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Preface to the first edition

This book is intended as a textbook on point set and algebraic topology
at the undergraduate and immediate post-graduate levels. In particular,
I have tried to make the point set topology commence in an elementary
manner suitable for the student beginning to study the subject.

The choice of topics given here is perhaps unusual, but has the aim of
presenting the subject with a geometric flavour and with a coherent out-
look. The first consideration has led to the omission of a number of topics
important more from the point of view of analysis, such as uniform spaces,
convergence, and various alternative kinds of compactness. The second
consideration, together with restriction of space, has led to the omission of
homology theory, of the theory of manifolds, and of any complete account
of simplicial complexes. It has also led to the omission of topics which are
important but not exactly germane to this book; for example, I have not in-
cluded accounts of paracompactness or the theory of continua, nor proofs
of the Tychonoff theorem or the Tietze extension theorem.

I felt, on the other hand, that the general direction of this book should
be towards homotopy theory, since this subject links naturally with the
point set topology and also occupies a central role in modern developments.
However, in homotopy theory there are a number of ideas and construc-
tions which are important in many applications (particularly the ideas of
adjunction space, cell complex, join, and homotopy extension property)
but for which no elementary account has appeared. One of my aims, then,
has been to cover this sort of topic, and so to supplement existing accounts,
rather than provide a new reference book to contain everything a young
geometer ought to know. At the same time, I have tried to show that point
set topology has its main value as a language for doing ‘continuous geome-
try’; I believe it is important that the subject be presented to the student in
this way, rather than as a self-contained system of axioms, definitions, and
theorems which are to be studied for their own sake, or for their interest
a generalisations of facts about Euclidean space. For this reason, I have
kept the point set topology to the minimum needed for later purposes, and
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viii TOPOLOGY AND GROUPOIDS

at the same time emphasised general processes of construction which lead
to interesting topological spaces, and for which other structures, such as
metrics or uniformities, are largely irrelevant.

The language of point set topology is geometric. On the other hand,
the notions of category and functor are algebraic: they play in modern
mathematics the unifying role which has earlier been given to the notion of
a group. Particular kinds of categories are the groupoids, of which in turn
groups are special cases. The algebra of groupoids has been developed
recently by P. J. Higgins. In 1965, I discovered the utility of this algebra for
computing the fundamental group, and this has led me to include in the
last four chapters of this book an account of the elements of the algebra of
categories and groupoids. The treatment given in these chapters is quite
novel, in that this algebra is used in an essential way and not just as a
convenient, but not entirely necessary, general language. The writing of
these chapters gave me great pleasure as I found the way in which the
various topological nations of sum, adjunction space, homotopy, covering
space, are modelled by the corresponding notions for groupoids. The most
important feature here is probably the way in which the computations of
the fundamental group derive from a general property of the fundamental
groupoid (that it sends ‘nice’ pushouts to pushouts). This contrasts with
the usual rather ad hoc computation via simplicial complexes.

The development of these last four chapters has meant that I have had
to cut down on some other topics. For example, I have had to relegate
the accounts of k-spaces, infinite cell complexes, and function spaces to
the Exercises. A further reason for playing down these topics was that the
recent development of the theory of quasi-topological spaces is likely to
lead to a radical change in their exposition (cf. [Spa63] and a forthcoming
book by Dyer and Eilenberg). I have also relegated to the Exercises the
discussion of group-like structures and exact sequences, and have omitted
an account of the major properties of the Whitehead product. The reasons
behind this were lack of space, the difficulty of presenting computations,
and, finally, the feeling that these topics needed reconsideration in the light
of the preceding work on groupoids.

The material in this book would more than cover a two-term under-
graduate course in point set and algebraic topology. Such a course could
include, for the point set topology, all of chapters 1 to 3 and some ma-
terial from chapters 4 and 5. This could be followed by a course on the
fundamental groupoid comprising chapter 6 and parts of chapters 8 or 9;
naturally, more could be covered if this were linked with a course on cate-
gories and functors.

The last four chapters, with supporting parts of chapters 4 and 5, would
probably be suitable for a two-term M.Sc. course. Alternatively, the purely
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algebraic parts of the last four chapters would cover the elements (but with
not enough algebraic applications) of a one-term course on groupoids.

The Appendix contains an account of functions, cardinality, and some
‘universal constructions’ which are used from chapter 4 onwards. On pages
445 to 449 (of this edition) is a Glossary of those terms from set theory
which are used in the book but not defined in the main text.

This book is not self-contained—in particular, it will be assumed at cer-
tain points that the reader is familiar with the usual accounts of vector
spaces and of groups.

