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1. INTRODUCTION

This document is a set of notes made in support of a course I gave at Northwestern in the
spring of 2001. The purpose of the course was to say something useful about a cohomology
theory called tmf, the “topological modular forms” spectrum.

The approach was to select a characterization of the spectrum tmf, and to compute var-
ious things using it. For instance, one might declare tmf to be a ring spectrum with a
certain MU-homology. I used a variant of this, with MU replaced by the Thom spectrum
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on ΩU(4). This is very much like the approach in [HM]; one can regard the present set of
notes as a commentary on parts of their paper.

Because of the diverse nature of the audience, I spent much time going over fairly stan-
dard material on complex orientable cohomology theories (§§2–7), although from a some-
what more modern viewpoint; see, e.g., [Str99] for a thorough modern treatment. The char-
acterization of tmf used here is based on an observation about the Weierstrass equation
which is found in the appendix to [AHS01]; we develop this in §§8–13.

After a characterization of tmf is given in §14, I proceed to set up the calculation of π∗tmf
using the Adams-Novikov spectral sequence. Much of the work (§§15–16,18) is the calcu-
lation of the E2-term of this spectral sequence, which are the derived functors of modular
forms. I work this out completely except at 2, in which case I hopefully give enough details
to recover the method. I refer to [HM] for the calculation of differentials in the spectral
sequence (§§17,19).

I also give calculations of MU∗tmf (in §20) and H∗(tmf;Fp) (in §21).
I had hoped to cover several more topics: the K-theory of tmf and the homotopy of

LK(1)tmf, and the structure of LK(2)tmf, which at primes 2 and 3 is the spectrum EO2 of
Hopkins and Miller. Perhaps I will add this at some point.

This document is a work in progress, although not much work is being done on it at the
moment. I appreciate any remarks or corrections.

2. EVEN PERIODIC RING THEORIES AND FORMAL GROUP LAWS

2.1. Even periodic ring theories. Consider a generalized cohomology theory E∗(−) with
the following properties:

(1) E∗(−) is a graded commutative ring,
(2) Em(pt) = 0 when m is odd, and
(3) there exists u ∈ E2(pt) and u−1 ∈ E−2(pt) such that uu−1 = 1.

We’ll call such an E an even periodic ring theory; it is even because the coefficient groups
are 0 in odd degrees, and periodic by the existence of the element u, which induces isomor-
phisms un : Eq ≈ Eq+2n for all n ∈ Z. It is important to remember that there can be more
than one choice for u.

Proposition 2.2. Let E be an even periodic ring theory. Then for each n > 0 there exist elements
xn ∈ Ẽ0

CP
n such that xn+1 7→ xn under the inclusion CPn → CP

n+1, and such that

E0[xn]/(xn+1
n ) ∼−→ E0

CP
n

is an isomorphism. Furthermore, Eq
CP

n = 0 when q is odd.
Such {xn} give rise to a class x ∈ Ẽ0

CP
∞ and an isomorphism

E0[[x]] ∼−→ lim
n

E0
CP

n ≈ E0
CP
∞.

Again, Eq
CP
∞ = 0 for q odd.

A class x ∈ E0
CP
∞ as in the proposition is called a coordinate. Let xi ∈ E0(CP∞ × · · · ×

CP
∞) denote π∗i (x), where πi is the i-th projection to CP∞.
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Proposition 2.3. Let E be an even periodic ring theory. Then the coordinates induce isomorphisms

E0[x1, . . . , xm]/(xn1+1
1 , . . . , xnm+1

m ) ∼−→ E0(CPn1 × · · ·CPnm ),

and
E0[[x1, . . . , xm]] ∼−→ E0(CP∞ × · · · ×CP∞).

In particular,
E0(CPm ×CPn) ≈ E0

CP
n ⊗E0 E0

CP
m

for m, n <∞. The E-cohomology of these spaces vanishes in odd degrees.

The proofs of both of these propositions follow from the Atiyah-Hirzebruch spectral se-
quence: see [Ada73] for an exposition.

All the isomorphisms described above depend on a choice of coordinate x ∈ E0
CP
∞.

This choice is not unique. If

y =
∞
∑
i=1

aixi, ai ∈ E0, a1 ∈ (E0)×,

then it is straightforward to check that E0[y]/(yn+1) ∼−→ E0
CP

n, and E0[[y]] ∼−→ E0
CP
∞. That

is, y is another coordinate for E, and all coordinates for E may be represented as a power
series f (x) ∈ E0[[x]] of a fixed coordinate x with f (0) = 0 and f ′(0) invertible.

2.4. Formal group laws. An even periodic ring theory E, together with a coordinate x, give
rise to a formal group law. A formal group law (1-dimensional, commutative) over a ring
A is a power series F(x1, x2) ∈ A[[x1, x2]] satisfying

(i) F(x, 0) = x = F(0, x),
(ii) F(x, y) = F(y, x),

(iii) F(x, F(y, z)) = F(F(x, y), z).
Recall that CP∞ is the classifying space for complex line bundles: for each space X and
line bundle L over X there is a unique homotopy class of maps γ : X → CP

∞ such that
γ∗(Luniv) ≈ L, where Luniv is the canonical line bundle over CP∞. Let

µ : CP∞ ×CP∞ → CP
∞

be the map classifying π∗1 (Luniv)⊗ π∗2 (Luniv). Now we may define

F(x1, x2) def= µ∗(x) ∈ E0(CP∞ ×CP∞) ≈ E0[[x1, x2]].

Proposition 2.5. This F(x1, x2) is a formal group law over E0.

If y = f (x) = ∑∞i=1 aixi is another coordinate for E, we get a different formal group law
over E0 defined by F′(y1, y2) = µ∗(y) = E0[[y1, y2]].

A homomorphism f : F → F′ of formal group laws over a ring A is a power series
f (x) ∈ A[[x]] with f (0) = 0 such that

f (F(x1, x2)) = F′( f (x1), f (x2)).

If f ′(0) is invertible in A, then it is easy to see that there exists a unique power series
f−1(x) ∈ A[[x]] with f ( f−1(x)) = x = f−1( f (x)). In such a case, f is an isomorphism
of formal group laws over A.
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In the case of two different coordinates on E as above, we see that the series f relating
the coordinates gives rise to a homomorphism f : F→ F′ of formal group laws. In fact,

F′( f (x1), f (x2)) = F′(y1, y2) = µ∗(y) = µ∗( f (x)) = f (µ∗(x)) = f (F(x1, x2)).

A simple example of a homomorphism is the n-series (or n-th power map) [n]F : F → F,
which is defined for all n ∈ Z. We write [n] for short, when the formal group law F is clear
from the context. For positive n,

[1](x) = x,

[n + 1](x) = F([n](x), [1](x)).

The inverse map [−1] : F → F is defined to be the unique power series such that
F(x, [−1](x)) = 0.

Proposition 2.6. The inversion map [−1](x) exists and is unique. We have formulas
F([m](x), [n](x)) = [m + n](x) and [n]([m](x)) = [nm](x) for all m, n ∈ Z.

Proof. Exercise. �

2.7. Chern classes and examples. An even periodic ring theory E with chosen coordinate x
has a theory of characteristic classes. In particular, there is a “first chern class” for complex
line bundles, defined by

cE,x
1 (L) ∈ E0X, cE,x

1 (L) def= γ∗(x),

where γ : X → CP
∞ is the map classifying L. Note that c1 depends on the choice of coordi-

nate x. If y = f (x) ∈ E0
CP
∞ is another coordinate, then

cE,y
1 (L) = f (cE,x

1 (L)).

The formal group law is the “addition law” for the chern class of a tensor product. Thus,

cE,x
1 (L1 ⊗ L2) = F(cE,x

1 (L1), cE,x
1 (L2)).

Here are some examples of even periodic ring theories.

Example 2.8 (Ordinary periodic cohomology). Ordinary cohomology H∗(X; A) is not a peri-
odic ring theory. We can repair this by defining a new theory, HP∗(−; A), which is periodic.
Thus, for a finite CW-complex X define

HP∗(X; A) = H∗(X; A)⊗A A[u, u−1]

where |u| = −2; that is, u ∈ HP−2(pt; A). Thus

HPn(X; A) ≈
⊕
q∈Z

Hn+2q(X; A)⊗ uq.

One computes that HP∗(CPn; A) ≈ A[u, u−1, x]/(xn+1) where

−x ∈ H2(CPn; A) ⊂ HP2(CPn; A)

is the first Chern class of the tautological line bundle. (Note: the tautological line bundle is
what geometers call O(−1), which explains this normalization of the chern class.) If we let
t = xu ∈ HP0(CP∞; A), we thus obtain

HP0(CPn; A) ≈ A[t]/(tn+1) and HP0(CP∞; A) ≈ A[[t]].
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Furthermore, the usual addition formula for chern classes of tensor products of line bundles
in H∗(−; A) shows that the associated formal group law is just: F(t1, t2) = t1 + t2. This is
called the additive formal group law.

Example 2.9 (K-theory). Complex K-theory is certainly a even periodic ring theory, with
K∗(pt) ≈ Z[u, u−1], |u| = −2. We have

K0(CPn) = Z[L]/((L− 1)n+1)

where L represents the canonical line bundle. If we set t = L− 1 this becomes K0
CP

n =
Z[t]/(tn+1), whence K0

CP
∞ ≈ Z[[t]].

Over CP∞ ×CP∞ we have π∗1 L⊗ π∗2 L = (1 + t1)(1 + t2) = 1 + t1 + t2 + t1t2, and so we
discover that associated to the coordinate t is the formal group law

F(t1, t2) = µ∗(t) = t1 + t2 + t1t2 ∈ Z[[t]].

This is called the multiplicative formal group law, since it is really multiplication “shifted
by −1”.

In the examples we have given, the formal group law turned out to be a polynomial rather
than a power series. These are essentially the only examples for which this happens.

3. FORMAL GROUPS

Above we described a correspondence{
even periodic ring theories

with chosen coordinate

}
=⇒

{
formal group laws

}
.

We want to develop a “coordinate-free” version of formal group laws, called “formal
groups”, leading to a correspondence (actually a functor)

{even periodic ring theories} =⇒ {formal groups} .

3.1. Some formal geometry. Suppose that A is a commutative ring. Let adic(A) denote
the category of adic A-algebras. An object in this category consists of a commutative ring
B together with homomorphisms i : A → B and r : B → A such that r ◦ i = idA, and such
that the kernel of r is a nilpotent ideal. A morphism of objects such objects is a map of rings
which commutes with the structure, and is the identity on A.

We write Â1
A(B) (or just Â1(B)) for the kernel of r : B → A. This defines a functor

Â
1 : adic(A)→ Set. There is a natural isomorphism

Â
1(B) ≈ colimn homadic(A)(A[x]/(xn), B),

given by associating each homomorphism f : A[x]/(xn) → B to the element f (x) ∈ Â1(B).
In other words, the functor Â1 is “pro-represented” by A[[x]]. Similarly, there is a natural
isomorphism

Â
1(B)× Â1(B) ≈ colimm,n homadic(A)(A[x, y]/(xm, yn), B),

whence Â1 × Â1 is pro-represented by A[[x, y]], and so forth.
We write hom(Â1, Â1) for the set of natural transformations of functors Â1 →

Â
1 : adic(A)→ Set.
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Lemma 3.2. There are natural bijections

hom(Â1, Â1) ≈ (x) ⊂ A[[x]]

and
hom(Â1 × Â1, Â1) ≈ (x1, x2) ⊂ A[[x1, x2]],

defined such that f (x) ∈ A[[x]] sends b ∈ Â1(B) to f (b) ∈ Â1(B), resp. g(x1, x2) ∈ A[[x]] sends
(b1, b2) ∈ Â1(B)× Â1(B) to g(b1, b2) ∈ Â1(B).

Proof. Exercise. �

3.3. Formal groups. A formal group over A is a functor

G : adic(A)→ Ab

with the property that the underlying functor adic(A) → Set is isomorphic to the functor
Â

1. Note that the data of a formal group G does not include a specified isomorphism with
Â

1. A choice of such an isomorphism x : G→ Â
1 is called a coordinate for G.

Another way to think of G is as a functor G : adic(A) → Set which is isomorphic to Â1,
together with natural transformations µ : G× G → G, i : G → G, and e : ∗ → G satisfying
the abelian group axioms; that is, for each B ∈ adic(A) there are maps µ : G(B)× G(B) →
G(B), i : G(B) → G(B), and eB ∈ G(B) such that G(B) is an abelian group, and such that
for each f : B→ B′ the induced G(B)→ G(B′) is a group homomorphism.

A homomorphism of formal groups over A is a natural transformation φ : G → G′ of
functors adic(A)→ Ab.

3.4. Relation between formal group laws and formal groups. A formal group law
F(x1, x2) = x + y + ∑ ci jxi y j ∈ A[[x1, x2]] gives rise to a formal group G, together with
a coordinate x : G → Â

1, as follows. We define G : adic(A) → Ab to be the functor
Â

1 : adic(A) → Set together with an additional abelian group structure. For B ∈ adic(A)
the abelian group structure [+] : Â1(B)× Â1(B)→ Â

1(B) is defined by

b1[+]b2
def= F(b1, b2) = b1 + b2 + ∑ ci jbi

1b j
2, b1, b2 ∈ Â1(B).

The unit of the abelian group structure will be 0. This is well-defined: since b1 and b2 lie
in the nilpotent augmentation ideal of r : B → A, the terms of F(b1, b2) become zero in
sufficiently large degree. The identification G ≈ Â1 defines the coordinate x.

A homomorphism f : F → F′, f (x) = ∑ cixi ∈ A[[x]], defines a homomorphism of the
associated formal groups f : G→ G′ by

G(B)→ G′(B) : b 7→ f (b) = ∑ cibi.

A formal group G over A, together with a coordinate x : G → Â
1, gives rise to a for-

mal group law F(x1, x2) ∈ A[[x1, x2]] as follows. Let µ : G × G → G denote the natural
transformation making G a group, and consider the diagram of natural transformations

G× G
µ
//

x×x
��

G

x
��

Â
1 × Â1 F //___

Â
1.
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The vertical arrows are isomorphisms and so the dotted arrow exists and is unique. By
the lemma we gave above, F ∈ hom(Â1 × Â1, Â1) = (x1, x2) ⊂ A[[x1, x2]] and so we get a
formal power series F(x1, x2), which is the desired formal group law.

Similarly, given formal groups G and G′ with coordinates x and y, a homomorphism
φ : G → G′ corresponds via y ◦φ = f ◦ x to a map f : Â1 → Â

1, and thus to a power series
f (x) ∈ (x) ⊂ A[[x]].

3.5. Pullbacks. We need a way to talk about isogenies of formal groups which are defined
over different rings. Given a map A → A′ of rings, there is a functor adic(A′) → adic(A)
defined by B′ 7→ B = A×A′ B′. Note that the augmentation ideal of B → A is identical to
that of B′ → A′, i.e. we have a natural isomorphism A

1
A′(B′) ≈ A1

A(B). This functor is right
adjoint to a functor adic(A)→ adic(A′), defined by B 7→ A′ ⊗A B.

Now suppose that G is a formal group over A. Define φ∗G to be the formal group over
A′, defined by the formula

φ∗G(B′) = G(A×A′ B′)

for B′ any adic A′-algebra. That is, φ∗G is the composite functor adic(A′) → adic(A) G−→
Ab. If we choose a coordinate x : G → A

1, with associated formal group law F(x1, x2) in A,
then this defines in a natural way a coordinate x′ : G′ → A

1, with associated formal group
lawφ∗F(x1, x2) on A′, whereφ∗F is the series obtained as the image of F(x1, x2) under the
natural map A[[x1, x2]]→ A′[[x1, x2]].

We can define a category of formal groups, the objects of which are pairs (A, G) con-
sisting of a commutative ring A and a formal group G over A, with morphisms (A, G) →
(A′, G′) being pairs (φ : A′ → A,ψ : G→ φ∗G′). We call this simply the category of formal
groups.

3.6. Even periodic ring theories give rise to formal groups. An even periodic ring theory
E as above gives rise to a formal group GE defined for an adic E0-algebra B by

GE(B) = colimn homadic(E0)(E0
CP

n, B),

with addition law induced by µ∗ : E0
CP
∞ → E0(CP∞ ×CP∞). A coordinate x : GE → A

1

corresponds to an coordinate x ∈ E0
CP
∞ in the sense used earlier.

Let E and F be even periodic ring theories. A multiplicative operation φ : E → F is a
natural transformation E0(X) → F0(X) which for each space X is a ring homomorphism.
By substituting X = CP

∞ or X = CP
∞ ×CP∞, we see that we obtain an isogeny

GF → φ∗GE;

by abuse of notation we write φ : E0 → F0 for the map induced by the operation φ when
X = pt. In terms of coordinates xE ∈ E0

CP
∞ and xF ∈ F0

CP
∞, we see that this isogeny

corresponds to the map of formal group laws given by the power series f (T) ∈ F0[[T]] such
thatφ(xE) = f (xF) ∈ F0

CP
∞.

We have defined a contravariant functor{
even periodic ring theories and

multiplicative operations

}
→
{

formal groups
and homomorphisms

}
: E 7→ (E0, GE).
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3.7. Examples.

Example 3.8. Recall the periodic ordinary cohomology HP∗(X; A) defined above. It has
HP∗(pt; A) ≈ A[u, u−1] with u ∈ HP−2. Given an element λ ∈ A we can define a natural
transformation ψλ : HP0(−; A) → HP0(−; A) as follows: ψλ(α ⊗ uk) = λkα ⊗ uk, where
α ∈ H2k(X; A). Thisψλ is a multiplicative operation. It is not hard to check that the induced
map (A, Ĝa) → (A, Ĝa) of formal groups is that given in terms of the additive coordinate
t ∈ HP0(CP∞; A) by f (t) = λt.

Example 3.9. Now suppose that A = Fp, where p is an odd prime. Then we define an
operation ψ : HP0(−;Fp)→ HP0(−;Fp) as follows. Forα ∈ H2k(X;Fp), let

ψ(α ⊗ uk) =
k

∑
i=0

Piα ⊗ uk+i(p−1),

where Pi : H2k(X;Fp) → H2k+i(p−1)(X;Fp) are the usual mod p Steenrod reduced powers.
Then ψ is a multiplicative operation, using the Cartan formula. One computes that, for the
generator t = xu ∈ HP0(CP∞;Fp), we have

ψ(t) = ψ(x⊗ u) = x⊗ u + xp ⊗ up = t + tp;

thus in terms of the additive coordinate the series f (t) = t + tp defines the induced homo-
morphism (Fp, Ĝa)→ (Fp, Ĝa) of formal groups.

Example 3.10. Recall that the formal group associated to complex K-theory is the multi-
plicative formal group (Z, Ĝm). For each n ∈ Z, the corresponding Adams operation is a
multiplicative operation

ψn : K0(X)→ K0(X),
which is characterized by the property that for line bundles L ∈ K0(X), ψn(L) = Ln. For
the multiplicative coordinate t = L− 1 ∈ K0(CP∞), the calculation

ψn(t) = ψn(L− 1) = Ln − 1 = (1 + t)n − 1 = nT + . . .

shows that ψn induces the n-th power homomorphism [n] : (Z, Ĝm)→ (Z, Ĝm).

Example 3.11. The Chern character is a multiplicative operation

ch : K0(X)→ HP0(X;Q),

which is characterized by the property that for line bundles L ,

ch(L) = exp(u c1(L)).

