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Abstract

The aim of this paper is two-fold. First, we compare two notions of a “space” of
algebra structures over an operad A:

1. the classification space, which is the nerve of the category of weak equiva-
lences of A-algebras, and

2. the moduli space A{X}, which is the space of maps from A to the endomor-
phism operad of an object X.

We show that under certain hypotheses the moduli space of A-algebra structures on
X is the homotopy fiber of a map between classification spaces.

Second, we address the problem of computing the homotopy type of the moduli
space A{X}. Because this is a mapping space, there is a spectral sequence computing
its homotopy groups with E2-term described by the Quillen cohomology of the
operad A in coefficients which depend on X. We show that this Quillen cohomology
is essentially the same, up to a dimension shift, as the Hochschild cohomology of
A, and that the Hochschild cohomology may be computed using a “bar construction”.
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Chapter 1

Introduction and statement of
results

1.1 Introduction

1.1.1 Operads

Operads and algebras over operads may be viewed as generalizations of the familiar
concepts of rings and modules. Thus, let A denote the category of abelian groups,
and let ⊗ denote tensor product of abelian groups. Any abelian group A induces a
functor A⊗− : A→ A sending an abelian groupX to A⊗X. We see that composition
of such functors A ⊗ − and B ⊗ − corresponds to tensoring with the abelian group
A⊗B. An associative ring A is simply a monoid-object with respect to this tensor
product. An A-module is an algebra over the induced triple A⊗− on A.

We can proceed in an analogous fashion when we replace A with a category of
Σ-objects. Let (C,⊗) be a symmetric monoidal category, such as (S,×), the category
of of simplicial sets with monoidal product given by cartesian product, or (MR,⊗R),
the category of simplicial R-modules with monoidal product given by tensor product
over R. A Σ-object on C is essentially a collection of objects {A[n] ∈ C} where
each A[n] is equipped with an action of the symmetric group Σn; we let ΣC denote
the category of Σ-objects on C. Each Σ-object A induces a functor A(−) : C → C
defined by the formula

A(X) ≃
⨿
n≥0

A[n]⊗Σn X
⊗n.

There is a Σ-object I which induces the identity functor on C.
It turns out that for A,B ∈ ΣC the composite functor A(B(−)) : C→ C is itself

induced by a Σ-object, which we denote by A◦B. The operation −◦− : ΣC×ΣC→
ΣC makes ΣC into a (non-symmetric) monoidal category with unit I.

An operad A on C, is an object of ΣC equipped with maps A ◦ A → A and
I → A making the appropriate associativity and unit diagrams commute; i.e., an
operad is simply a “monoid” in ΣC. The category of operads on C is denoted by
operC. Thus any operad A induces a corresponding triple (also called a monad) on
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C.
An A-algebra is an object X ∈ C equipped with a map A(X)→ X making the

appropriate associativity and unit diagrams commute; equivalently, an A-algebra is
an algebra over the triple A(−). We refer to such a map A(X)→ X as an A-algebra
structure on X. The category of A-algebras is denoted by CA.

1.1.2 Classifying objects for the category of algebras

The introduction of the concept of operads allows us to note that the structure of
the category of A-algebras can be recovered entirely in terms of the operad A. We
illustrate this first with the example of rings and modules. Given an abelian group
M , the group EndM = homA(M,M) is naturally a ring, and given a ring R there is
a natural bijective correspondence

{R-module structures on M} ←→ {ring maps R→ EndM}.

Likewise, given R-modules M and N , the set of abelian group homomorphisms
homA(M,N) has a natural structure as an R-bimodule, and there is a natural bi-
jective correspondence

{R-module maps M → N} ←→ {R-bimodule maps R→ homA(M,N)}.

These observations have analogies when we replace A with a category of Σ-objects.
Let C be a symmetric monoidal category as before. Given an object X ∈ C, there
is an endomorphism operad EX defined by EX [n] = mapC(X

⊗n, X). It has the
property that there is a natural bijective correspondence

{A-algebra structures on X} ←→ {operad maps A→ EX},

(see 2.1.11 and 2.2.13).
Likewise, given two A algebras X,Y there is a Σ-object Hom(X,Y ) defined by

Hom(X,Y )[n] = mapC(X
⊗n, Y ). The A-algebra structures on X and Y induce on

Hom(X,Y ) the structure of an A-biobject; i.e., there are maps A ◦ Hom(X,Y ) →
Hom(X,Y ) and Hom(X,Y ) ◦ A → Hom(X,Y ) satisfying obvious properties. It has
the property that there is a natural bijective correspondence

{A-algebra maps X → Y } ←→ {A-biobject maps A→ Hom(X,Y )}

(see 2.1.19 and 2.2.15).
The above shows that the category of A-algebras can be understood by looking at

appropriate maps from A into certain “classifying objects”; in particular, we can get
derived functors of these by resolving the operad A. In the case of maps of operads
A → EX , the relevant derived functor is the moduli space of A-algebra structures on
X.
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1.1.3 Moduli space of algebra structures

LetC denote either S, the category of simplicial sets, orMR, the category of simplicial
R-modules. These are categories “enriched over simplicial sets”; in particular, for any
pair of objects X,Y ∈ C there is a simplicial set mapC(X,Y ) having as 0-simplices
the maps X → Y (see 2.3.19). Thus given an operad A over C we may consider the
simplicial set of maps

A{X} = mapC(A, EX).

We call this space the moduli space of A-algebra structures.

1.1.4 Classification space

This is another kind of “moduli space” defined entirely in terms of a category C along
with a subcategory of weak equivalences.

Let C be a category, and let wC ⊂ C denote a subcategory containing all the
objects of C, the maps of which we will call “weak equivalences”. One defines the
classification space (1.2.4) to be the simplicial nerve of wC. The classification space
may be viewed as a “moduli space of objects of C”; in particular, the components of
wC are in one-to-one correspondence with weak equivalence classes of objects in C.
If C is in fact a simplicial closed model category (see 3.1.1), then the component of
wC which contains an object X ∈ C has the homotopy type of the classifying space
of the monoid of self-equivalences of X (see Proposition 1.2.6).

Clearly, if π : C → D is a functor between such categories which preserves all
weak equivalences, then there is an induced map wC→ wD of classification spaces.

We will introduce simplicial model category structures on the categories of A-
algebras and the category of operads over simplicial sets or simplicial R-modules,
allowing us to state and prove the following theorem.

1.1.5. Theorem. Let C denote the category S or the category MR. Let A be a
cofibrant operad, and let X be a fibrant and cofibrant object of C. Then the moduli
space A{X} is naturally weakly equivalent to the homotopy fiber over X of the map
of classification spaces N(wCA)→ N(wC).

This result is discussed in more detail in Section 1.2.

1.1.6 Quillen cohomology of operads

Recall that the moduli space A{X} of algebra structures is a space of maps between
operads. If A is a cofibrant operad and X ∈ C is a fibrant and cofibrant object
(whence EX is a fibrant operad), and f : A → EX is a given map, then there is a
second quadrant spectral sequence of the form

Est
2 ≃ Hs

oper

(
A, πt(EX ; f)

)
⇒ πt−s(A{X}; f),

where Hs
oper(A,U) denotes the Quillen cohomology of the operad A with coef-

ficients in an abelian group object U over A, and πt(EX ; f) is the abelian group
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object whose fiber over a point a ∈ A[n] is given by

πt(EX ; f)a ≃ πt
(
mapC(X

n, X); f(a)
)
.

An instance of this kind of spectral sequence is described by Robinson [16].
Quillen cohomology of an operad A is defined by resolving A by a cofibrant operad.

Such cofibrant resolutions of operads are difficult to compute with, and so it is useful
to have another description of Quillen cohomology.

1.1.7 Hochschild cohomology of operads

Because operads are “monoids” in the monoidal category ΣC, we define an A-
biobject to be a Σ-object M with a two-sided action by the monoid A. We may
consider the Quillen cohomology of an A-biobject M . A special example of an
A-biobject is A itself. Thus we may define Hochs(A,K), the Hochschild cohomol-
ogy of an operad A with coefficients in an abelian group object U over A, to be
Hs
Abiobj(A,U), the Quillen cohomology of A as an A-biobject.

1.1.8. Theorem. Let C denote the category MR (and hopefully the category S). Let
A ∈ operC be an operad with cofibrant underlying Σ-object, and let U be an abelian
group object over A. Then there is a natural exact sequence

0→ Hoch0(A,U)→ Hoch0(I, η∗U)→ H0
oper(A,U)→ Hoch1(A,U)→ 0

and for n ≥ 1 natural isomorphisms

Hochn+1(A,U) ≃ Hn
oper(A,U).

(Here I denotes the trivial operad, and η∗U is the pull-back of the coefficient system
U along the unit map η : I → A.)

Furthermore, the cohomology of a Σ-cofibrant operad may be computed using
a “bar complex”; the bar complex B(A,A,A) of an operad A is a simplicial object
whose n-th degree term is the A-biobject A◦(n+2); see 3.7.1. (This is not the same as
the Ginzburg-Kapranov bar complex of an operad of [8].)

Finally, we note that the argument which proves Theorem 1.1.8 is largely formal.
We call a monoidal category M right-closed (2.1.9) if the monoidal product − ◦ −
has a “right adjoint on one side”; i.e., if for each A ∈M the functor B 7→ B ◦ A has
a right adjoint. Given a monoid A in M and mild conditions on the category M, we
will show (Proposition 5.2.14) that there is a short exact sequence of abelian group
objects

0→ D(A)→ Ab(A ◦ A)→ Ab(A)→ 0,

where D(A) denotes the “abelianization” of the operad A and Ab(M) denotes the
“abelianization” of an A-biobject M . This short exact sequence is a key step in the
proof of Theorem 1.1.8.
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1.1.9 Notation

We will use S to denote the category of simplicial sets, and will use MR to denote the
category of simplicial modules over a commutative ring R.

For a category C and objects X,Y ∈ C we write C[X,Y ] to denote the set of
maps from X to Y in C.

Given categories C, D, we write CD for the category of functors D→ C.
Given a functor X : D → C from a small category D we write colimDX for the

colimit of this functor. If D = G is a group, we write XG ∈ C for the limit and
XG ∈ C for the colimit.

Given a functor π : D → C and an object X ∈ C we let (π ↓ X) denote the
over category, having as objects pairs (Y ∈ D, f : πY → X ∈ C) and as maps
(Y, f) → (Y ′, f ′) morphisms g : Y → Y ′ ∈ D such that f ′g = f . If C = D and
π = 1C we write (C ↓ X).

1.1.10 Looking ahead

In this paper we consider only operads acting on simplicial sets or on simplicial
modules. It is desirable to extend this theory to a category of spectra; however, it
seems some care is needed in order to carry this out. For example, the category of
operads on a universe, as described by Lewis-May-Steinberger [11], does not admit an
action by a category of Σ-objects; rather, it is Σ-objects over a certain fixed operad
which act on these spectra. Once these differences are worked out, the theory proceeds
similarly.

1.1.11 Organization of the paper

In Section 1.2 we describe Theorem 1.1.5 and some of its consequences. In Section 1.3
we do the same for Theorem 1.1.8.

In Sections 2.1 through 2.4 we establish the categories in which we work. In
Section 2.1 we define the notion of a right-closed monoidal category. In Section 2.2
we define the notion of an operad, along with the related notions of algebras over an
operad, Σ-objects, and biobjects over an operad; we also define certain enriched hom-
objects. In Section 2.3 we show that various categories are complete and cocomplete.
In Section 2.4 we discuss monoidal functors.

In Sections 3.1 through 3.7 we study the homotopy theory of the categories in
question. In Section 3.1 we recall the notion of a closed model category. In Sections 3.2
and 3.3 we show that in the contexts of simplicial sets or simplicial modules, all
of these categories can be given the structure of a Quillen simplicial closed model
category. In Section 3.4 we show that monoidal structures and enriched hom-objects
are compatible with the closed model category structures as best they can be. In
Section 3.5 we examine when objects such as operads or A-algebras are cofibrant in
some underlying category. In Section 3.6 we show that weakly equivalent operads
which are cofibrant in an underlying category generate categories of algebras with
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equivalent homotopy theories. In Section 3.7 we show that the “standard resolutions”
of an A-algebra, or of A as an A-biobject, are cofibrant.

In Sections 4.1 and 4.2 we describe the relationship between the moduli space of
algebra structures and classification spaces. In Section 4.1 we define the moduli space
of algebra structures of a diagram, and in Section 4.2 we prove Theorem 1.1.5.

In Sections 5.1 through 5.4 we define and compare two notions of cohomology of
operads. In Section 5.1 we describe categories of abelian group objects and show that
the relevant abelianization functors exist. In Section 5.2 we demonstrate an exact
sequence relating the abelianizations of operads and biobjects. In Section 5.3 we
show that these categories of abelian group objects admit a Quillen simplicial closed
model category structure. In Section 5.4 we use the results of the previous sections
to prove the equivalence of Quillen and Hochschild cohomologies of operads.

In Appendix A we discuss the construction of the free operad.

1.2 Moduli spaces of algebra structures

In this section we define for each simplicial set X and each operad A over simplicial
sets a structure space. We then state a theorem relating this structure space, under
certain hypotheses, to the classification spaces of the categories of simplicial sets
and of A-algebras. We then state analogous results concerning operads over simplicial
R-modules.

1.2.1 Operads over simplicial sets and their algebras

The category S of simplicial sets is a symmetric monoidal category via cartesian
product (2.2.1). As described in Section 2.2, we can therefore define in S the notion
of an operad. In brief, an operad over S is a collection of simplicial sets {A[n]} such
that A[n] is equipped with a Σn-action, and such that certain other structure maps
are present which make the functor

X 7→ A(X) =
⨿
n=0

A[n]×Σn X
n

into a triple on S (for the full definition, see 2.2.9). Any operad over S thus determines
a category of algebras (2.2.13), denoted by SA.

Each such category SA will be given the structure of a Quillen closed model cate-
gory, in which the weak equivalences are maps f : X → Y of algebras which are weak
equivalences on the underlying simplicial sets (3.2.4). Thus we obtain a homotopy
category Ho SA of A-algebras by formally inverting the weak equivalences.

Any map of operads f : A→ B determines a pair of adjoint functors

f∗ : S
A � SB : f ∗

where the right adjoint forgets structure, but preserves the underlying simplicial set
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(2.3.10). These functors induce by Corollary 3.6.3 a pair of adjoint functors

Ho SA � Ho SB

between the corresponding homotopy categories.
It seems appropriate to define a notion of weak equivalence of operads for which

weakly equivalent operads would have equivalent homotopy categories of algebras.
Thus we say a map of operads f : A→ B is a weak equivalence if for each n ≥ 0 the
geometric realization |f [n]| : |A[n]| → |B[n]| is a Σn-equivariant homotopy equivalence
(i.e., there is a Σn-equivariant map g : |B[n]| → |A[n]| and Σn-equivariant homotopies
|f [n]|g ∼ 1 and g|f [n]| ∼ 1.) Then we obtain the following.

1.2.2. Proposition. A weak equivalence A→ B of operads over S induces an equiv-
alence Ho SA ≃ Ho SB.

Proof. This follows from Corollary 3.6.5 using Proposition 3.5.1.

1.2.3 The structure space

The category of operads on S is enriched over simplicial sets; thus, for any A,B ∈
operS there is a simplicial set mapoperS(A,B), in which the 0-simplices correspond to
the usual maps from A to B.

The set of A-algebra structures on a simplicial set X is in bijective correspondence
with the set of operad maps A → EX , where EX denotes the endomorphism operad
of X. Thus we define the moduli space of algebra structures by

A{X} = mapoperS(A, EX).

Note that this construction defines a functor operSop → S sending A 7→ A{X}; note
that A{X} is not a functor of X.

We note that an n-simplex of A{X} corresponds precisely to a map of operads
∆[n]⊗ A → EX , where K ⊗ A is the “tensor product” of a simplicial set K with an
operad A (see 2.3.19), and ∆[n] is the standard n-simplex. The map ∆[n] → ∆[0]
of simplicial sets is a simplicial homotopy equivalence, and it follows that the map
∆[n]⊗ A→ ∆[0]⊗ A ≃ A is a weak equivalence of operads.

1.2.4 The classification space

Let C be a simplicial model category (3.1.1). Both S and SA are simplicial model
categories, by Propositions 3.1.7 and 3.2.5. Let wC ⊂ C denote the subcategory con-
sisting of all objects and all weak-equivalences between them. We call the simplicial
nerve of wC the classification space of C. By abuse of notation we will write wC
for its simplicial nerve; a t-simplex in (wC)t is a chain of t composable maps.

1.2.5. Remark. Note that since C is not a small category, wC is not a simplicial set,
but merely a simplicial class. We take the position that C is a category defined in
some Grothendieck universe of sets (see [10]) U , and that we can regard wC as a
simplicial set in some higher universe U ′.
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Dwyer-Kan prove the following results:

1.2.6. Proposition. [3, 4.6], [4, 2.3]. Given C as above we have that:

1. The components of wC are in one-to-one correspondence with the weak equiva-
lence classes of objects in C.

2. Each component of wC is homotopically small; i.e., has the homotopy type
of a small simplicial set.

3. If X ∈ C is a fibrant and cofibrant object, then the component of wC contain-
ing X has the weak homotopy type of the classifying space B haut(X) of the
simplicial monoid haut(X) ⊆ mapC(X,X) of self-homotopy equivalences of X.

More succinctly, we may write

wC ≃
⨿

ho. types [X]

B hautC(X).

If π : C → D is a functor which preserves weak equivalences, then it induces a map
wπ : wC→ wD of classification spaces. If π is part of a Quillen equivalence, then the
induced map wπ is a weak equivalence. Thus, we have the following:

1.2.7. Proposition. If f : A → B is a map of operads, there is an induced map
wSB → wSA of classification spaces; furthermore, if f is a weak equivalence of oper-
ads, then the induced map on classification spaces is one as well.

1.2.8 Comparison between structure space and classification
space

We can relate A{X} and wSA as follows. Let wS∆[−]⊗A denote the bisimplicial set
having (wS∆[t]⊗A)s as its (s, t)-simplices. There are maps wSA → wS∆[t]⊗A induced

by the map ∆[t] ⊗ A → ∆[0] ⊗ A ≃ A of operads, and maps A{X} → (wS∆[−]⊗A)0
which send an n-simplex of of A{X}, considered as a map f : ∆[t]⊗A→ EX , to the
corresponding object (X, f) in S∆[t]⊗A.

Thus we obtain a diagram of simplicial sets

A{X}

��

//i
diag(wS∆[−]⊗A)

��
j

wSAoo k
∼

��
π

pt ≃ {X} // wS wS ,

where k is a weak equivalence by Proposition 1.2.7. Furthermore, i is exactly inclusion
of the fiber of j over the vertex in wS corresponding to the object X.

Since k is a weak equivalence the top row gives a map A{X} → wSA in the
homotopy category of simplicial sets.
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1.2.9 Main theorem

To state our theorem, we need another definition. An operad A over S is said to
be cofibrant if it is a retract of one for which there exists a collection St ⊆ At
of Σ-objects over sets which are closed under degeneracy maps, and isomorphisms
FSt

∼−→ At, where FSt denotes the free operad on St (see 2.3.6).

1.2.10. Theorem. Let A ∈ operS be a cofibrant operad over S, and let X ∈ S be a
Kan complex. Then the square

A{X}

��

// wSA

��
pt // wS

is a homotopy pull-back square of simplicial sets.

1.2.11. Remark. 1. By Proposition 1.2.6, if we restrict the maps in this fiber square
to the component of wS containing X, we obtain a homotopy pull-back square

A{X} //

��

⨿
[Y ],πY≃X

B hautSA(X)

��
pt // B hautS(X),

where the coproduct in the upper-right corner is indexed over representatives
of weak-equivalence-types of A-algebras whose underlying simplicial sets are
weakly equivalent to X. We can think of this square as defining a hautS(X)-
action on A{X} up to homotopy, and we can think of

⨿
B hautSA(X) as the

homotopy quotient by this action.

2. By Proposition 3.2.11 operads over S are a closed model category having cofi-
brant objects as above, and weak equivalences as described in 1.2.1. Thus for
any A ∈ operS there exists a weak equivalence B → A ∈ operS from a cofibrant
operad, whence Ho SB ≃ Ho SA. Thus, even if A is not cofibrant, there is a
homotopy pull-back square

B{X} //

��

wSA

��
pt // wS .

There is a “relative” version of Theorem 1.2.10:

1.2.12. Corollary. Let A→ B ∈ operS be a map between cofibrant of operads over
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S, and let X ∈ S be a Kan complex. Then the square

B{X} //

��

wSB

��
A{X} // wSA

is a homotopy pull-back square in the homotopy category of simplicial sets.

