n ≥ 1 such that f($)m/g($′) and g($′)n/f($) both lie in A◦. Then by our construction,
the homomorphism (A ⊗Fp B,A

+ ⊗Fp B
+) → (R,R+) factors uniquely through a morphism of

Huber pairs (Cm,n, C
+
m,n)→ (R,R+). �

Proposition 8.3.7. Let D and D′ be diamonds. Then the product sheaf D × D′ is also a
diamond.

Proof. Let D = X/R and D′ = X ′/R′, where X,X ′, R,R′ are perfectoid spaces of characteris-
tic p, and R→ X ×X and R′ → X ′×X ′ are injections making R (respectively, R′) an equivalence
relation on X (respectively, X ′). Then R×R′ and X ×X ′ are perfectoid spaces by Lemma 8.3.5,
and R×R′ → (X ×X ′)× (X ×X ′) is an injection (this is clear from Prop 8.3.3(1)) which induces
an equivalence relation. Therefore D × D′ ∼= (X × X ′)/(R × R′) is a diamond, by Proposition
8.3.4. �

8.4. The example of Spd Qp. Following the discussion at the beginning of this lecture, this
is defined as the following sheaf on Perf:

Spd Qp := Spa(Qcycl
p )[/Z×p = Spa(Fp((t

1/p∞)))/Z×p ,

where Z×p acts on Fp((t
1/p∞)) via γ(t) = (1 + t)γ − 1 for all γ ∈ Z×p .

Here, we use the following notation. If X is a perfectoid space and G is a profinite group, then
one can define what it means for G to act continuously on X, cf. [Sch15a]. Equivalently, this is
an action of the pro-étale sheaf of groups G on X, where G(T ) is the set of continuous maps from
|T | to G, for any T ∈ Perf. In particular, given a continuous action of G on X, one can define
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R = X ×G (which agrees with the previous definition of X ×S for a profinite set S), which comes
with two maps R⇒ X, given by the projection to the first component, and the action map. If the
induced map R→ X ×X is an injection, then X/R is a diamond that we also denote by X/G.

Essentially by unraveling the definitions, we find the following description of Spd Qp; a full
proof will be given in the next lecture.

Proposition 8.4.1. If X = Spa(R,R+) is an affinoid perfectoid space of characteristic p, then
(Spd Qp)(X) is the set of isomorphism classes of data of the following shape:

(1) A Z×p -torsor R → R̃: that is, R̃ =
(
lim−→Rn

)∧
, Rn/R finite étale with Galois group

(Z/pnZ)×.

(2) A topologically nilpotent element unit t ∈ R̃ such that for all γ ∈ Z×p , γ(t) = (1 + t)γ − 1.

Moreover, we will prove the following theorem.

Theorem 8.4.2. The category of perfectoid spaces over Qp is equivalent to the category of
perfectoid spaces X of characteristic p equipped with a structure morphism X → Spd Qp.
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9. Lecture IX: Diamonds II

9.1. Complements on the pro-étale topology. In the previous lecture on the pro-étale
topology, participants raised two issues that we would like to address today.

The first issue concerned descent, or more specifically pro-étale descent for perfectoid spaces. In
the classical world of schemes, there are various results pertaining to descent along an fpqc covering
X ′ → X. For instance, suppose we are given a morphism of schemes Y ′ → X ′ together with a
descent datum over X ′×X X ′. We may ask if Y ′ descends to X; that is, if there exists a morphism
Y → X for which Y ′ = Y ×X X ′. Such a Y is unique if it exists: this is because the presheaf
hY = Hom(Y,−) on the fpqc site of X is actually a sheaf. If Y ′ → X ′ is affine, then Y → X exists
and is also affine [Sta, Tag 0244]. A concise way of saying this is that the fibered category

X 7→ {Y/X affine}

on the category of schemes is a stack for the fpqc topology.
Proposition 8.2.8 prompts us to ask whether there are similar descent results for perfectoid

spaces, using the pro-étale topology.

Question 9.1.1. Is the fibered category

X 7→ {morphisms Y → X with Y perfectoid}

on the category of perfectoid spaces a stack for the pro-étale topology? That is, if X ′ → X is a pro-
étale cover, and we are given a morphism Y ′ → X ′ together with a descent datum over X ′ ×X X ′,
etc, then does Y ′ → X ′ descend to Y → X? If not, is this true under stronger hypothesis on the
morphisms? What if all spaces are assumed to be affinoid perfectoid? (Such a descent is unique
up to unique X-isomorphism if it exists, by Proposition 8.2.8.)

The answer to this type of question is in general very negative.

Example 9.1.2 (There is no good notion of affinoid morphism in rigid geometry). Recall that
a morphism of schemes f : Y → X is affine if for all open affine subsets U ⊂ X, f−1(U) is affine. It
is a basic result that this is equivalent to the condition that there exists an open affine cover {Ui}
of X such that f−1(Ui) is affine for all i. As a result, the functor X 7→ {Y/X affine} is a stack on
the category of schemes in the Zariski (and even the fpqc) topology.

One might guess that there is a notion of “affinoid morphism” between adic spaces which works
the same way. However, we run into the following counterexample. Let K be a nonarchimedean
field, and let X = SpaK〈x, y〉. Let V ⊂ X be {(x, y)| |x| = 1 or |y| = 1}. This is covered by two

affinoids, but certainly is not affinoid itself: H1(V,OV ) =
⊕̂

m,n>0Kx
−ny−m (analogous to the

situation of the punctured plane in classical geometry).
We claim there is a cover X =

⋃
i Ui by rational subsets Ui such that Ui×X V ⊂ Ui is rational,

thus affinoid. Let $ ∈ K be a pseudo-uniformizer, and take

U0 = {|x| , |y| ≤ |$|}
U1 = {|y| , |$| ≤ |x|}
U2 = {|x| , |$| ≤ |y|} .
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Then X = U0 ∪ U1 ∪ U2, and

U0 ×X V = ∅
U1 ×X V = {|x| = 1} ⊂ U1

U2 ×X V = {|y| = 1} ⊂ U2

are all rational subsets of Ui. One gets a similar example in the perfectoid setting. Thus the functor
X 7→ {Y/X affinoid perfectoid} is not a stack on the category of affinoid perfectoid spaces for the
analytic topology, let alone for a finer topology such as the pro-étale topology.

A positive answer to this is however given by the following result, which involves the notion of
(strictly) totally disconnected spaces defined later today.8

Theorem 9.1.3 ([Sch17, Propositions 9.3, 9.6, 9.7]). Descent along a pro-étale cover X ′ → X
of a perfectoid space f : Y ′ → X ′ is effective in the following cases.

(1) If X, X ′ and Y ′ are affinoid and X is totally disconnected.
(2) If f is separated and pro-étale and X is strictly totally disconnected.
(3) If f is separated and étale.
(4) If f is finite étale.

Moreover, the descended morphism has the same properties.

The other issue was that the property of being a pro-étale morphism is not local for the pro-étale
topology on the target. That is, suppose f : X → Y is a morphism between perfectoid spaces, and
suppose there exists a pro-étale cover Y ′ → Y , such that the base change X ′ = X ×Y Y ′ → Y ′ is
pro-étale. We cannot conclude that f is pro-étale, cf. Example 9.1.5 below. How can we characterize
such f? It turns out there is a convenient “punctual” criterion.

Proposition 9.1.4 ([Sch17, Lemma 7.19]). Let f : X → Y be a morphism of affinoid perfectoid
spaces. The following are equivalent:

(1) There exists Y ′ → Y which is affinoid pro-étale surjective, such that the base change
X ′ = X ×Y Y ′ → Y ′ is affinoid pro-étale.

(2) For all geometric points SpaC → Y of rank 1, the pullback X ×Y SpaC → SpaC is
affinoid pro-étale; equivalently, X ×Y SpaC = SpaC × S for some profinite set S.

Example 9.1.5 (A non-pro-étale morphism which is locally pro-étale). Assume p 6= 2, and let

Y = SpaK〈T 1/p∞〉 ,
and

X = SpaK〈T 1/2p∞〉 .
Then X → Y appears to be ramified at 0, and indeed it is not pro-étale. However, consider the
following pro-étale cover of Y : let

Y ′ = lim←−Y
′
n, Y

′
n = {x ∈ Y | |x| ≤ |$n|} t

n∐
i=1

{
x ∈ Y | |$|i ≤ |x| ≤ |$|i−1

}
.

Let X ′ = X ×Y Y ′. We claim that the pullback X ′ → Y ′ is affinoid pro-étale.

8For separatedness, see [Sch17, Definition 5.10].
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As a topological space, π0(Y ′) = {1, 1/2, 1/3, . . . , 0} ⊂ R. The fiber of Y ′ over 1/i is{
x ∈ Y | |$|i ≤ |x| ≤ |$|i−1

}
,

and the fiber over 0 is just 0. Let

X ′n = {x| |x| ≤ |$|n} t
n∐
i=1

{
|$|i ≤ |x| ≤ |$|i−1

}
×Y X

so that X ′n → Y ′n is finite étale. Then X ′ ∼= lim←−(X ′n ×Y ′n Y
′)→ Y ′ is pro-étale.

The proof of Proposition 9.1.4 in general relies on the notion of strictly totally disconnected
perfectoid spaces, where the base space is torn apart even more drastically than in this example.

Definition 9.1.6. A perfectoid space X is totally disconnected (resp. strictly totally discon-
nected) if it is qcqs and every open (resp. étale) cover splits.

Any totally disconnected perfectoid space is affinoid, cf. [Sch17, Lemma 7.5]. The connected
components of a totally disconnected space are of the form Spa(K,K+) for a perfectoid affinoid
field (K,K+); for strictly totally disconnected spaces, one has in addition that K is algebraically
closed, cf. [Sch17, Lemma 7.3, Proposition 7.16], and this property characterizes these spaces.

Moreover, for any affinoid perfectoid space X one can find an affinoid pro-étale map X̃ → X such

that X̃ is strictly totally disconnected, cf. [Sch17, Lemma 7.18].
A central technique of [Sch17] is the reduction of many statements to the case of strictly

disconnected spaces. We give an example of this type in the appendix to the next lecture.

9.2. Quasi-pro-étale morphisms. Proposition 9.1.4 suggests to enlarge the class of pro-étale
morphisms.

Definition 9.2.1. A morphism f : X → Y of perfectoid spaces is quasi-pro-étale if for any
strictly totally disconnected perfectoid space Y ′ with a map Y ′ → Y , the pullback X ′ = X×Y Y ′ →
Y ′ is pro-étale.

In general, f : X → Y is quasi-pro-étale if and only if it is so when restricted to affinoid open
subsets, in which case it is equivalent to the condition of Proposition 9.1.4.

Definition 9.2.2. Consider the site Perf of perfectoid spaces of characteristic p with the pro-
étale topology. A map f : F → G of sheaves on Perf is quasi-pro-étale if it is locally separated9

and for all strictly totally disconnected perfectoid spaces Y with a map Y → G (i.e., an element of
G(Y )), the pullback F ×G Y is representable by a perfectoid space X and X → Y is pro-étale.

Using this definition, we can give an equivalent characterization of diamonds.

Proposition 9.2.3 ([Sch17, Proposition 11.5]). A pro-étale sheaf Y on Perf is a diamond if
and only if there is a surjective quasi-pro-étale map X → Y from a perfectoid space X.

9This is per [Sch17, Convention 10.2]; if f is not locally separated, one should modify the definition slightly.
Note that if F is representable by a perfectoid space, then f is automatically locally separated, which will be the
most relevant case below.
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Figure 3. We offer here a justification for the terminology “diamond” through an
analogy. Suppose D is a diamond. A geometric point SpaC → D is something like
an impurity within a gem which produces a color. This impurity cannot be seen
directly, but produces many reflections of this color on the surface of the diamond.
Likewise, the geometric point cannot be seen directly, but when we pull it back
through a quasi-pro-étale cover X → D, the result is profinitely many copies of
SpaC. Often one can produce multiple such covers X → D, which result in multiple
descriptions of the geometric points of D.

9.3. G-torsors. If G is a finite group, we have the notion of G-torsor on any topos. This is a
map f : F ′ → F with an action G×F ′ → F ′ over F such that locally on F , one has a G-equivariant
isomorphism F ′ ∼= F ×G.

We also have G-torsors when G is not an abstract group but rather a group object in a topos,
for example in the category of pro-étale sheaves on Perf. For any topological space T , we can
introduce a sheaf T on Perf, by T (X) = C0(|X|, T ). As pro-étale covers induce quotient mappings
by Proposition 4.3.3, we see that T is a pro-étale sheaf. If T is a profinite set, this agrees with
the definition of T given earlier. If now G is a topological group, then G is a sheaf of groups. If
G = lim←−iGi is a profinite group, then in fact G = lim←−iGi.

Note that G is not representable, even if G is finite. The problem is that Perf lacks a final object
X (in other words, a base). If it had one, then for finite G the sheaf G would be representable by
G copies of X. And indeed, G becomes representable once we supply the base. If X is a perfectoid
space and G is a profinite group, then X ×G is representable by a perfectoid space, namely

X ×G = lim←−X ×G/H,

where X ×G/H is just a finite disjoint union of copies of X. Finally, note that everything in this
paragraph applies when G is a profinite set rather than a group, and that the notation is consistent
with the discussion before Remark 8.2.3.

Now a G-torsor is a morphism f : F ′ → F with an action G×F ′ → F ′ such that locally on F
we have a G-equivariant isomorphism F ′ ∼= F ×G.

Proposition 9.3.1 ([Sch17, Lemma 10.13]). Let f : F ′ → F be a G-torsor, with G profinite.
Then for any affinoid X = Spa(B,B+) and any morphism X → F , the pullback F ′ ×F X is
representable by a perfectoid affinoid X ′ = Spa(A,A+). Furthermore, A is the completion of
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lim−→H
AH , where for each open normal subgroup H ⊂ G, AH/B is a finite étale G/H-torsor in the

algebraic sense.

Remark 9.3.2. In fact one can take AH = AH to be the ring of elements of A fixed by H.
Moreover, [Sch17, Lemma 10.13] is actually a more general result for torsors under locally profinite
groups G, which is significantly harder.

Proof. (Sketch.) We reduce to the case of G finite this way: If H ⊂ G is open normal, then
F ′/H → F is a G/H-torsor, and F ′ = lim←−H F

′/H.
The key point now is that the fibered category

Y 7→ {finite étale X/Y }
over the category of affinoid perfectoid spaces is a stack for the pro-étale topology, which is part
of Theorem 9.1.3. However, it is the easier part of it, so we briefly sketch the argument. If
Y ′ = lim←−Y

′
i → Y is an affinoid pro-étale cover, then{

finite étale descent data for Y ′ → Y
}

= 2- lim−→
{

finite étale descent data for Y ′i /Y
}

using Theorem 7.4.8, so we are reduced to showing that étale descent works. For this we can either
use a descent to noetherian adic spaces together with a result of Huber, or we can use an argument
due to de Jong-van der Put, [dJvdP96], that in general étale descent follows from analytic descent
plus classical finite étale descent. �

9.4. The diamond Spd Qp. Consider the perfectoid space Spa(Qcycl
p )[ as a sheaf on Perf. Its

(R,R+)-valued points are the set of continuous homomorphisms (Qcycl
p )[ → R. Since (Qcycl

p )[ ∼=
Fp((t

1/p∞)), this is nothing more than the set of topologically nilpotent invertible elements of R.
In the last lecture, we gave the following ad hoc definition of the diamond Spd Qp.

Definition 9.4.1. Spd Qp = Spa(Qcycl
p )[/Z×p . That is, Spd Qp is the coequalizer of

Z×p × Spa(Qcycl
p )[ ⇒ Spa(Qcycl

p )[,

where one map is the projection and the other is the action.

To see that this is well-behaved, we need to check that

Z×p × Spa(Qcycl
p )[ → Spa(Qcycl

p )[ × Spa(Qcycl
p )[

is an injection, which is the content of the next lemma.

Lemma 9.4.2. Let g : Z×p × Spd Qcycl
p → Spd Qcycl

p × Spd Qcycl
p be the product of the projection

onto the second factor and the group action. Then g is an injection.

Proof. Let (K,K+) be a perfectoid affinoid field. Then Z×p acts freely on Hom(Fp((t
1/p∞)),K).

This implies the result by Proposition 8.3.3. �

Corollary 9.4.3. The map Spa Qcycl
p → Spd Qp is a Z×p -torsor, and the description of Spd Qp

given in Proposition 8.4.1 holds true.

Proof. Indeed, given any map Spa(R,R+) → Spd Qp, via pullback we get a Z×p -torsor over

Spa(R,R+), and those are described by Proposition 9.3.1. �
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Theorem 9.4.4. The following categories are equivalent:

• Perfectoid spaces over Qp.
• Perfectoid spaces X of characteristic p equipped with a “structure morphism” X → Spd Qp.

Before proving Theorem 9.4.4, we observe that both categories are fibered over Perf. For the
second category this is obvious. For the first category, the morphism to Perf is X 7→ X[. The
existence of pullbacks is Theorem 7.1.4: if X → Y is a morphism in Perf and Y ] is an untilt of Y ,
then there exists a unique morphism of perfectoid spaces X] → Y ] whose tilt is X → Y .

Our two fibered categories correspond to two presheaves of groupoids on Perf:

• X 7→ UntiltQp(X) =
{

(X], ι)
}

, where X] is a perfectoid space over Qp and ι : X][ ∼= X is
an isomorphism.
• Spd Qp.

In fact, sections of both presheaves have no nontrivial automorphisms, and so we can think of these
as presheaves of sets. (In the second case this is by definition, and in the first case it is again a
case of Theorem 7.1.4.)

Exhibiting an isomorphism between the fibered categories is the same as exhibiting an iso-
morphism between the presheaves. Now Spd Qp is a sheaf for the pro-étale topology on Perf (by
definition). We will prove that UntiltQp is a sheaf as well. In fact, we can prove a bit more. Let

Untilt be the presheaf on Perf which assigns to X the set of pairs (X], ι), where X] is a perfectoid

space (of whatever characteristic), and ι : X][ ∼= X is an isomorphism.

Lemma 9.4.5 ([Sch17, Lemma 15.1 (i)]). Untilt is a sheaf on Perf.

Proof. That is: given a pro-étale cover {fi : Xi → X}, we are to show that

Untilt(X) = eq

∏
i

Untilt(Xi)⇒
∏
i,j

Untilt(Xi ×X Xj)

 .

As in the proof of Proposition 8.2.8(1), we may assume without loss of generality that X =
Spa(R,R+) is affinoid, and that the cover consists of a single affinoid Y = Spa(S, S+), with Y → X
pro-étale. Then R → S is an injection and R+ = R ∩ S+ (this follows from the fact that OX and
O+
X are sheaves on Xproét.) Let Z = Y ×X Y = Spa(T, T+). Finally, let Y ] = Spa(S], S]+) be an

untilt of Y . Pullback along the two morphisms Z ⇒ Y gives two untilts Z]1, Z
]
2 of Z over Y ]. We

may now translate the sheaf condition as follows: Every descent datum Z]1
∼= Z]2 is effective, in the

sense that it is induced by a unique untilt X] = Spa(R,R]) of X whose pullback to Y is Y ].
Given such a descent datum, we may identify both untilts of Z with Z] = Spa(T ], T ]+). We

define a pair of topological rings (R], R]+) by

R] = eq(S] ⇒ T ]),

R]+ = R] ∩ S]+.

We claim that (R], R]+) is a perfectoid Huber pair, such that the tilt of (R], R]+) → (S], S]+) is
(R,R+)→ (S, S+). It is already clear that R]+ ⊂ R] is open, integrally closed, and bounded, since
the same properties hold for S]+ ⊂ S+.

Choose a pseudouniformizer $ ∈ R ⊂ S, so that $] ∈ S] is a pseudouniformizer for S].
Note that $] ∈ R], and that it is a pseudouniformizer in R]. Since ($])nS]+ (for n = 1, 2, . . . )
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constitutes a basis of neighborhoods of 0 in S], the same is true for the ($])nR]+. At this point
we can conclude that (R], R]+) is a uniform Tate Huber pair.

We may choose $ in such a way that $]|p in S]◦. There is an obvious map R]+/$] → R+/$,

which we claim is an isomorphism. This would imply that Φ: R]+/($1/p)] → R]+/$] is an
isomorphism; this in turn implies that R] is perfectoid, and that

R][+ = lim←−
Φ

R]+/$] ∼= lim←−
Φ

R+/$ = R+.

Thus (R], R]+) is an untilt of (R,R+). As for uniqueness: if (A,A+) → (S], S]+) is another
untilt of (R,R+) → (S, S+), then (A,A+) → (S], S]+) must factor through (R], R]+), since this
is the equalizer of the two maps into (T ], T ]+). But then the tilt of (A,A+) → (R], R]+) is an
isomorphism, so that it must be an isomorphism itself.

We need to show that R]+/$] → R+/$ is an isomorphism. Injectivity is clear; for surjectivity,
we apply the following “bootstrapping” argument. In preparation for this, consider the complex

(9.4.1) S+ δ→ T+ δ′→ (T ′)+ → · · ·

which computes the Čech cohomology for O+
X relative to the cover Y → X. (Thus δ is the difference

between the two maps S+ ⇒ T+, and δ′ is the alternating sum of three maps, and so on.) The
higher cohomology of this complex is almost zero by Proposition 3.1.8(1).

Passing to untilts, we have a complex

(9.4.2) S]+
δ]→ T ]+

(δ′)]→ (T ′)]+ → · · · .

The complexes (9.4.1) and (9.4.2) are isomorphic modulo $ and $], respectively. Thus the higher
cohomology of

S]+/$] δ]→ T ]+/$] (δ′)]→ (T ′)]+/$] → · · · .
is almost zero as well.

We can now show that R]+/$] → R+/$ is surjective. (In fact the proof below shows that the

map is surjective modulo $1−1/p, but this is enough.) Let x ∈ R+, and let x̃ ∈ S]+ lift the image
of x under R+ → S+/$ ∼= S]+/$]. Then δ](x̃) = $]y for some y ∈ T ]+. Since (δ′)](y) = 0, there

exists z ∈ S]+ such that δ](z) ≡ ($])1/py (mod $]T ]+). Then if x1 = x̃ − ($])1−1/pz, we have

x1 ≡ x (mod ($])1−1/pS]+) and δ](x1) ≡ 0 (mod ($])2−1/pT ]+).

Write δ](x1) = ($])2−1/py1 for some y1 ∈ T ]+. Arguing as above, there exists z1 ∈ S]+

such that δ](z1) ≡ ($])1/p2
y1 (mod $]T ]+). Then if x2 = x1 − ($])1−1/p2

z1, we have x2 ≡ x1

(mod ($])2−1/p−1/p2
S]+) and δ](x2) ≡ 0 (mod ($])3−1/p−1/p2

S]+).
Continuing this way gives a sequence of elements x1, x2, · · · ∈ S]+ which converges to an element

x′ ∈ S]+ such that x′ ≡ x (mod ($])1−1/pS]+) and δ](x′) = 0; that is, x′ ∈ R]+. This completes
the proof. �

We can now complete the proof of Theorem 9.4.4. Let X = Spa(R,R+) be an affinoid perfectoid
space in characteristic p.

If X] = Spa(R], R]+) is an untilt, let

R̃] = R]⊗̂QpQ
cycl
p ,
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let R̃]+ be the completion of the integral closure of R]+ in R̃], and finally let X̃] = Spa(R̃], R̃]+).

Then X̃] → X] is a pro-étale Z×p -torsor, whose tilt X̃ → X is a pro-étale Z×p -torsor equipped with

a Z×p -equivariant map X̃ → Spa(Qcycl
p )[. Thus we have produced a morphism X → Spd Qp.

In the reverse direction, suppose X̃ → X is a pro-étale Z×p -torsor and X̃ → Spa(Qcycl
p )[ a Z×p -

equivariant morphism. Then by Theorem 7.1.4 there exists a unique morphism X̃] → Spa Qcycl
p ,

which is also Z×p -equivariant. The equivariance means exactly that X̃] comes equipped with a

descent datum along X̃ → X. Lemma 9.4.5 now produces an untilt X] of X over Qp.
We have shown that Untilt is a sheaf. Therefore UntiltQp is a sheaf as well (since the invertibility

of p can be checked locally). Since both UntiltQp and Spd Qp are sheaves on Perf, the above
constructions globalize to give an isomorphism between them.

Remark 9.4.6. There is nothing particularly special about Qcycl
p here. If K/Qp is any per-

fectoid field which arises as the completion of an algebraic extension, then SpaK → Spa Qp is

pro-étale. The proof above shows that untilts of X are in equivalence with pro-étale covers X̃ → X

together with a morphism X̃ → SpaK[, which comes equipped with a descent datum relative to
Spa(K⊗̂QpK)[ → SpaK[.
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10. Lecture X: Diamonds associated with adic spaces

10.1. The functor X 7→ X♦. Our goal today is to construct a functor

{analytic pre-adic spaces/Spa Zp} → {diamonds}
X 7→ X♦

forgetting the structure morphism to Spa Zp, but retaining topological information.

Definition 10.1.1. Let X be an analytic pre-adic space over Spa Zp. Define a presheaf X♦ on

Perf as follows. For a perfectoid space T in characteristic p, let X♦(T ) be the set of isomorphism
classes of pairs (T ], T ] → X), where T ] is an untilt of T and T ] → X is a map of pre-adic spaces.

If X = Spa(R,R+), we write Spd(R,R+) = Spa(R,R+)♦.

Remark 10.1.2. Note that if X is perfectoid, then X♦ = X[ agrees with our prior definition,
as perfectoid spaces over X are equivalent to perfectoid spaces over X[ by Theorem 7.1.4. Also
note that the pairs (T ], T ] → X) do not have nontrivial automorphisms, so X♦ has some hope of
being a sheaf.

The construction above has the following “absolute” analogue.

Definition 10.1.3. Let Spd Zp = Untilt be the presheaf on Perf which sends S to the set of

isomorphism classes of untilts S] over Zp of S.

Remark 10.1.4. An untilt of S over Zp is a pair (S], ι), where S] is a perfectoid space (these

are always fibered uniquely over Spa Zp) and ι : S][ → S is an isomorphism. These do not have
to live in characteristic 0. Indeed, there is always the trivial untilt (S, idS). This is supposed to
correspond to the projection from S onto the closed point of Spd Zp.

We warn the reader that Spd Zp is not a diamond. However, it is still a pro-étale sheaf by
Lemma 9.4.5. In Lectures XVII and XVIII, we will see how it fits into the general formalism.

Theorem 10.1.5 ([Sch17, Lemma 15.6]). The presheaf X♦ is a diamond.

Proof. (Sketch.) First, one checks that X♦ is a pro-étale sheaf. As Spd Zp is a pro-étale
sheaf as we just mentioned, this reduces to the problem of showing that maps from perfectoid
spaces T ] to a fixed pre-adic space X from a pro-étale sheaf; this follows from the argument of
Proposition 8.2.8.

Now by Proposition 4.3.1 we may assume X = Spa(R,R+) is affinoid, with R a Tate ring. Since
Spa Zp is the base, p ∈ R is topologically nilpotent (but not necessarily a unit).

Lemma 10.1.6 ([Fal02a], [Col02], [Sch17, Lemma 15.3]). Let R be a Tate ring such that
p ∈ R is topologically nilpotent. Let lim−→Ri be a filtered direct limit of algebras Ri finite étale over
R, which admits no nonsplit finite étale covers. Endow lim−→Ri with the topology making lim−→R◦i open

and bounded. Let R̃ be the completion. Then R̃ is perfectoid.

Proof. First, find $ ∈ R̃ a pseudo-uniformizer such that $p|p in R̃◦. To do this, let $0 ∈ R
be any pseudo-uniformizer. Let N be large enough so that $0|pN . Now look at the equation

xp
N −$0x = $0. This determines a finite étale R̃-algebra, and so it admits a solution x = $1 ∈ R̃.

Note that $pN

1 |$0 in R̃◦, and $1 is a unit in R̃. As $pN

1 |$0|pN , we see in particular that $p
1|p, as
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desired. In fact, taking N larger than necessary, we can even ensure that p
$p is still topologically

nilpotent.

Now we must check that Φ: R̃◦/$ → R̃◦/$ is surjective. Let f ∈ R̃◦, and consider the equation

xp − $px − f . This determines a finite étale R̃-algebra, and so it admits a solution, giving the
desired surjectivity of Frobenius modulo $. �

We can also assume that each Ri is a Gi-torsor over R, compatibly with change in i for an
inverse system {Gi} of finite groups, Let G = lim←−iGi. The following lemma finishes the proof of
the theorem. �

Lemma 10.1.7. Spd(R,R+) = Spd(R̃, R̃+)/G. Also, Spd(R̃, R̃+)→ Spd(R,R+) is a G-torsor.
In particular, Spd(R,R+) is a diamond.

Proof. The proof is similar to the case of Spd Qp, but we need the fact that for any alge-

braically closed nonarchimedean field C of characteristic p, the group G acts freely on Hom(R̃[, C),

so we verify this. Fix f : R̃[ → C. By the tilting equivalence, this corresponds to a map f ] : R̃→ C].

More precisely, R̃◦ = W (R̃[◦)/I, where I is G-stable. We get W (f◦) : W (R̃[◦)→W (OC), and then

W (f◦) mod I : R̃◦ → OC] .
Assume there exists γ ∈ G such that

R̃[
f // C

R̃[
γ

``

f

??

commutes. Apply W and reduce modulo I to obtain

R̃◦
f]◦ // OC]

R̃◦
γ

__

f]◦

>>

Now invert $. We get that for all i,

Ri
f] // C]

Ri

γ

``

f]

>>

commutes, which shows that γ = 1. �

Example 10.1.8. At this point, we can justify the discussion of Spa Qp × Spa Qp in the first
lecture. Consider the product Spd Qp × Spd Qp. Let DQp be the open unit disc, considered as an

adic space over Qp. We can consider DQp as a subspace of Gm via x 7→ 1+x. Let D̃Qp = lim←−DQp ,
where the inverse limit is taken with respect to the pth power maps on Gm, and its punctured

version D̃∗Qp
.
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We claim that there is an isomorphism of diamonds (D̃∗Qp
)♦/Z×p

∼= Spd Qp × Spd Qp which

makes the following diagram commute:

(D̃∗Qp
)♦/Z×p //

��

Spd Qp × Spd Qp

pr1

��
Spd Qp

= // Spd Qp.

For this it is enough to know that there is an isomorphism(
D̃∗

Qcycl
p

)♦ ∼= Spd Qcycl
p × Spd Qcycl

p

which is Z×p × Z×p -equivariant. It is not hard to see that D̃∗
Qcycl
p

is a perfectoid space whose tilt is

D̃∗
(Qcycl

p )[
, the corresponding object in characteristic p.

Meanwhile, Spd Qcycl
p ×Spd Qcycl

p is representable by the perfectoid space Spa(Qcycl
p )[×Spa(Qcycl

p )[.

We have an isomorphism (Qcycl
p )[ ∼= Fp((t

1/p∞)), which when applied to one of the factors in the
product gives

Spa(Qcycl
p )[ × Spa(Qcycl

p )[ ∼= Spa(Qcycl
p )[ × Spa Fp((t

1/p∞)) = D∗
(Qcycl

p )[

as desired. We leave it as an exercise to check that the group actions are compatible.

10.2. Example: Rigid spaces. We want to understand how much information is lost when
applying X 7→ X♦. Our intuition is that only topological information is kept. Let us offer some
evidence for this intuition. A morphism f : X → Y of adic spaces is a universal homeomorphism if
all pullbacks of f are homeomorphisms. As in the case of schemes, in characteristic 0 the map f
is a universal homeomorphism if and only if it is a homeomorphism and induces isomorphisms on
completed residue fields. An example of such an f is the normalization of the cuspidal cubic y2 = x3

in adic affine space A2
Qp

by t 7→ (t2, t3). In keeping with our intuition, universal homeomorphisms

induce isomorphisms of diamonds:

Proposition 10.2.1. Let f : X → X ′ be a universal homeomorphism of analytic pre-adic spaces
over Spa Qp. Then f♦ : X♦ → (X ′)♦ is an isomorphism.

Proof. Let Y = Spa(S, S+) be an affinoid perfectoid space, and let Y → X ′ be a morphism.
We claim there exists a unique factorization

Y //

  

X

~~
X ′

This would imply immediately that f♦ is an isomorphism. We have |f | : |Y | → |X| = |X ′|. We
need also |f |∗OX → OY . We have |f |∗O+

X′/p
n → O+

Y /p
n.

Lemma 10.2.2. O+
X′/p

n → O+
X/p

n is an isomorphism of sheaves on |X| = |X ′|.

Proof. Check on stalks. They are K(x′)+/pn → K(x)+/pn, where x′ corresponds to x. But
the residue fields are the same, as we have a universal homeomorphism in characteristic 0. �
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So we have a map |f |∗O+
X/p

n → O+
Y /p

n, which in the limit induces a map |f |∗O+
X →

lim←−nO
+
Y /p

n = O+
Y . The last equality is because Y is perfectoid: H i(Y,O+

Y /$
n) is almost S+/$n

if i = 0 and 0 if i > 0. �

Recall our intuition that X 7→ X♦ keeps only the topological information; so that a universal
homeomorphism, such as the normalization of the cuspidal cubic, gets sent to an isomorphism.
At the other extreme, we might ask for a class of X for which X 7→ X♦ is fully faithful. Recall
that a ring A is seminormal if t 7→ (t2, t3) is a bijection from A onto the set of pairs (x, y) ∈ A2

with y2 = x3. A rigid-analytic space X over a nonarchimedean field K is seminormal if locally it is
Spa(A,A+), whereA is seminormal (this definition is well-behaved, see [KL16, (3.7)]). For any rigid
space X over a nonarchimedean field K over Qp, one can find a unique universal homeomorphism

X̃ → X such that X̃ is seminormal. Indeed, locally X = SpaA, and then X̃ = Spa Ã, where Ã is
the seminormalization of A, which is finite over A (as A is excellent).

Proposition 10.2.3. For any nonarchimedean field K over Qp, the functor

{seminormal rigid-analytic spaces/K} → {diamonds/ SpdK}
X 7→ X♦

is fully faithful.

It is however critical to remember the structure morphism to SpdK!

Proof. Let X and Y be rigid spaces over K, and assume that X is seminormal. We claim
that

HomK(X,Y )→ HomSpdK(X♦, Y ♦)

is bijective. First, we assume that Y = SpaA is affinoid. In that case, the left-hand side is given by
the continuous maps from A toOX(X), while the right-hand side is similarly given by the continuous

maps from A to O]
X♦

(X♦), where O]
X♦

is the pro-étale sheaf that associates to any T → X♦ the

sections OT ](T ]) of the untilt T ] corresponding to the given by T → X♦ → SpdK → Spd Qp.

Thus, we need to see that the natural map OX(X) → O]
X♦

(X♦) is a homeomorphism, which
is [KL16, Theorem 8.2.3]. (In fact, by resolution of singularities and Zariski’s main theorem, we
can reduce to the case that X is smooth, where it follows from [Sch13, Corollary 6.19].)

In general, the underlying topological space of X can be recovered from X♦ by the results of
the next section, which reduces the general assertion to the affinoid case. �

10.3. The underlying topological space of diamonds. We have seen above that universal
homeomorphisms induce isomorphisms on diamonds. However, being a universal homeomorphism
is necessary, by Proposition 10.3.7 below.

Definition 10.3.1 ([Sch17, Definition 11.14]). Let D be a diamond, and choose a presentation
D = X/R. The underlying topological space of D is the quotient |D| = |X| / |R|.

Remark 10.3.2. This is independent of the choice of presentation, cf. [Sch17, Proposition
11.13].

In general, |D| can be quite pathological. It might not even be T0, for instance: the quotient
of the constant perfectoid space Zp over a perfectoid field by the equivalence relation “congruence

modulo Z” produces a diamond with underlying topological space Zp/Z.
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There is a class of qcqs diamonds which avoids such pathologies. To recall the meaning of being
qcqs, i.e. quasicompact and quasiseparated, we make a short topos-theoretic digression. Recall
from SGA4 the following notions: In any topos, we have a notion of a quasicompact object: this
means that any covering family has a finite subcover. An object Z is quasiseparated if for any
quasicompact X,Y → Z, X ×Z Y is quasicompact. An object that is both quasicompact and
quasiseparated is called qcqs.

If there is a generating family B for the topos (meaning that every object is a colimit of objects
in the generating family) consisting of quasicompact objects which is stable under fiber products,
then:

(1) all objects of B are qcqs,
(2) Z is quasicompact if and only if it has a finite cover by objects of B, and
(3) Z is quasiseparated if and only if for all X,Y ∈ B with maps X,Y → Z, the fiber product

X ×Z Y is quasicompact.

In our situation, we consider the topos of sheaves on the pro-étale site of Perf, and we can take
B to be the class of all affinoid perfectoid spaces. This is closed under fiber products because maps
between analytic adic spaces are adic.

Remark 10.3.3. We warn the reader that B is not stable under direct products. For example if

X = Spa Fp((t
1/p∞)), then X ×X = D̃∗

Fp((t1/p
∞

))
is not quasicompact. This happens in fact always:

For any two nonempty perfectoid spaces X and Y , the product X × Y is not quasicompact.

Proposition 10.3.4. Let D be a qcqs diamond. Then |D| is T0, i.e. for all distinct x, y ∈ |D|,
there is an open subset U ⊂ |D| that contains exactly one of x and y.

Proof. (Sketch.) Let X → D be a quasi-pro-étale surjection from a strictly totally discon-
nected space, and let R = X ×D X which is qcqs pro-étale over X, and so itself a perfectoid space.
As D is qcqs, also R and the map R → X are qcqs, and so we can apply [Sch17, Lemma 2.7] to
|X| / |R|. �

In general, not much more can be said about |D|; however, in Lecture XVII, we will introduce a
notion of (locally) spatial diamonds that ensures that |D| is a (locally) spectral space. All diamonds
that we will be interested in are locally spatial.

The topological space is closely related with open immersions, as usual.

Definition 10.3.5. A map G → F of pro-étale sheaves on Perf is an open immersion if for any
map X → F from a perfectoid space X, the fiber product G ×F X → X is representable by an
open subspace of X. In this case we say that G is an open subsheaf of F .

The following proposition is immediate from the definitions.

Proposition 10.3.6 ([Sch17, Proposition 11.15]). Let F be a diamond. The category of open
subsheaves of F is equivalent to the category of open immersions into |F|, via G 7→ |G|.

In the case of analytic pre-adic spaces, the diamond remembers the underlying topological
space.

Proposition 10.3.7 ([Sch17, Lemma 15.6]). Let X be an analytic pre-adic space over Zp, with

associated diamond X♦. There is a natural homeomorphism |X♦| ∼= |X|.
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Proof. (Sketch.) One reduces to the case that X = Spa(R,R+) is affinoid, so that X = X̃/G,

where X̃ = Spa(R̃, R̃+) is affinoid perfectoid and a G-torsor over X. Then |X| = |X̃|/G = |X̃[|/G =
|X♦|, as desired. �

10.4. The étale site of diamonds. Now we want to define an étale site for diamonds, and
compare it with the étale site of adic spaces.

Definition 10.4.1 ([Sch17, Definition 10.1 (ii)]). A map f : G → F of pro-étale sheaves on
Perf is étale (resp. finite étale) if it is locally separated10 and for any perfectoid space X with a
map X → F , the pullback G ×F X is representable by a perfectoid space Y étale (resp. finite étale)
over X.

If Y is a diamond, we consider the category Yét of diamonds étale over Y (noting that anything
étale over Y is automatically itself a diamond, [Sch17, Proposition 11.7]), and turn it into a site
by declaring covers to be collections of jointly surjective maps.11

For any analytic pre-adic space X, one can define an étale site Xét by looking at maps that are
locally a composite of open embeddings and finite étale maps, cf. [KL15, Definition 8.2.19].

Theorem 10.4.2 ([Sch17, Lemma 15.6]). The functor X 7→ X♦ from analytic pre-adic spaces

over Zp to diamonds induces an equivalence of sites Xét
∼= X♦ét, restricting to an equivalence

Xfét
∼= X♦fét.

Moreover, for any diamond Y , one can define a quasi-pro-étale site Yqproét by looking at quasi-
pro-étale maps into Y (which again are all diamonds, by [Sch17, Proposition 11.7]). In particular,

for any analytic pre-adic space X, we can define Xqproét = X♦qproét. This differs from the pro-étale

site Xproét defined in [Sch13], because the definition of pro-étale maps used there differs from the
ones used here, in that we restricted to inverse systems of étale maps that are eventually finite
étale and surjective, so Xproét is a full subcategory of Xqproét, but we also use a stronger notion

of covering on Xproét. However, one could use Xqproét in place of Xproét in most of [Sch13].12 In
particular Xqproét is a replete topos in the sense of [BS15], and so inverse limits of sheaves behave
well. Also, pullback of sheaves along Xqproét → Xét is fully faithful:

Proposition 10.4.3 ([Sch17, Proposition 14.8]). Let X be an analytic pre-adic space. The
pullback functor

ν∗X : X∼ét → X∼qproét

from étale sheaves to quasi-pro-étale sheaves on X is fully faithful.

10Again, this is per [Sch17, Convention 10.2]; if f is not locally separated, the definition should be slightly
changed.

11In [Sch17, Definition 14.1], this is only considered in case Y is locally spatial, as otherwise it is not clear
whether Yét contains enough objects.

12The exception is around [Sch13, Lemma 8.6], when it becomes necessary to talk about coherent sheaves, which
behave better on Xproét than on Xqproét, as Xproét has better flatness properties, cf. [Sch13, Lemma 8.7 (ii)].
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Appendix to Lecture X: Cohomology of local systems

In this appendix, we explain how to use (quasi-)pro-étale descent, and strictly totally discon-
nected spaces, to prove the following result.13 Let C be a complete algebraically closed extension
of Qp, and let f : X → Y be a proper smooth map of rigid-analytic spaces over C, considered as
adic spaces.

Theorem 10.5.1. Let L be an étale Fp-local system on X. Then, for all i ≥ 0, the higher direct
image Rif∗L is an étale Fp-local system on Y .

This proves that the extra hypothesis in [Sch13, Theorem 1.10] is always satisfied (as the
version with Zp-coefficients follows formally).

Although this is a very classical statement, its proof will make critical use of (strictly) totally
disconnected spaces. Although quite different in the details, the arguments in [Sch17] are often of
a similar flavour, and we hope that the reader can get an impression how these wildly ungeometric
spaces can be used.

Let us first briefly recall the proof in case Y = Spa(C,OC) is a point; in that case, one has
to prove finiteness of H i(X,L), which is [Sch13, Theorem 1.1]. For this, one first proves that
H i(X,L ⊗ O+

X/p) is almost finitely generated. The main idea here is to use the Cartan–Serre
technique of choosing two finite affinoid covers X =

⋃n
j=1 Uj =

⋃n
j=1 Vj such that Uj is strictly

contained in Vj , and deduces the global finiteness result from a spectral sequence argument and a
local finiteness result, which says that the image of

H i(Vj ,L⊗O+
X/p)→ H i(Uj ,L⊗O+

X/p)

is almost finitely generated for all i. Actually, this spectral sequence argument needs i + 2 such
affinoid covers instead of only 2, when you want to prove finiteness in cohomological degree i,
cf. [Sch13, Lemma 5.4]; it will turn out, cf. Lemma 10.5.6 below, that in our variant we will need
even ≈ 3i affinoid covers! After this, one shows that the map

H i(X,L)⊗Fp OC/p→ H i(X,L⊗O+
X/p)

is an almost isomorphism; together, this formally implies finiteness of H i(X,L).
In the relative case, we will follow a similar strategy. We already know from [Sch13, Theorem

1.3] that the map
Rif∗L⊗O+

Y /p→ Rif∗(L⊗O+
X/p)

of étale sheaves on Y is an almost isomorphism. As we will see in Lemma 10.5.3 below, this reduces
us to proving a certain finiteness result for Rif∗(L ⊗ O+

X/p). However, this is still an étale sheaf

that does not behave much like a coherent sheaf. However, if X̃ = Spa(R,R+) is a perfectoid space

with a pro-étale map X̃ → X, then the pullback of Rf∗(L⊗O+
X/p) to the étale site of X̃ is (almost)

given by M•
L
⊗R+/p O+

X̃
/p for a complex M• of R+/p-modules. However, the tensor product here

is derived, so it is hard to isolate individual cohomology groups. Moreover, it is not clear whether
R+/p has any finiteness properties (such as being almost noetherian, or more realistically almost
coherent), so it is not clear which finiteness results for the cohomology groups of M• to hope for.14

13The first author wishes to thank Bhargav Bhatt for some related discussions. The theorem has also been
announced by Ofer Gabber, as a consequence of a proof of Poincaré duality.

14One could hope that the complex M• is “almost perfect”, as it will turn out (a posteriori) to be; however, the
Cartan–Serre technique for proving finiteness results is fundamentally about cohomology groups, not complexes.



72 p-ADIC GEOMETRY

Surprisingly, by “tearing apart” X̃ even further and making it (strictly) totally disconnected,
these problems disappear. More precisely, in that case the tensor product need not be derived as
O+

X̃
/p is flat over R+/p. Moreover, R+/p is coherent (in particular, almost coherent), and so one

can hope that restricting Rif∗(L⊗O+
X/p) to the étale site of X̃ is of the form M ⊗R+/p O+

X̃
/p for

some almost finitely presented R+/p-module M . This will turn out to be the case.
Now we have to explain two parts of the proof:

(1) Reduce Theorem 10.5.1 to almost finite presentation of a different cohomology group, as
in Lemma 10.5.3.

(2) Prove almost finite generation of that cohomology group, as in Proposition 10.5.10.

By Proposition 10.4.3, it is enough to prove that for any strictly totally disconnected perfectoid
space S = Spa(R,R+) with a quasi-pro-étale map to Y ,15 with pullback fS : XS → S, the higher
direct image RifS∗L|XS = (Rif∗L)|S is an Fp-local system on S; here this base change equality
holds by [Sch17, Corollary 16.10 (ii)]. The general strategy now is to repeat the proof of [Sch13,
Theorem 1.1]. By [Sch13, Theorem 1.3] (and [Sch17, Corollary 16.10 (ii)]), we already know that

(Rif∗L)|S ⊗O+
S /p→ RifS∗(L⊗O+

XS
/p)

is an almost isomorphism of étale sheaves on S.
We need the following ring-theoretic statement.

Proposition 10.5.2. Let Spa(R,R+) be a totally disconnected perfectoid space and $ ∈ R+

any pseudouniformizer. Then the ring R+/$ is coherent. In particular, it is almost coherent,
i.e. any almost finitely generated submodule of an almost finitely presented module is almost finitely
presented.

Here, an R+/$-module M is almost finitely generated (resp. presented) if for all pseudo-
uniformizers ε ∈ R+, there is a finitely generated (resp. presented) R+/$-module Mε and maps
M →Mε →M whose composites in both directions are multiplication by ε.

Proof. The almost coherence statement follows from coherence by approximating almost
finitely generated (resp. presented) modules by finitely generated (resp. presented) modules.

We need to prove that any finitely generated ideal I ⊂ R+/$ is finitely presented. First, we
recall the basic structure of R+/$ if Spa(R,R+) is totally disconnected. Recall that all connected
components of Spa(R,R+) are of the form Spa(K,K+) where K is a perfectoid field and K+ ⊂ K is
an open and bounded valuation subring. There is a reduction map Spa(R,R+)→ Spec(R+/$) on
topological spaces, that is a homeomorphism in this case (by reduction to the case of Spa(K,K+)).
In particular, any connected component of Spec(R+/$) is of the form Spec(K+/$) where K+ ⊂ K
is as above. Let T = π0 Spa(R,R+) = π0 Spec(R+/$) be the profinite set of connected components;
we can and will consider all R+/$-modules as sheaves on T .

For any t ∈ T , let the connected component of Spa(R,R+) be Spa(Kt,K
+
t ); we get an ideal

It ⊂ K+
t /$. But K+

t is a valuation ring, thus coherent, and then also K+
t /$ is coherent. It

follows that It is generated by one element ft ∈ K+
t /$ that (after localization on T ) comes from

an element f ∈ R+/$ that we lift to f ∈ R+. If It = 0, then, as I is finitely generated, I vanishes
in a neighborhood. Otherwise, |f | ≥ |$| defines an open neighborhood of t, and on this open
neighborhood, we have g = $

f ∈ R
+. The map R+ → I given by f is surjective at t, and thus

15Such S form a basis of the topology for Yqproét, cf. [Sch17, Lemma 7.18].
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in an open neighborhood, to which we pass. Its kernel is then generated by g, and so we see that
I ∼= R+/g is finitely presented, as desired. �

This allows us to formulate a module-theoretic criterion.

Lemma 10.5.3. Assume that H i(XS ,L⊗O+
XS
/p) is an almost finitely presented R+/p-module.

Then (Rif∗L)|S is an Fp-local system on S, and therefore Rif∗L is an Fp-local system on Y .

Remark 10.5.4. As S is strictly totally disconnected, sheaves on the étale site of S are the
same as sheaves on the topological space |S|; this will be used below.

Remark 10.5.5. The theory of (almost) finitely presented R+/p-modules is very different from
the theory of finitely presented R-modules. Indeed, the latter become locally free over a Zariski
stratification, i.e. a constructible stratification of SpecR, while the former are (almost in a weak
sense) locally constant over a constructible stratification of Spa(R,R+). These two notions of
constructibility are very different: A point of the closed unit disc is Zariski constructible, but is not
constructible in the adic sense, as its complement (the punctured unit disc) is not quasicompact!
Thus, the almost finite presentation condition in the lemma precludes sections concentrated at one
point. This notion of constructibility also plays a critical role in the `-adic cohomology of diamonds
for ` 6= p, cf. [Sch17].

Proof. Let M = H i(XS ,L⊗O+
XS
/p). We start with some general observations on the almost

isomorphism

(10.5.1) (Rif∗L)|S ⊗O+
S /p→ RifS∗(L⊗O+

XS
/p) .

Note that
RifS∗(L⊗O+

XS
/p)

admits an almost isomorphism from H i(XS ,L⊗O+
XS
/p)⊗R+/pO+

S /p, by computing the cohomology

by an affinoid pro-étale of XS and applying the base change result [Sch13, Lemma 4.12] on each
term, and finally using that O+

S /p is flat over R+/p by [Sch17, Proposition 7.23] to see that the
tensor product is underived.