(Note that c1(L) ∈ H2(X) ⊂ HP2(X;Q).) Thus it must induce a homomorphism (Q, Ĝa)→
(Z, Ĝm). We compute

ch(T) = ch(L− 1) = e−ux − 1 = e−t − 1 = −t + . . . ,

(since c1(L) = −x). This homomorphism is called the exponential homomorphism of the
multiplicative group.
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4. GEOMETRY OF FORMAL GROUPS

4.1. The ring of functions on a formal group. Given a formal group G over A, we write
OG for the A-algebra which pro-represents the functor G : adic(A) → Set. Similarly, we
write OG×G for the A-algebra which pro-represents G× G : adic(A) → Set. As was noted
above,OG is non-canonically isomorphic to A[[x]], andOG×G is non-canonically isomorphic
to A[[x1, x2]]. The group law corresponds to a map OG → OG×G of A-algebras.

Let OG(−e) denote the kernel of the augmentation OG → A, and let OG(−ne) =
OG(−e)n ⊂ OG for n ≥ 0. Identifying OG ' A[[x]], we see that OG(−ne) = xnOG is
the ideal of “functions on G which vanish to order n at e”, and we have a chain of ideals

OG ⊃ OG(−e) ⊃ OG(−2e) ⊃ . . . .

The objects in this chain are natural with respect to the formal group. That is, if we have a
map (A, G) → (A′, G′) of formal groups, then we get natural maps OG′(ne) → OG(ne) of
OG′-modules for each n ≥ 0.

4.2. Invariant differentials. Recall that if A → B is a map of commutative rings, the rela-
tive Kähler differentials is a B-module ΩB/A defined by

ΩB/A
def=
⊕
x∈B

B{dx}/
{

d(xy) = y dx + x dy, x, y ∈ B
d(a) = 0, a ∈ A.

}
.

The map d : B → ΩB/A is a derivation. A map f : B → B′ of A-algebras induces ΩB/A →
ΩB′/A by dx 7→ d( f (x)).

LetΩG, the (formal) module of Kähler differentials ofOG relative to A. By this, we mean
the inverse limit

ΩG
def= lim

n
Ω(OG/OG(−ne))/A.

Thus ΩG is a free OG-module on one generator dx, where x ∈ OG is any coordinate.
A differential η ∈ ΩG is said to be invariant ifµ∗η = π∗1η+π∗2η, whereµ∗, π∗1 , π∗2 : OG →

OG×G correspond to the addition and projection maps µ, π1, π2 : G× G → G. In terms of a
coordinate x for G, this means that if η = f (x)dx is invariant, then

f (F(x1, x2))d(F(x1, x2)) = f (x1)dx1 + f (x2)dx2.

Expanding the left-hand side and evaluating at x2 = 0 gives

f (x1)[dx1 + F2(x1, 0)dx2] = f (x1)dx1 + f (0)dx2.

From the coefficients of the dx2-terms, we see that f (x1)F2(x1, 0) = f (0).

Proposition 4.3. Let x be a coordinate on G, with formal group law F(x1, x2). A differential
η ∈ ΩG is invariant if and only if it is of the form

η =
a dx

F2(x, 0)
=

a dx
F1(0, x)

,

where a ∈ A.
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Proof. We have already shown the only if part. (Note that F2(x, 0) = F1(0, x) since F is a
commutative formal group law.) Conversely, suppose η = dx/F2(x, 0); we need to show that
η is invariant. We must verify the equation µ∗η = π∗1η+ π∗2η, which becomes

F1(x1, x2) dx1

F2(F(x1, x2), 0)
+

F2(x1, x2) dx2

F2(F(x1, x2), 0)
=

dx1

F2(x2, 0)
+

dx2

F2(x2, 0)
.

To see this, consider the associativity relation F(F(x1, x2), x3) = F(x1, F(x2, x3)). Applying
the operator ∂/∂x3|x3=0 to this gives

F2(F(x1, x2), 0) = F2(x1, x2)F2(x2, 0).

Similarly, applying ∂/∂x1|x1=0, and applying the commutativity relation F1(0, x) = F2(x, 0)
gives

F1(x2, x3)F1(0, x2) = F1(0, F(x2, x3)).
�

We let ωG ⊂ ΩG denote the set of invariant differentials of G. It is naturally a module
over A, and, as we have proved, it is free on one generator. In fact,

Proposition 4.4. The function
ωG → ΩG ⊗OG A

induced by the inclusionωG ⊂ ΩG is a natural isomorphism of A-modules.

Proof. The preceding proposition shows that there exists a unique η ∈ ωG of the form
η = a(1 + O(x))dx for each a ∈ A, and the function given here is just the one that isolates
the constant coefficient. �

A morphism ψ : G → G′ of formal groups over A induces a map ΩG′ → ΩG of mod-
ules of differentials, and carries ωG′ to ωG. More generally, a map of formal groups
(φ,ψ) : (A, G)→ (A′, G′) induces natural mapsΩG′ → ΩG ofOG′-modules andωG′ → ωG
of A′-modules.

For example, suppose (A, G)→ (A′, G′) is an isogeny, and let x and x′ be coordinates for
G and G′ with associated formal group laws F(x1, x2) and F′(x′1, x′2). Let η = dx/F2(x, 0)
and η′ = dx′/F′2(x′, 0), and let f (x′) ∈ A[[x′]] denote the isogeny. Then f ∗η′ = f ′(0)η.

We say that (φ,ψ) : (A, G)→ (A′, G′) is separable if the induced mapωG′ ⊗A′ A→ ωG
is an isomorphism of A-modules. In terms of coordinates as above, this amounts to saying
that f ′(0) is invertible in A.

We define a natural map d : OG(−e)/O(−2e)→ ωG as follows. Start with the derivation
d : OG(−e)→ Ω. If we tensor this map over OG with A, we get a map

d : OG(−e)/OG(−2e) ≈ OG(−e)⊗OG A→ Ω⊗OG A ≈ωG.

In terms of a coordinate x on G, this map sends

d : f (x) = ax + O(x2) 7→ a η

where η is the unique invariant differential with η = (1 + O(x))dx.
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Proposition 4.5. The map d : OG(−e)/OG(−2e) → ωG defined above is a natural isomorphism
of A-modules. Furthermore, d gives rise to a natural identification

OG(−ne)/OG(−(n + 1)e) ∼−→ ω⊗n
G

for all n ∈ Z.

Proof. If x is a coordinate on G, then dx ≡ dx/F2(x, 0) (mod x dx), proving the first state-
ment. The second statement follows from the fact that the natural map OG(−e)⊗n →
OG(−ne) induces an identification

(OG(−e)/OG(−2e))⊗n ≈ OG(−ne)/OG(−(n + 1)e)

for all n ∈ Z. �

4.6. Cohomology of projective spaces and spheres. Recall that an even periodic ring the-
ory E gives rise to a formal group (E0, GE). Essentially by definition, the ring of functions
on GE is OGE = E0

CP
∞. The inclusion CPn−1 → CP

∞ induces a cofiber sequence

CP
n−1 → CP

∞ → CP
∞
n

where CP∞n
def= CP

∞/CPn−1, and hence short exact sequence

0→ Ẽ0
CP
∞
n → E0

CP
∞ → E0

CP
n−1 → 0,

(since these spaces have no odd degree cohomology). Recalling that in terms of a coordinate
x we have Ẽ0

CP
n−1 ≈ E0[x]/xn, we see that there is a natural identification E0

CP
∞
n =

OGE (−ne).
Similarly, the cofiber sequences

CP
m
n → CP

∞
n → CP

∞
m+1

(where CPm
n = CP

m/CPn−1 is the stunted projective space) and

S2n → CP
∞
n → CP

∞
n+1

give rise to a short exact sequence and cohomology, and we conclude

Proposition 4.7. There are isomorphisms

Ẽ0(CP∞n ) ≈ OG(−ne), n ≥ 0,

Ẽ0(CPm
n ) ≈ OG(−ne)/OG(−(m + 1)e), m ≥ n ≥ 0,

and

Ẽ0(S2n) ≈ OG(−ne)/OG(−(n + 1)e) ≈ω⊗n
G , n ≥ 0.

Furthermore, these isomorphisms are all natural with respect to multiplicative operations between
cohomology theories.

By the periodicity of E, the isomorphism π2nE = Ẽ0(S2n) ≈ωn
G extends to all n ∈ Z.

Recall that we defined a multiplicative operation to be a natural transformation
φ : E0(−)→ F0(−) of rings.
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Proposition 4.8. A multiplicative operationφ : E0(−)→ F0(−) extends unique to natural trans-
formations E−n(−) → F−n(−) for n ≥ 0 which are multiplicative and which commute with sus-
pension.

Proof. If such an extension exists, we see that theφ : E−nX → F−nX must factor as

E−nX ≈ Ẽ−nX+
∼−→ Ẽ0Σn(X+) φ−→ F̃0Σn(X+) ∼−→ F̃−nX+ ≈ F−nX.

We can use this isomorphism as the definition ofφ : E−nX → F−nX. �

The above proposition is related to the fact that E−2n(pt) ≈ ωn
G, and that the homomor-

phism of the formal group law induces maps between theωn
G for n ≥ 0. A homomorphism

does not in general induces a map for n < 0, and this is an obstruction to extending the
operation to positive degrees.

Say that a multiplicative operation φ : E0(−) → F0(−) is stable if it extends to a multi-
plicative natural transformation En(−) → Fn(−) for all n ∈ Z and which commutes with
suspension. It is not hard to see that if such an extension exists, it must be unique (at least
for X a finite complex).

Proposition 4.9. A multiplicative operation φ : E0(−) → F0(−) is stable if and only if the asso-
ciated homomorphism (F0, GF)→ (E0, GE) is separable.

Proof. (See [Ati89].) If (F0, GF) → (E0, GE) is separable, then in terms of coordinates x, y,
it is given by a series y = f (x) ∈ F0[[x]] with f (x) = ax + · · · where a is invertible. Thus
ωGE ⊗E0 F0 → ωGF is an isomorphism, and hence extends to an isomorphismωn

GE
⊗E0 F0 →

ωn
GF

for all n ∈ Z. Using the argument of the previous proposition, show that you get an
operation in all degrees.

Conversely, if the multiplicative operation is stable, then there are mapsωGE → ωGF and
ω−1

GE
→ ω−1

GF
, which by multiplicativity must tensor together to a map

E0 ≈ωGE ⊗E0 ω−1
GE
→ ωGF ⊗F0 ω−1

GF
≈ F0

which must be the standard map induced by the operation. This implies thatωGE ⊗E0 F0 →
ωGF is an isomorphism, and thus the homomorphism is separable. �

5. HEIGHTS OF FORMAL GROUPS

5.1. A useful lemma. We consider formal group laws F, F′ over a ring A.

Lemma 5.2. Let f ∈ A[[x]] be a homomorphism of formal group laws f : F → F′ over a ring A. If
f ′(0) = 0, then f ′(x) = 0.

Proof. Apply (∂/∂x1)x1=0 to f (F(x1, x2)) = F′( f (x1), f (x2)); this gives

f ′(x)F1(0, x) = F′1(0, f (x)) f ′(0).

Since F(x1, x2) = x1 + x2 + ∑i, j≥1 ci jxi
1x j

2, we have that F1(0, x) ∈ 1 + (x), and in particular
has a multiplicative inverse. Therefore, if f ′(0) = 0 then f ′(x)F1(0, x) = 0 and hence
f ′(x) = 0. �
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5.3. Formal group laws over Q-algebras. Here is a characterization of formal group laws
up to isomorphism, when Q ⊂ A.

Proposition 5.4. Let Q ⊂ A, and let F be a formal group law over A. There exists a unique series
logF(x) = x + · · · ∈ A[[x]] inducing an isomorphism.

logF : F→ Ĝa.

Proof. Let logF(x) be the anti-derivative of 1/F1(0, x); this exists because Q ⊂ A. (The
explanation for this choice is that log∗F(dx) = d(logF(x)) = log′F(x) dx = ηF, where
ηF = dx/F1(0, x) is an invariant differential for F, and dx is an invariant differential for
the additive group.)

To show that logF gives a homomorphism, we check that

logF(F(x1, x2)) = logF(x1) + logF(x2).

To check this, it suffices to show equality after applying ∂/∂xi, i = 1, 2. We carry out the
proof for i = 1, in which case we must show that

F1(x1, x2)/F1(0, F(x1, x2)) = 1/F1(0, x1),

that is,
F1(x1, x2)F1(0, x1) = F1(0, F(x1, x2)).

But this is exactly what you get if you apply (∂/∂y)y=0 to the associative law

F(F(y, x1), x2) = F(y, F(x1, x2)).

To show uniqueness, suppose that f : F → Ĝa is another homomorphism with f (x) =
x + · · · . Take the difference in hom(F, Ĝa), namely g(x) = logF(x)− f (x). This is a homo-
morphism g : F → Ĝa with g′(0) = 0, and by the lemma we see that g′(x) = 0, and hence
g(x) = 0 since Q ⊂ A. �

The moral is that over aQ-algebra, every formal group law is isomorphic to the additive
formal group law. Therefore, over Q-algebras every formal group is isomorphic to the
additive formal group.

Exercise 5.5. Let F and F′ be formal group laws over a ring A ⊃ Q. Show that

hom(F, F′)→ A : f (x) 7→ f ′(0)

is an isomorphism of abelian groups.

5.6. Formal group laws over Fp-algebras. For formal group laws over an Fp-algebra, we
do not have quite as much control. The lemma gives us the following.

Proposition 5.7. Let Fp ⊂ A, and let f : F → F′ be a homomorphism of formal group laws over
A. Then either

f (x) = 0
or

f (x) = g(xpn
)

for some n ≥ 0 and g(x) ∈ A[[x]] with g(0) = 0 and g′(0) 6= 0.
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To prove this, we need some ideas. Let σ : A → A denote the Frobenius map on A,
defined byσ(x) = xp. Recall thatσ∗F denotes the formal group law obtain by pulling back
along σ ; explicitly,

(σ∗F)(x1, x2) = x1 + x2 + ∑
i≥1

cp
i jx

i
1x j

2 if F(x1, x2) = x1 + x2 + ∑
i≥1

ci jxi
1x j

2.

Let h(x) = xp; it is immediate to check that h : F→ σ∗F defines a homomorphism.

Proof. If f ′(0) 6= 0, then take g(x) = f (x). Similarly if f (x) = 0, we are done.
To prove the proposition, we will first prove the following: if f : F → F′ is a homomor-

phism with f ′(0) = 0, then there exists a factorization

F
f

//

h   BBBBBBBB F′

σ∗F
g

=={{{{{{{{

where all maps are homomorphisms. That is, f (x) = g(xp) for some homomorphism
g : σ∗F→ F′, and by induction we conclude that f (x) = g̃(xpn ) for some n.

By the lemma, we know that if f ′(0) = 0, then f ′(x) = 0, and since we are over charac-
teristic p, this implies that f (x) = ∑i≥1 cixpi. That is, f (x) = g(xp) for some series g(x), and
it suffices to check that g : σ∗F→ F′ is a homomorphism. In fact,

g(σ∗F(xp
1 , xp

2)) = g(F(x1, x2)p) = f F(x1, x2) = F′( f (x1), f (x2)) = F′(g(xp
1), g(xp

2)),

which on substituting yi = xp
i shows that g(σ∗F(y1, y2)) = F′(g(y1), g(y2)). �

Suppose that A = k is a field of characteristic p. Then the proposition implies that, since
[p]F : F→ F is a homomorphism,

[p]F(x) = vnxpn
+ · · ·

for some vn ∈ k× and some n = 1, 2, 3, . . . , or [p]F(x) = 0. If G is a formal group, then the
series [p](x) depends on a choice of coordinate x, but the number n is an invariant of the
coordinate. Thus, we make the following definition:

If G is a formal group over a field of characteristic p, we say it has height n, n =
1, 2, 3, . . . ,∞ if for any (and hence every) coordinate x we have [p](x) = vnxpn + · · · with
vn 6= 0. If G is a formal group over a field of characteristic 0, we say it has height 0, since
[p](x) = px + · · · with p 6= 0. The height is an isomorphism invariant of the formal group.

In fact,

Proposition 5.8. Over a separably closed field k, formal groups are isomorphic if and only if they
have the same height.

Proof. See, e.g., [Frö68]. �
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5.9. The elements vn. For a formal group law F over a general ring A, we have the follow-
ing.

Proposition 5.10. Let F be a formal group law over A. We may inductively define elements v0 =
p ∈ A, v1 ∈ A/(p), v2 ∈ A/(p, v1), . . . , vn ∈ A/(p, v1, . . . , vn−1), . . . , such that

[p]F(x) = px + · · · ,

[p]F(x) ≡ v1xp + · · · mod (p),

[p]F(x) ≡ v2xp2
+ · · · mod (p, v1),

...

[p]F(x) ≡ vnxpn
+ · · · mod (p, v1, . . . , vn−1).

We want to investigate to what extent these elements are invariants of a formal group G
(rather than a formal group law). Thus, given a formal group G over A and a coordinate
x, let vG,x

n ∈ A/(p, vG,x
1 , . . . , vG,x

n−1) be defined by the above process for the formal group law
associated to x.

Similarly, let ηG,x ∈ωG denote the invariant 1-form defined by ηG,x = dx/F1(0, x), where
F(x1, x2) is the formal group law associated to x.

Lemma 5.11. Let φ : G → G′ be an isomorphism of formal groups over A, and let x and y be
coordinates on G and G′ respectively, so thatφ∗y = f (x) = cx + · · · for a series f . Then

φ∗(ηG′ ,y) = cηG,x,

vG′ ,y
n ≡ c1−pn

vG,x
n mod (p, vG,x

1 , . . . , vG,x
n−1).

The last line also implies an isomorphism of ideals (p, vG,x
1 , . . . , vG,x

n−1) = (p, vG′ ,y
1 , . . . , vG′ ,y

n−1).

Proof. Let F and F′ denote the formal group laws associated to G, x and G′, y. For the
first part, we have φ∗ηG′ ,y = d( f (x))/F′1(0, f (x)) = f ′(0)dx/F′1(0, x) = cηG,x, as we have
shown before. For the second part, we have by definition [p]F(x) = vG,x

n xpn + · · · and
[p]F′(y) = vG′ ,y

n ypn + · · · . Since φ is a homomorphism, we have f ([p]F(x)) = [p]F′( f (x)).
A little algebra gives

cvG,x
n = vG′ ,y

n cpn

and thus the result. �

It is convenient to let
A∗

def=
⊕
n∈Z

ω⊗n
G ,

a graded ring, commutative (not up to sign). (Therefore π2∗E ≈ A∗ when G is the formal
group of a cohomology theory E.)

Corollary 5.12. For each formal group G over A, prime p, and n ≥ 0, there is an element Vn ∈
ω

pn−1
G /(p, V1, . . . , Vn−1) with the property that for each isomorphism φ : (A′, G′) → (A, G), the

element Vn pulls back to Vn.
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Proof. Define Vn
def= vG,x

n ηG,x, where x is a coordinate. The above remarks show that Vn does
not depend on the choice of coordinate. �

Thus in any even periodic ring theory E, there is a canonically defined element Vn ∈
π2(pn−1)E/(p, V1, . . . , Vn−1).

6. HOMOLOGY OF Z× BU AND RELATED SPACES

We want to give an invariant description of E0(Z× BU).

6.1. Some representable functors. Let alg(A) denote the category of A-algebras. Given a
formal group G, we define a functor

alg(A)→ Set : B 7→ OG ⊗A B.