1.2.13 Corresponding results over simplicial R-modules

Let R be a commutative ring, and letMR denote the category of simplicial R-modules.
As before, we can define the category of operads over MR, denoted by operMR, and
their categories of algebras, denoted by MR

A for A ∈ operMR. We can obtain similar
results in this setting, but we need to be more careful.

We say an A-algebra X over MR is MR-cofibrant if the underlying simplicial
R-module of X is projective in each dimension. We say an operad A over MR is
Σ-cofibrant if in each degree A[n] is a retract of some RS, a free R-module on a
Σn-set S. Clearly, if R is a field, then every A-algebra is MR-cofibrant, and if R is a
field of characteristic zero, then every operad A is Σ-cofibrant.

The statements of Sections 1.2.1, 1.2.3, 1.2.8, and 1.2.9 hold with S replaced by
MR, with the following exceptions:

We say that a map A→ B ∈ operMR is a weak equivalence if for each subgroup
H ⊆ Σn the map of fixed point sets A[n]H → B[n]H is a weak equivalence of simplicial
sets. Then we obtain

1.2.14. Proposition. A weak equivalence A → B ∈ operMR of operads over MR

which are Σ-cofibrant induces an equivalence HoMR
A ≃ HoMR

B.

Proof. This follows from Corollary 3.6.5 when we take C = MR.

Thus the corresponding statement of the main theorem is

1.2.15. Theorem. Let A ∈ operMR be a cofibrant operad over MR, and let X ∈MR

be a degree-wise projective object. Then the square

A{X}

��

// wSA

��
pt // wS

is a homotopy pull-back square in the homotopy category of simplicial sets.

1.3 Cohomology of operads

In this section we define the notions of Quillen cohomology of operads and Hochschild
cohomology of operads in the category of simplicial R-modules. We then state a
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theorem which states that, under mild hypotheses, these cohomology theories are
essentially the same up to a dimension shift.

1.3.1 Coefficient systems

Let A be an operad in the category of R-modules. A coefficient system over A is
an abelian group object in the category of operads over A. Such an object consists
of maps of operads π : B → A, 0 : A → B, − : B → B and +: B ×A B → B
satisfying an obvious set of relations. In particular π0 = 1A, whence B has the form
B[n] = A[n]⊕ U [n] for some Σ-object U ; this U is a square-zero ideal of the operad
B. We shall use the symbol U to denote the coefficient system.

Given such a coefficient system U , the t-th Eilenberg-MacLane object K(U, t)
is an operad in the category of simplicial R-modules whose n-th space is defined by

K(U, t)[n] = A[n]⊕ W̄ tU [n],

where W̄ is the construction of Eilenberg-Mac Lane (see [12, IV]).
More generally, if A is an operad in the category of simplicial R-modules, then

given a coefficient system U over π0(A) we obtain Eilenberg-MacLane objects K(U, t)
over A by pulling back.

1.3.2 Quillen cohomology of operads

The t-th Quillen cohomology group H t
oper(A,U) of an operad A with coefficients

in a coefficient system is defined to be the abelian group of maps A→ K(U, t) in the
homotopy category Ho (operMR ↓ A) of operads over A. This is just a special case of
the general formulation of Quillen [13].

1.3.3 Biobjects and a bar complex

Recall that an operad in MR is a monoid in the monoidal category ΣMR (2.2.2). A
biobject M of A is a Σ-object equipped with a two-sided action by A (2.2.15). A
map of operads f : A→ B gives B the structure of an A-biobject. Thus in particular,
A is itself an A-biobject, and furthermore via the “zero-section” A → K(U, t) every
Eilenberg-MacLane object becomes an A-biobject.

The bar complex B(A,A,A) of an operad A is a simplicial object in the category
of A-biobjects, with

B(A,A,A)n = A◦n.

The simplicial structure maps are the obvious ones induced by the unit I → A and
multiplication A ◦ A→ A maps.

1.3.4 Quillen cohomology of biobjects

Let A be an operad in MR. The t-th Quillen cohomology group H t
A-biobj(M,U)

of an A-biobject M with coefficients in U is defined to be the abelian group of
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maps M → K(U, t) in the homotopy category Ho (A-biobjMR ↓M) of A-biobjects
over M . Here K(U, t) is an Eilenberg-MacLane object, i.e., an A-biobject in the
category of simplicial R-modules whose n-th space is defined by

K(U, t)[n] =M [n]⊕ W̄ tU [n],

where W̄ is the construction of Eilenberg-Mac Lane (see [12, IV]).

1.3.5 Hochschild cohomology of operads

Let A be an operad, and U a coefficient system over A as in 1.3.1. As noted in
1.3.3, A has the structure of an A-bimodule, as do the Eilenberg-MacLane objects
K(U, t). Thus we define the t-th Hochschild cohomology group Hocht(A,U) of
an operad A with coefficients in U by

Hocht(A,U) = H t
A-biobj(A,U).

If A is a Σ-cofibrant operad, then its Hochschild cohomology can be computed by
means of a bar construction.

1.3.6. Proposition. Let A be a Σ-cofibrant operad over MR. Then

Hocht(A,U) ≃ H t
(
A-biobjMR(A

◦∗+2, A⊕ U), ∂
)
,

the cohomology of a cochain complex with differential

∂ : A-biobjMR(A
◦s, A⊕ U)→ A-biobjMR(A

◦s+1, A⊕ U)

induced by the alternating sum of the face maps of B(A,A,A).

Proof. This is an immediate consequence of the definition of Hochschild cohomology
and Proposition 5.4.3.

1.3.7 Equivalence of Quillen and Hochschild cohomology

We will prove the following theorem in Section 1.3.

1.3.8. Theorem. Let A be an operad in the category of R-modules which is Σ-
cofibrant. Let U be a coefficient system on A. Then there are natural isomorphisms

Hocht+1(A,U) ≃ H t
oper(A,U)

for t ≥ 1, and a natural exact sequence

0→ Hoch0(A,U)→ U [1]→ H0
oper(A,U)→ Hoch1(A,U)→ 0.
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Chapter 2

Operads and related categories

2.1 Monoidal categories

In this section we discuss the notion of a right-closed monoidal category, and the
related notion of a right-closed action. These notions provide a convenient language
for our discussion of Σ-objects and operads in Sections 2.2 and 2.3.

2.1.1 Monoidal categories

A monoidal category M, as defined in [10, VII], is a category equipped with func-
tors

η : 1→M

and
µ : M×M→M

along with natural isomorphisms

a : µ(1M × µ)
∼−→ µ(µ× 1M) : M×M×M→M,

ℓ : µ(η × 1M)
∼−→ 1M : M = 1×M→M,

and
r : µ(1M × η)

∼−→ 1M : M = M× 1→M,

such that the following diagrams commute,

µ
(
1× µ(1× µ)

)
//µ(1×a)

vv

a(1×1×µ)

nnn
nnn

nnn
nnn

µ
(
1× µ(µ× 1)

)

��

a(1×µ×1)µ(µ× µ)

((a(µ×1×1) PPP
PPP

PPP
PPP

µ
(
µ(µ× 1)× 1

)
µ
(
µ(1× µ)× 1

)
,oo

µ(a×1)
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µ
(
1× µ(η × 1)

)
//a(1×η×1)

&&
µ(1×ℓ)

MMM
MMM

MMM
MMM

µ
(
µ(1× η)× 1

)
xx

µ(r×1)
qqq

qqq
qqq

qqq

µ ,

and such that
ℓη = rη : 1 = 1× 1→M.

We will generally write I ∈ M for the object which is the image of the functor η,
and will write A ◦ B for µ(A,B). We usually suppress mention of the structural
isomorphisms a, ℓ, and r; thus we write A ◦B ◦C for the object naturally isomorphic
to A ◦ (B ◦ C).

2.1.2 Actions by monoidal categories

An action of a monoidal category M on a category C is a functor

ψ : M×C→ C

along with natural isomorphisms

b : ψ(µ× 1C)
∼−→ ψ(1M × ψ) : M×M×C→ C

and
u : ψ(η × 1C)

∼−→ 1C : C = 1×C→ C

making the following diagrams commute:

ψ
(
1× ψ(1× ψ)

)
//µ(1×b)

vv

b(1×1×ψ)

mmm
mmm

mmm
mmm

ψ
(
1× ψ(µ× 1)

)

��

b(1×µ×1)ψ(µ× ψ)

((b(µ×1×1) QQQ
QQQ

QQQ
QQQ

ψ
(
µ(µ× 1)× 1

)
ψ
(
µ(1× µ)× 1

)
,oo

ψ(a×1)

ψ
(
1× ψ(η × 1)

)
//b(1×η×1)

&&
ψ(1×u)

MMM
MMM

MMM
MMM

ψ
(
µ(1× η)× 1

)
xx

ψ(r×1)
qqq

qqq
qqq

qqq

ψ .

We will generally write A ◦ (X) or even A(X) for ψ(A,X). We usually suppress
mention of the structure isomorphisms b and u; thus we write A ◦B ◦ (X) or AB(X)
for the object naturally isomorphic to A ◦

(
B ◦ (X)

)
.

2.1.3. Example. Let C be a category, and let M = CC the category of endofunctors
on C. Then M is a monoidal category under composition of functors, and there is an
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action of M on C induced by evaluation of functors. In particular, given A : C→ C
and X ∈ C, we see that A ◦X is just evaluation of the functor A at X.

2.1.4. Remark. It is not hard to show that an action of M on C is equivalent to
giving a monoidal functor (see Section 2.4) M→ CC where CC denotes the category
of functors from C to C.

2.1.5 Right-closed action

A right-closed action of a monoidal category M on a category C is an action such
that for each X ∈ C the functor −◦X : M→ C has a right adjoint Hom(X,−) : C→
M. These right adjoints fit together to give a functor

Hom(−,−) : Cop ×C→M

inducing for X,Y ∈ C and A ∈M a natural isomorphism

C[A ◦X,Y ] ≃M[A,Hom(X,Y )].(2.1.6)

Furthermore, for X,Y, Z ∈ C there is a natural “unit” map

I → Hom(X,X)

which is adjoint to the identity on X, and a natural “composition” map

Hom(Y, Z) ◦ Hom(X,Y )→ Hom(X,Z)

which is induced by “evaluation” maps Hom(X,Y )◦X → Y and Hom(Y, Z)◦Y → Z
which are adjoint to the identity on Hom(X,Y ) and Hom(Y, Z) respectively.

2.1.7. Proposition. Given a right-closed action of M on C and an object X ∈ C,
the functor − ◦ X : M → C preserves colimits whenever they exist, and the functor
Hom(X,−) : C→M preserves limits whenever they exist.

Proof. Straightforward.

2.1.8. Remark. Note, however, that for X ∈ C the functor X ◦ − need not preserve
colimits, and the functor Hom(−, X) need not take colimits to limits.

2.1.9 Right-closed monoidal categories

A right-closed monoidal category is a monoidal category M such that the action
of M on itself induced by the monoidal structure is right-closed. This means that
there is a functor

F(−,−) : Mop ×M→M

inducing for A,B,C ∈M a natural isomorphism

M[A ◦B,C] ≃M[A,F(B,C)].
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2.1.10. Remark. There are corresponding notions of left-closed actions and left-
closed monoidal categories.

2.1.11 Monoids and algebras

Amonoid in a monoidal categoryM is an object A ∈M along with maps µ : A◦A→
A ∈M and η : I → A ∈M making the following diagrams commute.

A ◦ A ◦ A //µ◦1

��
1◦µ

A ◦ A

��
µ

I ◦ A

JJ
JJ

JJ
JJ

JJ

JJ
JJ

JJ
JJ

JJ
//η◦1
A ◦ A

��
µ

A ◦ I

tt
tt
tt
tt
tt

tt
tt
tt
tt
tt

oo 1◦η

A ◦ A //µ
A A .

Let monM denote the category of monoids in M.
Suppose M acts on C. Then an algebra over the monoid A is an object X ∈ C

equipped with a map ψ : A ◦X → X ∈ C making the following diagrams commute.

A ◦ A ◦X //µ◦1

��
1◦ψ

A ◦X

��
ψ

I ◦Xoo η◦1

ttt
ttt

ttt
t

ttt
ttt

ttt
t

A ◦X //ψ
X .

Such a map ψ is called an A-algebra structure on X. The category of A-algebras
is denoted by CA. We can characterize the set of A-algebra structures on X as the
equalizer of the pair of maps

C[A(X), X] ⇒ C[A2(X), X]×C[X,X](2.1.12)

where the top map takes ψ : A(X) → X to the pair (ψµ, ψη) and the bottom map
takes ψ to the pair (ψA(ψ), 1X).

Now suppose that the action of M on C is right-closed. Then for any object
X ∈ C there is a monoid EX in M defined by EX = Hom(X,X) with structure
maps given by the unit and composition maps e : I → EX and m : EX ◦ EX → EX as
described in 2.1.9. This EX is called the endomorphism monoid of X. It classifies
A-algebra structures on X as described in the following proposition.

2.1.13. Proposition. If A ∈ monM and X ∈ C, then monM[A, EX ] is naturally
isomorphic to the the equalizer of the pair of maps in 2.1.12.

Proof. The set of monoid maps from A to EX is exactly the equalizer of the pair of
maps

M[A, EX ] ⇒ M[A ◦ A, EX ]×M[I, EX ],(2.1.14)

where the top map sends α to (αµ, αη) and the bottom map sends α to (m(α ◦α), e).
Thus it suffices to show that the adjunction isomorphism of 2.1.6 carries the diagram
2.1.12 to the diagram 2.1.14, which is a routine verification.
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2.1.15. Example. Let M denote any closed symmetric monoidal category. Then M
is clearly a right-closed monoidal category. Examples of such M include the category
of simplicial sets S, in which case monM is the category of simplicial monoids, and
the category of simplicial R-modules MR, in which case monM is the category of
associative R-algebras.

2.1.16. Example (O-categories). Let O be a set, and let C = SetO be the category
of sets indexed by O; thus, an object X ∈ SetO is a collection of sets {X(x)}x∈O. The
category M = SetO×O is equivalent to the category of directed graphs with vertex set
O. There is a right-closed monoidal structure on M given by

(A ◦B)(x, y) =
⨿
z∈O

A(z, y)×B(x, z)

and
F(B,C)(y, z) =

∏
x∈O

Set[B(x, y), C(x, z)],

and a right-closed action of M on C given by

(A ◦X)(x) =
⨿
z∈O

A(z, x)×X(z)

and
Hom(X,Y )(x, y) = Set[X(x), Y (y)].

Then a monoid in M is an O-category; i.e., a category with a fixed set of objects
O, and maps between such monoids are functors which are the identity on the set of
objects. The category of algebras over an O-category C is equivalent to the category
of C-diagrams.

It is not hard to see that there is an analogous left-closed action of M on C.

2.1.17. Example (Triples). Let C be a complete category, and let M = CC the
category of endofunctors on C. Then CC is a monoidal category under composition
of functors, and there is a right-closed action of CC on C induced by evaluation of
functors. In fact, objects X,Y ∈ C can be identified with functors X,Y : 1 → C;
then Hom(X,Y ) : C → C is the “right Kan extension” (see [10, X]) of X along Y .
Explicitly, this is the functor defined at C ∈ C by

Hom(X,Y )(C) =
∏

C[C,X]

Y.

A monoid in CC is exactly a triple on C (also known as a monad), and an
algebra over a monoid is just an algebra over the triple. The triple EX : C→ C may
be called the endomorphism triple; it classifies triple algebra structures on X ∈ C.

This category CC does not seem in general to be a right-closed monoidal category:
F(X,Y ) would necessarily be defined as the right Kan extension of X : C→ C along
Y : C→ C; one expects this to exist only if C is a small complete category, which is
rare (see [10, V.2]).
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2.1.18. Example (Operads). Another example of a right-closed monoidal category
and right-closed action is that of Σ-objects acting on a closed symmetric monoidal
category. This example is described in detail in Section 2.2.

2.1.19 Biobjects

Let M be a monoidal category. Suppose A ∈ monM, and let X ∈ M. A left-A-
action of A on X is a map ψ : A ◦X → X making the diagram

A ◦ A ◦X //ψ◦X

��
A◦ψ

A ◦X

��
ψ

Xooη◦X

ww
ww
ww
ww
w

ww
ww
ww
ww
w

A ◦X //ψ
X

commute; in other words, an algebra over the triple M→M defined by X 7→ A ◦X.
The category of algebras over this triple is denoted by AM. Likewise given B ∈
monM, a right-B-action of B on X is a map ϕ : X ◦B → X making the diagram

X ◦B ◦B //X◦ϕ

��
ϕ◦B

X ◦B

��
ϕ

XooX◦η

ww
ww
ww
ww
w

ww
ww
ww
ww
w

X ◦B //ϕ
X

commute; in other words, an algebra over the triple M→M defined by X 7→ X ◦B.
The category of algebras over this triple is denoted by MB.

More generally given A,B ∈ monM and X ∈M an A,B-action on X consists of
a left-A-action and a right-B-action which commute; in other words, an algebra over
the triple M → M defined by X 7→ A ◦ X ◦ B. The category of algebras over this
triple is denoted by AMB, which we refer to as the category of A,B-biobjects.

We are particular interested in the case when A and B are the same monoid.
We shall refer to an X ∈M with an A,A-action as an A-biobject; the category of
A-biobjects is thus denoted by AMA.

Suppose M is a right-closed monoidal category with a right closed action on C.
Then if X ∈ CA and Y ∈ CB then Hom(X,Y ) has a natural B,A-action, with action
map given by

B ◦ Hom(X,Y ) ◦ A→ Hom(Y, Y ) ◦ Hom(X,Y ) ◦ Hom(X,X)→ Hom(X,Y ),

where A → Hom(X,X) and B → Hom(Y, Y ) are maps of monoids classifying the
algebra structures on X and Y respectively. Furthermore, note that A◦n = A◦ · · · ◦A
for n ≥ 1 has a natural structure as an A-biobject. The following proposition says
that maps between A-algebras are represented by an A-biobject.

2.1.20. Proposition. If A ∈ monM and X,Y ∈ CA, then there is a natural iso-
morphism

AMA[A,Hom(X,Y )] ≃ CA[X,Y ].
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Proof. A map of A-biobjects is exactly a map which is both a map of left-A-objects
and a map of right-A-objects. Thus AMA[A,Hom(X,Y )] is the equalizer of

MA[A,Hom(X,Y )] ⇒ MA[A ◦ A,Hom(X,Y )],

where the top arrow sends f to fµ and the bottom arrow sends f to ℓ(A ◦ f), where
ℓ : A ◦ Hom(X,Y ) → Hom(X,Y ) is the left-A-action. A straightforward argument
shows that this diagram is isomorphic to

M[I,Hom(X,Y )] ⇒ M[A,Hom(X,Y )],

where the top arrow sends g to r(g ◦ A) and the bottom arrow sends g to ℓ(A ◦ g).
Here r : Hom(X,Y ) ◦A→ Hom(X,Y ) denotes the right-A-action. A straightforward
argument shows that by the adjunction isomorphism of 2.1.6 this diagram is the same
as

C[X,Y ] ⇒ C[A(X), Y ],

where the top arrow sends h to hψX and the bottom arrow sends h to ψY h, where
ψX : A(X)→ X and ψY : A(Y )→ Y are the algebra structures. But the equalizer of
this diagram is exactly CA[X,Y ]

2.1.21 Monoidal structures for over-categories

In this section, we note that right-closed monoidal structures and right-closed actions
naturally induce similar structures on over-categories. We will make use of this fact
in Section 5.2.

2.1.22. Proposition. Let M be a monoidal category, and let A be a monoid in M.
Then there is a natural monoidal structure on (M ↓ A).

Proof. The monoidal structure is defined as follows. Given objects (B
b−→A), (C

c−→
A) ∈ (M ↓ A), we define

(B
b−→A) ◦ (C c−→A) = B ◦ C b◦c−→ A ◦ A µ−→A.

The unit of this monoidal structure is the unit map η : I → A of A.

2.1.23. Proposition. Let M be a complete category with a right-closed action on
C. Let A be a monoid in M and let X be an A-algebra. Then there is a canonical
right-closed action

(M ↓ A)× (C ↓ X)→ (C ↓ X).

Proof. The right-closed action of (M ↓ A) on (C ↓ X) is defined as follows. Given

objects (B
b−→A) ∈ (M ↓ A), and (Y

y−→X), (Z
z−→X) ∈ (C ↓ X), we define

(B
b−→A) ◦ (Y y−→X) = B ◦ Y b◦y−→ A ◦X ψ−→X
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and
HomA,X(Y

y−→X,Z
z−→X) = Hom(Y, Z)×Hom(Y,X) A→ A.