For any s ∈ S corresponding to a map Spa(C(s), C(s)+) → S, the stalk of the left-hand side
of Equation (10.5.1) is of the form H i(XSpa(C(s),C(s)+),L) ⊗Fp C(s)+/p, while the stalk of the

right-hand side is M ⊗R+/p C(s)+/p.

By [Sch13, Proposition 2.11], any almost finitely generated C(s)+-module such as M ⊗R+/p

C(s)+/p has a sequence of elementary divisors. Varying s, one gets a map

γM : S → `∞≥ (N)0

where `∞≥ (N)0 denotes the set of decreasing sequences (x0, x1, . . .) of nonnegative real numbers that
converge to 0. The map γM is continuous if M is almost finitely presented and the target is equipped
with the `∞-norm; this follows by approximating M by finitely presented modules and using that
this approximation has `∞-bounded effect on the elementary divisors by [Sch13, Proposition 2.11
(i)], and checking continuity in that case.

On the other hand, the elementary divisors of a module of the form V ⊗Fp C(s)+/p for an
Fp-vector space V are exactly (1, 1, . . . , 1, 0, . . .), where 1 occurs dimV many times. Combining
these observations shows that the map sending s ∈ S to dim(Rif∗L)s is locally constant. After
replacing S by an open and closed subset, we may therefore assume that it is constant, equal to n.
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Let s ∈ S be any point, and let x1, . . . , xn be a basis of the stalk (Rif∗L)s. The sections
x1, . . . , xn extend to a small neighborhood, so after shrinking S, we may assume that x1, . . . , xn
define global sections. We get maps

(O+
S /p)

n → (Rif∗L)|S ⊗O+
S /p→ RifS∗(L⊗O+

XS
/p) ,

where the second map is an almost isomorphism. Recall that

RifS∗(L⊗O+
XS
/p)

admits an almost isomorphism from M ⊗R+/p O+
S /p. Thus, the composite map above is almost

the same as the map induced from (R+/p)n →M by tensoring with O+
S /p over R+/p. The kernel

and cokernel of (R+/p)n →M are again almost finitely presented R+/p-modules whose elementary
divisors vanish at s; on the other hand, the elementary divisors of the kernel and cokernel again
only take the values 0 and 1 (by comparing with the kernel and cokernel of the stalks of

(O+
S /p)

n → (Rif∗L)|S ⊗O+
S /p .)

Thus, these elementary divisors vanish in a neighborhood of s, so after localization we may assume
that they are 0. This implies that all localizations of the kernel and cokernel of (R+/p)n →M are
almost zero, so that the kernel and cokernel are almost zero. Thus, (R+/p)n → M is an almost
isomorphism, and so

(O+
S /p)

n → (Rif∗L)|S ⊗O+
S /p

is an almost isomorphism. In particular, it follows that the map Fn
p → (Rif∗L)|S of sheaves on S

is injective, and then bijective by comparing ranks at all points. �

It remains to prove that H i(XS ,L⊗O+
XS
/p) is an almost finitely presented R+/p-module. For

this, one follows the proof of [Sch13, Lemma 5.8] “replacing almost finitely generated with almost
finitely presented everywhere”. For the proof, one needs to be able to chase finiteness results
through spectral sequences, and so we need a version of [Sch13, Lemma 5.4]. We were (only) able
to make this work with exponentially many spectral sequences:

Lemma 10.5.6. Let Ep,q∗,(i) ⇒ Mp+q
(i) , i = 0, . . . , (N + 1)3N+1, be upper-right quadrant spectral

sequences of R+/p-modules, together with maps of spectral sequences Ep,q∗,(i) → Ep,q∗,(i+1), M
p+q
(i) →

Mp+q
(i+1) for i = 0, . . . , (N + 1)3N+1 − 1. Assume that for some r, the map Ep,qr,(i) → Ep,qr,(i+1) on

the r-th sheet factors over an almost finitely presented R+/p-module for all i, p, q. Then the map
Mk

(0) →Mk
((N+1)3N+1)

factors over an almost finitely presented R+/p-module for k ≤ N .

Remark 10.5.7. The statement that a map factors over an almost finitely presented module is
slightly weaker than the statement that the image is almost finitely presented; correspondingly, in
[Sch15a, Lemma 8.8] (where the present lemma was used without proof), the assertion should only
be that the map factors over an almost finitely presented module. The rest of [Sch15a] remains
unaffected; for example, to get the statement of [Sch15a, Corollary 8.9], note that if the identity on
a module M factors over an almost finitely presented module, then M is almost finitely presented.

Proof. First, we claim that if Ep,qr,(i) → Ep,qr,(i+1) factors over an almost finitely presented module

F p,qr,(i) for all i, p, q, then the same holds true for the map Ep,qr+1,(i) → Ep,qr+1,(i+3). Indeed, first

ker(d : Ep,qr,(i) → Ep+r,q−r+1
r,(i) )→ ker(d : Ep,qr,(i+2) → Ep+r,q−r+1

r,(i+2) )
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factors over

Gp,qr,(i) = ker(F p,qr,(i) → Ep,qr,(i+1)

d→ Ep+r,q−r+1
r,(i+1) → F p+r,q−r+1

r,(i+1) ) ,

which is almost finitely presented. Applying a similar argument again to

Ep,qr+1,(i) = coker(d : Ep−r,q+r−1
r,(i) → ker(d : Ep,qr,(i) → Ep+r,q−r+1

r,(i) ))

gives the desired result.
By induction, we see that

Ep,qr+j,(i) → Ep,q
r+j,(i+3j)

factors over an almost finitely presented module for all i, p, q. In particular, as Ep,qN+2,(i) = Ep,q∞,(i)
for p+ q ≤ N , it follows that

Ep,q∞,(i) → Ep,q∞,(i+3N+1)

factors over an almost finitely presented module for all i, p, q with p + q ≤ N . Using this for
i = i03N+1, i0 = 0, . . . , N + 1, we get R+/p-modules

M0 = Mk
(0),M1 = Mk

(3N+1), . . . ,MN+1 = Mk
((N+1)3N+1)

that come equipped with increasing filtrations FilpMi ⊂ Mi, Fil0Mi = 0, FilN+1Mi = Mi, for
which grpMi → grpMi+1 factors over an almost finitely presented module for i = 0, . . . , N + 1.

We claim by induction on N that this implies that the map M0 →MN+1 factors over an almost
finitely presented module. If N = 0, this is clear. In general, we may apply the inductive hypothesis
to FilN M1 → FilN MN+1; say it factors over an almost finitely presented module Y . On the other
hand, grN M0 → grN M1 factors over an almost finitely presented module X. Now look at the
diagram

X

��
0 // FilN M1

//

��

M1
// grN M1

// 0

Y

and let Z be obtained from M1 by taking the pullback along X → grN M1 and the pushout along
FilN M1 → Y . Then there is an exact sequence 0→ Y → Z → X, so Z is almost finitely presented,
and moreover M0 →MN+1 factors over Z. �

The other ingredient one needs is the following.

Lemma 10.5.8. Let

V = Spa(B,B+)→ BnS = Spa(R〈T1, . . . , Tn〉, R+〈T1, . . . , Tn〉)

be a composite of rational embeddings and finite étale maps, and let U = Spa(A,A+) ⊂ V be a
rational subset such that U is strictly contained in V relatively to S, i.e. for all affinoid fields
(K,K+) with a map Spa(K,OK) → U whose projection to S extends to Spa(K,K+), there is
an extension Spa(K,K+) → V . Then the map B+/p → A+/p factors over a finitely presented
R+/p-module.
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Proof. By Lemma 10.5.9 below, B+/p and A+/p are finitely presented R+/p-algebras. We
claim that in fact the map factors over an R+/p-algebra that is finitely presented as an R+/p-
module. This can be checked locally on Spec(R+/p). Thus, we can assume that Spec(R+/p) is
connected, in which case (R,R+) = (K,K+) is an affinoid field.

In that case K+ is valuation ring, as is V = K+/K◦◦. Let A = A+⊗K+ V and B = B+⊗K+ V .
Then A and B are flat finitely presented V -algebras; let T be the image of B in A. Then T ⊂ A
is a flat finitely generated V -algebra, and thus by [RG71, Corollaire 3.4.7], it is finitely presented.
We claim that T is in fact finite over V ; for this, it is enough to check that it satisfies the valuative
criterion of properness, which follows from the assumption, using that all generic points of SpecT
lift to SpecA (and it is enough to check the valuative criterion for specializations starting at the
generic point).

Now we find f1, . . . , fm ∈ B+/p such that the ideal generated by f1, . . . , fm in B is ker(B → A).
As the kernel of A+/p→ A is a nilideal, it follows that there is some integer N such that fN1 , . . . , f

N
m

map to 0 in A+/p. Therefore, the map B+/p → A+/p factors over the finitely presented R+/p-
algebra B+/(p, fN1 , . . . , f

N
m ) which still satisfies the valuative criterion of properness (as its reduced

quotient agrees with the one of T ), and so is finitely presented as an R+/p-module. �

Lemma 10.5.9. Let

U = Spa(A,A+)→ BnS = Spa(R〈T1, . . . , Tn〉, R+〈T1, . . . , Tn〉)
be a composite of rational embeddings and finite étale maps. Then A+/p is a finitely presented
R+/p-algebra.

Proof. This is a consequence of the reduced fiber theorem of Bosch–Lütkebohmert–Raynaud,

[BLR95], as follows. We can write (R,R+) = ̂lim−→i
(Ri, R

+
i ) as a completed direct limit, where all

(Ri, R
+
i ) are topologically of finite presentation over (C,OC) (so in particular R+

i = R◦i ). Then

S♦ = lim←−i S
♦
i with Si = Spa(Ri, R

+
i ). By the usual limit arguments, cf. [Sch17, Proposition 11.23],

one can find for large enough i a map Ui → BnSi that is a composite of rational embeddings and
finite étale maps; in particular, Ui is an affinoid rigid space over C. By the finiteness theorem of
Grauert and Remmert, we know that Ui = Spa(Ai, A

+
i ) where A+

i = A◦i is topologically of finite

presentation over R+
i (in fact, both are topologically of finite presentation over OC). By [BLR95,

Theorem 2.1], we find that after increasing i (corresponding to a rig-étale cover S′i → Si, all of
which split over S), the map SpecA+

i /p → SpecR+
i /p has geometrically reduced fibers. In this

case, the formation of A+
i commutes with base change, i.e. A+

j = A+
i ⊗̂R+

i
R+
j for j ≥ i (the p-adic

completion of the tensor product). In particular, A+
j /p = A+

i /p ⊗R+
i /p

R+
j /p, and by passing to

the filtered colimit over j, we see that A+/p = A+
i /p⊗R+

i /p
R+/p. As A+

i /p is a finitely presented

R+
i /p-algebra, it follows that A+/p is a finitely presented R+/p-algebra, as desired. �

Now the proof of [Sch13, Lemma 5.8] goes through (replacing the use of the auxiliary module A
at the end of the proof of [Sch13, Lemma 5.6] with the explicit description of H i

cont((p
mZp)

n, R+/p)
as almost equal to a sum of R+

m/p
r for varying r (going to 0)), so we deduce the following.16

Proposition 10.5.10. The R+/p-module H i(XS ,L⊗O+
XS
/p) is almost finitely presented.

By Lemma 10.5.3, this finishes the proof of Theorem 10.5.1.

16A very similar argument also appears in [Sch15a, Section 8].
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11. Lecture XI: Mixed-characteristic shtukas

Today we begin talking about shtukas.

11.1. The equal characteristic story: Drinfeld’s shtukas and local shtukas. Let X/Fp

be a smooth projective curve. Let us recall the following definition from Lecture I.

Definition 11.1.1. Let S/Fp be a scheme. A shtuka of rank n over S with legs x1, . . . , xm ∈
X(S) is a rank n vector bundle E over S ×Fp X together with an isomorphism

ϕE : (FrobS ×1)∗E|S×FpX\
⋃
i Γxi
∼= E|S×FpX\

⋃
i Γxi

on S ×Fp X\
⋃
i Γxi , where Γxi ⊂ S ×Fp X is the graph of xi.

In Lecture I we mused about the possibility of transporting this definition into mixed char-
acteristic. As we mentioned there, we currently have no hope of replacing X with Spec Z, but
rather only Spec Zp. As a guide to what we should do, let us first discuss the local analogue of

Definition 11.1.1. Let X̂ be the formal completion of X at one of its Fp-rational points, so that

X̂ ∼= Spf Fp[[T ]]. We would like to define local shtukas (or X̂-shtukas) over S. Since we expect
these to be of an analytic nature, the test object S/Fp should be an adic formal scheme, or more

generally an adic space. Then the legs of such a local shtuka will be elements of X̂(S), which is to
say morphisms S → Spf Fp[[T ]], where S/Fp is an adic formal scheme, or more generally an adic
space.

Definition 11.1.2. A local shtuka of rank n over an adic space S/ Spa Fp with legs x1, . . . , xm ∈
X̂(S) is a rank n vector bundle E over S ×Fp X̂ together with an isomorphism

ϕE : (FrobS ×1)∗E|
S×FpX̂\

⋃
i Γxi
∼= E|S×FpX̂\

⋃
i Γxi

over S ×Fp X̂\
⋃
i Γxi that is meromorphic along

⋃
i Γxi in the sense of Definition 5.3.5.

Remark 11.1.3. The space S should be sufficiently nice that S ×Fp X̂ exists and has a good

theory of vector bundles. Moreover, each xi should define a closed Cartier divisor S ↪→ S ×Fp X̂.

This is the case for instance if S is locally of the form Spa(R,R+), with R strongly noetherian, or
if S is sousperfectoid.

Example 11.1.4. Let C/Fp be an algebraically closed nonarchimedean field with pseudo-
uniformizer $ and residue field k, and let S = SpaC. Then the product S ×Fp Spa Fp[[T ]] = DC

is the rigid open unit disc over C. The legs are given by continuous maps Fp[[T ]]→ C, which is to
say elements xi ∈ C which are topologically nilpotent. We can think of xi as a C-point of DC .

Then a shtuka is a rank n vector bundle E over DC together with an isomorphism ϕE : ϕ∗E → E
on DC\ {xi} that is meromorphic at the xi. Here, ϕ : DC → DC sends the parameter T to T , but
is the Frobenius on C. Note that DC is a classical rigid space over C, but ϕ is not a morphism of
rigid spaces because it is not C-linear. In the case of a single leg at 0, such pairs (E , ϕE) are studied
in [HP04], where they are called σ-bundles.

We could also have taken S = SpaOC , in which case the product SpaOC × X̂ is SpaOC [[T ]].
This is similar to the space Spa Zp[[T ]], which we analyzed in §4.2. It contains a unique non-analytic
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$ = 0

T = 0

xk((T ))

xC
xk

ϕ

κ

∞

0

Figure 4. A depiction of SpaOC [[T ]]. The two closed subspaces SpaOC and
Spa k[[T ]] appear as the x-axis and y-axis, respectively. Their intersection is the
unique non-analytic point xk of SpaOC [[T ]]. The complement of xk in SpaOC [[T ]]
is the adic space Y, on which the continuous map κ : Y → [0,∞] is defined. The
automorphism ϕ of SpaOC [[T ]] tends to rotate points towards the y-axis (though it
fixes both axes).

point xk. Let Y be the complement of xk in SpaOC [[T ]]. Once again there is a continuous surjective
map κ : Y → [0,∞], defined by

κ(x) =
log |$(x̃)|
log |T (x̃)|

,

where x̃ is the maximal generalization of x. The Frobenius map ϕ is a new feature of this picture.
It satisfies κ ◦ ϕ = pκ. See Figure 4.

11.2. The adic space “S × Spa Zp”. In the mixed characteristic setting, X̂ will be replaced
with Spa Zp. Our test objects S will be drawn from Perf, the category of perfectoid spaces in
characteristic p. For an object S ∈ Perf, a shtuka over S should be a vector bundle over an adic
space “S × Spa Zp” together with a Frobenius structure. The product is not meant to be taken
literally (if so, one would just recover S), but rather it is to be interpreted as a fiber product over
a deeper base.

The main idea is that if R is an Fp-algebra, then “R⊗Zp” ought to be W (R). As justification
for this, note that W (R) is a ring admitting a ring homomorphism Zp → W (R) and also a map
R→W (R) which is not quite a ring homomorphism (it is only multiplicative). Motivated by this,
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we will define an analytic adic space17 S×̇Spa Zp and then show that its associated diamond is the
appropriate product of sheaves on Perf.

In fact, if S = Spa(R,R+), then it is the open subspace {$ 6= 0} of SpaR+, where $ is a
pseudouniformizer. As R+ is perfect, the product SpaR+×̇Spa Zp should be defined as SpaW (R+),
and then we set

S×̇Spa Zp := {[$] 6= 0} ⊂ SpaW (R+) .

Note that this is independent of the choice of $, as for any other choice $′, there is some n such
that $|($′)n and $′|$n.

Proposition 11.2.1. If S = Spa(R,R+) is an affinoid perfectoid space of characteristic p, this
defines an analytic adic space S×̇Spa Zp such that there is a natural isomorphism

(S×̇Spa Zp)
♦ = S × Spd Zp .

In particular, there is a natural map of topological spaces∣∣S×̇Spa Zp
∣∣ =

∣∣∣(S×̇Spa Zp)
♦
∣∣∣ =

∣∣S×̇Spd Zp
∣∣→ |S| .

For any perfectoid space S ∈ Perf, one can define an analytic adic space S×̇Spa Zp with a
natural isomorphism

(S×̇Spa Zp)
♦ = S × Spd Zp

which over any open affinoid subspace U ⊂ S recovers U×̇Spa Zp as defined above.

Proof. We will treat the case that S = Spa(R,R+) is affinoid; the globalization follows by
checking that if S′ ⊂ S is a rational embedding of affinoid perfectoid spaces, then S′×̇Spa Zp ⊂
S×̇Spa Zp is a corresponding rational embedding compatible with the displayed identity of dia-
monds.

It is clear that S×̇Spa Zp is analytic as [$] is a topologically nilpotent unit. We claim that it
is in fact an adic space. We have a covering of

S×̇Spa Zp = SpaW (R+)\ {[$] = 0}

by affinoid subsets of SpaW (R+) of the form |p| ≤
∣∣[$1/pn ]

∣∣ 6= 0, for n = 1, 2, . . ..

Let Spa(Rn, R
+
n ) be the rational subset |p| ≤

∣∣[$1/pn ]
∣∣ 6= 0. Thus Rn is the ring obtained by [$]-

adically completing W (R+)[p/[$1/pn ]] and then inverting [$]. One has the following presentation
for Rn:

Rn =

∑
i≥0

[ri]

(
p

[$1/pn ]

)i ∣∣∣∣ ri ∈ R, ri → 0

 .

The ring Rn⊗̂ZpZp[p
1/p∞ ]∧ is a perfectoid ring, and therefore Rn is sousperfectoid: note that

$′ = [$1/pn+1
] serves as a pseudo-uniformizer satisfying the condition of Definition 6.1.1. By

Proposition 6.3.4, (Rn, R
+
n ) is sheafy.

Now we check the identification of associated diamonds. For an object T of Perf, say T =
Spa(A,A+), a T -valued point of (S×̇Spa Zp)

♦ is an untilt T ] lying over S×̇Spa Zp. To give a

morphism T ] → S×̇Spa Zp is to give a continuous homomorphism W (R+) → A]+ such that the

image of [$] is invertible in A]. Recall that maps from W (R+) to A]+ are equivalent to maps from

17In the lectures, this space was denoted “S × SpaZp” throughout.
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R+ to (A]+)[ = A+; under this bijection, [$] is invertible in A] if and only if $ is invertible in A.
This shows an equivalence between maps from T to (S×̇Spa Zp)

♦ and untilts T ] which come with
a map from T to S = Spa(R,R+). In other words,

(S×̇Spa Zp)
♦ = S × Spd Zp ,

as desired. �

Example 11.2.2. Let S = SpaC, where C/Fp is an algebraically closed nonarchimedean field
with residue field k. The ring of Witt vectors W (OC) is called Ainf in Fontaine’s theory, [Fon94].
Its spectrum SpaW (OC) is rather like the formal unit disk SpaOC [[T ]], cf. Figure 5 below.

For any connected open affinoid subspace U = Spa(R,R+) ⊂ SpaC×̇Spa Zp, the ring R is
a principal ideal domain by [Ked16a]. Moreover, for any maximal ideal m ⊂ R, the quotient
Cm = R/m is an untilt of C, and this induces a bijection between untilts of C and “classical points”
of the space SpaC×̇Spa Zp. We will analyze this relation between untilts and sections of S×̇Spa Zp
in general in the next section.

11.3. Sections of (S×̇Spa Zp)
♦ → S. Even though there is no morphism S×̇Spa Zp → S,

Proposition 11.2.1 shows that there is a morphism (S×̇Spa Zp)
♦ → S. The following proposition

shows that sections of this morphism behave as expected.

Proposition 11.3.1. Let S ∈ Perf. The following sets are naturally identified:

(1) Sections of (S×̇Spa Zp)
♦ → S,

(2) Morphisms S → Spd Zp, and

(3) Untilts S] of S.

Moreover, given these data, there is a natural map S] ↪→ S×̇Spa Zp of adic spaces over Zp that is
the inclusion of a closed Cartier divisor.

Thus, the sections make sense as actual subspaces. The statement about Cartier divisors means
that OS×̇ SpaZp → OS] is surjective and its kernel is locally free of rank 1, cf. Definition 5.3.2,

Definition 5.3.7.

Proof. By Proposition 11.2.1, (S×̇Spa Zp)
♦ = S × Spd Zp. Thus a section as in (1) is a

section of S × Spd Zp → S, which is nothing but a morphism S → Spd Zp. Thus (1) and (2) are
identified. The sets (2) and (3) are identified by definition of Spd Zp.

Given an untilt S] = Spa(R], R]+) as in (3), we have a map θ : W (R+)→ R]+ which sends [$]
to a unit in R]. This means that the composite map S] → SpaR]+ → SpaW (R+) factors through
S×̇Spa Zp ⊂ SpaW (R+), so we have a map S] → S×̇Spa Zp.

It remains to see that this map defines a closed Cartier divisor. As usual let ξ ∈ W (R+) be a
generator of ker θ. By Proposition 5.3.8, it suffices to check that for all open affinoid Spa(A,A+) ⊂
S×̇Spa Zp, multiplication by ξ defines an injective map A→ A with closed image.

We can define a supremum norm |·|∞ : A→ R≥0 by |a|∞ = supx |a(x)|, where x runs over rank
1 valuations in Spa(A,A+), normalized so that |[$](x)| = 1/p. Then |·|∞ induces the topology on
A: if |a|∞ ≤ p−N , then

∣∣a/[$]N
∣∣
∞ ≤ 1, so that a ∈ [$]NA+.

We claim there exists a constant c > 0 such that the inequality

|ξa|∞ ≥ c |a|∞
holds for all a ∈ A. The claim would imply immediately that multiplication by ξ on A is injective.
It also implies that ξA ⊂ A is closed: if ai = ξbi is a sequence in ξA converging to a ∈ A, then
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|bi − bj |∞ ≤ c−1 |ai − aj |∞ → 0, so that the bi form a Cauchy sequence, from which we conclude
that a ∈ ξA.

To prove the claim, we first make a reduction to the case that S] ⊂ Spa(A,A+). For this, we
consider the intersection of S] with Spa(A,A+), which is a quasicompact open subspace U ] ⊂ S]

corresponding to a quasicompact open subspace U ⊂ S. The intersection V = Spa(A,A+) ∩
U×̇Spa Zp contains U ], which is the vanishing locus of ξ. Now V is a constructible subset of
Spa(A,A+), and so its complement is quasicompact for the constructible topology; it follows that
for some n the locus V ′ = {|ξ| ≤ |[$]|n} ⊂ Spa(A,A+) is contained in V . Covering Spa(A,A+) by
the two rational subsets {|ξ| ≤ |[$]|n} and {|[$]|n ≤ |ξ|}, the desired result is clear on the second,
so we can reduce to the first case. In that case, Spa(A,A+) ⊂ U×̇Spa Zp and U ] ⊂ Spa(A,A+), so

after replacing U by an affinoid cover, we can indeed assume that S] ⊂ Spa(A,A+).
By a similar quasicompactness argument, we see that in fact the locus {|ξ| ≤ |[$]|n} ⊂

S×̇Spa Zp is contained in Spa(A,A+) for n large enough, and we can reduce to the case Spa(A,A+) =
{|ξ| ≤ |[$]|n} for n large enough (so that this is a quasicompact subspace).

We claim that in this case |ξa|∞ ≥ p−n|a|∞ for all a ∈ A. This can be checked fiberwise and on
rank 1 points, so we can assume that S = Spa(C,OC) is a geometric point. It is enough to see that
the supremum norm on {|ξ| ≤ |[$]n} agrees with the supremum over the set of points that admit
specializations to points outside of {|ξ| ≤ |[$]|n}, i.e. the Shilov boundary. This can be checked

on the cover S×̇Spa Zp[p
1/p∞ ]∧p of S×̇Spa Zp, and then on its tilt S × Spa Fp[[t

1/p∞ ]]. In this case,

we have the perfection of the open unit disc DC , and Spa(A,A+) corresponds to an open affinoid
subset of DC . In this situation, it is well-known that the supremum is achieved on the boundary,
giving the result. �

11.4. Definition of mixed-characteristic shtukas. By Theorem 5.2.8, one has a good
notion of vector bundle for the space S×̇Spa Zp.

Definition 11.4.1. Let S be a perfectoid space in characteristic p. Let x1, . . . , xm : S → Spd Zp
be a collection of morphisms; for i = 1, . . . ,m let Γxi : S

]
i → S×̇Spa Zp be the corresponding closed

Cartier divisor. A (mixed-characteristic) shtuka of rank n over S with legs x1, . . . , xm is a rank n
vector bundle E over S×̇Spa Zp together with an isomorphism

ϕE : Frob∗S(E)|S×̇ SpaZp\
⋃
i Γxi
→ E|S×̇ SpaZp\

⋃
i Γxi

that is meromorphic along
⋃
i Γxi .

Remark 11.4.2. Here, the final meromorphicity condition is meant with respect to the closed
Cartier divisor that is the sum of the m closed Cartier divisors Γxi .

In the next lectures, we will analyze the case of shtukas with one leg over S = SpaC, where
C/Fp is an algebraically closed nonarchimedean field. The leg is a map S → Spd Zp. Let us assume

that this factors over Spd Qp and thus corresponds to a characteristic 0 untilt C], an algebraically
closed complete nonarchimedean extension of Qp. In fact, let us change notation, and instead

start out with a complete algebraically closed extension C/Qp, and let S = SpaC[. We have a
surjective homomorphism W (OC[) → OC whose kernel is generated by an element ξ ∈ W (OC[).
Let ϕ = W (FrobO

C[
), an automorphism of W (OC[).

It turns out that such shtukas are in correspondence with linear-algebra objects which are
essentially shtukas over all of SpaW (OC[), rather than over just the locus [$] 6= 0.
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Definition 11.4.3. A Breuil-Kisin-Fargues module is a pair (M,ϕM ), where M is a finite free

W (OC[)-module and ϕM : (ϕ∗M)[ξ−1]
∼→M [ξ−1] is an isomorphism.

Remark 11.4.4. Note the analogy to Kisin’s work [Kis06], which takes place in the context
of a finite totally ramified extension K/W (k)[1/p] (now k is any perfect field of characteristic
p). Let ξ generate the kernel of a continuous surjective homomorphism W (k)[[u]] → OK . Kisin’s

ϕ-modules are pairs (M,ϕM ), where M is a finite free W (k)[[u]]-module and ϕM : (ϕ∗M)[ξ−1]
∼→

M [ξ−1] is an isomorphism. Kisin constructs a fully faithful functor from the category of crystalline
representations of Gal(K/K) into the category ϕ-modules up to isogeny and identifies the essential
image.

In fact, much of the theory of mixed-characteristic shtukas is motivated by the structures
appearing in (integral) p-adic Hodge theory. In the next lectures, we will concentrate on these
relations.

Let (M,ϕM ) be a Breuil-Kisin-Fargues module over W (OC[). After passing to SpaW (OC[)
and inverting [$], M gives rise to a vector bundle on S×̇Spa Zp ⊂W (OC[) and therefore a shtuka
E . In fact one can go in the other direction:

Theorem 11.4.5 (Fargues). The functor (M,ϕM ) 7→ (E , ϕE) is an equivalence between the

category of Breuil-Kisin-Fargues modules over W (OC[) and the category of shtukas over SpaC[

with one leg at the untilt C of C[.

We will prove this theorem in Lectures XII – XIV. In the course of the proof, we will learn
many facts that apply to much more general shtukas.

Remark 11.4.6. In the following lectures, we will make a Frobenius twist, and redefine Breuil-
Kisin-Fargues modules by replacing ξ with ϕ(ξ); similarly, we will consider shtukas with a leg at

ϕ−1(xC), where xC : SpaC ↪→ SpaC[×̇Spa Zp denotes the fixed Cartier divisor. This normal-
ization is necessary to get the comparison with crystalline cohomology in the usual formulation.18

Moreover, we warn the reader that the definition of Breuil-Kisin-Fargues modules in [BMS16] is
slightly different, as there one does not ask that M is finite free (only that M is finitely presented
and M [1

p ] is finite free over Ainf [
1
p ]); this is necessary in order to accomodate the possible presence

of torsion in the cohomology.

18Recently, in [BS], a refinement of crystalline cohomology is constructed that is a Frobenius descent of it; thus,
if one works only with prismatic cohomology, the leg will be at xC and not ϕ−1(xC).
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12. Lecture XII: Shtukas with one leg

Over the next three lectures, we will analyze shtukas with one leg over a geometric point in
detail, and discuss the relation to (integral) p-adic Hodge theory. We will focus on the connection
between shtukas with one leg and p-divisible groups, and recover a result of Fargues (Theorem
14.1.1) which states that p-divisible groups are equivalent to one-legged shtukas of a certain kind.

In fact this is a special case of a much more general connection [BMS16] between shtukas with
one leg and proper smooth (formal) schemes, which we discuss in the Appendix to Lecture XIV.

Throughout, we fix C/Qp an algebraically closed nonarchimedean field, with ring of integers
OC and residue field k.

12.1. p-divisible groups over OC . Recall that p-divisible groups over k may be classified by
Dieudonné modules. We pose the question here of how to classify p-divisible groups over OC , and
how that classification interacts with the classification over k.

Let G be a p-divisible group over OC , and let TpG = lim←−G[pn](C) be its Tate module, a free
Zp-module of finite rank.

Theorem 12.1.1 (The Hodge-Tate exact sequence, [Far]). There is a natural short exact se-
quence

0 // LieG⊗OC C(1)
α∗
G∗ // TpG⊗Zp C

αG // (LieG∗)∗ ⊗OC C // 0

Remark 12.1.2. Here, C(1) denotes a Tate twist of C (which is trivial, as C is algebraically
closed). In order to make the presentation more canonical, we will still often write the Tate twist; it
becomes important when G is already defined over a subfield of C, so that there are Galois actions
around. Tate [Tat67] treated the case where G comes from a p-divisible group over a discrete
valuation ring with perfect residue field.

The map αG is defined as follows. An element of TpG is really just a morphism of p-divisible
groups f : Qp/Zp → G, whose dual is a morphism f∗ : G∗ → µp∞ . The derivative of f∗ is an
OC-linear map Lie f∗ : LieG∗ → Lieµp∞ . Note that Lieµp∞ is canonically free of rank 1, with dual

(Lieµp∞)∗ = OC · dtt . The dual of Lie f∗ is a map OC ∼= (Lieµp∞)∗ → (LieG∗)∗; let αG(f) be the
image of 1 ∈ OC ∼= (Lieµp∞)∗.

Remark 12.1.3. It is not at all formal that αG ◦ α∗G∗ = 0.

Definition 12.1.4. Let {(T,W )} be the category of pairs consisting of a finite free Zp-module
T and a C-subvectorspace W ⊂ T ⊗Zp C.

Theorem 12.1.1 gives us a functor

{p-divisible groups/OC} → {(T,W )}
G 7→ (TpG,LieG⊗OC C(1))

Theorem 12.1.5 ([SW13, Theorem B]). This is an equivalence of categories.

Theorem 12.1.5 gives a classification of p-divisible groups over OC in terms of linear algebra
data, analogous to Riemann’s classification of complex abelian varieties.

On the other hand we have the classification of p-divisible groups over k via Dieudonné modules,
which we review here. For us, a Dieudonné module is a finite free W (k)-module M equipped with a
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ϕ-linear isomorphism ϕM : M [1
p ] ∼= M [1

p ]. There is a fully faithful embedding G 7→M(G) from the

category of p-divisible groups over k into the category of Dieudonné modules; the essential image
consists of those (M,ϕM ) with M ⊂ ϕM (M) ⊂ p−1M .19 Here ϕ : W (k) → W (k) is induced from
the pth power Frobenius map on k.

There is the interesting question of the classifications over OC and k interact. That is, we have
a diagram

{p-divisible groups/OC}
∼ //

��

{(T,W )}

?
��

{p-divisible groups/k} ∼ // {Dieudonné modules} .
It is not at all clear how to give an explicit description of the arrow labeled “?”. If we think of
“?” only as a map between sets of isogeny classes of objects, we get the following interpretation.
Let (h, d) be a pair of nonnegative integers with d ≤ h. The set of isomorphism classes of objects
(T,W ) with rankT = h and dimW = d together with a trivialization T ∼= Zhp is Grass(h, d)(C), the

set of d-planes in Ch. The set of isogeny classes of Dieudonné modules is identified with the finite
set NPh,d of Newton polygons running between (0, 0) and (d, h) whose slopes lie in [0, 1]. Thus we
have a canonical GLh(Qp)-equivariant map Grass(d, h)(C) → NPh,d. What are its fibers? There
is no known explicit answer to this question in general. The preimage of the Newton polygon that
is a straight line from (0, 0) to (h, d) (corresponding to an isoclinic p-divisible group) is an open
subset known as the “admissible locus”; it is contained in the explicit “weakly admissible locus”
(cf. [RZ96]), but is in general smaller.

Example 12.1.6. In the cases d = 0 and d = 1 the map Grass(d, h)(C) → NPh,d can be
calculated explicitly. The case d = 0 is trivial since both sets are singletons. So consider the case
d = 1. Let W ⊂ Ch be a line, so that W ∈ Ph−1(C). The p-divisible group corresponding to
(Zhp ,W ) is determined by “how rational” W is. To wit, let H ⊂ Ph−1(C) be the smallest Qp-
linear C-subspace containing W , and let i = dimC H − 1. Then the p-divisible group associated to
(Zhp ,W ) is isogenous to (Qp/Zp)

⊕(h−i) ⊕Gi, where Gi is a p-divisible formal group of height i and
dimension 1. (Since k is algebraically closed, Gi is unique up to isomorphism.) Thus for instance
the set of W ∈ Ph−1(C) which correspond to a p-divisible group with special fiber Gh is Drinfeld’s
upper half-space Ωh(C), where

Ωh = Ph−1 \
⋃

H⊂Ph−1

H

with H running over all Qp-rational hyperplanes.

12.2. Shtukas with one leg and p-divisible groups: an overview. The functor “?” is
hard to describe, but there is a hint for how to proceed: If G is defined over OK with K/Qp finite,
then the relation between the Galois representation TpG and the Dieudonné module M(Gk) is given
by Fontaine’s comparison isomorphism:

M(Gk)[
1
p ] = (TpG⊗Zp Acris)

Gal(K/K)[1
p ].

19Here, we are using the covariant normalization of Dieudonné theory that sends Qp/Zp to (W (k), ϕ) and µp∞

to (W (k), p−1ϕ). This is given as the naive dual of the contravariant normalization (usually, one multiplies ϕM by p
so that it preserves M , but this is artificial).
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Figure 5. A depiction of SpaAinf , where Ainf = W (OC[). The two closed subspaces

p = 0 and [p[] = 0 appear as the x-axis and y-axis, respectively. We have also

depicted the closed subspace p = [p[], which cuts out SpaOC , as a green ellipse.
The unique non-analytic point xk of SpaAinf appears at the origin. Its complement
in SpaAinf is the adic space Y, on which the continuous map κ : Y → [0,∞] is
defined. The automorphism ϕ of SpaAinf rotates points towards the y-axis, as per
the equation κ ◦ ϕ = pκ.

Here, Acris is Fontaine’s period ring; it is a W (k)-algebra which comes equipped with a φ-linear
endomorphism.

This indicates that we will have to work with period rings. It turns out that the necessary
period rings show up naturally in the geometry of SpaW (OC[), and that there is an intimate link

to shtukas over SpaC[ with one leg at C.

Remark 12.2.1. A notational remark: Fontaine gives the name R to OC[ , and Berger and

Colmez call it Ẽ+, reserving Ẽ for what we call C[. The ring W (OC[) is variously called W (R) and
Ainf .

From now on, we write Ainf = W (OC[). Recall that we have a surjective map θ : Ainf → OC .

The kernel of θ is generated by a non-zero divisor ξ = p− [p[], where p[ = (p, p1/p, p1/p2
, . . .) ∈ OC[ .

Note that p[ is a pseudo-uniformizer of C[.
Consider the pre-adic space SpaAinf .

20 We give names to four special points of SpaAinf , labeled
by their residue fields:

(1) xk, the unique non-analytic point (recall that k is the residue field of C).

(2) xC[ , which corresponds to Ainf → OC[ → C[.

20It is probably true that SpaAinf is an adic space, but we will not need this.
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(3) xC , which corresponds to Ainf → OC → C (the first map is θ); moreover, it has ϕ-translates
ϕn(xC) for all n ∈ Z.

(4) xL, which corresponds to Ainf →W (k)→W (k)[1/p] = L.

Let Y = SpaW (OC[)\ {xk}, an analytic adic space. Then as usual there exists a surjective
continuous map κ : Y → [0,∞], defined by

κ(x) =
log |[$](x̃)|
log |p(x̃)|

,

where x̃ is the maximal generalization of x, cf. the discussion in Section 4.2. See Figure 5 for a
depiction of the various structures associated with SpaW (OC[). We have:

κ(xC[) = 0,

κ(xC) = 1,

κ(ϕn(xC)) = pn,

κ(xL) = ∞.
For an interval I ⊂ [0,∞], let YI be the interior of the preimage of Y under κ. Thus Y[0,∞) is

the complement in Y of the point xL with residue field L = W (k)[1/p]. Also note that Y[0,∞) =

SpaC[×̇Spa Zp.
The Frobenius automorphism of OC[ induces an automorphism ϕ of SpaAinf , which preserves

Y and which satisfies κ ◦ ϕ = pκ. Therefore ϕ sends Y[a,b] isomorphically to Y[ap,bp].
We will outline the construction of the functor “?” in three steps:

(1) Show that a pair {(T,W )} determines a shtuka over SpaC[ with one leg at ϕ−1(xC),21

i.e. a vector bundle on Y[0,∞) with a certain Frobenius.
(2) Show that any shtuka over Y[0,∞) extends to all of Y, i.e. it extends over xL.
(3) Show that any shtuka over Y extends to all of SpaAinf , i.e. it extends over xk.

In the end, one has a finite free Ainf -module with a certain Frobenius, so we can take the base
change along Ainf → W (k) to get a Dieudonné module. Thus, in total, we get a functor from
pairs {(T,W )} to Dieudonné modules. The remainder of the lecture concerns Step (1); Step (2) is
carried out in Lecture XIII, and Step (3) in Lecture XIV.

12.3. Shtukas with no legs, and ϕ-modules over the integral Robba ring. As prepa-
ration, we analyze shtukas with no legs. This will be useful also for general shtukas, as we will see
that any shtuka whose legs are all in characteristic 0 admits a meromorphic map to a shtuka with
no legs.

Definition 12.3.1 (The integral Robba rings). Let R̃int be the local ring OY,x
C[

. For a rational

number r > 0, we define R̃int,r to be the ring of global sections of OY[0,r]
.

Remark 12.3.2.

(1) R̃int is a henselian discrete valuation ring with uniformizer p, residue field C[, and com-

pletion equal to W (C[).

21It would appear more natural to consider the leg at xC ; however, to get the correct functor (and not a
Frobenius twist of it), this normalization is necessary. Again, we mention that if one changes crystalline cohomology
into prismatic cohomology as defined in [BS], this issue disappears.
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(2) The Frobenius automorphism of Ainf induces isomorphisms ϕ : R̃int,r → R̃int,r/p for r > 0,

and an automorphism of R̃int. In particular, ϕ−1 induces an endomorphism of R̃int,r.

Unwinding the definition of κ, we see that Y[0,r] is the rational subset of SpaAinf cut out by

the conditions |p(x)|r ≤
∣∣[p[](x)

∣∣ 6= 0. Thus

R̃int,r = Ainf〈p/[p[]1/r〉[1/[p[]] ,
where Ainf〈p/[p[]1/r〉 is the [p[]-adic completion of Ainf [p/[(p

[)1/r]], and (p[)1/r ∈ OC[ is any rth

root of p[. Thus R̃int,r can be described as

R̃int,r =

∑
n≥0

[cn]pn
∣∣∣∣ cn ∈ C[, cn(p[)n/r → 0

 .

For r′ < r, the inclusion of rational subsets Y[0,r′] → Y[0,r] allows us to view R̃int,r as a subring of

R̃int,r′ . Finally,

R̃int = lim−→ R̃int,r as r → 0.

It will be convenient for us to make the following definition.

Definition 12.3.3. Let R be a ring together with an endomorphism ϕ : R → R. A ϕ-module
over R is a finite projective R-module M with an isomorphism ϕM : M ⊗R,ϕ R ∼= M . Similarly,
if X is an adic space equipped with an endomorphism ϕ : X → X, then a ϕ-module over X is a
vector bundle E on X equipped with an isomorphism ϕE : ϕ∗E ∼= E .

Note that if ϕ is an automorphism of R, the map ϕM is equivalent to a ϕ-semilinear automor-
phism of M , and we will often make this translation.

The next theorem states that ϕ-modules over the rings R̃int and W (C[) are trivial in the sense
that one can always find a ϕ-invariant basis.

Theorem 12.3.4 ([KL15, Theorem 8.5.3]). The following categories are equivalent:

(1) ϕ-modules over R̃int;

(2) ϕ-modules over W (C[);
(3) finite free Zp-modules.

The functor from (1) to (2) is base extension, and the functor from (2) to (3) is the operation of
taking ϕ-invariants.

Proof. (Sketch.) The full faithfulness of the functor from (1) to (2) is equivalent to the

statement that if M is a ϕ-module over R̃int, then the map

Mϕ=1 → (M ⊗R̃int W (C[))ϕ=1

is an isomorphism. This can be checked by consideration of Newton polygons.
The equivalence between (2) and (3) is a special case of the following fact. Let R be a perfect

ring. Then ϕ-modules over W (R) are equivalent to Zp-local systems on SpecR. This is sometimes
called Artin-Schreier-Witt theory (the case of ϕ-modules over R and Fp-local systems being due
to Artin-Schreier). Given this equivalence, it is clear that the functor from (1) to (2) is essentially
surjective, finishing the proof. �

Proposition 12.3.5. The following categories are equivalent:
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(1) Shtukas over SpaC[ with no legs, and

(2) ϕ-modules over R̃int (in turn equivalent to finite free Zp-modules by Theorem 12.3.4).

Proof. A shtuka over SpaC[ with no legs is by definition a ϕ-module on Y[0,∞). The localiza-

tion of E at xC[ is a ϕ-module over OY,x
C[

= R̃int.

Going in the other direction, it is convenient to switch to ϕ−1-modules on both sides. Suppose

(M,ϕM ) is a ϕ−1-module over R̃int. Since R̃int = lim−→R̃
int,r and ϕ−1 acts compatibly on all rings,

the category of ϕ−1-modules over R̃int is the colimit of the directed system of categories of ϕ−1-

modules over the R̃int,r. This means that we can descend (M,ϕ−1
M ) to a pair (Mr, ϕ

−1
Mr

) if r is small
enough.

In terms of vector bundles, we have a pair (Er, ϕ−1
Er ), where Er is a vector bundle over Y[0,r]

together with an isomorphism ϕ−1
Er : (ϕ−1)∗Er ∼= Er. But then (ϕ−1)∗Er actually defines a ϕ−1-

module over Y[0,pr], and by continuing, one produces a unique ϕ−1-module over all of Y[0,∞). �

12.4. Shtukas with one leg, and BdR-modules. The relevance to the study of shtukas with
legs comes through the following corollary.

Corollary 12.4.1. Let (E , ϕE) be a shtuka over C[ with a leg at ϕ−1(xC). The localization of

E at xC[ is a ϕ-module over R̃int which by the previous proposition corresponds to a shtuka (E ′, ϕE ′)
with no legs. There is a unique ϕ−1-equivariant isomorphism

ιE : E|Y[0,∞)\
⋃
n≥0 ϕ

n(xC)
∼= E ′|Y[0,∞)\

⋃
n≥0 ϕ

n(xC)

that induces the given identification at the localization at xC[. Moreover, ιE is meromorphic along
all ϕn(xC).

Remark 12.4.2. There is an obvious version of this corollary for shtukas with any number of
legs in characteristic 0, removing all positive ϕ-translates of all legs. We note that it is not a typo
that the isomorphism extends over the leg. Indeed, regarding ϕE as a ϕ-semilinear map, it induces
an isomorphism between the localizations of E at ϕn(xC) and ϕn−1(xC), as long as n 6= 0. In
particular, the localization of E at ϕ−1(xC) is identified with all the localizations at ϕ−n(xC) for
n > 0.

Proof. We have a ϕ−1-equivariant isomorphism

E|Y[0,r]
∼= E ′|Y[0,r]

if r is small enough, as we have such an isomorphism at the local ring. On the other hand, if
Y ′ = Y \

⋃
n≥0 ϕ

n(xC), then there is a natural map ϕ−1 : Y ′ → Y ′, and isomorphisms ϕ−1
E :

(ϕ−1)∗E|Y ′ ∼= E|Y ′ , ϕ−1
E ′ : (ϕ−1)∗E ′|Y ′ ∼= E ′|Y ′ . As any quasicompact open subspace of Y ′ is carried

into Y[0,r] by ϕ−n for n large enough, we can extend the isomorphism uniquely, as desired.
Moreover, as ϕE is meromorphic, one sees that ιE is meromorphic at the ϕn(xC). �

We will now describe E in terms of E ′ and the modification at the points ϕn(xC). Our analysis
will involve the completed local ring of Y at xC , which is none other than the de Rham period ring
B+

dR.

Definition 12.4.3 (The de Rham period ring). Let B+
dR = ÔY,xC ; this agrees with the ξ-

adic completion of W (OC[)[1/p]. It is a complete discrete valuation ring with residue field C and
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uniformizer ξ.22 The map θ : Ainf → OC extends to a map B+
dR → C which we continue to call θ.

Let BdR = B+
dR[ξ−1] be the fraction field of B+

dR.

We may identify the nth graded piece ξnB+
dR/ξ

n+1B+
dR with the Tate twist C(n).

Remark 12.4.4. The automorphism ϕ of Y allows us to identify ÔY,ϕn(xC) with B+
dR for any

n ∈ Z, and it will be convenient for us to do so. Thus if E is a vector bundle on an open subset of

Y containing ϕn(xC), its completed stalk Êϕn(xC) is a B+
dR-module.

Remark 12.4.5. As ιE is meromorphic at xC , we get an isomorphism of completed stalks at

xC after inverting the parameter ξ. That is, we have an isomorphism ιE,xC : ÊxC ⊗B+
dR
BdR →

Ê ′xC ⊗B+
dR
BdR. Under the equivalence between shtukas with no legs and finite free Zp-modules,

we have E ′ = T ⊗Zp OY for some finite free Zp-module T . Then Ê ′xC ⊗B+
dR
BdR = T ⊗Zp BdR. In

summary, we get a B+
dR-lattice

Ξ = ιE,xC (ÊxC ) ⊂ T ⊗Zp BdR

encoding the behaviour of ιE near xC . This gives a functor from shtukas over C[ with one leg
at ϕ−1(xC), towards pairs (T,Ξ) where T is a finite free Zp-module and Ξ ⊂ T ×Zp BdR is a

B+
dR-lattice.

Proposition 12.4.6. The above functor defines an equivalence between shtukas over SpaC[

with one leg at ϕ−1(xC) and the category of pairs (T,Ξ), where T is a finite free Zp-module and
Ξ ⊂ T ⊗Zp BdR is a B+

dR-lattice.

Remark 12.4.7. Coming back to p-divisible groups, we note that there is a fully faithful functor
{(T,W )} → {(T,Ξ)} where Ξ is the unique B+

dR-lattice with

T ⊗Zp B
+
dR ⊂ Ξ ⊂ ξ−1(T ⊗Zp B

+
dR)

whose image in
ξ−1(T ⊗Zp B

+
dR)/(T ⊗Zp B

+
dR) ∼= T ⊗Zp C(−1)

is given by W (−1). In particular, given (T,W ), the theorem allows us to construct a shtuka over

SpaC[ with one leg at ϕ−1(xC).

Proof. This is an easy consequence of Corollary 12.4.1; we describe the inverse functor. Given
(T,Ξ), we get the shtuka with no legs E ′ = T ⊗Zp OY[0,∞)

, together with the B+
dR-lattice

Ξ ⊂ T ⊗Zp BdR = Ê ′xC ⊗B+
dR
BdR .

By the Beauville–Laszlo lemma, Lemma 5.2.9, and as xC defines a closed Cartier divisor, we can
use Ξ to define a vector bundle over Y[0,∞) which is isomorphic to E ′ away from xC , and whose
completed stalk at xC is given by Ξ. We can repeat this at ϕn(xC) for all n ≥ 1, defining a new
vector bundle E on Y[0,∞) with a meromorphic isomorphism

ιE : E|Y ′ ∼= E ′|Y ′ ,
where Y ′ = Y[0,∞) \

⋃
n≥0 ϕ

n(xC). This meromorphic isomorphism lets us define a meromorphic

map ϕE : ϕ∗E|Y ′ → E|Y ′ compatibly with ϕE ′ . But as we have used the same lattice Ξ at all ϕn(xC),

22To prove these assertions, use that SpaC → Y is a closed Cartier divisor.
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we see that ϕE extends over ϕn(xC) for n > 0. In other words, (E , ϕE) is a shtuka with one leg at
ϕ−1(xC). �
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13. Lecture XIII: Shtukas with one leg II

Today we discuss Step 2 of the plan laid out in Lecture XII. We will show that a shtuka over
SpaC[, a priori defined over Y[0,∞) = SpaAinf \{xk, xL} actually extends to Y = SpaAinf \{xk}. In
doing so we will encounter the theory of ϕ-modules over the Robba ring, due to Kedlaya, [Ked04].
These are in correspondence with vector bundles over the Fargues-Fontaine curve, [FF17].