On the other hand, a more ‘topological’ account of elementary analysis
is by no means universal. For this reason, and in order to motivate the
axioms for a topological space, I have started the book with an account of
the elementary topological notions on the real line R.

In the earlier chapters, I have included among the exercises a fair num-
ber of straightforward verifications or simple tests of the reader’s under-
standing. Apart from a few simple definitions and verifications, no results
from the exercises are used in the text; this means that occasionally a re-
sult from an exercise is actually proved later in the text. However, there are
some cross-references among the exercises themselves. Exercises from later
chapters are usually more difficult than those from earlier ones—exercises
of technical difficulty are marked with an asterisk.

Cross-references are always given in square brackets; thus [6.5.12]
refers to 5.12 of §5 of chapter 6. The end of a Proof is denoted by the
symbol �.

I would like to thank Dr W. F. Newns for reading through much of the
manuscript and for many suggestions which resulted in improved exposi-
tion and in the removal of errors. I would also like to thank Professor G.
Horrocks and Dr R. M. F. Moss for their comments on some of the chapters.
I am indebted to Dr P. J. Higgins for conversations and letters; for sending
me notes of a course on groupoids he gave at King’s College, London in
1965; and for writing his paper, [Hig63].

I would also like to thank Dr W. Gilbert, P. R. Heath, D. Pitt, T. Poston,
Dr E. Rees, and E. E. Thompson for help in proofreading.

RONALD BROWN

Hull, 1968
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Preface to the second

edition

When the first edition of this book ended its print-run in 1972, I did not
take up the publisher’s offer to reprint it with corrections, owing to an idea
that I could improve on the book in some key aspects of organisation. This
idea turned out to be a misconception.

It is true that one particular criticism had some justice, namely the feel-
ing that there was a jump in level of abstraction at chapter 6, which in-
troduces the idea of category. Thus there was the possibility of making a
two-volume work, with maybe more complete material in each. The dif-
ficulty was the close cross-links, in substance and in spirit, between the
two parts. So the present edition makes no attempt to change the original
global conception.

A further difficulty in making major changes was that the original manu-
script had been written with a vision and energy which by the mid-1970s
had turned into a research programme arising out of the work on groupoids
which had gone into the text. In particular, the notion of higher homotopy
groupoids and higher dimensional Van Kampen theorems began to take
shape with the help of colleagues and research students, and I found it
impossible to take up the task of reshaping the text.

However, a good deal of the material in the book is still unavailable
elsewhere. Also, the categorical spirit in which the book was written,
and in particular the use of universal properties, has not penetrated many
other books in topology at this level. This is quite surprising in view of
the comment in W. S. Massey’s excellent 1967 book on algebraic topology
([Mas67]): ‘This method of characterising various mathematical structures
as solutions to universal mapping problems seems to be one of the truly uni-
fying mathematical principles to have emerged since 1945, and it should be
brought into the mathematics curriculum as early as possible.’ For exam-
ples of the use of universal properties in computer science, see the articles

xi
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in [PAPR86], which is the proceedings of a conference on category theory
and computer programming.

A further surprise to me has been that twenty years after the publica-
tion of the first edition the theory of the fundamental groupoid still is not
taken by many topologists as a necessary and convenient generalisation of
the theory of the fundamental group. Thus no other English language text
on topology in print has followed the exposition given here. It therefore
seemed essential to make this exposition available for a judgement to be
possible on the convenience or elegance of this approach. Also much has
happened since the previous edition was published, so that it is now pos-
sible to put the methods more in context, and to add extra applications.
There is a new section on the Jordan Curve Theorem in which the proof
uses the Van Kampen theorem for non-connected spaces in an essential
way. There are mew section on covering morphisms of groupoids, and new
sections on the fundamental groupoid, and hence on the fundamental gr-
oup, of an orbit space. The notion of fibration of groupoid is used in an
essential way.

The exposition given here lends credence to the view that groupoids
form a natural context for discussing a key question in mathematics, the
relation between local and global phenomena. This idea is confirmed in
the area of differential geometry by the following quotation from the intro-
duction to [Mac87]:

‘The concept of groupoid is one of the means by which the twen-
tieth century reclaims the original domain of applications of the
group concept. The modern rigorous concept of group is far too
restrictive for the range of geometrical applications envisaged
in the work of Lie. There have thus arisen the concepts of Lie
pseudogroup, of differentiable and Lie groupoid, and of prin-
cipal bundle—as well as various related infinitesimal concepts
such as Lie equation, graded Lie algebra and Lie algebroid—
by which mathematics seeks to acquire a rigorous language by
which to study the geometric phenomena associated with geo-
metrical transformations which are only locally defined.’