2.1.24. Corollary. Let M be a complete right-closed monoidal category. Let A be a
monoid in M. Then there is a canonical right-closed monoidal structure on (M ↓ A).

2.1.25 Enriched categories

In this section, we note that all the constructions described above can be carried out
when C and M are replaced with categories enriched over some symmetric closed
monoidal category V [9], with the definitions suitably modified to take into account
the enriched structure. If C is enriched over V we write mapC(X,Y ) ∈ V for the
enriched hom-object.

Thus, if C and M are categories enriched over V, and if M is is right-closed
monoidal category with a right-closed action on C for which the structure functors
η : 1→M, µ : M×M→M, and ψ : M×C areV-functors, then all the constructions
of this section apply with hom sets C[−,−] and M[−,−] replaced by hom objects
mapC(−,−) and mapM(−,−).

In particular, the discussion of 2.1.11 implies that for X ∈ C and A ∈ monM
there exists a V-object

mapmonM(A, EX) ∈ V

of A-algebra structures on X. In the sequel we will consider the case when V = S,
the category of simplicial sets.

2.2 Operads and related categories

In this section we define (following Getzler-Jones [7]) the notion of a Σ-object in a
symmetric monoidal category (Getzler and Jones call them S-objects). A Σ-object in
a category C induces a functor from C to itself. We will define a monoidal structure
on Σ-objects corresponding to composition of the induced functors; this monoidal
structure will turn out to be right-closed, and have a right-closed action on C. Using
this construction we will be able to define operads, algebras over an operad, and
biobjects over an operad over the category C.

2.2.1 Closed symmetric monoidal categories

In this section, we let C denote a closed symmetric monoidal category [10, VII, 7]
with monoidal structure − ⊗ − and unit object k, which has internal hom-objects
hom(−,−), so that

C[X ⊗ Y, Z] ≃ C[X, hom(Y, Z)].

Furthermore, we assume that C has all small limits and colimits. Note that the
functors X ⊗− and −⊗ Y must commute with all colimits.

The key examples of symmetric monoidal categories we need are:
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1. The category Set (resp. S) of (simplicial) sets, with cartesian product as the
monoidal product,

2. The category T of compactly generated weak-Hausdorff topological spaces, with
the categorical product as the monoidal product,

3. The categoryMR (resp.MR) of (simplicial) modules over a commutative ring R,
with tensor product over R as the monoidal product. (This monoidal structure
will be symmetric via the natural isomorphism X ⊗ Y

∼−→ Y ⊗ X sending
x⊗ y 7→ y ⊗ x.)

4. The category MR (resp. MR) of graded (simplicial) modules over a graded com-
mutative ring R, with tensor product over R as the monoidal product. (This
monoidal structure will be symmetric via the natural isomorphism X ⊗ Y ∼−→
Y ⊗X sending x⊗ y 7→ (−1)pqy⊗ x, where x and y are homogeneous elements
of degree p and q respectively.)

Each of the categories S, T, and MR is enriched over simplicial sets, and the monoidal
structure is likewise enriched, in the sense that the monoidal product and the hom
functor are simplicial functors.

2.2.2 Σ-objects

Let Π denote the category whose objects are finite totally ordered sets, and whose
maps are all functions between sets, which need not preserve the orderings; in other
words, the objects of Π are finite sets which are “secretly” equipped with an ordering.
Note that if S is an object of Π then any subset of T of S with the induced ordering is
also an object of Π. Let Σ denote the subcategory of Π consisting of the objects and
all isomorphisms (again, these maps need not preserve the ordering). Let ΣS denote
the group of automorphisms of the set S.

If S = {s1, . . . , sn} ∈ Σ with s1 < · · · < sn, and if we have a collection of objects
{Xs ∈ C}s∈S in some symmetric monoidal category C, then we define⊗

s∈S

Xs = Xs1 ⊗ · · · ⊗Xsn .

Thus given a map f : T → S ∈ Σ there is an obvious induced map⊗
t∈T

Xf(t) →
⊗
s∈S

Xs.

In particular, if Y ∈ C, then the notation Y ⊗S for the tensor product of copies of Y
indexed by S is non-ambiguous, and has a natural ΣS-action.

Let ΣC denote the category of functors from Σop to C. We refer to ΣC as the
category of Σ-objects in C. Let k = {1, . . . , k} denote a distinguished ordered set
with k elements, and let Σ′ denote the full subcategory of Σ consisting of the objects
0,1,2, . . . . Then the inclusion Σ′ → Σ is clearly an equivalence of categories. Thus
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there is an equivalence of the categories ΣC and the functor category CΣ′op
. Since

an object in ΣC is thus determined by its restriction to the subcategory Σ′op, we will
often regard an X ∈ ΣC as a sequence of objects X[0], X[1], X[2], . . . ∈ C where
each X[n] is equipped with a right action by Σn.

2.2.3 Monoidal structure in the category of Σ-objects

To any Σ-object A is associated an endofunctor A(−) on the category C. It is defined
to be the coequalizer in⨿

T→T ′∈Σ

A[T ′]⊗X⊗T ⇒
⨿
T∈Σ

A[T ]⊗X⊗T → A(X).

This defines a functor ΣC×C→ C. Using the equivalence Σ′ → Σ, we see that

A(X) ≃
⨿
s≥0

A[s]⊗Σs X
⊗s.

(This construction may also be described as the coend [10] of the functor Σ → C
defined by T 7→ X⊗T and the functor A : Σop → C.)

We will define a monoidal structure−◦− onΣC such that (A◦B)(X) ≃ A(B(X)).
For this purpose we need to describe the functor X 7→ A(X)T in terms of a Σ-object,
to be denoted by A[−, T ].

To make this construction, we note that one can define a symmetric monoidal
category structure on ΣC as follows. For A,B ∈ ΣC define

(A⊗B)[n] =
⨿
r+s=n

A[r]⊗B[s]⊗Σr×Σs Σn.

Thus A⊗B ∈ ΣC, and −⊗− : ΣC×ΣC→ ΣC is a functor. It is not hard to show
that this defines a symmetric monoidal product on ΣC with the following property.

2.2.4. Lemma. There are natural and coherent isomorphisms

(A⊗B)(X) ≃ A(X)⊗B(X)

for A,B ∈ ΣC and X ∈ C.

Proof. The isomorphism is defined by

(A⊗B)(X) ≃
⨿
n≥0

(A⊗B)[n]⊗Σn X
⊗n

≃
⨿
n

⨿
r+s=n

(A[r]⊗B[s])⊗Σr×Σs X
⊗n

≃
⨿

r≥0,s≥0

(A[r]⊗Σr X
⊗r)⊗ (B[s]⊗Σs X

⊗s)

≃ A(X)⊗B(X).
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It immediately follows that A(X)⊗T ≃ A⊗T (X). We define a functor

A[−,−] : Σop × Σ→ C

by A[S, T ] = A⊗T [S]. It is not hard to show that

A[S, T ] ≃
⨿

π∈Π(S,T )

⊗
t∈T

A[π−1(t)],

Given A and B in ΣC, define A ◦ B ∈ ΣC by the following coequalizer diagram
in C ⨿

T→T ′∈Σ

A[T ′]⊗B[S, T ] ⇒
⨿
T∈Σ

A[T ]⊗B[S, T ]→ (A ◦B)[S].

Using the equivalence of categories Σ′ → Σ, we obtain the following description of
this construction:

(A ◦B)[s] ≃
⨿
t≥0

A[t]⊗Σt B[s, t] ≃
⨿
t≥0

A[t]⊗Σt B
⊗t.

(Equivalently, (A ◦B)[S] is the coend of functors B[S,−] : Σ→ C and A : Σop → C.)
Also define an object I in ΣC by

I[S] =

{
k if |S| = 1,

∅ otherwise,

where ∅ is the initial object in C.

2.2.5. Lemma. There are natural and coherent isomorphisms

(A⊗ A′) ◦B ≃ (A ◦B)⊗ (A′ ◦B)

for A,A′, B ∈ ΣC.

Proof. Similar to proof of Lemma 2.2.4.

2.2.6. Proposition. With the given structure ΣC becomes a monoidal category with
an action on C. In particular, there are natural isomorphisms

(A ◦B)(X) ≃ A
(
B(X)

)
,

(X ◦ Y ) ◦ Z ≃ X ◦ (Y ◦ Z),

X ◦ I ≃ X, I ◦X ≃ X,

and
I(X) ≃ X.
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Proof. Straightforward, using Lemmas 2.2.4 and 2.2.5. For example the first equation
follows from

A(B(X)) ≃
⨿
n≥0

A[n]⊗Σn B(X)⊗n

≃
⨿
n≥0

(A[n]⊗Σn B
⊗n)(X)

≃ (A ◦B)(X).

Given two objects X and Y in C, we define an object Hom(X,Y ) in ΣC by

Hom(X,Y )[S] = hom[X⊗S, Y ].

This gives a functor Hom : Cop ×C→ ΣC.

2.2.7. Proposition. This structure defines a right-closed action of ΣC on C. In
particular, there is a natural isomorphism

C[A(X), Y ] ≃ ΣC[A,Hom(X,Y )].

Proof. Straightforward.

Given two objects B and C in ΣC, we define F(B,C) ∈ ΣC by the following
equalizer in C

F(B,C)[T ]→
∏
S∈Σ

hom(B[S, T ], C[S]) ⇒
∏

S′→S∈Σ

hom(B[S, T ], C[S ′]).

Using the equivalence Σ′ → Σ we obtain the description

F(Y, Z)[t] ≃
∏
s≥0

hom(Y [s, t], Z[s])Σs .

2.2.8. Proposition. With the given structure, ΣC becomes a right-closed monoidal
category. In particular, there is a natural isomorphism

ΣC[X ◦ Y, Z] ≃ ΣC[X,F(Y, Z)].

Proof. Straightforward.

2.2.9 Operads

An operad is defined to be a monoid in the monoidal category ΣC. We will refer to
the category of operads by operC.
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2.2.10. Example. Let C = S be the category of simplicial sets. The Σ-object P
defined by

P [S] =

{
pt if |S| = 0, 1,

∅ otherwise,

admits a unique structure as an operad. We have that

P (X) = pt⨿X.

2.2.11. Example. Again, let C be the category of simplicial sets. The Σ-object N
defined by

N [S] = pt

for all S admits a unique structure as an operad, and is referred to as the symmetric
operad. We have that

N(X) =
⨿
s≥0

(X×s)Σs
.

2.2.12. Example. Again, let C be the category of simplicial sets. The Σ-object M
defined by

M [S] = ΣS,

with the obvious Σ action admits the structure of an operad, and is referred to as the
associative operad. We have that

M(X) =
⨿
s≥0

X×s.

2.2.13 Algebras over an operad

Let A be an operad. The category of A-algebras is the category of algebras over the
triple A(−) on C, and is denoted by CA.

2.2.14. Example. The category of algebras over P is equivalent to the category of
pointed simplicial sets. The category of algebras over N is equivalent to the category
of simplicial commutative monoids. The category of algebras over M is equivalent to
the category of simplicial associative monoids.

Given X in C, the endomorphism operad is the operad EX = Hom(X,X). By
Proposition 2.1.13 it has the property that the set of operad maps A → EX is in
natural one-to-one correspondence with the set of A-algebra structures on X.

2.2.15 Biobjects over an operad

Let A and B be operads. An A,B-biobject is an object X in ΣC equipped with a
map A◦X◦B → X which satisfies the obvious unital and associativity properties; i.e.,
it is an object with a left-A-action and a right-B-action as in 2.1.19. We denote the
category of A,B-biobjects by (A,B)-biobjC. It is not hard to see that (A,B)-biobjC
is equivalent to the category of algebras over a triple onΣC which takesX to A◦X◦B.
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As noted in 2.1.19, if X is an A-algebra and Y is a B-algebras, then Hom(X,Y )
has a natural structure of a B,A-biobject, defined by

B ◦ Hom(X,Y ) ◦ A→ Hom(Y, Y ) ◦ Hom(X,Y ) ◦ Hom(X,X)→ Hom(X,Y ),

where A→ EX ≃ Hom(X,X) and B → EY ≃ Hom(Y, Y ) are maps of operads which
classify the algebra structures on X and Y respectively.

2.2.16. Example. An operad A has the structure of an A-biobject in a natural way;
the structure map A ◦ A ◦ A → A is just multiplication in the operad. As shown in
2.1.19, there is a natural isomorphism

CA[X,Y ] ≃ A-biobjC[A,Hom(X,Y )].

2.3 Constructions involving Σ-objects

In this section we show the existence of limits and colimits in Σ-objects, operads, and
biobjects, and describe a “relative” circle-product construction for biobjects, which
will lead in particular to adjoint functor pairs

f∗ : C
A � CB : f ∗

for any map f : A→ B of operads.

2.3.1 Limits and colimits

In this section we show the existence of limits and colimits in the categories of operads,
and of algebras and biobjects over an operad. We shall assume in this section that
(C,⊗) denotes a symmetric monoidal category with all small limits and colimits.

A reflexive pair in any category C is a pair of maps f, g : X ⇒ Y along with a
section s : Y → X such that fs = 1Y = gs. The coequalizer of such a reflexive pair
is a map k : Y → Z ∈ C which is initial among all maps such that kf = kg. The
significance of reflexive coequalizers comes from the following lemma; the usefulness
of reflexive coequalizers in these sorts of arguments was noticed by Mike Hopkins.

2.3.2. Lemma. Let C be as in 2.3.1.

1. Let fi, gi : Xi ⇒ Yi
ki−→ Zi, si : Yi → Xi for i = 1, . . . , n be reflexive coequalizers

in C. Then the induced diagram

X1 ⊗ · · · ⊗Xn ⇒ Y1 ⊗ · · · ⊗ Yn → Z1 ⊗ · · · ⊗ Zn

is a reflexive coequalizer in C.

2. Let D be a filtered category, and let Xi : D → C for i = 1, . . . , n be diagrams.
Then there is a canonical isomorphism

colimD(X1 ⊗ · · · ⊗Xn) ≃ (colimDX1)⊗ · · · ⊗ (colimDXn).
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Proof. The lemma follows from the fact that ⊗ distributes over colimits and the easily
checked fact that in both cases (1) and (2) the functor D → D × · · · × D is final
in the sense of [10, IX.3]. (For case (1) take D to be the category which indexes a
reflexive pair of maps.)

This leads immediately to the following statements for the action of ΣC on C,
and for the monoidal structure on ΣC.

2.3.3. Lemma. Let C be as in 2.3.1.

1. Let f, g : X ⇒ Y
k−→ Z, s : Y → X be a reflexive coequalizer in C. Then for

A ∈ ΣC the induced diagram

A(X) ⇒ A(Y )→ A(Z)

is a reflexive coequalizer in C.

2. Let D be a filtered category, and let X : D→ C be a diagram. Then for A ∈ ΣC
there is a canonical isomorphism

A(colimDX) ≃ colimDA(X).

Proof. This follows immediately from Lemma 2.3.2 and the fact that A(X) is con-
structed from A and X using only colimits and the monoidal product in C.

2.3.4. Lemma. Let C be as in 2.3.1.

1. Let fi, gi : Ai ⇒ Bi
ki−→ Ci, si : Bi → Ai for i = 1, . . . , n be reflexive coequalizers

in ΣC. Then the induced diagram

A1 ◦ · · · ◦ An ⇒ B1 ◦ · · · ◦Bn → C1 ◦ · · · ◦ Cn

is a reflexive coequalizer in C.

2. Let D be a filtered category, and let Ai : D→ ΣC for i = 1, . . . , n be diagrams.
Then there is a canonical isomorphism

colimD(A1 ◦ · · · ◦ An) ≃ (colimDA1) ◦ · · · ◦ (colimDAn).

Proof. This follows immediately from Lemma 2.3.2 and the fact that A ◦ B is con-
structed from A and B using only colimits and the monoidal product in C.

Lemmas 2.3.3 and 2.3.4 allow us to show that categories of algebras over an operad
(respectively, categories of biobjects over an operad) are complete and cocomplete.

2.3.5. Proposition. Let A and B be operads over C.

1. The category CA of A-algebras is complete and cocomplete; furthermore, the
forgetful functor CA → C preserves limits, reflexive coequalizers, and filtered
colimits.
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2. The category (A,B)-biobjC of A,B-biobjects is complete and cocomplete; fur-
thermore, the forgetful functor (A,B)-biobjC→ ΣC preserves limits, reflexive
coequalizers, and filtered colimits.

Proof. We prove part 1; the proof of part 2 is similar.
It is straightforward to show that CA has all limits, and that these limits are

preserved by the forgetful functor.
We now show that CA has all reflexive coequalizers, and that these are preserved

by the forgetful functor. Let f, g : X ⇒ Y, s : Y → X ∈ CA be a reflexive pair. Let
k : Y → Z ∈ C be the coequalizer of f and g in the underlying category C. We claim
that Z admits a unique A-algebra structure making k the coequalizer in CA of f and
g. Consider the following diagram.

A2X
////

����

A2Y //

����

A2Z

����
AX

////

��
ψX

AY //

��
ψY

AZ

��
ψZ

X
//f
//

g

BB
ηX

Y //k

BB
ηY

Z .

BB

The rows are coequalizers in C by Proposition 2.3.3. Thus there exist unique dotted
arrows in C making the appropriate squares commute. Let ψZ : A(Z) → Z be one
of the induced arrows. It is then easy to check that, by uniqueness, the other dotted
arrows must be µ,A(ψZ) : A

2Z → AZ and ηZ : Z → AZ, and thus that ψZ induces
an A-algebra structure on Z. It is now easy to check that Z is the coequalizer of f
and g in the category of A-algebras as desired.

A similar argument shows that one may also construct filtered colimits in CA by
first constructing them in C.

We can now construct arbitrary small colimits in CA. Let X : D → CA be a
functor from a small category. We consider a pair of parallel maps

f, g : A
(
colimCA(X)

)
⇒ A(colimCX),

where colimC denotes the colimit of a diagram in the underlying category C, defined
as follows. Applying the functor CA[−,W ] for any object W ∈ C to the parallel
maps and using standard adjunctions, we get a pair of parallel maps

limC[A(X),W ] ⇒ limC[X,W ]

where in each factor of the limit the top arrow sends f : A(X)→ W to ψWA(f), and
the bottom arrow sends f to fψX . It is easy to see that if the coequalizer of f and
g in CA exists then it is exactly the colimit of X in CA. The natural transformation
η : I → A induces a map t : colimCX → colimCA(X); let s = A(t). It is not hard to
see that s is a section of f and g; thus, by the first part of the proof the coequalizer
of f and g exists.
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2.3.6 Free operads

Given a Σ-object A, the free operad on A is an operad FA together with a map of
Σ-objects A→ FA inducing a bijection

operC[FA,B]
∼−→ ΣC[A,B]

for all operads B. If the free operad exists for every A ∈ ΣC, we call the resulting
functor F : ΣC→ operC the free operad functor; it is left adjoint to the forgetful
functor operC→ ΣC.

2.3.7. Proposition. Let C be as in 2.3.1. Then the free operad functor F : ΣC →
operC exists.

Proof. A construction of the free operad is given in Appendix A.

An argument similar to those given above shows that the category of operads on
C is complete and cocomplete.

2.3.8. Lemma. Let C be as in 2.3.1.

1. Let f, g : A ⇒ B
k−→C, s : Y → X be a reflexive coequalizer in ΣC. Then the

induced diagram
FA⇒ FB → FC

is a reflexive coequalizer in C.

2. Let D be a filtered category, and let A : D → C be a diagram. Then there is a
canonical isomorphism

F (colimDA) ≃ colimD FA.

Proof. This follows from Lemma 2.3.3 and from the construction of FA in Ap-
pendix A: there FA is defined as a colimit FA = colimn FnA in ΣC where F0A = I
and FnA = I ⨿ A ◦ Fn−1A for n > 0. Thus FA is constructed from A using only
colimits and the circle product in ΣC.

2.3.9. Proposition. The category operC of operads on C is complete and cocom-
plete; furthermore, the forgetful functor operC → ΣC preserves limits, reflexive co-
equalizers, and filtered colimits.

Proof. The proof is similar to that of Proposition 2.3.5.

2.3.10 The “circle-over” construction

As before, let (C,⊗) be a complete and cocomplete symmetric monoidal category.
Given an operad A over C, a right A-object M , and an A-algebra X, we define
M ◦A (X) ∈ C to be the coequalizer in the diagram

(M ◦ A)(X) ⇒M(X)→M ◦A (X),

32



where the two left hand maps are induced by the action maps ofM andX respectively.
This is a reflexive coequalizer, with reflection M(X) → (M ◦ A)(X) induced by the
unit map I → A of the operad.

