The Davis–Mahowald spectral sequence

John Rognes

University of Oslo, Norway

Nils Baas 70, NTNU, December 1st 2016

Outline

The Adams spectral sequence

The Davis–Mahowald spectral sequence

Calculation of *Ext* over A(2)

Outline

The Adams spectral sequence

The Davis–Mahowald spectral sequence

Calculation of *Ext* over A(2)

Context

- ▶ Joint work with Robert R. Bruner on *THH*(*tmf*) and its circle action.
- Aim to study v₃-periodic homotopy detected by

 $S o K(tmf) o THH(tmf)^{tS^1}$.

- Prime p = 2, $H = H \mathbb{F}_2$.
- Steenrod algebra $A = H^*(H) = \langle Sq^k | k \ge 1 \rangle$.
- Adams spectral sequence for X

$$E_2^{s,t} = \mathsf{Ext}_{\mathsf{A}}^{s,t}(\mathsf{H}^*(\mathsf{X}),\mathbb{F}_2) \Longrightarrow_s \pi_{t-s}(\mathsf{X}_2^\wedge)\,.$$

Baas–Madsen (1972)

 Nils Baas and Ib Madsen constructed spectra X with prescribed cohomology modules

$$H^*(X) = A/A\{Q_i,\ldots,Q_j\},$$

where $Q_n \in A$ is the Milnor primitive in degree $2p^n - 1 = 2^{n+1} - 1$.

► Example:

$$H^*(k(n)) = A/A\{Q_n\} = A \otimes_{E[Q_n]} \mathbb{F}_2 = A//E[Q_n]$$

where $k(n) \rightarrow K(n)$ is the connective cover of the *n*-th Morava *K*-theory, and $E[Q_n] \subset A$ is the exterior algebra.

Adams SS

$$E_2 = Ext_A(A/\!/E[Q_n], \mathbb{F}_2) \cong Ext_{E[Q_n]}(\mathbb{F}_2, \mathbb{F}_2) = \mathbb{F}_2[v_n] \Longrightarrow \pi_*k(n)$$

collapses, so $\pi_* k(n) = \mathbb{F}_2[v_n]$ with $|v_n| = 2p^n - 2 = 2^{n+1} - 2$.

Adams SS for k(2)

Figure: $Ext^{s,t}_{E[Q_2]}(\mathbb{F}_2,\mathbb{F}_2) \Longrightarrow_s \pi_{t-s}k(2)$

Complex *K*-theory

- *H*^{*}(*ku*) = *A*//*E*(1) where *ku* → *KU* is the connective cover of complex *K*-theory.
- $E(1) = E[Q_0, Q_1]$ with $Q_0 = Sq^1$ and $Q_1 = [Sq^1, Sq^2]$.

Adams SS

 $E_2 = Ext_A(A//E(1), \mathbb{F}_2) = Ext_{E(1)}(\mathbb{F}_2, \mathbb{F}_2) = \mathbb{F}_2[h_0, v_1] \Longrightarrow \pi_* ku$ collapses, so $\pi_* ku = \mathbb{Z}[v_1]$ with $|v_1| = 2$.

Adams SS for ku

Figure: $Ext_{E(1)}^{s,t}(\mathbb{F}_2,\mathbb{F}_2) \Longrightarrow_s \pi_{t-s}ku$

Real *K*-theory

*H**(*ko*) = *A*//*A*(1) where *ko* → *KO* is the connective cover of real *K*-theory.
 A(1) = ⟨*Sq*¹, *Sq*²⟩ ⊂ *A*.

• Adams SS $E_2 = Ext_A(A//A(1), \mathbb{F}_2) = Ext_{A(1)}(\mathbb{F}_2, \mathbb{F}_2) = \mathbb{F}_2[h_0, h_1, v, w_1]/(h_0h_1, h_1^3, h_1v, v^2 = h_0^2w_1) \Longrightarrow \pi_*ko$ collapses, so $\pi_*ko = \mathbb{Z}[\eta, \alpha, \beta]/(2\eta, \eta^3, \eta\alpha, \alpha^2 = 4\beta).$

Adams SS for ko

Hopkins–Miller / Hopkins–Mahowald (1994)

- ▶ Mike Hopkins and Mark Mahowald constructed a topological modular forms spectrum *tmf* with $H^*(tmf) = A//A(2)$, where $A(2) = \langle Sq^1, Sq^2, Sq^4 \rangle \subset A$.
- ▶ dim *A*(2) = 64.
- André Henriques (2004) created the picture of A(2) on the next page:

with generators Sq^1, Sq^2, Sq^4 and relations given by

The subalgebra A(2) of the Steenrod algebra Andre Henriques, december

2004

Adams SS for tmf

Adams SS

$$E_2 = Ext_A(A//A(2), \mathbb{F}_2) = Ext_{A(2)}(\mathbb{F}_2, \mathbb{F}_2) \Longrightarrow \pi_* tmf$$
.