It will be convenient to write G ⊗ B for the pullback of G along the map A → B, and
thus OG ⊗A B = OG⊗B. Of course, if we choose a coordinate x for G, we can give an
identification OG⊗B ≈ B[[x]].

Proposition 6.2. The functor B 7→ OG⊗B is representable. That is, there exists an A-algebra
OFuncG and an isomorphism

homalg(A)(OFuncG , B) ≈ OG⊗B

natural in B.

Proof. Choose a coordinate x for G. Then we have isomorphisms of sets

OG⊗B ≈ B[[x]] ≈ ∏
n≥0

B,

where a series f (x) = ∑ bixi corresponds to the sequence (bi). SetOFuncG = A[βn, n ≥ 0] =
A[β0,β1, . . . ], and define

homalg(A)(OFuncG , B)→ OG⊗B ≈ B[[x]]

byφ 7→ ∑φ(βn)xn. It is clear that this is a bijection. �

The identification OFuncG ≈ A[βn, n ≥ 0], and hence the elements βn, n ≥ 1, depend
on the choice of coordinate. The element β0 ∈ OFuncG does not depend on the choice of
coordinate. Let OUnitsG = OFuncG [β−1

0 ] = A[β0,β−1
0 ,β1, . . . ].

Proposition 6.3. The functor B 7→ O×G⊗B, which is a subfunctor of OG⊗B, is representable by
OUnitsG . That is, there is an isomorphism

homalg(A)(OUnitsG , B) ≈ O×G⊗B

natural in B.

There is a further subfunctor of B 7→ O×G⊗B, namely 1 + OG⊗B(−e). There is also a
quotient functor of O×G⊗B, namely O×G⊗B/B×. The natural maps

1 +OG⊗B(−e)→ O×G⊗B → O
×
G⊗B/B×

induce a bijection 1 +OG⊗B(−e) ≈ O×G⊗B/B×, so these are really the same functor.
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Let R1 = OUnitsG/(β0− 1) ≈ A[β1,β2, . . . ], and let R2 = A[β1/β0,β2/β0, . . . ] ⊂ OUnitsG .
It is easy to see that the composite R2 → OUnitsG → R1 is an isomorphism.

Proposition 6.4. The functors B 7→ 1 +OG⊗B(−e) and B 7→ O×G⊗B/B× are represented by R1
and R2 respectively.

Proof. The key observation to make here is that every element in O×G⊗B can be written
uniquely as a product b · f with b ∈ B× and f ∈ 1 +OG⊗B(−e). �

We are going to identify all these representing rings as the homology of spaces.

6.5. Homology of BU(n). Let E be an even periodic ring theory, with formal group G =
GE, and choose a coordinate x ∈ Ẽ0

CP
∞.

Proposition 6.6. The “Kronecker pairing” induces a natural isomorphism

E0
CP

n ∼−→ hommod(E0)(E0CP
n, E0).

Using the coordinate x, we can write

E0CP
n ≈ E0{β0,β1, . . . ,βn−1},

where these elements are defined by x j 7→ (βi 7→ δi j).
Taking the limit, we get a natural isomorphism

E0
CP
∞ ∼−→ hommod(E0)(E0CP

∞, E0),

and E0CP
∞ ≈ E0{βn, n ≥ 0}.

Proof. This follows from the Atiyah-Hirzebruch spectral sequence, together with the fact
that it holds for ordinary cohomology. �

Consider the maximal torus (S1)n → U(n). This induces (BS1)n → BU(n), and hence a
map

E0(CP∞)⊗n → E0BU(n).
Since all maximal tori are conjugate, this map factors through the symmetric coinvariants,
and we get

Proposition 6.7.
(E0CP

∞)⊗n
Σn

∼−→ E0BU(n).

6.8. Homology of Z× BU. Let V def= qn≥0BU(n). This space is a commutative H-space,
with map µ : V×V → V induced by the maps BU(m)× BU(n)→ BU(m + n) correspond-
ing to Whitney sum of bundles. Therefore, E0V is a commutative ring.

Proposition 6.9. There is an isomorphism of rings

E0V ≈
⊕
n≥0

(E0CP
∞)⊗n

Σn
.

Furthermore, there is a isomorphism

homalg(E0)(E0V, B) ∼−→ OGE⊗B,

natural in the E0-algebra B.
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Thus this proposition identifies E0V as the algebraOFuncG representing B 7→ OG⊗B which
we described above. It means that, after choosing a coordinate, we can identify

E0V ≈ E0[βn, n ≥ 0].

Proof. The first isomorphism is immediate, except perhaps for the fact that it is a ring ho-
momorphism. But this follows by considering the square

(BS1)p × (BS1)q //

∼
��

BU(p)× BU(q)

Whitney sum
��

(BS1)p+q // BU(p + q),

which commutes up to homotopy; this implies that the product on E0V is that induced by
(E0BS1)⊗p ⊗ (E0BS1)⊗q ≈ (E0BS1)⊗p+q after passing to symmetric quotients.

The second isomorphism is defined as follows. Givenφ : E0V → B a map of E0-algebras,
consider the composition

E0CP
∞ → E0V → B ∈ hommod(E0)(E0CP

∞, B)

induced by the inclusion CP∞ = BU(1)→ V. Now use the identification

hommod(E0)(E0CP
∞, B) ≈ hommod(E0)(E0CP

∞, E0)⊗E0 B ≈ E0
CP
∞ ⊗E0 B ≈ OGE⊗B,

(using the fact that E0CP
∞ is a free E0-module) to define the map hom(E0V, B) → OGE⊗B.

That this is an isomorphism is just the fact that E0V is the symmetric algebra on E0CP
∞. �

The space Z× BU is the classifying space for complex K-theory. It can be identified as

the limit of the sequence V ⊕1−→ V ⊕1−→ · · · . It inherits the H-space structure corresponding
to Whitney sum.

Proposition 6.10. There is an isomorphism of rings

E0(Z× BU) ≈ E0V[β−1
0 ].

Furthermore, there is a isomorphism

homalg(E0)(E0(Z× BU, B) ∼−→ O×GE⊗B,

natural in the E0-algebra B.

Thus this proposition identifies E0(Z× BU) as the algebra OUnitsG described above. It
means that, after choosing a coordinate, we can identify

E0(Z× BU) ≈ E0[β0,β−1
0 ,βn, n ≥ 1].

There are H-space maps

{0} × BU → Z× BU → BU.

These give rise to

Proposition 6.11. There are isomorphisms

homalg(E0)(E0BU, B) ∼−→ 1 +OGE⊗B(−e) ≈ O×GE⊗B/B×.
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This proposition identifies E0BU with the algebras R1 and R2, so that, using a coordinate,

E0BU ≈ E0[(βn/β0), n ≥ 0] ≈ E0[β0,β−1
0 ,βn, n ≥ 1]/(β0 − 1).

The first isomorphism is “better” (because it corresponds to the inclusion BU → Z× BU
which is an infinite loop map, not just an H-space map), but the second one seems more
popular.

6.12. Homology of ΩU(n). Let G be a formal group over A, and consider, for each n ≥ 0,
the functors alg(A)→ Set given by

B 7→ (OG⊗B/OG⊗B(−ne))×.

It is easy to see that, using a coordinate for G, this functor is represented by the ring R(n) =
A[β±1

0 ,β1, . . . ,βn−1]. It turns out that this ring is the cohomology of a subspace of Z× BU.
The Bott periodicity theorem gives a weak equivalence

Z× BU ∼−→ ΩU

where U is the infinite unitary group. This equivalence is given by an H-space map, with
the property that the composite

f : CP∞ ≈ {1} × BU(1)→ Z× BU → ΩU

is the colimit of maps fn : CPn−1 → ΩU(n) defined by

fn : (L ⊂ Cn) 7→
(

z ∈ S1 ⊂ C× 7→ ρL(z)
)

,

where ρL(z) : Cn → C
n is defined by ρL(z)(v) = zvL + v⊥L , where vL and v⊥L denote the

projections of v to each of the factors of Cn ≈ L⊕ L⊥. Note that f1 : CP0 ≈ pt→ ΩU(1) ≈
Z has image 1 ∈ Z. The significance for us is that there is a commutative square

CP
n−1 //

��

ΩU(n)

��

CP
∞ // ΩU.

We may define maps
ΩU(n)→ ΩU ≈ Z× BU.

This is an H-space map.

Proposition 6.13. There is an isomorphism of rings

E0ΩU(n) ≈
(⊕

m≥0

(E0CP
n−1)⊗m

Σm

)
[β−1

0 ].

Furthermore, there is a isomorphism

homalg(E0)(E0ΩU(n), B) ∼−→ (OGE⊗B/OGE⊗B(−ne))×,

natural in the E0-algebra B.
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7. THE THOM ISOMORPHISM

Let X be a space, and V be a (real or complex) vector bundle over X. (We will later
specialize to the case of complex vector bundles; for the time being, we should remember
that an n-dimensional complex vector bundle has an underlying 2n-dimensional real vector
bundle.) We write E(V) for the total space of the bundle V.

7.1. Thom spaces. If X is a finite CW-complex, then the Thom space XV is the 1-point

compactification of E(V). If X is an infinite CW-complex, we let XV def= colim XVα
α , where

Xα ⊂ X are the finite subcomplexes and V is the restriction of V to Xα. We recall the
following facts about the Thom space:

(1) If we choose a metric on V, we get a homeomorphism XV ≈ D(V)/S(V), where
S(V) ⊂ D(V) ⊂ E(V) are the unit sphere and disk bundles, respectively.

(2) If X is a single point, then XV ≈ Sn, where n is the real dimension of V.

(3) We have X0 ≈ X+
def= X q {pt}.

(4) If f : Y → X is a map, and f ∗V is the pullback bundle over Y, then there is an
induced map Y f ∗V → XV , which is coherent with respect to composition; i.e., if
g : Z → Y is another map, then Z( f g)∗V → XV is equal to the composite Z( f g)∗V →
Y f ∗V → XV .

(5) There is a natural isomorphism (X × Y)V×W ≈ XV ∧ YW , where V and W are bun-
dles over X and Y respectively.

(6) For a ring theory E∗(−), the graded group Ẽ∗(XV) is in a natural way a module over
E∗X. The module structure map E∗X⊗E∗ Ẽ∗XV → Ẽ∗XV is induced by the map

XV → (X× X)V×0 ≈ XV ∧ X0 ≈ XV ∧ X+,

obtained using (4), (5), and (3).

7.2. Orientations and Thom classes. We say that a bundle V is E-orientable if Ẽ∗XV is
free of rank 1 as a module over E∗X. An E-orientation for V is a choice of isomorphism
Ẽ∗XV ≈ E∗X, or what is the same thing, a choice of generator x ∈ Ẽ∗XV .

The classical example is when E∗(−) = H∗(−;Z), in which case a bundle is E-orientable
if and only if it is orientable in the geometric sense.

It is useful to have a different characterization of orientability. Given a bundle V over X,
a Thom class is an element U ∈ Ẽ∗XV with the property that for each inclusion x : pt→ X
the pullback x∗(U) ∈ Ẽ∗(ptV) ≈ Ẽ∗Sn is a generator as a module over E∗ pt.

Note that Thom classes pull back: if U ∈ Ẽ∗XV is a Thom class and f : Y → X is a map,
then f ∗(U) ∈ Ẽ∗Y f ∗V is a Thom class.

Proposition 7.3. A bundle V over X is E-orientable if it has a Thom class, in which case the Thom
classes correspond to the orientations.

Proof. There is a spectral sequence

Epq
2 (XV) = Hp(X, Eq(D(Vx), S(Vx))) =⇒ Ep+q(D(V), S(V)).
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The coefficients are a local system over X. This is naturally a spectral sequence of modules
over

Epq
2 (X) = Hp(X, Eq) =⇒ Ep+q(X),

(the Atiyah-Hirzebruch spectral sequence for X). To show that E∗(D(V), S(V)) is free of
rank 1 over E∗X, it suffices to show this for the E2-terms. In fact, the existence of a Thom
class U ∈ E∗(D(V), S(V)) gives rise to a generator in each E∗(D(Vx), S(Vx)), and the local
system is trivial since the generator comes from a globally defined class. This gives the
proposition. �

Remark 7.4. The converse of the above proposition is also true: an orientation is always a
Thom class.

Corollary 7.5. If V is an E-orientable bundle over X, and f : X → Y a map, then the natural map
Y f ∗V → XV induces an isomorphism

Ẽ∗XV ⊗E∗X E∗Y ∼−→ Ẽ∗Y f ∗V .

Proof. Use the proposition, and the fact that Thom classes pull back to Thom classes. �

Example 7.6. Let X = CP
n−1, and let L∗ denote the dual of the tautological line bundle over

X. (This L∗ is the bundle that algebraic geometers like to call O(1).) A point in L∗ conists
of a pair

(L ⊂ Cn, f : L→ C), L a line in Cn, f a C-linear map.
Therefore there is a homeomorphism (in fact, a holomorphic map)

L∗ → (CPn − {∞}), (L, f ) 7→ ΓF = { (v, f (v)) | v ∈ L } ⊂ Cn ×C.

Therefore, (CPn−1)L∗ ≈ CPn. Hence

Ẽ0(CPn−1)L∗ ≈ Ẽ0
CP

n ⊂ E0
CP

n.

If x ∈ Ẽ0
CP

n is a coordinate, we can take x to be an E-orientation for L∗ over CPn−1.
Passing to the limit as n → ∞, we see that (CP∞)L∗ ≈ CP∞, and the E-orientations are

precisely the coordinates.
The bundles L and L∗ are equivalent as real bundles. Since the Thom space really only

depends on the real bundle, the above remarks continue to hold when L∗ is replaced by L.
It will turn out to be more convenient to take [−1](x) to be the orientation for L over CP∞;
this is because L is the pullback of L∗ along the map [−1] : CP∞ → CP

∞.

Proposition 7.7. Let E be an even periodic ring theory, and x a coordinate for its formal group. Then
every complex bundle V is E-orientable, and there exist a unique collection of choices UV ∈ Ẽ0(XV)
of Thom classes which are

(1) natural, so that U f ∗V = f ∗(UV),
(2) multiplicative, so that UV×W = UV ×UW , and
(3) normalized, so that UL∗ = x for the bundle L∗ over CP∞.

Proof. See [Ada73]. �

In other words, all even periodic ring theories are “complex orientable”.
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7.8. Stable bundles and Thom spectra. Let n denote the trivial complex n-plane bundle.
Then we have

XV⊕n ≈ (X× pt)V×n ≈ XV ∧ (pt)n ≈ XV ∧ S2n.
This suggests that we should extend the formalism to virtual vector bundles as follows. For
a virtual vector bundle ξ = V − n over a finite complex define its Thom spectrum by

Xξ def= Σ∞(XV ∧ S−2n).

Thom spectra for for bundles over infinite complexes are defined by passing to a limit as
before. Thom spectra have the “same” properties (1)–(6) shared by Thom spaces.

To each map X → Z× BU is associated a virtual complex vector bundle V, and hence a
Thom spectrum XV . Associated to the identity map of Z× BU is a spectrum called MUP.
Associated to the inclusion {0} × BU → Z× BU is a spectrum called MU. Similarly, asso-
ciated to qn≥0{n}× BU(n)→ Z× BU is a spectrum M ≈ ∨n≥0 MU(n). The spectrum MU
is what is called the complex cobordism spectrum. We have MUP ≈ ∨n∈Z Σ

2n MU.
Each of these spectra are ring spectra. For instance, consider the map µ : (Z× BU) ×

(Z× BU)→ Z× BU classifying Whitney sum of virtual vector bundles. By the multiplica-
tivity property of Thom spectra, the Thom spectrum associated to µ is MUP ∧MUP, and
the naturality property gives a map MUP ∧ MUP → MUP. The unit map S0 → MUP
corresponds to pt→ Z× BU classifying the trivial 0-dimensional bundle.

7.9. Functorial description of E0 MUP. Let G be a formal group. Let CoordG ⊂ OG(−e)
denote the set of coordinates for G. This set has a natural action by the multiplicative group
of unitsO×G , and in fact is a torsor for this group; that is, if we choose a coordinate x, we get
a bijection

O×G
∼−→ CoordG : f 7→ x · f .

Define a functor CoordG : alg(A) → Set by B 7→ CoordG⊗B. Recall the functor
UnitsG : alg(A)→ Ab sending B 7→ O×G⊗B, which is represented by a ring OUnitsG .

Proposition 7.10. The functor CoordG is represented by a ringOCoordG . On choosing a coordinate
x for G, we may give an isomorphism OCoordG ≈ A[b0, b−1

0 , b1, b2, . . . ], such that

homalg(A)(OCoordG , B) ∼−→ CoordG⊗B

is defined byφ 7→ ∑n≥1φ(bi−1)xi.

Proof. Choose a coordinate x for G. This defines bijections CoordG⊗B ≈ O×G⊗B for all A-
algebras B, and hence an isomorphism of functors CoordG ≈ UnitsG. Thus the represent-
ing ring for CoordG exists and is (non-canonically!) isomorphic to the representing ring for
UnitsG. �

There is a “canonical” map ι : CP∞ → MUP, defined as follows:

CP
∞ ≈ (CP∞)L∗ ≈ MU(1)→ MUP.

Proposition 7.11. There is a natural isomorphism

homalg(E0)(E0 MUP, B) ∼−→ CoordGE⊗B,

and thus a natural isomorphism E0 MUP ≈ OCoordGE
.
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Proof. Givenφ : E0 MUP→ B, consider the composite

E0CP
∞ E0ι−→ E0 MUP→ B ∈ hommod(E0)(E0CP

∞, B).

Now use the identification

hommod(E0)(E0CP
∞, B) ≈ hommod(E0)(E0CP

∞, E0)⊗E0 B ≈ E0
CP
∞ ⊗E0 B ≈ OGE⊗B

to define the natural map. That this is an isomorphism follows from the fact by the Thom
isomorphism and the analogous fact for E0(Z× BU), which we already proved. �

7.12. Quillen’s theorem. There are isomorphisms

E0 MUP ∼−→ hommod(E0)(E0 MUP, E0)

and
E0(MUP ∧MUP) ∼−→ hommod(E0)(E0 MUP⊗E0 E0 MUP, E0).

This implies that for an even periodic ring spectrum E, we have

homRingSpectra(MUP, E) ≈ homalg(E0)(E0 MUP, E0) ≈ CoordG.

That is, coordinates x on the formal group GE are in natural one-to-one correspondence
with maps of ring spectra MUP → E. Similarly, the set CoordGE/(E0)× is in natural one-
to-one correspondence with maps of ring spectra MU → E. The spectrum MUP admits a
canonical coordinate x : CP∞ → MUP.

Theorem 7.13 (Lazard). There exists a commutative ring L0 such that

homalg(Z)(L, A) ≈ {formal group laws over A}.
Furthermore, L0 ≈ Z[xn, n ≥ 1].

Let E be an even periodic ring theory. Then for any choice of coordinate x for E (or, what
is the same thing, a choice of ring spectrum map MUP → E), there is a map L0 → E0
corresponding to the formal group law associated to x.

Theorem 7.14 (Milnor; Quillen).
(1) The spectrum MUP is an even periodic ring theory, and π0 MUP ≈ Z[xn, n ≥ 1].
(2) The map L0 → π0 MUP associated to the canonical coordinate is an isomorphism.

7.15. A word from our sponsor. Some remarks on what all this says about homotopy the-
ory.

For each ring spectrum E and each spectrum X, there is a Hurewicz map

πnX → EnX,

where π∗ denotes stable homotopy groups. This map is induced by the unit map S0 → E
of the ring spectrum E.