Similarly, if M is a right A-object and N a left A-object we may define M ◦AN ∈
ΣC to be the coequalizer in

M ◦ A ◦N ⇒M ◦N →M ◦A N

where the two left hand maps are the action maps of M and N respectively. This is
a reflexive coequalizer, with reflection induced by the unit map of the operad.

2.3.11. Proposition. Let A be an operad over C, and let M be a right A-object, N
a left A-object, and X an A-algebra. Then there are natural isomorphisms

M ◦A A ≃M, A ◦A N ≃ N, A ◦A (X) ≃ X.

2.3.12. Proposition. Let M be an A,B-biobject, let N be a B,C-biobject, and let
X be a B-algebra.

1. The object M ◦B (X) ∈ C has a natural structure as an A-algebra.

2. The object M ◦B N ∈ ΣC has a natural structure as an A,C-biobject.

Proof. This follows immediately from Lemmas 2.3.3 and 2.3.4.

2.3.13. Proposition. Let M be a right A-object, let N be an A,B-biobject, let P be
a left B-object, and let X be a B-algebra.

1. There is a unique isomorphism

(M ◦A N) ◦B (X) ≃M ◦A (N ◦B (X))

commuting with the obvious maps (M ◦ N)(X) → (M ◦A N) ◦B (X) and M ◦(
N(X)

)
→M ◦A

(
N ◦B (X)

)
.

2. There is a unique isomorphism

(M ◦A N) ◦B P ≃M ◦A (N ◦B P )

commuting with the obvious maps (M ◦N) ◦P → (M ◦AN) ◦B P and M ◦ (N ◦
P )→M ◦A (N ◦B P ).

Proof. This follows immediately from Lemmas 2.3.3 and 2.3.4.

2.3.14. Corollary. The category of A-biobjects is a monoidal category with monoidal
product

− ◦A − : A-biobjC× A-biobjC→ A-biobjC

and unit object A ∈ A-biobjC, and there is an action

− ◦A (−) : A-biobjC×CA → CA.
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2.3.15. Example. Let C = S and let P and M be operads as in Example 2.2.14.
There is a map of operads P → M . Given a P -algebra X, i.e., a pointed simplicial
set, the object M ◦P (X) is the free associative monoid on X such that the basepoint
is the identity element. In other words, M ◦P (X) is the James construction on X.

2.3.16. Remark. Although we will not need it, one can show that with the structure
of Corollary 2.3.14 the category A-biobjC is a right-closed monoidal category, and its
action on CA is a right-closed action. In fact, for X ∈ CB there is a pair of adjoint
functors

− ◦B X : (A,B)-biobjC � CA : Hom(X,−),

where Hom coincides with the one defined on C, and for N ∈ (B,C)-biobjC there is
a pair of adjoint functors

− ◦B N : (A,B)-biobjC � (A,C)-biobjC : FC(N,−),

where FC(N,P ) is defined to be the equalizer of

FC(N,P )→ F(N,P ) ⇒ F(N ◦ C,P ),

where the top arrow on the right is induced by N ◦ C → N , and the bottom arrow
on the right is adjoint to the map F(N,P ) ◦N ◦ C → P ◦ C → P .

2.3.17 Adjoint functors

Finally, we note that associated to maps of operads f : A → B and g : A′ → B′

there are obvious forgetful functors f ∗ : CB → CA and (f, g)∗ : (B,B′)-biobjC →
(A,A′)-biobjC.

2.3.18. Proposition. The functors

f∗ = B ◦A − : CA → CB

and
(f, g)∗ = B ◦A − ◦A′ B′ : (A,A′)-biobjC→ (B,B′)-biobjC

are left adjoint to f ∗ and (f, g)∗ respectively.

2.3.19 Simplicial constructions

If C is enriched over simplicial sets (2.1.25), and if the structure functor −⊗− : C×
C → C is a simplicial functor, then it is not hard to see that ΣC, monC, CA, and
(A,B)-biobjC are enriched over simplicial sets, and that structure functors of the
right-closed monoidal structure on ΣC and the right-closed action of ΣC on C are
simplicial functors.

Examples of such categories C are simplicial sets and simplicial R-modules. Thus,
the functors × : S× S → S and ⊗R : MR ×MR → MR extend to simplicial functors.
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Moreover, for these categories there exist functors

−⊗− : S×C→ C

(not to be confused with the monoidal structure ⊗ in C) and

(−)(−) : Sop ×C→ C

such that for X,Y ∈ C and K ∈ S there are natural isomorphisms

C[K ⊗X,Y ] ≃ S[K,mapC(X,Y )] ≃ C[X,Y K ].

These remarks in turn imply that the categories of sigma objects, operads, algebras
over an operad, and biobjects over an operad, over either S or MR are enriched over
simplicial sets.

2.4 Monoidal functors

In this section we define monoidal functors and show how they induce corresponding
functors on categories of operads and biobjects.

2.4.1 Monoidal functors

Let (S,⊗, IS) and (T,⊗, IT ) be monoidal categories. Amonoidal functor L : S→ T
is a functor equipped with natural isomorphisms

b : LX ⊗ LY ∼−→ L(X ⊗ Y )

and
u : IT

∼−→ LIS

making the following diagrams commute:

L
(
X ⊗ (Y ⊗ Z)

)
//La

��
b

L
(
(X ⊗ Y )⊗ Z

)
��
b

LX ⊗ L(Y ⊗ Z)

��
1⊗b

L(X ⊗ Y )⊗ LZ

��
b⊗1

LX ⊗ (LY ⊗ LZ) //a (LX ⊗ LY )⊗ LZ ,
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and

IT ◦ LX //ℓ

��
u◦1

LX

��
Lℓ

LIS ◦ LX //b
L(IS ◦X),

LX ◦ IT //r

��
1◦u

LX

��
Lr

LX ◦ LIS //b
L(X ◦ IS).

If L : S → T is a monoidal functor between symmetric monoidal categories such
that the diagram

LX ◦ LY //b

��
τ

L(X ◦ Y )

��
τ

LY ◦ LX //b
L(Y ◦X)

commutes, where τ : X ◦ Y ∼−→ Y ◦X denotes the symmetry isomorphism in a sym-
metric monoidal category, then we say that L is a symmetric monoidal functor.

2.4.2. Proposition. If L : S → T is a monoidal functor which has a right adjoint
R : T→ S, then there is a natural map

c : RX ⊗RY → R(X ⊗ Y ).

Furthermore, if S and T are right-closed, then there is a natural isomorphism

d : homT(Y,RZ) ≃ R homS(LY,Z).

If furthermore L is a symmetric monoidal functor between symmetric monoidal
categories then the natural map c commutes with the symmetry operators τ .

The main examples of symmetric monoidal functors which we will be interested
in are

|−| : S � T : Sing

where |−| is geometric realization and Sing is the singular complex, and

R(−) : S � MR : U

where R(−) is the free R-module functor and U is the underlying set functor. All
of these are examples of simplicial functors.

2.4.3. Proposition. If L : S � T : R are an adjoint pair of functors between closed
symmetric monoidal categories, and L is a monoidal functor, then there are naturally
induced functors

L′ : ΣS � ΣT : R′.

Furthermore L′ is a monoidal functor, and there are natural isomorphisms

L
(
A(X)

)
≃ (L′A)(LX),

for X ∈ S and A ∈ ΣS.
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Proof. The functors L′ and R′ are defined “object-wise”, so that for A ∈ ΣS and
B ∈ ΣT we have that (L′A)[S] = L(A[S]) and (R′B)[S] = R(B[S]). The adjunction
is clear. To show that L′ is monoidal, it suffices to note that (L′A)[S, T ] ≃ L(A[S, T ])
and that L is monoidal and preserves colimits. The proof of the last part of the
proposition is similar.

2.4.4. Proposition. There are induced adjoint functors

L′ : operS � operT : R′

which coincide with L′ : ΣS � ΣT : R′ on underlying Σ-objects, and which induce a
natural equivalence

F (L′A) ≃ L′(FA),

where A ∈ ΣS and F denotes the free operad functor.

Proof. The existence of the induced functors follows from the fact that L′ is
monoidal, and from Proposition 2.4.2. The rest of the argument is straightforward
from the construction of the free operad in Appendix A.

2.4.5. Corollary. Given A ∈ operS, there are induced adjoint functors

L : SA � TL′A : R,

which coincide with L : S � T : R on the underlying categories.

2.4.6. Corollary. Given A,B ∈ operS, there are induced adjoint functors

L′ : (A,B)-biobjS � (L′A,L′B)-biobjT : R′,

which coincide with L′ : ΣS � ΣT : R′ on underlying Σ-objects.
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Chapter 3

Homotopy theory of operads

3.1 Closed model categories

In this section we recall the notion of a simplicial closed model category and give a
principle for recognizing such structures in the cases that interest us. We also recall
certain examples of simplicial closed model categories which we will need.

3.1.1 Simplicial closed model categories

A closed model category M is a category equipped with three distinguished classes
of maps, called fibrations, cofibrations, andweak equivalences, satisfying axioms
(1)-(5) of [14]. The properties of closed model categories are elaborated in [13]; in
particular, we note that for any closed model category M the homotopy category
HoM, obtained by formally inverting the weak equivalences of M, exists.

A simplicial closed model category is a closed model category M which is
enriched over simplicial sets and has enriched limits and colimits over simplicial sets
(2.3.19), and which satisfies one of the following three equivalent conditions:

1. Let i : K → L ∈ S be a cofibration and j : X → Y ∈M be a cofibration. Then
the induced map

f : K ⊗ Y ⨿K⊗X L⊗X → L⊗ Y ∈M

is a cofibration. If furthermore either i or j is a weak equivalence, then so is f .

2. Let i : K → L ∈ S be a cofibration and p : Z → W ∈ M be a fibration. Then
the induced map

g : ZL → ZK ×WK WL ∈M

is a fibration. If furthermore either i or p is a weak equivalence, then so is g.

3. Let j : X → Y ∈M be a cofibration and p : Z → W ∈M be a fibration. Then
the induced map

h : mapM[Y, Z]→ mapM[X,Z]×mapM[X,W ] mapM[Y,W ] ∈ S
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is a fibration. If furthermore either j or p is a weak equivalence, then so is h.

3.1.2 Cofibrantly generated model categories

If M is a closed model category, we say that M is cofibrantly generated if there
exist sets of maps I = {iα : Sα → Dα} and J = {jβ : Λβ → ∆β} in M such that

1. a map in M is a trivial fibration if and only if it has the right lifting property
with respect to every iα ∈ I,

2. a map in M is a fibration if and only if it has the right lifting property with
respect to every jβ ∈ J ,

3. the domains Sα and Λβ of the maps in I and J are small; an object S ∈ M
is said to be small if for any countable directed sequence Xi in M the natural
map

colimiM[S,Xi]→M[S, colimiXi]

is an isomorphism.

It follows from this definition that the maps in I are cofibrations, and the maps in J
are trivial cofibrations. We say that the set I (resp. J) is a set of generators of the
class of cofibrations (resp. trivial cofibrations).

3.1.3. Remark. The formulation of the notion of cofibrantly generated closed model
category given in 3.1.2 is not the most general form possible; our definition is in fact
a very restricted case of a definition of Dwyer and Kan [2].

Note that if M is a cofibrantly generated closed model category, and X ∈ M is
any object, then (M ↓ X) is also a cofibrantly generated closed model category, with
generators

I ′ = {Sα → Dα → X}

and
J ′ = {Λβ → ∆β → X}.

3.1.4 Recognizing model categories

The following proposition will be useful in showing that various categories are sim-
plicial closed model categories.

3.1.5. Proposition. Let M and N be categories enriched over simplicial sets, having
all enriched limits and colimits, and let

L : M � N : R

be a pair of adjoint simplicial functors. Suppose that M is a simplicial closed model
category with sets of maps I = {Sα → Dα ∈ M} and J = {Λβ → ∆β ∈ M} which
generate cofibrations and trivial cofibrations respectively. If
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1. the objects LSα and LΛβ are small in N, and

2. there is a simplicial functor
E : N→ N

and a natural transformation

ϵ : 1→ E : N→ N

such that for each object X ∈ N the object REX ∈ M is fibrant and the map
RϵX : RX → REX ∈M is a weak equivalence,

then N is a simplicial closed model category with the following structure.

1. A map f : X → Y ∈ N is a weak equivalence (resp. a fibration) if and only
if the map

Rf : RX → RY ∈M

is a weak equivalence (resp. a fibration) in M.

2. The sets of maps
I ′ = {LSα → LDα}

and
J ′ = {LΛβ → L∆β}

are generators for the cofibrations and trivial cofibrations of N respectively.

3. There exist functorial factorizations of maps in N into a cofibration followed by
a trivial fibration, or respectively a trivial cofibration followed by a fibration.

Proof. The proof is a variation of an argument of Quillen. To show that N is a
simplicial closed model category, we carry out the small object argument [13, Ch.II,4],
using the sets of maps I ′ and J ′ to construct the factorizations. The only tricky part
of the argument is to show that if a map f : X → Y in N has the left lifting property
with respect to maps p ∈ N for which Rp is a fibration, then Rf is a weak equivalence.
To show this, we use the map ϵX : X → EX. Thus there is a lifting g in

X //ϵX

��
f

EX

Y .

<<

g

z
z

z
z

Since RϵX is a weak equivalence, it suffices to show that Rg is also. To prove this,
we show that Ef · g is simplicially homotopic to ϵY ; this follows from the lifting in
the diagram

X //ϵY f=Ef ·ϵX

��
f

EY // EY ∆[1]

��
Y

44hhhhhhhhhhhh //(ϵY ,Ef ·g)
EY × EY .
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3.1.6 Model category structure for simplicial sets

We recall that the category S of simplicial sets forms a simplicial closed model cate-
gory.

3.1.7. Proposition. [13] The category S of simplicial sets is a simplicial closed
model category with the following structure.

1. A map f : X → Y ∈ S is a weak equivalence if and only if its geometric
realization |f | : |X| → |Y | is a homotopy equivalence of spaces.

2. A map f : X → Y ∈ S is a fibration if and only if it is a Kan fibration.

3. A map f : X → Y ∈ S is a cofibration if and only if it is an inclusion.

4. The sets of maps
I = {∆̇[n]→ ∆[n], n ≥ 0}

and
J = {Λk[n]→ ∆[n], n ≥ 1, 0 ≤ k ≤ n}

are generators for the cofibrations and trivial cofibrations respectively.

3.1.8 Model category structure for G-simplicial sets

Let G be a discrete group. The category of G-simplicial sets, denoted by GS, is
the category with objects simplicial sets with an action of G on the right, and with
morphisms G-equivariant maps.

3.1.9. Proposition. [5] The category GS of G-simplicial sets is a simplicial closed
model category with the following structure.

1. A map f : X → Y ∈ GS is a weak equivalence (resp. a fibration) if and
only if for each subgroup H ⊆ G the induced map

fH : XH → Y H ∈ S

on fixed points is a weak equivalence (resp. a fibration) of simplicial sets.

2. A map f : X → Y ∈ GS is a cofibration if and only if it is an inclusion.

3. The sets of maps

I = {∆̇[n]×H\G→ ∆[n]×H\G, n ≥ 0, H ⊆ G}

and

J = {Λk[n]×H\G→ ∆[n]×H\G, n ≥ 0, 0 ≤ k ≤ n,H ⊆ G}

are generators for the cofibrations and trivial cofibrations respectively.
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There is another characterization of weak equivalences in GS.

3.1.10. Proposition. A map f : X → Y ∈ GS is a weak equivalence if and only if
the induced map

|f | : |X| → |Y |

of geometric realizations is a G-equivariant homotopy equivalence; i.e., there exists a
G-equivariant map g : |Y | → |X| and G-equivariant homotopies |f |g ∼ 1 and g|f | ∼
1.

To prove Proposition 3.1.10 we need several results about G-spaces. The category
GT of G-spaces is the category having as objects topological spaces with a G-action,
and having as maps G-equivariant maps.

3.1.11. Proposition. [5] The category GT of G-spaces is a simplicial closed model
category with the following structure.

1. A map f : X → Y ∈ GT is a weak equivalence (resp. a fibration) if and
only if for each subgroup H ⊆ G the induced map

fH : XH → Y H ∈ T

on fixed points is a weak equivalence (resp. a Serre fibration) of spaces.

2. The sets of maps

I = {|∆̇[n]| ×H\G→ |∆[n]| ×H\G}

and
J = {|Λk[n]| ×H\G→ |∆[n]| ×H\G}

are generators for the cofibrations and trivial cofibrations respectively.

3.1.12. Proposition. For X ∈ GS, the adjunction map ϵX : X → Sing|X| is a weak
equivalence in GS.

Proof. We note the easily proved fact that geometric realization of simplicial sets
commutes with taking the fixed point set of a finite group action. (In fact, geometric
realization preserves all finite limits; see [6, Ch.III,3].) Thus for H ⊆ G, we have

XH → Sing|X|H ≃ Sing|XH |,

which is a weak equivalence.

Proof of Proposition 3.1.10. Since every object in GT is fibrant, a map between cofi-
brant objects is a weak equivalence if and only if it is a simplicial homotopy equiv-
alence. Thus, a map f in GS is a weak equivalence if and only if its realization
|f | in GT is a simplicial homotopy equivalence, and thus a G-equivariant homotopy
equivalence.

42



3.1.13 Model category structure for simplicial R-modules

We recall that the category MR of simplicial R-modules forms a simplicial closed
model category.

3.1.14. Proposition. [13] The category MR of simplicial R-modules is a simplicial
closed model category with the following structure.

1. A map f : X → Y ∈ MR is a weak equivalence (resp. a fibration) if and
only if it is a weak equivalence (resp. a fibration) of the underlying simplicial
sets.

2. A map f : X → Y ∈ MR is a cofibration if and only if in each simplicial
degree q ≥ 0 the maps fq : Xq → Yq are injective and the cokernel of fq is a
projective R-module.

3. The sets of maps
I = {R∆̇[n]→ R∆[n]}

and
J = {RΛk[n]→ R∆[n]}

are generators for the cofibrations and trivial cofibrations respectively.

Note that every object in MR is fibrant as a simplicial set by [12], and hence is
fibrant in MR.

3.1.15 Model category structure for G-equivariant simplicial
R-modules

Let G be a discrete group. The category of G-equivariant simplicial R-modules,
denoted by GMR, is the category with objects simplicial R-modules with an action
of G on the right, and with morphisms G-equivariant maps. Equivalently, GMR is
the category of simplicial R[G]-modules, where R[G] is the group ring of G.

3.1.16. Proposition. The category GMR of G-equivariant simplicial R-modules is
a simplicial closed model category with the following structure.

1. A map f : X → Y ∈ GMR is a weak equivalence (resp. a fibration) if and
only if for each subgroup H ⊆ G the induced map

fH : XH → Y H ∈MR

on invariants is a weak equivalence (resp. a fibration) of underlying simplicial
sets.

2. A map f : X → Y ∈ GMR is a cofibration if and only in each simplicial degree
q ≥ 0 the maps fq : Xq → Yq are inclusions and the cokernel of fq is a retract
of a R[G]-module of the form RS, where S is a G-set.
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3. The sets of maps

I = {R(∆̇[n]×H\G)→ R(∆[n]×H\G)}

and
J = {R(Λk[n]×H\G)→ R(∆[n]×H\G)}

are generators for the cofibrations and trivial cofibrations respectively.

Proof. Everything except part 2 follows from Proposition 3.1.5 applied to the adjunc-
tion

R : GS � GMR : U ,

where we take E to be the identity functor on MR.
The characterization of cofibrations in part 2 follows from the small object argu-

ment.

Note that every object in GMR is fibrant.

3.1.17. Corollary. An object X ∈ GMR is cofibrant if and only if in each simplicial
degree q ≥ 0 the module Xq is a retract of a R[G]-module of the form RS, where S is
a G-set.

3.2 Model categories over simplicial sets

In this section we describe model category structures for Σ-objects, operads, algebras
over an operad, and biobjects over an operad, when defined over the category of
simplicial sets.

3.2.1 A model category structure for Σ-objects over simpli-
cial sets

Given a subgroup H ⊆ Σm, we define ZH ∈ ΣS by

ZH [k] =

{
H\Σm if k = m,

∅ otherwise.

3.2.2. Proposition. The category ΣS of Σ-objects over simplicial sets is a simplicial
closed model category with the following structure.

1. A map f : X → Y ∈ ΣS is a weak equivalence (resp. a fibration) if and
only if for each m ≥ 0 and each subgroup H ⊆ Σm the induced map

f [m]H : X[m]H → Y [m]H ∈ S

on fixed points is a weak equivalence (resp. a fibration) of simplicial sets.
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2. A map f : X → Y ∈ ΣS is a cofibration if and only if each f [m] : X → Y is
an inclusion of simplicial sets.