13.1. Y is an adic space. As in the previous lecture, let C/Qp be an algebraically closed

nonarchimedean field, with tilt C[/Fp and residue field k. Let Ainf = W (OC[), with its (p, [p[])-adic
topology. We had set Y = Y[0,∞] = (SpaAinf)\ {xk}, an analytic pre-adic space.

Proposition 13.1.1. The space Y is an adic space.

Proof. From Proposition 11.2.1 applied to S = SpaC[ we know that S×̇Spa Zp = Y[0,∞) is

an adic space, by exhibiting a covering by rational subsets Spa(R,R+), where R is sousperfectoid.
We apply a similar strategy to the rational subsets Y[r,∞] for r > 0.

For r > 0 rational we have Y[r,∞] = Spa(Rr, R
+
r ), where Rr is the ring W (OC[)〈(p[)r/p〉[1/p].

Here W (OC[)〈(p[)r/p〉 is the completion of W (OC[)[(p[)r]/p] with respect to the ([p[], p)-adic topol-

ogy, but since p divides [(p[)r] in this ring, the topology is just p-adic.

Let A′inf be the ring W (OC[) equipped with the p-adic topology (rather than the (p, [p[])-
adic topology, as we have defined Ainf). By the observation above, the morphism of adic spaces
SpaAinf → SpaA′inf induces an isomorphism between Y[r,∞] and the rational subset of SpaA′inf

defined by
∣∣[p[](x)

∣∣r ≤ |p(x)| 6= 0. Therefore to prove the proposition it is enough to show that the
rational subset {|p(x)| 6= 0} of SpaA′inf is an adic space. This rational subset is Spa(A′inf [1/p], A

′
inf).

We claim A′inf [1/p] is sousperfectoid. Indeed, ifR = A′inf [1/p]⊗̂ZpZp[p
1/p∞ ], thenR is a Tate ring

with pseudo-uniformizer p1/p. Its subring of power-bounded elements is R◦ = A′inf⊗̂ZpZp[p
1/p∞ ].

Observe that Φ is surjective on R◦/p = OC[⊗FpFp[x
1/p∞ ]/x = OC[ [x1/p∞ ]/x. Thus R is perfectoid.

By Proposition 6.3.4, (A′inf [1/p], A
′
inf) is sheafy. �

Remark 13.1.2. The same proof shows that SpaW (R)[1/p] is an adic space, where R is any
(discrete) perfect ring and W (R) has the p-adic topology.

Let us also mention here the following recent result of Kedlaya; the result does not extend to
all of Y, as the local ring at xL is highly nonnoetherian.

Theorem 13.1.3 ([Ked16a, Theorem 4.10]). The adic space Y[0,∞) is strongly noetherian.

13.2. The extension of shtukas over xL. The main theorem of this lecture concerns the
extension of ϕ-modules from Y[r,∞) to Y[r,∞], where 0 ≤ r <∞.

Theorem 13.2.1 ([FF17, Théorème 11.1.9, Corollary 11.1.13]). For 0 ≤ r <∞, the restriction
functor from ϕ-modules over Y[r,∞] to ϕ-modules over Y[r,∞) is an equivalence.

Remark 13.2.2. In particular, suppose (E , ϕE) is a shtuka over SpaC[ with legs x1, . . . , xn.
Thus E is a vector bundle over Y[0,∞) and ϕE : ϕ∗E 99K E is an isomorphism away from the xi.
Suppose r > 0 is greater than κ(xi) for i = 1, . . . , n, so that E|Y[r,∞)

is a ϕ-module over Y[r,∞). By

the theorem, E|Y[r,∞)
extends uniquely to a ϕ-module over Y[r,∞]. This can be glued to the given

shtuka to obtain a vector bundle Ê on Y together with an isomorphism ϕÊ : ϕ∗Ê → Ê on Y\
⋃
i Γxi .

We only offer some ideas of the proof below.
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13.3. Full faithfulness. We now sketch a proof that the functor described in Theorem 13.2.1
is fully faithful. This part is more general, and works if C is any perfectoid field (not necessarily
algebraically closed).

Suppose I is an interval of the form [r,∞) or [r,∞] with r > 0.

Lemma 13.3.1. Let r′ > r, and let I ′ = I∩ [r′,∞]. The restriction functor from ϕ-modules over
YI to ϕ-modules over YI′ is an equivalence.

Proof. The inverse functor is given by pullback under ϕ−n for n large enough. �

For full faithfulness of the restriction functor in Theorem 13.2.1, it suffices to prove the following
proposition about global sections, by applying it to an appropriate internal Hom.

Proposition 13.3.2 ([FF17, Proposition 4.1.3, Théorème 11.1.12]). Let r > 0, and let E be a
ϕ-module over Y[r,∞]. Restriction induces an isomorphism

H0(Y[r,∞], E)ϕ=1 ∼→ H0(Y[r,∞), E)ϕ=1.

Proof. By [FF17, Théorème 11.1.12], there is a ϕ-equivariant isomorphism E ∼= M ⊗LOY[r,∞]

for some ϕ-module M over L = W (k)[1
p ]; here, we fixed a section k → OC[ of the projection.23 By

the Dieudonné–Manin classification (cf. Remark 13.4.2 below), one can assume that M is a simple
isocrystal of slope λ = d

h , h ≥ 1. In that case, we have to prove that

H0(Y[r,∞],OY[r,∞]
)ϕ
h=pd = H0(Y[r,∞),OY[r,∞)

)ϕ
h=pd .

Applying Lemma 13.3.1, this is equivalent to

H0(Y(0,∞],OY(0,∞]
)ϕ
h=pd = H0(Y(0,∞),OY(0,∞)

)ϕ
h=pd .

Following [FF17], we put B+ = H0(Y(0,∞],OY(0,∞]
) and B = H0(Y(0,∞),OY(0,∞)

), so we have to

prove that (B+)ϕ
h=pd = Bϕh=pd . This is exactly [FF17, Propositions 4.1.1, 4.1.2, 4.1.3]. Let us

sketch the argument. Take any f ∈ Bϕh=pd ; we have to show that it extends over xL. Consider the
Newton polygon of f : if

f =
∑
i∈Z

[ai]p
i, ai ∈ C[,

let Newt(f) be the convex hull of the polygon in R2 joining the points (val(ai), i) for i ∈ Z. Here

val is a valuation on C[, written additively. Then Newt(f) is independent of the expression of f as
a series (which may not be unique). We have that f extends to Y[r,∞] if and only if Newt(f) lies
on the right of the y-axis, cf. [FF17, Proposition 1.10.7]. Now

Newt(ϕh(f)) = Newt(pdf) = d+ Newt(f).

But Newt(ϕh(f)) is Newt(f) but scaled by ph in the val-axis. If Newt(f) goes to the left of the
y-axis, then Newt(ϕh(f)) would go further to the left, contradiction. �

23One could also carry out the following arguments without the choice of such a trivialization, but it simplifies
the argument.
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13.4. Essential surjectivity. For essential surjectivity in Theorem 13.2.1, the strategy is to
classify all ϕ-modules over Y[r,∞) and show by inspection that each one extends over Y[r,∞].

Recall that L = W (k)[1/p]. If we choose an embedding k ↪→ OC[ which reduces to the identity
modulo the maximal ideal of OC[ , we obtain an embedding L ↪→ Ainf [1/p].

Theorem 13.4.1 ([Ked04]). Let (E , ϕE) be a ϕ-module over Y[r,∞). Then there exists a ϕ-
module (M,ϕM ) over L such that (E , ϕE) ∼= (M,ϕM )⊗LOY[r,∞)

. (Here we have fixed an embedding

L→ Ainf [1/p].)

Remark 13.4.2.

(1) As a result, the ϕ-module Ê = M ⊗L OY[r,∞]
extends E to Y[r,∞].

(2) ϕ-modules over L are by definition the same as isocrystals over k. The category of isocrys-
tals over k admits a Dieudonné-Manin classification: it is semisimple, with simple objects
Mλ classified by λ ∈ Q. For a rational number λ = d/h written in lowest terms with
h > 0, the rank of Mλ is h, and ϕMλ

can be expressed in matrix form as

ϕMλ
=


0 1

0 1
. . .

. . .

0 1
pd 0

 .

In fact, the formulation of Kedlaya’s theorem is slightly different; let us explain the translation,
which is also explained in detail in [FF17, Section 11.2], especially [FF17, Proposition 11.2.20,
Corollaire 11.2.22]. The usual “Frobenius pullback” trick shows that ϕ-modules over Y[r,∞) for
r > 0 can be extended arbitrarily close to 0 in the sense that the restriction map{

ϕ-modules over Y(0,∞)

} ∼→ {
ϕ-modules over Y[r,∞)

}
is an equivalence, cf. Lemma 13.3.1.

Definition 13.4.3 (The extended Robba rings, [KL15, Defn. 4.2.2]). Let R̃r = H0(Y(0,r],OY),

and let R̃ = lim−→R̃
r.

Thus R̃ is the ring of functions defined on some punctured disc of small (and unspecified) radius

around xC[ . Note that ϕ induces an automorphism of R̃ (but not of any R̃r). A similar Frobenius
pullback trick shows that the category of ϕ-modules over Y(0,∞) is equivalent to the category of

ϕ-modules over R̃. Kedlaya’s theorem is usually stated in terms of ϕ-modules over R̃.

13.5. The Fargues-Fontaine curve. Another perspective on these objects is offered by the
Fargues–Fontaine curve. As ϕ acts properly discontinuously on Y(0,∞) (as follows from κ◦ϕ = pκ),
it makes sense to form the quotient.

Definition 13.5.1. The adic Fargues-Fontaine curve is the quotient XFF = Y(0,∞)/ϕ
Z.

Now ϕ-modules over Y(0,∞) are visibly the same as vector bundles over XFF , so we see that
vector bundles on XFF are also equivalent to the categories considered in the previous section.
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Fargues–Fontaine also defined a scheme version of their curve. The curve XFF comes equipped
with a natural line bundle O(1), corresponding to the ϕ-module on Y(0,∞) whose underlying line

bundle is trivial and for which ϕO(1) is p−1ϕ. Let O(n) = O(1)⊗n, and let

P =
⊕
n≥0

H0(XFF ,O(n)),

a graded ring. The nth graded piece is H0(Y(0,∞),OY)ϕ=pn = Bϕ=pn , where B = H0(Y(0,∞),OY).

Note that by Proposition 13.2.1 this is the same as (B+)ϕ=pn , where B+ = H0(Y(0,∞],OY).
These spaces can be reformulated in terms of the crystalline period rings of Fontaine. Let

Acrys be the p-adic completion of the divided power envelope of the surjection Ainf → OC . By
a general fact about divided power envelopes for principal ideals in flat Z-algebras, this divided
power envelope is the same as the Ainf -subalgebra of Ainf [1/p] generated by ξn/n! for n ≥ 1. Let
B+

crys = Acrys[1/p]. An element of B+
crys may be written∑

n≥0

an
ξn

n!
, an ∈W (OC[)[1/p], an → 0 p-adically.

Using the estimate n/(p − 1) for the p-adic valuation of n!, one can show that such series
converge in H0(Y[r,∞],OY) for r = 1

p−1 . Thus we have an embedding B+
crys ⊂ H0(Y[r,∞],OY); it

can be shown that
(B+

crys)
ϕ=pn = (B+)ϕ=pn = Bϕ=pn ,

cf. [FF17, Corollaire 11.1.14].
The full crystalline period ring Bcrys is defined by inverting the element t ∈ B+

crys, where
t = log[ε], ε = (1, ζp, ζp2 , . . .) ∈ OC[ . We have ϕ(t) = log[εp] = log[ε]p = pt, so that t is a section of
O(1). Also, θ(t) = 0, so that t has a zero at xC ∈ XFF; in fact this is the only zero.

Definition 13.5.2 (The algebraic Fargues-Fontaine curve). Let XFF = ProjP . The map
θ : B → C determines a distinguished point xC ∈ XFF with residue field C.

Theorem 13.5.3 ([FF17]).

(1) XFF is a regular noetherian scheme of Krull dimension 1 which is locally the spectrum of
a principal ideal domain.

(2) In fact, XFF\ {xC} is an affine scheme SpecBe, where Be = Bϕ=1
crys is a principal ideal

domain.
(3) We have ÔXFF,xC = B+

dR. Thus vector bundles over XFF correspond to B-pairs (Me,M
+
dR)

in the sense of Berger, [Ber08], consisting of finite projective modules over Be and B+
dR

respectively, with an isomorphism over BdR.
(4) The set |XFF| of closed points of XFF is identified with the set of characteristic 0 untilts of

C[ modulo Frobenius. This identification sends x ∈ |XFF| to its residue field. In particular,
residue fields of XFF at closed points are algebraically closed nonarchimedean fields C ′ such
that (C ′)[ ∼= C[.

Moreover, [FF17] shows that there is a Dieudonné-Manin classification for vector bundles over
XFF, just as in Kedlaya’s theory.

Theorem 13.5.4 ([FF17]). There is a faithful and essentially surjective functor from isocrystals
over k to vector bundles over XFF, which sends M to the vector bundle associated to the graded
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P -module
⊕

n≥0(B+
crys ⊗ M)ϕ=pn. This functor induces a bijection on the level of isomorphism

classes.

For λ ∈ Q, we write O(λ) for the image of the simple isocrystal M−λ under the functor described
in Theorem 13.5.4. If λ = d/h is in lowest terms with h > 0, then O(λ) has rank h and degree d. If
λ = n ∈ Z, this definition is consistent with how we have previously defined the line bundle O(n).
In general, if E is a vector bundle corresponding to

⊕
iMλi under Theorem 13.5.4, the rational

numbers λi are called the slopes of E . A vector bundle with only one slope λ is called semistable of
slope 0.

Corollary 13.5.5. The category of vector bundles on XFF that are semistable of slope 0 is
equivalent to the category of finite-dimensional Qp-vector spaces.

Proof. The functors are given by E 7→ H0(XFF, E) and V 7→ V ⊗Qp OXFF
, respectively.

To see that they are inverse, one only needs to see that all vector bundles on XFF that are
semistable of slope 0 are trivial, which follows from the classification of vector bundles, and that
H0(XFF,OXFF

) = Qp. �

The global sections of O(λ) are

H0(XFF,O(λ)) =


big, λ > 0,

Qp, λ = 0,

0, λ < 0

In the “big” case, the space of global sections is a “finite-dimensional Banach Space” (with
a capital S) in the sense of Colmez, [Col02], which is a mixture of finite-dimensional Qp-vector
spaces and finite-dimensional C-vector spaces, cf. Lecture XV. For example if λ = 1, we have an
exact sequence

0→ Qpt→ H0(XFF,O(1))→ C → 0.

Furthermore, H1(XFF,O(λ)) = 0 if λ ≥ 0, and H1(XFF,O(−1)) is isomorphic to the quotient
C/Qp.

Theorem 13.5.6 ([KL15, Theorem 8.7.7], “GAGA for the curve”). Vector bundles over XFF

and vector bundles over XFF are equivalent.

There is a map of locally ringed spaces XFF → XFF, so one really does have a functor from
vector bundles over XFF to vector bundles over XFF. The following theorem will be critical to the
proof of the local Drinfeld lemma.

Theorem 13.5.7 ([FF17, Théorème 8.6.1]). XFF,Qp
is simply connected; i.e. any finite étale

cover is split. Equivalently, the categories of finite étale covers of XFF and of Qp are equivalent.
Moreover, the categories of finite étale covers of XFF and XFF are equivalent.

Proof. The following argument due to Fargues-Fontaine also gives a proof that P1 is simply
connected over an algebraically closed field, which avoids using the Riemann-Hurwitz formula.

We need to show that A 7→ OXFF
⊗Qp A is an equivalence from finite étale Qp-algebras to finite

étale OXFF
-algebras. Suppose E is a finite étale OXFF

-algebra. By Theorem 13.5.4, the underlying
vector bundle of E is isomorphic to

⊕
iO(λi) for some λ1, . . . , λs ∈ Q. The étaleness provides a

perfect trace pairing on E , hence a self-duality of the underlying vector bundle, which implies that∑
i λi = 0. Let λ = maxλi, so that λ ≥ 0.
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Assume λ > 0. The multiplication map E ⊗ E → E restricts to a map O(λ) ⊗ O(λ) → E ,
which gives a global section of E ⊗ O(−λ)⊗2. But the latter has negative slopes, implying that
H0(XFF, E ⊗ O(−2λ)) = 0. It follows that f2 = 0 for every f ∈ H0(XFF,O(λ)) ⊂ H0(XFF, E).
But since E is étale over OXFF

, its ring of global sections is reduced, so in fact H0(XFF,O(λ)) = 0
and λ < 0, contradiction. Therefore λ = 0, and so λi = 0 for all i, meaning that E is trivial. But
the category of trivial vector bundles on XFF is the equivalent to the category of finite dimensional
vector spaces, given by E 7→ H0(XFF, E). Thus H0(XFF, E) is a finite étale Qp-algebra, which gives
us the functor in the other direction.

The equivalence of finite étale covers of XFF and XFF follows from Theorem 13.5.6 by encoding
both as sheaves of finite étale algebras (where the condition to be finite étale can be encoded as
locally free with perfect trace pairing). �
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14. Lecture XIV: Shtukas with one leg III

We continue in the usual setup: Let C/Qp be an algebraically closed nonarchimedean field, C[

its tilt, k its residue field, L = W (k)[1/p], and Ainf = W (OC[). There is the map θ : Ainf → OC
whose kernel is generated by ξ = p − [p[]. We have the associated adic space SpaAinf containing
its analytic locus Y = SpaAinf \ {xk}. Moreover, we have the complete discrete valuation ring
B+

dR and its fraction field BdR, where B+
dR is the ξ-adic completion of W (OC[)[1/p]. Finally, we

have the Fargues-Fontaine curve XFF defined in Definition 13.5.2, with a distinguished point ∞
corresponding to the untilt C of C[.

14.1. Fargues’s theorem. Our goal today is to complete the proof of the following theorem
of Fargues.

Theorem 14.1.1 (Fargues). The following categories are equivalent:

(1) Shtukas over SpaC[ with one leg at ϕ−1(xC), i.e. vector bundles E on Y[0,∞) together
with an isomorphism ϕE : (ϕ∗E)|Y[0,∞)\ϕ−1(xC)

∼= E|Y[0,∞)\ϕ−1(xC) that is meromorphic at

ϕ−1(xC).
(2) Pairs (T,Ξ), where T is a finite free Zp-module, and Ξ ⊂ T ⊗Zp BdR is a B+

dR-lattice.
(3) Quadruples (F ,F ′, β, T ), where F and F ′ are vector bundles on the Fargues-Fontaine

curve XFF such that F is trivial, β : F|XFF\{∞}
∼→ F ′|XFF\{∞} is an isomorphism, and

T ⊂ H0(XFF,F) is a Zp-lattice.

(4) Vector bundles Ẽ on Y together with an isomorphism ϕẼ : (ϕ∗Ẽ)|Y\ϕ−1(xC)
∼= Ẽ |Y\ϕ−1(xC).

(5) Breuil-Kisin-Fargues modules over Ainf , i.e. finite free Ainf-modules M together with an
isomorphism ϕM : (ϕ∗M)[ 1

ϕ(ξ) ] ∼= M [ 1
ϕ(ξ) ].

Moreover, restricting to the full subcategories given (in case (2)) by the condition

T ⊗Zp B
+
dR ⊂ Ξ ⊂ ξ−1(T ⊗Zp B

+
dR),

the corresponding full subcategories are equivalent to the category of p-divisible groups over OC .

Proof. The equivalence between (1) and (2) is Theorem 12.4.6. Let us explain the equivalence
between (2) and (3). By Corollary 13.5.5, the datum of a trivial vector bundle F is equivalent to
the datum of a finite-dimensional Qp-vector space; together with T , this data is equivalent to a
finite free Zp-module T . Now by the Beauville–Laszlo lemma, Lemma 5.2.9, the datum of F ′ and
β is equivalent to the datum of a B+

dR-lattice in

F̂∞ ⊗B+
dR
BdR = T ⊗Zp BdR .

This shows that (2) and (3) are equivalent.
Let us also briefly discuss the relation between (1) and (3). Suppose (E , ϕE) is a shtuka over

SpaC[ with one leg at ϕ−1(xC). This means that E is a vector bundle on Y[0,∞) and ϕE : ϕ∗E →
E is an isomorphism away from ϕ−1(xC). The vector bundles F and F ′ on XFF = Y(0,∞)/ϕ

Z

come from descending (E , ϕE) “on either side” of xC , respectively, as we now explain. Namely, if
r < 1 resp. r > 1, then E|Y(0,r]

resp. EY[r,∞)
is a vector bundle on which ϕ−1 resp. ϕ becomes an

isomorphism. As Y(0,r] → XFF resp. Y[r,∞) → XFF is surjective, we can thus descend them to vector
bundles F resp. F ′ on XFF, which by Theorem 13.5.6 are equivalent to vector bundles on XFF. As
E extends to Y[0,r] without a leg in characteristic p, Proposition 12.3.4 implies that F is trivial, and
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comes with a distinguished Zp-lattice. Moreover, that F and F ′ both come from E is encoded in
the modification β.

In the last lecture, we proved the equivalence between (1) and (4). By Theorem 14.2.1 be-
low, categories (4) and (5) are equivalent. The final sentence follows from description (2) and
Theorem 12.1.5. �

14.2. Extending vector bundles over the closed point of SpecAinf . We have seen that
to complete the proof of Fargues’s theorem, it remains to prove the following result, where Y =
SpaAinf \ {xk}.

Theorem 14.2.1 (Kedlaya, [Ked16b, Theorem 3.6]). There is an equivalence of categories
between:

(1) Finite free Ainf-modules, and
(2) Vector bundles on Y.

One should think of this as being an analogue of a classical result: If (R,m) is a 2-dimensional
regular local ring, then finite free R-modules are equivalent to vector bundles on (SpecR)\ {m}. In
fact the proof we give for Theorem 14.2.1 works in that setup as well.

Question 14.2.2. One can ask whether Theorem 14.2.1 extends to torsors under groups other
than GLn. If G/Qp is a connected reductive group with parahoric model G/Zp, is it true that
G-torsors over Ainf are the same as G-torsors on SpecAinf\ {m}, and on Y? The analogue for 2-
dimensional regular local rings is treated in [CTS79, Theorem 6.13] if G is reductive, and in some
cases when G is parahoric in [KP15, Section 1.4].

First we prove the algebraic version of Theorem 14.2.1.

Lemma 14.2.3. Let m ∈ SpecAinf be the closed point, and let Y = Spec(Ainf)\ {m}. Then
E 7→ E|Y is an equivalence between vector bundles on SpecAinf (that is, finite free Ainf-modules)
and vector bundles on Y .

Proof. Let R = Ainf , and let

R1 = R[1/p]

R2 = R[1/[p[]]

R12 = R[1/p[p[]].

Then Y is covered by SpecR1 and SpecR2, with overlap SpecR12. Thus the category of vector
bundles on Y is equivalent to the category of triples (M1,M2, h), where Mi is a finite projective

Ri-module for i = 1, 2, and h : M1 ⊗R1 R12
∼→M2 ⊗R2 R12 is an isomorphism of R12-modules. We

wish to show that the obvious functor M 7→ (M ⊗R R1,M ⊗R R2, hM ) from finite free R-modules
to such triples is an equivalence.

For full faithfulness, suppose we are given finite free R-modules M and M ′ and a morphism of
triples (M ⊗R R1,M ⊗R R2, hM )→ (M ′ ⊗R R1,M

′ ⊗R R2, hM ′). The matrix coefficients of such a
morphism lie in R1 ∩R2 = R, and thus the morphism extends uniquely to a morphism M →M ′.

For essential surjectivity, suppose we are given a triple (M1,M2, h). Using h we may identify
both M1⊗R1 R12 and M2⊗R2 R12 with a common R12-module M12. Consider the map M1⊕M2 →
M12 defined by (x, y) 7→ x − y. Let M be the kernel, an R-module. For i = 1, 2, the projection
map pri : M1 ⊕M2 → Mi induces a map pri : M ⊗R Ri → Mi, which is an isomorphism. Indeed,
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in geometric terms, let j : SpecR\ {m} → SpecR be the inclusion; then j∗ preserves quasicoherent
sheaves and j∗j∗ = id.

We now must show that M is a finite free R-module, given that its localizations to R1 and
R2 are finite projective. First we present some generalities concerning finite projective modules
over Tate rings. (Even though R is not Tate, its localizations R1 and R2 are both Tate, with

pseudo-uniformizers p and [p[], respectively.)
Let A be a Tate ring, let f ∈ A be a topologically nilpotent unit, and let A0 ⊂ A be a ring of

definition containing f . Then A0 has the f -adic topology and A = A0[f−1] (Proposition 2.2.6(2)).
If M is a finite projective A-module, it comes with a canonical topology. This may be defined by
writing M as a direct summand of An and giving M the induced subspace (or equivalently, quotient
space) topology. We gather a few facts:

(1) If A is complete, then so is M .
(2) An A0-submodule N ⊂M is open if and only if N [f−1] = M .
(3) An A0-submodule N ⊂M is bounded if and only if it is contained in a finitely generated

A0-submodule.
(4) If A0 is f -adically separated and complete, then an open and bounded A0-submodule

N ⊂M is also f -adically separated and complete.
(5) Let A′ be a Tate ring containing A as a topological subring. If X ⊂M ⊗AA′ is a bounded

subset, then X ∩M ⊂M is also bounded.

(For the last point: suppose that f is a pseudo-uniformizer of A, and thus also of A′. Let
A′0 ⊂ A′ be a ring of definition containing f ; then A0 := A ∩ A′0 is a ring of definition for A. Use
a presentation of M as a direct summand of a free module to reduce to the case that M is free,
and then to the case that M = A. By Proposition 2.2.6(3), boundedness of X ⊂ A′ means that
X ⊂ f−nA′0 for some n, and therefore X ∩A ⊂ f−nA0 is bounded.)

Thus all open and bounded submodules of M differ by bounded f -torsion, in the sense that if
M0,M

′
0 ⊂M are open and bounded, then there exists n such that fnM0 ⊂M ′0 ⊂ f−nM0.

Now we return to the situation of the lemma. Endow R1 with the p-adic topology making
R a ring of definition. Then R1 is Tate and p ∈ R1 is a topologically nilpotent unit. We claim
that M ⊂ M1 is an open and bounded R1-submodule. Since M ⊗R R1 = M1, point (2) above
(applied to A0 = R and A = R1) shows that M is open. For boundedness, endow R12 with the
p-adic topology making R2 a ring of definition. Then R1 ⊂ R12 is a topological subring. Since
M2 ⊂ M12 = M2 ⊗R2 R12 is bounded, we can apply (5) to conclude that M = M2 ∩M1 ⊂ M1 is
bounded as well.

Thus M ⊂ M1 is open and bounded. Since R1 is p-adically separated and complete, point (4)
shows that M is p-adically complete. It is also p-torsion free, since M1 is. It follows that in order
to prove that M is finite free, it is enough to prove that M/p is finite free over R/p = OC[ .

We claim that the inclusion M ↪→ M2 induces an injection M/p ↪→ M2/p = M2 ⊗R2 C
[.

Assume m ∈ M maps to 0 ∈ M2/p. Write m = pm2, with m2 ∈ M2. Then m′ := (m/p,m2) ∈
ker(M1 ⊕M2 →M12) = M , so that m = pm′, giving the claim.

Thus M/p is an OC[-submodule of a C[-vector space of finite dimension d, and we want to show
that it is actually free of rank d over OC[ . Note that if K is a discretely valued nonarchimedean field,
then any open and bounded OK-submodule of K⊕d is necessarily finite free of rank d. However,
the same statement is false when K is not discretely valued: the maximal ideal mK of OK is open
and bounded in K, but it is not even finitely generated.
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Lemma 14.2.4. Let V be a valuation ring with fraction field K and residue field k and let
Λ ⊂ Kd be any V -submodule. Then

dimk(Λ⊗V k) ≤ d,
with equality if and only if Λ ∼= V d.

Proof. Let x1, . . . , xe ∈ Λ be elements whose reductions x1, . . . xe ∈ Λ ⊗V k are linearly
independent. We claim that x1, . . . , xe are linearly independent in K. Indeed, if

∑
aixi = 0 with

ai ∈ K, then by clearing common denominators, we may assume that all ai ∈ V and one of them
is invertible. But then

∑
aixi = 0 in Λ⊗V k where not all ai are nonzero, which is a contradiction.

In particular, we have e ≤ d, and dimk(Λ ⊗V k) ≤ d. If one has e = d, then the elements
x1, . . . , xe induce an injective map V d → Λ. If x ∈ Λ is any other element, there are unique ai ∈ K
such that x =

∑
aixi. If one of the ai is not in V , then by multiplying by a common denominator,

we see that
∑
a′ixi = a′x where all a′i ∈ V , one of them invertible, and a′ being in the maximal

ideal of V . But then
∑
a′ixi = 0, which is a contradiction. Thus, Λ ∼= V d, as desired. �

Our goal was to show that M/p is a finite free OC[-module. By Lemma 14.2.4 it suffices to
show that dimk(M/p⊗O

C[
k) = dimk(M ⊗R k) is at least d. Let T be the image of M ⊗RW (k) in

M1 ⊗R1 W (k)[1/p] ∼= L⊕d. Since M is open and bounded in M1, T is open and bounded in L⊕d,
so T ∼= W (k)⊕d, which implies that M ⊗R k surjects onto T ⊗R k ∼= k⊕d, and we conclude. �

Remark 14.2.5. In the proof, we did not use that OC[ is a valuation ring of rank 1. In fact,
the same proof shows the following slightly more general result, also contained in [Ked16b].

Proposition 14.2.6. Let K be a perfectoid field of characteristic p with an open and bounded
valuation subring K+ ⊂ K, and let $ ∈ K be a pseudouniformizer. Then the category of vector
bundles on SpecW (K+)\{p = [$] = 0} is equivalent to the category of finite free W (K+)-modules.

14.3. Proof of Theorem 14.2.1. We can now give the proof of Theorem 14.2.1, which is the
statement that finite free Ainf -modules are in equivalence with vector bundles on Y.

For full faithfulness: We have Y = Y[0,1] ∪ Y[1,∞], with intersection Y{1}. Let SpaS1 = Y[0,1]

and SpaS2 = Y[1,∞], with Y{1} = SpaS12. Then S1, S2 and S12 are complete Tate rings:

(1) S1 = Ainf〈[p[]/p〉[1/p] has ring of definition Ainf〈[p[]/p〉 and pseudo-uniformizer p,

(2) S2 = Ainf〈p/[p[]〉[1/[p[]] has ring of definition Ainf〈p/[p[]〉 and pseudo-uniformizer [p[],

(3) S12 = Ainf〈p/[p[], [p[]/p〉[1/p[p[]] has ring of definition Ainf〈p/[p[], [p[]/p〉; both p and [p[]
are pseudo-uniformizers.

The ring S12 contains S1 and S2 as topological subrings. The intersection S1 ∩ S2 inside S12 is
Ainf : this is [KL15, Lemma 5.2.11(c)]. This gives full faithfulness.

We turn to essential surjectivity. A vector bundle E on Y is the same, by Theorem 5.2.8, as finite
projective Si-modules Ei, for i = 1, 2, which glue over S12. We want to produce a vector bundle on
the scheme Y . For this, consider again R1 = Ainf [1/p], endowed with the p-adic topology on Ainf .

Then SpaR1 is covered by open subsets
{∣∣[p[]∣∣ ≤ |p| 6= 0

}
= SpaS1 and

{
|p| ≤

∣∣[p[]∣∣ 6= 0
}

=: SpaS′2,
where

S′2 = Ainf [p/[p
[]]∧p [1/p].

Lemma 14.3.1. The natural map gives an isomorphism

Ainf [p/[p
[]]∧p
∼= Ainf [p/[p

[]]∧
(p,[p[])

.
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Proof. It is enough to observe that Ainf [p/[p
[]]∧p is already [p[]-adically complete. To check

this, we calculate that for all n ≥ 1, Ainf [p/[p
[]]/pn is already [p[]-adically complete as follows. In

the n = 1 case we have

Ainf [p/[p
[]]/p = (Ainf/p)[T ]/(p− [p[]T )

= OC[ [T ]/p[T = OC[ ⊕
⊕
i≥1

(OC[/p
[)T i,

which is indeed [p[]-adically complete. �

After inverting p in Lemma 14.3.1 we find an isomorphism S′2
∼= S2[1/p] (which is not a home-

omorphism). Under this isomorphism, E2[1/p] can be considered as a vector bundle on S′2. Then
E1, E2[1/p] and E12 define a gluing datum for a vector bundle on SpaR1. Since R1 is sheafy (as in
the proof of Proposition 13.1.1), they glue to give a finite projective R1-module M1.

Now apply the Beauville–Laszlo lemma, Lemma 5.2.9, to the scheme SpecAinf \{xk} (or rather

an open affine subset containing xC[ , for example SpecAinf [1/[p
[]]) and the element p ∈ Ainf . We

find that M1 and the W (C[)-lattice

E2 ⊗S2 W (C[) ⊂ E2 ⊗S2 W (C[)[1
p ] ∼= M1 ⊗R1 W (C[)[1

p ]

determine a vector bundle E ′ on SpecAinf \{xk}. By Lemma 14.2.3, we see that there is a finite free

Ainf -module M such that M [1
p ] = M1 and such that M ⊗Ainf

W (C[) = E2 ⊗S2 W (C[), compatibly

with the identifications over W (C[)[1
p ]. As M [1

p ] = M1, we find in particular that M ⊗Ainf
S1 = E1.

On the other hand, applying Lemma 5.2.9 to S2 and the element p ∈ S2, we see thatM⊗Ainf
S2 = M2

as this is true after inverting p and after p-adic completion, in a compatible way. Moreover,
these two identifications match after base extension to S12, as desired. This finishes the proof of
Theorem 14.2.1, and thus of Theorem 14.1.1.

14.4. Description of the functor “?” This concludes the program outlined in §12.2. Let us
now explain the applications of this formalism to p-divisible groups. The following is a restatement
of part of Theorem 14.1.1 in the case of p-divisible groups.

Theorem 14.4.1. The category of p-divisible groups G over OC is equivalent to the category of
finite free Ainf-modules M together with a ϕ-linear isomorphism ϕM : M [1

ξ ] ∼= M [ 1
ϕ(ξ) ] such that

M ⊂ ϕM (M) ⊂ 1
ϕ(ξ)M .

For applications of this theorem, one needs to understand how this relates to the crystalline
classification of the special fiber of G. There is in fact a crystalline classification of GOC/p. Recall

that Acrys is the p-adic completion of Ainf [
ξn

n! ], which is also the universal p-adically complete PD

thickening of OC/p, and B+
crys = Acrys[

1
p ].

Theorem 14.4.2 ([SW13, Theorem A]). The category of p-divisible groups over OC/p embeds
fully faithfully into the category of finite free Acrys-modules Mcrys together with an isomorphism

ϕcrys : Mcrys ⊗Acrys,ϕ B
+
crys
∼= Mcrys[

1
p ] .

The compatibility between these different classifications is given by the following theorem that
is proved in the appendix to this lecture as an application of the results in integral p-adic Hodge
theory in [BMS16].
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Theorem 14.4.3. Let G be a p-divisible group over OC with associated Breuil-Kisin-Fargues
module (M,ϕM ). Then the crystalline Dieudonné module of GOC/p is given by M ⊗Ainf

Acrys with
its induced Frobenius ϕM ⊗ ϕ.

In particular, by passing further from OC/p to k, we get the following corollary, answering the
question in Lecture XII.

Corollary 14.4.4. Under the equivalence between p-divisible groups G over OC and Breuil-
Kisin-Fargues modules (M,ϕM ) and the equivalence between p-divisible groups over k and Dieudonné
modules, the functor G 7→ Gk of passage to the special fiber corresponds to the functor (M,ϕM ) 7→
(M ⊗Ainf

W (k), ϕM ⊗ ϕ).

We note that there are similar results for Breuil–Kisin modules for p-divisible groups over OK ,
where K is a finite extension of W (k)[1

p ]. In that setting, the case p 6= 2 was handled by Kisin,

[Kis06], and the case p = 2 was completed by T. Liu, [Liu13].
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Appendix to Lecture XIV: Integral p-adic Hodge theory

The goal of this appendix is to establish Proposition 14.4.3. We will not give a streamlined
argument; instead, we want to explain how the various different (equivalent) linear-algebraic cat-
egories of Theorem 14.1.1 arise from the cohomology of proper smooth rigid-analytic spaces or
formal schemes, or p-divisible groups.

We will consider the following three kinds of geometric objects.

(Rigid) A proper smooth rigid-analytic variety X over C.
(Formal) A proper smooth formal scheme X over OC .

(p-Div) A p-divisible group G over OC .

Note that the generic fiber of X is an object X of the first kind. Moreover, if X is a formal abelian
variety (i.e., it is an abelian variety modulo any power of p), then G = X[p∞] is a p-divisible group,
and up to direct factors, every p-divisible group arises in this way by Proposition 14.8.4 below.

At least when the objects are algebraic and defined over a finite extension of W (k)[1
p ], classical

constructions recalled below naturally associate the following data to these objects:

(Rigid) For any i = 0, . . . , 2 dimX, an object “H i(X)” of category (2) of Theorem 14.1.1.
(Formal) For any i = 0, . . . , 2 dimX, an object “H i(X)” of categories (2), (3) of Theorem 14.1.1,

and (slightly indirectly) an object of category (4).
(p-Div) An object of the categories (2), (3) and (4) of Theorem 14.1.1.

We note that while it is easy to establish the equivalence of categories (1), (2) and (3) in
Theorem 14.1.1 (and their equivalence holds over general base spaces, not just algebraically closed
nonarchimedean fields), we regard it as an open problem to give a direct cohomological construction
of objects of the categories (1) and (3) in the rigid case. We do not expect that one can naturally
associate an object of categories (4) and (5) to a rigid space; more precisely, such a construction
should not work in families, as the extension steps in the proof of Theorem 14.1.1 relied critically
on the assumption that the base is an algebraically closed nonarchimedean field.

In the formal case, [BMS16] gives a direct construction of a Breuil–Kisin–Fargues module, and
thus of objects of all other categories (as the functors from (5) to the other categories are given
by naive specializations). In the case of p-divisible groups, a similarly direct construction is still
missing, although one can bootstrap from the case of formal schemes by using abelian varieties
with given p-divisible group, as we will do below.

14.5. Cohomology of rigid-analytic spaces. Let X/C be a proper smooth rigid-analytic
variety. Here we will show that one can associate pairs (T,Ξ) to the p-adic cohomology of X.

For any i = 0, . . . , 2 dimX, we have the étale cohomology group

H i(Xét,Zp) = lim←−H
i(Xét,Z/p

nZ)

(which could also be directly defined as H i(Xproét,Zp)). By [Sch13, Theorem 1.1], it is a finitely

generated Zp-module. As we want to work with finite free Zp-modules, we take the quotient by its
torsion subgroup to get T = H i(Xét,Zp)/(torsion).

To get a pair (T,Ξ), it remains to construct a natural B+
dR-lattice in T ⊗Zp BdR.

Theorem 14.5.1 ([BMS16, Theorem 13.1, Theorem 13.8]). There is a natural B+
dR-lattice Ξ ⊂

H i
ét(X,Zp)⊗ZpBdR. If X = YC for a smooth proper rigid-analytic variety Y over a discretely valued
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field K ⊂ C with perfect residue field, then Ξ = H i
dR(Y/K)⊗K B+

dR, embedded into H i
ét(X,Zp)⊗Zp

BdR via the comparison isomorphism. In general, Ξ⊗B+
dR
C is canonically isomorphic to H i

dR(X/C).

The construction of Ξ is a version of crystalline cohomology relative to the pro-thickening
B+

dR → C.

14.6. Cohomology of formal schemes. Now let X/OC be a proper smooth formal scheme.
In addition to the cohomology groups associated with its generic fiber, we also have its special fiber
Xk/k, which has crystalline cohomology groups

H i(Xk/W (k))

that are finitely generated W (k)-modules equipped with a Frobenius endomorphism that becomes
an isomorphism after inverting p.

In fact, one has a finer invariant given as the crystalline cohomology of the base change XOC/p
of X to OC/p. Namely, as recalled above, OC/p has a universal p-adically complete divided power
thickening Acrys → OC/p. Then

H i(XOC/p/Acrys)

are Acrys-modules equipped with a Frobenius endomorphism. In fact, H i(XOC/p/Acrys)[
1
p ] is a ϕ-

module over B+
crys = Acrys[

1
p ]. By [FF17, Corollaire 11.1.14], this is equivalent to a ϕ-module over

B+, or a ϕ-module over B, or a vector bundle F ′ on the Fargues–Fontaine curve. To compare this
with the cohomologies of the generic fiber amounts to a comparison between étale and crystalline
cohomology. This is given by the crystalline comparison isomorphism. If X is a scheme that is
defined over a finite extension of W (k), this result is due to Tsuji, [Tsu99], with other proofs given
by Faltings, Niziol, and others.

Theorem 14.6.1 ([BMS16, Theorem 14.5 (i)]). There is a natural ϕ-equivariant isomorphism

H i(XOC/p/Acrys)⊗Bcrys
∼= H i(Xét,Zp)⊗Zp Bcrys .

In other words, the ϕ-modules over B coming from H i(XOC/p/Acrys) and H i(Xét,Zp) respec-
tively become isomorphic after inverting t; geometrically, this means that we have two vector
bundles F ′ and F on the Fargues-Fontaine curve that are isomorphic away from ∞. Together with
the lattice T = H i(Xét,Zp)/(torsion), this defines an object of category (3).

Proposition 14.6.2 ([BMS16, Theorem 14.5 (i)]). Under the equivalence of Theorem 14.1.1,
this object of category (3) corresponds to the object of category (2) constructed from the generic
fiber X. Equivalently, the B+

dR-lattice

H i(XOC/p/Acrys)⊗Acrys B
+
dR ⊂ H

i(XOC/p/Acrys)⊗BdR
∼= H i(Xét,Zp)⊗Zp BdR

agrees with the B+
dR-lattice Ξ ⊂ H i(Xét,Zp)⊗Zp BdR constructed in Theorem 14.5.1.

In the discretely valued case, the proposition is a basic compatibility between the crystalline
and de Rham comparison isomorphisms.

Finally, we claim that we can actually produce an object of category (4). Namely, we have an
object of categories (2) and (3), which by an easy argument was equivalent to an object of category

(1), i.e. a shtuka over SpaC[ with one leg at ϕ−1(xC). To extend this to a vector bundle on Y with
a similar Frobenius, we had to extend a ϕ-module over Y[r,∞) to Y[r,∞] as in Theorem 13.2.1. This
was achieved abstractly only through the difficult classification result for ϕ-modules over Y[r,∞),
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Theorem 13.4.1. However, here we already have a ϕ-module over B+
crys, which by base extension

gives a ϕ-module over Y[r,∞] for any large enough r.
More precisely, we get the following result, using for simplicity the associated Breuil-Kisin-

Fargues module in its formulation.

Corollary 14.6.3. Let X/OC be a proper smooth formal scheme, and fix some integer i.
Consider the Breuil-Kisin-Fargues module (Mi, ϕMi) associated with the pair (Ti,Ξi), where Ti =
H i(Xét,Zp)/(torsion) and Ξi ⊂ Ti ⊗Zp BdR is the natural B+

dR-lattice of Theorem 14.5.1. Then
there is a natural ϕ-equivariant isomorphism

H i(XOC/p/Acrys)[
1
p ] ∼= Mi ⊗Ainf

B+
crys .

Proof. We need to compare two ϕ-modules over B+
crys. But by [FF17, Corollaire 11.1.14],

those are equivalent to vector bundles on the Fargues-Fontaine curve, and we have a comparison
of those by the previous proposition. �

Note that both sides of the isomorphism in the previous proposition have natural integral
structures, and one can wonder whether they match. This happens, at least under torsion-freeness
hypothesis, by the main results of [BMS16], which will be discussed below, cf. Corollary 14.8.2.

14.7. p-divisible groups. Let G be a p-divisible group over OC . We can associate with it
the finite free Zp-module T = TpG = lim←−G[pn](OC), where the transition maps are multiplication
by p. Moreover, the Hodge-Tate filtration, Theorem 12.1.1, defines a subspace LieG ⊗OC C ⊂
T ⊗Zp C(−1), which in turn can be used to define the B+

dR-lattice Ξ such that

T ⊗Zp B
+
dR ⊂ Ξ ⊂ ξ−1(T ⊗Zp B

+
dR) ,

and whose image in ξ−1(T ⊗Zp B
+
dR)/(T ⊗Zp B

+
dR) = T ⊗Zp C(−1) is given by LieG⊗OC C.

On the other hand, Dieudonné theory applied to GOC/p defines a finite free Acrys-module Mcrys

equipped with a Frobenius ϕ that becomes an isomorphism after inverting p. Again, we have a
comparison isomorphism.

Proposition 14.7.1 ([Fal99]). There is a natural ϕ-equivariant isomorphism

Mcrys ⊗Acrys Bcrys
∼= T ⊗Zp Bcrys .

The induced B+
dR-lattice

Mcrys ⊗Acrys B
+
dR ⊂Mcrys ⊗Acrys BdR

∼= T ⊗Zp BdR

is given by Ξ.

Proof. The proof is simple, so let us recall it. We will in fact construct a ϕ-equivariant map

T ⊗Zp Acrys →Mcrys ;

to check that this induces the desired isomorphism, one can apply this map also to the dual p-
divisible group (and dualize) to obtain an inverse up to multiplication by t. To construct such a

map, it suffices to construct a map T →Mϕ=1
crys . Now given any element of T , we have equivalently

a map f : Qp/Zp → G. We can evaluate this map on Dieudonné modules to get a ϕ-equivariant
map Acrys →Mcrys, which when evaluated on 1 gives the desired ϕ-invariant element of Mcrys.

The comparison with Ξ follows directly from the explicit definitions. �

As for formal schemes, we get the following corollary.



106 p-ADIC GEOMETRY

Corollary 14.7.2. Let G be a p-divisible group over OC , and let (M,ϕM ) be the Breuil-Kisin-
Fargues module associated under Theorem 14.1.1 to the pair (T = TpG,Ξ). Then there is a natural
ϕ-equivariant isomorphism

Mcrys[
1
p ] ∼= M ⊗Ainf

B+
crys .

To finish the proof of Theorem 14.4.3, it is thus sufficient to prove the following result.

Proposition 14.7.3. The isomorphism Mcrys[
1
p ] ∼= M ⊗Ainf

B+
crys induces an isomorphism of

subobjects Mcrys
∼= M ⊗Ainf

Acrys.

This proposition will be proved in the next subsection, as a consequence of a similar result for
formal schemes in [BMS16].

14.8. The results of [BMS16]. The following theorem sums up the main theorem of [BMS16].
Here µ = [ε]−1 ∈ Ainf , where ε ∈ OC[ is given by (1, ζp, ζp2 , . . .) for a compatible system of primitive
p-power roots of unity ζpr .

Theorem 14.8.1 ([BMS16, Theorem 1.8, Theorem 14.5 (iii)]). Let X be a proper smooth formal
scheme over OC with generic fiber X. Then there is a perfect complex of Ainf-modules RΓAinf

(X)
with a ϕ-semilinear action, with the following comparisons.

(1) A ϕ-equivariant isomorphism

RΓAinf
(X)

L
⊗Ainf

Acrys
∼= RΓcrys(XOC/p/Acrys) .

(2) A ϕ-equivariant isomorphism

RΓAinf
(X)⊗Ainf

Ainf [1/µ] ∼= RΓ(Xét,Zp)⊗Zp Ainf [1/µ] .

After base extension to Acrys[1/µ] = Bcrys, the resulting ϕ-equivariant isomorphism

RΓcrys(XOC/p/Acrys)⊗Bcrys
∼= RΓ(Xét,Zp)⊗Zp Bcrys

agrees with the isomorphism from Theorem 14.6.1.
Moreover, all cohomology groups H i

Ainf
(X) are finitely presented Ainf-modules that are free over

Ainf [
1
p ] after inverting p, and if H i

crys(Xk/W (k)) is p-torsion free for some i, then H i
Ainf

(X) is free

over Ainf , and consequently (by (ii)), H i(Xét,Zp) is p-torsion free.

The proof proceeds by giving a direct, but rather elaborate, cohomological construction of
RΓAinf

(X). As a corollary, we see that integral structures match in Corollary 14.6.3.

Corollary 14.8.2. Assume that Hj
crys(Xk/W (k)) is p-torsion free for j = i, i+ 1, i+ 2. Then

H i
crys(XOC/p/Acrys) is p-torsion free, and one has an equality

H i
crys(XOC/p/Acrys) = Mi ⊗Ainf

Acrys

as subobjects of

H i
crys(XOC/p/Acrys)[

1
p ] ∼= Mi ⊗Ainf

B+
crys ,

where Mi is the Breuil-Kisin-Fargues module associated with the i-th cohomology of X as in Corol-
lary 14.6.3.
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Proof. By [BMS16, Lemma 4.9 (iii)], all H∗Ainf
(X) have Tor-dimension ≤ 2 over Ainf ; more-

over, the assumption on torsion freeness in crystalline cohomology implies that Hj
Ainf

(X) is finite
free over Ainf for j = i, i + 1, i + 2. Thus, the Tor spectral sequence for the ϕ-equivariant quasi-
isomorphism

RΓAinf
(X)

L
⊗Ainf

Acrys
∼= RΓcrys(XOC/p/Acrys)

degenerates in degree i to a ϕ-equivariant isomorphism

H i
Ainf

(X)⊗Ainf
Acrys

∼= H i
crys(XOC/p/Acrys) .

This implies that the right-hand side is p-torsionfree (in fact, finite free over Acrys). Moreover,
this isomorphism is compatible with the given one after inverting p, which gives the desired result,
noting that necessarily H i

Ainf
(X) is the Breuil-Kisin-Fargues module Mi. �

We need to know that in case G = A[p∞] for a (formal) abelian variety A over OC , the
comparison isomorphism from Proposition 14.7.1 agrees with the comparison isomorphism from
Theorem 14.6.1.