If E and F are even periodic ring spectra, then a stable multiplicative operation φ arises
from a mapφ : E→ F of ring spectra. Therefore, all diagrams

πnX //

##FFFFFFFF EnX

φ

��

FnX
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commute.

Example 7.16. If X = S0, then we have maps π2nS0 → E2nS0 ≈ ωn
GE

. Thus, an even dimen-
sional stable homotopy class gives rise to an element in ωn

GE
for each E, and this class is

invariant under all transformations E→ F.

Example 7.17. Let X = M(p) ≈ S0 ∪p S1, the mod-p Moore spectrum. Then, for E0 torsion
free, we have E∗M(p) ≈ E∗/(p), and thus Hurewicz maps π2n M(p) → E2n/(p). Recall
that earlier we constructed for each formal group G an element V1 ∈ ωp−1

G /(p), and this
element was invariant under all isomorphisms between formal groups. In particular, there
are such elements V1 ∈ E2(p−1)/(p) for all even periodic E. Thus, these elements are can-
didates for being in the Hurewicz image, and we might guess that there is an element
V1 ∈ π2(p−1)M(p). This turns out to be the case.

Example 7.18. Consider the spectrum CP
2. It sits in a cofiber sequence

· · · → S3 η−→ S2 → CP
2 → S4 → · · · .

For each even periodic theory it gives rise to a short exact sequence

0← Ẽ0S2 j←− Ẽ0
CP

2 ← Ẽ0S4 ← 0

of E0-modules, which is canonically isomorphic to

0← O(−e)/O(−2e)
j←− O(−e)/O(−3e)← O(−2e)/O(−3e)← 0.

One may ask the question: does the map S2 → CP
2 admit a stable retraction CP2 → S2?

(Equivalently: is η stably essential?) If this were the case, then the short exact sequence
above would admit a splitting, and this splitting would be natural with respect to all stable
multiplicative operations between such cohomology theories. We can disprove the exis-
tence of the retraction by showing that there is no such natural splitting.

In fact, we only need to consider the case when E is complex K-theory (with formal
group (Z, Ĝm)), and the operation ψ−1 (corresponding to [−1] : Ĝm → Ĝm). In terms of
the multiplicative coordinate t ∈ K0

CP
∞, we have a natural identification of the above

sequence with
0← (t)/(t2)← (t)/(t3)← (t2)/(t3)← 0,

where these are all ideals in Z[[t]]. The operation ψ−1(t) = [−1](t) = (1 + t)−1 − 1 =
−t + t2 − · · · . A splitting would give a map s : (t)/(t2) → (t)/(t3) with s(t) = t mod (t2),
which is determined by s(t mod (t2)) = t + at2 mod (t3) for some a ∈ Z. We compute

s(ψ−1(t) mod (t2)) = s(−t mod (t2)) = −t− at2 mod (t3)

while

ψ−1(s(t)) = ψ−1(t + at2 mod (t3)) = (−t + t2 + · · · ) + a(−t + · · · )2 mod (t3)

= −t + (1 + a)t2 mod (t3).

In other words, we must have 1 + a = −a, or 2a = −1. This equation does not have
solutions in Z, so there is no such section. We have just proved that η is stably non-trivial.
(There are easier proofs, of course.)
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Note that it is possible to give a map s with s(t) ≡ 2t mod (t2), by setting s(t) = 2t−
t2 mod (t3). This means we do not get an obstruction to the identity 2η = 0, (which is
good, since the identity is true).

8. ELLIPTIC SPECTRA

8.1. Formal completion of schemes. Let X be a pointed scheme over Spec(A). That is, X
comes with maps

Spec(A) e−→ X → Spec(A)
whose composite is the identity. Such objects form a category Spec(A)\Schemes/Spec(A),
where the morphisms are maps of schemes commuting with the maps to and from Spec(A).
We define a functor

X̂e : adic(A)→ Set
by

B 7→ homSpec(A)\Schemes/Spec(A)(Spec(B), X).

Proposition 8.2. Suppose that e : Spec(A) → X factors through Spec(A) → U ⊂ X, where
U = Spec(R) is an open affine subset. Then X̂e is described by

X̂e(B) ≈ homA\alg(A)(R, B) ≈ colimn homadicA(R/In, B),

where I = Ker(R→ A). In other words, X̂e is pro-represented by the system {R/In}.

We will call X̂e the formal completion of X along e.
We will be particularly interested in the case when X is an abelian group scheme over

A; i.e., a scheme X over Spec(A) with identity element e : Spec(A) → X and group law
µ : X×Spec(A) X → X. Then X̂e is actually a functor adic(A)→ Ab.

Example 8.3. Let C = A
1 over A, and let e : Spec(A)→ C be inclusion of the origin. Then C

is an abelian group scheme with group law given by µ(x, y) = x + y, which we callGa, the
additive group. The formal completion Ĉe ≈ Ĝa, the additive formal group.

Example 8.4. Let C = A
1
r {0}, and let e : Spec(A) → C be inclusion of 1. Then C is

an abelian group scheme with group law given by µ(x, y) = xy, which we call Gm, the
multiplicative group. The formal completion Ĉe ≈ Ĝm, the multiplicative formal group.

Example 8.5. Let C be a smooth curve of genus 1, with base point e. This is an elliptic curve.
Such a C is canonically an abelian group scheme.

Note: when discussing the formal completion of a group scheme C at the identity, we
will usually write Ĉ for Ĉe.

8.6. Elliptic spectra. An elliptic spectrum is a tuple (E, C,φ) consisting of
(1) an even periodic commutative ring spectrum E,
(2) an abelian group scheme C over Spec(E0), and
(3) an isomorphismφ : GE

∼−→ Ĉ of formal groups.
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Such objects form a category, in which a morphism

(α,β) : (E, C,φ)→ (E′, C′,φ′)

consists of
(1) a mapαE→ E′ of ring spectra (which gives rise to a stable multiplicative operation

on the cohomology theories represented by these spectra),
(2) a homomorphism β : C′ → α∗C of group schemes over Spec(E′0), such that
(3) the square

GE′ //

φ′

��

α∗GE

α∗φ
��

Ĉ′ // α∗Ĉ
commutes.

9. THE GENERALIZED WEIERSTRASS EQUATION

Fix an affine base scheme S = SpecA. A generalized Weierstrass equation over A is a
homogeneous equation in X, Y, Z of the form

Y2Z + a1XYZ + a3YZ = X3 + a2X2Z + a4XZ2 + a6Z3

with a1, a2, a3, a4, a6 ∈ A. We write

C = Ca ⊂ P2
A = {[X : Y : Z]}

for the curve in the plane associated to this equation, where a = (a1, . . . , a6).
We usually prefer to write this in terms of the affine coordinates x = X/Z, y = Y/Z, in

which case the equation becomes

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6.

Let L = P
2
rA

2
x,y = (Z = 0). Then it is easy to check that Ca ∩ L = {[0 : 1 : 0]}; we will

write e for this unique point on the line at infinity.

Example 9.1.
(1) y2 = x3 defines a curve with a cusp singularity at (0, 0).
(2) y2 = x3 + x2 defines a curve with a nodal singularity at (0, 0) (assuming 2 6= 0).
(3) y2 = x3 − x defines a smooth curve (at least over a field in which 6 6= 0).

The curve C is smooth (relative to the base S) exactly when a certain polynomial expres-
sion ∆(a1, . . . , a6) in the ai’s, called the discriminant, is invertible in A. For example, if we
can write our curve in the form

y2 = (x− e1)(x− e2)(x− e3) = x3 − (e1 + e2 + e3)x2 + (e1e2 + e2e3 + e3e1)x− e1e2e3

for some ei ∈ A, then it is easy to check that the only possible singularities occur on
the x-axis, and that these happen only when ei = e j for some i 6= j. In this case
∆ = ± [(e1 − e2)(e2 − e3)(e3 − e1)]2.
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9.2. Change of coordinates. Let us consider all isomorphismsφ : P2 → P
2 which carry Ca′

into Ca, and which fix the point e. It is not hard to check that such a map must have the
form

[X : Y : Z] 7→ [λ−2X + rZ : λ−3Y + λ−2sX + tZ : Z]
for some r, s, t, λ ∈ A with λ−1 ∈ A. We write φr,s,t,λ for this map; in terms of affine
coordinates,φr,s,t,λ(x′, y′) = (x, y), with

x = λ−2x′ + r

y = λ−3 y′ + λ−2sx′ + t.

Supposeφ induces a map Ca′ → Ca; assuming we know a, we will derive the a′. If we write
Fa(x, y) = y2 + a1xy + a3 y− x3 − a2x2 − a4x− a6 we see that

λ6Fa(x, y) = Fa′(x′, y′)

for some values a′1, . . . , a′6. If we expand this out, we see that

λ6Fa(x, y) = y′2 + λ(a1 + 2s)x′y′ + λ3(a3 + a1r + 2t)y′

−
[
x′3 + λ2(a2 − a1s− s2 + 3r)x′2 + λ4(a4 − a3s + 2a2r− a1t− a1rs− 2st + 3r2)x′

+ λ6(a6 + a4r− a3t + a2r2 − a1rt + r3 − t2)
]
.

Thus,

a′1 = λ(a1 + 2s)

a′2 = λ2(a2 − a1s− s2 + 3r)

a′3 = λ3(a3 + a1r + 2t)

a′4 = λ4(a4 − a3s + 2a2r− a1t− a1rs− 2st + 3r2)

a′6 = λ6(a6 + a4r− a3t + a2r2 − a1rt + r3 − t2).

If we have a pair of morphisms

Ca
φ=φr,s,t,λ←−−−−− Ca′

φ′=φr′ ,s′ ,t′ ,λ′←−−−−−− Ca′′

then the composite morphism is given byφ ◦φ′(x′′, y′′) = (x, y) with

x = λ−2(λ′−2x′′ + r′) + r

= (λλ′)−2x′′ + (r + λ−2r′)

y = λ−3(λ′−3 y′′ + λ′
−2s′x′′ + t′) + λ−2s(λ′−2x′′ + r′) + t

= (λλ′)−3 y′′ + (λλ′)−2(s + λ−1s′) + (t + λ−3t′ + λ−2sr′).
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In other words,φr,s,t,λ ◦φr′ ,s′ ,t′ ,λ′ = φ∇(r),∇(s),∇(t),∇(λ) where

∇(r) = r + λ−2r′

∇(s) = s + λ−1s′

∇(t) = t + λ−3t′ + λ−2sr′

∇(λ) = λλ′.

9.3. Invariant 1-form. Attached to Ca is a (possibly meromorphic) 1-form

ηa =
dx

2y + a1x + a3
=

dy
3y2 + 2a2x + a4 − a1 y

;

the equality is obtained from d(Fa(x, y)) = 0.

Proposition 9.4. Underφ = φr,s,t,λ : Ca′ → Ca, we have

φ∗ηa = ληa′ .

Proof. Calculate:

φ∗ηa =
d(λ−2x′ + r)

2(λ−3 y′ + λ−2sx′ + t) + a1(λ−2x′ + r) + a3

=
λ dx′

2y′ + λ(a1 + 2s)x′ + λ3(a3 + a1r + 2t)

=
λ dx′

2y′ + a′1x′ + a′3
= ληa′ .

�

LetωC ⊂ ΩC denote the free A-submodule generated by ηa. It is called the set of invari-
ant 1-forms. (If C is smooth, thenωC = ΩC.)

9.5. Canonical form. Let us try to find a “canonical form” for the Weierstrass equation for
Ca over A. First note that the left-hand side

y2 + a1xy + a3 y = y2 + (a1x + a3)y = (y + 1
2 (a1x + a3))2 − 1

4 (a1x + a3)2

is nearly a perfect square. Thus if we make the substitution

y = Y− 1
2 (a1x + a3)

then the equation can be rewritten

Y2 = x3 + (a2 + 1
4 a2

1)x2 + (a4 + 1
2 a1a3)x + (a6 + 1

4 a2
3).

Of course, we had to assume that 1/2 ∈ A in order to do this.
It is convenient to set

b2 = 4a2 + a2
1

b4 = 2a4 + a1a3

b6 = 4a6 + a2
3
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so that we can write
Y2 = x3 + 1

4 b2x2 + 1
2 b4x + 1

4 b6

where the bi ∈ A (and are at least well-defined even if 1/2 6∈ A).
Now set

x = X− 1
12 b2

in order to get rid of the x2-term (at least if 1/6 ∈ A):

Y2 = X3 + (− 1
48 b2

2 + 1
2 b4)X + ( 1

864 b3
2 − 1

24 b2b4 + 1
4 b6).

Set

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

so that c4, c6 ∈ A. Thus we have a canonical form

Y2 = X3 − 1
48 c4X− 1

864 c6.

Proposition 9.6. If 1/6 ∈ A then there is an isomorphism

φ : C(0,0,0,−c4/48,−c6/864) → C(a1 ,...,a6)

withφ(X, Y) = (x, y) where

x = X− 1
3 a2 − 1

12 a2
1

y = Y− 1
2 a1X + 1

24 a3
1 + 1

6 a1a2 − 1
2 a3.

Furthermore, this is the unique such isomorphism withφ∗ηa = dX/2Y.

Proof. It is straightforward to check that φ∗ηa = dX/2Y. The only thing left is uniqueness.
In fact, it is enough to show that the only map φr,s,t,λ which takes Y2 = X3 − (c4/48)X −
(c6/864) to itself and which preserves dX/2Y is the identity mapφ0,0,0,1, which is a straight-
forward exercize. �

Remark 9.7. It is nicer to write down the inverse map

φ−1 : C(a1 ,...,a6) → C0,0,0,−c4/48,−c6/864

which is given byφ−1(x, y) = (X, Y) with

X = x + 1
3 a2 + 1

12 a2
1

Y = y + 1
2 a1x + 1

2 a3.

9.8. The discriminant. The above discussion provides well-defined elements in c4, c6 ∈
Z[a1, . . . , a6]. Let ∆ = (c3

4 − c2
6)/(12)3. A straightforward computation shows that ∆ ∈

Z[a1, . . . , a6].

Proposition 9.9. A Weierstrass curve Ca over A is smooth if and only if ∆ is invertible.
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10. MODULAR FORMS

10.1. Generalized elliptic curves. Let us define a generalized elliptic curve to be a mor-
phism of schemes C → S, equipped with a section e : S → C, such that there exists a cover
Ui → S by open subsets such that each C|Ui → Ui is isomorphic to a Weierstrass curve
(with base-point e).

Similarly, a morphism of generalized elliptic curves is a pullback square

C′
φ
//

��

C

��

S′
φ
// S

such that locally in S and S′ the map looks like one of those between Weierstrass curves
describe above.

If C → S is a generalized elliptic curve, then there is a sheaf ωC of OS-modules over

S, defined locally by ωC|Ui

def= OUi · ηa when Ui ⊂ S is a sufficiently small open affine
over which C|Ui ≈ Ca. This sheaf is invertible, i.e., a line bundle over S, and a morphism
φ : C′/S′ → C/S induces an isomorphismωC′

∼−→ φ∗ωC of sheaves over S.

10.2. Modular forms. A modular form of weight n is a function f which associates to
each generalized elliptic curve C/S an element f (C/S) ∈ H0(S;ωn

C), and such that for each
pullback square

C′
φ
//

��

C

��

S′
φ
// S

we have f (C′/S′) = φ∗( f (C/S)) ∈ H0(S′;ωn
C′). The set of modular forms of weight n is

denotedMn; these fit together to form a graded, commutative ringM∗.
In particular, modular forms are isomorphism invariants: if C/S and C′/S are two curves

which are isomorphic over S, then f (C/S) = f (C′/S).
Let A = Z[a1, a2, a3, a4, a6] and let A∗ = A[η, η−1]. The latter is a graded commutative

ring, with wt(A) = 0 and wt(η) = 1. Let Γ = A[r, s, t, λ, λ−1] and let Γ∗ = Γ[η, η−1], again
with wt(Γ) = 0 and wt(η) = 1. Define maps

A∗
d0
//

d1
// Γ∗

by letting d0 be the “obvious” inclusion, and letting d1(ai) = a′i and d1(η) = λ−1η, where
the a′i are given by the formulas from before.

Proposition 10.3. We have that

M∗ = Ker[A∗
d1−d0

−−−→ Γ∗]

= Z[c4, c6,∆]/(c3
4 − c2

6 − (12)3∆),
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where ci = ciη
i and ∆ = ∆η12 in A∗.

Proof. For the first equality, note that the “universal” Weierstrass curve C = C(a1 ,...,a6) over
A determines a map ι : M∗ → A∗, and that since (d0)∗C and (d1)∗C are isomorphic as
curves over SpecΓ we see that d0ι = d1ι. ThusM∗ maps to the kernel.

We must produce a map K∗ = Ker(d0 − d1)→M∗, that is, we must show that elements
in the kernel give rise to modular forms. Consider a curve C/S. For the elements of a cover
{U} of S we can identify C|U ≈ Cα for some elements αi ∈ Γ(OU) (hence determining
a map α : A → Γ(OU)). If C|U ≈ Cα′ is another such identification (corresponding to
α′ : A → Γ(OU)), we know that the αi and the α′i are related by means of some values
r, s, t, λ ∈ Γ(OU), and hence by a map β : Γ → Γ(OU). Thus we have a diagram

K∗ // A∗
d0

//

d1
//

α
��
α′
��

Γ∗

β||xxxxxxxxx

Γ(ω∗C|U )

with βd0 = α and βd1 = α′, and hence a canonical map K∗ → Γ(ω∗C|U ), which in par-
ticular only depends on C|U up to isomorphism. These maps thus fit together to give
K∗ → H0(S,ω∗C), and it is easy to check that that they are natural, i.e., that K∗ →M∗.

The proof of the second line is a calculation, which will will do later. �

11. ELLIPTIC CURVES AND THE GROUP STRUCTURE

11.1. Riemann-Roch for curves of genus 1. Let C be a smooth projective curve over an
algebraically closed field k. A divisor is a finite formal sum D = ∑ nPP where P ∈ C(k)
and nP ∈ Z, and the degree deg D of a divisor is ∑ nP. A meromorphic function f on C, or
more generally a meromorphic section of a line bundle over C, has a divisor ( f ) attached to
it, defined by ( f ) = ∑ nPP where f vanishes to order nP (or has a pole of order −nP) at P.

If D = ∑ nPP is a divisor on C, then

O(D) def=
{

meromorphic functions f which
have a pole of order at worst np at P

}
.

We write `(D) = dimk Γ(C,O(D)). Then the Riemann-Roch theorem states that if K is the
divisor associated to any global meromorphic 1-form on C, then

`(D)− `(K− D) = deg D− g + 1,

where g is the genus of C.
In particular:

(1) We know that `(0) = dim Γ(C,O) = 1, by the maximum principle. Thus taking
D = 0 in the Riemann-Roch formula gives 1− `(K) = 1− g, that is `(K) = g.

(2) Similarly, taking D = K gives g− 1 = deg(K)− g + 1, that is deg(K) = 2g− 2.
Therefore, if g = 1, there exists a globally holomorphic 1-form, unique up to scalar: if η

is a meromorhic 1-form with divisor K, then Riemann-Roch tells us that there exists a non-
zero section of O(K), i.e. a function with the same zeroes and poles as η; therefore η/ f is
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a holomorphic form. So we might as well choose η to be this holomorphic form, so K = 0,
and hence

`(D)− `(−D) = deg D.
We apply this to D = ne, where e is a chosen basepoint and n ≥ 0. Then `(−ne) = 0 for

n > 1, and we get
D `(D) element of Γ(O(D))
0 1 1
e 1

2e 2 x
3e 3 y
4e 4 x2

5e 5 xy
6e 6 x3, y2

Therefore, there must be a relation among 1, x, y, x2, xy, x3, y2. In fact, by rescaling x and y
we may choose them so that x3 − y2 ∈ Γ(O(5e)). This shows that every smooth curve of
genus 1 actually arises as a Weierstrass equation.