3. The sets of maps
I = {∆̇[n]⊗ ZH → ∆[n]⊗ ZH}

and
J = {Λk[n]⊗ ZH → ∆[n]⊗ ZH}

are generators for the cofibrations and trivial cofibrations respectively.

Proof. This follows from Proposition 3.1.9, since ΣS is equivalent to a product of
categories ΣmS.

3.2.3. Proposition. 1. A map f : X → Y ∈ ΣS is a weak equivalence if and only
if for each m ≥ 0 the induced maps

|f [m]| : |X[m]| → |Y [m]|

of geometric realizations are Σm-equivariant homotopy equivalences.

2. For X ∈ ΣS, the adjunction map ϵX : X → Sing|X| is a weak equivalence in
ΣS.

Proof. Immediate from Proposition 3.1.10.

Note that the Σ-object I is cofibrant in ΣS.

3.2.4 A model category structure for A-algebras over simpli-
cial sets

3.2.5. Proposition. Let A ∈ operS be a simplicial operad. The category SA of
algebras over A is a simplicial closed model category with the following structure.

1. A map f : X → Y of A-algebras is a weak equivalence (resp. a fibration) if
it is a weak equivalence (resp. a fibration) of underlying simplicial sets.

2. The sets of maps
I = {A(∆̇[n])→ A(∆[n])}

and
J = {A(Λk[n])→ A(∆[n])}

generate the cofibrations and trivial cofibrations respectively.

Proof. This follows from Proposition 3.1.5 applied to the adjunction

S � SA,

where we take E = Sing|−| and ϵ to be the adjunction map; by Corollary 2.4.5 the
functor E is well defined, and by Proposition 3.1.7 the adjunction ϵ is always a weak
equivalence in S.
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3.2.6. Remark. Following Quillen [13] we note that a map X → Y ∈ SA is a cofi-
bration if and only if it is a retract of a free map; a map i : X → Y ∈ SA is free if
Y is the diagonal of a simplicial object in SA with qth degree X ⨿ A(Sq), where the
Sq are a collection of discrete simplicial sets which are closed under the degeneracy
operators, and i is induced by inclusion of the constant simplicial object X.

3.2.7 A model category structure for A,B-biobjects over sim-
plicial sets

3.2.8. Proposition. Let A,B ∈ operS be operads. The category (A,B)-biobjS of
A,B-biobjects is a simplicial closed model category with the following structure.

1. A map f : X → Y of A,B-biobjects is a weak equivalence (resp. a fibration)
if it is a weak equivalence (resp. a fibration) in ΣS.

2. The sets of maps

I = {A ◦ (∆̇[n]⊗ ZH) ◦B → A ◦ (∆[n]⊗ ZH) ◦B}

and
J = {A ◦ (Λk[n]⊗ ZH) ◦B → A ◦ (∆[n]⊗ ZH) ◦B}

generate the cofibrations and the trivial cofibrations respectively.

Proof. This follows from Proposition 3.1.5 applied to the adjunction

ΣS � (A,B)-biobjS,

where we take E = Sing|−| and ϵ to be the adjunction map; by Corollary 2.4.6 the
functor E is well defined, and by Proposition 3.2.3 the adjunction ϵ is always a weak
equivalence in ΣS.

3.2.9. Remark. Following Quillen [13] we note that a map X → Y ∈ (A,B)-biobjS
is a cofibration if and only if it is a retract of a free map; a map i : X → Y ∈
(A,B)-biobjS is free if Y is the diagonal of a simplicial object in (A,B)-biobjS with
qth degree X⨿A◦Sq ◦B, where the Sq are a collection of discrete Σ-objects which are
closed under the degeneracy operators, and i is induced by inclusion of the constant
simplicial object X.

3.2.10 A model category structure for operads over simpli-
cial sets

3.2.11. Proposition. The category operS of operads is a simplicial closed model
category with the following structure.

1. A map f : X → Y of operads is a weak equivalence (resp. a fibration) if it
is a weak equivalence (resp. a fibration) in ΣS.
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2. The sets of maps

I = {F (∆̇[n]⊗ ZH)→ F (∆[n]⊗ ZH)}

and
J = {F (Λk[n]⊗ ZH)→ F (∆[n]⊗ ZH)}

generate the cofibrations and trivial cofibrations respectively.

Proof. This follows from Proposition 3.1.5 applied to the adjunction

ΣS � operS,

where we take E = Sing|−| and ϵ to be the adjunction map; by Corollary 2.4.4 the
functor E is well defined, and by Proposition 3.2.3 the adjunction ϵ is always a weak
equivalence in S.

3.2.12. Remark. Following Quillen [13] we note that a map X → Y ∈ operS is a
cofibration if and only if it is a retract of a free map; a map i : X → Y ∈ operS is free
if Y is the diagonal of a simplicial object in operS with qth degree X ⨿F (Sq), where
the Sq are a collection of discrete Σ-objects which are closed under the degeneracy
operators, and i is induced by inclusion of the constant simplicial object X.

3.3 Model category structures over simplicial mod-

ules

In this section we describe model category structures for Σ-objects, operads, algebras
over an operad, and biobjects over an operad when defined the category of simplicial
R-modules.

3.3.1 A model category structure for Σ-objects over simpli-
cial modules

Given a subgroup H ⊆ Σm, let RZH ∈ ΣMR be defined by

RZH [k] =

{
R(Σm/H) if k = m,

0 otherwise.

3.3.2. Proposition. The category ΣMR is a simplicial closed model category, with
the following structure.

1. A map f : X → Y is a weak equivalence (resp. a fibration) if for every
H ⊆ Σm the map f [m]H : X[m]H → Y [m]H is a weak equivalence (resp. a
fibration) of simplicial sets.

47



2. The sets of maps
I = {∆̇[n]⊗RZH → ∆[n]⊗RZH}

and
J = {Λk[n]⊗RZH → ∆[n]⊗RZH}

generate the cofibrations and trivial cofibrations respectively.

Proof. This follows from Proposition 3.1.16, since ΣMR is equivalent to a product of
categories ΣmMR.

3.3.3. Proposition. Let f : X → Y ∈ ΣMR be a map. The following are equivalent.

1. The map f is a cofibration.

2. The map f is injective and Cok(f) is cofibrant.

3. In each simplicial degree q ≥ 0 the maps fq[m] : Xq[m] → Yq[m] are injective
and the cokernel of fq[m] is a retract of a Σm-module of the form RS, where S
is a Σm-set.

Proof. This follows immediately from Proposition 3.1.16

3.3.4. Corollary. An object X ∈ ΣMR is cofibrant if and only if in each simplicial
degree q ≥ 0 the module Xq[m] is a retract of a Σm-module of the form RS, where S
is a Σm-set.

3.3.5 A model category structure for A-algebras over simpli-
cial modules

3.3.6. Proposition. Let A ∈ operMR be an operad. The category MR
A of algebras

over A is a simplicial closed model category with the following structure.

1. A map f : X → Y of A-algebras is a weak equivalence (resp. a fibration) if
it is a weak equivalence (resp. a fibration)of underlying simplicial sets.

2. The sets of maps
I = {A(R∆̇[n])→ A(R∆[n])}

and
J = {A(RΛk[n])→ A(R∆[n])}

generate the cofibrations and trivial cofibrations respectively.

Proof. This follows from Proposition 3.1.5 applied to the adjunction

MR � MR
A,

where we take E to be the identity functor, since every object in MR
A is fibrant as a

simplicial set.
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3.3.7. Remark. Following Quillen [13] we note that a map X → Y ∈ MR
A is a

cofibration if and only if it is a retract of a free map; a map i : X → Y ∈ MR
A is

free if Y is the diagonal of a simplicial object in MR
A with qth degree X ⨿A(RSq),

where the Sq are a collection of discrete simplicial sets which are closed under the
degeneracy operators, and i is induced by inclusion of the constant simplicial object
X.

3.3.8 A model category structure for A,B-biobjects on sim-
plicial modules

3.3.9. Proposition. Let A,B ∈ operMR be operads. The category (A,B)-biobjMR

of simplicial A,B-biobjects is a simplicial closed model category with the following
structure.

1. A map f : X → Y of A,B-biobjects is a weak equivalence (resp. a fibration)
if it is a weak equivalence (resp. a fibration) in ΣMR.

2. The sets of maps

I = {A ◦ (∆̇[n]⊗RZH) ◦B → A ◦ (∆[n]⊗RZH) ◦B}

and
J = {A ◦ (Λk[n]⊗RZH) ◦B → A ◦ (∆[n]⊗RZH) ◦B}

generate the cofibrations and trivial cofibrations respectively.

Proof. This follows from Proposition 3.1.5 applied to the adjunction

ΣMR � (A,B)-biobjMR,

where we take E to be the identity functor, since every object in (A,B)-biobjMR is
fibrant in ΣMR.

3.3.10. Remark. Following Quillen [13] we note that a mapX → Y ∈ (A,B)-biobjMR

is a cofibration if and only if it is a retract of a free map; a map i : X → Y ∈
(A,B)-biobjMR is free if Y is the diagonal of a simplicial object in (A,B)-biobjMR

with qth degree X ⨿A ◦RSq ◦B, where the Sq are a collection of discrete objects in
ΣS which are closed under the degeneracy operators, and i is induced by inclusion of
the constant simplicial object X.

3.3.11 A model category structure for operads on simplicial
modules

3.3.12. Proposition. The category operMR of operads is a simplicial closed model
category with the following structure.

1. A map f : X → Y of operads is a weak equivalence (resp. a fibration) if it
is a weak equivalence (resp. a fibration) in ΣMR.
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2. The sets of maps

I = {F (∆̇[n]⊗RZH)→ F (∆[n]⊗RZH)}

and
J = {F (Λk[n]⊗RZH)→ F (∆[n]⊗RZH)}

generate the cofibrations and trivial cofibrations respectively.

Proof. This follows from Proposition 3.1.5 applied to the adjunction

ΣMR � operMR,

where we take E to be the identity functor, since every object in ΣMR is fibrant.

3.3.13. Remark. Following Quillen [13] we note that a map X → Y ∈ operMR is a
cofibration if and only if it is a retract of a free map; a map i : X → Y ∈ operMR is
free if Y is the diagonal of a simplicial object in operMR with qth degree X⨿F (RSq),
where the Sq are a collection of discrete objects in ΣS which are closed under the
degeneracy operators, and i is induced by inclusion of the constant simplicial object
X.

3.4 Compatibility of actions with model category

structure

In this section we investigate how well the actions of ΣS on S and ΣS, and the
actions of ΣMR on MR and ΣMR interact with the closed model category structures.
In particular, we show that these actions satisfy axioms which are analogous to, but
weaker than, those which characterize a simplicial closed model category structure
(3.1.1).

3.4.1 Compatibility axioms

Let M be a monoidal category with a right-closed action on C, and suppose that
both M and C are closed model categories. We say that the action of M on C is
compatible with the closed model category structure if either of the following
equivalent statements are true.

(C1) Let i : X → Y ∈ C be a cofibration between cofibrant objects, and let j : F →
G ∈M be a cofibration. Then the induced maps

f : F (∅)→ G(∅)

and
g : F (Y )⨿F (X) G(X)→ G(Y )

are cofibrations in C. If i is also a weak equivalence, then g is a trivial cofibra-
tion. If j is also a weak equivalence, then f and g are trivial cofibrations.
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(C2) Let i : X → Y ∈ C be a cofibration between cofibrant objects and p : Z → W ∈
C be a fibration. Then the induced maps

f : Hom(∅, Z)→ Hom(∅,W )

and
g : Hom(Y, Z)→ Hom(X,Z)×Hom(X,W ) Hom(Y,W )

are fibrations in M. If i is also a weak equivalence, then g is a trivial fibration.
If p is also a weak equivalence, then f and g are trivial fibrations.

If M is a right-closed monoidal category which is also a closed model category,
we say that the monoidal structure on M is compatible with the closed model
category structure if the induced right-closed action of M on itself is compatible
with the closed model category structure.

Note that if C is a category enriched over simplicial sets having all enriched limits
and colimits, then there is a right-closed action of S on C. If C is a simplicial closed
model category then we see that, in particular, the action of S on C is compatible
with the model category structure.

3.4.2. Proposition. Let M and C be closed model categories equipped with a right-
closed action of M on C which is compatible with the model category structure.

1. If X ∈ C and A ∈M are cofibrant objects, then A ◦X ∈ C is cofibrant.

2. If X → Y ∈ C is a cofibration and A ∈M is a cofibrant object, then A ◦X →
A ◦ Y ∈ C is a cofibration.

Proof. Statement 2 follows immediately from (C1), and statement 1 follows from
statement 2 and the fact that A ◦∅ is cofibrant by (C1).

3.4.3 Compatibility of actions of Σ-objects over S and MR

3.4.4. Proposition. The action of ΣS on S and the action of ΣMR on MR are
compatible with the closed model category structure.

3.4.5. Proposition. The monoidal structure of ΣS and the monoidal structure of
ΣMR are compatible with the closed model category structure.

Before we prove Proposition 3.4.4, we will need lemmas on equivariant homotopy.
Let C denote either S or MR. Note that if X and Y are in C, then for H ⊆ Σn a
subgroup we have that.

Hom(X,Y )[n]H = mapC(X
⊗n, Y )

H
= mapC((X

⊗n)H , Y ).

3.4.6. Lemma. Let i : X → Y be a cofibration (resp. a trivial cofibration) of sim-
plicial sets, and let H ⊆ Σn be a subgroup of the symmetric group. Then the induced
map j : (X×n)H → (Y ×n)H is a cofibration (resp. a trivial cofibration) of simplicial
sets.
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Proof. To see that j is a cofibration, it suffices to note that since i is an inclusion,
then j is also. Furthermore, if i is a trivial cofibration, then |i| : |X| → |Y | has a
homotopy inverse in T. Hence |i|×n has a Σn-equivariant homotopy inverse, and thus
|j| has a homotopy inverse in T, and thus in particular j is a weak equivalence.

3.4.7. Lemma. Let i : X → Y be a cofibration (resp. a trivial cofibration) of cofi-
brant simplicial R-modules, and let H ⊆ Σn be a subgroup of the symmetric group.
Then the induced map j : (X⊗n)H → (Y ⊗n)H is a cofibration (resp. a trivial cofibra-
tion) of simplicial R-modules.

Proof. Because X is cofibrant and i is a cofibration, we may assume without loss
of generality that X and Cok(i) are degree-wise free R-modules. In other words,
Xq ≃ R(Kq) and Yq ≃ R(Kq) ⊕ R(Lq) for some sets Kq and Lq. To show that
j : (X⊗n)H → (Y ⊗n)H is a cofibration it suffices to show that the induced maps(

R(Kq)
⊗n)

H
→

(
R(Kq)⊕R(Lq)⊗n

)
H

are inclusions with projective cokernel. This follows easily from the fact that

(K×n
q )

H
→

(
(Kq ⨿ Lq)×n

)
H

is an inclusion of sets.
If i is a trivial cofibration, then since all objects in MR are fibrant there exists a

simplicial homotopy inverse to i, and hence j has a simplicial homotopy inverse.

Proof of Proposition 3.4.4. We prove (C2). Let C denote either S or MR.
To prove the first statement in (C2), it suffices to note that Hom(∅, Z) ≃ Z[0].
Suppose H ⊆ Σn is a subgroup. Then we see that the induced map g[n]H may be

written as

g[n]H : mapC

(
(Y ⊗n)H , Z

)
→ mapC

(
(X⊗n)H , Z

)
×

mapC

(
(X⊗n)H ,W

)mapC

(
(Y ⊗n)H ,W

)
.

By Lemma 3.4.6 or 3.4.7 we have that iH : (X⊗n)H → (Y ⊗n)H is a cofibration (resp. a
trivial cofibration) in C whenever i is one, and thus the result follows from the
simplicial closed model category structure on C.

We need two preliminary lemmas before we can prove Proposition 3.4.5. Recall
that if A and B are in ΣC, then for H ⊆ Σn a subgroup we have that

F(A,B)[n]H = (
∏
s

mapC(A[s, n], B[s])Σs)
H
≃

∏
s

mapC(A[s, n]H , B[s])Σs .

3.4.8. Lemma. Let i : A → B be a cofibration (resp. a trivial cofibration) in ΣS,
and let H ⊆ Σn be a subgroup of the symmetric group. Then the induced map
j : A[s, n]H → B[s, n]H is a cofibration (resp. a trivial cofibration) of Σs-equivariant
simplicial sets.
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Proof. To see that j is a cofibration, it suffices to note that since i is an inclusion, then
so is j. Furthermore, if i is a trivial cofibration, then the realizations |i[n]| : |A[n]| →
|B[n]| have a Σn-equivariant homotopy inverse in T. Thus the induced map |A[s, n]| →
|B[s, n]| has a Σs × Σn-equivariant homotopy inverse in T, whence |j| has a Σs-
equivariant homotopy inverse in T. Thus, in particular, j is a weak equivalence.

3.4.9. Lemma. Let i : A → B be a cofibration (resp. a trivial cofibration) between
cofibrant objects in ΣMR, and let H ⊆ Σn be a subgroup of the symmetric group. Then
the induced map j : A[s, n]H → B[s, n]H is a cofibration (resp. a trivial cofibration) of
Σs-equivariant simplicial R-modules.

Proof. Because A is cofibrant and i is a cofibration, we may assume without loss of
generality using Proposition 3.3.3 that A and Cok(i) are degree-wise free over R. In
other words, Aq ≃ R(Kq) and Bq ≃ R(Kq)⊕R(Lq) for some Σ-objects Kq and Lq on
the category of sets. To show that j : A[s, n]H → B[s, n]H is a cofibration it suffices
to show that the induced maps

R(Kq)[s, n]H → R(Kq ⨿ Lq)[s, n]H

are inclusions such that the cokernel is a free R-module on a Σs-set. This follows
easily from the fact that

Kq[s, n]H → (Kq ⨿ Lq)[s, n]H

is an inclusion of Σs-sets.
If i is a trivial cofibration, then since all objects in ΣMR are fibrant there exists

a simplicial homotopy inverse to i in ΣMR, and hence j has a simplicial homotopy
inverse in ΣsMR.

Proof of Proposition 3.4.5. We prove (C2). Let C denote either S or MR.
To prove the first statement it suffices to note that

F(∅, Z) ≃
∏
s≥0

Z[s]Σs .

Suppose H ⊆ Σn. Then we see that the induced map g[n]H may be written as

∏
s

mapC(G[s, n]H , Z[s])
g[n]H−−−→∏

s

mapC(F [s, n]H , Z[s])×mapC(F [s,n]H ,W [s]) mapC(G[s, n]H ,W [s]).

Since by Lemma 3.4.8 or 3.4.9 we have that F [s, n]H → G[s, n]H is a cofibration
(resp. a trivial cofibration) of Σs-equivariant objects whenever i is one in ΣC, the
result follows from the simplicial closed model category structure of C.
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3.5 Cofibrant objects and forgetful functors

In this section we study how well forgetful functors preserve cofibrancy. For any
A ∈ operC we say that an A-algebra X ∈ CA is C-cofibrant if it is cofibrant in the
underlying category C. We say that an A-biobject is Σ-cofibrant if it is cofibrant
in the underlying category of Σ-objects. We say that an operad A is Σ-cofibrant if
the unit map η : I → A is a cofibration in the underlying category of Σ-objects.

Over the category of simplicial sets, cofibrancy is preserved by these forgetful
functors for trivial reasons.

3.5.1. Proposition. Every operad in operS is Σ-cofibrant, and for any A ∈ operS
every object in SA (resp. A-biobjS) is S-cofibrant (resp. Σ-cofibrant).

Proof. Every object in S and ΣS is cofibrant, and for any operad A the unit map
I → A is an inclusion, and thus is a cofibration from a cofibrant object.

Over the category of simplicial R-modules we need to be more careful. First note
that over a field of characteristic zero things become simple.

3.5.2. Proposition.

1.If R is a field, then for any A ∈ operMR every object in MR
A is Σ-cofibrant.

2.If R is a field of characteristic zero, then for an operad A ∈ operMR every
object in A-biobjMR is ΣMR-cofibrant, and if A ̸= 0 then the operad A is
ΣMR-cofibrant.

Proof. If R is a field, then every R-module is projective, and thus every object in MR

is cofibrant. If R is a field of characteristic zero then the group ring R[Σn] is semi-
simple, and thus every R[Σn]-module is a retract of a free one, and thus every object
in ΣMR is cofibrant. If A is a non-zero operad, then the map I → A is necessarily
an inclusion, and thus A is Σ-cofibrant.