Proposition 14.8.3. Let A be a formal abelian variety over OC with generic fiber A, and
with p-divisible group G = A[p∞]. Under the natural duality between H1(Aét,Zp) and TpG, and
between H1

crys(AOC/p/Acrys) and Mcrys(GOC/p), the comparison isomorphisms of Theorem 14.6.1
and Proposition 14.7.1 correspond.

Proof. Fix an element of TpG, given by a morphism f : Qp/Zp → G, or equivalently
f : Qp/Zp → A; we can assume that it is not divisible by p, i.e. injective. This induces a
map H1(Aét,Zp) → Zp under the duality between H1(Aét,Zp) and TpA = TpG. The map in
Theorem 14.6.1 comes as the composite of the identifications

H i
crys(AOC/p/Acrys) ∼= H i

Ainf
(A)⊗Ainf

Acrys

and

H i
Ainf

(A)⊗Ainf
Ainf [

1
µ ] ∼= H i(Aét,Zp)⊗Zp Ainf [

1
µ ] .

From f , we will construct a map H1
Ainf

(A)→ Ainf that is compatible with the maps H1(Aét,Zp)→
Zp and H1

crys(AOC/p/Acrys)→ Acrys constructed from f via the displayed identifications.

It is enough to do this modulo pn for all n. Look at the map fn = f | 1
pnZp/Zp

: 1
pnZp/Zp ↪→ A;

let A → An be the corresponding quotient. Then A is a Z/pnZ-torsor over An, which induces a
natural map

H1
Ainf

(A)→ H2(Z/pnZ, H0
Ainf

(A)) = Ainf/p
n

as part of the corresponding Hochschild-Serre spectral sequence, and similarly for all other coho-
mology theories. Using the functoriality of the comparison isomorphisms in [BMS16], this implies
the result, as in the étale specialization, this differential in the Hochschild-Serre spectral sequence
recovers the map on étale cohomology detailed above, and on the crystalline specialization it re-
covers the desired map on crystalline cohomology; both of these assertions are purely internal to
étale resp. crystalline cohomology. �

Now Proposition 14.7.3 follows from Corollary 14.8.2, Proposition 14.8.3 and the next proposi-
tion that shows that any p-divisible group comes from an abelian variety, up to direct factors.
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Proposition 14.8.4. Let G be a p-divisible group over OC , with Serre dual G∗. Then there is
a formal abelian variety A over OC such that there is an isomorphism of p-divisible groups

A[p∞] ∼= G×G∗ .

Keeping track of polarizations, one could also arrange A to be algebraic.

Proof. As the Newton polygon of Gk × G∗k is symmetric, we can find an abelian variety Ak
over k with Ak[p

∞] ∼= Gk×G∗k, by [Oor01]. By [SW13, Theorem 5.1.4 (i)], we can, up to changing
Ak by a quasi-isogeny, lift to an abelian variety AOC/p such that AOC/p[p

∞] ∼= GOC/p×G
∗
OC/p. Now

by Serre-Tate deformation theory, deforming AOC/p to characteristic 0 is equivalent to deforming
its p-divisible group, so we find a formal abelian variety A over OC with A[p∞] ∼= G×G∗. �
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15. Lecture XV: Examples of diamonds

In this lecture, we discuss some interesting examples of diamonds. So far, the only examples
we have encountered (other than X♦ for X an analytic adic space) are the self-product of copies
of Spd Qp. Let us first study this self-product a little more.

15.1. The self-product Spd Qp× Spd Qp. We already encountered Spd Qp× Spd Qp in pre-
vious lectures. It is useful to keep in mind that a diamond D can have multiple “incarnations”, by
which we mean that there are multiple presentations of D as X♦/G, where X is an analytic adic
space over Spa Zp, and G is a profinite group. In the case of Spd Qp × Spd Qp, there are (at least)
the following two incarnations:

(1) X = D̃∗Qp
, G = Z×p .

(2) X = SpaAinf\
{
p[p[] = 0

}
with Ainf = W (OC[p

), and G = GQp .

The first incarnation was discussed in Example 10.1.8. (In fact, since the roles of the two factors

Spd Qp can be switched, this should already count as two incarnations.) Recall that D̃∗Qp
= lim←−D∗Qp

(with transition map T 7→ (1 + T )p − 1). This has an action of Z×p via T 7→ (1 + T )a − 1. Then we
have an isomorphism of diamonds

(D̃∗Qp
)♦/Z×p

∼= Spd Qp × Spd Qp .

The Frobenius on the second factor of Spd Qp × Spd Qp corresponds to the automorphism T 7→
(1 + T )p− 1; in fact, we have an action of Q×p on D̃∗Qp

where p acts as T 7→ (1 + T )p− 1. The case

n = 2 of Drinfeld’s Lemma for diamonds (Theorem 16.3.1) which will be proved in the next lecture
says that

Theorem 15.1.1.

π1((D̃∗Qp
)♦/Q×p ) ∼= GQp ×GQp .

Moreover, for any complete and algebraically closed field C/Qp , we have

π1((D̃∗C)♦/Q×p ) ∼= GQp .

Thus, rather surprisingly, GQp can be realized as a geometric fundamental group, cf. [Wei17].
Let us sketch the proof, which proceeds by switching to a different incarnation of Spd Qp ×
Spd Qp. Recall from Proposition 11.2.1 that Spa C[

p×̇Spa Zp is the analytic adic space Y[0,∞) =

SpaAinf\
{

[p[]
}

= 0 with Ainf = W (OC[p
), and that its associated diamond is Spa C[

p × Spd Zp.

After inverting p, we find that the diamond associated to Y(0,∞) = SpaAinf\
{
p[p[] = 0

}
is Spa C[

p×
Spd Qp. It follows from this that

Y♦(0,∞)/GQp = Spd Qp × Spd Qp .

Recall that the Fargues-Fontaine curve was defined as XFF = Y(0,∞)/ϕ
Z. By Theorem 13.5.7,

we know that π1(XFF) = GQp . On the other hand,

π1(XFF) = π1(X♦FF) = π1((Spd Cp × Spd Qp)/FrobZ
SpdQp

) = π1((D̃∗Cp)
♦/Q×p ) ,

and so Theorem 15.1.1 follows.
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By Theorem 15.1.1, to each finite extension F/Qp of degree n there must correspond a connected

finite étale n-fold cover of D̃∗C/Q
×
p ; it is natural to ask what this cover is. The following discussion

appears in [Wei17, Section 4.5]. Let $ ∈ OF be a uniformizer, and let LT /OF be a Lubin-Tate
formal OF -module law: this is a formal scheme isomorphic to Spf OF [[T ]] equipped with an OF -
module structure, with the property that multiplication by $ sends T to a power series congruent
to T q modulo $ (here q = #OF /$). Then we can form the geometric generic fiber LTC : this is
an OF -module object in the category of adic spaces, whose underlying adic space is once again the
open unit disc DC .

Now consider the inverse limit lim←−$ LT♦C . It is given by L̃T
♦
C , where L̃TC is an F -vector space

object in the category of perfectoid spaces over C, whose underlying adic space is the perfectoid

open unit disc D̃C .
One can define a norm map NF/Qp

: LTC → DC , which is a morphism of pointed adic spaces.

Its construction goes as follows. Let F̆ be the completion of the maximal unramified extension of
F ; in fact the norm map is defined over OF̆ . We have that LTOF̆ is a p-divisible group of height

n and dimension 1. By [Hed14], the nth exterior power of LTOF̆ exists as a p-divisible group of

dimension 1 and height 1, and so is isomorphic to Ĝm,OF̆ , the formal multiplicative group. Thus

we have an alternating map λ : LTn
OF̆
→ Ĝm,OF̆ . Let α1, . . . , αn be a basis for OF /Zp, and let

N(x) = λ(α1x, . . . , αnx), so that N is a morphism LTOF̆ → Ĝm,OF̆ . This induces the desired norm
map NF/Qp

: LTC → DC after passing to geometric generic fibers.
By construction we have NF/Qp

(αx) = NF/Qp
(α)NF/Qp

(x) for all α ∈ OF . Therefore NF/Qp

can be used to define a norm map L̃TC → D̃C , which is equivariant for the norm map F → Qp;
then

L̃T
∗
C/F

× → D̃∗C/Q
×
p

is the desired finite étale cover.

15.2. Finite-Dimensional Banach Spaces, after Colmez. Another important class of
diamonds, which in fact were one of the primary motivations for their definition, is the category of
Banach-Colmez spaces, [Col02]. Recently, le Bras has reworked their theory in terms of perfectoid
spaces, [LB17]. In particular, he shows that the following definition recovers Colmez’s original
definition.

Definition 15.2.1. Fix an algebraically closed nonarchimedean field C/Qp. The category of
Banach-Colmez spaces over C is the thick abelian subcategory of the category of pro-étale sheaves
of Qp-modules on PerfdC generated by Qp and G♦a,C .

Remark 15.2.2. This is similar to a category considered by Milne in characteristic p, [Mil76].
There he considers the category of sheaves of abelian groups on the category of perfect schemes
generated by Fp and Ga. This notably contains truncated Witt vectors Wr(Ga), so there are
nonsplit extensions of Ga by Ga. Also, one has Artin-Schreier extensions in this category.

Classically, there are no extensions of Ga by Ga in the category of rigid spaces of characteristic
0. However, we will see that such extensions exist in the category of Banach-Colmez spaces.

In the following, we will identify PerfdC ∼= PerfC[ . In particular, we will say that a pro-étale
sheaf on PerfdC is a diamond if the corresponding pro-étale sheaf on PerfC[ is.
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Let us construct several examples.
First, in the spirit of the previous section, consider the open unit disc DC as a subgroup of Gm

via T 7→ 1 + T . The logarithm defines an exact sequence

0→ µp∞ → DC → Ga,C → 0

of étale sheaves on the category of adic spaces over C. After passing to the inverse limit over
multiplication by p, we get an exact sequence

0→ Qp → D̃C → Ga,C → 0

of pro-étale sheaves on PerfdC . Therefore, D̃♦C is a Banach-Colmez space.
More generally, assume that G is any p-divisible group over OC , and consider G as a formal

scheme. Then its generic fiber GC is a disjoint union of open unit balls; in fact, if G is connected,
it is simply a unit ball of dimension dimG. We have an exact sequence

0→ GC [p∞]→ GC → LieG⊗OC Ga,C → 0

of étale sheaves on adic spaces over C. This induces an exact sequence

0→ VpG→ G̃C → LieG⊗OC Ga,C → 0

of pro-étale sheaves on PerfdC , where

G̃C = lim←−
p

G♦C

is the universal cover of GC in the sense of [SW13].24 Thus, the universal cover G̃C of a p-divisible
group G is a Banach-Colmez space.

In [SW13], the pro-étale sheaves G̃C have been described in terms of Fontaine’s period rings.
Let Spa(R,R+) be an affinoid perfectoid space over C; we wish to understand the (R,R+)-valued

points of G̃C . These are given by
lim←−
p

lim←−
n

G(R+/pn) ,

where the outer inverse limit is over multiplication by p. Exchanging the two limits, this is the
same as

lim←−
n

lim←−
p

G(R+/pn) .

If we set G̃(S) = lim←−pG(S) for any p-torsion R-algebra S, this defines a formal scheme over Spf OC
whose generic fiber agrees with G̃C , and the points are given by

lim←−
n

G̃(R+/pn) .

But now [SW13, Proposition 3.1.3 (ii)] says that the maps G̃(R+/pn) → G̃(R+/p) are isomor-
phisms. Thus, the answer is simply

G̃(R+/p) = HomR+/p(Qp/Zp, G)[1
p ] .

Now we use the following result about Dieudonné theory over semiperfect rings like R+/p.

24This is somewhat of a misnomer, as usually G̃C will have nontrivial π1. The name is meant to suggest that it
is a p-adic analogue of the universal cover of a torus by an affine space.
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Theorem 15.2.3 ([SW13, Theorem A]). Let (R,R+) be a perfectoid Tate-Huber pair, and fix a
pseudouniformizer $ ∈ R+ dividing p. Let Acrys(R

+/$) be the p-adically completed divided power
envelope of Ainf(R

+) → R+/$. The category of p-divisible groups G over R+/$ embeds fully
faithfully into the category of finite projective Acrys(R

+/$)-modules M equipped with a ϕ-linear
map ϕM : M →M [1

p ], via sending G to its crystal evaluated on the PD thickening Acrys(R
+/$)→

R+/$.

Thus, we finally find that if M is the Dieudonné module of G over Acrys(OC/p), then

G̃C(R,R+) ∼= G̃(R+/p) = (M ⊗Acrys(OC/p) B
+
crys(R

+/p))ϕ=1 .

Here B+
crys(R

+/p) = Acrys(R
+/p)[1

p ].

Example 15.2.4. In the case G = µp∞ , we have G̃C ∼= D̃C , and Theorem 15.2.3 gives

D̃C(R,R+) ∼= B+
crys(R

+/p)ϕ=p .

We can spell out this isomorphism explicitly. The tilting equivalence gives D̃C(R,R+) = D̃C[(R
[, R[+).

Since R[ is perfect, the latter is simply DC[(R
[, R[+) = 1 +R◦◦, where R◦◦ is the set of topological

nilpotent elements in R. The above isomorphism sends an element x ∈ 1 +R◦◦ to log[x].

These examples of Banach-Colmez spaces are represented by perfectoid spaces. This is not true
in general, and further examples can be constructed by considering more general ϕ-modules over
B+

crys.

For this, let us discuss a few facts about the category of Dieudonné modules over B+
crys =

B+
crys(OC/p), i.e. the category of finite projective B+

crys-modules M equipped with an isomorphism

ϕM : ϕ∗M ∼= M .

Any such (M,ϕM ) defines a vector bundle on the Fargues-Fontaine curve, as in Lecture XIII.

Theorem 15.2.5 ([FF17]). Via this functor, the category of Dieudonné modules (M,ϕM ) over
B+

crys is equivalent to the category of vector bundles E on the Fargues-Fontaine curve XFF. Under

this equivalence, for any affinoid perfectoid space S = Spa(R,R+) over C, one has

(M ⊗B+
crys

B+
crys(R

+/p))ϕ=1 = H0(XFF,S , E|XFF,S
) .

Here, we use the relative Fargues-Fontaine curve XFF,S = XFF,S[ , so let us quickly define this.
Let S be a perfectoid space of characteristic p. We have the adic space

Y(0,∞)(S) = S×̇Spa Qp = {p 6= 0} ⊂ S×̇Spa Zp

on which there is a Frobenius automorphism ϕ coming from the Frobenius on S. This acts freely
and totally discontinuously. Indeed, this can be checked if S = Spa(R,R+) is affinoid, and then a
choice of pseudouniformizer $ ∈ R defines a continuous map

κ : Y(0,∞)(S)→ (0,∞)

given by

κ(x) =
log |[$](x̃)|
log |p(x̃)|

,

where x̃ is the maximal generalization of x. Then κ ◦ ϕ = pκ, implying the desired properties of
the ϕ-action.
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Definition 15.2.6. The relative Fargues-Fontaine curve is the quotient

XFF,S = Y(0,∞)(S)/ϕZ .

This defines a sousperfectoid adic space over Qp. For any perfectoid field K/Qp, the base
change XFF,S ×SpaQp SpaK is a perfectoid space. Moreover, there is a simple formula for the
diamond.

Proposition 15.2.7. There is a natural isomorphism

X♦FF,S
∼= S/ϕZ × Spd Qp .

Proof. This follows immediately from Proposition 11.2.1. �

Coming back to the discussion of Banach-Colmez spaces, we can change perspective even fur-
ther, and fix a vector bundle E on XFF. Even more generally, we allow coherent sheaves on XFF.
Any such E decomposes as a direct sum E≥0⊕E<0, where the torsion-free quotient of E≥0 has only
nonnegative Harder-Narasimhan slopes, while E<0 is a vector bundle whose Harder-Narasimhan
polygon has only negative slopes. As

H0(XFF,S , E<0|XFF,S
) = 0

for all S ∈ PerfdC , we restrict attention to the nonnegative part.

Definition 15.2.8. Let E be a coherent sheaf on XFF whose torsion-free quotient has only
nonnegative slopes. The Banach-Colmez space BC(E) associated with E is the pro-étale sheaf

BC(E) : S ∈ PerfdC 7→ H0(XFF,S , E|XFF,S
) .

We will prove that BC(E) is indeed a Banach-Colmez space by going through the classification.

Example 15.2.9. (1) The case E = OXFF
. Then BC(E) = Qp.

(2) The case E = i∞∗C, where i∞ : SpaC → XFF. Then BC(E) = Ga,C .
(3) The case E = OXFF

(λ), with 0 < λ = s
r ≤ 1. In that case BC(E) is representable by

the universal cover of the simple p-divisible formal group Gλ of slope λ, by the above
discussion. In particular, BC(E) is representable by the perfection of an open unit ball of
dimension given by the denominator of λ. Also, there is a short exact sequence

0→ OsXFF
→ OXFF

(λ)→ i∞∗C
r → 0

of coherent sheaves on XFF, which on global sections induces the sequence

0→ Qp
s → BC(OXFF

(λ))→ Gr
a,C → 0 ,

that agrees with the logarithm sequence for G̃λ,C .
(4) The case E = OXFF

(λ), with λ = s
r > 1. In that case, one has a short exact sequence

0→ OXFF
(λ− 1)→ OXFF

(λ)→ i∞∗C
r → 0 ,

which induces on global sections a short exact sequence

0→ BC(OXFF
(λ− 1))→ BC(OXFF

(λ))→ Gr
a,C → 0 .

In particular, BC(OXFF
(λ)) is a Banach-Colmez space. One could think of BC(O(λ)) as

the “universal cover of a formal group of slope λ”. As the sequence is pro-étale locally
split, one deduces that it is a diamond.
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(5) The case of the torsion sheaf E = B+
dR/ξ

n supported at∞. There is a short exact sequence

0→ OXFF
→ OXFF

(n)→ E → 0 ,

which induces a short exact sequence

0→ Qp → BC(OXFF
(n))→ BC(E)→ 0 ,

showing that BC(E) is also a Banach–Colmez space. Alternatively, one can write E as a
successive extension of i∞∗C, writing BC(E) as a successive extension of Ga,C . In partic-
ular, if n = 2, one gets a nonsplit short exact sequence

0→ Ga,C → BC(B+
dR/ξ

2)→ Ga,C → 0 .

As the sequence is pro-étale locally split, one sees again that BC(B+
dR/ξ

2) is a diamond.

Although this shows that BC(B+
dR/ξ

2) is built from rigid spaces, it is not itself a rigid
space!

(6) The previous case, for a different untilt of C[, which works similarly.

Let us analyze the case of E = B+
dR/ξ

n further. For this, we recall the construction of the
de Rham period ring. Let (R,R+) be a perfectoid Tate-Huber pair. We have the surjective

homomorphism θ : W (R[+)→ R+, whose kernel is generated by a non-zero-divisor ξ. Let $[ ∈ R[
be a pseudouniformizer such that $ = ($[)] satisfies $p|p.

We get a surjection θ : W (R[+)[[$[]−1]→ R = R+[$−1]. Let B+
dR(R) be the ξ-adic completion

of W (R[+)[[$[]−1]. This comes with a canonical filtration FiliB+
dR = ξiB+

dR, whose associated

gradeds are griB+
dR
∼= ξiR.

Philosophically, we think of Spf B+
dR(R) as the completion of “Spec Z×SpecR” along the graph

of SpecR→ Spec Z. The construction of B+
dR(R) encompasses the following two important cases:

Example 15.2.10. (1) Let R = C/Qp be algebraically closed and complete. Then B+
dR(C)

is the usual de Rham period ring of Fontaine.
(2) If R has characteristic p, then we can take ξ = p, and B+

dR(R) = W (R).

We see that the pro-étale sheaf (R,R+) 7→ B+
dR(R)/ξn defines the Banach-Colmez space

BC(B+
dR/ξ

n). The rings B+
dR(R) will play an important role in the discussion of affine Grass-

mannians. In particular, the local structure of the B+
dR-affine Grassmannian will be closely related

to the Banach-Colmez spaces BC(B+
dR/Filn).

Le Bras has in fact obtained a description of the category of Banach-Colmez spaces in terms of
coherent sheaves on the Fargues-Fontaine curve. To state the result, we need to consider also vector
bundles E all of whose Harder-Narasimhan slopes are negative. In this case, the global sections of
E vanish, but they have an interesting H1.

Definition 15.2.11. Let E be a vector bundle on XFF all of whose Harder-Narasimhan slopes
are negative. The Banach-Colmez space BC(E [1]) associated with E is the pro-étale sheaf

BC(E [1]) : S ∈ PerfdC 7→ H1(XFF,S , E|XFF,S
) .

One needs to verify that this is indeed a pro-étale sheaf, which we omit here. Again, we check
that this is indeed a Banach-Colmez space by going into the classification. We can reduce to the
case E = OXFF

(λ), with λ = s
r < 0. In that case, one has a short exact sequence

0→ OXFF
(λ)→ OXFF

(λ+ 1)→ i∞∗C
r → 0
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of coherent sheaves on XFF. If λ ≥ −1, this induces a short exact sequence

0→ BC(OXFF
(λ+ 1))→ Gr

a,C → BC(OXFF
(λ)[1])→ 0

on cohomology, showing again that BC(OXFF
(λ)[1]) is a Banach–Colmez space. Note that if λ = −1,

this shows that
BC(OXFF

(−1)) = Ga,C/Qp ,

which is a rather interesting space. If λ < −1, one gets a short exact sequence

0→ Gr
a,C → BC(OXFF

(λ)[1])→ BC(OXFF
(λ+ 1)[1])→ 0 ,

which once again shows that BC(OXFF
(λ)[1]) is a Banach–Colmez space.

Finally, we can state the main theorem of Le Bras which shows that the examples above exhaust
all Banach-Colmez spaces.

Theorem 15.2.12 ([LB17]). All Banach-Colmez spaces are diamonds. The category of Banach-
Colmez spaces is equivalent to the full subcategory of the derived category of coherent sheaves on
XFF of objects of the form E≥0⊕E<0[1], where the torsion-free quotient of E≥0 has only nonnegative
Harder-Narasimhan slopes, and E<0 is a vector bundle all of whose Harder-Narasimhan slopes are
negative. In particular, the category of Banach-Colmez space depends on C only through its tilt C[.
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16. Lecture XVI: Drinfeld’s lemma for diamonds

In this lecture, we will prove a local analogue of Drinfeld’s lemma, thereby giving a first non-
trivial argument involving diamonds. This lecture is entirely about fundamental groups. For ease
of notation we will omit mention of base points.

16.1. The failure of π1(X × Y ) = π1(X) × π1(Y ). It is a basic fact that for connected
topological spaces X and Y , the natural map π1(X × Y )→ π1(X)× π1(Y ) is an isomorphism; let
us call this the Künneth formula for π1. Is the same result true if instead X and Y are varieties over
a field k, and π1 is interpreted as the étale fundamental group? The answer is no in general. For
instance, suppose k is a non-separably closed field, and X = Y = Spec k. Then X ×k Y = Spec k
once again, and the diagonal map Gal(k/k) → Gal(k/k) × Gal(k/k) is not an isomorphism. So
certainly we want to assume that k is separably closed; as perfection does not change the étale site,
we can then even assume that k is algebraically closed.

If k is an algebraically closed field of characteristic 0, then the answer becomes yes. If k = C, this
can be proved by relating the étale π1 to the usual π1; in general, one can prove it by appeal to the
Lefschetz principle: X can be descended to a finitely generated field, which can be embedded into
C. In fact, one also shows that if k′/k is an extension of algebraically closed fields of characteristic
0, and X is a variety over k, then the natural map π1(Xk′) → π1(X) is an isomorphism. That is,
such varieties satisfy permanence of π1 under (algebraically closed) base field extension.

So let us assume that k is an algebraically closed field of characteristic p. Both the Künneth
theorem and the permanence of π1 under base extension hold for proper varieties over k. But both
properties can fail for non-proper varieties.

Example 16.1.1. Keep the assumption that k is an algebraically closed field of characteristic
p. Let X = SpecR be an affine k-scheme. We have Hom(π1(X),Fp) = H1

ét(X,Z/pZ). By Artin-
Schreier, this group is identified with the cokernel of the endomorphism f 7→ fp−f of R. Generally
(and particularly if R = k[T ]) this group is not invariant under base extension, and therefore the
same can be said about π1(X). Similarly, the Künneth theorem fails for R = k[T ].

The following lemma states that under mild hypotheses, the Künneth theorem holds when
permanence of π1 under base extension is satisfied for one of the factors.

Lemma 16.1.2. Let X and Y be schemes over an algebraically closed field k, with Y qcqs and X
connected. Assume that for all algebraically closed extensions k′/k, Yk′ is connected, and the natural
map π1(Yk′)→ π1(Y ) is an isomorphism. Then π1(X × Y )→ π1(X)× π1(Y ) is an isomorphism.

Proof. This can be proved by the same methods that we will use below for diamonds, and it
has been written up by Kedlaya, [Ked17b, Corollary 4.1.23]. �

We also note that conversely, permanence of π1 under algebraically closed base field extension
k′/k is implied by the Künneth formula. Indeed, taking X = Spec k′, we get π1(Yk′) = π1(Spec k′)×
π1(Y ) = π1(Y ). One might argue that the Künneth formula could maybe only hold for X of finite
type, and fail for X = Spec k′; however, this cannot happen, as the Künneth formula for X of finite
type implies it in general by a standard approximation argument.

16.2. Drinfeld’s lemma for schemes. Let us recall the notions of absolute and relative
Frobenii. For a scheme X/Fp, let FX : X → X be the absolute Frobenius map: this is the identity
on |X| and the pth power map on the structure sheaf. For f : Y → X a morphism of schemes,
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we have the pullback F ∗XY = Y ×X,FX X (this is often denoted Y (p)). The relative Frobenius
FY/X : Y → F ∗XY is the unique morphism making the following diagram commute:

Y
FY/X

!!

FY

��

''

F ∗XY
//

��

Y

��
X

FX

// X.

A crucial fact is that FY/X is an isomorphism when Y → X is étale.

Definition 16.2.1. Let X1, . . . , Xn be connected qcqs schemes over Fp and X = X1×· · ·×Xn.
Consider the ith partial Frobenius

Fi = 1× · · · × FXi × · · · × 1: X1 × · · · ×Xn → X1 × · · · ×Xn.

Let

(X1 × · · · ×Xn/p.Fr.)fét

be the category of finite étale maps Y → X1 × · · · ×Xn equipped with commuting isomorphisms
βi : Y

∼→ F ∗i Y such that βn ◦ · · · ◦ β1 = FY/X : Y
∼→ F ∗XY .

Remark 16.2.2. Strictly speaking, the notation βn ◦ . . . ◦ β1 is an abuse: the morphism β2

should be the pullback of β2 through F1, and so forth.

Remark 16.2.3. To give an object of this category it suffices to produce all but one of the βi,
by the product relation. Thus if n = 2, the category (X1 × X2/p.Fr.)fét is the category of finite

étale morphisms Y → X1 ×X2 equipped with an isomorphism β : Y
∼→ F ∗1 Y .

This forms a Galois category in the sense of SGA1, so that (after choosing a geometric point
s of X1 × · · · × Xn) one can define the fundamental group π1(X1 × · · · × Xn/p.Fr.); this is the
automorphism group of the fiber functor on (X1 × · · · ×Xn/p.Fr.)fét determined by s.

Theorem 16.2.4 (Drinfeld’s lemma for schemes, [Dri80, Theorem 2.1], [Laf97, IV.2, Theorem
4], [Lau, Theorem 8.1.4], [Ked17b, Theorem 4.2.12]). The natural map

π1(X1 × · · · ×Xn/p.Fr.)→ π1(X1)× · · · × π1(Xn)

is an isomorphism.

Example 16.2.5. If X1 = X2 = Spec Fp, then (X1 ×X2/p.Fr.)fét is the category of finite étale

covers of Spec Fp equipped with one partial Frobenius; these are indeed parametrized by Ẑ× Ẑ.

The crucial step in the proof of Theorem 16.2.4 is to establish permanence of π1 under exten-
sion of the base, once a relative Frobenius is added to the picture; let us only state the relevant
permanence property of π1.

Let k/Fp be algebraically closed. For a scheme X/Fp, let X := X ⊗Fp k; this has a relative

Frobenius FX/k : X → F ∗kX = X. One can then define a category (X/FX/k)fét and ifX is connected

a group π1(X/FX/k) (after choosing a geometric point).
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Lemma 16.2.6 ([Lau, Lemma 8.12]). Let X/Fp be a connected scheme. Then π1(X/FX/k) →
π1(X) is an isomorphism. More generally, if X is not necessarily connected, there is an equivalence
of categories between finite étale covers Y0 → X and finite étale covers Y → X equipped with an
isomorphism F ∗

X/k
Y
∼→ Y .

Proof. (Sketch.)

(1) The category of finite-dimensional ϕ-modules (V, ϕV ) over k is equivalent to the category
of finite-dimensional Fp-vector spaces, via (V, ϕV ) 7→ V ϕ=1 and its inverse V0 7→ (V0 ⊗
k, 1⊗ ϕk).

(2) Let X be projective over Fp. Then there is an equivalence between pairs (E , ϕE), where

E is a coherent sheaf on X, and ϕE : F ∗k E
∼→ E , and coherent sheaves E0/X. (Describe

everything in terms of graded modules, finite-dimensional over k (resp., Fp) in each degree,
then use (1). See [Lau, Lemma 8.1.1].)

(3) Without loss of generality in the lemma, X is affine, and by noetherian approximation, X
is of finite type. By cohomological descent, we can assume X is normal and connected.
Choose an embedding X ↪→ X ′ into a normal projective Fp-scheme. The following cate-
gories are equivalent:
(a) Y/X finite étale with F ∗

X/k
Y
∼→ Y ,

(b) Y/X finite étale with F ∗kY
∼→ Y ,

(c) Y ′/X
′

finite normal with F ∗kY
′ ∼→ Y ′, such that Y ′ is étale over the open subset X,

(d) (using (2)) Y ′0/X
′ finite normal such that Y ′0 is étale over X,

(e) Y0/X finite étale.

(The proof of the equivalence of (b) and (c) uses the normalization of X
′

in Y .)

�

16.3. Drinfeld’s lemma for diamonds. A diamond D is defined to be connected if it is
not the disjoint union of two open subsheaves; equivalently, if |D| is connected. For a connected
diamond D, finite étale covers of D form a Galois category, so for a geometric point x ∈ D(C,OC)
we can define a profinite group π1(D, x), such that finite π1(D, x)-sets are equivalent to finite étale
covers E → D.

We would like to replace all the connected schemes Xi appearing in Drinfeld’s lemma with
Spd Qp. Even though Qp has characteristic 0, its diamond Spd Qp admits an absolute Frobenius
F : Spd Qp → Spd Qp, because after all it is a sheaf on the category Perf of perfectoid affinoids in
characteristic p, and there is an absolute Frobenius defined on these.

Let

(Spd Qp × · · · × Spd Qp/p.Fr.)fét

be the category of finite étale covers E → (Spd Qp)
n equipped with commuting isomorphisms

βi : E
∼→ F ∗i E (where Fi is the ith partial Frobenius), i = 1, . . . , n such that∏

i

βi = FE/(SpdQp)n : E
∼→ F ∗E .

As above, this is the same as the category of finite étale covers E → (Spd Qp)
n equipped with

commuting isomorphisms β1, . . . , βn−1. A new feature of this story is that the action of FZ
1 × · · · ×
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FZ
n−1 on |(Spd Qp)

n| is free and totally discontinuous. Thus the quotient (Spd Qp)
n/(FZ

1 × · · · ×
FZ
n−1) is a diamond, and ((Spd Qp)

n/p.Fr.)fét is simply the category of finite étale covers of it.
The version of Drinfeld’s lemma one needs for the analysis of the cohomology of moduli spaces

of shtukas is the following.

Theorem 16.3.1. π1((Spd Qp)
n/p.Fr.) ∼= GnQp

.

As before, this is related to a permanence property of π1 that we will establish first. Define
X = Spd Qp/F

Z. For any algebraically closed nonarchimedean field C/Fp, we consider the base
change XC .

Lemma 16.3.2. For any algebraically closed nonarchimedean field C/Fp, one has π1(XC) ∼=
GQp.

This will be equivalent to the fact that the Fargues-Fontaine curve is simply connected. Indeed,
note that by Proposition 15.2.7

(XC)fét = ((Spd Qp/F
Z)× SpdC)fét

= (Spd Qp × (SpdC/FZ
C ))fét

= (X♦FF)fét

and so, using Theorem 10.4.2, we see that

(XC)fét
∼= (X♦FF)fét

∼= (XFF)fét .

Finally, Lemma 16.3.2 follows from the theorem of Fargues-Fontaine, Theorem 13.5.7, saying that
(XFF)fét

∼= (XFF)fét
∼= (Qp)fét. We remark that in this proof, we have used the formalism of

diamonds rather heavily to transport finite étale maps between different presentations of a diamond
as the diamond of an analytic adic space. The same argument is made much more explicit in
[Wei17].

This establishes the desired permanence of π1 under change of algebraically closed base field.
Now we need to detail the argument that this implies the Künneth formula. For this, we will
establish a sort of Stein factorization for certain morphisms of diamonds, Proposition 16.3.3. This
implies the analogue of Lemma 16.1.2 for diamonds, Proposition 16.3.6. In the following, Spd k
denotes the pro-étale sheaf sending any affinoid perfectoid X = Spa(R,R+) to Hom(k,R); note
that this is not a diamond as it is not analytic.

Proposition 16.3.3. Let k be a discrete algebraically closed field, and let D,X → Spd k be
diamonds, with D → Spd k qcqs.25 Assume that for all algebraically closed nonarchimedean fields

C/k, DC is connected, and π1(DC)→ π1(D) is an isomorphism. Let Y = D×kX, and let Ỹ → Y

be finite étale. There exists a finite étale morphism X̃ → X fitting into the diagram

(16.3.1) Ỹ //

��

X̃

��
Y // X

25This is very different from asking thatD is qcqs, as Spd k is not quasiseparated! For example SpdQp/F
Z×Spd k

is not quasiseparated, but SpdQp/F
Z × Spd k → Spd k is qcqs, cf. Example 17.3.3.
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such that Ỹ → X̃ has geometrically connected fibers. Furthermore, X̃ → X is unique up to unique
isomorphism.

Remark 16.3.4. Proposition 16.3.3 can be interpreted as a Stein factorization of the morphism

Ỹ → X.

Proof. By the uniqueness claim and quasi-pro-étale descent of finite étale maps, Theorem 9.1.3,
we can assume that X is an affinoid perfectoid space. First we establish the claim of uniqueness.
This will follow from the following universal property of the diagram in Eq. (16.3.1): if such a
diagram exists, it is the initial object in the category of diagrams

Ỹ //

��

Z

finite étale
��

Y // X.

Suppose X̃ and Z fit into diagrams as above, where Ỹ → X̃ has geometrically connected fibers; we

will produce a unique morphism X̃ → Z over X and under Ỹ .
First, assume that X = Spa(C,C+), where C is an algebraically closed nonarchimedean field,

and C+ ⊂ C is an open and bounded valuation subring. In this case X̃ and Z are finite disjoint

unions of copies of X, where X̃ is determined by the connected components of Ỹ . As the map

Ỹ → Z contracts connected components, it factors uniquely over X̃, as desired.

In general, a map X̃ → Z is determined by its behaviour on geometric points (as the equalizer

of two maps X̃ ⇒ Z over X is again finite étale over X, and so checking whether it equals X̃ can
be done on geometric points). This shows that the map is unique if it exists. To check existence of

X̃ → Z, we need the following analogue of Lemma 7.4.6 for diamonds:

Lemma 16.3.5 ([Sch17, Proposition 11.23 (i)]). For any geometric point Spa(C,C+)→ X, the
functors

2- lim−→
U3x

(Y ×X U)fét → (Y ×X Spa(C,C+))fét

and

2- lim−→
U3x

Ufét → Spa(C,C+)fét

are equivalences, where U runs over étale neighborhoods of x in X.

As we have a factorization X̃ → Z (over X and under Ỹ ) after pullback to any geometric point
of X, this lemma allows us to spread it into a small neighborhood. Indeed, the condition that it is

a map under Ỹ can be reformulated in terms of the commutativity of a corresponding diagram of
finite étale covers of Y .

Thus, if X̃ exists, it is unique up to unique isomorphism. It remains to show that X̃ exists, and

for this we can again localize. If Spa(C,C+) → X is a geometric point, then Ỹ ×X Spa(C,C+) =⋃n
i=1 Ỹi decomposes into a disjoint union of connected finite étale covers of Y ×X Spa(C,C+) =

D ×k Spa(C,C+). As

(D ×k Spa(C,C+))fét
∼= (D ×k Spa(C,OC)fét

∼= Dfét
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by assumption, each Ỹi is of the form D̃i ×D Y for some connected finite étale cover D̃i → D.

Applying Lemma 16.3.5 again, we have an isomorphism Ỹ ×X U ∼=
⋃n
i=1 D̃i ×k U on an étale

neighborhood U of the given geometric point. Replacing X by U , we can assume to have such a

decomposition globally. But then taking X̃ =
⊔n
i=1X has the desired property. �

Proposition 16.3.6. Let k be a discrete algebraically closed field, and let D,X → Spd k be
connected diamonds, with D → Spd k qcqs. Assume that for all algebraically closed nonarchimedean
fields C/k, DC is connected, and π1(DC) → π1(D) is an isomorphism. Then D ×k X is also
connected, and the map π1(D ×k X)→ π1(D)× π1(X) is an isomorphism.

Proof. Let Y = D ×k X.

(1) We show that Y is connected. Assume Y = Y1tY2, with Yi open and closed. We claim that
the locus {x ∈ X|(Y1)x = ∅} is open, and similarly for Y2. If both of them are nonempty,
we get a clopen decomposition of X, contradicting our assumption that X is connected.
For the claim, we can assume that X is affinoid perfectoid by passing to a pro-étale cover.
Suppose x = Spa(C,C+) → X is a geometric point such that (Y1)x = ∅. Since the
morphism D → Spd k is quasicompact, so is the base change Y = D ×k X → X, and
therefore Y and its closed subset Y1 are also quasicompact. Choose an affinoid perfectoid
space Z surjecting onto Y1. As

x = lim←−
U

U,

where U runs over étale neighborhoods of x in X, we also get

∅ = Zx = lim←−
U

Z ×X U.

On the level of topological spaces, we have here an empty inverse limit of spectral spaces
along spectral maps, which implies that Z ×X U = ∅ for some U (cf. the proof of Lemma
8.2.4), and therefore Y1 ×X U is empty.

(2) We show that π1(D×kX)→ π1(X) is surjective. By (1), for all finite étale covers X̃ → X

with X̃ connected, we have that D ×k X̃ is connected. Now, a connected étale cover of
X corresponds to a continuous transitive action of π1(X) on a finite set. So the claim is
equivalent to saying that every such action restricts to a transitive action of π1(D×kX). It
is a simple exercise to see that this is equivalent to the surjectivity of π1(D×kX)→ π1(X).

(3) Let x = Spa(C,OC)→ X be a geometric point of rank 1. We claim that the sequence

π1(DC)→ π1(D ×k X)→ π1(X)

is exact in the middle.
Given a finite quotient G of π1(D ×k X), corresponding to a Galois cover Ỹ of Y =

D ×k X, there exists a quotient G → H, corresponding to a Galois cover X̃ → X as in
Proposition 16.3.3. Consider the homomorphism π1(DC) → ker(G → H): the cosets of

its image correspond to connected components in the fiber of Ỹ → X̃ over a geometric

point. But the fibers of Ỹ → X̃ are geometrically connected, so π1(DC) → ker(G → H)
is surjective. This suffices to prove the claim.
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Putting together (1), (2) and (3), we have the following diagram of groups, where the top row
is an exact sequence:

π1(DC) //

∼
&&

π1(D ×k X) //

��

π1(X) // 1

π1(D)

This shows that π1(D ×k X)→ π1(D)× π1(X) is an isomorphism. �

Proof of Theorem 16.3.1. We know by Lemma 16.3.2 that

D = Spd Qp/F
Z × Spd k

satisfies the hypothesis of Proposition 16.3.6. By induction, this implies that

π1(D ×k D ×k · · · ×k D) = π1(D)× π1(D ×k · · · ×k D) = . . . = π1(D)× · · · × π1(D) .

Now π1(D) = GQp , and taking k = Fp, one one can identify π1(D×k· · ·×kD) with π1((Spd Qp)
n/(p.Fr.)).
�
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17. Lecture XVII: The v-topology

In this lecture, we develop a powerful technique for proving results about diamonds. There is
a topology even finer than the pro-étale topology, the v-topology, which is reminiscent of the fpqc
topology on schemes but which is more “topological” in nature. The class of v-covers is extremely
general, which will reduce many proofs to very simple base cases. We will give a sample application
of this philosophy in the appendix to this lecture by establishing a general classification of p-divisible
groups over integral perfectoid rings in terms of Breuil–Kisin–Fargues modules, generalizing the
theory of Lecture XIV for p-divisible groups over OC .

Another use of the v-topology is to proving that certain pro-étale sheaves on Perf are diamonds
without finding an explicit pro-étale cover. This will be established as Theorem 17.3.9.

17.1. The v-topology on Perfd. We consider the following big topology on the category
Perfd of all perfectoid spaces (not necessarily of characteristic p).

Definition 17.1.1. The v-topology on Perfd is the topology generated by open covers and all
surjective maps of affinoids. In other words, {fi : Xi → Y }i∈I is a cover if and only if for all
quasicompact open subsets V ⊂ Y there is some finite subset IV ⊂ I and quasicompact open
Ui ⊂ Xi for i ∈ IU such that V =

⋃
i∈IU fi(Ui).

Remark 17.1.2. We are ignoring set-theoretic issues; they are adressed in [Sch17] by choosing
suitable cut-off cardinals (and without the use of Grothendieck universes).

It may appear at first sight that the v-topology admits far too many covers to be a workable
notion. By Proposition 4.3.3, we still see that v-covers induce quotient maps on topological spaces.
Moreover, we have the following surprising theorem, which shows that the structure sheaf is a sheaf
for the v-topology on Perfd, just as it is for the fpqc topology on schemes.

Theorem 17.1.3 ([Sch17, Theorem 8.7, Proposition 8.8]). The functors X 7→ H0(X,OX) and
X 7→ H0(X,O+

X) are sheaves on the v-site. Moreover if X is affinoid then H i
v(X,OX) = 0 for

i > 0, and H i
v(X,O+

X) is almost zero for i > 0.

Proof. (Sketch.) By pro-étale descent, it suffices to check these assertions for totally discon-
nected spaces. But then one gets an automatic flatness result: �

Proposition 17.1.4 ([Sch17, Proposition 7.23]). Let X = Spa(R,R+) be a totally disconnected
perfectoid space, and let (R,R+)→ (S, S+) be a map to any Huber pair, and let $ ∈ R a pseudo-
uniformizer. Then S+/$ is flat over R+/$, and faithfully flat if Spa(S, S+) → Spa(R,R+) is
surjective.

Proof. (Sketch.) The idea is to check flatness on stalks of SpecR+/$. After passing to
stalks, we are reduced to the case that X is connected, in which case (R,R+) = (K,K+), where
K+ is a valuation ring. Thus, K+ → S+ is flat (as it is equivalent to torsion-freeness), and so
K+/$ → S+/$ is flat. �

Corollary 17.1.5. Representable presheaves are sheaves on the v-site.

Proof. As in the pro-étale case, cf. Proposition 8.2.8, this follows from Theorem 17.1.3. �

In fact, more generally, diamonds are v-sheaves. This is an analogue of a result of Gabber
saying that algebraic spaces are fpqc sheaves.
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Proposition 17.1.6 ([Sch17, Proposition 11.9]). Let Y be a diamond. Then Y is a v-sheaf.

Moreover, one has the following descent result, already mentioned (in the pro-étale case) in
Theorem 9.1.3 (i).

Corollary 17.1.7 ([Sch17, Proposition 9.3]). The functor which assigns to a totally discon-
nected affinoid perfectoid X the category {Y/X affinoid perfectoid} is a stack for the v-topology.

Proof. (Sketch.) This follows from Proposition 17.1.4 and faithfully flat descent. The actual
argument is rather subtle because of rings of integral elements to which faithfully flat descent cannot
be applied directly. �

Another important descent result is the following result on vector bundles.

Lemma 17.1.8. The fibered category sending any X ∈ Perfd to the category of locally finite free
OX-modules is a stack on the v-site on Perfd.

Proof. Suppose X̃ → X is a surjective morphism of perfectoid affinoids, with X = Spa(R,R+)

and X̃ = Spa(R̃, R̃+). We will show that the base change functor from finite projective R-modules

to finite projective R̃-modules equipped with a descent datum is an equivalence of categories; this
suffices by Theorem 5.2.8. Full faithfulness follows from the sheaf property of the structure presheaf
on the v-site, Theorem 17.1.3.

Essential surjectivity can be checked locally, as vector bundles glue over open covers by Theorem

5.2.8. Consider first the case where R = K is a perfectoid field. Then R̃ is a nonzero Banach K-

algebra, and we need to prove that finite projective R̃-modules with descent data descend to K.

We can write R̃ as a ω1-filtered colimit of topologically countably generated Banach K-algebras;

thus, any descent datum of finite projective R̃-modules is defined over a topologically countably

generated Banach K-algebra, and we can assume that R̃ itself is topologically countably generated.

In particular, by [BGR84, §2.7, Theorem 4], R̃ is topologically free as a K-Banach space. This

implies that a complex C of K-Banach spaces is exact if and only if C⊗̂KR̃ is exact.
Recall the proof of faithfully flat descent for modules (for instance, [Sta, Tag 023F]). The same

proof now carries over to R̃/K (where now all occuring sums are $-adically convergent instead of
finite).

Thus we have established Lemma 17.1.8 over a point. Returning to the general case, suppose

that M̃/R̃ is a finite projective module equipped with a descent datum

M̃⊗̂
R̃,i1

(R̃⊗̂RR̃) ∼= M̃⊗̂
R̃,i2

(R̃⊗̂RR̃),

where i1, i2 : R̃⇒ R̃⊗̂RR̃ are the two obvious homomorphisms. We wish to descend M̃ to M/R.

After replacing X̃ with an open cover, we may assume that M̃ = R̃r is free. The descent

datum is given by a matrix B ∈ GLr(R̃⊗̂RR̃) that satisfies a cocycle condition. Pick any x ∈ X
with completed residue field K(x). We can descend the fiber of M̃ over x, so there exists Ax ∈
GLr(R̃⊗̂RK(x)) such that B(x) = pr∗1(Ax) pr∗2(Ax)−1 ∈ GLr(R̃⊗̂RR̃⊗̂RK(x)). Approximate Ax
by some AU ∈ GLr(R̃⊗̂ROX(U)) for a rational neighborhood U ⊂ X of x in X. After conjugating

by AU , we may assume B|U ∈ GLr(R̃
+⊗̂R+R̃+⊗̂R+O+

X(U)), and even that B|U ≡ 1 (mod $) for
a pseudo-uniformizer $ ∈ R. Replacing X by U , we may assume that B ≡ 1 (mod $) to begin
with.
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Now (B−1)/$ modulo$ satisfies the additive cocycle condition, so it lives in Ȟ1(X̃/X,Mr(O+
X/$)),

but this group is almost zero by Theorem 17.1.3. Thus we can conjugate B by a matrix in

1 + $1−εMr(R̃
+) so as to assume that B ≡ 1 (mod $2−ε) for some ε > 0. Continuing, we

find that we can conjugate B to 1, as desired. �

Corollary 17.1.9. For any n ≥ 1, including n =∞, the functor sending an affinoid perfectoid
space S = Spa(R,R+) to the category of vector bundles on B+

dR(R])/ξn is a v-stack.

Proof. The case n = 1 is the previous result. The case n > 1 follows by a simple induction
using the vanishing of H1

v (S, E) for any vector bundle E on S, and the case n = ∞ by passage to
the limit. �

17.2. Small v-sheaves.

Definition 17.2.1. A v-sheaf F on Perf is small if there is a surjective map of v-sheaves X → F
from (the sheaf represented by) a perfectoid space X.

A slightly surprising statement is that any small v-sheaf admits something like a geometric
structure.

Proposition 17.2.2 ([Sch17, Proposition 12.3]). Let F be a small v-sheaf, and let X → F be
a surjective map of v-sheaves from a diamond X (e.g., a perfectoid space). Then R = X ×F X is
a diamond, and F = X/R as v-sheaves.

Proof. (Sketch.) Note that R ⊂ X ×X is a sub-v-sheaf, where X ×X is a diamond. The key
statement now is that any sub-v-sheaf of a diamond is again a diamond, cf. [Sch17, Proposition
11.10]. �

This makes small v-sheaves accessible in a two-step procedure: First analyze diamonds as
quotients of perfectoid spaces by representable equivalence relations, and then small v-sheaves as
quotients of perfectoid spaces by diamond equivalence relations.26

For example, we can define the underlying topological space of a small v-sheaf.

Definition 17.2.3. Let F be a small v-sheaf, and let X → F be a surjective map of v-sheaves
from a diamond X, with R = X×FX. Then the underlying topological space of F is |F| = |X| / |R|.

To ensure that this is well-defined and functorial, one uses Proposition 4.3.3, cf. [Sch17, Propo-
sition 12.7].

In the rest of this lecture, we will present a criterion for when a small v-sheaf is a diamond.
The first condition is that it is spatial, which is already an interesting condition for diamonds.

17.3. Spatial v-sheaves. We want to single out those diamonds for which |F| is well-behaved.

Definition 17.3.1. A v-sheaf F is spatial if

(1) F is qcqs (in particular, small), and
(2) |F| admits a neighborhood basis consisting of |G|, where G ⊂ F is quasicompact open.

More generally, F is locally spatial if it admits a covering by spatial open subsheaves.

26In the original lectures, a new term of “v-diamonds” was introduced, until we noticed that, if formulated
correctly, this is essentially no condition!
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Remark 17.3.2. (1) For algebraic spaces, (1) implies (2); however (1) does not imply (2)
in the context of small v-sheaves, or even diamonds. See Example 17.3.6 below.