11.2. The group structure. Suppose C ⊂ P2 is a smooth Weierstrass curve, over a field k.
Recall that any line L ⊂ P2 intersects C at exactly 3 points, counted with multiplicity. One
defines a group law [+] : C(k) × C(k) → C(k) on the points of C by P[+]Q = R, where
(P, Q, R′) and (e, R, R′) are colinear sets of points on C. An inverse [−1](P) = Q is defined
when (e, P, Q) are colinear. The identity is e.

This group law can be described in terms of algebraic equations. It thus turns out that
for any Weierstrass curve C over any ring A, the open subscheme Csmooth ⊂ C of smooth
points admits the structure of a commutative group scheme, with identity given by the
section e : Spec(A)→ C.

11.3. Singular Weierstrass curves. It is easy to check that a Weierstrass curve C = Ca is
smooth at the point e = [0 : 1 : 0]. Suppose P ∈ C is a singular point. By a coordinate
change (x, y) 7→ (x + r, y + t) we may without loss of generality assume that P = (0, 0).
Hence up to isomorphism a singular curve must be given by an equation of the form

y2 + a1xy− a2x2 = x3.

By examining the quadratic part, we see there are two cases:
(i) y2 + a1xy − a2x2 = (y −α1x)(y −α2x) for α1 6= α2, in which case (x, y) 7→ (y −
α1x)/(y−α2x) defines an isomorphism Csmooth → A

1
r {0} ≈ Gm.

(ii) y2 + a1xy− a2x2 = (y−αx)2, in which case (x, y) 7→ x/(y−αx) defines an isomor-
phism Csmooth → A

1 ≈ Ga.
Note that in either of these two cases, the discriminant of the polynomial y2 + a1xy− a2x2

is 2(α1 −α2)2 = a2
1 + 4a2 = b2, and that c4 = b2

2 and c6 = −b3
2.



SUPPLEMENTARY NOTES FOR MATH 512 (VERSION 0.17) 33

11.4. The formal group associated to Weierstrass curves. By completing a Weierstrass
curve C/Spec(A) at the section e : S → C, we obtain a formal group Ĉ over A. If C is
given by an explicit Weierstrass equation y2 + · · · = x3 + · · · , then we can choose an ex-
plicit coordinate on Ĉ, by taking T = −x/y. The 1-form η = dx/(2y + a1x + a3) on C gives
an invariant 1-form on the formal group.

Proposition 11.5. Let C/k be a Weierstrass curve over a field, with chark = p > 0. Then Ĉ has
height 1, 2, or∞.

Proof. When C is a singular curve, one checks explicitly that Ĉ ≈ Ĝa or Ĝm, so that height
is either 1 or∞.

If C is smooth, it suffices to show that the p-th power map [p] : C → C has degree p2.
This means that [p]−1{e} contains p2 points, counted with multiplicities, and in particular
e can appear in this preimage at most p2 times. Thus, in terms of a coordinate T at e we
have [p](T) = aTn + . . . for some n ≤ p2, a 6= 0, and thus n = p or n = p2 by our previous
discussion of the p-series of a formal group law.

To see that the p-th power map has degree p2, see [Sil86, III.6.2]. �

We say that a generalized elliptic curve C/k is supersingular if height Ĉ = 2. It turns
out that at each characteristic p there are (up to isomorphism) only a finite number of su-
persingular curves; in fact, in each isomorphism class of supersingular curves there is one
defined over the field Fp2 . (See [Sil86, V.4].) To determine whether a curve is supersingular,
compute its p-series mod p. For example:

[2](T) = a1T2 + (a3 + a1a2)T4 + · · · mod 2,

[3](T) = b2T3 + (b2b6 + 2b2
4 + 2b4b2

2)T9 + · · · mod 3,

[5](T) = c4T5 + (3c3
4c2

6 + 3c6
4 + 4c4

6)T25 + · · · mod 5,

[7](T) = 6c6T7 + c4c6(6c4
6 + c6

4)T35 + (3c3
4c6

6 + 6c8
6 + 5c4

6c6
4 + c2

6c9
4 + 6c12

4 )T49 + · · · mod 7,

and so forth. When p > 3 it is always possible to write v1 as a modular form of weight
p− 1, but not when p = 2 or 3. However, note that

v4
1 ≡ a4

1 ≡ c4 mod 2,

v3
1 ≡ b3

2 ≡ −c6 mod 3.

11.6. The j-invariant. It is useful to know about the j-invariant, which classifies isomor-
phism classes of generalized elliptic curves.

Proposition 11.7 ([Sil86, III.1.4]). Let C/k be a Weierstrass curve over an algebraically closed field.
Define j(C/k) ∈ k by j = c3

4/∆. We have the following cases:
(1) If c4 = ∆ = 0, then C/k is isomorphic to the curve given by y2 = x3, and Csmooth ≈ Ga.
(2) If c4 6= 0 and ∆ = 0, then C/k is isomorphic to the curve given by y2 + xy = x3, and

Csmooth ≈ Gm.
(3) If ∆ 6= 0, then C/k is smooth, and two such curves C and C′ are isomorphic if and only if

j(C) = j(C′).
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11.8. Examples of elliptic spectra.

Example 11.9. Let A be a ring, and consider (HPA, Csmooth,φ) where HPA denotes periodic
ordinary cohomology with coefficients in A, C is the Weierstrass curve given by y2 = x3,
andφ : Ĝa → Ĉ.

Example 11.10. Consider (K, Csmooth,φ) where K denotes complex K-theory, C is the Weier-
strass curve given by y2 + xy = x3, andφ : Ĝm → Ĉ.

Another class of examples comes from the Landweber exact functor theorem; several are
described in [LRS95]. For instance, let R = Z[ 1

6 , c4, c6,∆−1]; let C be the Weierstrass curve
over this ring. Define a functor from spaces to graded rings by

E∗(X) def= MUP∗(X)⊗MUP0 R,

where MUP0 → R is the map classifying a formal group law associated to a coordinate on
Ĉ. This functor is a generalized cohomology theory.

To see this, we use the Landweber exact functor theorem, which states that a functor such
as E∗ above is a cohomology theory if for each prime p the sequence p, v1, v2, · · · ∈ E∗(pt)
is a regular sequence. In our case, E∗(pt) ≈ R[η, η−1]. It is immediate that the sequence
is regular when p = 2 or 3. For p > 3, we first observe that E0/(p) ≈ Fp[c4, c6,∆−1] is an
integral domain, and so p, v1 is a regular sequence. The result then follows from

Lemma 11.11. For p > 3,

v2 ≡ (−1)
p−1

2 ∆
p2−1

12 mod (p, v1).

For a proof, see [Lan88, Thm.2].

12. WEIERSTRASS PARAMETERS AND THOM SPECTRUM OF ΩU(4)

12.1. Weierstrass parameterizations. Let C/S be a generalized elliptic curve over a base
scheme S. By a Weierstrass parameterization of C, we mean an embedding C → P

2 ×
S over S which identifies C with a curve in P2 given by a Weierstrass equation. (Recall
that a generalized elliptic curve was defined to be something which locally in S admits a
Weierstrass parameterization.)

A Weierstrass parameterization on C/S effectively amounts to a choice (x, y) of sections
x ∈ Γ(C,OC(2e)) and y ∈ Γ(C,OC(3e)) such x3 − y2 ∈ Γ(C,OC(5e)).

We write W(C/S) for the set of Weierstrass coordinates on C/S.
If S = SpecA and C = Ca is a curve given by a Weierstrass equation over A, then there is

a particular choice of (x, y) ∈ W(C/S) associated to this equation. In this case, there is an
isomorphism

A3 × A× ≈ {(r, s, t, λ)} ∼−→W(Ca/Spec(A))
given by (r, s, t, λ) 7→ (λ−2x + r, λ−3 y + λ−2sx + t).

Recall that if G is a formal group, we write CoordG ⊂ OG for the set of coordinates on
G, and we write Coordn

G ⊂ OG/OG(−(n + 1)e) for the quotient set. We define a map

W(C/S)→ CoordĈ : (x, y) 7→ T = − x
y

.
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This passes to a map W(C/S)→ Coordn
Ĉ for all n.

Proposition 12.2. If C/Spec(A) is given by a Weierstrass equation, then the map W(C/S) →
Coord4

Ĉ is an isomorphism.

Proof. Choose Weierstrass coordinates (x, y) for C/S and hence an identification C ≈ Ca
for some ai ∈ A. Given a coordinate T ∈ CoordĈ, we want to show that there there exists
a unique pair (x′, y′) of Weierstrass coordinates for C such that −x′/y′ ≡ T mod T5. To
demonstrate this, we expand x and y in terms of T:

x = T−2(u0 + u1T + u2T2 + u3T3 + · · · )
y = −T−3(v0 + v1T + v2T2 + v3T3 + · · · )

with ui, vi ∈ A and u0, v0 ∈ A×, and u3
0 = v2

0 (since x3 − y2 ∈ Γ(O(5e))). We wish to
solve for (x′, y′) = (λ−2x + r, λ−3 y + λ−2sx + t) so that −x′/y′ ≡ T mod T5. A little bit of
algebra shows that

λ = v0/u0

s = v1/v0 − u1/u0

r =
(−u2u0v0 + v2u2

0 − u1v1u0 + u2
1v0)u0

v3
0

t =
(−u3u0v0 + v3u2

0 − u2v1u0 + u2u1v0)u0

v3
0

is the unique solution which does this. (The trick is to solve for λ, s, r, t in that order.) �

12.3. The Thom spectrum on ΩU(4). Let γ : ΩU(n) → ΩU ≈ Z × BU, and let Y =
(ΩU(n))γ denote the corresponding Thom spectrum. Recall that if E is an even periodic
ring theory, then E0Y represents Coord4

G; more precisely,

homalg(E0)(E0Y, R) ∼−→ Coord4
GE⊗R.

Putting together the above remarks gives

Proposition 12.4. Let (E, C,φ) be an elliptic spectrum. Then (E ∧ Y, C′,φ′) is an elliptic spec-

trum, where C′ def= C⊗E0 E0Y andφ′ def= φ⊗E0 E0Y. The map E ≈ E ∧ S0 → E ∧Y extends in a
natural way to a map of elliptic spectra.

Furthermore, there is an isomorphism

homalg(E0)(π0(E ∧Y), R) ∼−→W(C⊗E0 R)

which is natural in the elliptic spectrum (E, C,φ). If (x, y) is a choice of Weierstrass parameters
then we obtain an identification

π0(E ∧Y) ≈ π0E[r, s, t, λ, λ−1]

which is determined by associating to a map π0E[r, s, t, λ±] → R the Weierstrass parameters
(x′, y′) = (λ−2x + r, λ−3 y + λ−2sx + t) for the curve C⊗E0 R.

Note that the above proposition implies that the curve C′ over π0E∧Y admits a canonical
choice of Weierstrass parameters, associated to the identity map π0E ∧Y → π0E ∧Y.
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13. HOPF ALGEBROIDS

13.1. Groupoids. A groupoid is a category in which all maps are isomorphisms. Thus, a
(small) groupoid G = (G0, G1) consists of a set of objects G0 and a set of morphism G1,
together with appropriate structure.

More generally, we may consider a groupoid object in a category with pullbacks. This
consists of a pair G0, G1 of objects, together with maps:

G0
ε // G1

t
//

s // G0 G1
χ
// G1

G2
def= G1

s,t
×
G0

G1
∇−→ G1,

which satisfy the axioms appropriate for a groupoid, with s, t, ε, ∇, and χ corresponding

to source, target, identity, composition, and inverse. (The notation X
f ,g
×
B

Y means lim(X
f−→

B
g←− Y).)

For n ≥ 0 define object

Gn
def= G1

s,t
×
G0

G1
s,t
×
G0

· · ·
s,t
×
G0

G1︸ ︷︷ ︸
n copies of G1

.

Thus Gn is the set of functors from the category [n] = (0 → 1 → . . . → n) to G. This defi-
nition is consistent with the previous use of G0, G1, G2. The G• fit together into a simplicial
object, namely the nerve (or bar complex). We will make the convention that d0 = t and
d1 = s.

13.2. Hopf algebroids. A Hopf algebroid is a groupoid object in the opposite category
of commutative rings. Unwinding this, we see that this consists of a pair Γ = (Γ 0, Γ 1) of
commutative rings, together with maps:

Γ 0 Γ 1εoo Γ 0
soo

t
oo Γ 1 Γ 1

χ
oo

Γ 2 def= Γ 1 s,t
⊗
Γ 0
Γ 1 ∇←− Γ 1,

where s, t,ε,∇, χ satisfy the appropriate axioms. (The notation A
f ,g
⊗
R

B means colim(A
f←−

R
g−→ B).) As in the case of groupoids, we set

Γ n def= Γ 1 s,t
⊗
Γ 0
Γ 1 s,t
⊗
Γ 0
· · ·

s,t
⊗
Γ 0
Γ 1︸ ︷︷ ︸

n copies of Γ 1

,

and we write C∗(Γ) for the corresponding cosimplicial ring, which is called the cobar com-
plex. Again, we choose the convention that d1 = s and d0 = t.

More generally, given a commutative ring R we can consider Hopf algebroids over R,
which are groupoids in alg(R)op.
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13.3. The Hopf algebroid of Weierstrass equations. Consider the functor G : Rings →
Groupoids defined by R 7→ G(R) = (G0(R), G1(R)), with object set

G0(R) = {Weierstrass equations Fa = 0 over R}
and with morphism set

G1(R) =
{

pairs Fa′ , Fa of equations and transformationφ such that Fa ◦φ = λ−6Fa′
}

.

Explicitly as sets, G0(R) = {(a1, . . . , a6)} = R5 and G1(R) = {(a1, . . . , a6, r, s, t, λ)} =
R5 × R3 × R×. Some of the structure maps are given by

source(a1, . . . , a6, r, s, t, λ) = (a′1, . . . , a′6)
target(a1, . . . , a6, r, s, t, λ) = (a1, . . . , a6)

identity(a1, . . . , a6) = (a1, . . . , a6, 0, 0, 0, 1).

compos((a1, . . . , a6, r, s, t, λ), (a′1, . . . , a′6, r′, s′, t′, λ′)) = (a1, . . . , a6,∇(r),∇(s),∇(t),∇(λ)).

Here the symbols a′i and ∇(r),∇(s),∇(t),∇(λ) refer to the expressions given in (9.2).
This groupoid G is clearly represented by a Hopf algebroid (A, Γ), with

A = Z[a1, a2, a3, a4, a6]

Γ = A[r, s, t, λ±1]

and with structure maps d0(ai) = ai, d1(ai) = a′i, and so forth.

13.4. Graded Hopf algebroids. More generally, we may consider a graded Hopf algebroid,
which is a groupoid object in the opposite category of commutative graded rings. In our
case, we want to consider (A∗, Γ∗) defined by

A2n
def= Γ(Spec(A),ωn

C), Γ2n
def= Γ(Spec(Γ),ωn

C),

with At = Γt = 0 if t is odd. Thus we get

A∗ = A[η, η−1], Γ∗ = Γ[η, η−1], |η| = 2, |A| = |Γ | = 0,

where η = dx/(2y + a1x + a3), and we have the additional formulas

d0(η) = η, d1(η) = η′ = λ−1η.

13.5. Comodules. Let Γ = (Γ 0, Γ 1) be a Hopf algebroid. A comodule over Γ is a pair

(M,ψM) consisting of a left Γ 0-module M and a morphism ψM : M → Γ 1 d1

⊗
Γ 0

M of left

Γ 0-modules making appropriate unit and coassociativity diagrams commute. (Note that
Γ 1 ⊗Γ 0 M is regarded as a left Γ 0-module by means of the algebra map d0 : Γ 0 → Γ 1.) We
write Comod(Γ) for the category of Γ -comodules.

The category Comod(Γ) is symmetric monoidal: the tensor product of (M,ψM) and
(N,ψN) is defined by (M⊗Γ 0 N,ψM⊗N), with ψM⊗N defined by

M⊗Γ 0 N
ψM⊗ψN−−−−→ (Γ 1 d1

⊗
Γ 0

M)
d0 ,d0

⊗
Γ 0

(Γ 1 d1

⊗
Γ 0

N)→ Γ 1 d1

⊗
Γ 0

(M⊗Γ 0 N),
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the second map being defined by the multiplication on Γ 1. The unit of the monoidal struc-
ture is (Γ 0, d1).

13.6. Homotopy spectral sequence. Let X• be a cosimplicial spectrum. Then there is a
spectral sequence (the Bousfield-Kan spectral sequence [BK72]), with

Es,t
1 = πtXs, Es,t

2 = Hs(πtX•),

and abutting to πt−s holim(X•).
When X• is built from a ring spectrum in a nice way, then the E1-term can often be

described in terms of a Hopf algebroid, and hence the E2-term in terms of the cohomology
of this Hopf algebroid. For instance, the Adams-Novikov spectral sequence is a spectral
sequence

Es,t
2 = Hs,t(A, Γ) =⇒ πt−sS0

where (A, Γ) is a graded Hopf algebroid representing the category of formal group laws
and isomorphisms between them. It is constructed from the cosimplicial spectrum Xs =
MU(s+1) (or from Xs = MUP(s+1) if we prefer).

14. TOPOLOGICAL MODULAR FORMS

14.1. Spectral sequence for an elliptic spectrum. Let (E, C,φ) be an elliptic spectrum. Let

∆s
∗ = ∆s

∗(E, C,φ) def= π∗(E ∧Y∧(s+1))

where Y = (ΩU(4))γ is the Thom spectrum described above. These rings form the E1-term
of the homotopy spectral sequence of the cosimplicial spectrum Xs = E ∧ Y∧(s+1), with
d1 : ∆s

∗ → ∆s+1
∗ a differential.

Proposition 14.2. Under the above hypotheses,
(1) ∆∗ = (∆0

∗,∆1
∗) is a graded Hopf algebroid over E0,

(2) (∆∗∗, d1) is precisely the cobar complex C∗(∆∗) of the Hopf algebroid,
(3) Hs,∗(∆∗) = 0 for s > 0, and H0,t(∆∗) ≈ πtE.
(4) There is a canonical map ι(E,C,φ) : Γ∗ → ∆∗(E, C,φ) of Hopf algebroids which is natural in

the elliptic spectrum (E, C,φ), in the sense that for each map ρ : (E, C,φ) → (E′, C′,φ′)
of elliptic spectra we have ρ ◦ ι(E,C,φ) = ι(E′ ,C′ ,φ′).

Proof. Let (E, C,φ) denote a fixed elliptic spectrum. Define a functor G : alg(E0) →
Groupoids by

G0(R) = W(C⊗E0 R)

G1(R) = W(C⊗E0 R)×2.

In particular, between any two objects in G(R) there is precisely one map. To show (1) and
(2), it is effectively enough to show that ∆s

0 naturally represents the functor Gs, which is
given by Gs(R) = W(C⊗E0 R)×(s+1). (Actually, this ought to be part of the statement of the
proposition.) For s = 0 this is just (12.4). In general, the s + 1 maps Y → Y(s+1) induce s + 1
maps π0(E ∧Y)→ π0(E ∧Y(s+1)), and hence a map hom(∆s

∗, R)→W(C⊗ R)s+1; that this
map is an isomorphism follows by repeated applications of (12.4).
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To show (3), make a choice (x, y) of Weierstrass parameters for C over E0. This gives a
map ∆0

∗ → E∗, and more generally a contracting homotopy for the coaugmented complex
E∗ → ∆•∗.