It thus seems that the notion of groupoid gives a more flexible and pow-
erful approach to the notion of symmetry.

I will be pleased if the exposition of this book can be improved in radical
ways. Young mathematicians should be aware of the temporary mature of
mathematical exposition. The attempt to form a ‘final view’ reminds one of
the schoolboy question: what would happen if you laid worms in a straight
line from Marble Arch to Picadilly Circus? Answer: one of them would be
bound to wiggle and spoil it all.
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Some might argue that the groupoid worm has here not only wiggled
from its accustomed place in topology, but become altogether too big for
its boots, to which a worm, after all, has no rights. But I hope many will
find it interesting to trace through this first attempt to answer, in part, the
questions: Is it possible to rewrite homotopy theory, substituting the word
groupoid for the word group, and making other consequential changes? If
this is done, is the result more pleasing?

These questions, both of the form ‘What if. . . ?’, came to acquire for me
a force and an obsession when pursued into the topic of higher homotopy
groupoids. The scribbling of countless squares and cubes and their compo-
sitions lead to a conviction in 1966 that the standard group theory, once it
was rephrased as a groupoid theory, had a generalisation to higher dimen-
sions. Gradually, collaborations with Chris Spencer in 1971–1974, with
Philip Higgins since 1974, with J.-L. Loday from 1981, and work of my
research students, A. Razak Salleh, Keith Dakin, Nick Ashley, David Jones,
Graham Ellis and Ghaffar Mosa, at Bangor, and Philip Higgins’ research stu-
dents Jim Howie and John Taylor at London and Durham, made the theory
take shape. In this way a worry of the algebraic topologists of the 1930s
as to why the higher homotopy group were abelian, and so less compli-
cated than the fundamental group, came to seem a genuine question. The
surprising answer is that the higher homotopy groupoids are non-abelian,
and are just right for doing many aspects of homotopy theory. In particular,
they satisfy a version of the Van Kampen theorem which enables explicit
and direct computations to be made. It will be interesting to see if the
higher dimensional theory will come to bear a relation to the standard gr-
oup theory similar to that of many-variable to one-variable calculus.

But the higher dimensional theory is a story in which we cannot embark
in this book. We now give the changes that have been made in this new
edition.

A section on function spaces in the category of k-spaces has been added
the chapter 5. One of the reasons is that the material is quite difficult to
find elsewhere. Another reason for its inclusion is that it will suggest to the
reader that there are still matters to be decided on the appropriate setting
for our intuitive notions of continuity. In any case, the generalisation from
spaces to k-spaces makes the proofs if anything simpler.

I am grateful to a number of people for comments, particularly Eldon
Dyer and Peter May who suggested that chapter 7 needed clarification,
and Daniel Grayson who suggested the notation [(X, i), (Y,u)] now used in
chapter 7 to replace the original X//u, which was non-standard and too
brief. (But this double slash is used in a new context in chapter 9.) In
the event, chapter 7 has been completely revised to make use of the term
cofibration rather than HEP. The idea of fibration of groupoid, which came
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to light towards the end of the writing of the first edition and so appeared
there only in an exercise, has now been incorporated into the main text.
However, I have not included fibrations of spaces, since to do so would
have enlarged the text unduly, or force the omission of material for which
no other textbook account is available.

In chapter 8, an error in section 8.2 has been corrected. Also free
groupoids have now been used to define the notion of path in a graph.
An exercise on the computation of the fundamental group of a union of
non-connected spaces has now been incorporated into the text, as an illus-
tration of the methods and because of its intrinsic importance. This result
is used in a new section which gives a proof of the Jordan Curve Theorem,
and some new results on the Phragmen-Brouwer Property.

In chapter 9, section 9.4 on the existence of covering groupoids has
been rewritten to give a clearer idea of the notion of action of groupoids
on sets. Section 9.5 includes some results on topologising the fundamen-
tal groupoid. The relation between covering spaces of X and covering
groupoids of πX has been clarified by adding section 9.6, which gives an ac-
count of the equivalence of the categories of these objects. This enables an
algebraic account of the theory of regular covering spaces. Section 9.7 gives
a new account of pullbacks of covering spaces and covering morphisms, us-
ing exact sequences. Section 9.8 gives an account of the Nielsen-Schreier
and Kurosch subgroup theorems, using groupoid versions, due to Hasse
and Higgins, of the more traditional covering space proofs.

Sections 9.9 to 9.10 give the first account in any text of the theory
of the fundamental groupoid of an orbit space. This uses work of John
Taylor an Philip Higgins, and is a good illustration of the utility of the
groupoid methods, since a group version is considerably more awkward in
the statement of results and in the proofs. I am grateful to Ross Geoghegan
who, in a review of a paper by M. A. Armstrong, pointed out the desirability
of having Armstrong’s results on the computation of the fundamental group
of an orbit space available in a text.