(2) If F is quasicompact, then so is |F|. Indeed, any open cover of |F| pulls back to a cover
of F . However, the converse need not hold true, but it does when F is locally spatial,
cf. [Sch17, Proposition 12.14 (iii)].

(3) If F is quasiseparated, then so is any subsheaf of F . Thus if F is spatial, then so is any
quasicompact open subsheaf.

Example 17.3.3. Let K be a perfectoid field in characteristic p, and let F = SpaK/FrobZ,
so that |F| is one point. Then F is not quasiseparated. Indeed if X = Y = SpaK (which are
quasicompact), then X ×F Y is a disjoint union of Z copies of SpaK, and so is not quasicompact.

In particular F is not spatial. However, F × Spa Fp((t
1/p∞)) = (D∗K/FrobZ)♦ is spatial.

Proposition 17.3.4 ([Sch17, Proposition 12.13]). Let F be a spatial v-sheaf. Then |F| is a
spectral space, and for any perfectoid space X with a map X → F , the map |X| → |F| is a spectral
map.

Proof. (Sketch that |F| is spectral.) Choose a surjection X → F from an affinoid perfectoid
space and let R = X ×F X, which is a qcqs diamond (in fact, itself spatial, cf. [Sch17, Proposition
11.20]). By [Sch17, Lemma 2.9], it is enough to construct many quasicompact open subsets U ⊂ |X|
that are stable under the equivalence relation |R|. By (2) in Definition 17.3.1, we can just take the
preimages of |G| for G ⊂ F quasicompact open. Since G is quasicompact and F is quasiseparated,
G ×F X ⊂ X is still quasicompact, and so |G ×F X| ⊂ |X| is a quasicompact open subset. �

To check whether a small v-sheaf is spatial, we can use the following proposition.

Proposition 17.3.5 ([Sch17, Lemma 2.10]). Let X be a spectral space, and R ⊂ X × X a
spectral equivalence relation such that each R → X is open and spectral. Then X/R is a spectral
space, and X → X/R is spectral.

Proof. (Sketch.) We need to produce many U ⊂ X which are qc open and R-stable. Let
s, t : R → X be the maps to X. Let V ⊂ X be any qc open. Then s−1(V ) ⊂ R is qc open (since
R→ X is spectral), so t(s−1(V )) ⊂ X is qc open (since R→ X is open) and R-stable. �

Remark 17.3.6. There are counterexamples to Proposition 17.3.5 if R → X is generalizing
but not open. For example, even when X and R are profinite sets, one can produce any compact
Hausdorff space as X/R; indeed, if T is any compact Hausdorff space, one can find a surjection
X → T from a profinite set X (e.g., the Stone-Cech compactification of T considered as a discrete
set), and then R ⊂ X ×X is closed, and thus profinite itself. Repeating this construction in the
world of diamonds, i.e. taking SpaK ×X/SpaK ×R, produces a qcqs diamond D with |D| = T .

Corollary 17.3.7. Let F be a small v-sheaf. Assume there exists a presentation R⇒ X → F ,
where R and X are spatial v-sheaves (e.g., qcqs perfectoid spaces), and each R→ X is open. Then
F is spatial.

Proof. Since X is quasicompact, F is quasicompact. Since R is quasicompact, F is quasisep-
arated. Then Proposition 17.3.5 shows that |F| = |X| / |R| is spectral, and |X| → |F| is spectral.
Any quasicompact open U ⊂ |F| defines an open subdiamond G ⊂ F covered by G ×F X ⊂ X,
which is quasicompact. Thus G itself is quasicompact. �
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Proposition 17.3.8. If X is a qcqs analytic adic space over Spa Zp, then X♦ is spatial.

Proof. By finding a finite cover of X by affinoid perfectoid spaces, we see that X♦ is also
quasicompact. By Proposition 10.3.7,

∣∣X♦∣∣ ∼= |X|; this implies that
∣∣X♦∣∣ has a basis of opens |U |,

where U ⊂ X is quasicompact open. By Proposition 10.3.6, these correspond to open subdiamonds
U♦ ⊂ X♦. �

We can now state the main theorem of today’s lecture, which says that a spatial v-sheaf is a
diamond as soon as its points are sufficiently nice.

Theorem 17.3.9 ([Sch17, Theorem 12.18]). Let F be a spatial v-sheaf. Assume that for all
x ∈ |F|, there is a quasi-pro-étale map Xx → F from a perfectoid space Xx such that x lies in the
image of |Xx| → |F|. Then F is a diamond.

Proof. (Sketch.) It is enough to find a quasi-pro-étale surjection X → F from an affinoid
perfectoid space X. For this, we “simplify” the space F in several steps. More specifically, we
replace F by the inverse limit over “all” étale covers; after such a reduction, one can assume that
F has no nonsplit étale covers. This step is actually the hardest, as one needs to ensure that the
“spatial” condition is preserved; we refer to [Sch17, Lemmas 12.16, 12.17]. In this step, one needs
to ensure that all étale covers can be taken to be quasicompact, which is a consequence of the
“spatial” condition; this is clear for open covers, but in fact extends to étale covers. The goal is
now to show that after this reduction, F is actually representable by a perfectoid space, cf. [Sch17,
Proposition 12.20].

First we check that all connected components are representable. Let K ⊂ F be a connected
component. Then K has a unique closed point x. (This is because, after our reduction, every
cover of F by quasicompact opens is split.) Let Xx = Spa(C,C+) → F be a quasi-pro-étale
morphism such that x lies in the image of |Xx|. Here we can assume that C is an algebraically
closed nonarchimedean field and C+ ⊂ C is an open and bounded valuation subring. Then the
image of |Xx| is exactly K.

We claim that the map Xx → F is an isomorphism. For simplicity, we assume that C+ = OC in
the argument. Then the product Xx×KXx is of the form Spa(C,OC)×G for some profinite set G,
which automatically gets a group structure through the equivalence relation structure. Then K =
Xx/G. For any open subgroup H ⊂ G, Xx/H → K is finite étale. By a variant of Theorem 7.4.8 for
small v-sheaves (cf. [Sch17, Lemma 12.17]), this finite étale cover spreads to a small neighborhood
of x, which together with a complementary open subset not containing x forms an étale cover of
F . Using our assumption about no nonsplit étale covers, this implies that the cover was trivial to
start with, so that in fact G is trivial, and so K = Spa(C,C+).

Thus every connected component K really is a geometric “point” Spd(C(x), C(x)+). Finally,
one shows that this implies that F itself is representable, cf. [Sch17, Lemma 12.21]. �

17.4. Morphisms of v-sheaves. There are several useful lemmas about morphisms of v-
sheaves. First, we have an analogue of Proposition 8.3.3 characterizing injective maps.

Lemma 17.4.1 ([Sch17, Proposition 12.15]). Let f : G → F be a map of small v-sheaves, and
assume that f is qcqs, or that G and F are locally spatial. The following conditions are equivalent.

(1) The map f is injective.
(2) For all affinoid fields (C,C+) where C is algebraically closed, the map G(C,C+) →
F(C,C+) is injective.
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(3) The map |G| → |F| is injective and for all perfectoid spaces T , the map

G(T )→ F(T )×C0(|T |,|F|) C
0(|T |, |G|)

is bijective, i.e. G = F ×|F| |G|.

We can thus define closed immersions.

Definition 17.4.2. A map f : G → F of small v-sheaves is a closed immersion if it is quasi-
compact, injective, and |G| → |F| is a closed immersion.

Using [Sch17, Corollary 10.6], this is equivalent to [Sch17, Definition 10.7 (ii)]. For a map of
affinoid perfectoid spaces Spa(S, S+) → Spa(R,R+), it does not imply that R → S is surjective,
i.e. that the map is Zariski closed ; we refer to [Sch17, Section 5] for a discussion of the relation.
Now we can also define separated maps.

Definition 17.4.3 ([Sch17, Definition 10.7 (iii)]). A map f : G → F of small v-sheaves is
separated if ∆f : G → G ×F G is a closed immersion.

There is a valuative criterion.

Proposition 17.4.4 ([Sch17, Proposition 10.9]). A map f : G → F of small v-sheaves is
separated if and only if it is quasiseparated and for all perfectoid affinoid fields (K,K+) and any
diagram

Spa(K,OK)� _

��

// G

f

��
Spa(K,K+)

99

// F
there exists at most one dotted arrow making the diagram commute.

There is also a notion of proper maps.

Definition 17.4.5 ([Sch17, Definition 18.1]). A map f : G → F of small v-sheaves is proper
if it is quasicompact, separated, and universally closed, i.e. after any pullback the map |G| → |F|
is closed.

Again, there is a valuative criterion.

Proposition 17.4.6 ([Sch17, Proposition 18.3]). A map f : G → F of small v-sheaves is
proper if and only if it is qcqs and for all perfectoid affinoid fields (K,K+) and any diagram

Spa(K,OK)� _

��

// G

f

��
Spa(K,K+)

99

// F

there exists a unique dotted arrow making the diagram commute.

In practice, there are many examples where the functors are independent of R+ and hence seem
to satisfy the valuative criteria, except for the condition that f is quasicompact. Such maps are
called partially proper.
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Definition 17.4.7 ([Sch17, Definition 18.4]). A map f : G → F of small v-sheaves is partially
proper if it is quasiseparated and for every affinoid perfectoid space Spa(R,R+) and any diagram

Spa(R,R◦)� _

��

// G

f

��
Spa(R,R+)

::

// F

there exists a unique dotted arrow making the diagram commute.

We note that uniqueness is equivalent to separatedness by [Sch17, Proposition 10.10]. In
particular, we get the following corollary.

Corollary 17.4.8. Let f : G → F be a map of small v-sheaves.

(1) The map f is proper if and only if it is partially proper and quasicompact.
(2) The map f is a closed immersion if and only if it is proper and for all algebraically closed

nonarchimedean fields C of characteristic p, the map G(C,OC)→ F(C,OC) is injective.

Proof. Part (1) follows from Proposition 17.4.6. In part (2), we have to prove that if f is
proper and satisfies the injectivity conditon, then f is a closed immersion. By definition of closed
immersions and proper maps, it suffices to see that f is injective. Using Lemma 17.4.1, it suffices
to check that G(C,C+)→ F(C,C+) is bijective for all affinoid fields (C,C+) with C algebraically
closed. But the valuative criterion reduces this to the case of (C,OC)-points, as desired. �

Moreover, we have a simple characterization of surjective maps.

Lemma 17.4.9 ([Sch17, Lemma 12.11]). Let f : G → F be a map of small v-sheaves. If f is
surjective as a map of v-sheaves, then |G| → |F| is a quotient map. Conversely, if f is quasicompact
and |G| → |F| is surjective, then f is surjective as a map of v-sheaves.

Note that the condition that |G| → |F| is surjective is satisfied for example if for all affinoid
fields (C,C+) with C algebraically closed, the map G(C,C+)→ F(C,C+) is surjective.

Combining this with Lemma 17.4.1, we get the following characterization of isomorphisms.

Corollary 17.4.10 ([Sch17, Lemma 12.5]). Let f : G → F be a qcqs map of small v-sheaves.
Then f is an isomorphism if and only if for all affinoid fields (C,C+) with C algebraically closed,
the map G(C,C+)→ F(C,C+) is a bijection.

These results show that a surprising amount can be deduced from quasicompactness/quasiseparatedness
together with the behaviour on geometric points.



130 p-ADIC GEOMETRY

Appendix to Lecture XVII: Dieudonné theory over perfectoid rings

In Theorem 14.4.1, we established a classification result for p-divisible groups over the ring of
integers OC in an algebraically closed nonarchimedean extension C/Qp. Here, we wish to generalize
this to a classification result for p-divisible groups over general integral perfectoid rings, by using
v-descent. In fact, we will use v-descent in the setting of perfect schemes as established in [BS17].

We recall the definition of integral perfectoid rings from [BMS16, Section 3].

Definition 17.5.1. An integral perfectoid ring is a p-complete Zp-algebraR such that Frobenius
is surjective on R/p, there is some element π ∈ R such that πp = pu for a unit u ∈ R×, and the

kernel of θ : Ainf(R) = W (R[)→ R is principal, where R[ = lim←−x7→xp R.

Thus, for any integral perfectoid ring R, there is some element ξ ∈ Ainf(R) such that R =
Ainf(R)/ξ; such an element is necessarily a nonzerodivisor by [BMS16, Lemma 3.10]. We let
Acrys(R) be the p-adic completion of the PD thickening of Ainf(R) → R. The map Ainf(R) →
Acrys(R) is injective. Note that if pR = 0 so that Ainf(R) = W (R) and one can take ξ = p, then
Acrys(R) is a slightly pathological ring which has extra divided powers of p; in particular, it is
not p-torsion free. However, in that case there is a section Acrys(R) → Ainf(R) sending the extra
divided powers of p to the usual divided powers.

Theorem 17.5.2. The category of p-divisible groups G over R is equivalent to the category of
finite projective Ainf(R)-modules M together with a ϕ-linear isomorphism ϕM : M [1

ξ ] ∼= M [ 1
ϕ(ξ) ]

such that M ⊂ ϕM (M) ⊂ 1
ϕ(ξ)M . The equivalence is functorial in R, and agrees with usual

Dieudonné theory if pR = 0, and with the classification from Theorem 14.4.1 if R = OC ; these
requirements specify the equivalence uniquely.

Moreover, under this equivalence M ⊗Ainf(R) Acrys(R) is the Dieudonné module of G evaluated
on the PD thickening Acrys(R)→ R, compatibly with ϕM .

Note that if R is of characteristic p, our normalization of ϕM differs from the usual normalization
by a factor of p−1; this is in fact our normalization of covariant Dieudonné theory. If p 6= 2,
Theorem 17.5.2 has also been obtained by E. Lau, [Lau16], using the theory of displays.

Our proof of this theorem involves some rather nonstandard arguments, which however are
rather versatile.

Proof. If pR = 0, the result is due to Gabber, cf. [Lau13].27 Next, if R = V is a valuation
ring and pR 6= 0, then K = V [1

p ] is a perfectoid field. Assume that K is algebraically closed. Let

OK ⊂ K be its ring of integers, so that V ⊂ OK . Moreover, let k be the residue field of OK , and
V ⊂ k the image of V , which is a valuation ring of k. Then p-divisible groups over V are equivalent
to pairs of p-divisible groups over OK and V with common base change to k, and the same is true
on the side of Breuil-Kisin-Fargues modules. Thus, the result follows from Theorem 14.4.1 in case
K is algebraically closed.

In general, we can now give a description of the functor G 7→M(G). Indeed, if Mcrys(G) is the
Dieudonné module of G over Acrys(R), then M(G) ⊂ Mcrys(G) is the largest submodule mapping
into M(GV ) ⊂ Mcrys(GV ) for all maps R → V where V is an integral perfectoid valuation ring

27Incidentally, Gabber’s first proof of this result was along very similar lines as the proof we will give. In fact,
he reduces to the case of perfect valuation rings which is due to Berthelot, [Ber80]. Our proof actually only needs
the case of perfect valuation rings as input.
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with algebraically closed fraction field. This association is clearly functorial in R and G, but it is
not clear that it has the desired properties. We will establish this in increasing generality.

Assume first that R =
∏
i∈I Vi is a product of (infinitely many) valuation rings Vi with alge-

braically closed fraction field. In this case, the category of finite projective R-modules M of fixed
rank r is equivalent to the product over all i ∈ I of the category of finite projective Vi-modules Mi

of rank r, via M =
∏
i∈IMi. This implies that the category of p-divisible groups G over R of fixed

height h is equivalent to the product over all i ∈ I of the category of p-divisible groups Gi over
Vi of height h, and similarly on the side of Breuil-Kisin-Fargues modules. Thus, the equivalence
of categories follows (and it is uniquely determined). However, it is not clear that it agrees with
the general description. To check this, we can decompose I into two disjoint parts according to
whether Vi is of characteristic p or mixed characteristic. The characteristic p part reduces to usual
Dieudonné theory, so we can assume that all Vi are of mixed characteristic. Fix a compatible system
of primitive p-power roots ε ∈ R, and let µ = [ε]− 1 ∈ Ainf . Let T = HomR(Qp/Zp, G) =

∏
i∈I Ti,

where Ti = HomVi(Qp/Zp, Gi) is the p-adic Tate module of Gi. Then T is a finite projective module
over C0(SpecR,Zp) =

∏
i∈I Zp. As in Proposition 14.7.1, we have a natural isomorphism

T ⊗C0(SpecR,Zp) Bcrys(R) ∼= Mcrys(G)⊗Acrys(R) Bcrys(R) .

On the other hand, for each i, we have

Ti ⊗Zp Ainf(Vi) ⊂M(Gi) ⊂ Ti ⊗Zp
1
µAinf(Vi) .

By taking a product over all i ∈ I, this implies that

T ⊗C0(SpecR,Zp) Ainf(R) ⊂M ⊂ T ⊗C0(SpecR,Zp)
1
µAinf(R) .

In particular, we see that

M ⊗Ainf(R) Bcrys(R) ∼= Mcrys(G)⊗Acrys(R) Bcrys(R) .

We claim that under this isomorphism, we have an equality

M ⊗Ainf(R) Acrys(R) = Mcrys(G) .

To check this, note that checking whether an element of Bcrys(R) = Acrys(R)[ 1
µ ] lies in Acrys(R)

can be done by looking at the image in Bcrys(Vi) for all i ∈ I. This way, one sees that one gets
a map M ⊗Ainf(R) Acrys(R) → Mcrys(G). As both sides are finite projective modules of the same
rank, checking whether it is an isomorphism amounts to checking whether the determinant is an
invertible element of Acrys(R). Again, this can be checked after mapping to Acrys(Vi) for all i ∈ I.

Now, for a general map R→ V with V of mixed characteristic, we see that the base extension of
M to Ainf(V ) is correct after inverting µ and after base extension to Acrys(V ), in a compatible way.
This determines M(GV ), so indeed M ⊗Ainf(R) Ainf(V ) = M(GV ), as desired. For maps R → V
with pV = 0, the problem reduces to usual Dieudonné theory.

Finally, we handle the general case. Fix some integral perfectoid ring R with tilt R[. For any
perfect R[-algebra S, we get a corresponding integral perfectoid R-algebra W (S)/ξ, where ξ is a

generator of the kernel of θ : Ainf(R) = W (R[)→ R. Recall that in [BS17], a map of qcqs schemes
Y → X is a v-cover if Y ad → Xad is surjective. By the v-descent results of [BS17], it follows that
both p-divisible groups over R and Breuil-Kisin-Fargues modules satisfy v-descent along v-covers
SpecS → SpecR[. In other words, we are free to replace R[ by S if SpecS → SpecR[ is a v-cover.
But then we can take for S a product S =

∏
i∈I Vi of valuation rings with algebraically closed
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fraction field, where I ranges over a set of representatives of all maps from R[ to such Vi. In this
case W (S)/ξ =

∏
i∈IW (Vi)/ξ, and each W (Vi)/ξ is again a valuation ring with algebraically closed

fraction field. �
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18. Lecture XVIII: v-sheaves associated with perfect and formal schemes

The more general formalism of v-sheaves makes it possible to consider not only analytic adic
spaces as diamonds, but also certain non-analytic objects as v-sheaves.

18.1. Definition. Let X be any pre-adic space over Zp. Consider the presheaf X♦ on Perf

whose S-valued points for S ∈ Perf are given by untilts S] of S together with a map S] → X.
If X = Spa Fp, this is the trivial functor, sending any S to a point. This is not a diamond, but
we will immediately show that it is a v-sheaf. In this lecture, we analyze some properties of this
construction.

Lemma 18.1.1. For any pre-adic space X over Zp, the presheaf X♦ is a v-sheaf.

Proof. First, Spd Zp = Untilt is a v-sheaf; this is [Sch17, Lemma 15.1 (i)], and can be proved
by following the proof of Lemma 9.4.5. It remains to see that for any pre-adic space X over Zp,
the presheaf Hom(−, X) on Perfd is a v-sheaf. This follows from Theorem 17.1.3 if X is affinoid,
to which the general case reduces easily. �

We will sometimes need the following lemma.

Lemma 18.1.2. Let K be a complete nonarchimedean field in which p is topologically nilpotent,
with completed algebraic closure C and absolute Galois group GK . Let OK ⊂ K and OC ⊂ C
be the rings of integers. Then the map SpdOC → SpdOK is a proper v-cover, and induces an
isomorphism of v-sheaves

SpdOC/GK
∼=−→ SpdOK .

Proof. It is enough to prove the result v-locally, so we can take as test object X = Spa(R,R+)
given as follows: Pick any set (Ci, C

+
i ) of complete algebraically closed fields Ci of characteristic p

with open and bounded valuation subrings C+
i ⊂ Ci, pseudouniformizers $i ∈ C+

i and let R+ be

the $ = ($i)i∈I -adic completion of
∏
iC

+
i , and R = R+[1/$].

Note that both sides live over SpdOK , and so we may pick an untilt (R], R]+) of (R,R+)

over OK , which is equivalent to a collection (C]i , C
]+
i ) of untilts of (Ci, C

+
i ) over OK , subject to

the condition that $] divides some power of $K , where $K is a pseudouniformizer of K. (This
condition is necessary as the image of $K under OK → R]+ is topologically nilpotent and $] is a

pseudouniformizer.) Now as Ci is algebraically closed, we can extend OK → C]+i to OC → C]+i ,

and by passing to the product we get a map OC → R]+, proving surjectivity of SpdOC → SpdOK .

On the other hand, any two lifts to maps OC → R]+ =
∏
C]+i differ at each i ∈ I by the action of

some γi ∈ GK , and so passing to the quotient modulo GK(X) =
∏
i∈I GK , we get

SpdOC(X)/GK(X) ∼= SpdOK(X) ,

and in particular SpdOC/GK ∼= SpdOK . This also implies that SpdOC → SpdOK is proper: As
source and target are separated, it is separated; and in general a map of the form X → X/G for a
profinite group G acting on a v-sheaf X is quasicompact and universally closed. �

18.2. Topological spaces. First, we analyze the behaviour on topological spaces. We start
with an instructive example, showing that in general |X| and |X♦| are different.
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Example 18.2.1. Let X = Spa(Fp[t],Fp[t]). Then there is an open subfunctor U ⊂ |X♦|, which
on Spa(R,R+)-valued points is given by R◦◦ ⊂ R+. After base change to any nonarchimedean
field, this is the open unit disc inside the closed unit disc. However, U does not arise from an open
subscheme of X.

We do not know how to describe |X♦| in general, except for recalling that as for any v-sheaf,
its points are in bijection with equivalence classes of maps Spa(L,L+)→ Xad from perfectoid fields
L with an open and bounded valuation subring L+ ⊂ L. We can say the following.

Proposition 18.2.2. Let X be a pre-adic space over Spa Zp with associated v-sheaf X♦. There

is a natural continuous map |X♦| → |X| that is surjective.

Proof. To construct the continuous map |X♦| → |X|, note that for any S ∈ Perf with a map
S → X♦, one has a continuous natural map |S| ∼= |S]| → |X| induced by the map S] → X. If X
is analytic, this is a homeomorphism by Proposition 10.3.7. In general, the map is surjective: This
reduces to the case that X = Spa(K,K+) is an affinoid field. If K is nonarchimedean, the result
follows from the analytic case already handled. Otherwise, K is discrete, and Spa(K((t)),K+[[t]] +
tK[[t]])→ Spa(K,K+) is surjective on topological spaces, where the source is analytic. �

18.3. Perfect schemes. Note that if X is any scheme of characteristic p (considered as an
adic space via the functor taking SpecR to Spa(R,R)), one has X♦ = (Xperf)

♦. In particular, in
characteristic p, the best one can hope for is the following proposition.

Proposition 18.3.1. The functor X 7→ X♦ from perfect schemes of characteristic p to small
v-sheaves on Perf is fully faithful.

Proof. First, we check that if X = SpecR is any affine scheme, then for any perfect scheme
Y of characteristic p, we have Hom(Y,X) = Hom(Y ♦, X♦). Both constructions take colimits
to limits, so we can reduce to the case that Y = SpecS is affine. In this case Y ♦ has a v-

cover by Ỹ = Spa(S((t1/p
∞

)), S[[t1/p
∞

]]). In particular, it follows that Hom(Y ♦, X♦) injects into

Hom(R,S[[t1/p
∞

]]). It remains to see that the image is contained in the maps taking R into S ⊂
S[[t1/p

∞
]]. If f : Y ♦ → X♦ is any map of v-sheaves and r ∈ R any element, the image f∗(r) of r in

S[[t1/p
∞

]] has the property that the image under the two maps

S[[t1/p
∞

]]→ O+(Ỹ ×Y ♦ Ỹ )

agree. We claim that this implies that f∗(r) ∈ S. This can be checked after mapping S to fields,
so we can assume that S = k is a field. But then

O+(Ỹ ×Y ♦ Ỹ ) = O+(D∗
k((t

1/p∞
1 ))

) = k[[t
1/p∞

1 , t
1/p∞

2 ]] ,

so the result is clear.
Now assume that X and Y are general. If two maps f, g : Y → X induce the same map

f♦ = g♦, then in particular we see that |f | = |g| : |Y | → |X| (as by Proposition 18.2.2, the map
|Y ♦| → |Y ad| → |Y | is surjective). But then f = g by the affine case already handled.

Finally, if ψ : Y ♦ → X♦ is any map of v-sheaves, we have to see that it is induced by a map
f : Y → X. We do this in several steps, successively generalizing which schemes Y are allowed.28

28The argument seems unnecessarily complicated; we apologize to the reader, but we have not found a more
simple argument.



18. LECTURE XVIII: V-SHEAVES ASSOCIATED WITH PERFECT AND FORMAL SCHEMES 135

Case 1: Y = SpecK, K a field. In this case Y ♦ is covered by Spa(K((t1/p
∞

))), which is itself a
point, and in particular the image of |Y ♦| → |X♦| → |X| is a point x ∈ X. Thus, the map factors
over U♦ for some open affine U ⊂ X, any neighborhood of x ∈ X. By the affine case already
handled, we get the result.

Case 2: Y = SpecV , V a valuation ring. This is the key case. Let k be the residue field of
V ; by Case 1, the map (Spec k)♦ → Y ♦ → X♦ comes from a map Spec k → X; let x ∈ X be its
image. Let U be any open affine neighborhood of x. Our goal is to show that Y ♦ → X♦ factors
over U♦ ⊂ X♦, which implies the result by the affine case.

To prove that Y ♦ → X♦ factors over U♦ ⊂ X♦, consider the closed subset Z ⊂ |Y ♦| of all
y ∈ |Y ♦| that do not map into |U♦|. We want to show that Z is empty; assume otherwise. We
claim that the image of Z → |SpecV | has a minimal point (recalling that | SpecV | is a totally
ordered chain of points), where the map Z → |SpecV | sends a point z ∈ Z represented by a map
(V, V ) → (L,L+) to the prime ideal ker(V → L). This follows from quasicompacity of Z and
Lemma 18.3.2 below. Let w ∈ | SpecV | be this minimal point, and let V → W be the valuation
ring quotient of V such that | SpecW | ⊂ |SpecV | is the closure of w. Then replacing V by W , we
can assume that w is the generic point of SpecV . In other words, Z ⊂ |Y ♦| sits over the generic
point SpecK ⊂ SpecV , i.e. it lies in |Spa(K,V )♦| ⊂ |Spa(V, V )♦|.

Pick a point z ∈ Z ⊂ |Y ♦|, corresponding to a map (K,V )→ (L,L+) for some perfectoid field
L with open and bounded valuation subring L+ ⊂ L. Assume that the induced norm | · | : K → R≥0

is nontrivial. Then inside Spa(V ((t1/p
∞

)), V [[t1/p
∞

]]), any preimage of z will have the property that
its orbit under the map t 7→ tp will converge out of Spa(K,V )♦. As Z is closed and contained in
| Spa(K,V )♦|, it follows that this cannot happen. In other words, the induced norm | · | : K → R≥0

must be trivial.
The preceding implies that Z is contained in the image of the map

W := Spa(K((t1/p
∞

)), V [[t1/p
∞

]] + t1/p
∞
K[[t1/p

∞
]])→ Spa(K,V )♦ → Y ♦ .

Note that |W | ∼= |SpecV | is local. In particular, the map W → Y ♦ → X♦ factors over (U ′)♦ for

some open affine U ′ = SpecB ⊂ X, inducing a map B → V [[t1/p
∞

]] + t1/p
∞
K[[t1/p

∞
]]. On the

other hand, this map is compatible with the map SpecK → X from Case 1, which implies that the
composite

B → V [[t1/p
∞

]] + t1/p
∞
K[[t1/p

∞
]]→ K[[t1/p

∞
]]

actually lands in K; in other words, B maps into V . This gives a map g : SpecV → SpecB ⊂ X.
At this point, we would like to say that ψ = g♦ (and we remark that we could have constructed

g directly without the previous reductions), but we will not be able to see this directly, and we will
only use g to prove that Z is empty, reaching the desired contradiction. For this, it is enough to
prove that g factors over U ⊂ X.

The subset W ⊂ Spa(V ((t1/p
∞

)), V [[t1/p
∞

]]) is pro-quasicompact open, being the intersec-
tion of the subsets |a| ≥ |t| over all a ∈ V . On the other hand, the preimage of U ′ ⊂ X in

Spa(V ((t1/p
∞

)), V [[t1/p
∞

]]) is some open subspace containing W . It follows that this preimage con-

tains an open subset W̃ ⊂ Spa(V ((t1/p
∞

)), V [[t1/p
∞

]]) of the form |a| ≥ |t| for some a ∈ V . Thus,

we have a map W̃ → Y ♦ → X♦ that factors over (SpecB)♦ ⊂ X♦, inducing a map B → O(W̃ ).

We claim that this agrees with the composite B
g−→ V → O(W̃ ). This follows from injectivity of
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O(W̃ )→ K((t1/p
∞

)), using that

O(W̃ ) = V [[t1/p
∞

]]〈( t
a

)1/p∞〉[t−1] ⊂ K((t1/p
∞

)) .

In other words, the map W̃ → Y ♦ → X♦ agrees with the composite W̃ → (SpecV )♦
g♦−−→ X♦.

We note that for all w ∈ W̃ \ Z, the image of w in X lies inside U ⊂ X, while it is also given

as the image of |W̃ | → |(SpecV )♦| → | SpecV | g−→ |X|. Thus, if we can find some w ∈ W̃ \ Z that
projects to the closed point of SpecV , then it follows that g maps the closed point of SpecV into
U , and thus g factors over U , as desired.

In other words, we need to find a map h : (V, V )→ (L,L+) to some perfectoid field L with an
open and bounded valuation subring L+ ⊂ L, a topologically nilpotent element t ∈ L such that
th(a)−1 ∈ L+, the map SpecL+ → SpecV is surjective, and the norm | · | : V → L→ R≥0 is not the
discrete norm of K. Replacing V by a quotient, we can assume that any element of V divides an

for n large enough. In that case K = V [a−1] admits itself the structure of a perfectoid field, with
a norm normalized by |a| = 1

2 . We can then take (L,L+) = (K,V ) and t = a to get the desired
point.

Case 3: Y = Spec
∏
Vi, Vi valuation rings. Let Y ′ = Spec

∏
iKi ⊂ Y , where Ki is the

fraction field of Vi. Note that |Y ′| is an extremally disconnected profinite set (the Stone-Čech
compactification of the index set I), and that the map |(Y ′)♦| → |Y ′| is a homeomorphism, as

(Y ′)♦ is covered by Z ′ = Spa((
∏
iKi[[t

1/p∞ ]])[t−1],
∏
iKi[[t

1/p∞ ]]), which is a totally disconnected

space with spectrum again the Stone-Čech compactification of I. It follows that the map |(Y ′)♦| →
|X♦| → |X| factors over an affine open cover of X, so by the affine case already handled, the map
(Y ′)♦ → X♦ is induced by a map f ′ : Y ′ → X.

Similarly,

Z = Spa((
∏
i

Ki[[t
1/p∞ ]])[t−1],

∏
i

Vi[[t
1/p∞ ]] + t1/p

∞∏
i

Ki[[t
1/p∞ ]])→ Y

is a totally disconnected affinoid perfectoid space with |Z| → |Y | being a homeomorphism. The
map Z → Y ♦ → X♦ will then factor over the pullback of an affine cover of X. Any open cover of
Z is refined by one induced from a decomposition I = I1 t . . . t Ir, so up to such a refinement we
can assume that Z → X♦ factors over U♦ for some U = SpecA ⊂ X open affine. Then Z → X♦

is induced by a map

A→
∏
i

Vi[[t
1/p∞ ]] + t1/p

∞∏
i

Ki[[t
1/p∞ ]] .

On the other hand, we know that the map Z ′ → X♦ comes from a map A →
∏
iKi. This means

that the composite

A→
∏
i

Vi[[t
1/p∞ ]] + t1/p

∞∏
i

Ki[[t
1/p∞ ]] ⊂

∏
i

Ki[[t
1/p∞ ]]

lands in elements that are independent of t. In particular, the map

A→
∏
i

Vi[[t
1/p∞ ]] + t1/p

∞∏
i

Ki[[t
1/p∞ ]]
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factors over a map A→
∏
i Vi. This gives a map

f : Y = Spec
∏
i

Vi → U = SpecA ⊂ X .

It remains to see that ψ = f♦. For this, it suffices to show that the locus inside

W = Spa((
∏
i

Vi[[t
1/p∞ ]])[t−1],

∏
i

Vi[[t
1/p∞ ]])

(which is a v-cover of Y ♦) where ψ and f♦ agree is all of W . This reduces to the case of a single
valuation ring (possibly an ultraproduct of the Vi): This implies that on each connected component
of W , the maps ψ and f♦ agree. In particular, ψ factors over U♦ ⊂ X♦, and so we reduce to the
case of affine X. But for a single valuation ring, the result follows from Case 2.

Case 4: Y general. By [BS17], we can v-localize on Y and in particular assume that Y =
Spec

∏
i Vi, where the Vi are valuation rings. �

The following lemma was used in the proof.

Lemma 18.3.2. Let V be a valuation ring, Z a quasicompact topological space and Z → SpecV
a continuous map. Then the image of Z in SpecV has a (unique) minimal point.

Proof. Write V as a filtered colimit of valuation rings Vi ⊂ V of finite rank. Then SpecV is
the limit of SpecVi, where each SpecVi is a finite totally ordered chain of points. The image of
Z in SpecVi has a unique minimal point zi ∈ SpecVi, and the points zi are compatible under the
transition maps, and so define a point z ∈ SpecV . We need to see that z lies in the image of Z.
Let Ui ⊂ SpecVi be the open subset of all proper generizations of zi. If z is not in the image of
Z, then the preimages of the Ui cover Z. By quasicompacity of Z, this implies that finitely many
preimages cover, but as the limit is cofiltered, this implies that the preimage of some Ui is all of Z.
This contradicts that zi is in the image of Z. �

18.4. Formal schemes. For applications to local models and integral models of Rapoport-
Zink spaces, we are interested in the case where X is a formal scheme over the ring of integers OE
in some complete discretely valued E/Qp with perfect residue field k. Moreover, X will be locally
formally of finite type, flat, and it is expected to be normal, as is known in many cases.

Proposition 18.4.1. The functor X 7→ X♦ from flat and normal formal schemes locally for-
mally of finite type over Spf OE towards the category of small v-sheaves over SpdOE is fully faithful.

Proof. By passage to the maximal unramified extension and Galois descent, we can assume
that k is algebraically closed. We will deduce the proposition from the combination of Proposi-
tion 10.2.3 concerning the generic fiber, Proposition 18.3.1 concerning the perfection of the special
fiber, and the following result proved by Lourenço.

Theorem 18.4.2 ([Lou17]). Assume that k is algebraically closed. Consider the category COE
of triples (Xη, Xs, sp) where Xη is a rigid space over E, Xs is a perfect scheme over k, and sp :
|Xη| → Xs(k) is a map of sets, where |Xη| denotes the set of classical points of Xη.

The functor X 7→ (Xη, (Xred)perf , sp) from the category of flat and normal formal schemes locally
formally of finite type over Spf OE towards COE is fully faithful.
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Remark 18.4.3. In the theorem, as |X| = |(Xred)perf |, one immediately recovers the underlying
topological space. To recover the structure sheaf, one uses that if Spf R ⊂ X is any open subset,
then R agrees with the ring of powerbounded functions on the generic fiber (Spf R)η. Lourenço
observes that this is analogous to Riemann’s First Hebbarkeitssatz, and proves it this way. An
alternative argument is due to de Jong, [dJ95].

To prove Proposition 18.4.1, we first define a functor from small v-sheaves Y in the essential
image of X 7→ X♦ towards COE . The small v-sheaf Yη = Y ×SpdOE SpdE lies in the essential image
of the category of rigid spaces over E by Proposition 10.2.3, giving the first part of the triple.
There is a maximal open subfunctor Ya ⊂ Y that is a diamond, given as X♦a , where Xa ⊂ Xad

is the analytic locus. The complementary closed subfunctor Yred ⊂ Y is given by (Xperf
red )♦; thus,

Proposition 18.3.1 shows that we may recover Xperf
red . Finally, if x ∈ |Yη| is any classical point,

its closure in |Y | ∼= |X♦| meets the special fiber in a point of X(k) ⊂ |Yred|. This defines the
specialization mapping.

Now Theorem 18.4.2 implies faithfulness of the functor X 7→ X♦, and it also implies that if X
and Y are flat normal formal schemes locally formally of finite type over Spf OE and ψ : X♦ → Y♦

is a map of the associated v-sheaves over SpdOE , then there is a map f : X→ Y over Spf OE such
that the map on the generic fiber is given by the map determined by ψ. We need to see that this
implies ψ = f♦. It suffices to see that the graphs

Γψ,Γf♦ : X♦ ↪→ (X×Spf OE Y)♦ = X♦ ×SpdOE Y♦

agree. As both are closed immersions, this is equivalent to checking that the closed subspaces

Γψ(|X♦|),Γf (|X♦|) ⊂ |(X×Spf OE Y)♦|
agree. This follows from the observation that the subspaces agree in the generic fiber, and |X♦η | ⊂
|X♦| is dense. �
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19. Lecture XIX: The B+
dR-affine Grassmannian

In this lecture, we will define an object that was one of the big motivations to develop a theory
of diamonds.

Recall that the affine Grassmannian over the complex numbers C of a reductive group G is the
quotient

GrG = G(C((t)))/G(C[[t]]) ,

endowed with a suitable structure of ind-complex analytic space. More precisely, one has the Cartan
decomposition

G(C((t))) =
⊔

µ:Gm→G
G(C[[t]])µ(t)G(C[[t]])

where µ runs over conjugacy classes of cocharacters. The G(C[[t]])-orbit of (the image of) µ(t) in
GrG is a finite-dimensional complex manifold, and its closure in GrG is a complex-analytic space
GrG,µ, called a Schubert variety.

In our situation, we want to replace C with an algebraically closed nonarchimedean field C/Qp,
and the field C((t)) of Laurent series with Fontaine’s field BdR(C) of p-adic periods. Thus, we want
to give a geometric structure to the quotient

Gr
B+

dR
G (C) = G(BdR(C))/G(B+

dR(C)) .

The idea is to consider it as a functor on all perfectoid algebras, and then prove that the analogue
of GrG,µ is a (spatial) diamond.

For some basic results, our arguments follow closely Zhu’s survey [Zhu16].

19.1. Definition of the B+
dR-affine Grassmannian.

Definition 19.1.1. Let C/Qp be an algebraically closed nonarchimedean field and G/C a

reductive group. The B+
dR-affine Grassmannian GrG = Gr

B+
dR

G is the étale sheafification of the

functor taking S = Spa(R,R+) ∈ Perf with a map S → SpdC corresponding to an untilt (R], R]+)
over (C,OC) to G(BdR(R]))/G(B+

dR(R])).
Moreover, we define the loop group LG and the positive loop group L+G by sending S =

Spa(R,R+) over SpdC to G(BdR(R])) resp. G(B+
dR(R])), so GrG = LG/L+G.

One can give an equivalent definition that does not involve a sheafification.

Proposition 19.1.2. The B+
dR-affine Grassmannian GrG is the functor taking any affinoid

perfectoid S = Spa(R,R+) ∈ Perf with an untilt S] = Spa(R], R]+) over SpaC to the set of G-
torsors E on SpecB+

dR(R]) together with a trivialization of E|SpecBdR(R]). Moreover, for any open

subset U ⊂ SpaC[×̇Spa Zp containing the point SpaC and on which p is invertible, it is also

equivalent to the functor taking any S ∈ Perf with untilt S] over SpaC to the set of G-torsors EU
on

S×̇Spa Zp ×SpaC[×̇ SpaZp
U

together with a trivialization of

E|S×̇ SpaZp×SpaC[×̇ Spa Zp
(U\SpaC)

that is meromorphic along S] = S×̇Spa Zp×SpaC[×̇SpaZp
SpaC. Moreover, GrG is a small v-sheaf.
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Remark 19.1.3. For our purposes, it is easiest to define G-torsors in terms of the Tannakian
formalism, i.e. as exact ⊗-functors from the category RepC G of algebraic representations of G
towards the category of vector bundles, cf. Theorem 19.5.2 in the appendix. In this language, a
trivialization of E|S×̇ SpaZp×SpaC[×̇ SpaZp

(U\SpaC) is meromorphic along S] if and only if this holds

true for the corresponding vector bundles associated to all algebraic representations of G.

Proof. Any G-torsor E on SpecB+
dR(R]) is locally for the étale topology on Spa(R], R]+)

trivial. Indeed, its reduction to SpecR] is étale locally trivial, so we can assume this reduction
is trivial. We claim that then E is already trivial. To check this, it suffices to find compatible
trivializations over SpecB+

dR(R])/ξn for all n ≥ 1. At each step, lifting a trivialization amounts to

trivializing a torsor under the Lie algebra of G; as H1
ét(S

],OS]) = 0, we see that it is trivial.

Recall that S] ↪→ S×̇Spa Zp ×SpaC[×̇ SpaZp
U is a closed Cartier divisor by Proposition 11.3.1.

Thus, the identification with G-torsors over this locus follows from the Tannakian formalism and
the Beauville-Laszlo lemma, Lemma 5.2.9. Therefore GrG is a v-sheaf by Proposition 19.5.3;
alternatively, this follows more directly from Corollary 17.1.9. As the datum of a G-torsor over these
schemes or adic spaces with a trivialization over some open subset is a set-theoretically bounded
amount of data, it is clear that GrG is small. �

Lemma 19.1.4. The v-sheaf GrG is separated in the sense of [Sch17, Definition 10.7]. In
particular, the map GrG → SpdC is separated, and therefore also quasiseparated. Moreover, GrG
is partially proper.

Proof. Once we have proved that GrG is separated, it is clear that GrG is partially proper as
its (R,R+)-valued points depend only on R and not on R+.

Given X = Spa(R,R+) with untilt R], and two BdR(R])+-lattices M1,M2 ⊂ BdR(R])r, we
want to show that the the locus where {M1 = M2} is representable by a closed subdiamond of X♦;
we will in fact show that it is representable by an affinoid perfectoid space X0 ⊂ X that is closed in
X. It is enough to show this for the locus where M1 ⊂M2 (as then by symmetry the same applies
to the locus where M2 ⊂M1).

Let ξ ∈ B+
dR(R]) generate Fil1. We have the loci

{
M1 ⊂ ξ−iM2

}
for i ∈ Z. For i � 0, this is

all of X. By induction we may assume M1 ⊂ ξ−1M2. Then

{M1 ⊂M2} =
⋂

m∈M1

{
m 7→ 0 ∈ ξ−1M2/M2

}
So it suffices to show that

{
m 7→ 0 ∈ ξ−1M2/M2

}
is closed and representable by an affinoid perfec-

toid space.
The quotient ξ−1M2/M2 is a finite projective R]-module. Writing it is a direct summand of

(R])r, we see that
{
m 7→ 0 ∈ ξ−1M2/M2

}
is the vanishing locus of an r-tuple of elements of R].

Finally we are reduced to showing that the vanishing locus {f = 0} of a single f ∈ R] is closed
and representable. But {f = 0} is the intersection of the {|f | ≤ |$|n} for n ≥ 1 (with $ ∈ R a
uniformizer, and each of these is rational, hence affinoid perfectoid. Thus the limit {f = 0} is also
affinoid perfectoid. The complement {f 6= 0} is clearly open. �

Lemma 19.1.5. Let ρ : G ↪→ H be a closed embedding of reductive groups over C. Then the
induced map GrG → GrH is a closed embedding.
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Proof. The proof is identical to [PR08, Theorem 1.4]: Recall that the quotient H/G is affine.
Given a map S = Spa(R,R+)→ GrH , it comes étale locally from an element in H(BdR(R])). We
get an induced point of (H/G)(BdR(R])). The locus where this lies in (H/G)(B+

dR(R])) is closed,
by reducing to the same question for A1 in place of H/G, where it follows from the arguments in
the previous lemma. Now the map GrG → GrH is clearly injective as G(B+

dR(R])) = H(B+
dR(R]))∩

G(BdR(R])), and the image is identified with the previously identified closed sublocus, noting that
the map

H(B+
dR(R]))/G(B+

dR(R]))→ (H/G)(B+
dR(R]))

becomes an isomorphism after étale sheafification (as G-torsors on SpecB+
dR(R]) are étale locally

on Spa(R,R+) trivial). �

19.2. Schubert varieties. Next, we define the Schubert varieties inside GrG. For this, we fix
a maximal torus and a Borel T ⊂ B ⊂ G.

Proposition 19.2.1. The action of L+G(C) = G(B+
dR(C)) on GrG(C) gives a disjoint decom-

position

GrG(C) =
⊔

µ∈X∗(T )+

G(B+
dR(C)) · ξµ ,

where ξµ ∈ GrG(C) is the image of µ(ξ) ∈ G(BdR(C)).

Proof. This is the usual Cartan decomposition

G(BdR(C)) =
⊔

µ∈X∗(T )+

G(B+
dR(C)) · ξµ ·G(B+

dR(C)) ,

as follows for example by choosing an isomorphism BdR(C) ∼= C((ξ)). �

Definition 19.2.2. For a dominant cocharacter µ ∈ X∗(T )+, consider the subfunctors

Grµ ⊂ Gr≤µ ⊂ GrG

defined by the condition that a map S → GrG with S ∈ Perf factors over Grµ resp. Gr≤µ if and
only if for all geometric points x = Spa(C(x), C(x)+) → S, the corresponding C(x)-valued point
of GrG lies in

L+G(C(x)) · ξµ

resp. ⊔
µ′≤µ

L+G(C(x)) · ξµ′ .

Here, ≤ denotes the Bruhat order on X∗(T )+, i.e. µ′ ≤ µ if and only if µ− µ′ can be written as a
sum of positive coroots with non-negative integral coefficients.

Proposition 19.2.3. For all µ ∈ X∗(T )+, the subfunctor Gr≤µ ⊂ GrG is a closed subfunctor
that is proper over SpdC, and Grµ ⊂ Gr≤µ is an open subfunctor.

Proof. We follow the argument of [Zhu16, Proposition 2.1.4]. For the first part, it is enough
to prove that Gr≤µ ⊂ GrG is closed and proper over SpdC, as this formally implies that Grµ =
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Gr≤µ \
⋃
µ′<µ Gr≤µ′ is open in Gr≤µ. First, we handle the case G = GLn. Note that a B+

dR(R])-

lattice Ξ ⊂ BdR(R])n has relative position µ = (µ1, . . . , µn) with µ1 ≥ . . . ≥ µn if and only if for
all i = 1, . . . , n,

Λi(Ξ) ⊂ ξµn+...+µn−i+1B+
dR(R])(

n
i)

with equality for i = n. Such conditions determine closed subsets by the proof of Lemma 19.1.4.
Therefore to see that Gr≤µ is proper, it suffices to treat the case µ = (N, 0, . . . , 0) for each integer
N ≥ 0, as each Gr≤µ is a closed subset of a space of this form. It is clear from the definitions
that Gr≤µ is partially proper, so it suffices to show that it is quasicompact. Consider the functor

G̃rN parametrizing chains of B+
dR(R])-lattices ΞN ⊂ ΞN−1 ⊂ . . . ⊂ Ξ0 = B+

dR(R])n such that each

Ξi/Ξi+1 is an invertible R]-module. Then G̃rN defines a successive (Pn−1)♦-bundle over SpdC,

and therefore is proper. We have a natural map of small v-sheaves π : G̃rN → Gr≤µ which sends
a chain to ΞN . This map is surjective on (C,C+)-points, for example by choosing an isomorphism
BdR(C) ∼= C((ξ)) and using the similar assertion for the usual affine Grassmannian. The map is

also quasicompact, because G̃rN is quasicompact. Therefore by [Sch17, Lemma 12.11], the map is
a v-cover. This implies that Gr≤µ is also quasicompact, and hence proper.

Next, we treat the case that the derived group of G is simply connected. In that case,
cf. [Zhu16, Proposition 2.1.4], the subfunctor GrG,≤µ ⊂ GrG is the intersection of the preim-
ages of GrGLn,≤ρ(µ) ⊂ GrGLn over all representations ρ : G → GLn, so the result follows from the
case of GLn and Lemma 19.1.5.

In general, we choose a z-extension 1 → D → G̃ → G → 1 whose kernel is a central torus

D, such that the derived group of G̃ is simply connected. Moreover, lift µ to some dominant

cocharacter µ̃ of G̃. Then Gr
G̃,≤µ̃ → GrG,≤µ is surjective on (C,C+)-valued points. As the source

is quasicompact, [Sch17, Lemma 12.5] implies that it is surjective as a map of v-sheaves, so in
particular GrG,≤µ is quasicompact, and thus proper, and in particular closed in GrG. �

The following theorem is one of the main results of the lectures.

Theorem 19.2.4. For any µ, the small v-sheaf Gr≤µ is a spatial diamond.

Proof. Using a faithful representation ρ : G ↪→ GLn, we get a closed embedding GrG,≤µ ↪→
GrGLn,≤ρ(µ) by Lemma 19.1.5, reducing us to the case of G = GLn. Moreover, we can assume that
µ is of the form (N, 0, . . . , 0) for some N ≥ 0. This case will be handled in the next subsection. �

19.3. The Demazure resolution. In the study of the usual Grassmannian variety G/B
attached to a reductive group G, one defines a Schubert variety to be the closure of a B-orbit in
G/B. Generally, Schubert varieties are singular varieties. Desingularizations of Schubert varieties
are constructed by Demazure, [Dem74]. We will make use of an analogue of this construction in
the context of the B+

dR-Grassmannian.
In the following, G = GLn.