The map Γ s → ∆s is the one classifying the Weierstrass equations associated to (tautolog-
ical) choices of Weierstrass parameters for C over π0(E ∧Y∧(s+1)). This is clearly natural in
the generalized elliptic curve C. �

Remark 14.3. In the above, we could have replaced the role of Y with MUP. Then instead
of a Hopf algebroid representing Weierstrass parameterizations of the curve, we would get
a Hopf algebroid representing formal coordinates for its formal group.

14.4. What is tmf? The idea is that there should exist a “universal elliptic spectrum”, which
maps canonically to all others. Such a spectrum should be associated to a particular family
of generalized elliptic curves, namely the “universal family”.

Such a spectrum as described above cannot really exist: an elliptic E spectrum is in par-
ticular an even periodic ring theory, and thus admits a coordinate x ∈ E0

CP
∞. If there we

a universal such elliptic spectrum (call it Euniv), then a choice of coordinate x ∈ E0
univCP

∞

would have a canonical image in each elliptic spectrum E. But there is no such canonical
choice of coordinate on an elliptic curve, since any such choice T maps to another λT, by a
map (x, y)→ (λ−2x, λ−3 y) of elliptic curves over the ring E0[λ, λ−1].

If we remove the requirement that Euniv be even periodic, then we can do something.
For instance, any elliptic curve over a ring A containing 1/6 admits a choice of coor-
dinate T which is canonical up to scalar (this follows from the argument made in (9.5)).
Thus it turns out that there exists a spectrum tmf[1/6] which is complex orientable (but
not even periodic), with the kind of universal property we would like. In particular,
π∗tmf[1/6] = Z[1/6, c4, c6] with ci ∈ π2itmf[1/6]; i.e., tmf[1/6] is a connective version
of the elliptic cohomology described in [LRS95].

If 6 is not invertible, then it is not necessarily the case that there is a coordinate unique
up to scalar. Therefore, we do not expect tmf to be a complex orientable theory.

On the other hand, we do know that if (E, C,φ) is an elliptic spectrum, then E ∧ Y has a
natural coordinate associated to the canonical Weierstrass parameterization on C⊗E0 E0Y.
Thus, we may suppose that tmf ∧ Y, and more generally tmf ∧ Y∧(s), are even periodic.
Furthermore, since tmf should be universal for elliptic spectra, there are are natural maps
π∗(tmf ∧ Y∧(s+1)) → π∗(E ∧ Y∧(s+1)) for each elliptic spectrum E. The proposition we
proved above thus motivates the following

Theorem 14.5 (Hopkins, Miller, Mahowald, Goerss, et. al). There exists a connective, commu-
tative ring spectrum tmf such that there is an isomorphism of complexes

π∗(tmf ∧Y∧(•+1)) ≈ C∗(Γ∗).

Proof. Deferred. �

Actually, things are better; it can be shown that tmf is an E∞-ring spectrum.
We will put off the problem of constructing tmf for later. For now, we will use the char-

acterization implicit in the above theorem to compute the homotopy groups of tmf.
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14.6. Derived functors of modular forms. To compute the spectral sequence

Es,t
2 = Hs,t(A∗, Γ∗) =⇒ πt−stmf

we must first compute the E2-term. We have already noticed (10.3) that

H0,t(A∗, Γ∗) ≈
{
Mt/2 if t even,
0 if t odd,

whereM∗ is the ring of modular forms. Therefore there will be an edge homomorphism

πntmf→Mn/2,

(where we make the convention thatMm = 0 if m is a half-integer). This homomorphism
will not be an isomorphism, although it becomes an isomorphism after inverting 6.

We may say that the higher cohomology groups are the derived functors of modular
forms. This terminology can be justified; these groups are the cohomology groups of sec-
tions of certain line bundles over the “stack of generalized elliptic curves”.

15. CALCULATIONS IN HOPF ALGEBROIDS, AND THE CALCULATION WITH 6 INVERTED

15.1. Induced Hopf algebroids. Let (A, Γ) be a Hopf algebroid, and suppose that f : A →
B is a ring homomorphism. Let

ΓB
def= B

f ,d0

⊗
A
Γ

d1 , f
⊗
A

B.

Then (B, ΓB) is again a Hopf algebroid, and there is a map (A, Γ) → (B, ΓB), which induces
a functor f ∗ : Comod(A, Γ)→ Comod(B, ΓB).

In terms of groupoids, this amounts to the following. Let G(R) = (G0(R), G1(R)) denote
the functor from rings to groupoids represented by (A, Γ). Let H0(R) = homRings(B, R);
there is an evident natural transformation φ : H0(R) → G0(R) induced by f . Then ΓB
represents the functor

H1(R) def= H0(R)
φ,d0
×

G0(R)
G1(R)

d1 ,φ
×

G0(R)
H0(R).

Thus, if x, y ∈ H0(R), then H(R) = (H0(R), H1(R)) is a groupoid with

homH(R)(x, y) = homG(R)(φx,φy).

Soφ : H(R)→ G(R) is a full functor.

15.2. A change of rings theorem. Recall that a map f : A → R of commutative rings is
faithfully flat if it is flat, and if R⊗A M = 0 implies M = 0 for any A-module M.

Theorem 15.3. Let (A, Γ) be a Hopf algebroid, and (B, ΓB) be the Hopf algebroid induced by a map
f : A → B. Assume that the morphisms d0 : A → Γ and d0 : B → ΓB are flat. If there exists a ring
R and a morphism g of rings in

A 1⊗d1

−−→ B
f ,d0

⊗
A
Γ

g−→ R

such that the composite A→ R is faithfully flat, then

f ∗ : Comod(A, Γ)→ Comod(B, ΓB)
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is an equivalence of categories, and for any M ∈ Comod(A, Γ) the induced map

H∗(A, Γ; M)→ H∗(B, ΓB; f ∗M)

is an isomorphism. In particular, H∗(A, Γ) ≈ H∗(B, ΓB).

Here are two important special cases.

Example 15.4. Suppose that f : A → B is itself faithfully flat. Then we can let R = B and
g = id⊗s0, so that the composite

A 1⊗d1

−−→ B
f ,d0

⊗
A
Γ

id⊗s0

−−−→ B⊗A A = B

is just f . This is an example of “flat descent”.

Example 15.5. Suppose that R = A, and that the composite

A 1⊗d1

−−→ B
f ,d0

⊗
A
Γ

g−→ A

is the identity on A (which is certainly faithfully flat). Then giving a map g is equivalent to
giving a section of

H0(R)
φ,d0
×

G0(R)
G1(R) d1◦π2−−−→ G0(R)

which is natural in R. In particular, for each object x ∈ G0(R) we must produce an object
γ(x) ∈ H0(R) and an isomorphism αx : x → φγ(x) in G(R). Since φ is a full functor, this
is effectively the same as giving a functor γ : G → H and natural isomorphismsφ ◦ γ ≈ id
and γ ◦φ ≈ id; i.e., an equivalence of categories.

A proof of a variant of this special case (in which the Hopf algebroids are assumed to be
complete with respect to the powers of some ideal) is given in [Dev95].

15.6. Application. We apply the change of rings theorem to the graded Hopf algebroid
(A∗, Γ∗). Define graded subrings A∗ ⊂ A∗ and Γ ∗ ⊂ Γ∗ by

A∗ = Z[a1, . . . , a6], Γ ∗ = A∗[r, s, t],

with
ai = aiη

i, r = rη2, s = sη, t = tη3.
(Recall that η ∈ A2.) It is straightforward to check that (A∗, Γ ∗) is a sub-Hopf algebroid.

Proposition 15.7. The conclusion of the change of rings theorem applies to the map (A∗, Γ ∗) →
(A∗, Γ∗) of graded Hopf algebroids. In particular, they have the same cohomology.

Proof. It is clear that A∗ ≈ A∗[η, η−1], and that f : A∗ → A∗ is faithfully flat. By the first
special case of the change of rings theorem, it suffices to show that (A∗, Γ∗) is the Hopf
algebroid induced from (A∗, Γ ∗) along f ; i.e., that the natural map

(Γ ∗)A∗ = A∗
f ,d0

⊗
A∗
Γ ∗

d1 , f
⊗
A∗

A∗
d0⊗ι⊗d1

−−−−→ Γ∗

is an isomorphism. This is clear: note that η⊗ 1⊗ 1 7→ η while 1⊗ 1⊗ η 7→ λ−1η. �
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Remark 15.8. If we forget about the grading on (A∗, Γ ∗), then we can identify it with the
Hopf algebroid which represents the groupoid G(R), whose objects are generalized Weier-
strass equations over R, and whose morphisms are variable transformations which pre-
serve the standard invariant 1-form η. In particular, we may regard the groupoid G(R) as
that having objects the Weierstrass equations y2 + · · · = x3 + · · · , and as having morphisms
correpsonding to variable transformations

x = x′ + r, y = y′ + sx′ + t,

in other words, the usual formulas with λ = 1.

Remark 15.9. The Hopf algebroid (A∗, Γ ∗) has a topological interpretation: if we let Y =
(ΩSU(4))γ, then π∗(tmf ∧Y) ≈ A∗ and π∗(tmf ∧Y

∧(2)) ≈ Γ ∗.

Henceforward, we will work only with the sub-Hopf algebroid (A∗, Γ ∗). In honor of
this, we will call it simply (A, Γ), and we will drop the overbar notation, so that hence-
forth ai, r, s, t will stand for the elements formerly known as ai, r, s, t, which are in gradings
2i, 4, 2, 6.

The Hopf algebroid (A, Γ) is connected, in the sense that At = Γt = 0 if t < 0 and
A0 = Γ0 = Z. It is also concentrated in even degrees. Therefore,

Proposition 15.10. We have that

Hs,t(A, Γ) = 0 if 2s > t (or equivalently s > t− s).

Furthermore, each of the groups Hs,t(A, Γ) is finitely generated.

To compute these cohomology groups, we will proceed by computing the cohomology
of (A⊗ R, Γ ⊗ R), where R = Z[1/6],Z(3),Z(2).

15.11. Calculation after inverting 6. We compute the cohomology of (A[ 1
6 ], Γ[ 1

6 ]) by means
of the change of rings theorem. Thus, define

B def= Z[ 1
6 , c4, c6], |ci| = 2i

and
f : A[ 1

6 ]→ B, a1, a2, a3 7→ 0, a4 7→ −c4/48, a6 7→ −c6/864.
Thus we can form an induced Hopf algebroid (B, ΓB).

Lemma 15.12. The map d0 : B→ ΓB is an isomorphism. In particular,

Hs,t(B, ΓB) =

{
Bt if s = 0,
0 if s > 0.

Proof. Let G and H denote the groupoids represented by (A, Γ) and (B, ΓB) respectively, and
φ : H → G the functor associated to f . It is enough to show that for every R containing 1/6,
the map d0 : H1(R) → H0(R) is an isomorphism, or in other words that in H(R) the only
morphisms are identity maps. Let (c4, c6) and (c′4, c′6) denote objects in H(R), correspond-
ing to pairs of elements in R. By definition,

homH(R)
(
(c′4, c′6), (c4, c6)

)
= homG(R)

(
φ(c′4, c′6),φ(c4, c6)

)
,
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and φ(c4, c6) ∈ G0(R) corresponds to the Weierstrass equation y2 = x3 − c4
48 x− c6

864 . It is
straightforward to check that the only transformation of the form (x, y) 7→ (x + r, y + sx + t)
which preserves the shape of the equation is that with r = s = t = 0; that is to say, the only
maps are identity maps. �

Proposition 15.13. We have

Hs,∗(A[ 1
6 ], Γ[ 1

6 ]) ≈
{
Z[ 1

6 , c4, c6] if s = 0,
0 if s > 0.

Therefore
π∗tmf[ 1

6 ] = Z[ 1
6 , c4, c6].

Proof. We show that the change of rings theorem applies, and then use the above lemma.
We will produce a map g making the composite

A 1⊗d1

−−→ B
f ,d0

⊗
A
Γ

g−→ A

the identity, as in the second special case of the change of rings theorem. Let G and H be
as in the proof of the previous lemma. For each a = (a1, . . . , a6) ∈ G0(R) we want to find
γ(a) ∈ H0(R) andαa : a→ φγ(a) ∈ G1(R), naturally in R. We define these by

γ(a) = (c4(a), c6(a)), αa : (x, y) 7→ (x + 1
3 a2 + 1

12 a2
1, y + 1

2 a1x + 1
2 a3),

where ci(a) ∈ Z[a1, . . . , a6] ⊂ A as defined in (9.5). We have already carried out the calcu-
lations to check this in (9.5), see especially (9.7). �

16. DERIVED FUNCTORS OF MODULAR FORMS AT 3

16.1. A reduction. To compute the cohomology of (A(3), Γ(3)), we first reduce to a small
Hopf algebroid. Let B = Z(3)[b2, b4, b6] and define f : A(3) → B by

a1, a3 7→ 0, a2 7→ b2/4, a4 7→ b4/2, a6 7→ b6/4.

We obtain an induced Hopf algebroid (B, ΓB) with

ΓB = B
f ,d0

⊗
A(3)

Γ(3)
d1 , f
⊗

A(3)

B ≈ Γ(3)/(a1, a3, a′1, a′3) = B[r, s, t]/(2s, 2t) = B[r].

The Hopf algebroid structure is thus captured by

d1(bi) = b′i , ∇(r) = r + r′,

where

b′2 = b2 + 12r

b′4 = b4 + b2r + 6r2

b′6 = b6 + 2b4r + b2r2 + 4r3.

These are just the transformation formulas for equations of the shape y2 = x3 + 1
4 b2x2 +

1
2 b4x + 1

4 b6 under x 7→ x + r.
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(Note: here and subsequently I write

t 7→ t′ instead of t 7→ dn(t) where dn : Γ n−1 → Γ n

and
t 7→ t instead of t 7→ d0(t) where d0 : Γ n−1 → Γ n.

In other words, use a ′ to indicate an application of the last face operator, and use nothing
to indicate an application of the first face operator. In particular, for d0, d1 : A → Γ this
reduces to the convention which I have already been using consistently. For d1 = ∇ : Γ →
Γ 2 = Γ ⊗A Γ , a formula like ∇(t) = t + t′ + sr′ with r, s, t ∈ Γ transates to ∇(t) = t⊗ 1 +
1⊗ t + s⊗ r.)

Proposition 16.2. H∗(A(3), Γ(3)) ≈ H∗(B, ΓB).

Proof. We apply the change of rings theorem as in the second special case. Thus if
(A(3), Γ(3)) and (B, ΓB) represent groupoids G and H respectively, then we must find for
each a ∈ G0 a γ(a) ∈ H0 andαa : a→ φγ(a) ∈ G1. Take

γ(a) = (b2(a), b4(a), b6(a)), αa : (x, y) 7→ (x, y + 1
2 a1x + 1

2 a3)

where the bi(a) are the polynomials defined in (9.5). Again, this is basically a calculation
we did in (9.5). �

16.3. Some elements in H∗(B, ΓB). Let us construct some classes in Hs,t = Hs,t(B, ΓB). We
already know about

c4 = b2
2− 24b4 ∈ H0,8, c6 = −b3

2 + 36b2b4− 216b6 ∈ H0,12, ∆ = (c3
4− c2

6)/(12)3 ∈ H0,24.

Write δs = ∑±di : Cs(Γ •) → Cs+1(Γ •) for the differential in the cobar complex. Since r ∈ Γ
is primitive, δ1(r) = 0. Define

α = [r] ∈ H1,4.
Clearly 3α = 0 since δ0( 1

4 b2) = 3r.
There is a cup product in C∗, defined as follows: for x ∈ Cp and y ∈ Cq, let

x ∪ y def= xy[p] ∈ Cp+q

using the shorthand

x ∈ Cp+q for (d0)q(x), y[p] = y

p︷ ︸︸ ︷
′′ · · ·′′ ∈ Cp+q for (dlast)p(y).

Since δp+q(x ∪ y) = δpx ∪ y + (−1)px ∪ δq y, this defines a product on cohomology, which
turns out to be associative and commutative (see [Rav86, App. A]). Under this product,

α ∪α = 0.

We have Massey products: ifα ∈ Hp, β ∈ Hq, γ ∈ Hr, then

〈α,β,γ〉 def= {[u ∪ c + (−1)pa ∪ v]} ⊂ Hp+q+r+1

where the set is taken over all a, b, c, u, v such that α = [a], β = [b], γ = [c], δ(u) = a ∪ b,
δ(v) = b ∪ c. It is a coset ofαHq+r+1 + Hp+q+1γ. Since δ1(− 1

2 r2) = rr′ = r ∪ r, we compute

β = 〈α,α,α〉 = [− 1
2 (r2r′ − rr′2)] ∈ H2,12,
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and 3β = 0.
It is relatively easy to check the relations

αc4 = αc6 = 0, βc4 = βc6 = 0.

For instance, c4 ∪α = [c4r]. Now

δ0 : c4b2 = b3
2 − 24b2

2b4 7→ 12c4r.

But also
δ0 : c6 = −b3

2 + 36b2
2b4 − 216b6 7→ 0,

so adding them gives
δ0 : 12(b2

2b4 − 18b6) 7→ 12c4r,
so b2

2b4 − 18b6 → c4r. (In any case, we will have another way to prove these relations later.)
We can now state

Proposition 16.4. The evident map

Z(3)[c4, c6,∆,α,β]
c3

4 − c2
6 − (12)3∆,

α2 = 0, 3α = 3β = 0,
c4α = c4β = 0,
c6α = c6β = 0


→ H∗,∗(B, ΓB) ≈ H∗,∗(A(3), Γ(3))

is an isomorphism.

This will be proved below.

0
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8

0
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2
c6

•
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2 2
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•��
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32
22
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22

•

40
22
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This is a diagram of Hs,t(A(3), Γ(3)). The horizontal axis is t − s and the vertical axis is s;
here 2 = Z(3) and • = Z/3. Lines represent multiplication byα.

16.5. An algebraic spectral sequence. If T = −x/y is the usual coordinate at e for a gener-
alized Weierstrass equation, then we have that

[3](T) = 3T + · · · , [3](T) ≡ b2T3 + · · · mod (3), [3](T) ≡ 2b2
4T9 + · · · mod (3, b2).

This suggests that we should consider the ideal I = (3, b2, b4) ⊂ B. This is an invariant
ideal, in the sense that d0(I)ΓB = d1(I)ΓB, and therefore

(B, Γ ) def= (B/I, ΓB/IΓB) = (F3[b6],F3[b6, r])

is a Hopf algebroid, with
b′6 = b6 + r3, ∇(r) = r + r′.
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Define a descending filtration F qΓ s
B ⊂ Γ s

B by F qΓ s
B = IqΓ s

B. This is a filtration of the com-
plex C∗(Γ •), and the associated graded is IqΓ s

B/Iq+1Γ s
B. This is isomorphic to (Iq/Iq+1)⊗B Γ ,

since (d0)s : B→ Γ B
s is flat.

The quotient I/I2 is naturally a comodule over (B, Γ ), via the restriction of d1 : B→ ΓB to
I/I2 → IΓB/I2ΓB ≈ (I/I2)⊗B Γ . Filtering with respect to I gives rise to a spectral sequence
(which is a variant of the “algebraic Adams-Novikov spectral sequence”.)