The Bibliography has been extended for this edition. It would be im-
possible to make such a Bibliography complete, and I apologise in advance
for any omissions or lack of balance. The main intention has been to show
the subject matter of this book as part of a wide mathematical scene; occa-
sionally it is used to give the reader an opportunity to explore some aspects
which are not so well represented in texts; other times, the Bibliography
is used to acknowledge clear debts. The Notes at the ends of chapters,
and referential material in the text have the aim of giving an impression
of what the subject is about, of how mathematics is an activity involving
people, and that it is a subject in a state of active development, even in its
foundations.
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I would like to thank the following for helpful comments and criticisms:
Philip Higgins, Alan Pears, Guy Hirsch, Peter May, Terry Wall, Frank Adams,
Jim Dugundji, R. E. Mosher. I also thank all those who wrote and pointed
out misprints and obscurities.

I would like to conclude this preface on a personal note, which I hope
may be of use to readers starting on, or aspiring to, a career in mathe-
matical research, and wondering what that might entail. There is little in
print on the methodology of mathematical research. There is material on
problem solving, but there is little on evaluation, on problem choice, or on
problem and concept formulation. There is material on the psychology of
invention, but not so much on the training and development of invention,
nor so much on the ends to which one should harness whatever invention
one has. There are autobiographies available, but some perhaps give the
impression that to do research in mathematics it is helpful to be a genius in
the first place.

At the time of writing the first edition of this book, I was not clear as
to what direction I wanted to take in my research, and to some extent
writing the book was a displacement activity, distracting attention from
the necessity of decision. However, as the book progressed and I tried to
make the exposition clear, difficulties in the subject began to emerge. As
draft succeeded draft, I became clearer about what I did not know, and
a new range of possibilities began to arise. The original intention was a
standard exposition of known, but scattered, material. This turned into an
idiosyncratic treatment which itself suggested a new research line which
has kept me busy ever since.

So I would like to commend to readers the idea that writing and rewrit-
ing mathematics with an intention to make things clear, well organised and
comprehensible, and perhaps with some particular formal changes in mind,
may in itself be a stimulus to further mathematical activity. These ideas are
confirmed by some remarks of the composer Maurice Ravel, who argued
for copying from other composers. If you have something to contribute,
then this will appear of itself, and if you have no new ideas in this area,
then at the least you will have made things clear to yourself. Thus the qual-
ity of your understanding is improved. There is also the simple joy of a
well-crafted work.

There is also an argument for the quality of misunderstanding. It may
be easy for you to feel that you do not understand because you are stupid.
But your lack of understanding may be a reaction to a lack of clarity in
the current expositions, or a feeling that the current expositions require
something more to carry conviction. These expositions may prove results,
but not explain them in a way you find agreeable. The only way to tell is to
try and write an account for yourself, and see if you can make the matter
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clearer. For example, the material on the gluing theorem in chapter 7 was
my response to a lack of understanding of the complicated proofs in the
literature of results such as 7.5.3 (Corollary 2). By the time of the final
draft, I was clear why these results were true.

The account of groupoids which has dominated both editions of this
book came about in the following way. It was annoying to have a Van Kam-
pen theorem which did not compute the fundamental group of a circle. I
found that the account of the Van Kampen theorem given by [Olu58] could
be generalised to yield this computation (see [Bro64]). So I started an ex-
position of Olum’s non-abelian cohomology, with the laudable motivation
that this would also introduce cohomological ideas to the reader. Unfortu-
nately, when I looked at the 30 pages of my draft, I had to admit that they
were pretty boring.

At the same period I had been pursuing some references on free groups.
These lead me to the article [Hig63], which introduced free products with
amalgamation of groupoids. So it seemed reasonable to set an exercise on
the fundamental groupoid π(U ∪ V) of a union of spaces. Since the result
was not in the literature as such, it seemed reasonable to write out a solu-
tion. The solution turned out to have the qualities of elegance, concision
and clarity which I had been hoping for, but had not obtained, in my pre-
vious account. This suggested that the exposition should be turned round
to give groupoids a central rather than peripheral rôle, particularly in view
of a warm reception to a seminar I gave on the topic to the London Alge-
bra Seminar in 1965. In 1967, I met Professor G. W. Mackey of Harvard
University who told me of his work using groupoids in ergodic theory. This
suggested that the groupoid concept had a wider application than I had
envisaged, and so I also worked up chapter 9 on covering spaces, empha-
sising the groupoid viewpoint. It is perhaps only now possible to see the
many disparate strands of work in which the notion of groupoid is usefully
involved (cf. the survey article [Bro87]).