Theorem (Shimada-Iwai (1967)):

$$\mathsf{Ext}_{\mathsf{A}(2)}(\mathbb{F}_2,\mathbb{F}_2) \cong \frac{\mathbb{F}_2[h_0,h_1,h_2,c_0,\alpha,d_0,\beta,e_0,\gamma,\delta,g,w_1,w_2]}{(54 \text{ relations})}.$$

- Bruner's ext can reproduce such calculations in a finite range.
- How to prove that the apparent patterns persist?

Adams E_2 -term for tmf, $t - s \le 12$

Figure: $Ext_{A(2)}^{s,t}(\mathbb{F}_2,\mathbb{F}_2) \Longrightarrow_s \pi_{t-s}tmf$

Adams E_2 -term for tmf, $t - s \le 24$

Figure: $Ext^{s,t}_{A(2)}(\mathbb{F}_2,\mathbb{F}_2) \Longrightarrow_s \pi_{t-s}tmf$

Adams E_2 -term for tmf, $t - s \le 48$

Figure: $Ext_{A(2)}^{s,t}(\mathbb{F}_2,\mathbb{F}_2) \Longrightarrow_s \pi_{t-s}tmf$

Adams E_2 -term for tmf, $t - s \le 96$

Figure: $Ext_{A(2)}^{s,t}(\mathbb{F}_2,\mathbb{F}_2) \Longrightarrow_s \pi_{t-s}tmf$

Remaining steps to determine π_* *tmf*

- ▶ Determine Adams d_2 , d_3 , d_4 and $E_5 = E_\infty$ [Hopkins–Mahowald].
- Examine additive and multiplicative extensions.
- ► Similar strategy applies for *tmf*-modules like *THH*(*tmf*).
- Alternative: Use Adams–Novikov / elliptic SS [Hopkins–Mahowald, Bauer (2008)].

The Adams spectral sequence

The Davis–Mahowald spectral sequence

Calculation of Ext over A(2)

Davis–Mahowald (1982)

- Don Davis and Mark Mahowald calculated Ext_{A(2)}(M, 𝔽₂) for a number of A(2)-modules M related to 𝔽₂[x] = H[∗]ℝP[∞].
- Spectral sequence

$$E_1^{\sigma,s,t} = Ext_{\mathcal{A}(1)}^{s,t}(\mathcal{M} \otimes \mathcal{N}_{\sigma}, \mathbb{F}_2) \Longrightarrow_{\sigma} Ext_{\mathcal{A}(2)}^{s+\sigma,t}(\mathcal{M}, \mathbb{F}_2)$$

for specific A(1)-modules N_{σ} , $\sigma \geq 0$.

Multiplicative structure only observed in hindsight.

Module coalgebra

- Steenrod algebra $A = \langle Sq^k | k \ge 1 \rangle$.
- Coproduct $\psi(Sq^k) = \sum_{i+j=k} Sq^i \otimes Sq^j$.
- Cocommutative sub Hopf algebras $A(1) \subset A(2) \subset A$.
- A(1) is not normal as a subalgebra of A(2).

$$\textit{A}(2) \twoheadrightarrow \textit{A}(2) /\!/ \textit{A}(1) = \textit{A}(2) \otimes_{\textit{A}(1)} \mathbb{F}_2$$

is a quotient A(2)-module coalgebra, but not a quotient algebra.

Comodule algebra

- ▶ Dual Steenrod algebra $A_* = \mathbb{F}_2[\bar{\xi}_k \mid k \ge 1]$ with $|\bar{\xi}_k| = 2^k 1$.
- Coproduct $\psi(\bar{\xi}_k) = \sum_{i+j=k} \bar{\xi}_i \otimes \bar{\xi}_j^{2^i}$.
- Commutative quotient Hopf algebras $A_* \twoheadrightarrow A(2)_* \twoheadrightarrow A(1)_*$.
- $A(1)_* = \mathbb{F}_2[\xi_1, \bar{\xi}_2]/(\xi_1^4, \bar{\xi}_2^2).$
- $A(2)_* = \mathbb{F}_2[\xi_1, \bar{\xi}_2, \bar{\xi}_3]/(\xi_1^8, \bar{\xi}_2^4, \bar{\xi}_3^2).$

$$A(2)_* \square_{A(1)_*} \mathbb{F}_2 = E[\xi_1^4, \overline{\xi}_2^2, \overline{\xi}_3] \rightarrowtail A(2)_*$$

is a sub $A(2)_*$ -comodule algebra, but not a sub coalgebra.