Definition 19.3.1. Suppose µ corresponds to (k1 ≥ · · · ≥ kn), with kn ≥ 0. The Demazure

resolution G̃rµ/SpdC sends a characteristic p perfectoid Huber pair (R,R+) with untilt R] over C

to the set of chains of B+
dR(R])-lattices

Mk1 ⊂Mk1−1 ⊂ · · · ⊂M0 = B+
dR(R])n
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where for all i = 0, . . . , k1− 1, ξMi ⊂Mi+1 ⊂Mi, and Mi/Mi+1 is a finite projective R]-module of
rank ji, where kji > i ≥ kji+1 (with convention kn+1 = 0).

The idea behind this definition is to write Mk1 as a series of successive minuscule modifications.

Analyzing G̃rµ is easier than analyzing GrGLn directly. It is a succession of Grassmannian bundles.

Lemma 19.3.2. The v-sheaf G̃rµ is a spatial diamond.

Proof. First note that G̃rµ is indeed a v-sheaf by Corollary 17.1.9. By induction it is

enough to prove that if X/ Spd Qp is a spatial diamond, and E/O]X is locally free of finite rank,
then Grass(d, E) → X is a spatial diamond. Here Grass(d, E) → X associates to a morphism
Spa(R,R+)→ X the set of projective rank d quotients of E|Spa(R],R]+).

Since X is a spatial diamond, we can choose a universally open quasi-pro-étale surjection

X̃ → X from an affinoid perfectoid space X̃ by [Sch17, Proposition 11.24], and it is enough to

prove the result after pullback to X̃; thus, we can assume that X is an affinoid perfectoid space.
Moreover, passing to an open cover, we can assume that E is trivial. Then Grass(d, E) decomposes
into a product X ×SpdQp Grass(d, n)♦, and the result follows from Proposition 17.3.8. �

Lemma 19.3.3. The map G̃rµ → GrGLn sending {Mk1 ⊂ . . . ⊂ M0} to Mk1 ⊂ M0 factors over

Gr≤µ, and induces a surjective map of v-sheaves G̃rµ → Gr≤µ. When restricted to Grµ ⊂ Gr≤µ,
this map is an isomorphism.

Proof. These assertions are well-known for the usual affine Grassmannian, and therefore follow
on geometric points by fixing an isomorphism BdR(C) ∼= C((ξ)). Now, to check that the map factors
over Gr≤µ, it is by definition enough to check on geometric points. By Lemma 17.4.9, the surjectivity
as a map of v-sheaves follows from surjectivity on geometric points. By Corollary 17.4.10, the final
assertion can also be checked on geometric points. �

Corollary 19.3.4. The v-sheaf Grµ is a locally spatial diamond. �

In order to prove Theorem 19.2.4 in the case G = GLn, µ = (N, 0, . . . , 0), we want to apply
Theorem 17.3.9. We already know that Gr≤µ is proper over SpdC, and in particular qcqs. More-
over, any point x ∈ |Gr≤µ | lies in |Grµ′ | for some µ′ ≤ µ, and so the previous corollary ensures
that there is a quasi-pro-étale map Xx → Grµ′ → Gr≤µ having x in its image, as (locally) closed
immersions are quasi-pro-étale. It remains to see that Gr≤µ is spatial. For this, we apply the
criterion of Corollary 17.3.7. Thus, it is enough to find a surjective map of v-sheaves X → Gr≤µ
such that for the equivalence relation R = X ×Gr≤µ X, the maps s, t : |R| → |X| are open. For
this, we consider the functor X/ SpdC given by

X(R,R+) =
{
A ∈Mr(W (R+))| detA ∈ ξNW (R+)×

}
.

Lemma 19.3.5. The functor X is represented by an affinoid perfectoid space.

Proof. First we observe that the functor (R,R+) 7→ Mr(W (R+)) is representable by an
infinite-dimensional closed unit ball B∞Cp and is thus affinoid perfectoid. For an element f ∈W (R+),

the condition that f ≡ 0 (mod ξ) is closed and relatively representable, as it is equivalent to the
condition that f ] = 0 ∈ R]+ = W (R+)/ξ. The condition that f is invertible is a rational subset,
as it is equivalent to

{∣∣f ∣∣ = 1
}

, where f = f (mod p) ∈ R+. These assertions easily imply the
claim. �
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Let λ : X → GrGLn be the map which sends A to A · (B+
dR)r.

Lemma 19.3.6. The map λ factors over Gr≤µ for µ = (N, 0, . . . , 0), and λ : X → Gr≤µ is a
surjective map of v-sheaves.

Proof. As above, this can be checked on (C,C+)-valued points. It is clear that the image is
contained in Gr≤µ by using its description as in the proof of Proposition 19.2.3. Conversely, given
Ξ ⊂ (B+

dR)r which is finite projective with det Ξ = ξNB+
dR, let M = Ξ ∩W (C+)r ⊂ (B+

dR)r. Then
M is a ξ-torsion free W (C+)-module such that M [ξ−1] = W (C+)[ξ−1]r, and M [1/p]∧ξ

∼= M . By the

Beauville-Laszlo lemma, Lemma 5.2.9, M is finite and projective away from the locus {p = ξ = 0} in
SpaW (C+). By Proposition 14.2.6, we see that M is actually a finite projective W (C+)-module (as
it is the space of global sections of restriction to the punctured spectrum). Fixing an isomorphism
M ∼= W (C+)r, we get a matrix A ∈Mr(W (C+)) as desired. �

Consider the equivalence relation R = X ×Gr≤µ X. Let L+
W GLr /SpdC be the functor sending

(R,R+) to GLr(W (R+)); this is also represented by an affinoid perfectoid space, as in Lemma 19.3.5.

Lemma 19.3.7. The map (A,B) 7→ (A,BA) defines an isomorphism

X ×SpdC L
+
W GLr

∼→ R = X ×Gr≤µ X .

Proof. The map W (R+)→ B+
dR(R]) is injective, as can be checked on geometric points. We

need to show that if A1, A2 ∈ X(R,R+) give the same point of Gr≤µ, then their ratio A2A
−1
1 lies in

GLr(W (R+)). But we know that it lies in GLr(W (R+)[ξ−1]) and in GLr(B
+
dR(R])), so this follows

from

W (R+) = W (R+)[ξ−1] ∩B+
dR(R]) .

�

To finish the proof that Gr≤µ is spatial, it remains to show that |R| → |X| is open. But
R = X ×SpdC L

+
W GLr, and the map L+

W GLr → SpdC is universally open, as follows by writing
it as an inverse limit with surjective transition maps of affinoid perfectoid spaces corresponding to
smooth rigid spaces over SpdC (representing the functors (R,R+)→ GLr(W (R+)/pn)).

19.4. Minuscule Schubert varieties. Coming back to the case of a general reductive group
G and conjugacy class µ of cocharacters, we note that if µ is minuscule, one has Grµ = Gr≤µ. In
this case, one can even identify this space explicitly.

Definition 19.4.1. The parabolic Pµ ⊂ G associated with µ is the parabolic containing the
Borel B− opposite to B and with Levi component given by the centralizer of µ when µ is realized
as a cocharacter Gm → T which is dominant with respect to B. Equivalently,

Pµ = {g ∈ G | lim
t→∞

µ(t)gµ(t)−1 exists} .

The flag variety F`G,µ = G/Pµ parametrizes parabolics in G in the conjugacy class of Pµ.

The following result has appeared in [CS17], using some results from [Sch13] on modules with
integrable connection satisfying Griffiths transversality to show that πµ is an isomorphism is µ is
minuscule. Here, we observe that this can be deduced as a simple application of Corollary 17.4.10.
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Proposition 19.4.2 ([CS17, Proposition 3.4.3, Theorem 3.4.5]). For any µ, there is a natural
Bialynicki-Birula map

πµ : Grµ → F`♦G,µ .

If µ is minuscule, the Bialynicki-Birula map is an isomorphism.

Proof. By the Tannakian formalism, it is enough to define the Bialynicki-Birula map for
GLn. In this case, if µ = (m1, . . . ,mn), with m1 ≥ . . . ≥ mn, then Grµ parametrizes lattices

Ξ ⊂ BdR(R])n of relative position (m1, . . . ,mn); this includes the lattice

Ξ0 =
n⊕
i=1

ξmiB+
dR(R])ei ,

where (e1, . . . , en) is the basis of BdR(R])n. Now for any such lattice, we can define a descending
filtration Fil•Ξ on (R])n with

FiliΞ = (ξiΞ ∩B+
dR(R])n)/(ξiΞ ∩ ξB+

dR(R])n) .

Using that if M is a finitely generated R]-module for which the dimension of M⊗R]K is constant for
all maps R] → K to nonarchimedean fields K is finite projective, cf. [KL15, Proposition 2.8.4], one
checks that all FiliΞ and (R])n/FiliΞ are finite projective R]-modules, by induction. More precisely,
we argue by descending induction on i. For i very large, one has FiliΞ = 0 and the claim is clear. If
the claim is true for i+ 1, then the short exact sequence

0→ ξiΞ ∩B+
dR(R])n

ξ−→ ξi+1Ξ ∩B+
dR(R])→ Fili+1

Ξ → 0

shows that ξiΞ ∩ B+
dR(R])n is a finite projective B+

dR(R])-module, as the middle term is finite

projective and the right term is of projective dimension ≤ 1 over B+
dR(R]). Moreover, the formation

of ξiΞ∩B+
dR(R]) commutes with any base change in R (again, by the displayed short exact sequence

and the same result for i+ 1). Now we can identify FiliΞ with the image of the map

(ξiΞ ∩B+
dR(R])n)/ξ → (B+

dR(R])n)/ξ = (R])n

of finite projective R]-modules. The formation of the cokernel of this map commutes with any base
change, and is of the same dimension at any point, and thus the cokernel is finite projective by
[KL15, Proposition 2.8.4]. This implies that the image FiliΞ of this map is also finite projective, as
desired.

The stabilizer of the filtration Fil•Ξ defines a parabolic in the conjugacy class of Pµ, as desired.
To see that if µ is minuscule, the map is an isomorphism, note that source Grµ = Gr≤µ and

target are qcqs over SpdC, thus by Corollary 17.4.10 it is enough to check bijectivity on (C,C+)-
valued points. In this case, fixing an isomorphism BdR(C) ∼= C((ξ)), the result follows from the
classical case. �
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Appendix to Lecture XIX: G-torsors

Let G be a flat linear algebraic group over Zp, and let RepG denote its exact ⊗-category
of representations, i.e. the category of algebraic representations on finite free Zp-modules. In this
section, we briefly recall a few alternative characterizations of G-torsors, first in the case of schemes,
and then in the case of adic spaces.

Let X be a scheme over Zp. There are three possible definitions of G-torsors.

(Geometric) A geometric G-torsor is a scheme P → X over X with an action of G over X such that
fppf locally on X, there is a G-equivariant isomorphism P ∼= G ×X.

(Cohomological) A cohomological G-torsor is an fppf sheaf Q on X with an action of G such that fppf locally
on X, there is a G-equivariant isomorphism Q ∼= G.

(Tannakian) A Tannakian G-torsor is an exact ⊗-functor P : RepG → Bun(X), where Bun(X) is the
category of vector bundles on X.

Theorem 19.5.1 ([SR72], [Bro13]29). The categories of geometric, cohomological, and Tan-
nakian G-torsors are canonically equivalent. More precisely:

(1) If P is a geometric G-torsor, then the fppf sheaf of sections of P is a cohomological G-
torsor.

(2) If Q is a cohomological G-torsor, then for any representation V ∈ RepG, the pushout
Q ×G (V ⊗Zp OX) of fppf sheaves is a vector bundle on X, and this defines an exact
⊗-functor RepG → Bun(X).

(3) If P : RepG → Bun(X) is an exact ⊗-functor, then, by writing OG(G) as a filtered colimit
of objects of RepG and extending P in a colimit-preserving way, the object P (OG(G))
is a faithfully flat quasicoherent OX-algebra whose relative spectrum defines a geometric
G-torsor.

The composite of any three composable functors is equivalent to the identity.
If G is smooth, these categories are also equivalent to the categories obtained by replacing the

fppf site with the étale site in the definitions of geometric and cohomological G-torsors.

Proof. This is standard, so let us briefly recall the arguments. Part (1) is clear. If G is smooth,
then (by descent of smoothness) also P → X is smooth, and hence admits étale local sections; this
shows that in this case, one even gets a geometric G-torsor on the étale site. Part (2) follows from
fppf descent of vector bundles. Finally, in part (3), first note that one can indeed write OG(G) as
such a filtered colimit; simply take any finitely generated Zp-submodule, and saturate it under the
action of G. As OG(G) is flat, this gives the result. It is then easy to see that P (OG(G)) defines a
faithfully flat quasicoherent OX -algebra whose spectrum P has an action of G (by the remaining
action on the G-representation OG(G)). After pullback along P → X, one checks that there is an
isomorphism P ×X P ∼= G ×P, which one obtains from a similar identity of G-representations upon
taking P and the relative spectrum. �

Now we wish to extend the results to adic spaces. There is the problem that in general, if X
is an adic space over Zp, it is not clear whether G ×X is also an adic space. For this reason, we

29In [Bro13], the assumption that X is (faithfully) flat over Zp is unnecessary. Also, any exact ⊗-functor is
faithful, as the trivial representation embeds into V ⊗V ∗ for any V ∈ RepG, and so OX embeds into P (V )⊗P (V ∗),
thus P (V ) 6= 0.
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restrict to one class of spaces where this happens, at least when G is smooth. Many variants of the
results are possible.

So, assume from now on that G is smooth, and that X is an analytic adic space over Zp that is
sousperfectoid, i.e. locally of the form Spa(R,R+) with R sousperfectoid, cf. Definition 6.3.1. By
Proposition 6.3.3, any Y ∈ Xét is itself sousperfectoid, and in particular an adic space. This implies
that OXét

is an étale sheaf by [KL15, Theorem 8.2.22 (c)] (that is acyclic on affinoid subsets), and
the same holds for vector bundles. We consider the following kinds of G-torsors. Here, and in the
following, G denotes the adic space Spa(R,R+) if G = SpecR and R+ ⊂ R is the integral closure
of Zp. In other words, for any adic space S over Zp, one has G(S) = G(OS(S)).

(Geometric) A geometric G-torsor is a an adic space P → X over X with an action of G over X such
that étale locally on X, there is a G-equivariant isomorphism P ∼= G ×X.

(Cohomological) A cohomological G-torsor is an étale sheaf Q on X with an action of G such that étale
locally on X, there is a G-equivariant isomorphism Q ∼= G.

(Tannakian) A Tannakian G-torsor is an exact ⊗-functor P : RepG → Bun(X), where Bun(X) is the
category of vector bundles on X.

Again, the three points of view are equivalent.

Theorem 19.5.2. The categories of geometric, cohomological, and Tannakian G-torsors on X
are canonically equivalent. More precisely:

(1) If P is a geometric G-torsor, then the étale sheaf of sections of P is a cohomological
G-torsor.

(2) If Q is a cohomological G-torsor, then for any representation V ∈ RepG, the pushout
Q ×G (V ⊗Zp OX) of étale sheaves is a vector bundle on X, and this defines an exact
⊗-functor RepG → Bun(X).

(3) If P : RepG → Bun(X) is an exact ⊗-functor, then, by writing OG(G) as a filtered
colimit of objects of RepG and extending P in a colimit-preserving way and assuming
X = Spa(R,R+) is affinoid, the object P (OG(G)) is a faithfully flat R-algebra such that
the analytification of its spectrum defines a geometric G-torsor.

The composite of any three composable functors is equivalent to the identity. Moreover, any geo-
metric G-torsor P → X is itself a sousperfectoid adic space that is locally étale over a ball over
X.

Proof. Part (1) is clear, and part (2) follows from étale descent of vector bundles, [KL15,
Theorem 8.2.22 (d)]. Finally, for part (3) note that on any open affinoid subset U = Spa(R,R+) ⊂
X of X, the datum is equivalent to a Tannakian G-torsor on SpecR. Thus, this is equivalent to a
geometric G-torsor over SpecR, which is in particular smooth over SpecR, and so locally étale over
an affine space. This implies that its analytification is locally étale over a ball over Spa(R,R+),
and so by Proposition 6.3.3 defines a sousperfectoid adic space itself if R is sousperfectoid. This
also verifies the final assertion. �

In the following we will be lax about the distinction between the three kinds of G-torsors, and
simply talk about G-torsors unless the distinction is important. Finally, we will need the following
result about descent of G-torsors on (open subsets of) S×̇Spa Zp.
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Proposition 19.5.3. Let S ∈ Perf be a perfectoid space of characteristic p and let U ⊂
S×̇Spa Zp be an open subset. The functor on PerfS sending any S′ → S to the groupoid of G-
torsors on

U ×S×̇ SpaZp S
′×̇Spa Zp

is a v-stack.

Proof. We use the Tannakian interpretation of G-torsors. This directly reduces us to the
case of G = GLn, i.e. vector bundles. We may assume that S = Spa(R,R+) is affinoid, and that

S̃ = Spa(R̃, R̃+)→ S is a v-cover, along which we want to descend vector bundles.

Recall that U is sousperfectoid; in fact, more precisely, the product U ′ = U×SpaZpSpa Zp[p
1/p∞ ]∧p

is a perfectoid space. Moreover,

Ũ ′ = Ũ ×SpaZp Spa Zp[p
1/p∞ ]∧p = Ũ ×S×̇ SpaZp S

′×̇Spa Zp

is a perfectoid space that is a v-cover of Ũ ′, and the construction is compatible with fiber products.
By Proposition 17.1.8, this implies that the functor sending S′ → S to the category of vector

bundles on Ũ ′ is a v-stack.
Now if Ẽ is a vector bundle on Ũ with a descent datum, then its pullback Ẽ ′ to Ũ ′ descends

to a vector bundle E ′ on U ′. Assume that U = Spa(A,A+) is affinoid perfectoid, where A is

sousperfectoid. Then also U ′ = Spa(A′, A′+), Ũ = Spa(Ã, Ã+) and Ũ ′ = Spa(Ã′, Ã′+) are affinoid

adic spaces. We have a finite projective A′-module M ′ and a finite projective Ã-module M̃ with

same base extension M̃ ′ to Ã′; moreover, M̃ comes with a descent datum. To descend M ′ to A, it
suffices to obtain a descent datum M ′⊗̂AA′ ∼= A′⊗̂AM ′ as the map A → A′ splits as topological
A-modules (and so the usual proof of descent works; note that being finite projective descends,
e.g. by [Sta, Tag 08XD]). To define this descent datum, it suffices to define a descent datum

M̃ ′⊗̂
Ã
Ã′ ∼= Ã′⊗̂

Ã
M̃ ′ satisfying a cocycle condition over Ã⊗̂AÃ. But we have such an isomorphism

as defined by M̃ . �
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20. Lecture XX: Families of affine Grassmannians

In the geometric case, if X is a smooth curve over a field k, Beilinson-Drinfeld, [BD96], defined
a family of affine Grassmannians

GrG,X → X

whose fiber over x ∈ X parametrizes G-torsors on X with a trivialization over X \ {x}. If one fixes
a coordinate at x, this gets identified with the affine Grassmannian considered previously.

In fact, more generally Beilinson-Drinfeld considered such families over many copies of X,

GrG,Xn → Xn

whose fiber over (x1, . . . , xn) ∈ Xn parametrizes G-torsors on X with a trivialization over X \
{x1, . . . , xn}. Something interesting happens when the points xi collide: Over fibers with distinct
points xi, one gets a product of n copies of the affine Grassmannian, while over fibers with all
points xi = x equal, one gets just one copy of the affine Grassmannian: This is possible as the
affine Grassmannian is infinite-dimensional. However, sometimes it is useful to remember more
information when the points collide; then one can consider the variant

G̃rG,Xn → Xn

whose fiber over (x1, . . . , xn) ∈ Xn parametrizes G-torsors P1, . . . , Pn on X together with a trivial-
ization of P1 on X \{x1} and isomorphisms between Pi and Pi+1 on X \{xi+1} for i = 1, . . . , n−1.

There is a natural forgetful map G̃rG,Xn → GrG,Xn which is an isomorphism over the locus where

all xi are distinct, but for example the fibers of G̃rG,Xn over points with all xi = x equal is the
convolution affine Grassmannian parametrizing successive modifications of the trivial G-torsor.

Our aim in this lecture is to study analogues of this picture if X is replaced by X = Spd Qp or
also X = Spd Zp.

20.1. The convolution affine Grassmannian. As a preparation, we discuss the convolution
affine Grassmannian in the setting of the last lecture.

Definition 20.1.1. For any integer m ≥ 1, let G̃r
m

G/ SpdC be the presheaf sending S =
Spa(R,R+) with an untilt S] = Spa(R], R]+) over SpaC to the set of G-torsors P1, . . . , Pm over
SpecB+

dR(R]) together with a trivialization of P1 over SpecBdR(R]) and isomorphisms between Pi
and Pi−1 over SpecBdR(R]) for i = 2, . . . ,m.

Remark 20.1.2. By composing isomorphisms, this is the same as parametrizing G-torsors
P1, . . . , Pm over SpecB+

dR(R]) together with a trivialization of each Pi over SpecBdR(R]); thus

G̃r
m

G
∼=

m∏
i=1

GrG ,

where the product is taken over SpdC. In particular, G̃r
m

G is a partially proper small v-sheaf.

The reason we defined G̃r
m

G not simply as a product is that the following definition of convolution
Schubert varieties is more natural in this perspective.

Definition 20.1.3. For µ1, . . . , µm ∈ X∗(T )+, let

G̃rG,≤µ• = G̃rG,≤(µ1,...,µm) ⊂ G̃r
m

G
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be the closed subfunctor given by the condition that at all geometric rank 1-points, the relative
position of Pi and Pi−1 is bounded by µi in the Bruhat order (where P0 is the trivial G-torsor).

This is indeed a closed subfunctor by Proposition 19.2.3.

Proposition 20.1.4. The v-sheaf G̃rG,≤µ• is a spatial diamond that is proper over SpdC.

Under the map G̃rG,≤µ• → GrG sending (P1, . . . , Pm) to Pm with the composite trivialization, the
image is contained in the Schubert variety GrG,≤|µ•|, where |µ•| = µ1 + . . . + µm, and the induced
map

G̃rG,≤µ• → GrG,≤|µ•|
is a surjective map of v-sheaves.

Proof. We prove the first point by induction on m, the case m = 1 being known. The map

G̃rG,≤(µ1,...,µm) → G̃rG,≤(µ1,...,µm−1)

forgetting Pm is locally on the target isomorphic to a product over SpdC with GrG,≤µm , by taking
an étale local trivialization of Pm−1. By [Sch17, Proposition 13.4, Proposition 18.3], it follows that

the map is representable in spatial diamonds and proper. By induction, we see that G̃rG,≤µ• is a
spatial diamond, proper over SpdC.

The factorization can be checked on geometric points, as can surjectivity as v-sheaves by
Lemma 17.4.9, using that the source is quasicompact (and the target quasiseparated). But on
geometric points, the situation agrees with the classical affine Grassmannian by choosing an iso-
morphism BdR(C) ∼= C((ξ)). �

20.2. Over Spd Qp. First, we consider the case of a single copy of Spd Qp. This is a minor
variation on the previous lecture.

Definition 20.2.1. Let G be a reductive group over Qp. The Beilinson-Drinfeld Grassmannian
over Spd Qp is the presheaf GrG,SpdQp / Spd Qp whose S = Spa(R,R+)-points parametrize an

untilt S] = Spa(R], R]+) of S of characteristic 0 together with a G-torsor P on S×̇Spa Qp and a

trivialization of P|S×̇ SpaQp\S] that is meromorphic along S].

Proposition 20.2.2. The Beilinson-Drinfeld Grassmannian GrG,SpdQp is a small v-sheaf, and

is the étale sheafification of the functor taking S = Spa(R,R+) with untilt S] = Spa(R], R]+)
of characteristic 0 to G(BdR(R]))/G(B+

dR(R])). In particular, for any algebraically closed nonar-
chimedean field C/Qp, the base change of GrG,SpdQp ×SpdQp SpdC is the affine Grassmannian
GrG = GrG,SpdC considered in the previous lecture.

Proof. This is identical to the case of Proposition 19.1.2. �

In particular, many statements about GrG,SpdQp can be obtained by descent from Cp. There
is one subtlety however, namely that Schubert varieties are not themselves defined over Qp. More
precisely, if one fixes a maximal torus and a Borel T ⊂ B ⊂ GQp

, one can identify the set of

dominant cocharacters X∗(T )+ with the set of conjugacy classes of cocharacters Gm → GQp
;

in particular, there is a natural continuous action of Γ = Gal(Qp/Qp) on this set. Thus, for

µ ∈ X∗(T )+ corresponding to a conjugacy class of cocharacters, its field of definition E is a finite
extension of Qp, and the Schubert variety GrG,SpdCp,≤µ descends to E to give a closed subfunctor

GrG,SpdE,≤µ ⊂ GrG,SpdE = GrG,SpdQp ×SpdQp SpdE .
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From the previous lecture, one immediately obtains the following proposition. Here F`G,µ is the
flag variety over E that parametrizes parabolics in the conjugacy class of Pµ.

Proposition 20.2.3. The v-sheaf GrG,SpdE,≤µ is a spatial diamond, and the map GrG,SpdE,≤µ →
SpdE is proper. If µ is minuscule, then

GrG,SpdE,≤µ = GrG,SpdE,µ = F`♦G,µ .

20.3. Over Spd Zp. Next, we consider the case of Spd Zp. This is more interesting, as there
are now two distinct geometric fibers. Now we have to fix a smooth model G of G over Zp; the
easiest case is when G itself is reductive, but we do not assume this for the moment.

Definition 20.3.1. The Beilinson-Drinfeld Grassmannian GrG,SpdZp /Spd Zp is the presheaf

whose S = Spa(R,R+)-points parametrize an untilt S] = Spa(R], R]+) together with a G-torsor P
on S×̇Spa Zp and a trivialization of P|S×̇ SpaZp\S] that is meromorphic along S].

Again, we have the following proposition.

Proposition 20.3.2. The Beilinson-Drinfeld Grassmannian GrG,SpdZp is a small v-sheaf, and

is the étale sheafification of the functor taking S = Spa(R,R+) with untilt S] = Spa(R], R]+) to
G(BdR(R]))/G(B+

dR(R])). �

Recall that if R] = R is of characteristic p, then B+
dR(R]) = W (R) is the ring of Witt vectors.

Thus, on the special fiber, we look at the functor sending S = Spa(R,R+) to G(W (R)[1
p ])/G(W (R)),

which is precisely the Witt vector affine Grassmannian considered in [Zhu17], [BS17].

Definition 20.3.3. The Witt vector affine Grassmannian GrWG is the functor on affine perfect
schemes S = SpecR of characteristic p taking S = SpecR to the set of G-torsors on SpecW (R)
together with a trivialization over SpecW (R)[1

p ]; it is also the étale sheafification of

R 7→ G(W (R)[1
p ])/G(W (R)) .

Theorem 20.3.4 ([BS17, Corollary 9.6]). The Witt vector affine Grassmannian GrWG can be
written as an increasing union of perfections of quasiprojective varieties over Fp along closed im-
mersions.

Thus, GrG,SpdZp → Spd Zp defines a deformation from the Witt vector affine Grassmannian to

the B+
dR-affine Grassmannian.

If G itself is reductive, then for any conjugacy class of cocharacters µ, the field of definition E
is unramified over Qp with residue field Fq, and the Schubert varieties

GrWG,Fq ,≤µ ⊂ GrWG,Fq = GrWG ×SpecFp Spec Fq

are perfections of projective varieties over Fq. One can then also define a family of Schubert
varieties over SpdOE :

Definition 20.3.5. Assume that G is reductive, and let µ ∈ X∗(T )+ be a conjugacy class of
cocharacters defined over E. The Schubert variety

GrG,SpdOE ,≤µ ⊂ GrG,SpdOE = GrG,SpdZp ×SpdZp SpdOE
is the subfunctor defined by the condition that at all geometric rank 1-points, the relative position
of P and the trivial G-torsor is bounded by µ in the Bruhat order.
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Proposition 20.3.6. The map GrG,SpdOE ,≤µ → SpdOE is proper and representable in spatial
diamonds, and GrG,SpdOE ,≤µ → GrG,SpdOE is a closed immersion.

Proof. The proof works as in the last lecture. To understand points on the special fiber, one
uses Theorem 20.3.4. �

Proposition 20.3.7. For a closed immersion ρ : G → H of reductive groups over Zp, the functor
GrG,SpdZp → GrH,SpdZp is a closed immersion.

Proof. Again, this can be proved as in the last lecture. �

In the next lecture, we will generalize some of these results to the case of parahoric groups G.

20.4. Over Spd Qp × . . .× Spd Qp. Next, we want to understand a Beilinson-Drinfeld Grass-
mannian over (Spd Qp)

m = Spd Qp × . . .× Spd Qp.

Definition 20.4.1. The Beilinson-Drinfeld Grassmannian GrG,(SpdQp)m → (Spd Qp)
m is the

presheaf sending S = Spa(R,R+) with m untilts S]i = Spa(R]i , R
]+
i ) of characteristic 0 to the set

of G-torsors P on S×̇Spa Qp together with a trivialization of

P|
S×̇ SpaQp\

⋃m
i=1 S

]
i

that is meromorphic along the closed Cartier divisor
⋃m
i=1 S

]
i ⊂ S×̇Spa Qp.

As explained in the beginning of this lecture, it is sometimes useful to consider the following
variant.

Definition 20.4.2. The convolution Beilinson-Drinfeld Grassmannian G̃rG,(SpdQp)m → (Spd Qp)
m

is the presheaf sending S = Spa(R,R+) with m untilts S]i = Spa(R]i , R
]+
i ) of characteristic 0 to the

set of G-torsors P1, . . . ,Pm on S×̇Spa Qp together with a trivialization of

P1|S×̇ SpaQp\S]1

meromorphic along S]1 and isomorphisms

Pi|S×̇ SpaQp\S]i
∼= Pi−1|S×̇ SpaQp\S]i

for i = 2, . . . , n that are meromorphic along S]i .

As before, Proposition 19.5.3 implies the following result.

Proposition 20.4.3. The presheaves GrG,(SpdQp)m and G̃rG,(SpdQp)m are partially proper small
v-sheaves.

We want to understand the analogue of Schubert varieties in this setting. For this, fix conjugacy
classes of cocharacters µ1, . . . , µm, defined over the finite extensions E1, . . . , Em/Qp.

Definition 20.4.4. Define subfunctors

GrG,SpdE1×...×SpdEm,≤µ• ⊂ GrG,SpdE1×...×SpdEm = GrG,(SpdQp)m ×(SpdQp)m(SpdE1×. . .×SpdEm)

and

G̃rG,SpdE1×...×SpdEm,≤µ• ⊂ G̃rG,SpdE1×...×SpdEm = G̃rG,(SpdQp)m×(SpdQp)m (SpdE1×. . .×SpdEm)
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by asking that the following condition is satisfied at all geometric rank 1-points S = Spa(C,OC).

In the first case, the relative position of P and the trivial G-torsor at S]i is bounded by
∑

j|S]j=S
]
i
µj

in the Bruhat order for all i = 1, . . . , n. In the second case, the relative position of Pi and Pi−1 at

S]i is bounded by µi in the Bruhat order (where P0 is the trivial G-torsor) for all i = 1, . . . , n.

Proposition 20.4.5. The Beilinson-Drinfeld Schubert varieties have the following properties.

(1) The v-sheaf G̃rG,SpdE1×...×SpdEm,≤µ• is a locally spatial diamond that is proper over SpdE1×
. . .× SpdEm.

(2) The map

G̃rG,SpdE1×...×SpdEm,≤µ• → GrG,SpdE1×...×SpdEm

factors over GrG,SpdE1×...×SpdEm,≤µ•, and induces a surjective map of v-sheaves

G̃rG,SpdE1×...×SpdEm,≤µ• → GrG,SpdE1×...×SpdEm,≤µ• .

(3) The v-sheaf GrG,SpdE1×...×SpdEm,≤µ• is proper over SpdE1 × . . .× SpdEm, and

GrG,SpdE1×...×SpdEm,≤µ• ⊂ GrG,SpdE1×...×SpdEm

is a closed embedding.
(4) Finally, GrG,SpdE1×...×SpdEm,≤µ• is a locally spatial diamond.

Proof. The v-sheaf G̃rG,SpdE1×...×SpdEm,≤µ• is a successive extension of copies of GrG,SpdEi,≤µi .
This implies that it is a locally spatial diamond, proper over SpdE1 × . . . × SpdEm, giving part
(1).

To check that the map to GrG,SpdE1×...×SpdEm factors over GrG,SpdE1×...×SpdEm,≤µ• , we can
check on geometric rank 1-points, by definition; then, by [Sch17, Lemma 12.11], surjectivity as
a map of v-sheaves can also be checked on such points. But over a geometric point of SpdE1 ×
. . .× SpdEm, the situation decomposes into a finite product of copies of the situation of Proposi-
tion 20.1.4, giving part (ii).

We already know that GrG,SpdE1×...×SpdEm , and thus GrG,SpdE1×...×SpdEm,≤µ• is partially
proper over SpdE1 × . . . × SpdEm. Thus, to see that it is proper, it remains to see that it is
quasicompact, which follows from part (ii). As it is proper, the inclusion into GrG,SpdE1×...×SpdEm

must be a closed embedding.
For the final part, by applying Theorem 17.3.9 to fibers over quasicompact open subsets

of the locally spatial diamond SpdE1 × . . . × SpdEm, it is enough to show that the v-sheaf
GrG,SpdE1×...×SpdEm,≤µ• is locally spatial; indeed, any point lies in a fiber over Spd Qp×. . .×Spd Qp,
and all fibers are locally spatial (as they are finite products of Schubert varieties). To check that
it is locally spatial, this can be reduced to the case of G = GLn and µi = (Ni, 0, . . . , 0) for some
Ni ≥ 0, and it is enough to check after pullback to (Spd Cp)

m. In this case, an argument similar to
the previous lecture with the space X/(Spd Cp)

m whose (R,R+)-valued points with untilts given
by primitive elements ξi ∈W (R+) is given by

X(R,R+) = {A ∈ GLn(W (R+)) | detA ∈
m∏
i=1

ξNii W (R+)×} .

Then X is representable by a perfectoid space, the map X → (Spd Cp)
m is qcqs, and the map

X → GrGLn,(SpdCp)m,≤µ• is a surjective map of v-sheaves, and the induced equivalence relation
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R = X ×GrGLn,(Spd Cp)m,≤µ•
X is isomorphic to X ×SpdCp L

+
W GLn, and so as before s, t : |R| → |X|

are open. �

20.5. Over Spd Zp× . . .×Spd Zp. Finally, we extend the previous discussion to Spd Zp× . . .×
Spd Zp. Let G/Zp be a smooth group scheme with generic fiber G.

Definition 20.5.1. The Beilinson-Drinfeld Grassmannian GrG,(SpdZp)m → (Spd Zp)
m is the

presheaf sending S = Spa(R,R+) with m untilts S]i = Spa(R]i , R
]+
i ) to the set of G-torsors P on

S×̇Spa Zp together with a trivialization of

P|
S×̇ SpaZp\

⋃m
i=1 S

]
i

that is meromorphic along the closed Cartier divisor
⋃m
i=1 S

]
i ⊂ S×̇Spa Zp.

Similarly, the convolution Beilinson-Drinfeld Grassmannian G̃rG,(SpdZp)m/(Spd Zp)
m is the presheaf

sending S = Spa(R,R+) with m untilts S]i = Spa(R]i , R
]+
i ) to the set of G-torsors P1, . . . ,Pm on

S×̇Spa Zp together with a trivialization of

P1|S×̇ SpaZp\S]1

meromorphic along S]1 and isomorphisms

Pi|S×̇ SpaZp\S]i
∼= Pi−1|S×̇ SpaZp\S]i

for i = 2, . . . ,m that are meromorphic along S]i .

Proposition 20.5.2. The presheaves GrG,(SpdZp)m and G̃rG,(SpdZp)m are partially proper small
v-sheaves.

To discuss Schubert varieties, we make the assumption that G is reductive again. Fix conjugacy
classes of cocharacters µ1, . . . , µm, defined over the finite extensions E1, . . . , Em/Qp, unramified over
Zp, and let O1, . . . ,Om be their rings of integers.

Definition 20.5.3. Define subfunctors

GrG,SpdO1×...×SpdOm,≤µ• ⊂ GrG,SpdO1×...×SpdOm = GrG,(SpdZp)m ×(SpdZp)m(SpdO1× . . .×SpdOm)

and

G̃rG,SpdO1×...×SpdOm,≤µ• ⊂ G̃rG,SpdO1×...×SpdOm = G̃rG,(SpdZp)m×(SpdZp)m (SpdO1× . . .×SpdOm)

by asking that the following condition is satisfied at all geometric rank 1-points S = Spa(C,OC).

In the first case, the relative position of P and the trivial G-torsor at S]i is bounded by
∑

j|S]j=S
]
i
µj

in the Bruhat order for all i = 1, . . . , n. In the second case, the relative position of Pi and Pi−1 at

S]i is bounded by µi in the Bruhat order (where P0 is the trivial G-torsor) for all i = 1, . . . , n.

Proposition 20.5.4. The Beilinson-Drinfeld Schubert varieties have the following properties.

(1) The v-sheaf G̃rG,SpdO1×...×SpdOm,≤µ• is representable in spatial diamonds and proper over
SpdO1 × . . .× SpdOm.
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(2) The map

G̃rG,SpdO1×...×SpdOm,≤µ• → GrG,SpdO1×...×SpdOm
factors over GrG,SpdO1×...×SpdOm,≤µ•, and induces a surjective map of v-sheaves

G̃rG,SpdO1×...×SpdOm,≤µ• → GrG,SpdO1×...×SpdOm,≤µ• .

(3) The v-sheaf GrG,SpdO1×...×SpdOm,≤µ• is proper over SpdO1 × . . .× SpdOm, and

GrG,SpdO1×...×SpdOm,≤µ• ⊂ GrG,SpdO1×...×SpdOm

is a closed embedding.
(4) Finally, GrG,SpdO1×...×SpdOm,≤µ• → SpdO1 × . . . × SpdOm is representable in spatial

diamonds.

Proof. The same arguments as before apply. �
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21. Lecture XXI: Affine flag varieties

In this lecture, we generalize some of the previous results to the case where G over Zp is a
parahoric group scheme. In fact, slightly more generally, we allow the case that the special fiber is
not connected, with connected component of the identity G◦ being a parahoric group scheme. This
case comes up naturally in the classical definition of Rapoport-Zink spaces.

21.1. Over Fp. First, we discuss the Witt vector affine flag variety GrWG over Fp. Recall that
this is an increasing union of perfections of quasiprojective varieties along closed immersions. In
the case that G◦ is parahoric, one gets ind-properness.

Theorem 21.1.1 ([Zhu17]). If G◦ is parahoric, the Witt vector affine flag variety GrWG is
ind-proper. In particular, by Theorem 20.3.4, it is an increasing union of perfections of projective
varieties along closed immersions.

Remark 21.1.2. Zhu proved this for the Iwahori subgroup. However, to check the valuative
criterion of properness, one can first lift the generic point to the affine flag variety for an Iwahori
subgroup of G, at least after an extension of the fraction field. Then properness of the Iwahori
affine flag variety gives the desired result.

As we will need this later, let us briefly discuss the case of tori. Recall that a torus has a unique
parahoric model, which is the connected component of its Néron model.

Proposition 21.1.3. If G = T is a torus and G = T = T ◦ is the connected component
of its Néron model, the affine flag variety GrWT is an étale Fp-scheme which corresponds to the

Gal(Fp/Fp)-module π1(TQp
)I , where I ⊂ Γ = Gal(Qp/Qp) is the inertia group.

Proof. For any algebraically closed field k of characteristic p, the Kottwitz map gives a bijec-
tion

κ : T (W (k)[1
p ])/T (W (k))→ π1(TQp

)I

by [Rap05, Note 1 at the end]. Moreover, the bijection is Frobenius equivariant. This easily
implies the result. �

We will also need the general description of the connected components. Note that if G is not
connected, the group of connected components of its special fiber π0G is an étale group scheme over
Fp such that the Kottwitz map defines an injection

κ : π0GFp ↪→ π1(GQp
)I ,

cf. the appendix by Haines-Rapoport to [PR08].

Proposition 21.1.4 ([Zhu17, Proposition 1.21]). If G is parahoric, the geometric connected
components π0 GrWG,Fp

are given by π1(GQp
)I , equivariantly for the Frobenius map, via the Kottwitz

map. In general, the map
GrWG◦ → GrWG

is a torsor under π0G. This induces a bijection between π0 GrWG,Fp
and π1(GQp

)I/π0GFp, and the
map

GrWG◦,Fp
→ GrWG,Fp

induces an isomorphism on connected components.
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21.2. Over Zp. As in the last lecture, we have the Beilinson-Drinfeld Grassmannian GrG,SpdZp →
Spd Zp whose special fiber is the v-sheaf associated with the perfect ind-scheme GrWG and whose
generic fiber is GrG,SpdQp . Our goal in this section is to prove the following theorem.

Theorem 21.2.1. The map of v-sheaves GrG,SpdZp → Spd Zp is ind-proper. More precisely,
one can write GrG,SpdZp as an increasing union of closed subfunctors that are proper over Spd Zp.

If ρ : G ↪→ GLn is a closed immersion, the induced map GrG,SpdZp → GrGLn,SpdZp is a closed
immersion.

Note that it is enough to prove the last part, as then the first part follows by pullback from the
similar results for GLn.

We will use the following result of Anschütz to establish something close to a valuative criterion
of properness.

Theorem 21.2.2 ([Ans17]). Let C be an algebraically closed nonarchimedean field over Zp
with tilt C[, and let θ : Ainf = W (OC[) → OC with kernel generated by ξ as usual. Let P be a G-
torsor on SpecAinf \ {m} that is trivial on SpecAinf [

1
ξ ]. Then P is trivial; in particular, it extends,

necessarily uniquely by the Tannakian formalism and Theorem 14.2.3, to a G-torsor on SpecAinf .

Corollary 21.2.3. For any algebraically closed nonarchimedean field C over Zp, and ev-
ery map SpdC → GrG,SpdZp over Spd Zp given by a G-torsor P over SpecB+

dR(C) trivialized on
SpecBdR(C), there is a unique (up to unique isomorphism) G-torsor P over SpecAinf trivialized
on SpecAinf [

1
ξ ] whose restriction to SpecB+

dR(C) is P (with given trivialization over SpecBdR(C)).

Proof. By the Tannakian formalism and the Beauville-Laszlo lemma, the G-torsor P with its
trivialization is equivalent to a G-torsor on SpecAinf \ {m} with a trivialization over SpecAinf [

1
ξ ].

By Theorem 21.2.2, this extends uniquely to a G-torsor over all of SpecAinf , still trivialized over
SpecAinf [

1
ξ ]. �

Unfortunately, the valuative criterion of properness in [Sch17, Proposition 18.3] is of a different
sort, and in particular it requires quasicompactness as input, which is the hard statement in our
case. Our idea now is to go back to classical topology, and establish quasicompactness by showing
that sequences of points converge.

Proof of Theorem 21.2.1. Fix the closed immersion ρ : G ↪→ GLn. Fix a cocharacter µ of
GLn. It is enough to prove that the map

GrG,SpdZp ×GrGLn,Spd Zp
GrGLn,SpdZp,≤µ → GrGLn,SpdZp,≤µ

is a closed immersion. As the map is injective on geometric points and partially proper, it is
in fact enough to show that it is quasicompact by Corollary 17.4.8. For this, pick a surjection
X → GrGLn,SpdZp,≤µ from an affinoid perfectoid space X, and let Y → X be the pullback of

the displayed map. Now choose maps from Spa(Ci, C
+
i ), i ∈ I, into Y , covering all points of

|Y |, and choose pseudouniformizers $i ∈ Ci for all i ∈ I. Let R+ be the product of all C+
i , let

$ = ($i)i ∈ R+, and R = R+[ 1
$ ]. We wish to show that there is a map from Spa(R,R+) to Y

that restricts to the given maps on all Spa(Ci, C
+
i ). Then Spa(R,R+) surjects onto Y , which is

therefore quasicompact. Note that, for well-chosen $i, we get a unique map to X that restricts to
the given maps on all Spa(Ci, C

+
i ), by taking the product on the level of algebras. Thus, it remains

to factor the resulting map from Spa(R,R+) to GrGLn,SpdZp over GrG,SpdZp .
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Moreover, by partial properness we can replace all C+
i by OCi , and R+ by R◦ =

∏
iOCi . For

each i ∈ I, Corollary 21.2.3 implies that we get G-torsors Pi on Ainf,i = W (OC[,i), trivialized on

Ainf,i[
1
ξi

]. In the Tannakian interpretation, their product gives rise to a G-torsor P on
∏
iAinf,i =

W (R◦[), as for any family of finite free Ainf,i-modules Mi of constant rank r, their product
∏
iMi

is a finite free W (R◦[)-module of rank r. Moreover, as by assumption the type of the modification
is bounded by µ, the trivializations over Ainf,i[

1
ξi

] extend to the product. Now base changing

along W (R◦[) → B+
dR(R), we get a Spa(R,R◦)-point of GrG,SpdZp whose image in GrGLn,SpdZp is

correct. �

21.3. Affine flag varieties for tori. Let us analyze the affine flag varieties associated with
tori. So assume that G = T is a torus, and that G = T is the connected component of the Néron
model of T .

Consider the Γ = Gal(Qp/Qp)-module X = X∗(TQp
) = π1(TQp

). This is equivalent to an étale

Qp-scheme X. The normalization of Zp inside X defines an integral model X int of X; locally, if

U = SpecK ⊂ X is an open subscheme, then U int = SpecOK ⊂ X int is an open subspace. If I ⊂ Γ
is the inertia subgroup, then the reduced special fiber of X int is the étale Fp-scheme corresponding

to the Γ/I = Gal(Fp/Fp)-module XI = π1(TQp
)I .

Proposition 21.3.1. Assume that T is the connected component of the Néron model of T .
Then there is a natural isomorphism

GrT ,SpdZp
∼= X int,♦

over Spd Zp.

Proof. The geometric generic fiber GrT,SpdCp is given by XCp , by reduction to T = Gm; here
µ ∈ X maps to GrT,SpdCp,µ

∼= Spd Cp. By Galois descent, this implies that GrT,SpdQp
∼= X. By

Theorem 21.2.2 and Lemma 18.1.2, this extends to a map X int,♦ → GrT ,SpdZp . This map is neces-
sarily proper, as the source is locally proper over Spd Zp (as each SpdOK is). Thus, to check that it
is an isomorphism, it is enough to check that it is bijective on geometric points. For characteristic 0
points, this is clear, so it remains to understand the special fiber. By Proposition 21.1.3, GrT ,SpdFp

is the étale Fp-scheme corresponding to π1(TQp
)I . It remains to see that the identifications agree.

Choosing a surjection T̃ → T from an induced torus T̃ , this reduces to an induced torus, where the
result is immediate. �

21.4. Local models. The local models of Shimura varieties studied by Rapoport and collab-
orators, [Rap90], can be considered as closed subspaces of the affine flag variety GrG,SpdZp . A
similar description using a more classical affine flag variety was used by Görtz, [Gör01], and others
to obtain geometric results on local models. Our approach has the advantage that the intervening
objects are canonical, contrary to the local models introduced by Pappas–Zhu, [PZ13], that depend
on some auxiliary choices.

Using our machinery, we can state the following general conjecture about the existence of local
models.

Conjecture 21.4.1. Let G be a group scheme over Zp with reductive generic fiber and G◦
parahoric, and let µ be a minuscule conjugacy class of cocharacters Gm → GQp

, defined over the
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reflex field E. There is a flat projective OE-scheme Mloc
(G,µ) with reduced special fiber and with a

closed immersion

Mloc,♦
(G,µ) ↪→ GrG,SpdOE

whose generic fiber is F`♦G,µ
∼= GrG,SpdE,µ.

Remark 21.4.2. Note that a flat scheme over OE with reduced special fiber is necessarily
normal by Serre’s criterion.

We note that by Proposition 18.4.1, the scheme Mloc
(G,µ) is unique if it exists. Indeed, the closed

subfunctor

Mloc,♦
(G,µ) ↪→ GrG,SpdOE

must be given by the closure of GrG,SpdE,µ.30

In the appendix to this lecture, we will make contact with the local models as introduced in
the book of Rapoport-Zink, [RZ96]. For this, it is necessary to include the case where G is not
necessarily parahoric because the special fiber is disconnected, as we did. This does however not
actually impact local models.

Proposition 21.4.3. Let G be a group scheme over Zp with connected generic fiber G whose
connected component G◦ is parahoric. Let µ be a conjugacy class of minuscule cocharacters of G,
defined over E. Let GrG,SpdOE ,µ ⊂ GrG,SpdOE and GrG◦,SpdOE ,µ ⊂ GrG◦,SpdOE denote the closure

of GrG,SpdE,µ
∼= F`♦G,µ. The induced map

GrG◦,SpdOE ,µ → GrG,SpdOE ,µ

is an isomorphism.

Proof. Both v-sheaves are proper over SpdOE , and thus so is the map. As the image of
|GrG◦,SpdOE ,µ | → |GrG,SpdOE ,µ | is closed (and the pullback to any perfectoid space is stable under
generizations) and contains the subset |GrG,SpdE,µ |, it is all of |GrG,SpdOE ,µ |. By Lemma 17.4.9,
it follows that

GrG◦,SpdOE ,µ → GrG,SpdOE ,µ

is surjective as a map of v-sheaves. By Lemma 17.4.1 and properness, it remains to see that it is
injective on (C,OC)-valued points. This is clear on the generic fiber. But on the geometric special
fiber,

GrWG◦,Fp
→ GrWG,Fp

is a torsor under the finite group G/G◦. By Proposition 21.1.4, it suffices to see that the special
fiber of GrG◦,SpdOE ,µ is completely contained in one connected component (with Kottwitz invariant
determined by µ); this follows as usual by passage to z-extensions and reduction to tori from the
description in the case of a torus. �

30We warn the reader that in general, taking the closure in the sense of v-sheaves does not correspond to the
closure on the level of topological spaces; rather, one must look for the minimal closed superset whose pullback to
any perfectoid space is stable under generizations. We expect that this nuisance does not matter in this situation.
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21.5. Dévissage. Conjecture 21.4.1 can be approached by some dévissage techniques, for
example by understanding the behaviour of GrG,SpdZp when one changes G by central isogenies.
The general form of the following result is due to João Lourenço.