More generally, we have the following.

3.5.3. Proposition. Every cofibrant operad in ΣMR is Σ-cofibrant.

We begin by proving the following lemma.

3.5.4. Lemma. If A ∈ ΣMR is cofibrant, then the free operad FA is Σ-cofibrant.

Proof. We use the construction of the free operad given in Section A. Thus, FA is
the colimit of a sequence of maps in : FnA → Fn+1A, where Fn+1A = I ⨿ A ◦ FnA
and where i0 : I → I ⨿ A and in = I ⨿ A ◦ in−1 for n > 0. Thus it suffices to show
that each in is a cofibration of Σ-objects.

Since A and I are cofibrant, i0 is a cofibration between cofibrant objects. Now
suppose we have shown that in is a cofibration between cofibrant objects. Then by
Propositions 3.4.2 and 3.4.5 we see that A ◦ in is a cofibration between cofibrant
objects, and it follows that in+1 is a cofibration between cofibrant objects, as desired.
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Proof of 3.5.3. By the construction of the model category structure on operads, a
cofibrant operad is a retract of one which is obtained as the diagonal of a simplicial
object in operMR which in degree n has the form FAn, where An ∈ ΣMR is a cofibrant
Σ-object. The result now follows by Lemma 3.5.4 and Proposition 3.3.3.

3.5.5. Proposition. If A ∈ operMR is a Σ-cofibrant operad, then every cofibrant
A-algebra is MR-cofibrant.

Proof. Since A is Σ-cofibrant it follows from Proposition 3.4.4 that A(RS) is also
Σ-cofibrant, where S ∈ S is a simplicial set. Thus by Proposition 3.1.14 and Re-
mark 3.3.7, we see that a cofibrant A-algebra is MR-cofibrant.

3.5.6. Proposition. If A,B ∈ operMR are Σ-cofibrant operads, then every cofibrant
A,B-biobject is Σ-cofibrant.

Proof. Since A and B are Σ-cofibrant it follows from Proposition 3.4.5 that A ◦
(RS) ◦ B is also Σ-cofibrant, where S ∈ ΣS is a Σ-object over simplicial sets. Thus
by Corollary 3.3.4 and Remark 3.3.10, we see that a cofibrant A,B-biobject is Σ-
cofibrant.

3.6 Relations between homotopy categories

In this section we show that under good conditions weakly equivalent operads induce
equivalent homotopy categories of algebras and biobjects. Let C denote either S or
MR.

3.6.1 Homotopy categories of algebras

Let f : A→ B be a map of operads on C. Then as noted in 2.3.17, f induces a pair
of adjoint functors

f∗ : C
A � CB : f ∗,

where f ∗ denotes the forgetful functor and f∗X = B ◦A (X).

3.6.2. Proposition.

1.A map j in CB is a weak equivalence (resp. a fibration) in CB if and only if
f ∗j is a weak equivalence (resp. a fibration) in CA.

2.The functor f∗ takes cofibrations (resp. trivial cofibrations) in CA to cofibrations
(resp. trivial cofibrations) in CB.

3.The functor f∗ takes weak equivalences between cofibrant objects in CA to weak
equivalences between cofibrant objects in CB.

Proof. Part (1) is immediate. Parts (2) and (3) follow from (1) and the characteriza-
tion of weak equivalences and fibrations in S and MR.
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3.6.3. Corollary. [13] If f : A→ B ∈ operC, then the adjoint functors f∗, f
∗ induce

a pair of adjoint functors on homotopy categories

HoCA � HoCB.

3.6.4. Proposition. If X is a cofibrant A-algebra, and f : A → B is a weak equiv-
alence of Σ-cofibrant operads, then the adjunction map i : X → f ∗f∗X is a weak
equivalence of A-algebras.

Proof. Because X is cofibrant in SA (resp. MR
A, by Remarks 3.2.6 (resp. 3.3.7) we

may without loss of generality assume that X is a retract of an A-algebra of the form
diagA(S•), where A(S•) is a simplicial object in SA (resp. MR

A) such that each Sq is
a discrete set (resp. a free R-module on a discrete set) and the degeneracy operators
are induced by maps between the Sq’s. Thus it suffices to show that the map

diagA(S•)→ f ∗f∗ diagA(S•) ≃ B(S•)

is a weak equivalence, but this is clear because each map A(Sq) → B(Sq) is a weak
equivalence by Proposition 3.4.4.

3.6.5. Corollary. Suppose f : A → B is a weak equivalence of Σ-cofibrant operads.
Then the adjoint pair of functors f∗ and f ∗ induces an equivalence of homotopy the-
ories in the sense of Quillen between CA and CB. In particular, there is an induced
equivalence of homotopy categories

HoCA ≃ HoCB.

Proof. It suffices to prove Quillen’s criterion [13]: that for cofibrant X ∈ CA and
fibrant Y ∈ CB, a map j : f∗X → Y is a weak equivalence if and only if its adjoint
k : X → f ∗Y is a weak equivalence. In fact, k factors into

k : X
i−→f ∗f∗X

f∗j−−→ f ∗Y,

where the unit i of the adjunction is a weak equivalence by Proposition 3.6.4, since
X is cofibrant. By Proposition 3.6.2 (1) the map f ∗j is a weak equivalence if and
only if j is, and the Corollary follows.

3.6.6 Homotopy categories of biobjects

Let f : A→ B and g : A′ → B′ be maps of operads on C. Then as noted in 2.3.17, f
and g induce a pair of adjoint functors

(f, g)∗ : (A,A
′)-biobjC � (B,B′)-biobjC : (f, g)∗,

where (f, g)∗ denotes the forgetful functor and (f, g)∗M = B ◦AM ◦A′ B′.

3.6.7. Proposition.
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1.A map j in B-biobjC is a weak equivalence (resp. a fibration) in B-biobjC if
and only if f ∗j is a weak equivalence (resp. a fibration) in A-biobjC.

2.The functor f∗ takes cofibrations (resp. trivial cofibrations) in A-biobjC to cofi-
brations (resp. trivial cofibrations) in B-biobjC.

3.The functor f∗ takes weak equivalences between cofibrant objects in A-biobjC to
weak equivalences between cofibrant objects in B-biobjC.

Proof. Part (1) is immediate. Parts (2) and (3) follow from (1) and the characteriza-
tion of weak equivalences and fibrations in ΣS and ΣMR.

3.6.8. Proposition. IfM is a cofibrant (A,A′)-biobject, and f : A→ B and g : A′ →
B′ are weak equivalences of Σ-cofibrant operads, then the adjunction map i : M →
(f, g)∗(f, g)∗M is a weak equivalence of (A,A′)-biobjects.

Proof. Because M is cofibrant in (A,A′)-biobjS (resp. (A,A′)-biobjMR, by Remarks
3.2.9 (resp. 3.3.10) we may without loss of generality assume that M is a retract of
an A,A′-algebra of the form diagA ◦ S• ◦ A′, where A ◦ S• ◦ A′ is a simplicial object
in (A,A′)-biobjS (resp. (A,A′)-biobjMR) such that each Sq is a Σ-object such that
each Sq[n] is a discrete Σn-set (resp. a free R-module on a discrete Σn-set) and the
degeneracy operators are induced by maps between the Sq’s. Thus it suffices to show
that the map

diagA ◦ S• ◦ A′ → f ∗f∗ diagA ◦ S• ◦ A′ ≃ B ◦ S• ◦B′

is a weak equivalence, but this is clear because each map A ◦ Sq ◦A′ → B ◦ Sq ◦B′ is
a weak equivalence by Proposition 3.4.5.

3.6.9. Corollary. Suppose f : A → B and g : A′ → B′ are weak equivalences of Σ-
cofibrant operads. Then the adjoint pair of functors (f, g)∗ and (f, g)∗ induces an
equivalence of homotopy theories in the sense of Quillen between (A,A′)-biobjC and
(B,B′)-biobjC. In particular, there is an induced equivalence of homotopy categories

Ho(A,A′)-biobjC ≃ Ho(B,B′)-biobjC.

Proof. This is similar to the proof of Corollary 3.6.5.

3.7 Standard resolutions

In this section we define notions of bar complexes involving operads, and show that
under mild hypotheses they can be used to produce cofibrant resolutions of algebras
or biobjects.

3.7.1 Bar complexes

Let A and B be operads on some simplicial symmetric monoidal category C. Given
X ∈ CA and M ∈ (B,A)-biobjC, define the bar complex B(M,A,X) to be the
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simplicial object in CB with nth degree M ◦An(X), along with the obvious face and
degeneracy maps. Then the diagonal diagB(M,A,X) is an object in CB, and there
is an augmentation map diagB(M,A,X)→M ◦A (X) in SB.

Likewise, if A, B, and C are operads on some simplicial symmetric monoidal
category C, and given M ∈ (B,A)-biobjC and N ∈ (A,C)-biobjC, define the bar
complex B(M,A,N) to be the simplicial object in (B,C)-biobjC with nth degree
M ◦A◦n◦N , along with the obvious face and degeneracy maps. Then diagB(M,A,N)
is an object in (B,C)-biobjC, and there is an augmentation map diagB(M,A,N)→
M ◦A N in (B,C)-biobjC.

3.7.2 Realizations of bar complexes

For the remainder of this section, we shall letC denote either the category of simplicial
sets or the category of simplicial R-modules.

Given a category N enriched over simplicial sets, let sN denote the category of
simplicial objects in N. Then there is a realization functor diag : sN → N, which is
left adjoint to the functorN→ sN which takesX to the simplicial object [n] 7→ X∆[n].

3.7.3. Proposition. If A ∈ operC is is Σ-cofibrant, then given a C-cofibrant A-
algebra X ∈ CA, and a Σ-cofibrant B,A-biobject M ∈ (B,A)-biobjC, the B-algebra
diagB(M,A,X) is a cofibrant B-algebra.

3.7.4. Corollary. If A ∈ operC is Σ-cofibrant, and X ∈ CA is C-cofibrant, then
diagB(A,A,X)→ X is a cofibrant resolution of X as an A-algebra.

Proof. This follows from Proposition 3.7.3 and the existence of a contracting homo-
topy in the underlying category C given by η : An(X) → A

(
An(X)

)
= An+1(X),

which shows that the augmentation map is a weak equivalence of A-algebras.

3.7.5. Proposition. If A ∈ operC is Σ-cofibrant, then given a Σ-cofibrant B,A-
biobject M ∈ (B,A)-biobjC and a Σ-cofibrant A,C-biobject N ∈ (A,C)-biobjC, the
B,C-biobject diagB(M,A,N) is a cofibrant B,C-biobject.

3.7.6. Corollary. If A ∈ operC is Σ-cofibrant, then diagB(A,A,A) is a cofibrant
resolution of A as an A-biobject.

Proof. This follows from Proposition 3.7.5 and the existence of a contracting homo-
topy in the underlying category ΣC given by η : ◦1: A◦(n+1) → A◦A◦(n+1) = A◦(n+2),
which shows that the augmentation map is a weak equivalence of A,A-biobjects.

To prove these, we need to describe the realization functor diag : sN → N more
explicitly. Let N be a simplicial category, and consider a simplicial object Y• in sN.
The latching object LnY• is defined to be the coequalizer in⨿

0≤i<j≤n

Yn−1 ⇒
⨿

0≤k≤n

Yn → LnY•,
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where the top map takes the (i, j)th summand to the jth summand by si, and the
bottom map takes the (i, j)th summand to the ith summand by sj−1. Then it follows
from the simplicial identities that there is a canonical map LnY• → Yn+1, induced by
the map which takes the ith summand in

⨿
Yn to Yn+1 by si. We let L−1 = ∅.

It is well known that the realization diag Y• can be recovered from information
about the latching spaces. In particular, if we let diag0 Y• = Y0, and if we construct
diagn Y• inductively by a pushout square

∆[n]⊗ Ln−1Y• ⨿∆̇[n]⊗Ln−1Y•
∆̇[n]⊗ Yn //

��

∆[n]⊗ Yn

��
diagn−1 Y• // diagn Y• ,

then diag Y• = colimn diagn Y•. This leads to the following proposition.

3.7.7. Proposition. If each map Ln−1Y• → Yn for n ≥ 0 is a cofibration, then
diag Y• is cofibrant.

LetA be an operad onC. Write si : A
◦n → A◦(n+1) for the maps si = 1◦· · ·◦η◦· · ·◦1

induced by the unit map η : 1→ A. Thus, s0 = η ◦ 1 ◦ · · · ◦ 1 and sn = 1 ◦ · · · ◦ 1 ◦ η.
Define an object Kn ∈ ΣC to be the coequalizer in⨿

0≤i<j≤n

A◦(n−1) ⇒
⨿

0≤k≤n

A◦n → Kn,

where the top map takes the (i, j)th summand to the jth summand by si, and the
bottom map takes the (i, j)th summand to the ith summand by sj−1. It follows
from the simplicial identities that there is a canonical map k : Kn → A◦(n+1). We let
K−1 = ∅.

3.7.8. Lemma. For each n ≥ 0, there is a pushout square in ΣC of the form

Kn ◦ I //1◦η

��
k◦1

Kn ◦ A

��

A◦(n+1) ◦ I // Kn+1

such that the maps 1 ◦ η : A◦(n+1) ◦ I → A◦(n+2) and k ◦ 1: Kn ◦ A → A◦(n+2) induce
k : Kn+1 → A◦(n+2).

Proof. The proof is by induction on n ≥ −1. The case n = −1 is clear, since K0 = I.
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For n ≥ 0 we consider the following diagram:⨿
0≤i<j≤n

A◦(n−1) ◦ A ////

⨿
0≤k≤n

A◦n ◦ A // Kn ◦ A

⨿
0≤i<j≤n

A◦(n−1) ////

OO

1◦η ⨿
0≤k≤n

A◦n
//

OO

1◦η

��

Kn ◦ I

OO

1◦η

��

k◦1

A◦(n+1) A◦(n+1) ◦ I .

The middle row is the coequalizer which defines Kn. The top row is − ◦ A applied
to the middle row; since −◦A preserves colimits in ΣC the top row is a coequalizer.
The colimit of the diagram consisting of all objects in the two left-most columns and
all maps shown between them is clearly Kn+1. This colimit is also clearly the same
as the colimit of the right-hand column, which is the desired push-out.

3.7.9. Lemma. If A is a Σ-cofibrant operad, then the map k : Kn → A◦(n+1) is a
cofibration between cofibrant objects in ΣC for each n ≥ 0.

Proof. The proof proceeds by induction on n. For n = 0, it’s clear since K0 = I → A
is a cofibration between cofibrant objects in ΣC since A is Σ-cofibrant. Suppose now
we have that Kn−1 → A◦n is a cofibration between cofibrant objects in ΣC. Then
since I → A is also cofibration between cofibrant objects, the result follows from
Lemma 3.7.8 and Proposition 3.4.5.

3.7.10. Lemma. If A is a Σ-cofibrant operad, X a C-cofibrant algebra, and M a
Σ-cofibrant B,A-biobject, then the natural map Ln−1B(M,A,X) → M ◦ An(X) in
CB is a cofibration of B-algebras.

Proof. First, note that LnB(M,A,X) ≃ M ◦Kn(X). The map Kn(X) → An(X) is
a cofibration in C by Lemma 3.7.9 and Proposition 3.4.4, and the lemma follows by
applying M ◦ − and using Proposition 3.4.4.

Proof of Proposition 3.7.3. From Lemma 3.7.10 and Proposition 3.7.7, we see that
diagB(M,A,X) is cofibrant in CA.

3.7.11. Lemma. The natural map Ln−1B(M,A,N)→M ◦A◦n◦N in (B,C)-biobjC
is a cofibration of B,C-biobjects.

Proof. First, note that LnB(M,A,N) ≃ M ◦Kn ◦N . The lemma then follows from
Lemma 3.7.9.

Proof of Proposition 3.7.5. From Lemma 3.7.11 and Proposition 3.7.7, we see that
diagB(M,A,N) is cofibrant in (B,C)-biobjC.
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Chapter 4

Moduli spaces of algebra structures

4.1 Moduli spaces of algebra structures

In this section we define the endomorphism operad of a diagram, and hence the moduli
space of algebra structures of a diagram. We then show that in certain cases maps
between such moduli spaces are fibrations or equivalences.

As usual, C denotes either S or MR.

4.1.1 Endomorphism operads for diagrams

In Section 2.2 we defined the endomorphism operad EX of an object X ∈ C. The
endomorphism operad classifies algebra structures on X.

Let D be a small category, and let X : D → C denote a functor. An A-algebra
structure on X consists of for each object D ∈ D an A-algebra structure on XD
such that for each map d : D → D′ ∈ D the induced map Xd : XD → XD′ is a
map of A-algebras. Given a functor F : B → D we see that an A-algebra structure
on X naturally restricts to an A-algebra structure on XF , where XF denotes the
composite functor XF : B→ D.

Let D be a small category, and let D0 denote the set of objects in D. Given a
diagram X : D→ C, define the object EX in ΣC to be the equalizer of the diagram

EX →
∏
α∈D0

Hom(Xα, Xα) ⇒
∏

α→β∈D[α,β]

Hom(Xα, Xβ).

4.1.2. Proposition. Let X : D → C be a diagram. The object EX in ΣC has the
structure of an operad, induced as a subobject of the operad

∏
α∈D0

Hom(Xα, Xα).
Maps A→ EX of operads are in one-to-one correspondence with A-algebra structures
on the diagram X.

The operad EX is called the endomorphism operad of the diagramX. In particular,
if D is the category with a single object α and a single morphism, then EX is just the
endomorphism operad of the space Xα, as defined in Section 2.2.
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4.1.3. Proposition. Given a diagram X : D → C and a functor F : B → D there
is an induced map EX → EXF .

Given an operad A, let A{X} denote the simplicial set defined by

A{X} = mapoperC(A, EX).

We call A{X} the moduli space of A-algebra structures on X.
Given a map f : X → Y ∈ C, we let Ef or E

(X
f−→Y )

denote the endomorphism

operad of the diagram (• → •) → C which takes the unique non-identity arrow of

(• → •) to f , and let A{f} or A{X f−→ Y } denote the corresponding space of A-
algebra structures. Likewise, given a string of maps Xn → · · · → X0 ∈ C, we write
E(Xn→···→X0) for the endomorphism operad and A{Xn → · · · → X0} for the space of
A-algebra structures on this diagram.

4.1.4. Proposition. Given a map f : X → Y in C, we have that

Ef ≃ Hom(X,X)×Hom(X,Y ) Hom(Y, Y ).

More generally, we have the following.

4.1.5. Proposition. Given a sequence of maps Xn → · · · → X0 in C, we have that

E(Xn→···→X0) ≃ Hom(Xn, Xn)×Hom(Xn,Xn−1) · · · ×Hom(X1,X0) Hom(X0, X0).

4.1.6 Homotopical properties of endomorphism operads for
diagrams

4.1.7. Proposition. If p : X → Y is a fibration between cofibrant-fibrant objects in
C, then in

EX
f←− Ep

g−→EY ,

the map g is a fibration. If furthermore p is a trivial fibration between cofibrant-fibrant
objects, then f and g are also weak equivalences.

Proof. Given Proposition 4.1.4, we see that to show that g is a fibration (resp. a trivial
fibration), it suffices to show that the map Hom(X, p) : Hom(X,X)→ Hom(X,Y ) is.
That Hom(X, p) is a fibration (resp. a trivial fibration) follows from Corollary 3.4.4.

Given Proposition 4.1.4 and the fact that Hom(X, p) is a fibration, we see that to
show that f is a weak equivalence it suffices to show that the map

Hom(p, Y ) : Hom(Y, Y )→ Hom(X,Y )

is. That Hom(p, Y ) is a weak equivalence follows from Corollary 3.4.4.

4.1.8. Proposition. If i : X → Y is a cofibration between cofibrant-fibrant objects
in C, then in

EX
f←− Ei

g−→EY ,
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the map f is a fibration. If furthermore i is a trivial cofibration between cofibrant-
fibrant objects, then f and g are also weak equivalences.

Proof. Given Proposition 4.1.4, we see that to show that f is a fibration (resp. a trivial
fibration), it suffices to show that the map Hom(i, Y ) : Hom(Y, Y ) → Hom(X,Y ) is.
That Hom(i, Y ) is a fibration (resp. a trivial fibration) follows from Corollary 3.4.4.

Given Proposition 4.1.4 and the fact that Hom(i, Y ) is a fibration, we see that to
show that g is a weak equivalence it suffices to show that the map

Hom(X, i) : Hom(X,X)→ Hom(X,Y )

is. That Hom(X, i) is a weak equivalence follows from Corollary 3.4.4.