General context (à la Cartan-Eilenberg/Adams)

- Γ Hopf algebra over a field k.
- Λ sub Hopf algebra of Γ.
- $\Omega = \Gamma //\Lambda = \Gamma \otimes_{\Lambda} k$ quotient Γ -module coalgebra of Γ .

 $\Lambda\rightarrowtail \Gamma\twoheadrightarrow \Omega$

 Aim: Calculate algebra Ext^{*}_Γ(k, k) in terms of Ext^{*}_Λ(N, k) for suitable Λ-modules N.

Dual context (à la Eilenberg-Moore/Milnor-Moore)

- Γ_* Hopf algebra over a field k.
- Λ_{*} quotient Hopf algebra of Γ_{*}.
- $\Omega_* = \Gamma_* \Box_{\Lambda_*} k$ sub Γ_* -comodule algebra of Γ_* .

$$\Omega_*\rightarrowtail \Gamma_*\twoheadrightarrow \Lambda_*$$

Aim: Calculate algebra Ext^{*}_{Γ*}(k, k) in terms of Ext^{*}_{Λ*}(k, R) for suitable Λ*-comodules R.

Cartan–Eilenberg (1956)

- Suppose (temporarily) that Λ is normal in Γ .
- $\Omega = \Gamma / / \Lambda$ is a quotient Hopf algebra of Γ .
- Cartan–Eilenberg spectral sequence (CESS)

$$E_{2}^{\sigma,s} = \mathsf{Ext}_{\Omega}^{\sigma}(k, \mathsf{Ext}_{\Lambda}^{s}(k,k)) \Longrightarrow_{\sigma} \mathsf{Ext}_{\Gamma}^{s+\sigma}(k,k)$$

Equivalently

$$E_{2}^{\sigma,s} = \mathsf{Ext}_{\Omega_{*}}^{\sigma}(\mathsf{Ext}_{\Lambda_{*}}^{s}(k,k),k) \Longrightarrow_{\sigma} \mathsf{Ext}_{\Gamma_{*}}^{s+\sigma}(k,k)$$

CESS for A(1)

- Example: $\Gamma = A(1)$, $\Lambda = E[Q_1]$, $\Omega = E[Sq^1, Sq^2]$.
- $Ext^{*,*}_{\Lambda}(\mathbb{F}_2,\mathbb{F}_2) = \mathbb{F}_2[v_1]$ trivial Ω -module, $Ext^{*,*}_{\Omega}(\mathbb{F}_2,\mathbb{F}_2) = \mathbb{F}_2[h_0,h_1]$.

$$E_2^{*,*,*} = \mathbb{F}_2[h_0,h_1] \otimes \mathbb{F}_2[v_1].$$

• $d_2(v_1) = h_0 h_1$.

$$E_3^{*,*,*} = \mathbb{F}_2[h_0, h_1]/(h_0h_1) \otimes \mathbb{F}_2[v_1^2].$$
• $d_3(v_1^2) = h_1^3, E_4 = E_{\infty}.$

(E_3, d_3) of CESS for A(1)

 $\mbox{Figure: } E_2^{\sigma,s,*} = Ext^{\sigma,*}_{E[Sq^1,Sq^2]}(\mathbb{F}_2,Ext^{s,*}_{E[Q_1]}(\mathbb{F}_2,\mathbb{F}_2)) \Longrightarrow_{\sigma} Ext^{s+\sigma,*}_{\mathcal{A}(1)}(\mathbb{F}_2,\mathbb{F}_2)$

Davis–Mahowald (1982)

- Allow (from now on) that Λ is not normal in Γ .
- $\Omega = \Gamma / / \Lambda$ is a Γ -module coalgebra.
- ► Require (suitable) Γ -module coalgebra resolution ($\Omega \otimes N_*, d$) $\rightarrow k$.
- Davis–Mahowald spectral sequence (DMSS)

$$E_1^{\sigma,s,*} \Longrightarrow_{\sigma} Ext_{\Gamma}^{s+\sigma,*}(k,k)$$

where

$$E_1^{\sigma,s,*} = Ext_{\Gamma}^{s,*}(\Omega \otimes N_{\sigma},k) \cong Ext_{\Gamma}^{s,*}(\Gamma \otimes_{\Lambda} N_{\sigma},k) \cong Ext_{\Lambda}^{s,*}(N_{\sigma},k),.$$

• Assume Γ is cocommutative to make untwisting $\Omega \otimes N_{\sigma} \cong \Gamma \otimes_{\Lambda} N_{\sigma}$ comultiplicative.