More precisely, let G̃ → G be a surjective map of reductive groups over Qp, with kernel a

central subgroup Z ⊂ G̃. Let G̃ over Zp be a quasiparahoric model of G̃, stabilizing some facet F

of the Bruhat-Tits building of G̃. As the Bruhat-Tits building depends only on the adjoint group,
F also defines a quasiparahoric model G of G such that G(Z̆p) is the stabilizer of F . There is a

natural map G̃ → G of group schemes over Zp.

Proposition 21.5.1. Let G̃ → G be a map of quasiparahoric groups over Zp as described above.

Let µ̃ be a minuscule conjugacy class of cocharacters Gm → G̃Qp
defined over Ẽ, and let µ be the

corresponding conjugacy class of G, defined over E ⊂ Ẽ.
Let

GrG̃,SpdO
Ẽ
,µ̃
⊂ GrG̃,SpdO

Ẽ

be the closure of Gr
G̃,Spd Ẽ,µ̃

. Similarly, let

GrG,SpdOE ,µ ⊂ GrG,SpdOE

be the closure of GrG,SpdE,µ. Then the natural map

GrG̃,SpdO
Ẽ
,µ̃
→ GrG,SpdOE ,µ×SpdOE SpdO

Ẽ

is an isomorphism.

Proof. First, one checks that Gr
G,Spd Ẽ,µ

⊂ GrG,SpdOE ,µ×SpdOE SpdO
Ẽ

is still dense; this is

easy if Ẽ/E is unramified, and in the totally ramified case one uses that the special fiber does not
change, and that SpdO

Ẽ
→ SpdOE is proper. This then implies that the map

GrG̃,SpdO
Ẽ
,µ̃
→ GrG,SpdOE ,µ×SpdOE SpdO

Ẽ

is surjective as a map of v-sheaves by Lemma 17.4.9.
For injectivity, it suffices to see that the map

GrG̃,Fp → GrG,Fp

is an injection on connected components. It suffices to prove injectivity on k-valued points, where k
is any algebraically closed field of characteristic p. As both sides are homogenous spaces, it suffices

to see that if g̃ ∈ G̃(W (k)[1/p]) is any element with κ
G̃

(g̃) in the image of π0G̃ ↪→ π1(GQp
)Γ (corre-

sponding to lying in the connected component of the identity) and whose image g ∈ G(W (K)[1/p])

lies in G(W (K)), then actually g̃ ∈ G̃(W (k)). By the appendix of Haines–Rapoport to [PR08], we

know that G̃(W (k)) ⊂ G(W (k)[1/p]) is the intersection of the stabilizer of F with κ−1

G̃
(π0G̃). But

g̃ stabilizes F as g does, so the result follows. �

In particular, if Conjecture 21.4.1 holds true for (G, µ), then it also holds true for (G̃, µ̃), and

the converse holds if Ẽ/E is unramified.
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Appendix to Lecture XXI: Examples

In this appendix, we make explicit the relation to the local models discussed in [RZ96]. They
start with the following rational data, cf. [RZ96, Section 1.38]. Here EL stands for “endomorphism
+ level”, and PEL stands for “polarization + endomorphism + level”; the level structure will be
encoded in the integral data.

(Case EL) Let B be a finite-dimensional semisimple Qp-algebra, and let V be a finite-dimensional
B-module.

(Case PEL) Assume in this case that p 6= 2. In addition to (B, V ) as in the EL case, let ( , ) be a
nondegenerate alternating Qp-bilinear form on V and let b 7→ b∗ be an involution on B
that satisfies

(bv, w) = (v, b∗w)

for all b ∈ B, v, w ∈ V .

Note that the center of B is an étale Qp-algebra F , i.e. a finite product of finite field extensions.
In the PEL case, the involution ∗ acts on F , and we have a similar decomposition of F0 = F ∗=1.
As in the following, everything will accordingly decompose into a product, we assume from the
start that F0 is a field. In fact, there is only one case in which F is it not itself a field (cf. case
(I) in [RZ96, Section A.6]), and this PEL case is essentially equivalent to an EL case by Morita
equivalence. Thus, for simplicity we assume from the start that F is a field, and leave the (trivial)
modifications in the general case to the reader.

In the EL case, we let G = GLB(V ) be the reductive group over Qp. In the PEL case, we let
G be the group whose R-valued points for a Qp-algebra R are given by

G(R) = {g ∈ GLB(V ⊗Qp R) | (gv, gw) = c(g)(v, w) , c(g) ∈ R×} .
Thus, c : G → Gm defines the similitude character of G. In general G need not be connected. In
order to be properly in the setup studied above, we assume that G is connected.

Moreover, we fix integral structures as follows. First, we fix a maximal orderOB ⊂ B. Moreover,
we fix a chain of lattices L according to [RZ96, Definition 3.1], i.e. a set L of OB-lattices Λ ⊂ V
that form a chain, i.e. any for any two lattices Λ,Λ′ ∈ L, either Λ ⊂ Λ′ or Λ′ ⊂ Λ, and for any
x ∈ B× that normalizes OB, one has xΛ ∈ L for all Λ ∈ L.31

In the PEL case, we moreover assume that L is selfdual, i.e. for all Λ ∈ L, the dual lattice Λ∗

is also in L.
We want to define the corresponding group scheme G as the group of compatible isomorphisms

of all Λ for Λ ∈ L. In order to say what “compatible” means, it is convenient to introduce the
notion of a chain of lattices of type (L), cf. [RZ96, Definition 3.6].

Definition 21.6.1. Let R be a Zp-algebra. A chain of OB ⊗Zp R-lattices is a functor Λ 7→MΛ

from L (considered as a category with inclusions as morphisms) to OB ⊗Zp R-modules, together

with an isomorphism θb : M b
Λ
∼= MbΛ for all b ∈ B× normalizing OB, where M b

Λ = MΛ with
OB-action conjugated by b, satisfying the following conditions.

(1) Locally on SpecR, there are isomorphisms MΛ
∼= Λ⊗Zp R of OB ⊗Zp R-modules.

(2) For any two adjacent lattices Λ′ ⊂ Λ, there is an isomorphism

MΛ/MΛ′
∼= Λ/Λ′ ⊗Zp R

31If F is not a field, one has to consider multichains instead.
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of OB ⊗Zp R-modules, locally on SpecR.
(3) The periodicity isomorphisms θb commute with the transition maps MΛ →MΛ′ .
(4) For all b ∈ B× ∩OB normalizing OB, the composition M b

Λ
∼= MbΛ →MΛ is multiplication

by b.

In the PEL case, we consider the following structure.

Definition 21.6.2. Consider data of PEL type, including a selfdual chain L of OB-lattices. A
polarized chain of lattices of type (L) over a Zp-algebra R is a chain MΛ of type (L) together with
an antisymmetric isomorphism of multichains MΛ

∼= M∗Λ∗ ⊗R L for some invertible R-module L.

Remark 21.6.3. The invertible R-module L does not appear in [RZ96]. It is related to the
similitude factor, and if one wants to describe torsors under a parahoric model of G, it is necessary
to include it.

Theorem 21.6.4 ([RZ96, Theorem 3.11, Theorem 3.16]). The automorphisms of the chain
L of OB-lattices, resp. the automorphisms of the polarized chain L of OB-lattices in the PEL
case, is a smooth group scheme G over Zp. If MΛ is any chain of OB ⊗Zp R-lattices of type (L),
resp. polarized chain of OB ⊗Zp R-lattices of type (L), then étale locally on SpecR there is an
isomorphism of MΛ

∼= Λ⊗Zp R of chains, resp. of polarized chains.

Remark 21.6.5. The result is stated in [RZ96] only when p is nilpotent in R. This easily
implies the result when R is p-adically complete. If p is invertible in R, the result is easy to verify
(as then all chains become equalities); combining these two results, one easily deduces the result in
general.

Importantly, we get a linear-algebraic description of G-torsors.

Corollary 21.6.6. For any Zp-algebra R, there is a natural equivalence between G-torsors over
R and the groupoid of chains of OB ⊗Zp R-lattices of type (L), resp. polarized chains of OB ⊗Zp R-
lattices of type (L).

Proof. Any G-torsor defines a chain, resp. polarized chain, of modules, by taking the corre-
sponding twisted form of the standard chain. As G is the group of automorphisms of the standard
chain, it is clear that this functor is fully faithful. As any (polarized) chain is locally for the étale
topology isomorphic to the standard chain, the functor is essentially surjective. �

Remark 21.6.7. The group G may not have connected fibers. We refer to [PR08, Section 4]
for a discussion of when G has connected fibers. This includes the EL case and the symplectic and
unitary cases in the PEL situation, except possibly some even unitary cases when the quadratic
extension is ramified. In general G◦ is a parahoric group, so we are in the situation considered
above.

Finally, we fix conjugacy class µ of minuscule cocharacters Gm → GQp
defined over the reflex

field E. We warn the reader that the normalization in [RZ96] is incompatible with our normal-
ization. The group G has a natural central χ : Gm → G acting via diagonal multiplication on V .
Then in [RZ96], one considers instead µRZ = χµ−1. The conditions imposed in [RZ96, Definition
3.18] translate into the following condition on µ.

(1) The weights of µ on V ⊗Qp Qp are only 0 and 1, so we get a weight decomposition

V ⊗Qp Qp = V0 ⊕ V1.32

32Beware that V0 and V1 interchanged with respect to [RZ96]!
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(2) In the PEL case, the composite of µ and c : G→ Gm is the identity Gm → Gm.

We recall the definition of the local model. As usual, E is the field of definition of µ.

Definition 21.6.8 ([RZ96, Definition 3.27]). The OE-scheme Mloc,naive
(G,µ) represents the functor

taking an OE-algebra R to the following data.

(1) A functor Λ 7→ tΛ from the category L to the category of OB ⊗Zp OS-modules that are
finite projective over OS , and

(2) A morphism of functors
ϕΛ : Λ⊗Zp OS → tΛ ,

where each ϕΛ is surjective,

satisfying the following conditions.

(1) For any b ∈ B× normalizing OB, the periodicity isomorphism θb : Λb ⊗Zp OS ∼= bΛ ⊗Zp

OS is compatible with a necessarily unique periodicity isomorphism tbΛ
∼= tbΛ along the

surjections ϕΛ, ϕbΛ.33

(2) We have an identity of polynomial functions

detR(a; tΛ) = detQp
(a;V1)

for a ∈ OB. Here, both sides define polynomial maps from OB to R (the second a priori
to Qp, but in fact maps to OE , which maps to R).34

(3) In case PEL, the composite

t∗Λ
ϕ∗Λ−→ Λ∗ ⊗Zp OS

ϕΛ∗−→ tΛ∗

is zero for all Λ ∈ L.

Clearly, Mloc,naive
(G,µ) is a projective scheme over OE . To get the relation with affine flag varieties,

we need the following proposition.

Proposition 21.6.9. Let R be a perfectoid Tate-OE-algebra with a map SpecR → Mloc,naive
(G,µ)

given by (tΛ, ϕΛ) as above. The functor

Λ 7→MΛ = ker(Λ⊗Zp B
+
dR(R)→ Λ⊗Zp R

ϕΛ−→ tΛ)

defines a (polarized) chain of OB ⊗Zp B
+
dR(R)-lattices of type (L).

Proof. As R is of projective dimension 1 over B+
dR(R), it follows that MΛ is a finite projective

B+
dR(R)-module. Each tΛ is of fixed dimension over R. Thus, in the PEL case, condition (3) in the

definition of Mloc,naive implies easily that MΛ
∼= M∗Λ∗ ⊗B+

dR(R) ξB
+
dR(R) compatibly with the pairing

on Λ⊗Zp B
+
dR(R); here ξ is a generator of B+

dR(R)→ R as usual. This reduces us to the EL case.

We need to see that locally on SpecB+
dR(R), there is an isomorphism MΛ

∼= Λ ⊗Zp B
+
dR(R) and

an isomorphism MΛ/MΛ′
∼= Λ/Λ′ ⊗Zp B

+
dR(R) of OB ⊗Zp B

+
dR(R)-modules, for any two adjacent

lattices Λ, Λ′. In fact, by adic descent, it is enough to check this locally on Spa(R,R+). Moreover,
if it is true at one point of Spa(K,K+) of Spa(R,R+), it is true in an open neighborhood, by

33This condition seems to have been overlooked in [RZ96].
34Recall that a polynomial map M → N between two abelian groups M and N is a natural transformation of

functors M ⊗A→ N ⊗A on the category of Z-algebras A.
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spreading a local isomorphism. This reduces us to the case that R = K is a perfectoid field. If K
is of characteristic 0, the result is clear, so it remains to consider the case that K is a perfect field,
in which case B+

dR(K) = W (K) is the ring of Witt vectors.
Note that OB = Mn(OD) for the ring of integers OD in a division algebra D/F . By Morita

equivalence, we can assume that OB = OD. Let Π ∈ OD be a uniformizer. Then MΛ is Π-torsion
free and Π-adically complete, so its isomorphism class as OD ⊗Zp W (K)-module is determined by
the isomorphism class of MΛ/Π as OD/Π ⊗Fp K =

∏
OD/Π↪→K K-module. This reduces to the

dimensions of the various components, and we have to see that they all agree. Similarly, MΛ/MΛ′

is a module over OD/Π ⊗Fp K. To see that this is isomorphic to Λ/Λ′ ⊗Fp K, we have to check
equality of some dimensions again. In fact, this second condition implies the first, by inductively
deducing a similar result for MΛ/ΠMΛ.

Now we look at the exact sequence

0→ ker(tΛ′ → tΛ)→MΛ/MΛ′ → Λ/Λ′ ⊗Fp K → coker(tΛ′ → tΛ)→ 0

from the snake lemma and the definitions. Using Jordan-Hölder multiplicities, we see that it suffices
to see that the Jordan-Hölder multiplicities of tΛ and tΛ′ as OD⊗ZpK-modules are the same. This
follows from the determinant condition. �

Corollary 21.6.10. There is a natural closed immersion

Mloc,naive,♦
(G,µ) ↪→ GrG,SpdOE

over SpdOE. If S = Spa(R,R+) ∈ Perf with untilt (R], R]+) over OE, this sends an R]-valued

point (tΛ, ϕΛ) of Mloc,naive,♦
(G,µ) to the G-torsor over B+

dR(R]) given by the (polarized) chain of OB⊗Zp

B+
dR(R])-lattices

Λ 7→MΛ = ker(Λ⊗Zp B
+
dR(R])→ Λ⊗Zp R

] ϕΛ−→ tΛ)

together with the isomorphism of G-torsors over BdR(R]) given by the isomorphism of (polarized)
chains of OB ⊗Zp BdR(R])-lattices

MΛ ⊗B+
dR(R]) BdR(R]) ∼= Λ⊗Zp BdR(R]) .

After base change to the generic fiber SpdE, we get an isomorphism

Mloc,naive,♦
(G,µ)

∼= GrG,SpdE,µ .

Proof. The map is an injection as tΛ can be recovered as Λ⊗Zp B
+
dR(R])/MΛ. As Mloc,naive

(G,µ) is

proper over OE , also Mloc,naive,♦
(G,µ) is proper over SpdOE , and hence the map is a closed immersion.

For the final statement, as GrG,SpdE,µ is given by (G/Pµ)♦, it is enough to check that Mloc,naive
(G,µ),E

∼=
G/Pµ (compatibly with the map), which is standard. �

The problem of local models is that in general Mloc,naive
(G,µ) is not flat over OE . Pappas-Rapoport,

[PR03], [PR05], [PR09], and collaborators have since studied the problem of imposing additional
linear-algebraic conditions to define a closed subscheme

Mloc
(G,µ) ⊂Mloc,naive

(G,µ)
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with the same generic fiber, that is flat over OE . Of course, abstractly this can be done by taking
the flat closure of the generic fiber. One expects that Mloc

(G,µ) is normal; in fact, with reduced special

fiber. This brings the connection to Conjecture 21.4.1.
Finally, we discuss some explicit examples that appear in the work of Rapoport-Zink, [RZ17],

and Kudla-Rapoport-Zink, [KRZ], on a moduli-theoretic proof of Čerednik’s p-adic uniformization
theorem.

In both cases, an alternative description of the Drinfeld moduli problem is proposed. Our aim
in this appendix and Lecture XXV is to prove their conjectures in full generality. In this appendix,
we prove the conjectures of [RZ17] and [KRZ] about local models.

21.7. An EL case. First, we consider the situation in [RZ17]. Fix a finite extension F of Qp,
and a central division algebra D over F of invariant 1/n, n ≥ 2. We take B = D and OB = OD.
Moreover, we fix V = D and the lattice chain L = {ΠnOD;n ∈ Z} where Π ∈ OD is a uniformizer.
The associated group G is the algebraic group with Qp-valued points D×, and its parahoric model
G has G(Zp) = O×D. In fact, G = ResOF /Zp G0 for a parahoric group G0 over OF .

Note that
GQp

∼=
∏

ϕ:F ↪→Qp

GLn .

To define the cocharacter µ, we fix one embedding ϕ0 : F ↪→ Qp, and let µ be the conjugacy class of

cocharacters whose component µϕ for an embedding ϕ : F ↪→ Qp is given by (1, 0, . . . , 0) if ϕ = ϕ0,
and by one of (0, . . . , 0) or (1, . . . , 1) at all other places. We let E be its field of definition as usual,
which contains F through the embedding ϕ0.

In this situation, the usual local model Mloc,naive
(G,µ) is usually not flat. However, [RZ17, Section

5], Rapoport-Zink add further linear-algebraic conditions, the so-called Eisenstein conditions, to
define a closed subscheme

Mloc
(G,µ) ⊂Mloc,naive

(G,µ)

that is flat over OE , with the same generic fiber but reduced special fiber; in particular, it is normal,
cf. [RZ17, Corollary 5.6]. There is one case where one can understand this explicitly; this is the
case where µϕ = (0, . . . , 0) for all ϕ 6= ϕ0. In this case, E = F and for an OE = OF -algebra R, the

R-valued points of Mloc
(G,µ) parametrize OD ⊗OF R-linear quotients OD ⊗OF R→M where M is an

finite projective R-module of rank n. This can be analyzed directly, cf. [RZ96, Section 3.76], and
one sees in particular that it is a regular scheme, which we will denote Mloc

Dr , called the Drinfeld
local model.

The following result proves a conjecture of Rapoport-Zink, [RZ17, Remark 5.7].

Theorem 21.7.1. For general µ as in [RZ17], there is a natural G-equivariant isomorphism

Mloc
(G,µ)

∼= Mloc
Dr ×SpecOF SpecOE

of OE-schemes.

Remark 21.7.2. To prove the theorem, it would be enough to produce a G-equivariant map

Mloc
Dr ×SpecOF SpecOE →Mloc,naive

(G,µ) .

Indeed, this would necessarily factor over Mloc
(G,µ), and then one could easily check the map to be an

isomorphism. Note that both of these schemes are very explicit linear-algebraic moduli problems.
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However, it appears to be impossible to write down the map. In our proof, the most subtle step is
in Proposition 21.5.1, where a local model is lifted to an extension; this lift is very inexplicit.

Proof. We consider the exact sequence

1→ ResOF /Zp Gm → G → G → 1 ;

then G is a parahoric model of G. Any two µ as considered above project to the same conjugacy class
of cocharacters µ of G. Applying Proposition 21.5.1 twice, we see that (Mloc

(G,µ))
♦ is independent

of the choice of µ. As all of them are flat and normal, Proposition 18.4.1 implies that the formal
schemes are isomorphic, and then by GAGA the schemes are also isomorphic. �

21.8. A PEL case. Now we consider the PEL case considered in [KRZ]. For the moment, we
allow the case p = 2. We fix a finite field extension F0 of Qp of degree d with uniformizer π0 ∈ F0

and residue field Fpf , and a quadratic extension F of F0, and set B = F and OB = OF . If p = 2,
we demand that F/F0 is unramified; cf. [Kir15] for some work in the ramified 2-adic situation. Let
a 7→ a∗ be the nontrivial automorphism of F over F0. We let V be a 2-dimensional F -vector space
equipped with a specific alternating perfect form

( , ) : V × V → Qp

satisfying (av, w) = (v, a∗w) for all v, w ∈ V , a ∈ F , as specified now. First, any such pairing ( , )
is of the form (v, w) = trF0/Qp

ϑ−1
F0

(v, w)F0 for a unique alternating perfect form

( , )F0 : V × V → F0 ,

satisfying (av, w)F0 = (v, a∗w) for all v, w ∈ V , a ∈ F0; here ϑF0 ∈ OF0 is a generator for the
different of F0 over Qp, so that an element x ∈ F0 lies in ϑ−1

F0
OF0 if and only if trF0/Qp

(xOF0) ⊂ Zp.

In particular, the dual of an OF -lattice Λ ⊂ V with respect to ( , ) agrees with the dual with
respect to ( , )F0 . Next, there is a unique perfect hermitian form

〈 , 〉 : V × V → F

such that (v, w)F0 = trF/F0
δ−1〈v, w〉 for all v, w ∈ V . Here δ ∈ F× satisfies δ∗ = −δ. If F/F0 is

unramified, we assume that δ ∈ O×F , otherwise, we assume that δ = π ∈ F is a uniformizer of F
and π0 = π2. Then again, the dual of Λ with respect to ( , )F0 agrees with the dual with respect
to 〈 , 〉, so we can unambiguously talk about the dual of a lattice.

Now there are two isomorphism classes of alternating forms 〈 , 〉, the split form and the nonsplit
form. We assume that the form is nonsplit. In other words, the associated group G is not split.
Note that G sits in an exact sequence

1→ ResF0/Qp
U → G→ Gm → 1 ,

where U is the nonsplit unitary group over F0 associated with the extension F and the hermitian
F -vector space (V, 〈 , 〉). The adjoint group Gad is given by ResF0/Qp

Uad, where Uad is the nonsplit
form of PGL2 over F0. The group U(F0) is compact.

Next, we fix the lattice chain L. If F is a ramified extension of F0, then there is a unique selfdual
lattice Λ ⊂ V with respect to ( , ). In this case we fix L = {πnΛ;n ∈ Z} for some selfdual lattice
Λ. On the other hand, if F is the unramified extension of F0, then there are no selfdual lattices
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Λ ⊂ V . Instead, there are almost selfdual lattices, meaning lattices Λ ⊂ V such that π0Λ ⊂ Λ∗ ⊂ Λ
where

dimF
pf

Λ/Λ∗ = dimF
pf

Λ∗/π0Λ = 2 .

Note that the dimension is at least 2, as the modules are in fact modules overOF /π0
∼= Fp2f . In fact,

again there is a unique such lattice Λ. In this case, we let L be the chain of all {πn0 Λ, πn0 Λ∗;n ∈ Z}.
In the unramified case, the corresponding group G over Zp is parahoric. In the ramified case,

it is not parahoric; in fact, the special fiber has 2 connected components.
As in the EL case, we fix an embedding ϕ0 : F0 ↪→ Qp. We consider a conjugacy class µ of

cocharacters Gm → GQp
whose image under

GQp
↪→

∏
ϕ:F0↪→Qp

GU(1, 1) ↪→
∏

ϕ̃:F ↪→Qp

GL2

has components µϕ̃ = (1, 1) if ϕ̃ lies over ϕ0, and µϕ̃ = (0, 0) or (2, 2) otherwise, where above
each ϕ, both possibilities happen once. Note that the field of definition E of µ contains F0 via the
embedding ϕ0.

Again, the usual local model Mloc,naive
(G,µ) is not flat, but Kudla-Rapoport-Zink pose additional

linear-algebraic conditions, again called the Eisenstein conditions, to define a closed subscheme

Mloc
(G,µ) ⊂Mloc,naive

(G,µ)

with the same generic fiber and reduced special fiber, cf. [KRZ, Sections 5.2, 6.2].

Theorem 21.8.1. There is a natural G-equivariant isomorphism

Mloc
(G,µ)

∼= Mloc
Dr ×SpecOF0

SpecOE
of OE-schemes, where Mloc

Dr is the Drinfeld local model from the EL case for the field F0 and n = 2.

Proof. Using Proposition 21.5.1 and Proposition 21.4.3, this follows from the observation that
G◦ad is the same group as the adjoint group appearing in the EL case, with the same cocharacter
µad; also, we use Proposition 18.4.1 to get the isomorphism on the level of formal schemes, and
then by GAGA on schemes. �
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22. Lecture XXII: Vector bundles and G-torsors on the relative Fargues-Fontaine
curve

In preparation for the discussion of moduli spaces of shtukas, we need to discuss the relative
Fargues-Fontaine curve, and vector bundles and G-torsors on it.

22.1. Vector bundles. We wish to study vector bundles on the relative Fargues-Fontaine
curve XFF,S . Analogous to the discussion in Lecture XIII, these can also be studied in terms of
ϕ-modules on (subspaces of) Y(0,∞)(S), or through ϕ-modules on the relative Robba ring.

For simplicity, we assume that S = Spa(R,R+) is affinoid, and fix a pseudouniformizer $ ∈ R,
so that we get the function

κ : Y[0,∞)(S) = S×̇Spa Zp → [0,∞) .

For a rational number r ∈ (0,∞), we consider the subspaces

Y[0,r](S) = {|p|r ≤ |[$]|} ⊂ Y[0,∞)(S) , Y(0,r](S) = Y[0,r](S) ∩ Y(0,∞)(S) ,

and

Y[r,∞)(S) = {|[$]| ≤ |p|r 6= 0} ⊂ Y(0,∞)(S) .

On these subspaces, κ maps to the corresponding interval, and on rank 1-points these are precisely
the preimages under κ of the given intervals; however, something more subtle may happen on higher
rank points. Note that ϕ induces isomorphisms Y(0,r](S) ∼= Y(0,pr](S) and Y[r,∞)(S) ∼= Y[pr,∞)(S).

In particular, ϕ acts on Y[r,∞)(S), and ϕ−1 acts on Y(0,r](S).

Proposition 22.1.1. The following categories are naturally equivalent.

(1) The category of vector bundles on XFF,S.
(2) The category of ϕ-modules on Y(0,∞)(S).
(3) The category of ϕ-modules on Y[r,∞)(S).

(4) The category of ϕ−1-modules on Y(0,r](S).

Proof. The first two are equivalent by descent, and the other two are equivalent to (2) by the
standard spreading out argument. �

Definition 22.1.2. The relative Robba ring is the ring

R̃R = lim−→
r>0

H0(Y(0,r](S),OY(0,r](S))

on which ϕ is an automorphism.

Note that any ϕ-module over R̃R, or equivalently ϕ−1-module, descends to a ϕ−1-module over

R̃rR = H0(Y(0,r](S),OY(0,r](S))

for r small enough. In particular, we get a ϕ−1-module on Y(0,r](S). Kedlaya-Liu prove that this
gives an equivalence.

Theorem 22.1.3 ([KL15]). The category of vector bundles on XFF,S is equivalent to the cate-

gory of ϕ-equivariant finite projective R̃R-modules.
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22.2. Semicontinuity of the Newton polygon. Kedlaya-Liu prove two important founda-
tional theorems about vector bundles on the Fargues-Fontaine curve. The first is the semicontinuity
of the Newton polygon.

Let S be a perfectoid space of characteristic p, and let E be a vector bundle on the relative
Fargues-Fontaine curve XFF,S . By passing to an open and closed cover of S, we can assume that
the rank of E is constant. Now for any s ∈ S, we can choose a geometric point s = Spa(C,C+)→ S
whose closed point maps to s, and pullback E to a vector bundle Es on XFF,C . By the classification
theorem, Theorem 13.5.3, Es is classified by a Newton polygon, which gives a map

νE : |S| → (Qn)+ = {(λ1, . . . , λn) ∈ Qn | λ1 ≥ . . . ≥ λn} .
We endow the target with the dominance order for which (λ1, . . . , λn) ≥ (µ1, . . . , µn) if and only if
for all i = 1, . . . , n, one has λ1 + . . .+ λi ≥ µ1 + . . .+ µi, with equality for i = n.

Theorem 22.2.1 ([KL15]). The map νE is upper semicontinuous.

22.3. The étale locus. The second theorem of Kedlaya-Liu concerns the open locus where
the Newton polygon is constant 0. Note that one can build examples of such vector bundles by
taking a pro-étale Qp-local system L on S and looking at E = L⊗Qp OXFF,S

. By the pro-étale (or

even v-)descent of vector bundles on Y(0,∞)(S), and thus on XFF,S , given by Proposition 19.5.3,
one sees that this defines a vector bundle on XFF,S , by descending to the case where L is trivial.

Theorem 22.3.1 ([KL15]). This construction defines an equivalence between the category of
pro-étale Qp-local systems on S and the category of vector bundles E on XFF,S which are trivial at

every geometric point of S (which is to say, the function νE is identically 0).

We will also need to understand the relation to ϕ−1-modules on Y[0,r](S) (note that we are now

including characteristic p points). By a ϕ−1-module on Y[0,r](S), we mean a locally free Y[0,r](S)-

module E equipped with an isomorphism (ϕ−1)∗E|Y[0,r](S)
∼→ E . If S = Spa(R,R+) is affinoid, the

category of ϕ−1-modules on Y[0,r](S) is equivalent to the category of ϕ−1-modules (equivalently,
ϕ-modules) over the integral Robba ring

R̃int
R = lim−→

r>0

H0(Y[0,r](S),OY[0,r](S)).

If L is a pro-étale Zp-local system on S, then L ⊗Zp OY[0,r](S) defines such an object, again using

Proposition 19.5.3.

Proposition 22.3.2 ([KL15]). The functor L 7→ L⊗ZpOY[0,r](S) defines an equivalence between

the category of pro-étale Zp-local systems on S and the category of ϕ−1-modules on Y[0,r](S). In

particular, any ϕ−1-module on Y[0,r](S) has constant Newton polygon equal to 0 when restricted

to Y(0,r](S). The functor E 7→ E|Y(0,r](S) on ϕ−1-modules over Y[0,r](S) corresponds to the functor

L 7→ L[1/p] on pro-étale Zp-local systems on S.

The following corollary sums up the situation.

Corollary 22.3.3. Let Eη be a ϕ−1-module on Y(0,r](S). Consider the functor Latt(Eη) sending

any S′ → S to the set of ϕ−1-modules E ′ on Y[0,r](S
′) together with an ϕ−1-equivariant identification

of E ′|Y(0,r](S
′) with the pullback of Eη to Y(0,r](S

′). Then Latt(Eη) is representable by a perfectoid
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space étale over S. Its image in S is the open subset Sa ⊂ S where the Newton polygon of Eη is
identically 0, called the admissible locus. Over Sa, one has a corresponding Qp-local system Lη,

and Latt(Eη) parametrizes Zp-lattices L ⊂ Lη.

Proof. As in Proposition 22.1.1, Eη is the restriction of a unique ϕ-module on all of Y(0,∞)(S),
which is the same thing as a vector bundle F on XFF,S . By Theorem 22.2.1, the locus Sa ⊂ S
where νF is identically 0 is open. By Theorem 22.3.1, the restriction of F to XFF,Sa corresponds
to a Qp-local system Lη.

For a perfectoid space S′ → S, the S′-points of Latt(Eη) are the extensions of Eη to Y[0,r](S
′). By

Proposition 22.3.2, these correspond to Zp-lattices L ⊂ Lη over S′. This shows that Latt(Eη)→ Sa

is étale, as it becomes isomorphic to GLn(Qp)/GLn(Zp) × S′ → S′ after passing to a pro-étale

cover S′ → Sa which trivializes L. �

For the applications to the moduli spaces of shtukas, we need to generalize these results to the
case of G-torsors for a general reductive group G.

22.4. Classification of G-torsors. First, we’ll discuss the classification of G-torsors on XFF,S

in case S = Spa(C,C+) is a geometric point, so that XFF,S = XFF is the absolute Fargues-Fontaine
curve discussed in Lecture XIII.

Theorem 13.5.4 relates isocrystals to vector bundles on XFF. We intend to upgrade this to a
relation between isocrystals with G-structure and G-torsors, using a Tannakian formalism.

Let us fix an algebraically closed discrete field k (e.g. k = Fp) and an inclusion k ↪→ C. Let
L = W (k)[1

p ], and let ϕ be the Frobenius automorphism of L. Recall that an isocrystal over k

is a pair (V, ϕV ), where V is a finite-dimensional L-vector space and ϕV : V
∼→ V is a ϕ-linear

isomorphism. Let Isock be the category of isocrystals over k.
Recall the following definition of Kottwitz, [Kot85].

Definition 22.4.1. An isocrystal with G-structure is an exact ⊗-functor RepQp
G→ Isock.

Let Isock → VecL be the forgetful functor towards the category of L-vector spaces. Given an
isocrystal with G-structure RepQp

G → Isock, the composite functor RepQp
G → VecL is a fiber

functor. Such fiber functors are a torsor under H1(L,G), which is trivial by Steinberg’s theorem
[Ste65, Theorem 1.9]. Thus RepQp

G→ VecL is isomorphic to the standard fiber functor on RepG
base changed to L.

After fixing such a trivialization, our isocrystal is a ϕ-linear automorphism of the standard fiber
functor RepQp

G → VecL, which determines an element b ∈ G(L). In other words, the isocrystal

sends a Qp-linear representation V to the isocrystal (V ⊗QpL, b⊗ϕ). Changing the trivialization of

the fiber functor replaces b with ϕ(y)by−1 for some y ∈ G(L). The relation b ∼ ϕ(y)by−1 is called
σ-conjugacy by Kottwitz. We let B(G) be the set of equivalence classes of G(L) under σ-conjugacy.
Thus isomorphism classes of isocrystals with G-structure are in bijection with B(G).

Kottwitz gives a combinatorial description of B(G), analogous to the Dieudonné-Manin classi-
fication. This description is based on two invariants. Let T ⊂ B ⊂ GQp

be a maximal torus and a

Borel, and let Γ = Gal(Qp/Qp). Kottwitz constructs a Newton map

ν : B(G)→ ((X∗(T )⊗Q)+)Γ,
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where the right-hand side is the set of Γ-invariants in the set of dominant rational cocharacters. In
the case of G = GLn we may identify X∗(T ) with Zn, and then ν(b) ∈ (Qn)+ is the Newton point
of b.

Kottwitz also constructs a map

κ : B(G)→ π1(GQp
)Γ,

where π1 denotes Borovoi’s fundamental group of GQp
[?]. If G = GLn, this is already determined

by the Newton point, intuitively as the endpoint of the Newton polygon, i.e. κ(b) = vp(det b) ∈ Z.

Remark 22.4.2. In the equal characteristic analogue, κ is a map

G(k((t)))→ π1(GQp
)Γ

that maps an algebraic loop to a topological loop.

The map
(λ, κ) : B(G) ↪→ ((X∗(T )⊗Q)+)Γ × π1(GQp

)Γ

is an injection, and one can describe the image. In particular, B(G) is independent of the choice
of k.

Returning now to the Fargues-Fontaine curve, we let Bun(XFF) be the category of vector bundles
on XFF. We have an exact ⊗-functor

Isock → Bun(XFF)

sending (V, ϕV ) to the descent of V ⊗L Y(0,∞) to XFF formed using ϕV ⊗ ϕ. Composing with
Isock → Bun(XFF) defines a functor from the category of isocrystals with G-structure to the
category of G-torsors on XFF.

Theorem 22.4.3 (Fargues, [Far17]). The map from B(G) to the set of isomorphism classes of
G-torsors on XFF is a bijection.

22.5. Semicontinuity of the Newton point. Now we consider the relative situation, so
let P be a G-torsor on XFF,S for some perfectoid space S of characteristic p. The invariants ν, κ
defined in the last section define maps

νP : |S| → ((X∗(T )⊗Q)+)Γ ,

and
κP : |S| → π1(GQp

)Γ .

On the set ((X∗(T )⊗Q)+)Γ, one has a natural dominance order, as discussed in [RR96, Section
2]. In particular, Theorem 22.2.1 and [RR96, Lemma 2.2 (iv)] imply the following result.

Corollary 22.5.1. The map

νP : |S| → ((X∗(T )⊗Q)+)Γ

is upper semicontinuous.

Moreover, the map κP should be locally constant. This result will appear in [FS]. We will be
able to get our desired results without knowing this (but we will prove a slightly weaker version of
this result below).

We record here the analogue of Theorem 22.3.1 for G-torsors on the Fargues-Fontaine curve.
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Theorem 22.5.2. The following categories are equivalent.

• Pro-étale G(Qp)-torsors on S, and

• G-torsors on XFF,S which are trivial at every geometric point of S.

Proof. This will follow from Theorem 22.3.1 by the Tannakian formalism. Suppose P is a
pro-étale G(Qp)-torsor on S. For every representation ρ : G → GLn, the pushfoward ρ∗(P) is a

Qp-local system on S, and so corresponds to a vector bundle Eρ on XFF,S by Theorem 22.3.1. The

functor ρ 7→ Eρ corresponds to the required G-torsor on XFF,S .
For the converse, it suffices to see that any G-torsor on XFF,S is pro-étale locally constant, as

then the torsor of trivializations is the desired G(Qp)-torsor; so assume that S is strictly totally

disconnected. Given a G-torsor E on XFF,S that is trivial at every geometric point, we get in
particular for any representation ρ : G → GLn a trivial rank n-vector bundle over XFF,S , or
equivalently a pro-étale Qp-local system on S. As S is strictly totally disconnected, these are

equivalent to finite projective C(S,Qp)-modules. In other words, we get a fibre functor on RepQp G

with values in C(S,Qp), i.e. a G-torsor over C(S,Qp). We know that for all s ∈ S, the corresponding
fibre is the trivial G-torsor over Qp. As the local rings of C(S,Qp) are henselian by [Sta, Tag 06RS],
this implies that the G-torsor is locally trivial, as desired. �

22.6. Extending G-torsors. We want to understand all possible extensions of a ϕ−1-equivariant
G-torsor Pη on Y(0,r](S) to a ϕ−1-equivariant G-torsor P on Y[0,r](S), where we fix some smooth
integral model G/Zp of G. We assume that G has connected fibers. As usual, we assume that
S = Spa(R,R+) is affinoid and we fix a pseudo-uniformizer $ ∈ R to define Y[0,r](S).

First, we classify ϕ−1-equivariant G-torsors P on Y[0,r](S). Note that if P is a pro-étale G(Zp)-
torsor on S, then

P = P×G(Zp) (G ×SpaZp Y[0,r](S))

defines such a ϕ−1-equivariant G-torsor on Y[0,r](S). In the Tannakian language, for any represen-
tation ρ : G→ GLn, the pushforward ρ∗(P) defines a Zp-local system of rank n, which gives rise to

a ϕ−1-equivariant vector bundle of rank n by the construction of the previous sections.

Proposition 22.6.1. This construction defines an equivalence of categories between pro-étale
G(Zp)-torsors on S and ϕ−1-equivariant G-torsors on Y[0,r](S).

Proof. From Proposition 22.3.2 and the Tannakian formalism of Theorem 19.5.2, we see that
the target category is equivalent to the category of exact ⊗-functors from RepZp G towards pro-étale

Zp-local systems on S. To see that this defines a pro-étale G(Zp)-torsor, we need to see that pro-

étale locally on S, this fiber functor is equivalent to the forgetful functor. At each geometric point
of S, the corresponding Zp-valued fiber functor on RepZp G is equivalent to the forgetful functor,

as H1
ét(Spec Zp,G) = 0 by Lang’s lemma. In general, we can assume that S is strictly totally

disconnected, in which case Zp-local systems on S are equivalent to finite projective C0(π0S,Zp)-

modules, and exact ⊗-functors from RepZp G to Zp-local systems on S are equivalent to G-torsors

on C0(π0S,Zp). At each point s ∈ S, we know that the torsor is trivial. But the local rings of
C0(π0S,Zp) are henselian along their maximal ideal (p) (as filtered colimits of p-adically complete
rings), so any G-torsor is locally trivial. �

In particular, over a geometric point, all ϕ−1-equivariant G-torsors on Y[0,r](S) are trivial, and
thus their restrictions to Y(0,r](S) are also trivial.

https://stacks.math.columbia.edu/tag/06RS
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Theorem 22.6.2. Let Pη be a G-torsor on Y(0,r](S) together with an isomorphism with its

ϕ−1-pullback. Consider the functor Latt(Pη) sending any S′ → S to the set of G-torsors P ′ on
Y[0,r](S

′) with an isomorphism with their ϕ−1-pullback and a ϕ−1-equivariant identification of their
restriction to Y(0,r](S

′) with the pullback of Pη. Then Latt(Pη) is representable by a perfectoid space
étale over S. Its open image in S is the open subset Sa ⊂ S where νPη and κPη are identically
0, called the admissible locus. Over Sa, one has a corresponding pro-étale G(Qp)-torsor Pη, and

Latt(Pη) parametrizes pro-étale G(Zp)-torsors P with an identification

P×G(Zp) G(Qp) = Pη .

Proof. From the previous proposition, we see that Latt(Pη) maps into Sa ⊂ S. First, we
claim that Sa ⊂ S is open. By Corollary 22.5.1, we can assume that νPη is identically 0. Moreover,
we can work pro-étale locally, and so assume that S is strictly totally disconnected. As in the proof
of Theorem 22.5.2, we get a G-torsor on C0(π0S,Qp). If this G-torsor is trivial at some s ∈ π0S,
then it is trivial in an open neighborhood, as the local rings of C0(π0S,Qp) are henselian. By
the classification of G-torsors on the Fargues-Fontaine curve, Sa is the locus where the G-torsor is
trivial. Thus, this implies that Sa ⊂ S is open.

For the rest, we can assume that S = Sa. The previous discussion shows that we then get
an exact ⊗-functor from RepQp

G to pro-étale Qp-local systems on S, which is pro-étale locally

isomorphic to the forgetful functor. The pro-étale sheaf of isomorphisms with the forgetful ⊗-
functor defines a pro-étale G(Qp)-torsor Pη, and unraveling the definitions we see that

Pη = Pη ×G(Qp) (G× Y(0,r](S)) .

Comparing with Proposition 22.6.1, we see that Latt(Pη) parametrizes pro-étale G(Zp)-torsors P
with an identification

P×G(Zp) G(Qp) = Pη .
Using Theorem 9.1.3, one sees that this is indeed étale over S, as fixing a trivialization of Pη, one
sees that pro-étale locally on S it is the product S ×G(Qp)/G(Zp). �
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23. Lecture XXIII: Moduli spaces of shtukas

Today we define the moduli spaces of mixed-characteristic local G-shtukas and show that they
are representable by locally spatial diamonds.

These will be the mixed-characteristic local analogues of the moduli spaces of global equal-
characteristic shtukas introduced by Varshavsky [Var04]. It may be helpful to briefly review the
construction in the latter setting. The ingredients are a smooth projective geometrically connected
curve X defined over a finite field Fq and a reductive group G/Fq. The moduli space of G-shtukas
with m legs (called F -bundles in [Var04]) is a stack ShtG,m equipped with a morphism to Xm.
For an Fq-scheme S, the S-points of ShtG,m classify triples consisting of a G-torsor P on S ×Fq X,
an m-tuple x1, . . . , xm ∈ X(S), and an isomorphism

ϕP : (Frob∗S P)|(S×FqX)\
⋃m
i=1 Γxi

∼→ P|(S×FqX)\
⋃m
i=1 Γxi

.

The stack ShtG,m is not locally of finite type. But if in addition we are given an m-tuple
of conjugacy classes of cocharacters µ1, . . . , µm of G, we may define a closed substack ShtG,{µi}
of ShtG,m classifying shtukas where ϕP is bounded by µi at Γxi for i = 1, . . . ,m. (Caveat: the
boundedness condition is more subtle than what we describe when the xi intersect, see below.)
Then ShtG,{µi} is a Deligne-Mumford stack, locally of finite type over Xm.

Furthermore, if we choose a rational dominant cocharacter ν ∈ (X∗(T )×Q)+ of a maximal torus
of G, then we may restrict the stack of shtukas further, to obtain an open substack ShtG,{µi},≤ν ⊂
ShtG,{µi} classifying shtukas where P is bounded by ν in the appropriate sense. Then ShtG,{µi},≤ν
is particularly nice: each connected component is a quotient of a quasi-projective scheme by a finite
group.

From there, it is possible to the level structures to the spaces of shtukas, to obtain a tower
of moduli spaces admitting an action of the adelic group G(AF ), where F is the function field of
X. The cohomology of these towers of moduli spaces is the primary means by which V. Lafforgue
[Laf12] constructs the “automorphic to Galois” direction of the Langlands correspondence for G
over F .

23.1. Definition of mixed-characteristic local shtukas. Now let G be a reductive group
over Qp. We will mimic Varshavsky’s definition of G-shtukas, replacing X with Zp and products
X × S with X×̇S. In the equal-characteristic setting, G naturally becomes a group scheme over
X by base change, so that we can talk about G-torsors on X × S. But in the mixed-characteristic
setting, G does not naturally live over Zp. Therefore we choose a smooth group scheme G over Zp
with generic fiber G and connected special fiber.

Let S = Spa(R,R+) be an affinoid perfectoid space of characteristic p, with pseudouniformizer

$. Suppose we are given a triple (P, {S]i}, ϕP), where P is a G-torsor on S×̇Spa Zp, where

S]1, . . . , S
]
m are untilts of S to Qp, and where

ϕP : (Frob∗S P)|(S×̇X)\
⋃m
i=1 Γxi

∼→ P|(S×̇X)\
⋃m
i=1 Γxi

is an isomorphism which is meromorphic along the closed Cartier divisor
⋃m
i=1 S

]
i ⊂ S×̇Zp. For

sufficiently large r, the open subset

Y[r,∞)(S) = {|$| ≤ |p|r 6= 0} ⊂ S×̇Spa Zp



23. LECTURE XXIII: MODULI SPACES OF SHTUKAS 175

will be disjoint from the S]i , so that the restriction of ϕP to Y[r,∞)(S) is an isomorphism. We can
use this restriction to descend P to a G-torsor E over the relative Fargues-Fontaine curve XFF,S .
Then E is independent of the choice of $ and r, and is recording what happens far away from
p = 0.

We have already seen in Theorem 22.4.3 that there is a bijection b 7→ Eb between Kottwitz’ set
B(G) and the set of isomorphism classes of G-torsors on the absolute Fargues-Fontaine curve. In
the set up of local shtukas, we choose in advance an element b ∈ B(G), and enforce an isomorphism

E ∼→ Eb.
We are now ready to define the space of local mixed-characteristic G-shtukas. As in the previous

section, we let k be a discrete algebraically closed field, and L = W (k)[1/p].

Definition 23.1.1. Let (G, b, {µi}) be a triple consisting of a smooth group scheme G with
reductive generic fiber G and connected special fiber, an element b ∈ G(L), and a collection
µ1, . . . , µm of conjugacy classes of cocharacters Gm → GQp

. For i = 1, . . . ,m, let Ei/Qp be

the field of definition of µi, and let Ĕi = Ei · L.
The moduli space

ShtG,b,{µi} → Spd Ĕ1 ×Spd k · · · ×Spd k Spd Ĕm

of shtukas associated with (G, b, {µi}) is the presheaf on Perfk sending S = Spa(R,R+) to the set

of quadruples (P, {S]i}, ϕP , ιr), where:

• P is a G-torsor on S×̇Spa Zp,

• S]i is an untilt of S to Ĕi, for i = 1, . . . ,m,
• ϕP is an isomorphism

ϕP : (Frob∗S P)|(S×̇X)\
⋃m
i=1 Γxi

∼→ P|(S×̇X)\
⋃m
i=1 Γxi

,

and finally
• ιr is an isomorphism

ιr : P|Y[r,∞)(S)
∼→ G× Y[r,∞)(S)

for large enough r, under which ϕP gets identified with b× FrobS .

The isomorphism ϕP is required to be meromorphic along the closed Cartier divisor
⋃m
i=1 S

]
i ⊂

S×̇Spa Zp, and it is subject to the following boundedness condition: At all geometric rank 1 points

of S, the relative position of Frob∗S P and P at S]i is bounded by
∑

j|S]j=S
]
i
µj in the Bruhat order.

Remark 23.1.2. The boundedness condition appearing in this definition is essentially the same
as the one that appears in the definition of GrG,SpdE1×...×SpdEm,≤µ• .

Remark 23.1.3. The isomorphism class of ShtG,b,{µi} only depends on the class of b in B(G);

replacing b by ϕ(y)by−1 corresponds to composing ιr with y × id, for y ∈ G(L).

The main theorem of the course is the following.

Theorem 23.1.4. The moduli space ShtG,b,{µi} is a locally spatial diamond.

Before embarking on the proof, let us note that the descent result of Proposition 19.5.3 already
implies that Sht(G,b,µ•) is a v-sheaf.
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23.2. The case of no legs. Let us dispense with the case of no legs (that is, m = 0).

Proposition 23.2.1. The moduli space ShtG,b,∅ is empty if b does not lie in the trivial class in
B(G), and ShtG,1,∅ is isomorphic to the constant perfectoid space G(Qp)/G(Zp).

Proof. Let S be an affinoid perfectoid space over k. An S-point of ShtG,b,∅ is a ϕS-equivariant
G-torsor P on Y[0,∞)(S), together with a trivialization ιr of P over Y[r,∞)(S) which identifies ϕP with

b×FrobS . Since there are no legs to interfere, repeated applications of ϕ−1
P can be used to extend ιr

to a trivialization of P on all of Y(0,∞)(S). Thus there is an isomorphism P|Y(0,∞)(S)
∼= G×Y(0,∞)(S),

which identifies ϕP with b × FrobS on this locus. In other words, the ϕ-equivariant G-torsor
P|Y(0,∞)(S) is the pullback of the G-torsor Eb on XFF,S .

By Theorem 22.6.2, a ϕ-equivariant G-torsor on Y(0,∞)(S) can be extended to a G-torsor on
Y[0,∞)(S) if and only if its descent to XFF,S is trivial at all geometric points of S. In the present

situation, we have a G-torsor on Y[0,∞)(S) whose restriction to Y(0,∞)(S) is the pullback of Eb.
Therefore the class of b in B(G) is trivial. Again by Theorem 22.6.2, ϕ-equivariant extensions
of the trivial ϕ-equivariant G-torsor on Y(0,∞)(S) to a ϕ-equivariant G-torsor on Y[0,∞)(S) are in
correspondence with G(Zp)-lattices in the trivial pro-étale G(Qp)-torsor on S. Such lattices in turn

correspond to S-points of G(Qp)/G(Zp). �

23.3. The case of one leg. We now prove Theorem 23.1.4 in the case of one leg. In this
case, the space of shtukas can be compared with a space of modifications of G-torsors at one point
on the Fargues-Fontaine curve. Let µ be a cocharacter of G, with field of definition E.