We will actually need the following generalization of Proposition 4.1.7

4.1.9. Proposition. If Xn → · · · → X0 are fibrations between cofibrant-fibrant ob-
jects in C, then for any k such that 0 ≤ k ≤ n we have that in

E(Xn→···→Xk+1)
f←− E(Xn→···→X0)

g−→E(Xk→···→X0),

the map g is a fibration. If furthermore all the maps in the sequence are trivial
fibrations, then f and g are also weak equivalences.

Proof. Similar to the proof of Proposition 4.1.7.

4.1.10 Homotopical properties of moduli spaces of algebra
structures on diagrams

Propositions 4.1.7, 4.1.8, and 4.1.9 imply the following results about spaces of algebra
structures.

4.1.11. Proposition. If i : X → Y is a cofibration between cofibrant-fibrant objects
in C, and A is a cofibrant operad, then in

A{X} f←− A{i} g−→A{Y },

the map f is a fibration. If furthermore i is a trivial cofibration between cofibrant-
fibrant objects, then f and g are also weak equivalences.

4.1.12. Proposition. If p : X → Y is a fibration between cofibrant-fibrant objects in
C, and A is a cofibrant operad, then in

A{X} f←− A{p} g−→A{Y },

the map g is a fibration. If furthermore p is a trivial fibration between cofibrant-fibrant
objects, then f and g are also weak equivalences.
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4.1.13. Proposition. If the maps Xn → · · · → X0 are trivial fibrations between
cofibrant-fibrant objects in C, and A is a cofibrant operad, then for any k such that
0 ≤ k ≤ n we have that in

A{Xn → · · · → Xk+1}
f←− A{Xn → · · · → X0}

g−→A{Xk → · · · → X0},

the map f is a weak equivalence and g is a trivial fibration.

4.1.14 An application to C-cofibrancy

We make use of the space of A-algebra structures to prove the following handy result,
which will be used in Section 4.2.

4.1.15. Proposition. Let A be a cofibrant operad. If f : X → Y is a cofibration of
A-algebras from a C-cofibrant object X, then Y is also C-cofibrant.

4.1.16. Lemma. Consider X
i−→ Z

p−→ Y ∈ C such that i is a cofibration, p is a
fibration, and X is cofibrant in C. Then the induced map of endomorphism operads

g : E(X→Z→Y ) −→ E(X→Y )

is a fibration. Furthermore g is a weak equivalence if either i or p is.

Proof. By Corollary 3.4.4 we see that the induced map

h : Hom(Z,Z) −→ Hom(X,Z)×Hom(X,Y ) Hom(Z, Y )

is a fibration, and is furthermore a weak equivalence if either i or p is. The result
follows because g is a pull-back of h, namely

g = Hom(X,X)×Hom(X,Z) h×Hom(Z,Y ) Hom(Y, Y ).

Proof of Proposition 4.1.15. Choose a factorization X
i−→ Z

p−→ Y in C of the map
f : X → Y ∈ CA into a cofibration i followed by a trivial fibration p. By Lemma 4.1.16
and the fact that A is a cofibrant operad we see that there is a trivial fibration

A{X i−→Z
p−→Y } −→ A{X f−→Y }.

In particular, this map is a surjective map of simplicial sets! Thus there exists an

A-algebra structure on Z making X
i−→ Z

p−→ Y into a diagram in CA. Since p is
therefore a trivial fibration of A-algebras there is a lift in the square

X //i

��
f

Z

��
p

Y

??

Y ,
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showing that Y is a retract of Z in CA, hence a retract in C. Thus Y is cofibrant in
C since Z is.

4.2 Relation between moduli space and classifica-

tion spaces

In this section we prove Theorems 1.2.10 and 1.2.15. We let C denote either the
category of simplicial sets or the category of simplicial R-modules.

Given a closed model category N, we will let wN denote the subcategory of weak
equivalences of N. We also let wN denote the nerve of this category. Note that any
functor π : N → N′ which takes weak equivalences to weak equivalences induces a
corresponding map π : wN→ wN′.

The proof proceeds in several steps. The first step is to replace the categories wC
and wCA by more convenient subcategories. Let w′C denote the subcategory of wC
having as objects the fibrant and cofibrant objects of C, and having as morphisms
all trivial fibrations between such objects. Let w′CA ⊂ wCA denote the pre-image
of w′C under π. Thus w′CA is the subcategory of wCA having as objects all fibrant
A-algebras X such that πX ∈ C is cofibrant, and having as morphisms all trivial
fibrations between such objects.

4.2.1. Lemma. If A is a cofibrant operad, the horizontal maps in the diagram

w′CA //

��

wCA

��
w′C // wC

are weak equivalences.

Lemma 4.2.1 is proved below.
Let wC∆[−]⊗A denote the bisimplicial set of 1.2.8. Since A is a cofibrant operad,

then so are ∆[t] ⊗ A for t ≥ 0, and thus by Lemma 4.2.1 the inclusion w′C∆[t]⊗A →
wC∆[t]⊗A is a weak equivalence.

Furthermore, each map ∆[t] ⊗ A → ∆[t′] ⊗ A induced by a map ∆[t] → ∆[t′] of
simplicial sets is a weak equivalence of cofibrant operads, and thus by Corollary 3.6.5
induces an equivalence of homotopy theories in the sense of Quillen, and thus by a re-
sult of Dwyer-Kan [3] induces an equivalence of simplicial sets wC∆[t′]⊗A → wC∆[t]⊗A.
In particular, there are natural equivalences

diagw′C∆[−]⊗A ∼−→ diagwC∆[−]⊗A ≃ wCA.

The third step is to get a hold of the homotopy fiber of the map

diagw′C∆[−]⊗A → w′C,

using the following variation on Quillen’s Theorem B [15].
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4.2.2. Lemma. Let M• be a simplicial object in the category of categories, let N be
a category, and let π : M• → N be a functor to N considered as a constant simplicial
object. Then the diagram of simplicial sets

diag (π ↓ X) //

��

diagM•

��
(N ↓ X) // N

will be a homotopy pull-back if each map diag (π ↓ X) → diag (π ↓ X ′) induced by
f : X → X ′ ∈ N is a weak equivalence.

Lemma 4.2.2 is proved below.
Thus it will suffice to show that for each map X → X ′ ∈ w′C, the induced

map diag (π ↓ X)→ diag (π ↓ X ′) is an equivalence, and that diag (π ↓ X) is weakly
equivalent to A{X}.

Note that the bisimplicial set (π ↓ X) has (s, t)-bisimplices given by

(π ↓ X)st =
⨿

Ys→···→Y0→X∈w′C

A{Ys → · · · → Y0}t.

We see from Proposition 4.1.13 that the vertical maps in⨿
Ys→···→Y0→X∈w′C

A{Ys → · · · → Y0}

⨿
Ys→···→Y0→X∈w′C

A{Ys → · · · → Y0 → X}}

OO

��⨿
Ys→···→Y0→X∈w′C

A{X}

are weak equivalences, and we see that the bottom space is just (w′C ↓ X)×A{X} ≃
A{X}; thus, each fiber (π ↓ X) is weakly equivalent to A{X}.
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To see what a map f : X → X ′ ∈ w′C induces, we look at another diagram:⨿
Ys→···→X

A{Ys → · · · → Y0} //b

⨿
Ys→···→X′

A{Ys → · · · → Y0}

⨿
Ys→···→X

A{Ys → · · · → Y0 → X
f−→X ′} //

OO

∼

��
∼

⨿
Ys→···→X′

A{Ys → · · · → Y0 → X ′}

OO

∼

��
∼⨿

Ys→···→X

A{X f−→X ′} //a

⨿
Ys→···→X′

A{X ′} .

The maps marked by ∼ are weak equivalences by Proposition 4.1.13, and a is just
the map

a : (w′C ↓ X)× A{X f−→X ′} → (w′C ↓ X ′)× A{X ′},

which is a weak equivalence by Proposition 4.1.11, and because (w′C ↓ X) and
(w′C ↓ X ′) are contractible. Thus b is a weak equivalence as desired. The proof
is complete.

4.2.3 Proofs of technical lemmas

We still need to prove several lemmas. In the following, let N be a closed model
category. Let Nf denote the full subcategory of N which contains all fibrant objects.
Let Nu denote a full subcategory of N such that

1. Nu contains all cofibrant objects of N,

2. Nu is stable under cofibrations. That is, if X ∈ Nu and i : X → Y ∈ N is
a cofibration, then Y ∈ Nu.

Let Nuf = Nu ∩Nf .
If N′ is a full subcategory of a model category N, let wN′ ⊆ N′ denote the

subcategory consisting of all the objects and all weak equivalences between them.
Let fwN′ ⊆ N′ denote the subcategory consisting of all the objects and all trivial
fibrations between them.

4.2.4. Lemma. The map wNuf → wN is a weak equivalence.

4.2.5. Lemma. The map π : fwNuf → wNuf is a weak equivalence.

Proof of Lemma 4.2.1. To show that w′C → wC is a weak equivalence, let N = C
and let Nu denote the subcategory of cofibrant objects. Then w′C = fwNuf and
Lemmas 4.2.4 and 4.2.5 apply.

To show that w′CA → wCA is a weak equivalence, let N = CA and let Nu

denote the subcategory of C-cofibrant objects. Then since A is assumed to be a
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cofibrant operad, Proposition 4.1.15 shows that Nu satisfies the desired properties.
Thus w′CA = fwNuf and Lemmas 4.2.4 and 4.2.5 apply.

Proof of Lemma 4.2.4. We first prove that the inclusion i : wNf → wN is a weak
equivalence. Using the functorial factorization of Proposition 3.1.5 we can define a
functor j : wN→ wNf and natural transformations 1→ ij and 1→ ji, which show
that i is a simplicial homotopy equivalence.

To show that the inclusion i′ : wNuf → wNf is a weak equivalence, we again
use the functorial factorization to define a functor j′ : wNf → wNuf and natural
transformations i′j′ → 1 and j′i′ → 1, which show that i′ is a simplicial homotopy
equivalence. This part of the proof makes use of the fact thatNu contains all cofibrant
objects.

Proof of Lemma 4.2.5. By Quillen’s Theorem A it suffices to show that for each X ∈
Nuf the nerve of (X ↓ π) is contractible.

Each category (X ↓ N) is a closed model category, with fibrant initial object X.
It is easy to see that (X ↓ π) is equivalent to the full subcategory of fw(X ↓ N)uf
consisting of objects which are weakly equivalent to X. Here (X ↓ N)u denotes the
full subcategory of objects X → Y such that Y ∈ Nu. Thus (X ↓ N)u is stable under
cofibrations. The result now follows from the following lemma, taking (X ↓ N) for N
and (X ↓ N)u for Nu.

4.2.6. Lemma. Let N be a closed model category with fibrant initial object X, and
with a subcategory Nu stable under cofibrations which contains X. Then the full
subcategory N0 of fwNuf containing the initial object has contractible nerve.

Proof. It suffices to show that any functor F : D→ N0 from the subdivision category
of a simplicial set induces a null homotopic map on nerves. The subdivision D of
a simplicial set K is the category whose objects are the non-degenerate simplices
k ∈ Kn for some n, and whose morphisms k → l correspond to pairs of non-degenerate
simplices such that l is a face of k. Note that D is actually a partial order on the set
of non-degenerate simplices of K, with the 0-simplices of K as the maximal elements

The category ND of D-diagrams in N admits a model category structure with the
following properties.

1. A map of diagrams F → G is a weak equivalence if and only if each object
d ∈ D is taken to a weak equivalence f(d)→ g(d) in N.

2. A map of diagrams F → G is a cofibration if and only if each object d ∈ D is
taken to a cofibration f(d)→ g(d) in N.

Furthermore, I claim that if i : D′ → D is the inclusion of a subcategory of D with
the property that every non-empty subset of the set of objects of D′ has a unique
maximal element, then the restriction of a fibration F → G of D-diagrams to D′ is a
fibration of D′-diagrams.

Let X̄ : D → N denote the initial diagram, defined by X̄(d) = X. Given a
diagram F : D→ N0 ⊆ N, let F × X̄ : D→ N be the functor defined on objects by

(F × X̄)(d) = F (d)×X.
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This functor actually lands in fNf , since X is fibrant. Factor the unique map X̄ →
F × X̄ into maps of diagrams

X̄
i−→G

p=p1×p2−−−−−→ F × X̄

where i is a trivial cofibration and p is a fibration of D-diagrams. We claim that the
diagram G and the maps of diagrams X̄

p2←− G
p1−→ F land in N0, and thus define a

functor
D× (• ← • → •)→ N0

which homotops F to the constant functor.
First, we show that for each object d in D, the maps p1(d) : G(d) → F (d) and

p2(d) : G(d) → X are trivial fibrations. Since F (d) and X are fibrant, it is enough
to show that p(d) : G(d)→ F (d)×X is a fibration. Let D′ be the subcategory of D
consisting of the single object d and the identity map. Then the restriction of p to
D′ is a fibration of diagrams, hence p(d) is a fibration as desired.

Next, we show that for each map f : d0 → d1 in D, the map G(f) : G(d0)→ G(d1)
is a trivial fibration. Since G(f) is by construction a weak equivalence, it is enough

to show that it is a fibration. Let D′ = (d0
f−→ d1) be a subcategory of D. Then the

restriction of p : G→ F ′ to D′ is a fibration of D′ diagrams, hence the map

G(d0)→ G(d1)×F (d1)×X
(
F (d0)×X

)
is a fibration. Since by hypothesis the map F (f) is a fibration and X is fibrant, this
implies that G(f) is a fibration as desired.

Finally, we note that G is fibrant since there is a fibration p to a fibrant object,
and that G lies in the subcategory Nu, since there is a cofibration i from an object
in Nu.

Proof of Lemma 4.2.2. The key element of Quillen’s proof of Theorem B [15]is the
fact that for any functor X : D → S such that for each d : D → D′ ∈ D the induced
map Xd is a weak equivalence, the square

XD //

��

Y

��
{D} // D

is a homotopy pull-back, where Y denotes the diagonal of the simplicial object in S

defined by

t 7→
⨿

D0→...→Dt∈D

XD0.
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Using this one may easily show that, given a functor X• : D → S∆op

to bisimplicial
sets, the corresponding square

diagX•D //

��

diag Y•

��
{D} // D

is also a weak equivalence. The lemma now follows by an argument similar to Quillen’s
[15, §1].
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Chapter 5

Cohomology of operads

5.1 Abelian group objects in simplicial R-module

operads

In this section we describe abelian group objects in the category of biobjects over an
operad, and show the existence of an abelianization functor.

5.1.1 Abelian group objects and pointed objects

Let D be a complete category, and let X be an object in D. An abelian group
object in D over X is a map π : K → X ∈ D together with addition, unit, and
inverse maps +: K×X K → K, (−1) : K → K, 0 : X → K in (D ↓ X), which satisfy
the usual abelian group axioms. We let ab(D ↓ X) denote the category of abelian
group objects in D over X.

Again, suppose X is an object in some category D. A pointed object in D over
X is a map π : K → X together with a map s : X → K such that πs = 1X . We
let pt(D ↓ X) denote the category of pointed objects over X. There is an obvious
forgetful functor ab(D ↓ X)→ pt(D ↓ X).

Let X ∈ ΣMR be a Σ-object on simplicial R-modules. An abelian group object
in ΣMR over X is a Σ-object K equipped with a direct sum splitting K = X ⊕ K̄;
the X-summand maps in via the 0-section, and the K̄ summand is the kernel of the
projection π : K → X. Conversely, every Σ-object K over X equipped with such a
direct sum splitting in an abelian group object in a unique way. Thus the functor

ab(ΣMR ↓ X)→ ΣMR

sending K 7→ K̄ is an equivalence of categories.

5.1.2 Abelian group objects in categories of biobjects

Let A and B be operads over simplicial R-modules. Let M be an A,B-biobject.
A map π : K → M ∈ (A,B)-biobjMR equipped with a section 0K : M → K ∈

71



(A,B)-biobjMR can be an abelian group object over M in at most one way. Thus
the forgetful functor

ab((A,B)-biobjMR ↓M)→ pt((A,B)-biobjMR ↓M)

is inclusion of a full subcategory. We give a characterization of the objects in this full
subcategory.

An A,B-biobject is equivalent to a Σ-object K equipped with maps

λ : A[n]⊗K[i1]⊗ · · · ⊗K[in]→ K[m]

and
ρ : K[n]⊗B[i1]⊗ · · · ⊗B[in]→ K[m]

for n ≥ 0, ij ≥ 0, m =
∑
ij, which satisfy certain unit, equivariance, and associativity

relations. An ideal I ⊆ K is a collection of submodules {I[n] ⊆ K[n]} such that

1. I[n] is preserved by the action of Σn on K[n],

2. if a ∈ A[n] and k1 ∈ K[i1], . . . , kn ∈ K[in] such that kj ∈ I[ij] for at least one
value of j where 1 ≤ j ≤ n, then λ(a⊗ k1 ⊗ · · · ⊗ kn) ∈ I[m],

3. if k ∈ I[n] and b1 ∈ B[i1], . . . , bn ∈ B[in], then ρ(k ⊗ b1 ⊗ · · · ⊗ bn) ∈ I[m].

It is not hard to see that if I ⊆ K is an ideal, then the Σ-object K/I defined by

(K/I)[n] = K[n]/I[n]

has a canonical A,B-biobject structure making the quotient map K → K/I into a
map of A,B-biobjects. Conversely, the kernel of a map of A,B-biobjects is an ideal.

Suppose π : K → M is a map of A,B-biobjects; let I be the kernel of this map.
Let JK ⊆ K denote the set of elements of K which are of the form λ(a⊗k1⊗· · ·⊗kn),
where kj ∈ I[ij] for at least two distinct indices j in the set {1, . . . , n}. Let (JK) ⊆ K
denote the smallest ideal containing JK .

5.1.3. Proposition. An object K ∈ pt((A,B)-biobjMR ↓M) is an abelian group
object if and only if JK = 0.

5.1.4. Corollary. There is an abelianization functor

A : ((A,B)-biobjMR ↓M)→ ab((A,B)-biobjMR ↓M)

which is left adjoint to the forgetful functor.

Proof. We define A as follows. Given K → M ∈ (A,B)-biobjMR, let M ∗ K ∈
(A,B)-biobjMR denote the coproduct in the category of A,B-biobjects of M and
K. Clearly M ∗ K is equipped with a projection map M ∗ K → M and a section
M →M ∗K. Define

A(K) =M ∗K/(JM∗K).
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5.1.5. Proposition. Limits and colimits exist in ab((A,B)-biobjMR ↓M), and are
computed in pt(ΣMR ↓M).

Proof. The statement about limits is clear. For formal reasons, in any category of
abelian group objects finite coproducts are isomorphic to finite products; thus finite
coproducts exist and are computed in the underlying category (ΣMR ↓M).

Filtered colimits and reflexive coequalizers may also be computed in the un-
derlying category: we already know that filtered colimits and reflexive coequaliz-
ers in (A,B)-biobjMR are computed in Σ-objects, and since these colimits com-
mute with finite limits we see that the filtered colimit (resp. reflexive coequalizer)
in (A,B)-biobjMR of a diagram of abelian group objects is itself an abelian group
object.

The proposition follows, since any colimit can be built out of finite coproducts,
filtered colimits, and reflexive coequalizers.

5.1.6. Corollary. The forgetful functor

ab((A,B)-biobjMR ↓M)→ ab(ΣMR ↓M)

is exact.

5.1.7 Abelian group objects in the category of operads

In Section 5.2 we will show that for an operad A over simplicial R-modules, the
category ab(operMR ↓ A) is naturally equivalent to the category ab(A-biobjMR ↓ A).

5.1.8. Proposition. There is an abelianization functor

D : (operMR ↓ A)→ ab(operMR ↓ A)

which is left adjoint to the forgetful functor.

5.2 The fundamental exact sequence

Let M denote a complete right-closed monoidal category.

5.2.1 An equivalence of categories of abelian group objects

Let K be an abelian group object in (monM ↓ A). Altogether, K has the following
structure maps:

ηA : I −→ A,

µA : A ◦ A −→ A,

which make A into a monoid,
ηK : I −→ K,

µK : K ◦K −→ K,
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which make K into a monoid,
π : K −→ A,

which is a map of monoids, and

0 : A −→ K,

(−1) : K −→ K,

+ : K ×A K −→ K,

which are maps of monoids which make K into an abelian group object as a monoid
over A.

Recall that if K is an abelian group object over A, the functor (M ↓ A)[−, K]
lands in abelian groups. In particular, given an object X ∈ (M ↓ A) and maps
f, g ∈ (M ↓ A)[X,K], we can add them, obtaining f + g : X → K; the map 0πX is
the zero element of this abelian group, where πX : X → A. Furthermore, given maps
f1, f2 : X → K and g1, g2 : Y → K in (M ↓ A) we have an equality

µK(f1 ◦ g1) + µK(f2 ◦ g2) = µK
(
(f1 + f2) ◦ (g1 + g2)

)
,

where both sides are elements in (M ↓ A)[X ◦ Y,K]; this equality follows from the
fact that + is a map of monoids over A.