DMSS, dual formulation

- Γ_{*} commutative Hopf algebra.
- Λ_* quotient Hopf algebra of Γ .
- $\Omega_* = \Gamma_* \Box_{\Lambda_*} k$ left Γ_* -comodule algebra.
- ► Require (suitable) Γ_* -comodule algebra resolution $k \to (\Omega_* \otimes \mathbb{R}^*, d)$.
- Get multiplicative Davis–Mahowald spectral sequence

$$E_1^{\sigma,s,*} = \operatorname{Ext}_{\Lambda_*}^{s,*}(k, R^{\sigma}) \Longrightarrow_{\sigma} \operatorname{Ext}_{\Gamma_*}^{s+\sigma,*}(k, k).$$

• Untwisting $\Omega_* \otimes R^{\sigma} \cong \Gamma_* \Box_{\Lambda_*} R^{\sigma}$ is multiplicative for commutative Γ_* .

DMSS for A(1)

- Example: $\Gamma = A(1), \Lambda = A(0) = E[Sq^1], \Omega_* = E[\xi_1^2, \bar{\xi}_2].$
- ► Resolve using $A(1)_*$ -comodule algebra $R^* = \mathbb{F}_2[x_2, x_3]$, with coaction $\nu(x_2) = 1 \otimes x_2, \nu(x_3) = 1 \otimes x_3 + \xi_1 \otimes x_2$.
- Resolution $\mathbb{F}_2 \to \Omega_* \otimes \mathbb{R}^*$ has differential $d(\xi_1^2) = x_2, d(\overline{\xi}_2) = x_3$.

$$R^{\sigma} = \mathbb{F}_{2}\{x_{2}^{\sigma}, \dots, x_{3}^{\sigma}\} = \mathbb{F}_{2}\{x_{2}^{i}x_{3}^{j} \mid i+j=\sigma\}.$$

$$Ext_{A(0)_{*}}^{*,*}(\mathbb{F}_{2}, \mathbb{R}^{0}) = \mathbb{F}_{2}[h_{0}], Ext_{A(0)_{*}}^{*,*}(\mathbb{F}_{2}, \mathbb{R}^{1}) = \mathbb{F}_{2}\{x_{2}\}.$$

DMSS (E_1^*, d_1) for A(1)

 $\mbox{Figure: } E_1^{\sigma,s,*} = Ext^{s,*}_{A(0)_*}(\mathbb{F}_2, R^{\sigma}) \Longrightarrow_{\sigma} Ext^{s+\sigma,*}_{A(1)_*}(\mathbb{F}_2, \mathbb{F}_2)$

DMSS $E_{\infty}^* \Longrightarrow \textit{Ext}_{A(1)}(\mathbb{F}_2, \mathbb{F}_2)$

Figure: $h_1 = x_2$, $v = h_0 x_3^2$, $w_1 = x_3^4$

Main construction, 1/4

- $\Gamma_* \twoheadrightarrow \Lambda_*$ and $\Omega_* \subset \Gamma_*$ as above.
- Assume a graded Γ_{*}-comodule algebra R^{*} = ⊕_σ R^σ and homomorphisms
 d: Ω_{*} ⊗ R^σ → Ω_{*} ⊗ R^{σ+1}
- such that (Ω_{*} ⊗ R^{*}, d) is a differential graded Γ_{*}-comodule algebra and the unit k → (Ω_{*} ⊗ R^{*}, d) is a quasi-isomorphism.
- Get an exact complex

$$0 \to \mathbb{F}_2 \to \Omega_* \otimes R^0 \stackrel{d}{\to} \Omega_* \otimes R^1 \stackrel{d}{\to} \Omega_* \otimes R^2 \stackrel{d}{\to} \dots .$$

Main construction, 2/4

- Consider Γ_* -comodules *M*, *N*.
- Let (C^{*}_{Γ*}(k, M), d) be the cobar complex with cohomology Ext^s_{Γ*}(k, M) in degree s.
- Here

$$C^{s}_{\Gamma_{*}}(k,M) = \Gamma_{*} \otimes \cdots \otimes \Gamma_{*} \otimes M$$

with *s* copies of Γ_* .

Alexander–Whitney pairing C^s_{Γ*}(k, M) ⊗ C^t_{Γ*}(k, N) → C^{s+t}_{Γ*}(k, M ⊗ N) induces cup product in *Ext*.

Main construction, 3/4

The unit induces a quasi-isomorphism

$$\mathcal{C}^*_{\Gamma_*}(k,k) o \mathcal{C}^*_{\Gamma_*}(k,\Omega_*\otimes R^*)$$

of differential graded algebras (DGAs).