Proposition 23.3.1. Let S ∈ Perfk. The S-points of the moduli space ShtG,b,µ are in bijection

with isomorphism classes of quadruples (S], E , α,P), where

• S] is an untilt of S to E,
• E is a G-torsor on XFF,S, which is trivial at every geometric point of S,
• α is an isomorphism of G-torsors

E|XFF,S\S]
∼→ Eb|XFF,S\S]

which is meromorphic along S] and bounded by µ, and finally
• P is G(Zp)-lattice in the pro-étale G(Qp)-torsor corresponding to E under Theorem 22.5.2.

Proof. Assume that S is affinoid, and suppose we are given an S-point of ShtG,b,µ, correspond-

ing to a quadruple (P, S], ϕP , ιr). Let ε > 0 be such that S] ⊂ Y(0,∞)(S) is disjoint from Y(0,ε)(S).

Then the restriction of P to Y(0,ε)(S) is ϕ−1-equivariant, and so descends to a G-torsor E on XFF,S .

The restriction of P is a ϕ−1-equivariant G-torsor on Y[0,ε](S), and so corresponds by Proposition
22.6.1 to a pro-étale G(Zp)-torsor P on S, whose generic fiber Pη corresponds to E under Theorem
22.5.2.

By our constructions, the pullbacks of E and Eb to Y(0,∞)(S) are both identified ϕ-equivariantly

with P away from
⋃
n∈Z ϕ

n(S]); thus we get an isomorphism α between E and Eb away from the

image of S] in XFF,S . �

The description of ShtG,b,µ in Proposition 23.3.1 shows that it only depends on the triple (G, b, µ)
and the subgroup G(Zp) ⊂ G(Qp), and not necessarily on the model G. We can define a space of
shtukas ShtG,b,µ,K with K-structure, where K ⊂ G(Qp) is any compact open subgroup: this will
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parametrize quadruples (S], E , α,P), where P is instead a pro-étale K-torsor, such that Pη =
P ×K G(Qp) is the pro-étale G(Qp)-torsor corresponding to E . If K ′ ⊂ K are two such subgroups,

then

ShtG,b,µ,K′ → ShtG,b,µ,K

is finite étale, and a K/K ′-torsor in caseK ′ ⊂ K is normal. All spaces in this tower carry compatible
continuous actions by Jb(Qp), since this group operates on Eb.

The limit

ShtG,b,µ,∞ = lim←−
K

ShtG,b,µ,K

has a simple description. Its S-points parametrize pairs (S], α), where S] is an untilt of S to E,
and α is an isomorphism of G-torsors

E1|XFF,S\S]
∼→ Eb|XFF,S\S]

which is meromorphic along S] and bounded by µ. We remark that ShtG,b,µ,∞ admits an continuous

action of the product G(Qp)× Jb(Qp), via the actions of those groups on E1 and Eb.
This description of ShtG,b,µ,∞ implies a general duality result for moduli spaces of shtukas,

proving a conjecture of Rapoport-Zink, [RZ96, Section 5.54], generalizing the duality between
Lubin-Tate and Drinfeld tower, [Fal02b], [FGL08].

Corollary 23.3.2. Assume that (G, b, µ) is a local shtuka datum such that b is basic. Define
a dual local shtuka datum (Ǧ, b̌, µ̌) via Ǧ = Jb the σ-centralizer of b, which is an inner form of
G, b̌ = b−1 ∈ Ǧ = Jb and µ̌ = µ−1 under the identification ǦQp

∼= GQp
. Then there is a natural

G(Qp)× Jb(Qp)-equivariant isomorphism

ShtG,b,µ,∞ ∼= Sht(Ǧ,b̌,µ̌),∞

over Spd Ĕ.

Proof. As Jb is an inner form of G, the category of G-torsors is equivalent to the category
of Jb-torsors, via sending a G-torsor P to the Jb-torsor of G-equivariant identifications between
P and Eb. Under this identification, Eb goes to the trivial Jb-torsor, and E1 goes to the Jb-torsor
corresponding to b̌ = b−1. The condition that the original modification is bounded by µ gets
translated into the boundedness by µ̌ = µ−1. �

We have yet to show that ShtG,b,µ,K is a locally spatial diamond. We will do this by showing
that ShtG,b,µ,K admits an étale morphism to a Beilinson-Drinfeld Grassmanniann. Recall that

GrG,SpdE,µ is the functor sending S to the set of untilts S] over E together with a G-torsor P on

S×̇Qp and a trivialization of P away from S], which is meromorphic and bounded by µ at S].
The alternate description given in Proposition 20.2.2 shows that the S-points of GrG,SpdE,µ are in

correspondence with untilts S] = (R], R]+) over E together with G-bundles over B+
dR(R]) which

come with a trivialization over BdR(R]).
Suppose we are given an S-point of ShtG,b,µ,K , corresponding to a quadruple (S], E , α,P) as in

Proposition 23.3.1. The G-torsor Eb pulls back to the trivial G-torsor on S×̇Spa Qp by definition.

Therefore the pullback of E to B+
dR(S]) can be regarded as a G-torsor ES] over B+

dR(R]) with a
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trivialization over BdR(R]) induced by α, and thus an S-point of GrG,Spd Ĕ,µ. (We need the field

Ĕ = E · L because S lives over k.) We arrive at a period morphism

πGM : ShtG,b,µ → GrG,Spd Ĕ,≤µ

The subscript GM stands for Grothendieck-Messing. In the case of moduli spaces of p-divisible
groups, this period map is closely related to the Grothendieck-Messing deformation theory of p-
divisible groups.

Proposition 23.3.3. The period morphism

πGM : ShtG,b,µ,K → GrG,Spd Ĕ,≤µ

is étale.

Remark 23.3.4. Since GrG,Spd Ĕ,≤µ is a spatial diamond (Proposition 20.2.3), this implies that

ShtG,b,µ,K is a locally spatial diamond.

Proof. Let S ∈ Perfk, and suppose we are given an S-point of GrG,Spd Ĕ,≤µ. This point

corresponds to a modification of Eb on XFF,S , which results in a G-torsor E on XFF,S . By Theorem
22.6.2, the locus Sa ⊂ S where E is trivial is an open subset. (Thus there exists an open subset
Gra

G,Spd Ĕ,≤µ ⊂ GrG,Spd Ĕ,≤µ, the admissible locus, through which the morphism from Sa must

factor.)
The G-torsor E|Sa×̇ SpaQp

corresponds via Theorem 22.5.2 to a pro-étale G(Qp)-torsor Pη on

Sa. The fiber of πGM over S is the space of K-lattices in Pη. This is indeed étale, as pro-étale
locally on S, this fiber is the projection Sa ×G(Qp)/K → S. �

23.4. The case of two legs. Much of our discussion of the moduli space of one-legged shtukas
carries over to the general case. For every compact open subgroup K ⊂ G(Qp), there is a functor
ShtG,b,{µi},K , of which ShtG,b,{µi} = ShtG,b,{µi},G(Zp) is a special case. The limit

ShtG,b,{µi} = lim←−
K

ShtG,b,{µi},K

has this description: for S ∈ Perfk, an S-point of ShtG,b,{µi} corresponds to a tuple of untilts S]i/Ei
for i = 1, . . . ,m, together with an isomorphism

α : E1|XFF,S\
⋃m
i=1 S

]
i

∼→ Eb|XFF,S\
⋃m
i=1 S

]
i

subject to a boundedness condition. Unfortunately, the precise boundedness condition turns out to
be somewhat subtle to specify, depending on the specific position of the untilts and their Frobenius
translates.

To prove that ShtG,b,{µi},K is a locally spatial diamond, we will again use a period morphism
πGM , which presents ShtG,b,{µi},∞ as a pro-étale G(Qp)-torsor over an open subset of a Grassman-
nian, which records what is happening at the legs. However, one has to be careful with the target
of the period morphism. Over the locus where all Frobenius translates of all legs are disjoint from
each other, the required Grassmannian is simply the product of the GrG,SpdEi,µi , but in general
one needs a twisted form of the Beilinson-Drinfeld Grassmannian.

It may be helpful to spell out the case of two legs first. Inside Spd Qp × Spd Qp, we have the
diagonal ∆ = Spd Qp ⊂ Spd Qp × Spd Qp, and its translates (ϕ × 1)n(∆) ⊂ Spd Qp × Spd Qp,
where ϕ× 1 acts only on the first copy of Spd Qp.
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Definition 23.4.1. Let Grtw
G,(SpdQp)2 → (Spd Qp)

2 be the following version of the Beilinson-

Drinfeld Grassmannian.

(1) Over the open subset (Spd Qp)
2 \
⋃
n6=0(ϕ×1)n(∆), it is the Beilinson-Drinfeld Grassman-

nian GrG,(SpdQp)2 .

(2) Over the open subset (Spd Qp)
2 \
⋃
n6=m(ϕ× 1)n(∆) with m > 0, it is the pullback of the

convolution Beilinson-Drinfeld Grassmannian G̃rG,(SpdQp)2 under (ϕ× 1)−m.

(3) Over the open subset (Spd Qp)
2 \
⋃
n6=m(ϕ× 1)n(∆) with m < 0, it is the pullback of the

convolution Beilinson-Drinfeld Grassmannian G̃rG,(SpdQp)2 under the switching of the two

factors (Spd Qp)
2 ∼= (Spd Qp)

2 composed with (ϕ× 1)m.

Moreover, the Schubert variety

Grtw
G,SpdE1×SpdE2,≤(µ1,µ2) ⊂ Grtw

G,SpdE1×SpdE2
= Grtw

G,(SpdQp)2 ×(SpdQp)2(SpdE1 × SpdE2)

is the closed subfunctor given by the corresponding Schubert varieties in all cases.

These spaces are glued via the obvious identification over (Spd Qp)
2 \
⋃
n(ϕ × 1)n(∆), where

they are all identified with two copies of the usual affine Grassmannian GrG,SpdQp . The following
gives a more direct definition.

Proposition 23.4.2. The functor Grtw
G,SpdE1×SpdE2,≤(µ1,µ2) → SpdE1 × SpdE2 parametrizes

over a perfectoid space S of characteristic p with two untilts S]i = Spa(R]i , R
]+
i ), i = 1, 2, over Ei,

the set of G-torsors Pη on S×̇Spa Qp together with an isomorphism

ϕPη : (Frob∗S Pη)|S×̇ SpaQp\
⋃2
i=1 S

]
i

∼= Pη|S×̇SpaQp\
⋃2
i=1 S

]
i

that is meromorphic along the closed Cartier divisor
⋃2
i=1 S

]
i ⊂ S×̇Spa Qp, and an isomorphism

ιr : Pη|Y[r,∞)(S)
∼= G× Y[r,∞)(S)

for large enough r under which ϕPη gets identified with b × FrobS, satisfying the following bound-
edness condition:

At all geometric rank 1 points, the relative position of Frob∗S P and P at S]i is bounded by∑
j|S]j=S

]
i
µj in the Bruhat order.

Remark 23.4.3. This description seems to depend on b, but in fact it is canonically independent
of it: One can change the isomorphism ϕPη by any element of G(L).

Proof. We note that ιr extends to an isomorphism

P|Y(0,∞)(S)\
⋃
i=1,2,n≥0 ϕ

−n(S]i )
∼= G× (Y(0,∞)(S) \

⋃
i=1,2,n≥0

ϕ−n(S]i ))

that is meromorphic along ϕ−n(S]i ). To describe P as a modification of the trivial G-torsor, we have
to prescribe the modification. Over the open subset (Spd Qp)

2 \
⋃
n 6=0(ϕ×1)n(∆), the modification

at S]1 and S]2 gives rise to a section of GrG,(SpdQp)2 , which can then be ϕ−1-periodically continued.

Over the open subset (Spd Qp)
2 \
⋃
n6=m(ϕ × 1)n(∆) with m > 0, we can first modify the trivial

G-torsor at S]1 (which is different from ϕ−n(S]2) for n ≥ 0 at all geometric points) and continue this

modification ϕ−1-periodically, and afterwards modify at S]2 and continue ϕ−1-periodically. This
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gives rise to an object of the Beilinson-Drinfeld Grassmannian G̃rG,(SpdQp)2 . Symmetrically, the
same happens in the third case.

Finally, the boundedness conditions correspond to Schubert varieties in all cases. �

Therefore, the arguments in the case of one leg give the following result.

Corollary 23.4.4. There is an étale period map

πGM : ShtG,b,{µ1,µ2} → Grtw
G,Spd Ĕ1×kSpd Ĕ2,≤(µ1,µ2)

.

Its open image is the admissible locus

Grtw,a

G,Spd Ĕ1×kSpd Ĕ2,≤(µ1,µ2)
⊂ Grtw

G,Spd Ĕ1×kSpd Ĕ2,≤(µ1,µ2)

over which there is a G(Qp)-torsor Pη. The space ShtG,b,{µ1,µ2} parametrizes G(Zp)-lattices P inside

Pη.

23.5. The general case. Now we discuss the general case. In order to avoid an extensive
discussion of various cases, we make the following definition.

Definition 23.5.1. The functor Grtw
G,SpdE1×...×SpdEm,≤µ• → SpdE1×. . .×SpdEm parametrizes

over a perfectoid space S of characteristic p with untilts S]i = Spa(R]i , R
]+
i ), i = 1, . . . ,m, over Ei,

the set of G-torsors Pη on S×̇Spa Qp together with an isomorphism

ϕPη : (Frob∗S Pη)|S×̇ SpaQp\
⋃m
i=1 S

]
i

∼= Pη|S×̇ SpaQp\
⋃m
i=1 S

]
i

that is meromorphic along the closed Cartier divisor
⋃m
i=1 S

]
i ⊂ S×̇Spa Qp, and an isomorphism

ιr : Pη|Y[r,∞)(S)
∼= G× Y[r,∞)(S)

for large enough r under which ϕPη gets identified with b× FrobS , satisfying the following bound-
edness condition:

At all geometric rank 1 points, the relative position of Frob∗S P and P at S]i is bounded by∑
j|S]j=S

]
i
µj in the Bruhat order.

We get the following qualitative result.

Proposition 23.5.2. The map

Grtw
G,SpdE1×...×SpdEm,≤µ• → SpdE1 × . . .× SpdEm

is proper and representable in spatial diamonds.

Proof. We base change to a quasicompact open subspace U of the locally spatial diamond
SpdE1 × . . .× SpdEm. As before, the isomorphism ιr extends to the open subspace

S×̇Spa Qp \
⋃

i=1,...,m;n≥0

ϕ−n(S]i ) ,

and is meromorphic along the closed Cartier divisor
⋃
i=1,...,m;n≥0 ϕ

−n(S]i ). Over U , there is some

ε > 0 such that all S]i are contained in Y[ε,∞)(S), and then some large enough n0 so that for all

n ≥ n0, all ϕ−n(S]i ) are contained in Y(0,ε/p](S). In that case, the G-torsor Pη is determined by
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the modification of the trivial G-torsor at all ϕ−n(S]i ) for i = 1, . . . ,m and n = 0, . . . , n0 − 1 (as
afterwards it is continued ϕ−1-periodically). This gives an embedding

Grtw
G,U,≤µ• ↪→ GrG,U×ϕ−1(U)×...×ϕ−n0+1(U) .

Moreover, the image is contained in some Schubert variety, and is closed in there (as the bounded-
ness condition is a closed condition). The result follows. �

Corollary 23.5.3. There is an étale period map

πGM : ShtG,b,{µi} → Grtw
G,Spd Ĕ1×k...×kSpd Ĕm,≤µ•

;

in particular, ShtG,b,{µi} is a locally spatial diamond. Its open image is the admissible locus

Grtw,a

G,Spd Ĕ1×k...×kSpd Ĕm,≤µ•
⊂ Grtw

G,Spd Ĕ1×k...×kSpd Ĕm,≤µ•

over which there is a G(Qp)-torsor Pη. The space ShtG,b,{µi} parametrizes G(Zp)-lattices P inside

Pη.

In particular, ShtG,b,{µi} depends on G only through G and G(Zp), and for any compact open
subgroup K ⊂ G(Qp), we can define

ShtG,b,{µi},K
as parametrizing K-lattices P inside Pη. This gives rise to a tower

(ShtG,b,{µi},K)K⊂G(Qp)

of finite étale covers whose inverse limit is the G(Qp)-torsor

ShtG,b,{µi},∞ = lim←−
K

ShtG,b,{µi},K → Grtw,a

G,Spd Ĕ1×k...×kSpd Ĕm,≤µ•
.
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24. Lecture XXIV: Local Shimura varieties

In this lecture, we specialize the theory back to the case of local Shimura varieties, and explain
the relation with Rapoport-Zink spaces.

24.1. Definition of local Shimura varieties. We start with a local Shimura datum.

Definition 24.1.1. A local Shimura datum is a triple (G, b, µ) consisting of a reductive group
G over Qp, a conjugacy class µ of minuscule cocharacters Gm → GQp

, and b ∈ B(G,µ−1), i.e. νb ≤
(µ−1)♦ and κ(b) = −µ\.

The final condition is explained by the following result.

Proposition 24.1.2 ([Rap17]). Let C be a complete algebraically closed extension of Qp with

tilt C[, and let Eb be the G-torsor on the Fargues-Fontaine curve XFF,C[ corresponding to b ∈ B(G).

Then there is a trivialization of Eb|X
FF,C[

\SpecC whose relative position at SpecC is given by µ if

and only if b ∈ B(G,µ−1).

Under Proposition 23.3.3, this means that ShtG,b,µ,K is nonempty if and only if b ∈ B(G,µ−1).
Thus, we make this assumption.

Recall that E is the field of definition of µ and Ĕ = E · L. From Proposition 23.3.3 and
Proposition 19.4.2, we see that

πGM : ShtG,b,µ,K → GrG,Spd Ĕ,≤µ
∼= F`♦

G,µ,Ĕ

is étale, where the right-hand side is the diamond corresponding to a smooth rigid space over Ĕ.
By Theorem 10.4.2, we see that

ShtG,b,µ,K =M♦G,b,µ,K
for a unique smooth rigid space MG,b,µ,K over Ĕ with an étale map towards F`G,µ,Ĕ . Moreover,

the transition maps are finite étale.

Definition 24.1.3. The local Shimura variety associated with (G, b, µ) is the tower

(MG,b,µ,K)K⊂G(Qp)

of smooth rigid spaces over Ĕ, together with its étale period map to F`G,µ,Ĕ .

24.2. Relation to Rapoport-Zink spaces. Rapoport-Zink spaces are moduli of deforma-
tions of a fixed p-divisible group. After reviewing these, we will show that the diamond associated
with the generic fiber of a Rapoport-Zink space is isomorphic to a moduli space of shtukas of the
form ShtG,b,µ with µ minuscule.

We start with the simplest Rapoport-Zink spaces. In this case, G = GLn, the cocharacter µ is
given by (1, 1, . . . , 1, 0, . . . , 0) with d occurences of 1, 0 ≤ d ≤ n, and b corresponds to a p-divisible
group X = Xb over Fp of characteristic p of dimension d and height n.

We recall from [RZ96] the definition and main properties of Rapoport-Zink spaces.

Definition 24.2.1. Let DefX be the functor which assigns to a formal scheme S/ Spf Z̆p the set

of isomorphism classes of pairs (X, ρ), where X/S is a p-divisible group, and ρ : X×S S
∼→ X×Fp

S

is a quasi-isogeny, where S = S ×Spf Z̆p
Spec Fp.
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Theorem 24.2.2 ([RZ96]). The functor DefX is representable by a formal scheme MX over

Spf Z̆p, which is formally smooth and locally formally of finite type. Furthermore, all irreducible

components of the special fiber of MX are proper over Spec Fp.

Remark 24.2.3. “Locally formally of finite type” means that locally MX is isomorphic to a
formal scheme of the form Spf Z̆p[[T1, . . . , Tm]]〈U1, . . . , Ur〉/I.

Let MX,Q̆p
be the generic fiber of MX as an adic space. It is useful to have a moduli interpre-

tation of MX,Q̆p
.

Proposition 24.2.4 ([SW13, Proposition 2.2.2]). Let CAffop

Q̆p
be the category opposite to the

category of complete Huber pairs over (Q̆p, Z̆p), equipped with the analytic topology. Then MX,Q̆p

is the sheafification of the presheaf on CAffop
Q̆p

defined by

(R,R+) 7→ lim−→
R0⊂R+

DefX(R0),

where the colimit runs over open and bounded Z̆p-subalgebras R0 ⊂ R+.

Thus, to give a section of MX over (R,R+) is to give a covering of Spa(R,R+) by rational
subsets Spa(Ri, R

+
i ), and for each i a deformation (Xi, ρi) ∈ DefX(Ri0) over an open and bounded

Z̆p-subalgebra Ri0 ⊂ R+
i , such that the (Xi, ρi) are compatible on overlaps.

Theorem 24.2.5 ([SW13]). There is a natural isomorphismM♦
X,Q̆p

∼= Sht(GLn,b,µ) as diamonds

over Spd Q̆p.

Here, GLn denotes the group scheme over Zp, so the right-hand side corresponds to level
GLn(Zp).

Proof. We give a proof using the étale period maps. A different proof is given in the next
lecture. First we construct a map

M♦
X,Q̆p

→ Sht(GLr,b,µ) .

For this, let S = Spa(R,R+) be any affinoid perfectoid space over Q̆p, and assume that (X, ρ)
is a pair of a p-divisible group X/R+ and a quasi-isogeny ρ : X ×Spf R+ SpecR+/p → X ×SpecFp

SpecR+/p. Note that R+ ⊂ R is automatically open and bounded, and it is enough to define the
map before sheafification in the sense of the previous proposition.

By Grothendieck-Messing theory, if EX → X is the universal vector extension, ρ induces an
isomorphism

LieEX[1
p ] ∼= M(X)⊗Q̆p

R ,

where M(X) ∼= Q̆n
p is the covariant rational Dieudonné module of X, on which Frobenius acts as

bϕ. On the other hand, we have the natural surjection LieEX → LieX, which defines a point of
the usual Grassmannian Gr(d, n)Q̆p

of d-dimensional quotients of an n-dimensional vector space.

As in the previous lecture, we can use this to build a vector bundle Eη on S[×̇Spa Qp with an
isomorphism

(Frob∗
S[
Eη)|(S[×̇ SpaQp)\S

∼= Eη|(S[×̇SpaQp)\S
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and an isomorphism with the equivariant vector bundle corresponding to b over Y[r,∞)(S) for r

large. For r small, the ϕ−1-equivariant vector bundle Eη|Y(0,r](S) gives rise to another vector bundle

F on the Fargues-Fontaine curve XFF,S[ , which is a modification

0→ F → Eb → i∞∗ LieX → 0 ,

where i∞ : S ↪→ XFF,S[ is the closed Cartier divisor corresponding to the untilt S.

On the other hand, considering the pro-étale Zp-local system T = T(X) given by the p-adic

Tate module of X, we have a natural map

T×Zp OX
FF,S[

→ Eb .

Indeed, it suffices to construct this pro-étale locally on S, so we can assume T is trivial. For any
t ∈ T, we get a map Qp/Zp → X of p-divisible groups over R+, which gives a corresponding map

of covariant Dieudonné modules over Acrys, giving the desired map OX
FF,S[

→ Eb.
By [SW13, Proposition 5.1.6], the map

T×Zp OX
FF,S[

→ Eb

factors over F ⊂ Eb, and induces an isomorphism

F ∼= T×Zp OX
FF,S[

.

More precisely, the reference gives this result over geometric points, which implies the factorization.
Moreover, the reference implies that F is trivial at all geometric fibers, and thus corresponds under
Theorem 22.3.1 to a pro-étale Qp-local system F. But then we get a map T[1

p ] → F which is an

isomorphism at all geometric points, and thus an isomorphism.
In particular, T gives a pro-étale Zp-lattice in the pro-étale local system corresponding to

Eη|Y(0,r](S), so Proposition 23.3.3 gives a natural map

M♦
X,Q̆p

→ Sht(GLr,b,µ) ,

which in fact by definition commutes with the period maps to

Gr(d, n)♦
Q̆p

∼= GrGLn,Spd Q̆p,≤µ .

By Grothendieck-Messing theory, the period map

πGM :MX,Q̆p
→ Gr(d, n)Q̆p

is étale, cf. [RZ96, Proposition 5.17]. By [SW13, Theorem 6.2.1], the image of the map

MX,Q̆p
→ Gr(d, n)Q̆p

is precisely the admissible open subspace Gr(d, n)a
Q̆p
⊂ Gr(d, n)Q̆p

; this was first proved by Faltings,

[Fal10]. By [RZ96, Proposition 5.37], the nonempty geometric fibers are given by GLn(Qp)/GLn(Zp)
by parametrizing lattices in the universal Qp-local system. These facts together imply the theo-

rem. �
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Moreover, the proof shows that the tower of coverings

(M♦
X,Q̆p,K

)K⊂GLn(Qp)
∼= (ShtGLn,b,µ,K)K⊂GLn(Qp)

are also naturally identified, where the tower on the left is defined in [RZ96, Section 5.34]; indeed,
we have identified the two universal pro-étale Qp-local systems on the admissible locus in the

Grassmannian. Thus, we have an isomorphism of towers

(MX,Q̆p,K
)K⊂GLn(Qp)

∼= (MGLn,b,µ,K)K⊂GLn(Qp)

between the generic fiber of the Rapoport-Zink space and the local Shimura variety.

24.3. General EL and PEL data. Now we extend the results to general EL and PEL data.
We fix EL data (B, V,OB,L) as well as ( , ) and an involution b 7→ b∗ on B in the PEL case, as in
the appendix to Lecture XXI.

It is convenient to introduce the following definition, which is an analogue of Definition 21.6.1.

Definition 24.3.1. Let R be a Zp-algebra on which p is nilpotent. A chain of OB-p-divisible
groups of type (L) over R is a functor Λ 7→ XΛ from L to p-divisible groups over R with OB-action,
together with an isomorphism θb : Xb

Λ
∼= XbΛ for all b ∈ B× normalizing OB, where Xb

Λ = XΛ with
OB-action conjugated by b, satisfying the following conditions.

(1) The periodicity isomorphisms θb commutes with the transition maps XΛ → XΛ′ .
(2) For all b ∈ B× ∩OB normalizing OB, the composition M b

Λ
∼= MbΛ →MΛ is multiplication

by b.
(3) If MΛ is the Lie algebra of the universal vector extension of XΛ, then the MΛ define a

chain of OB ⊗Zp R-modules of type (L).

Moreover, in the case of PEL data, a polarized chain of OB-p-divisible groups of type (L) over
R is a chain Λ 7→ XΛ of type (L) as before, together with a Zp-local system L on SpecR and an
antisymmetric isomorphism of chains

XΛ
∼= X∗Λ∗ ⊗Zp L .

There is an obvious notion of quasi-isogeny between (polarized) chains of OB-p-divisible groups
of type (L). If XΛ is a (polarized) chain of OB-p-divisible groups of type (L), then MΛ defines a
(polarized) chain of OB ⊗Zp R-modules, where the auxiliary line bundle L is given by R⊗Zp L.

Moreover, we fix a conjugacy class µ of minuscule cocharacters µ : Gm → GQp
, defined over

the reflex field E, satisfying the conditions of Section 21.4. In this case, we have the local model

Mloc,naive
(G,µ) .

Definition 24.3.2. Let R be a Zp-algebra on which p is nilpotent, and let XΛ be a chain

of OB-p-divisible groups of type (L) over R. Then XΛ is Mloc,naive
(G,µ) -admissible if the system of

quotients tΛ = LieXΛ of MΛ define a point of Mloc,naive
(G,µ) , after locally fixing an isomorphism of

chains MΛ
∼= Λ⊗Zp R. Equivalently, for all Λ ∈ L, the determinant condition holds, i.e. there is an

identity

detR(a; LieXΛ) = detQp
(a;V1)

of polynomial maps OB → R.
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Finally, we assume that G is connected and G is parahoric, and we fix an element b ∈
B(G,µ−1).35 This is slightly stronger than the assumption made by Rapoport-Zink: We demand
νb ≤ (µ−1)♦ and κ(b) = −µ\, where Rapoport-Zink only assume νb ≤ (µ−1)♦. However, it follows
from [RZ96, Proposition 1.20, Proposition 5.33] that the generic fibers of their moduli problems
are actually empty unless in addition κ(b) = −µ\, so we assume this from the start.

Now b defines a chain Xb,Λ of OB-p-divisible groups of type (L) over Fp up to quasi-isogeny,
in the weak sense that each Xb,Λ (and Lb) is only defined up to quasi-isogeny, rather than up to
simultaenous quasi-isogeny. In particular, no condition on MΛ is imposed.

Let D = (B, V,OB,L, ( , ), ∗, b, µ) denote the set of all data fixed.

Definition 24.3.3 ([RZ96, Definition 3.21]). The moduli problemMD over Spf Ŏ parametrizes

over a p-torsion Ŏ-algebra R the following data.

(1) A chain of OB-p-divisible groups XΛ of type (L) over R that is Mloc,naive
(G,µ) -admissible, and

(2) a quasi-isogeny

ρΛ : Xb,Λ ×SpecFp
SpecR/p→ XΛ ×SpecR SpecR/p

of chains of OB-p-divisible groups of type (L).

Proposition 24.3.4. The forgetful map MD →
∏

Λ∈LMXb,Λ is a closed immersion. In fact,
the same holds true when the product on the right-hand side is replaced by a large enough finite
product. In particular, MD is representable by a formal scheme locally formally of finite type over
Spf Ŏ.

Proof. This follows from the proof of [RZ96, Theorem 3.25]. �

Corollary 24.3.5. There is natural isomorphism

MD,Ĕ ∼=MG,b,µ,G(Zp)

of smooth rigid spaces over Ĕ, identifying the natural G(Zp)-torsors.

Proof. It is enough to give an isomorphism of their diamonds, over SpdE. As both sides
admit natural closed immersions into∏

Λ

MXb,Λ,Ĕ
∼=
∏
Λ

M(GL(Λ),ρΛ(b),ρΛ(µ)) ,

where ρΛ : G → GL(Λ) is the natural representation, it is enough to see that their geometric rank
1 points agree under this embedding.

Thus, let OC be the ring of integers in an algebraically closed nonarchimedean field C/Ĕ, and
let Ainf = W (OC[) as usual. A chain of OB-p-divisible groups XΛ of type (L) over OC defines,
via the Breuil-Kisin-Fargues module, a chain of OB ⊗Zp Ainf -modules NΛ. We claim that NΛ is
automatically of type (L). By assumption, MΛ = NΛ/ξ is of type (L). In particular, each MΛ

is isomorphic to Λ ⊗Zp OC . This implies that NΛ
∼= Λ ⊗Zp Ainf by lifting generators. Similarly,

for consecutive lattices Λ′ ⊂ Λ, we have by assumption MΛ/MΛ′
∼= Λ/Λ′ ⊗Zp OC . On the other

hand, ξ is a nonzerodivisor on NΛ/NΛ′ , as the latter is a p-torsion module of projective dimension
1 and (p, ξ) is a regular sequence. Thus, similarly, we can lift generators to get the isomorphism
NΛ/NΛ′

∼= Λ/Λ′ ⊗Zp Ainf .

35In the different normalization bRZ = χ(p)b, µRZ = χµ−1 of [RZ96], this corresponds to bRZ ∈ B(G,µ−1
RZ).
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Thus, we see that a Mloc,naive
(G,µ) -admissible chain of OB-p-divisible groups XΛ of type (L) over

OC is equivalent to a G-torsor P over Ainf together with an isomorphism

Frob∗O
C[
P|

SpecAinf [
1

ϕ(ξ) ]
∼= P|

SpecAinf [
1

ϕ(ξ) ]

such that the relative position at the untilt C is given by µ. The quasi-isogeny over OC/p is
equivalent to a ϕ-equivariant isomorphism of G-torsors over B+

crys.
On the other hand, the moduli spaces of shtukas parametrize the similar structures, noting

that everything extends uniquely from SpaC[×̇Spa Zp to SpecAinf by Theorem 14.1.1 and Theo-
rem 21.2.2. �
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25. Lecture XXV: Integral models of local Shimura varieties

In this final lecture, we explain an application of the theory developed in these lectures towards
the problem of understanding integral models of local Shimura varieties. As a specific example,
we will resolve conjectures of Kudla-Rapoport-Zink, [KRZ], and Rapoport-Zink, [RZ17], that two
Rapoport-Zink spaces associated with very different PEL data are isomorphic. The basic reason is
that the corresponding group-theoretic data are related by an exceptional isomorphism of groups,
so such results follow once one has a group-theoretic characterization of Rapoport-Zink spaces.
The interest in these conjectures comes from the observation of Kudla-Rapoport-Zink [KRZ] that
one can obtain a moduli-theoretic proof of Čerednik’s p-adic uniformization for Shimura curves,
[Cer76], using these exceptional isomorphisms.

25.1. Definition of the integral models. We define integral models of local Shimura va-
rieties as v-sheaves. Fix local Shimura data (G, b, µ) along with a parahoric model G of G; later,
we will discuss the case when only G◦ is parahoric. There is the problem of local models; more
precisely, we need to extend the closed subspace GrG,SpdE,µ ⊂ GrG,SpdE to a closed subspace of
GrG,SpdOE . Conjecture 21.4.1 would give us a canonical choice. For the moment, we allow an
arbitrary choice, so we fix some closed subfunctor

Mloc
(G,µ) ⊂ GrG,SpdOE

proper over SpdOE , with generic fiber GrG,SpdE,µ. We assume that Mloc
(G,µ) is stable under the

L+G-action. In other words, whenever we have two G-torsors P1, P2 over B+
dR(R]) together with

an isomorphism over BdR(R]) for some perfectoid Tate-OE-algebra R], we can ask whether the
relative position of P1 and P2 is bounded by Mloc

(G,µ).

Definition 25.1.1. Let (G, b, µ) be a local Shimura datum and let G be a parahoric model of

G over Zp. The integral model Mint
(G,b,µ) over Spd Ŏ of the local Shimura variety M(G,b,µ) is the

functor sending S = Spa(R,R+) ∈ Perfk to the set of untilts S] = Spa(R], R]+) over Ŏ together
with a G-torsor P on S×̇Spa Zp and an isomorphism

ϕP : (Frob∗S P)|S×̇ SpaZp\S]
∼= P|S×̇ SpaZp\S]

that is meromorphic along the closed Cartier divisor S] ⊂ S×̇Spa Zp, and an isomorphism

ιr : P|Y[r,∞)(S)
∼= G× Y[r,∞)(S)

for large enough r (for an implicit choice of pseudouniformizer $ ∈ R) under which ϕP gets
identified with b × FrobS , such that the relative position of Frob∗S P and P at S] is bounded by
Mloc

(G,µ).

The final boundedness condition can be checked on geometric rank 1 points. The first order of
business is to show that in the simplest case of GLn, this agrees with the moduli space defined by
Rapoport-Zink.

Theorem 25.1.2. Let G = GLn, µ = (1, . . . , 1, 0, . . . , 0) ∈ (Zn)+ and b correspond to a p-
divisible group X = Xb of dimension d and height n over Fp. Choose the local model

Mloc
(GLn,µ) = GrGLn,SpdZp,µ .
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Then there is a natural isomorphism

M♦X ∼=M
int
(GLn,b,µ)

of v-sheaves over Spd Z̆p.

Proof. First, we construct a map. Take a perfectoid Tate-Huber pair (R,R+) over Z̆p with a
pseudo-uniformizer $ ∈ R+ dividing p, and let X/R+ be a p-divisible group with a quasi-isogeny
ρ : X ×SpecR+ SpecR+/$ → X ×SpecFp

SpecR+/$.36 By Theorem 17.5.2, the p-divisible group

X is equivalent to a Breuil-Kisin-Fargues module M over Ainf(R
+), with ϕM : M [1

ξ ] ∼= M [ 1
ϕ(ξ) ]

satisfying M ⊂ ϕM (M) ⊂ 1
ϕ(ξ)M . The quasi-isogeny is equivalent to a ϕ-equivariant isomorphism

M ⊗Ainf(R+) B
+
crys(R

+/$) ∼= M(X)⊗W (Fp) B
+
crys(R

+/$)

by Theorem 15.2.3. Restricting from Ainf(R
+) to SpaR×̇Spa Zp, we get the desired map to

Mint
(GLn,b,µ).

Now we check that this induces a bijection on geometric points, so assume that R+ = OC is the
ring of integers in some algebraically closed nonarchimedean field C/Zp. Then the result follows
from Theorem 14.1.1 if C is of characteristic 0. In general, the same argument shows that the
shtuka over SpaC[×̇Spa Zp extends uniquely to a finite free Ainf -module with Frobenius, and the
result follows.

Thus, the map is an injection. To prove surjectivity, it is enough to prove that if Ci, i ∈ I,
is any set of algebraically closed nonarchimedean fields over Zp, and one takes R+ =

∏
iOCi

and R = R+[ 1
$ ] for some choice of pseudo-uniformizers $ = ($i)i dividing p, then for any map

Spa(R,R+)→Mint
(GLn,b,µ) factors over M♦X . By the case of geometric points, we get pairs (Xi, ρi)

overOCi . This defines a p-divisible groupX overR+ =
∏
OCi , which has some Breuil-Kisin-Fargues

module M(X) over Ainf(R
+). On the other hand, over SpaAinf(R

+) \ {p = [$] = 0}, we have a
natural vector bundle E given by gluing the given shtuka over Y[0,∞) = SpaAinf(R

+) \ {[$] = 0}
with the vector bundle Eb over Y[r,∞] along ιr. Note that E produces naturally a finite projective

Ainf(R
+)[1

p ]-module N as in Section 14.3, together with an open and bounded submodule M ′ ⊂ N
for the p-adic topology on Ainf(R

+), where M ′ is the set of global sections of E . Now for each
i, M ′ maps into M(Xi), giving a map M ′ → M(X) by taking the product. On the other hand,
M(X) maps back to N , as for each i, M(Xi) maps into the corresponding component M ′i (and is
in fact equal to it), and these components are bounded in N , so their product defines an element
of N . Thus, M ′ ⊂ M(X) ⊂ N , and in particular M(X)[1

p ] = N as finite projective Ainf(R
+)[1

p ]-

modules.37

Now the trivialization ιr defines an element of

(N ⊗B+
crys)

ϕ=1 = (M(X)⊗B+
crys)

ϕ=1 ,

which by Theorem 15.2.3 gives a quasi-isogeny ρ : X×SpecFp SpecR+/$ → X ×Spf R+ SpecR+/$,
as desired. �

36The quasi-isogeny is defined only over R+/$, not over R+/p, as a Spf R+-valued point is the same as a
compatible system of SpecR+/$n-valued points, and the quasi-isogeny deforms uniquely from R+/$ to R+/($n, p).

37It follows a posteriori from the theorem that in fact M ′ = M(X), but we do not prove this a priori.
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Now we can prove the same result in the case of EL and PEL data. Fix data D as in the last
lecture, including a choice of local model, and assume that G is parahoric.

Corollary 25.1.3. There is a natural isomorphism

M♦D ∼=M
int
(G,b,µ)

of v-sheaves over Spd Ŏ.

Proof. The construction of the proof of the previous theorem gives a map

M♦D →M
int
(G,b,µ) .

The left-hand side admits a closed embedding
∏

Λ∈LM
♦
XΛ

, and the right-hand side maps compatibly
to this space via the isomorphism of the previous theorem. In particular, the displayed map is a
proper injection. Therefore it remains to see that it is surjective on geometric rank 1 points
S = Spa(C,OC).

Given a G-torsor P over Y[0,∞) = SpaC×̇Spa Zp with a trivialization to Pb over Y[r,∞), we
can extend uniquely to a G-torsor PY over Y[0,∞] together with a trivialization to Pb over Y[r,∞].
Now any G-torsor over Y[0,∞] extends uniquely to a G-torsor over Ainf , by Corollary 21.6.6 and

Theorem 14.2.1. But now this defines precisely a point of M♦D, as desired. �

25.2. The case of tori. Assume that G = T is a torus and T is the connected component of
the Néron model of T . In this case b ∈ B(T ) = π1(TQp

)Γ = XΓ is determined by µ ∈ X = π1(TQp
).

For the local model, we take the map

SpdOE → GrT ,SpdOE

which is the closure of the map SpdE ∼= GrT ,SpdE,µ.

Let T (Qp)/T (Zp) denote the disjoint union of copies of Spd Ŏ over all elements of T (Qp)/T (Zp).

Proposition 25.2.1. If b = 1 and µ = 0, there is a natural isomorphism

Mint
(T ,1,0)

∼= T (Qp)/T (Zp)

of v-sheaves over Spd Z̆p, where both sides are naturally groups over Spd Z̆p. In general,

Mint
(T ,b,µ)/ Spd Ŏ

is a torsor under Mint
(T ,1,0).

Proof. The space Mint
(T ,1,0) parametrizes shtukas with no legs. In particular, T -torsors over

S×̇Spa Zp with an isomorphism with their Frobenius pullback are equivalent to exact ⊗-functors
from RepZp T to Zp-local systems on S, by the Tannakian formalism and the relative version of

Proposition 12.3.5. By Proposition 22.6.1, this is equivalent to a pro-étale T (Zp)-torsor on S.

The trivialization over Y[r,∞)(S) is equivalent to a trivialization of the corresponding T (Qp)-torsor.

Thus, Mint
(T ,1,0) is given by T (Qp)/T (Zp).

To see that Mint
(T ,b,µ) → Spd Ŏ is a torsor under Mint

(T ,1,0), note first that it is a quasitorsor, as

given to points of (P1, . . .), (P2, . . .) of Mint
(T ,b,µ), the torsor of isomorphisms between P1 and P2

defines a point ofMint
(T ,1,0). Moreover,Mint

(T ,b,µ) → Spd Ŏ is a v-cover as one can find a Spd Cp-point
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and any such extends to a SpaOCp-point, as any T -torsor over the punctured SpecAinf extends to
SpecAinf by a theorem of Anschütz, [Ans17]. �

25.3. Non-parahoric groups. As the conjecture of Kudla-Rapoport-Zink involves non-parahoric
level structures, we need to understand what happens when we only assume that G◦ is parahoric.
The moduli problem Mint

(G,b,µ) can be defined as before. An essential problem is that in general it

is not an integral model of MG,b,µ,G(Zp). Namely, Proposition 22.6.1 fails when G is not parahoric.
For this reason, we make the following assumption on G.

Assumption 25.3.1. The map H1
ét(Spec Zp,G)→ H1

ét(Spec Qp, G) is injective.

Note that H1
ét(Spec Zp,G) = H1

ét(Spec Zp,G/G◦) and that under the Kottwitz map

G(Z̆p)/G◦(Z̆p) ↪→ π1(GQp
)I .

Taking the coinvariants under Frobenius, the left-hand side becomes H1
ét(Spec Zp,G), and the right-

hand side becomes π1(GQp
)Γ = B(G)basic, which contains H1

ét(Spec Qp, G) as a subgroup. Thus,

the assumption is equivalent to the condition that the displayed map stays injective after taking
coinvariants under Frobenius.

Proposition 25.3.2. Under Assumption 25.3.1, the generic fiber ofMint
(G,b,µ) is given byMG,b,µ,G(Zp).

Proof. The essential point is to show that the exact ⊗-functor from RepZp G to Zp-local

systems on the generic fiber is pro-étale locally trivial. By the argument of Proposition 22.6.1,
it is enough to check that it is trivial at all geometric points. By Assumption 25.3.1, it is in
turn enough to check that the corresponding exact ⊗-functor to Qp-vector spaces is trivial. But
this corresponds to a semistable G-torsor on the Fargues-Fontaine curve that is a modification
of type µ of the G-torsor corresponding to b. As b ∈ B(G,µ−1), it follows that it is trivial by
using Proposition 24.1.2; indeed, otherwise it would be some nontrivial element b′ ∈ B(G)basic, and
applying Proposition 24.1.2 to Jb′ and the Jb′-torsor corresponding to b which is then a modification
of type µ of the trivial Jb′-torsor and has κ-invariant κ(b)− κ(b′), we see κ(b)− κ(b′) = −µ\. But
as b ∈ B(G,µ−1), we know that κ(b) = −µ\, so that κ(b′) = 0, and so b′ is trivial. �

Finally, we assemble everything and prove the conjectures of Rapoport-Zink and Kudla-Rapoport-
Zink, [RZ17], [KRZ].

25.4. The EL case. In this section, we consider the EL data of [RZ17] as recalled in the
Appendix to Lecture XXI. We fix the flat local model considered there. There is a unique element
b ∈ B(G,µ−1), which we fix.

Again, there is the simplest case where µϕ = (0, . . . , 0) for all ϕ 6= ϕ0. In this case, the moduli
problem

MD ∼=MDr

is known as the Drinfeld formal scheme, cf. [RZ96, Sections 3.54 – 3.77]. It is a regular p-adic

formal scheme over Spf ŎF whose generic fiber is given by Z copies of the Drinfeld upper-half space

Ωn
F̆

= Pn−1

F̆
\

⋃
H⊂Pn−1

F̆

H ,

where H runs over all F -rational hyperplanes. One can single out one copy by fixing the height
of the quasiisogeny ρ to be 0. Following [RZ17], we pass to these open and closed subfunctors,
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which we denote by a superscript 0; this reduces the Jb(Qp)-action to a Jb(Qp)1-action, where
Jb(Qp)1 ⊂ Jb(Qp) is the subgroup of all elements whose reduced norm is a p-adic unit.

Theorem 25.4.1. For any D as in [RZ17], there is a natural Jb(Qp)1-equivariant isomorphism
of formal schemes

M0
D
∼=M0

Dr ×Spf ŎF Spf ŎE .

Proof. By [RZ17], the formal scheme M0
D is p-adic and flat over ŎE . By Corollary 25.1.3

and Proposition 18.4.1, it suffices to prove that for any (G, b, µ) as in the theorem with associated
adjoint data (G′ad, b, µ) (which are the same in all cases), the map

(Mint
(G,b,µ))

0 →Mint
(G′ad,b,µ)

×Spf ŎF Spf ŎE

is a closed immersion which is an isomorphism on the generic fiber.38 Indeed, then in all cases the
left-hand side is the closure of the generic fiber in the right-hand side. Here, G′ad is the smooth model
of Gad whose Zp-points are the maximal compact subgroup of Gad; this is not parahoric, but it

satisfies Assumption 25.3.1, as in fact the Kottwitz map G′ad(Z̆p)→ π1(Gad,Qp
)I is an isomorphism.

For this, one first checks that the map is quasicompact, which can be done by the same technique
of choosing an infinite set of points; we omit this. As the map is partially proper, it remains to
prove that it is bijective on (C,OC)-valued points when C is of characteristic 0, and injective on
the special fiber. In characteristic 0, this follows by analysis of the period map: In both cases, the
target is the projective space Pn−1(C), the image is Drinfeld’s upper half-plane by the admissibility
condition, and the fibers are points by the choice of level structures.

It remains to handle points of characteristic p. For this, note that the left-hand side is p-adic,
so it is enough to prove that if k is a discrete algebraically closed field of characteristic p, then

(Mint
(G,b,µ))

0(k) ↪→Mint
(G′ad,b,µ)

(k) .

Here, the left-hand side parametrizes G-torsors P over W (k) together with an isomorphism to the
G-torsor over W (k)[1

p ] given by b, such that the relative position of P and its image under Frobenius

is bounded by µ. This is a closed subset of the affine flag variety, called an affine Deligne-Lusztig
variety, which is entirely contained in one connected component. Similarly, the target can be
embedded into an affine flag variety for G′ad. As the induced map of affine flag varieties is injective
on connected components (cf. proof of Proposition 21.5.1), we get the result. �

25.5. The PEL case. Finally, we consider the PEL data of [KRZ]. Again, we take the
flat local model considered in the Appendix to Lecture XXI, and there is a unique element b ∈
B(G,µ−1), which we fix.

Lemma 25.5.1. Assumption 25.3.1 is satisfied, i.e. the map

H1
ét(Spec Zp,G)→ H1

ét(Spec Qp, G)

is injective.

Proof. If F is unramified over F0, this is clear as then the special fiber of G is connected, so
assume that F is ramified over F0. Recall that there is an exact sequence

1→ ResOF0
/Zp U → G → Gm → 1

38It is probably an isomorphism.
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and Gad = ResF0/Zp Uad. It suffices to see that the composite map

H1
ét(SpecOF0 ,U)→ H1

ét(Spec Zp,G)→ H1
ét(Spec Qp, G)→ H1

ét(Spec Qp, Gad) = H1
ét(F0, Uad)

is injective. But now the Kottwitz map

U(F̆0)/U◦(F̆0)→ π1(UQp
)IF0

= π1(Uad,Qp
)

is an isomorphism, where IF0 is the inertia group of F0; in fact, everything is given by Z/2Z. Thus,
taking coinvariants under Frobenius, the result follows. �

Theorem 25.5.2. For any D as in [KRZ], there is a natural isomorphism of formal schemes

M0
D
∼=M0

Dr ×Spf ŎF0
Spf ŎE ,

where the superscript 0 refers to the open and closed subspaces where the quasiisogeny ρ has height
0, and the Drinfeld moduli space is the one for n = 2 and the field F0.

Proof. Again,M0
D is p-adic and flat over ŎE by [KRZ]. We use Corollary 25.1.3 and Propo-

sition 18.4.1 and observe that the corresponding adjoint data (G′ad, b, µ) agree with those in the EL
case for n = 2 and the field F0. Thus, it is enough to prove that the map

(Mint
(G,b,µ))

0 →Mint
(G′ad,b,µ)

×Spf ŎF0
Spf ŎE

is a closed immersion which is an isomorphism on the generic fiber; for this, one proceeds as in the
EL case. �





Bibliography

[AIP17] F. Andreatta, A. Iovita, and V. Pilloni, Spectral halo, to appear in Ann. Sci. ENS.
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(1974), 53–88, Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I.
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171–201.

[Oor01] F. Oort, Newton polygon strata in the moduli space of abelian varieties, Moduli of abelian varieties (Texel
Island, 1999), Progr. Math., vol. 195, Birkhäuser, Basel, 2001, pp. 417–440.
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