Proposition 16.6. There is a spectral sequence of algebras

Ep,q;t
1 = Hp(B, Γ ; Symq

B
(I/I2)) =⇒ Hp,t(B, ΓB).

Proof. This is the spectral sequence of a filtered chain complex C∗(Γ •B), using the evident
identification Iq/Iq+1 ≈ Symq

B
(I/I2) as comodules over (B, Γ ). �

Write
I/I2 = F3[b6]⊗V, V def= F3{B0, B2, B4},

where B0, B2, B4 are representatives of 3, b2, b4 ∈ I. Then the coaction ψ : I/I2 → I/I2 ⊗B Γ

is deduced from the formulas d1(bi) = b′i in (B, Γ); we get that ψ(Bi) = B′i with

B′0 = B0

B′2 = B2 + B0r

B′4 = B4 + B2r + 2B0r2.

We make one final reduction. Consider the map B = F3[b6] → F3 sending b6 7→ 0. This
gives rise to an induced Hopf algebroid (F3, C) with

C = F3[b6, r]/(b6, b′6) = F3[r]/(r3), |r| = 4, ∇(r) = r + r′.

In particular, this Hopf algebroid is a Hopf algebra.

Proposition 16.7. The change of rings formula applies to the map (B, Γ )→ (F3, C). In particular,
there is an isomorphism

Hp,t(B, Γ ; Symq
B
(I/I2)) ≈ Hp,t(C; Symq

F3
V).

Proof. The map 1⊗ d1 : B = F3[b6]→ F3 ⊗B Γ ≈ F3[r] sends b6 7→ r3, and thus is flat. �

Remark 16.8. The group scheme Spec(C) is actually the group of automorphisms of the
generalized elliptic curve given by y2 = x3 over F3 which fix the base point and which
preserve the 1-form η = dx/2y.

As is well known,

H∗,∗(C;F3) ≈ E(α)⊗ P(β), α ∈ H1,4,β ∈ H2,12.

Also, V is a cofree C-comodule, so

H∗,∗(C; V) ≈ H∗,∗(C;F3)/(α,β) ≈ F3.
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We need to understand the structure of the C-comodule Sym∗V = F3[B0, B2, B4]. It is
sometimes convenient to consider the dual Hopf algebra C∗ = F3[P]/P3, which acts on a
comodule M by operations which decrease degree, i.e., P : Mn → Mn−4 defined by

ψ(x) = x + P(x)r + 2PP(x)r2, x ∈ M.

There is a Cartan formula for the action on a tensor product M⊗ N of comodules:

P(x⊗ y) = P(x)⊗ y + x⊗ P(y), x ∈ M, y ∈ N.

In our case, P(B0) = 0, P(B2) = B0, P(B4) = B2.

Proposition 16.9.

H0,∗(C; Sym∗V) ≈ F3[B0, C4, C6, δ]/(C3
4 − C2

6 − B3
0δ),

where C4 = B2
2 + B0B4 ∈ H0,8, C6 = −B3

2 ∈ H0,12, and δ = B3
4 ∈ H0,24. Furthermore,

B0, C4, C6, δ are representatives of the modular forms 3, c4, c6,∆ respectively, and thus are perma-
nent cycles in the spectral sequence.

Proof. The H0 is a straightforward computation, using the fact (say) that H0(C; M) =
Ker P : M → M. That the generators represent modular forms is immediate by examin-
ing the formulae for these in terms of b2, b4, b6: for instance, c4 = b2

2 + (−8) · 3b4 ∈ I2, and
c6 = −b3

2 + 4 · 32b2b4 + (−8) · 33b6 ∈ I3. �

Proposition 16.10. As a C-comodule, Sym∗V is a direct sum of suspensions of F3 and V. In
particular,

Sym∗V ≈ F3[δ]⊗M,
where

M = F3 ⊕
⊕

m∈M
V ·m,

where
M def= { Bi

0C j
4, Bi

0C j
4C6 | i, j ≥ 0 }r {1}

is a set of monomials in H0(C; M).

Putting all this together, we see that

H∗,∗(C; Sym∗V) ≈ F3[B0, C4, C6, δ,α,β]
C3

4 − C2
6 − B3

0δ,
α2 = 0, B0α = B0β = 0,

C4α = C4β = 0,
C6α = C6α = 0


.

Since B0, C4, C6, δ,α,β are all permanent cycles, it is immediate that the spectral sequence
computing H∗(B, ΓB) collapses at E1, and we get the answer we want.
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17. HOMOTOPY GROUPS OF tmf AT 3

We are now ready to compute the homotopy spectral sequence Es,t
2 =⇒ πt−stmf(3). This

is a spectral sequence of rings; the differentials are derivations, and take the form dr : Es,t
r →

Es+r,t+r−1
r .
First, it is clear that for degree reasons no differentials are possible until the 24-th stem.

In particular, c4, c6,α,β are permanent cycles; and thus the first differential to consider is a
possible d5 : ∆ 7→ ±αβ2.

Both α and β are in the image of the map π∗S0 → π∗tmf, and the “Toda relation” αβ3

in the sphere implies the same relation in π∗tmf. Since the only candidate to hit αβ2 in the
spectral sequence is β∆, we see that we must have

d5 : ∆ 7→ ±αβ2,

and hence

d5 : ∆2 7→ ∓αβ2∆,

d5 : ∆3 7→ 0.

Proposition 17.1. Let [α∆] ∈ π27tmf denote the homotopy class represented byα∆ ∈ E1,28
2 . Then

α[α∆] = ±β3.

Proof. There is a Toda bracket β = 〈α,α,α〉 in homotopy, so

β3 = β2〈α,α,α〉 ⊂ 〈αβ2,α,α〉.
But sinceαβ2 = 0 in homotopy, this bracket must be contained in its indeterminacy, which
isαπ27tmf = Z/3{[α∆]}. �

As a consequence,

d9(α∆2) = αd5(∆2) = α(∓αβ2∆) = ∓β5.

Theorem 17.2. The spectral sequence for π∗tmf(3) collapses at the E10-term, and Es,∗
10 = Es,∗

∞ = 0
for s ≥ 10. The edge homomorphism fits in an exact sequence

0→ K → πttmf(3) →Mt/2 ⊗Z(3) → C→ 0

where
C = Z/3[∆3]{∆,∆2}

and
K = Z/3[∆3]{α,β,αβ,β2, [α∆],β3 = α[α∆],β[α∆],αβ[α∆] = β4}.

In particular, the torsion in π∗tmf(3) has order 3, lies in dimensions 3, 10, 13, 20, 27, 30, 37, 40
mod 72, and is periodic under multiplication by ∆3. The map

∆3 : πntmf(3) → πn+72tmf(3)

is injective.
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18. DERIVED FUNCTORS OF MODULAR FORMS AT 2

We would like to compute H∗,∗(A(2), Γ(2)). The same strategy as that used at the prime
3 works at the prime 2 as well, but with quite a bit more difficulty: the algebraic spectral
sequence does not collapse at E1 (though it does collapse at E2), and at any rate the E1-term
is fairly complicated. We will only sketch the argument here.

18.1. Some elements in H∗,∗(A(2), Γ(2)). One can construct the following list of elements
in Hs,t = Hs,t(A(2), Γ(2)).

c4 ∈ H0,8, c6 ∈ H0,12, ∆ ∈ H0,24,
η ∈ H1,2, ν ∈ H1,4, µ ∈ H1,6,
ε ∈ H2,10, κ ∈ H2,16, κ ∈ H4,24.

The first three are modular forms. The second three are easily constructed: they are repre-
sented by [s], [r], and [3a1s2 + 6a1s2 + 4s2]. (Alternately, they each represented by a scalar
multiple of [a′1

k − ak
1], k = 1, 2, 3.) ε can be constructed as a Massey product 〈ν, 2ν, η〉.

The elements η,ν,µ,ε,κ, 2κ are in the image of the E2-term of the Adams-Novikov spec-
tral sequence for S0. The elements η,ν,ε,κ,κ will be permanent cycles in π∗tmf, represent-
ing the images of the corresponding elements in π∗S0 (using Toda’s names).

These elements satisfy some relations in H∗,∗. First, the modular relation

c3
4 − c2

6 − (12)3∆ = 0.

The orders of these elements:

2η = 2µ = 2ε = 2κ = 0, 4ν = 0, 8κ = 0.

Some standard relations involving ν:

ην = 0, 2ν2 = 0, ν4 = 0.

Relations involving ε and κ:

ηε = ν3, νε = 0, ε2 = 0, η2κ = 0, ν2κ = 4κ, εκ = 0, κ2 = 0.

The elements c4, c6, and µ kill a lot (but not all) of the torsion:

µν = c4ν = c6ν = 0, µε = c4ε = c6ε = 0, µκ = c4κ = c6κ = 0.

There are relations intertwining η and µ with c4 and c6:

µ2 = η2c4, µc4 = ηc6.

Finally, there are subtle relations involving κ with µ, c4, c6:

c4κ = η4∆, c6κ = η3µ∆, µ2κ = η6∆.

(Note: these are relations in the E2-term, not in homotopy; several of them fail in homotopy,
even when they make sense.)

If I’m lucky, I have not left out any relations, and the following is true.

Theorem 18.2. There is an isomorphism

Z(2)[c4, c6,∆, η,ν,µ,ε,κ,κ]/(∼)→ H∗,∗(A(2), Γ(2)),

where “∼” denotes the above list of relations.
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Note that ∆ has no zero-divisors, so that ∆ : Hs,t → Hs,t+24 is injective.

0

4

8

0
2��
��•�
η •�
◦��

�ν
•�
•�

•�
µ

•�

•��
�

•�
•�

8
2�
c4
•�ε

•�

•�
•
•�

2
c6
�
•�
•���

�κ •

16
2�
•�
•��

�

•�

2�

�•��
�

�
κ

•�

•�
•�
◦��

�
•�

24
22���

��
∆

•�

•�•�

•�

•�•�

•�•��
��

◦��
�

•�•�

•�

2

•�•�
•�

•�

•

•��
�

•�
•�

32
22

•�
•

•���
�•

22

•��
�

•���
�•

40
22

�•��

This is a diagram of Hs,t(A(2), Γ(2)). The horizontal axis is t − s and the vertical axis is s;
here 2 = Z(2), • = Z/2, ◦ = Z/4, and �• = Z/8. Short lines represent multiplication by
η, and long one represent multiplication by ν. Not all η-multiplications from the 0-line are
shown.

18.3. An algebraic spectral sequence. If T = −x/y is the usual coordinate for a Weier-
strass equation, then

[2](T) = 2T + · · · , [2](T) ≡ a1T2 + · · · mod (2), [2](T) ≡ a3T4 + · · · mod (2, a1).

Thus we will filter (A(2), Γ(2)) by powers of the ideal I = (2, a1, a3) ⊂ A(2). We let

(A, Γ ) def= (A(2)/I, Γ(2)/I)

and, as at the prime 3, we obtain

Proposition 18.4. There exists a spectral sequence of algebras

Ep,q;t
1 = Hp(A, Γ ; Symq

A
(I/I2)) =⇒ Hp,t(A(2), Γ(2)),

with differentials
dr : Ep,q;t

r → Ep+1,q+r;t
r .

We have
A = F2[a2, a4, a6], Γ = A[r, s, t]

with Hopf algebroid structrue given by

a′2 = a2 + s2 + r, ∇(r) = r + r′,

a′4 = a4 + r2, ∇(s) = s + s′,

a′6 = a6 + a4r + a2r2 + r3 + t2, ∇(t) = t + t′ + sr′.

We have that I/I2 ≈ A ⊗F2 V, where V = F2{A0, A1, A3} with A0, A1, A3 representing
2, a1, a3. The comodule structure ψ : I/I2 → I/I2 ⊗A Γ is given by ψ(Ai) = A′i with

A′0 = A0,

A′1 = A1 + A0s,

A′3 = A3 + A1r + A0t.
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As at the prime 3, we consider the Hopf algebroid (F2, C) induced by A → F2 sending
a2, a4, a6 7→ 0. We see that

C = F2 ⊗A Γ ⊗A F2

≈ F2[a2, a4, a6, r, s, t]/(a2, a4, a6, a′2, a′4, a′6)

≈ F2[r, s, t]/(s2 + r, r2, r3 + t2)

≈ F2[s, t]/(s4, t2).

The Hopf algebra structure is given by

|s| = 2, |t| = 6, ∇(s) = s + s′, ∇(t) = t + t′ + ss′2.

Proposition 18.5. The change of rings theorem applies to the map (A, Γ )→ (F2, C). In particular,
there is an isomorphism

Hp,t(A, Γ ; Symq
A

(I/I2)) ≈ Hp,t(C; Symq
F2

V).

Proof. The map 1⊗ d1 : A = F2[a2, a4, a6]→ F2⊗A Γ = F2[r, s, t] sends a2 7→ s2 + r, a4 7→ r2,
a6 7→ r3 + t2, and is faithfully flat: the elements 1, s, s2, s3, t, st, s2t, s3t serve as a basis for
F2 ⊗A Γ over A. �

Remark 18.6. The group scheme Spec(C) is actually the group of automorphisms of the
generalized elliptic curve given by y2 = x3 over F2 which fix the base point and which
preserve the 1-form η = dy/y2.

The graded Hopf algebra C is isomorphic to the dual of A(1), the subalgebra of the
Steenrod algebra generated by Sq1 and Sq2, except that the elements of C are in “double”
the gradings of A(1). It is convenient to calculate with the dual Hopf algebra C∗ (which
is the double of A(1)), and allow it to act on C-comodules M by operations Sq1 and Sq2,
sending Sqi : Mn → Mn−2i. With this convention, the comodule structure on V is described
by Sq1(A1) = A0, Sq2(A3) = A1, and all other Sqi(A j) = 0.

In what follows, we assume the reader is familiar with calculations involving A(1).

Proposition 18.7.
H0,∗(C; Sym∗V) ≈ F2[A0, A4

1, A2
3].

The elements A0, A4
1, A3

0 A2
3, A4

3 are representatives of the modular forms 2, c4, c6,∆ respectively,
and thus are permanent cycles in the spectral sequence.

Proof. The calculation of H0 is straightforward. To see how modular forms are detected, we
determine which power Iq ⊂ A they lie in. Thus, for instance,

c4 = a4
1 + 24a2

2 + (−3)24a4︸ ︷︷ ︸
I4

+ 23a2
1a2 + (−3)23a1a3︸ ︷︷ ︸

I5

;

the important term here is a4
1, since we have reduced a2, a4, a6 to 0. Likewise,

c6 = (−27)23a2
3 + · · ·︸ ︷︷ ︸

I5

+ (−1)a6
1 + 9 · 22a1a3 + · · ·︸ ︷︷ ︸

I6

;

the leading term (modulo a2, a4, a6) is 23a2
3. �
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The above calculation means that we should expect A2
3, A0 A2

3, A2
0 A2

3 to support differen-
tials in the algebraic spectral sequence, since they do not correspond to modular forms.

Proposition 18.8. As a C-comodule, Sym∗V is a direct sum of suspensions of comodules Vk:

V0

•

V1

•
•

•

V2

•
•
•
•
•

V3

•
•�
�•�
�•�
�

•
•
•

Vn, n ≥ 4.

•
•�
�•�
�•�
�

•
•
•
•

(The • represent Z/2, and the lines represent Sq1 and Sq2.) In particular,

Sym∗V ≈ F2[A4
1, A2

3]⊗M,

where
M ≈

⊕
k≥0

Vk · Ak
0.

We have that

H∗,∗(C;F2) ≈ F2[η,ν, e11,3, e20,4]/(ην,ν3,νe11,3, e11,3 + η2e20,4)

with η ∈ H1,2, ν ∈ H1,4, and et−s,s ∈ Hs,t. (In general, ei, j will be used as a name for an
element in H j,i+ j(C; M), so that (i, j) corresponds to (t− s, s).) The groups H∗,∗(C; Vk) are
naturally modules over the above; we distinguish elements

e11,3 ∈ H3,14(C; V0), e20,4 ∈ H4,24(C; V0),

e8,2 ∈ H2,10(C; V1), e17,3 ∈ H3,20(C; V1),

e5,1 ∈ H1,6(C; V2), e14,2 ∈ H2,16(C; V2),

e11,1 ∈ H1,12(C; V3).

H∗,∗(C; Vk) ≈ F2 if k ≥ 4.
The multiplicative structure of H∗,∗(C; Sym∗V) is fairly complicated; it has H∗,∗(C; M)⊗

F2[A4
1, A2

3] as an associated graded. We first note some A0-multiplications:

A0e20,4 = νe17,3, A0e17,3 = νe14,2, A0e14,2 = νe11,1, A0e11,1 = νA4
1.

Note also that A2
0ν = 0. There is more structure involving products of the ei, j’s. First, the

structure as a H∗,∗(C;F2)-module gives products with e11,3:

e2
11,3 = η2e20,4, e8,2e11,3 = η2e17,3, e5,1e11,3 = η2e14,2.

Some more products:

e2
5,1 = η2 A4

1, e5,1e8,2 = η2e11,1, e2
8,2 = η2e14,2 + η4 A2

3.



SUPPLEMENTARY NOTES FOR MATH 512 (VERSION 0.17) 53

The last one is the most delicate. It can be proved by considering the short exact sequence
0→ Λ→ V⊗V → Sym2V → 0, whereΛ is an upside-down V: first find the exterior prod-
uct of e8,2 with itself in H4,20(C; V ⊗V) (there is only one non-trivial class in this grading),
then compute its image in H∗(C; Sym2V).

To understand some of this structure, it useful to think about what happens when η is
formally inverted. In fact,

η−1H∗,∗(C; Sym∗V) ≈ F2[η, η−1][e5,1, e8,2, e11,3].

Proposition 18.9. The algebraic spectral sequence admits non-trivial differentials d1 : Ep,q;t
1 →

Ep+1,q+1;t
1 . It collapses at E2, although there are non-trivial multiplicative extensions.

To prove this, we first note that A0, A4
1, A3

0 A2
3, A4

3, η,ν, e5,1, e8,2 are permanent cycles; we
have already discussed the first four, and η,ν, e5,1 clearly support no differentials. It is not
too hard to construct a representative for e8,2 (or observe that it comes from the representa-
tive for ε in the Adams-Novikov E2-term for the sphere.)

We first establish the differential

d1 : e11,3 → η2e8,2

(for instance, this is the only way to force η2ε = 0 at the E2-term). This implies

d1 : e14,2 → η2e11,1,

d1 : e17,3 → e2
8,2 = η2e14,2 + η4 A2

3;

the first of these is because η2e14,2 = e11,3e5,1 → η2e8,1e5,1 = η4e11,1, and the second because
η2e17,3 = e11,3e8,2 → η2e2

8,2. These imply

d1 : A2
3 → e11,1,

because e2
8,2 → 0 since it is a target, and thus 0 = d1(e2

8,2) = d1(η2e14,2 + η4 A2
3) = η4e11,1 +

η4d1(A2
3). Thus

d1 : A0 A2
3 → A0e11,1 = νA4

1,

d1 : A2
0 A2

3 → A2
0e11,1 = νA0 A4

1.

All other d1’s are forced by these. We note in particular that the elements

η2 A2
3 + e14,2 ∈ H2,16, e20,4 ∈ H4,24

survive; these represent κ and κ. One can check that κ2 = 0:

d1 : e17,3 A2
3 → η4 A4

3 + e20,4 A4
1 = (η2 A2

3 + e14,2)2 = κ2.