▶ The RHS is a filtered DGA, with

$${\it F}^{\sigma}={\it C}^*_{{\sf \Gamma}_*}({\it k},\Omega_*\otimes {\it R}^{*\geq\sigma})$$

and

$$F^{\sigma}/F^{\sigma+1} = C^*_{\Gamma_*}(k,\Omega_*\otimes R^{\sigma}).$$

Main construction, 4/4

Get an algebra spectral sequence

$$E_1^{\sigma,s} \Longrightarrow_{\sigma} Ext_{\Gamma_*}^{s+\sigma}(k,k)$$

with

$$E_1^{\sigma,s} = Ext_{\Gamma_*}^s(k,\Omega_*\otimes R^{\sigma}) \cong Ext_{\Gamma_*}^s(k,\Gamma_* \Box_{\Lambda_*} R^{\sigma}) \cong Ext_{\Lambda_*}^s(k,R^{\sigma}).$$

- Uses untwisting $\Omega_* \otimes R^{\sigma} \cong \Gamma_* \Box_{\Lambda_*} R^{\sigma}$ and change-of-rings along $\Gamma_* \twoheadrightarrow \Lambda_*$.
- Product $E_1^{\sigma,*} \otimes E_1^{\tau,*} \to E_1^{\sigma+\tau,*}$ equals pairing induced by Λ_* -comodule product $R^{\sigma} \otimes R^{\tau} \to R^{\sigma+\tau}$.
Outline

The Adams spectral sequence

The Davis–Mahowald spectral sequence

Calculation of *Ext* over A(2)

Main example: A(2)

►
$$\Gamma_* = A(2)_* \rightarrow A(1)_* = \Lambda_*$$
 commutative Hopf algebras.

$$\Omega_* = A(2)_* \Box_{A(1)_*} \mathbb{F}_2 = E[\xi_1^4, \bar{\xi}_2^2, \bar{\xi}_3]$$

left $A(2)_*$ -comodule algebra.

Resolve by A(2)_{*}-comodule algebra

 $R^* = \mathbb{F}_2[x_4, x_6, x_7].$

- Coaction $\nu(x_4) = 1 \otimes x_4$, $\nu(x_6) = 1 \otimes x_6 + \xi_1^2 \otimes x_4$, $\nu(x_7) = 1 \otimes x_7 + \xi_1 \otimes x_6 + \overline{\xi_2} \otimes x_4$.
- Resolution $\mathbb{F}_2 \to \Omega_* \otimes R^*$ has differential $d(\xi_1^4) = x_4$, $d(\bar{\xi}_2^2) = x_6$, $d(\bar{\xi}_3) = x_7$.

DMSS for A(2)

• Graded pieces $R^* = \bigoplus_{\sigma} R^{\sigma}$.

$$\mathbf{R}^{\sigma} = \mathbb{F}_2\{x_4^i x_6^j x_7^k \mid i+j+k=\sigma\}.$$

Algebra spectral sequence

$$E_1^{\sigma,s,*} = \mathsf{Ext}_{\mathsf{A}(1)_*}^{s,*}(\mathbb{F}_2, \mathsf{R}^{\sigma}) \Longrightarrow_{\sigma} \mathsf{Ext}_{\mathsf{A}(2)_*}^{s+\sigma,*}(\mathbb{F}_2, \mathbb{F}_2)$$

• Abutment equals the E_2 -term of the Adams SS converging to $\pi_* tmf$.

$A(1)_*$ -comodules R^{σ}

 $\blacktriangleright R^3 = \mathbb{F}_2\{x_4^3, x_4^2x_6, x_4^2x_7, x_4x_6^2, x_4x_6x_7, x_6^3, x_4x_7^2, x_6^2x_7, x_6x_7^2, x_7^3\}.$

 $\sigma = \mathbf{0}$

 $\sigma = 1$

 $\sigma = \mathbf{2}$

•
$$R^2 = \mathbb{F}_2\{x_4^2, x_4x_6, x_4x_7, x_6^2, x_6x_7, x_7^2\}.$$

• $E_1^{2,*,*} = Ext_{A(1)*}^{*,*}(\mathbb{F}_2, R^2) = G_2^{*,*}\{h_2^2\}.$

 $\sigma = 3$

Extensions by $\mathbb{F}_2[x_7^4]$

- $x_7^4 \in R^4$ is $A(1)_*$ -comodule primitive.
- A(1)*-comodule algebra extension

$$\mathbb{F}_2[x_7^4]
ightarrow R^* woheadrightarrow ar{R}^*$$
 .