Let ℓ : A ◦ K → K and r : K ◦ A → K be defined by ℓ = µK(0 ◦ 1) and
r = µK(1 ◦ 0) respectively. The maps ℓ and r make K into a A-biobject over A,
and since + commutes with ℓ and r we see that K is an abelian group object in
(AMA ↓ A).

5.2.2. Lemma. Given K in ab(monM ↓ A), the identities

µK = ℓ(π ◦ 1) + r(1 ◦ π)(5.2.3)

and

ηK = 0ηA(5.2.4)

hold.

Proof. To show 5.2.3, note that we have that

ℓ(π ◦ 1) = µK(0 ◦ 1)(π ◦ 1) = µK(0π ◦ 1)

and
r(1 ◦ π) = µK(1 ◦ 0)(1 ◦ π) = µK(1 ◦ 0π),
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whence

ℓ(π ◦ 1) + r(1 ◦ π) = µK(0π ◦ 1) + µK(1 ◦ 0π)
= µK

(
(0π + 1) ◦ (1 + 0π)

)
= µK(1 ◦ 1)
= µK .

Equation 5.2.4 from the fact that 0 is a map of monoids over A.

5.2.5. Theorem. The functor

ab(monM ↓ A) −→ ab(AMA ↓ A)

which forgets structure is an equivalence of categories.

Proof. It is easy to see that given K in ab(AMA ↓ A) we can give K the structure
of a monoid using µK = ℓ(π ◦ 1) + r(1 ◦ π) and ηK = 0ηA; this produces a func-
tor ab(AMA ↓ A) → ab(monM ↓ A). Now by Lemma 5.2.2 we see that we get an
equivalence of categories.

5.2.6 Derivations

Given a monoid A in M and an abelian group object K ∈ ab(monM ↓ A), a deriva-
tion from A to K is a map f ∈ (M ↓ A)[A,K] such that

fµA = ℓ(1 ◦ f) + r(f ◦ 1).

We write Der(A,K) for the set of derivations from A to K.

5.2.7. Lemma. Let K be an object in ab(monM ↓ A). Then

Der(A,K) ≃ (monM ↓ A)[A,K].

Proof. By Lemma 5.2.2 we see that

µK(f ◦ f) =
(
ℓ(π ◦ 1) + r(1 ◦ π)

)
(f ◦ f)

= ℓ(πf ◦ f) + r(f ◦ πf)
= ℓ(1 ◦ f) + r(f ◦ 1).

It follows that f is a derivation if and only if fµA = µK(f ◦ f). In particular, a map
of monoids is a derivation.

Conversely, if f is a derivation, we have

fηA = fµA(ηA ◦ ηA)
=

(
ℓ(1 ◦ f) + r(f ◦ 1)

)
(ηA ◦ ηA)

= ℓ(ηA ◦ fηA) + r(fηA ◦ ηA)
= fηA + fηA,
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whence fηA = 0ηA = ηK , and thus f is a map of monoids.

5.2.8 Fundamental exact sequence

We suppose there are adjoint pairs

A : (M ↓ A) � ab(M ↓ A) : U ,

Aℓ : (AM ↓ A) � ab(AM ↓ A) : Uℓ,

Ar : (MA ↓ A) � ab(MA ↓ A) : Ur,

and
Ab : (AMA ↓ A) � ab(AMA ↓ A) : Ub,

as well as
D : (monM ↓ A) � ab(monM ↓ A) : Umon,

where U. denote the obvious forgetful functors.
Let us also assume that the forgetful functors

ab(AMA ↓ A)→ ab(AM ↓ A)→ ab(M ↓ A)

and
ab(AMA ↓ A)→ ab(MA ↓ A)→ ab(M ↓ A)

are exact.
The above conditions are satisfied in the case when M is ΣMR, as was shown in

Section 5.1.

5.2.9. Proposition. In ab(AMA ↓ A) there is an exact sequence

Ab(A ◦ A ◦ A ◦ A)
d−→Ab(A ◦ A ◦ A) −→ D(A) −→ 0.

Proof. Define d by d = Ab(d0)−Ab(d1) +Ab(d2), where d0 = µ ◦ 1 ◦ 1, d1 = 1 ◦ µ ◦ 1
and d2 = 1 ◦ 1 ◦ µ. Let K be an abelian group object in (AMA ↓ A). If we let
d∗ = ab(AMA ↓ A)[d,K], then by standard adjunctions we get an exact sequence

(M ↓ A)[A ◦ A,K]
d∗←− (M ↓ A)[A,K]←− ab(AMA ↓ A)[Cok d,K]←− 0,

where d∗(f) = ℓ(1 ◦ f)− fµA + r(f ◦ 1). Now using Lemma 5.2.7 we see that Cok d
has the same universal property as D(A).

Recall from Section 2.1 that since M is right-closed, so is (M ↓ A), where the
function object functor is denoted FA(−,−).

5.2.10. Proposition. The functor FA(−,−) : (M ↓ A)op × (M ↓ A) → (M ↓ A)
underlies a functor

FA(−,−) : (AM ↓ A)op × (AM ↓ A) −→ (AMA ↓ A)
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which has the property that for X in (AMA ↓ A) and Y in (AM ↓ A), then

(AM ↓ A)[X,Y ] ≃ (AMA ↓ A)[X,FA(A, Y )].

Proof. This is immediate from Proposition 2.1.23.

5.2.11. Proposition. Taking FA(−,−) as in 5.2.10, if X and Y are abelian group
objects in (AMA ↓ A) and (AM ↓ A) respectively, then FA(A, Y ) is naturally an
abelian group object, and we have a bijection

ab(AM ↓ A)[X,Y ] ≃ ab(AMA ↓ A)[X,FA(A, Y )].

Proof. This follows from Proposition 5.2.10 and the fact that

FA(A, Y )×A FA(A, Y ) ≃ FA(A, Y ×A Y ).

5.2.12. Proposition. Given X in ab(AMA ↓ A), the natural map f : Aℓ(X) →
Ab(X) is an isomorphism.

Proof. Using Propositions 5.2.10 and 5.2.11 we see that, given an abelian group object
Y in (AM ↓ A), there are natural bijections

ab(AM ↓ A)[Ab(X), Y ] ≃ ab(AMA ↓ A)[Ab(X),FA(A, Y )]

≃ (AMA ↓ A)[X,FA(A, Y )]

≃ (AM ↓ A)[X,Y ].

Thus Ab has the universal property which characterizes Aℓ.

Let X• be the simplicial object in ab(AMA ↓ A) defined by

X = AbB(A,A,A).

5.2.13. Proposition. The augmentation map AbB(A,A,A) → Ab(A) has a con-
tracting homotopy in the underlying category ab(AM ↓ A), and hence the chain com-
plex

. . . −→ Ab(A ◦ A ◦ A ◦ A)→ Ab(A ◦ A ◦ A)→ Ab(A ◦ A)→ Ab(A)→ 0

in ab(AMA ↓ A) is acyclic.

Proof. Recalling Proposition 5.2.12, define h : Xn → Xn+1 by h = Aℓ(1 ◦ · · · ◦ 1 ◦ η),
where η : I → A is the unit of the monoid A. Then it is easy to check that h is the
desired contracting homotopy.

5.2.14. Theorem. There is a short exact sequence

0→ D(A) −→ Ab(A ◦ A) −→ Ab(A)→ 0.
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Proof. This is an immediate consequence of Propositions 5.2.13 and 5.2.9.

5.2.15. Example. Let us illustrate Theorem 5.2.14 in the “classical” case of associative
algebras. Thus, let M denote the category of R-modules, which is monoidal under
tensor product over R. A monoid A in M is thus an associative R-algebra. The
category AMA is then just the category of A-bimodules, the category of abelian
group objects ab(AMA ↓ A) is equivalent to AMA, and the abelianization functor
Ab : (AMA ↓ A) → AMA takes a bimodule M → A over A to M . Then Theorem
5.2.14 reduces to a short exact sequence

0→ D(A)→ A⊗ A→ A→ 0.

5.3 Model category structures for abelian group

objects

Let A be an operad on simplicial R-modules.

5.3.1. Proposition. There is a simplicial model category structure on the category
ab(operMR ↓ A) (which by Proposition 5.2.5 is equivalent to ab(operMR ↓ A)) with
the following structure.

1. A map f : K → L is a weak equivalence (resp. a fibration) if for every
subgroup H ⊆ Σn the induced map on invariants f [m]H : K[m]H → L[m]H is a
weak equivalence (resp. a fibration) of the underlying simplicial sets.

2. The cofibrations (resp. trivial cofibrations) are generated by the abelian-
izations of the generators for (operMR ↓ A), which are the same as the abelian-
izations of the generators for (A-biobjMR ↓ A).

Proof. Every object in ab(operMR ↓ A) is a map K → A of Σ-objects; because of
the existence of a zero-section A → K, each map K[m]H → A[m]H of fixed point
sets is surjective, and hence K → A is a fibration of Σ-objects. Thus we may apply
Proposition 3.1.5 to the adjunction

D : (operMR ↓ A) � ab(operMR ↓ A) : U

where we take E to be the identity functor on ab(operMR ↓ A).
The fact that the abelianizations of the generators of (operMR ↓ A) are the same

as the abelianizations of the generators of (A-biobjMR ↓ A) follows from a simple
adjunction argument. If K ∈ ab(A-biobjMR ↓ A) = ab(operMR ↓ A), then

ab(A-biobjMR ↓ A)[Ab(A ◦X ◦ A), K] ≃ (A-biobjMR ↓ A)[A ◦X ◦ A,K]

≃ (ΣMR ↓ A)[X,K]

≃ (operMR ↓ A)[FX,K]

≃ ab(operMR ↓ A)[D(FX), K].
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5.3.2. Proposition. A map i : K → L in ab(operMR ↓ A) is a cofibration if and
only if i is injective and the cokernel of i is cofibrant.

5.3.3. Proposition. In the adjoint pairs of functors

Ab : (A-biobjMR ↓M) � ab(A-biobjMR ↓M) : Ub

and
D : (operMR ↓ A) � ab(operMR ↓ A) : U

the right adjoints preserve fibrations and weak equivalences and the left adjoints pre-
serve cofibrations and trivial cofibrations.

Proof. This is clear, because the right adjoints preserve fibrations and weak equiva-
lences.

5.4 Equivalence of Quillen and Hochschild coho-

mologies

In this section we prove Theorem 1.3.8 which states that Quillen cohomology and
Hochschild cohomology of an operad are essentially the same up to a dimension shift.

5.4.1 Computing Quillen cohomology of operads

Let A ∈ operMR be an operad, and let U be a coefficient system over A. We
compute the Quillen cohomology group H t

oper(A,U) by choosing a weak equivalence
p : B → A ∈ operMR from a cofibrant operad B. Since all abelian group objects are
fibrant, we have that

H t
oper(A,U) = Ho (operMR ↓ A)

(
B,K(U, t)

)
≃ π0map(operMR↓A)

(
B,K(U, t)

)
.

5.4.2 Quillen cohomology of biobjects

Let A ∈ operMR be an operad, let M be an A-biobject, and let U be a coefficient
system over M . We compute the Quillen cohomology group H t

A-biobj(M,U) by choos-
ing a weak equivalence p : N → M ∈ operMR from a cofibrant A-biobject N . Since
all abelian group objects are fibrant, we have that

H t
A-biobj(M,U) = Ho (A-biobjMR ↓M)

(
N,K(U, t)

)
≃ π0map(A-biobjMR↓M)

(
N,K(U, t)

)
.

5.4.3. Proposition. If A is a Σ-cofibrant operad, then diagB(A,A,A) → A is a
weak equivalence of A-biobjects in which the domain is a cofibrant biobject. More
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generally, if f : A→ B is a weak equivalence of Σ-cofibrant operads, then

g : diagB(B,A,B)→ B

is a weak equivalence of B-biobjects in which the domain is a cofibrant biobject.

Proof. The first part is just Corollary 3.7.6. The second part follows from Proposi-
tion 3.7.5 and from factoring g into diagB(B,A,B)→ diagB(B,B,B)→ B; the first
map is an equivalence by Proposition 3.4.5 and the fact that A and B are Σ-cofibrant,
and the second map is an equivalence by Corollary 3.7.6.

5.4.4. Corollary. If f : A → B is a weak equivalence of Σ-cofibrant operads, then
there is a natural isomorphism Hoch∗(A, f ∗U) ≃ Hoch∗(B,U).

5.4.5. Proposition. The Hochschild cohomology of the trivial operad I is given by

Hochn(I, U) =

{
U [1] if n = 0,

0 if n > 0.

5.4.6 Proof of Theorem 1.3.8

Choose a cofibrant operad B and weak equivalence p : B → A. Since cofibrant
operads are Σ-cofibrant by Proposition 3.5.3, it follows from Corollary 5.4.4 that
Hoch∗(B, p∗U) ≃ Hoch∗(A,U). Thus without loss of generality we may assume that
A is a cofibrant operad.

The result now follows from Theorem 5.2.14 and the following Lemma.

5.4.7. Lemma. If A is a cofibrant operad, then there is a diagram in the category
ab((A-biobjMR ↓ A)) of the form

0 // D(A) //i
P

��
f

// Ab
(
diagB(A,A,A)

)
//

��
g

0

0 // D(A) // Ab(A ◦ A) // Ab(A) // 0,

where P = Ab
(
diagB(A,A,A)

)
×Ab(A) Ab(A ◦ A) is the pullback of the right-hand

square, the rows are exact, the objects in top row are cofibrant, i is a cofibration, and
f and g are weak equivalences.

Proof. The object diagB(A,A,A) is a cofibrant A-biobject by Proposition 3.7.6,
since A is Σ-cofibrant by Proposition 3.5.3. Thus Ab

(
diagB(A,A,A)

)
is cofibrant

by Proposition 5.3.3. Hence it follows by Proposition 5.3.2 that i is a cofibration.
Likewise D(A) is cofibrant by Proposition 5.3.3, and hence P is cofibrant.

By Proposition 5.2.13 the map g has a contracting homotopy in the underlying
category ab(ΣMR ↓ A), and hence the pullback f of this map has one also. Thus f
and g are weak equivalences as desired.

80



Appendix A

Free monoids

In this appendix we describe a construction of the free operad. We present this
construction as a special case of the construction of a free monoid in a monoidal
category M which satisfies the left distributivity law

(A⨿B) ◦ C ≃ (A ◦ C)⨿ (B ◦ C),

and such that the monoidal product ◦ commutes with countable directed colimits in
each variable.

Our construction is a generalization of the Barr-Wells construction of a free triple
[1], which corresponds to the case of a free monoid in the monoidal category M = CC

of endofunctors on C. Our proof is in fact an improvement on theirs; they construct
the free triple on a functor A as at best a retract of the object we call FA.

There is another construction of the free operad as a “sum over trees”, which is
described in [8], [7].

For the sake of readability, in what follows we will write “+” for the coproduct in
the category M, and “◦” will take precedence over “+”; e.g., A ◦ B + C ◦D should
be read as (A ◦B) + (C ◦D).

Construction of the Free Monoid. We first construct functors Fn : M → M in-
ductively, by

F0A = I,

F1A = I + A,

and in general
Fn+1A = I + A ◦ FnA.

We let ηn : I → FnA and en : A ◦ Fn−1A → FnA denote the inclusions of these two
summands.

The functors Fn come with maps in : FnA→ Fn+1A defined inductively by

i0 : F0A = I −→ I + A = F1A,

and
in = I + A ◦ in−1 : I + A ◦ Fn−1A −→ I + A ◦ FnA.
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Then we can define a functor F : M→M as the colimit

FA = colimn(F0A
i0−→ F1A

i1−→ F2A
i2−→ · · · ).

A.0.1. Remark. Note that if the monoidal product in M distributes over coproducts
on both sides, then this construction simplifies to

FA = I + A+ A◦2 + A◦3 + · · · .

A.0.2. Proposition. Let M be a cocomplete monoidal category satisfying the left
distributivity law, with the property that the functor − ◦ − : M×M→M commutes
with countable directed colimits in each variable. Then the above functor F : M→M
is the free monoid triple. Furthermore, the free monoid FA on A satisfies a “recursive
formula”

FA ≃ I + A ◦ FA.

Proof. Let A ∈M. We have already constructed FA. We shall show below that FA
has the structure of a monoid, and is in fact the free monoid on A.

It is easy to show that the diagrams

I

��
ηn

I

��
ηn+1

A ◦ Fn−1A //A◦in−1

��
en−1

A ◦ FnA

��
en

FnA //in Fn+1A FnA //in Fn+1A

commute. Thus the η’s and e’s induce maps η : I → FA and e : A ◦ FA→ FA, and
there is an isomorphism

η + e : I + A ◦ FA ∼−→ FA;

this is the “recursion formula”.
To define a product map, we inductively define maps

µmn : FmA ◦ FnA→ Fm+nA

by setting
µ0n = id: FnA→ FnA

and

µm+1,n : Fm+1A ◦ FnA = FnA+ A ◦ FmA ◦ FnA
FnA+A◦µmn−−−−−−−→

FnA+ A ◦ Fm+nA
(i,e)−−→ Fm+n+1A.
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It is straightforward to show that the diagrams

FmA ◦ FnA //im◦FnA

��
µmn

Fm+1A ◦ FnA

��
µm+1,n

FmA ◦ FnA //FmA◦in

��
µmn

Fm ◦ Fn+1A

��
µm,n+1

Fm+nA //im+n
Fm+n+1A Fm+nA //im+n

Fm+n+1A

commute. Since FA ◦ FA ≃ colimm,n FmA ◦ FnA the µ’s fit together to give a map
µ : FA ◦ FA→ FA.

We claim that (FA, η, µ) is a monoid. The unit axioms follow from the commu-
tative diagrams above. To prove the associativity axiom, it suffices to show that for
all m,n, p ≥ 0 the two ways of going around the square

FmA ◦ FnA ◦ FpA //µmn◦FpA

��
FmA◦µnp

Fm+nA ◦ FpA

��
µm+n,p

FmA ◦ Fn+pA //µm,n+p
Fm+n+pA

are the same. The proof is by induction on m. The case when m = 0 is straight-
forward. For general m we note that the above square is the coproduct of the two
squares:

I ◦ FnA ◦ FpA //∼

��
1◦µn,p

FnA ◦ FpA

��
µn,p

I ◦ Fn+pA //∼ Fn+p ,

and

A ◦ Fm−1A ◦ FnA ◦ FpA //A◦µm−1,n◦FpA

��
A◦Fm−1A◦µn,p

A ◦ Fm+n−1A ◦ FpA

��
A◦µm+n−1,p

A ◦ Fm−1A ◦ Fn+pA //A◦µm−1,n+p
A ◦ Fm+n+p−1A .

The commutativity of each of these squares follows from the inductive hypothesis.
Finally, we show that FA is the free monoid on A. Let α : A → FA be the map

defined by

α : A
e1−→ I + A = F1A

i−→FA.

To show that FA is a free monoid on A it suffices to show that for any monoid B the
map

ϕ : monM[FA,B]→M[A,B]

which sends g 7→ gα is a bijection.
We show that ϕ is an injection. Suppose g : FA → B is a map of monoids, and

let f = gα. Let gn denote the composite FnA→ FA
g−→B; we will show by induction

on n that the maps gn are determined by the value of f , and hence so is g. Clearly
the map g1 = (η, f) : F1A = I+A→ B is determined by f . Now suppose gn is given.

83



Then from the commutativity of the diagram

F1A ◦ FnA //g1◦gn

��
µ1n

B ◦B

��
µ

I + A ◦ FnA

22

(η1◦ηn,e1◦FnA)

//∼ Fn+1A //gn+1

B

it follows that gn+1 is determined.
We show that ϕ is a surjection. Thus, given f : A → B, we want to construct

a map of monoids g : FA → B such that gα = f . We build maps gn : FnA → B
inductively by setting

g1 : F1A = I + A
(η,f)−−→ B

and

gn+1 : Fn+1A = I + A ◦ FnA
I+f◦gn−−−−→ I +B ◦B (η,µ)−−→ B.

By induction on n one shows that gn+1in = gn. Let g : FA→ B be the map induced
by the gn’s. To show that g is indeed a map of monoids, we must check that the
square

FmA ◦ FnA //gm◦gn

��
µmn

B ◦B

��
µ

Fm+nA //gm+n

B

commutes. The proof is by induction on m.
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