This also happens to show that κc4 = η4∆.
Several exotic multiplicative extensions can be found at E2, including

ν3 = ηe8,2, η(A3
0 A2

3) = e5,1 A4
1.

Once these are established, one checks that as an algebra E2 is generated by permanent
cycles, and so we are done (more or less).
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19. HOMOTOPY GROUPS OF tmf AT 2

We now have to compute a spectral sequence

Es,t
2 = Hs,t(A(2), Γ(2)) =⇒ πt−stmf(2).

I will not give a complete exposition of this. The reader should take a look at [HM], espe-
cially the full page chart, which is a picture of the spectral sequence starting at the E4-term,
with some of the material on lines s = 0, 1, 2 omitted.

Observe first that the classes η,ν,ε,κ,κ come from homotopy classes in π∗S0, and so are
permanent cycles.

The first possible non-trivial differential is at E3, given by

d3 : µ → η4,

which forces

d3 : c4 → 0,

d3 : c6 → η3c4,

d3 : µκ → η3κ,
d3 : ∆→ 0.

At E4 one can start to make sense of multiplicative extensions of the type 4ν = η3.
The key differential is

d5 : ∆→ νκ.
This can be derived in several ways, for instance using

Lemma 19.1. In π26S0 we have ν2κ ∈ 〈η4σ , η, 2ι〉.

Proof. See [HM]. �

Since σ ∈ π7S0 maps to 0 in tmf we have that ν2κ must lie in the indeterminacy of the
bracket, which cannot possibly happen in this dimension unless ν2κ = 0 in homotopy,
which can only happen if d5 does as alleged.

This implies

d5 : ∆2 → 2κ∆,

d7 : ∆4 → 4κ∆,

d5, d7 : ∆8 → 0.

Exercise 19.2 (Mahowald). Compute the remaining differentials in the spectral sequence
using elementary Toda bracket considerations.

The last differential turns out to be d23 : η∆5 → κ6. Thus

Theorem 19.3. The spectral sequence for π∗tmf(2) collapses at the E24-term, and Es,∗
24 = Es,∗

∞ = 0
for s ≥ 24. The edge homomorphism fits in an exact sequence

0→ K → πttmf(2) →Mt/2 ⊗Z(2) → C→ 0,
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where

C ≈ Z/2[c4,∆]{c6} ⊕
(
Z/2{∆4} ⊕Z/4{∆2,∆6} ⊕Z/8{∆,∆3,∆5,∆7}

)
⊗Z[∆8].

The torsion in π∗tmf(2) has order at most 8. The map

∆8 : πntmf(2) → πn+192tmf(2)

is injective.

20. CALCULATION OF MU∗tmf

Recall that Y = (ΩU(4))γ is a Thom spectrum, and thus has a natural map to MUP.

Proposition 20.1. The spectrum MUP∧ tmf admits the structure of an elliptic spectrum (MUP∧
tmf, C,φ) in such a way that the natural map tmf ∧ Y ≈ Y ∧ tmf → MUP ∧ tmf induces a
morphism of elliptic spectra. In particular, πoddMUP ∧ tmf = 0, and

π0 MUP ∧ tmf = MUP0tmf = Z[a1, a2, a3, a4, a6, en, n ≥ 4].

The generalized elliptic curve C = Ca is the Weierstrass equation in x, y with coefficients a1, . . . , a6.
The natural map MUP→ MUP∧ tmf corresponds to the coordinate TMUP on Ĉ with the property
that

−x/y = T + ∑
n≥5

en−1Tn.

To prove this, we will apply MUP∗ to the cosimplicial spectrum [s] 7→ tmf ∧ Y(s+1).
Recall that if E is an even periodic spectrum, then EoddMUP = 0, and there is a natural
isomorphism

homalg(E0)(E0 MUP, R) ≈ CoordGE⊗R.
If TE is a choice of coordinate for E, and TMUP is the canonical coordinate for MUP, we have

MUP0E = E0 MUP ≈ E0[b±1
0 , bn, n ≥ 1] where TMUP = ∑

n≥1
bn−1Tn

E ,

and the classes bn ∈ π0E ∧MUP are in the image of the map E0TMUP : E0CP
∞ → E0 MUP.

Alternately, we can write

MUP0E = E0 MUP ≈ E0[m±1
0 , mn, n ≥ 1] where TE = ∑

n≥1
mn−1Tn

MUP,

and the classes mn ∈ π0 MUP ∧ E are in the image of the map MUP0TE : MUP0CP
∞ →

MUP0E.
Recall that

homRings(π0(tmf ∧Y), R) = {Weierstrass equations Fa over R}.
homRings(MUP0tmf ∧Y, R) = {(Fa, TMUP)},

where Fa is a Weierstrass equation over R, and TMUP is a coordinate for the curve associated
to this equation.

The complex [s] 7→ ∆s def= MUP0(tmf ∧Y(s+1)) is the cobar complex of a Hopf algebroid,
representing the groupoid whose objects are as above, and whose morphisms are coordi-
nate transformations relating the two Weierstrass equations.
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We can write

∆0 = MUP0(tmf ∧Y) ≈ Z[a1, a2, a3, a4, a6, m±1
0 , mn, n ≥ 1]

where π0(tmf ∧Y)→ MUP0(tmf ∧Y) is the evident map, and

TC = ∑
n≥1

mn−1Tn
MUP

where TC = −x/y is the standard coordinate on the generalized elliptic curve Fa = 0.
Let R = Z[a1, . . . , a6, en, n ≥ 4] and define a map ∆0 → R by sending ai 7→ ai, m0 7→ 1,

m1, m2, m3 7→ 0, and mn 7→ en for n ≥ 4.

Proposition 20.2. The induced Hopf algebroid is (R, R), and the change of rings theorem applies
to (∆0,∆1)→ (R, R).

Proof. The first part is simply the statement that for any coordinate T on a generalized
elliptic curve there is a unique pair of Weierstrass parameters (x, y) such that −x/y = T +
O(T5). The second part is also follows from this, since there is an equivalence of groupoids.

�

Remark 20.3. There are maps

tmf ∧Y
f−→ MUP ∧ tmf ∧Y

g−→ tmf ∧Y.

The map f is induced by S0 → MUP, and the map g is induced by Y → MUP and by
multiplication in MUP. In homotopy, g corresponds to ∆0 → R as described above. The
map f corresponds to a map R→ ∆0, which is one of the maps involved in the equivalence
of groupoids. We will need to be able to compute this map: it sends ai 7→ a′i where we use

λ = m0,

s = m1/m2
0,

r = (m0m2 −m2
1)/m4

0,

t = −(3m0m1m2 + a1m3
0m2 − a1m2

0m2
1 −m2

0m3 − 2m3
1)/m6

0,

and it sends en to mn/m0 modulo elements decomposable in the ai and the mn for n ≥ 1. (It
would be better if I had calculated these in terms of the bn’s.)

We get a similar description for MU∗tmf, which we will need later.

Proposition 20.4. There is an isomorphism

MU∗tmf ≈ Z[a1, a2, a3, a4, a6, en, n ≥ 4], |ai| = 2i, |en| = 2n.

The map MU∗tmf→ MUP∗tmf sends ai 7→ ηiai and ei 7→ ηiei.

Finally, we calculate the map MU∗tmf→ MU∗HZ induced by tmf→ HZ. Recall that

MU∗HZ ≈ Z[tn, n ≥ 1], |tn| = 2n,

where
TMU = ∑ tn−1Tn

HZ.
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Proposition 20.5. The map MU∗tmf→ MU∗HZ sends

a1 7→ −2t1, a2 7→ 2t2
1 − 3t2, a3 7→ −2t3

1 + 4t1t2 − 2t3,

a4 7→ t4
1 − 2t2

1t2 − 2t1t3 + 3t2
2, a6 7→ t4

1t2 − t2
1t2

2 − t3
2 − t2

3 − 2t3
1t3 + 4t1t2t3,

and hence

b2 7→ 12t2
1 − 12t2, b4 7→ 6t4

1 − 12t2
1t2 + 6t2

2, b6 7→ 4t6
1 − 12t4

1t2 + 12t2
1t2

2 − 4t3
2,

and c4, c6 7→ 0. Furthermore,
en 7→ tn mod (t1, t2, t3).

Proof. This is computed by considering the composite MU ∧ tmf → MU ∧ MU ∧ tmf →
MU ∧ HZ. �

21. COMPUTATION OF H∗(tmf;Fp)

To carry this out, we use the universal coefficient spectral sequence associated to HFp
viewed as a module spectrum over MU; see [Ada73]. This has the form

Es,t
2 = TorMU∗

s (MUtX,Fp) =⇒ Hs+t(X;Fp).

Differentials take the form dr : Es,t
r → Es−r,t+r−1

r . Since (MU∗X)(p) ≈ BP∗X ⊗ R∗ with
R∗ ≈ Z[yn, n 6= p j − 1], we have

Es,t
2 ≈ TorBP∗

s (BPtX,Fp).

It is simpler to use BP rather than MU; however, I need the freedom to be able to do calcu-
lations using MU, so I will frame most statements in this form.

We will use the following proposition.

Proposition 21.1. Let X be a ring spectrum, and let φ : MU∗ → MU∗X denote any complex
orientation of MU∗X. Suppose that there is an n ≥ −1 such that

(1) p = φ(v0),φ(v1), . . . ,φ(vn) is a regular sequence in MU∗X, and
(2) φ(vk) ≡ 0 mod (p,φ(v1), . . . ,φ(vn)).

Then

E∗,∗2 (H∗X) ≈
(

MU∗X⊗MU∗ Fp
)
⊗ E(τ j, j > n)

≈
(

BP∗X⊗BP∗ Fp
)
⊗ E(τ j, j > n)

≈ BP∗X/(p, v1, . . . , vn)⊗ E(τ j, j > n),

where τ j ∈ Tor1,2(p j−1). In particular, the universal coefficient spectral sequence collapses at E2.

Proof. Clearly, if the hypotheses hold for any complex orientationφ, they hold for all such,
so we may as well assume that φ is the map induced by the inclusion BP → BP ∧ X. Let
I = (p,φ(v1), . . . ,φ(vn)). Then

TorBP∗
∗ (BP∗X,Fp) ≈ TorBP∗/(p,...,vn)

∗ (BP∗X/I,Fp)

≈ BP∗X/I ⊗ TorBP∗/(p,...,vn)
∗ (Fp,Fp)

≈ (BP∗X/I)⊗ E(τ j, j > n),
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using flat base change twice: first, because p, . . . ,φ(vn) is a regular sequence in BP∗X, so
that BP∗X is flat as a module over Z(p)[v1, . . . , vn]; and second, because BP∗/(p, . . . , vn) →
BP∗X/I factors through Fp. �

Example 21.2. Let’s carry this out for X = H = HFp. We have

H∗MU ≈ MU∗H ≈ MU∗[tn, n ≥ 1] ≈ MU∗[mn, n ≥ 1], |tn| = |mn| = 2n.

The tn’s are in the image of TMU ∧ H : Σ−2
CP
∞ ∧ H → MU ∧ H, while the mn’s are in the

image of MU ∧ TH : MU ∧ Σ−2
CP
∞ → MU ∧ H.

Clearly, using the addendum to the lemma, we have that

E2 ≈ (MU∗H ⊗MU∗ Fp)⊗ E(τn, n ≥ 0).

Since

MU∗H ⊗MU∗ Fp ≈ BP∗H ⊗BP∗ Fp ≈ BP∗H ≈ Fp[t j, j ≥ 1], |t j| = 2(p j − 1),

we see that we get the correct answer (up to associated graded).
One can show, using the definition of the classes mn ∈ MU2nH, that the natural map

MU∗H → H∗H actually sends mp j−1 7→ ξ j and mn 7→ 0 if n 6= p j − 1, where ξ j is the
“usual” generator in H2(p j−1)H (for p odd); or ξ j = ζ2

j for the “usual” ζ j ∈ H2 j−1H (for
p = 2). Therefore tp j−1 7→ ξ j and tn 7→ 0 if n 6= p j − 1. Similarly, the classes τ j correspond
(up to filtration) to the antipode of the “usual” generator τ j ∈ H2(p j−1)+1H (for p odd); or
τ j = ζ j (for p = 2). (We will need this fact later on.)

We need to verify hypotheses (1) and (2) when X = tmf. First, we need

Proposition 21.3. Let Ca be the curve associated to a Weierstrass equation over a ring R, and let T
be any coordinate for Ĉa. Let vn ∈ R such that [p](T) = vnTpn + · · · mod (p, v1, . . . , vn−1) as
usual. Then

vn ≡ 0 mod (p, v1, v2) for all n,
or what is the same thing, vn ≡ 0 mod (p, v1, . . . , vn−1) for n ≥ 3.

Lemma 21.4. The proposition holds whenever R/(p, v1, v2) is an integral domain.

Proof. It is enough to embed R/(p, v1, v2) ⊂ k in an algebraically closed field and to prove
the lemma there. In this case the lemma follows from the classification of generalized el-
liptic curves over such fields: such a curve must be isomorphic to y2 = x3, whose formal
group law is Ga. �

Proof of (21.3). Our proof breaks up into cases, depending on the prime. In each case we
pass to a universal example of a generalized elliptic curve (at the given prime), and prove
the statement of the proposition for it. There really ought to be a better proof than this, but
I can’t find one.

Case p = 2: Every Weierstrass equation arises from the universal one over R =
Z[a1, . . . , a6] by base change. Since v1 = a1 and v2 = a3, we have R/(2, v1, v2) ≈
F2[a2, a4, a6], which is an integral domain, and so the proposition follows from the lemma.

Case p = 3: After localizing at 3 every Weierstrass equation is isomorphic to one in-
duced by base change from R = Z(3)[b2, b4, b6]. Since v1 = b2 and v2 = b2

4 we have
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R/(3, v1, v2) ≈ F3[b4, b6]/(b2
4). Now vn is a homogeneous element in this ring: if we grade

by |bn| = 2n then |vn| = 2(3n − 1). A straightforward calculation shows that R/(3, v1, v2)
is concentrated in degrees ≡ 0, 8 mod 12, while |vn| = 2(3n − 1) ≡ 4 mod 12, and thus
vn = 0 in R/(3, v1, v2).

Case p ≥ 5: After localizing at p ≥ 5 every Weierstrass equation is isomorphic to one
induced by base change from R = Z(p)[c4, c6]. Again, vn is a homogeneous element of
degree 2(pn − 1), assuming |cn| = 2n. One uses the fact that the ideal (v1, v2) ⊂ Fp[c4, c6]
is generated by a regular sequence. Then some calculations with poincaré series show that
Fp[c4, c6]/(v1, v2) vanishes in degrees greater that 2(p2 + p − 12), which is certainly less
that 2(pn − 1) for n ≥ 3. �

Now we verify the hypothesis (2) of the lemma for each prime, using a choice of coordi-
nate for the formal group of the elliptic curve.

Case p = 2: Since v1 = a1 and v2 = a3, it is clear that 2, v1, v2 is a regular sequence in
MU∗tmf.

Case p = 3: We have that v1 = b2 and v2 = 2b2
4, so that (3, v1, v2) is a regular sequence

in Z(3)[b2, b4, b6]. Now bi ≡ ±ai modulo 3 and decomposables for i = 2, 4, 6, and hence
(3, v1, v2) is a regular sequence in MU∗tmf.

Case p ≥ 5: We need to use the fact that p, v1, v2 is a regular sequence in Z(p)[c4, c6]. Now
ci ≡ ai up to scalar and modulo p and decomposables for i = 4, 6, and hence (p, v1, v2) is a
regular sequence in MU∗tmf.

Theorem 21.5. The mod p ordinary homology of tmf is an commutive ring in the category of
comodules over the dual steenrod algebra A∗. It is described by

(1) H∗(tmf;F2) ≈ B∗, where

B∗ ≈ F2[ζ8
1,ζ

4
2,ζ

2
3,ζn, n ≥ 4] ⊂ A∗,

where ζn ∈ A2n−1 denotes the antipode of the usual generator ζn.
(2) H∗(tmf;F3) ≈ F3[b4]/(b2

4)⊗B∗, where

B∗ ≈ F3[ξ3
1,ξn, n ≥ 2]⊗ E(τn, n ≥ 3) ⊂ A∗.

There is a non-trivial extension

0→ Σ8B∗ → H∗(tmf;F3)→ B∗ → 0

of comodules.
(3) H∗(tmf;Fp) ≈ Fp[c4, c6]/(v1, v2)⊗B∗ for p ≥ 5, where

B∗ ≈ Fp[ξn, n ≥ 1]⊗ E(τn, n ≥ 3) ⊂ A∗.
As a comodule H∗(tmf;Fp) has an associated graded which is isomorphic to a sum of sus-
pensions of B∗.

Proof. We apply the lemma in each of the three cases, and we calculate the map induced by
tmf→ HFp on the level of E2-terms. Thus we need to consider the sequence

MU∗
f−→ MU∗tmf

g−→ MU∗HFp,

or its BP-analogue. Note that the composite g f is exactly the map described in (21.2).
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Case p = 2: First we compute g (modulo 2), using the calculations of the previous section:

a1, a3 7→ 0, a2 7→ t2, a4 7→ t4
1 + t2

2, a6 7→ t2
3 + t4

1t2 + t2
1t2

2 + t3
2

and
en 7→ tn + (decomposables).

In particular, the kernel of g is the ideal (2, a1, a3). Therefore, if we pass to the quotient by
(2, v1, v2):

MU∗/(2, v1, v2)
f−→ MU∗tmf/(2, a1, a3)

g−→ MU∗HF2

we see that g is a monomorphism. Therefore BP∗tmf/(p, v1, v2) → BP∗HF2 is also a
monomorphism, and hence using the lemma and comparison of spectral sequences we
see that H∗(tmf;F2)→ A∗ is a monomorpism.

The image of MU∗tmf → MU∗HF2 → H∗HF2 is F2[ξ4
1,ξ

2
2,ξ j, j ≥ 3], since t2 j−1 7→ ξ j

while tn 7→ 0 if n 6= 2 j − 1, and also a4 7→ ξ
4
1 and a6 7→ ξ

2
2.

Case p = 3: We compute g modulo 3:

a1 7→ t1, a2 7→ 2t2
1, a3 7→ t3

1 + t1t2 + t3,

a4 7→ t4
1 + t2

1t2 + t1t3, a6 7→ t4
1t2 + 2t2

1t2
2 + 2t3

2 + 2t2
3 + t3

1t3,
while

en 7→ tn + (decomposables).
This implies that

b2, b4 7→ 0, b6 7→ t6
1 + 2t3

2,
where b2i = b2i(a). In particular, the kernel of g is (3, b2, b4). Passing to quotients

MU∗/(3, v1, v2)
f−→ MU∗tmf/(3, b2, b2

4)
g−→ MU∗HF3.

The map MU∗tmf/(3, b2, b4)→ MU∗HF3 is thus injective, and hence so is

BP∗tmf/(3, b2, b4)→ BP∗HF3 ≈ F3[ξ j, j ≥ 1].

Thus one computes that that the image is B∗.
Case p ≥ 5: One checks that g sends

a1 7→ −2t1 + (decomposables), a2 7→ −3t2 + (decomposables),

a3 7→ −2t3 + (decomposables), en 7→ tn + (decomposables), n ≥ 4.
This implies that MU∗tmf → MU∗HFp is surjective, and thus implies the image of
H∗tmf→ H∗HFp. We have that g sends c4, c6 7→ 0, and so the kernel of g is (p, c4, c6). �
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