- $\bar{R}^* = \bigoplus_{\sigma} \bar{R}^{\sigma}$ where $\bar{R}^{\sigma} = \mathbb{F}_2\{x_4^i x_6^j x_7^k \mid i+j+k=\sigma, 0 \le k \le 3\}.$
- Algebra extension

$$\mathbb{F}_2[x_7^4] \rightarrowtail E_1^{*,*,*} \twoheadrightarrow \bar{E}_1^{*,*,*}$$

The charts $G_{\sigma}^{*,*}$

- $\blacktriangleright \ \bar{E}_1^{\sigma,s,*} = Ext_{\mathcal{A}(1)_*}^{s,*}(\mathbb{F}_2,\bar{R}^{\sigma}).$
- Starts with $A(1)_*$ -comodule primitive x_4^{σ} in $(t s, s) = (4\sigma, 0)$.
- Define chart $G_{\sigma}^{*,*}$ by

$$\Sigma^{4\sigma}G^{*,*}_{\sigma}=\operatorname{Ext}^{*,*}_{A(1)_*}(\mathbb{F}_2,ar{R}^{\sigma}).$$

- Starts at origin (t s, s) = (0, 0).
- Contributes $G^{s,t}_{\sigma}\{h^{\sigma}_{2}\}$ towards $Ext^{s+\sigma,t+4\sigma}_{A(2)_{*}}(\mathbb{F}_{2},\mathbb{F}_{2}).$

•
$$G_0^{*,*} = ko^{*,*}$$
 and $G_1^{*,*} = ksp^{*,*}$.

Adams covers of ku

- Can calculate $G_{\sigma}^{*,*}$ for $\sigma \geq 2$ in terms of Adams covers $ku\langle \sigma \rangle$ of ku.
- Consider minimal Adams tower of $ku = ku\langle 0 \rangle$:

$$\dots \longrightarrow ku\langle \sigma + 1 \rangle \longrightarrow ku\langle \sigma \rangle \longrightarrow \dots \longrightarrow ku\langle 1 \rangle \longrightarrow ku$$

$$\bigvee_{i=0}^{\sigma} \Sigma^{2i}H \qquad H \lor \Sigma^{2}H \qquad H$$

• Product $ku \wedge ku \rightarrow ku$ lifts to pairings $ku \langle \sigma \rangle \wedge ku \langle \tau \rangle \rightarrow ku \langle \sigma + \tau \rangle$.

Comodule syzygies

►
$$H^*(ku) = A \otimes_{E(1)} \mathbb{F}_2$$
, so $H_*(ku) = A_* \square_{E(1)_*} \mathbb{F}_2$.

► Generally,

$$H_*\Sigma^{\sigma} ku \langle \sigma \rangle \cong A_* \Box_{E(1)_*} \Omega^{\sigma}_{E(1)_*} (\mathbb{F}_2)$$

where $\Omega^{\sigma}_{E(1)_*}(\mathbb{F}_2)$ is the σ -th $E(1)_*$ -comodule syzygy of \mathbb{F}_2 .

• Adams chart for $\Sigma^{\sigma} k u \langle \sigma \rangle$ is

$$Ext_{A_{*}}^{*,*}(\mathbb{F}_{2}, A_{*} \Box_{E(1)_{*}} \Omega_{E(1)_{*}}^{\sigma}(\mathbb{F}_{2})) \cong Ext_{E(1)_{*}}^{*,*}(\mathbb{F}_{2}, \Omega_{E(1)_{*}}^{\sigma}(\mathbb{F}_{2}))$$

► *E*(1)_{*}-comodule pairing

$$\Omega^{\sigma}_{E(1)_*}(\mathbb{F}_2) \otimes \Omega^{\tau}_{E(1)_*}(\mathbb{F}_2) \to \Omega^{\sigma+\tau}_{E(1)_*}(\mathbb{F}_2).$$

Adams spectral sequence for $ku\langle\sigma\rangle$ (in the case $\sigma = 3$)

The chart $G_{\sigma}^{*,*}$ (in the case $\sigma = 3$)

A comparison result for $\sigma \geq 2$

- ▶ Proposition: $G_{\sigma}^{*,*}$ is the subchart of the Adams chart for $ku\langle\sigma\rangle$ where the classes with t s = 2 are omitted.
- Additively

$$G_{\sigma}^{*,*} = \mathbb{F}_{2}\{a_{n,s} \mid s \geq 0, 0 \leq n \leq s + \sigma, n \neq 1\}$$

with $a_{n,s}$ in Adams bidegree (t - s, s) = (2n, s).

- ► $ko^{*,*}$ -module action is given by $h_0 \cdot a_{n,s} = a_{n,s+1}$, $h_1 \cdot a_{n,s} = 0$, $v \cdot a_{n,s} = a_{n+2,s+3}$ and $w_1 \cdot a_{n,s} = a_{n+4,s+4}$.
- ► The pairing $G_{\sigma}^{*,*} \otimes G_{\tau}^{*,*} \to G_{\sigma+\tau}^{*,*}$ is given by $a_{n,s} \cdot a_{m,t} = a_{n+m,s+t}$.

Proof

► Explicit, injective, A(1)_{*}-comodule algebra homomorphism

$$\phi\colon \bar{R}^* = \mathbb{F}_2[x_4, x_6, x_7]/(x_7^4) \to \bigoplus_{\sigma} \Sigma^{3\sigma} A(1)_* \Box_{E(1)_*} \Omega^{\sigma}_{E(1)_*}(\mathbb{F}_2).$$

For $\sigma \geq$ 2, short exact sequence

$$0 \to \bar{R}^{\sigma} \to \Sigma^{3\sigma} A(1)_* \Box_{E(1)_*} \Omega^{\sigma}_{E(1)_*}(\mathbb{F}_2) \to \Sigma^{4\sigma+2} A(1)_* \Box_{A(0)_*} \mathbb{F}_2 \to 0$$

induces SES

$$0 o G^{*,*}_{\sigma} o ku \langle \sigma \rangle^{*,*} o \mathbb{F}_{2}[h_{0}]\{a_{1,0}\} o 0$$
 .

Graded algebra homomorphism

$$\phi_* \colon \bigoplus_{\sigma} G^{*,*}_{\sigma} \to \bigoplus_{\sigma} ku \langle \sigma \rangle^{*,*}$$

determines product at the LHS.

DMSS (E_1, d_1) -complex

Figure: $\mathbb{F}_2[x_7^4] \to E_1^{*,*,*} \to \bigoplus_{\sigma} G_{\sigma}^{*,*}\{h_2^{\sigma}\}$

DMSS $d_1^0 \colon E_1^{0,*,*} \to E_1^{1,*,*}$

Figure: $d_1^0(v) = h_0^3 h_2$

DMSS $d_1^1 \colon E_1^{1,*,*} \to E_1^{2,*,*}$

Figure: $d_1^1(v'h_2) = h_0 h_2^2$

DMSS $d_1^2 \colon E_1^{2,*,*} \to E_1^{3,*,*}$

Figure: $d_1^2(a_{2,0}h_2^2) = h_2^3$, $d_1^2(a_{5,3}h_2^2) = a_{3,3}h_2^3$

DMSS $d_1^3 \colon E_1^{3,*,*} o \bar{E}_1^{4,*,*}$

Figure: $d_1^3(a_{2,0}h_2^3) = h_2^4$, $d_1^3(a_{5,2}h_2^3) = a_{3,2}h_2^4$, $d_1^3(a_{6,3}h_2^3) = a_{4,3}h_2^4$

DMSS $d_1^4 \colon \bar{E}_1^{4,*,*} o \bar{E}_1^{5,*,*}$

Figure: $d_1^4(a_{2,0}h_2^4) = h_2^5$, $d_1^4(a_{5,1}h_2^4) = a_{3,1}h_2^5$, $d_1^4(a_{6,2}h_2^4) = a_{4,2}h_2^5$

DMSS $d_1^5 \colon \bar{E}_1^{5,*,*} \to \bar{E}_1^{6,*,*}$

Figure: $d_1^5(a_{2,0}h_2^5) = h_2^6$, $d_1^5(a_{5,0}h_2^5) = a_{3,0}h_2^6$, $d_1^5(a_{6,1}h_2^5) = a_{4,1}h_2^6$

DMSS $d_1^6 : \bar{E}_1^{6,*,*} \to \bar{E}_1^{7,*,*}$

Figure: $d_1^6(a_{2,0}h_2^6) = h_2^7$, $d_1^6(a_{5,0}h_2^6) = a_{3,0}h_2^7$, $d_1^6(a_{6,0}h_2^6) = a_{4,0}h_2^7$, $d_1^6(a_{9,3}h_2^6) = a_{7,3}h_2^7$

Figure: $\mathbb{F}_2[w_1]$ -basis for E_2^0

Figure: $c_0 = h_1 v' h_2$

Figure: $\alpha = a_{3,1}h_2^2$, $d_0 = a_{4,2}h_2^2$, $w_1h_2^2 = h_0^2d_0$

Figure: $\beta = a_{3,0}h_2^3$, $e_0 = a_{4,1}h_2^3$

DMSS \overline{E}_2 for $\sigma \leq 4$

Figure: $h_2\beta = a_{3,0}h_2^4$, $g = a_{4,0}h_2^4$, $\alpha d_0 = a_{7,3}h_2^4$

DMSS \bar{E}_2 for $\sigma \leq 5$

Figure: $h_2^2\beta = a_{3,0}h_2^5$, $h_2g = a_{4,0}h_2^5$, $\alpha e_0 = a_{7,2}h_2^5$, $d_0e_0 = a_{8,3}h_2^5$

DMSS \bar{E}_2 for $\sigma \leq 6$

Figure: $h_2^2 g = a_{4,0} h_2^6$, $\alpha g = a_{7,1} h_2^7$, $d_0 g = a_{8,2} h_2^7$

Summary of \bar{E}_2^*

- Section $S: \overline{R}^* \to R^*$ makes (\overline{E}_1^*, d_1) a subcomplex of (E_1^*, d_1) .
- $d_1^{\sigma}(a_{n,s}h_2^{\sigma}) = a_{n-2,s}h_2^{\sigma+1}$ for $n \equiv 1,2 \mod 4$, is zero otherwise.
- Homology $\bar{E}_2^{\sigma} = H^{\sigma}(\bar{E}_1^*, d_1)$ repeats with

$$g\colon ar{\mathcal{E}}_2^\sigma o ar{\mathcal{E}}_2^{\sigma+4}$$

surjection for $\sigma =$ 2, isomorphism for $\sigma \ge$ 3.

• For each $\sigma \geq$ 3,

$$\bar{E}_2^{\sigma} = \mathbb{F}_2[w_1]\{a_{n,s}h_2^{\sigma}\}$$

is free of rank six, where $0 \le s \le 3$, $s + \sigma - 2 \le n \le s + \sigma$ and $n \equiv 0, 3 \mod 4$.

Short and long exact sequences

► $x_7^8 = (x_7^4)^2 \in R^8$ is $A(2)_*$ -comodule primitive. (Will represent $w_2 \mapsto v_2^8$.)

Short exact sequence of cochain complexes

$$0 \to \bar{E}_1^* \stackrel{S}{\to} E_1^*/(x_7^8) \to \bar{E}_1^*\{x_7^4\} \to 0$$

induces long exact sequence

$$\dots \to \bar{E}_2^* \stackrel{\mathcal{S}}{\to} E_2^*/(x_7^8) \to \bar{E}_2^*\{x_7^4\} \stackrel{\delta}{\to} \bar{E}_2^{*+1} \to \dots$$

• Connecting homomorphism $\delta : \overline{E}_2^{\sigma} \{x_7^4\} \to \overline{E}_2^{\sigma+5}$ contains "remainder" of d_1 -differential.

 \overline{E}_2^* free over $\mathbb{F}_2[w_1]$

 $\overline{E}_2^* \oplus \overline{E}_2^* \{x_7^4\}$ free over $\mathbb{F}_2[w_1]$

Figure: Add $\overline{E}_2^* \{x_7^4\}$ to \overline{E}_2^*

 $\delta \colon \overline{E}_2^* \{ x_7^4 \} \to \overline{E}_2^{*+5}$

Figure: $\delta(x_7^4) = h_2 g$
DMSS $E_2^*/(x_7^8)$

Figure: $\mathbb{F}_2[w_1]$ -basis for $E_2^*/(x_7^8)$

DMSS E_2^* free over $\mathbb{F}_2[w_1, w_2]$

Figure: $\mathbb{F}_2[w_1, w_2]$ -basis for E_2^*

Collapse at E_2^*

- ► No room for further differentials: $E_2^* = E_\infty^*$.
- Algebra generators for E_{∞}^* :

	h_0	h_1	h_2	c_0	α	d_0	β	e_0	γ	δ	g	<i>W</i> ₁	<i>W</i> ₂
t-s	0	1	3	8	12	14	15	17	25	32	20	8	48
S	1	1	1	3	3	4	3	4	5	7	4	4	8

DMSS $E_{\infty}^* \Longrightarrow Ext_{A(2)}(\mathbb{F}_2, \mathbb{F}_2)$

Figure: Algebra generators for $E_{\infty}^* \Longrightarrow Ext_{A(2)}(\mathbb{F}_2, \mathbb{F}_2)$

The Shimada-Iwai algebra

Theorem (Shimada-Iwai (1967)):

 $Ext_{A(2)}(\mathbb{F}_2, \mathbb{F}_2) = \mathbb{F}_2[h_0, h_1, h_2, c_0, \alpha, d_0, \beta, e_0, \gamma, \delta, g, w_1, w_2]/I$

(13 generators) where the ideal *I* is generated by

$$h_0 h_1 , h_1 h_2 , h_0^2 h_2 = h_1^3 , h_0 h_2^2 , h_2^3 , \dots ,$$

$$\alpha^4 = h_0^4 w_2 + w_1 g^2 , h_2 \alpha^2 = h_1^2 \gamma , h_2 \alpha \beta , h_0 \alpha d_0 = h_2 w_1 \beta , h_2 \beta^2$$

(54 relations).

- ▶ Verify relations in $Ext_{A(2)}(\mathbb{F}_2, \mathbb{F}_2)$ by machine calculation.
- ► Use a Gröbner basis to check that the Shimada–Iwai algebra is free as an $\mathbb{F}_2[w_1, w_2]$ -module, on an explicit list of generators.
- ► Observe that the Davis–Mahowald E_∞-term is free over F₂[w₁, w₂], with the same number of generators in each bidegree.

 $\mathit{Ext}_{A(2)}(\mathbb{F}_2,\mathbb{F}_2)$