I would like to acknowledge here the help of two people who started
me on a mathematical career. I have a great debt to the late Professor J.
H. C. Whitehead, who was patient with my hesitancies and confusions. His
many successes in exposing the formalities underlying geometric phenom-
ena are a background to this text, and one part of my aims was to give
an exposition of his lemmas on the homotopy type of adjunction spaces.
From him I also absorbed the attitude of not giving up a mathematical idea
until its essentials had been extracted, whatever the apparent relevance or
otherwise to current fashions.

My second debt is to Professor M. G. Barratt, who initiated me into
the practicalities and impracticalities of mathematical research. As to the
impracticalities, I once got a ten-page letter from him which ended: ‘Dawn



PREFACE TO THE SECOND EDITION xvii

breaks; I hope nothing else does!’ As to the practicalities, I remember think-
ing to myself after a long session with Michael: ‘If Michael Barratt can try
out one damn fool thing after another, why can’t I?’ This has seemed a
reasonable way of proceeding ever since. What is not so clear is why the
really foolish projects (such as higher homotopy groupoids, based on flimsy
evidence, and counter to current traditions) have turned out the most fun.

My thanks also go to Ellis Horwood and his staff. The production of this
new edition has been greatly assisted by their expertise and enthusiasm.

RONALD BROWN

March, 1988



xviii TOPOLOGY AND GROUPOIDS



Preface to the third edition

The second edition of this book went out of print in 1994 or so, partly
due to the publisher Ellis Horwood Ltd being sold. The final impetus for
a new version came with funding from a Leverhulme Emeritus Fellowship,
2002–2004.

Background to the approach in this book
The republishing of this text is intended to make available material un-

available in other texts. The retitling of the book and some chapters is
intended to show a major emphasis of this and previous editions: the mod-

elling of geometry, principally topology, by the algebra of groupoids. The way
this modelling works illustrates some important general principles, which
are worth explaining.

The process of understanding some geometry may, over many years, go
through the stages

geometry // underlying
processes

// algebra // algorithms // computation

each of which has its own interest, character and problems. The algebra
gives a precise, but possibly not total, expression of what we envision as the
underlying processes. The end product, some computations, will hopefully
give some specific answers to geometrical questions. The computations
may be by hand, or if sufficiently complex, in a computer implementa-
tion. The success of the computations in answering geometrical questions
‘proves’ the methodology, in the old sense of ‘prove’ as ‘test’.

In choosing algebra to model geometry there is a tendency to take the
algebraic structures which are to hand—groups, rings, fields, and so on—
but a certain eclecticism is necessary, and one should allow the geometry,
an intuition for the underlying processes, and a feeling for mathematical
structures, to formulate the algebra so that it expresses our intuitions. Ex-
perience shows that in this way understanding and modes of computation
are increased. Possibly more importantly, we may in this way find new

xix
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forms of algebra, algorithms and modes of computation, of general signifi-
cance. In this way, mathematics develops language for description, verifica-
tion, deduction and calculation, and that is a major reason for its necessity
in science and technology.

This book shows the use of groupoids for this aim and in this context of
basic algebraic topology.

The chief difference between groupoids and groups is that in groupoids
there is a partial multiplication which is defined under geometric condi-
tions: two arrows compose if and only if the end point of one is the initial
point of the other. The arrows a,b in the diagram

x
a−→ y

b−→ z

‘compose’ to give an arrow ba : x→ z. This corresponds to the composition
of journeys. Conversely, the analysis of a journey through various places
requires precisely this notion of partial composition. So, to express our in-
tuitions, we are, if we so allow ourselves, forced into considering groupoids
rather than just groups. The theory of groupoids has added to group theory
a spatial component, coming from the geography of the places we visit in a
journey. For this reason, groupoids can model more of the geometry than
groups alone. This leads not only to more powerful theorems with simpler
and more natural proofs, but also to new theorems and new landscapes.

The process of modelling needs more explanation. We prove that the
fundamental groupoid takes certain constructions on spaces to analogous
constructions on groupoids. The use of analogy is fundamental to math-
ematics, though not always acknowledged publicly. When we note that
2+3 = 3+2 and 2×3 = 3×2 are examples of the commutative law, we are
making an analogy between addition and multiplication of numbers. We
then note that the commutative law applies to many situations, for example
also to the addition of vectors. But numbers are not analogous to vectors,
so how does this analogy come about? This seems to be an anomaly.

We mentioned above an analogy between certain constructions on
spaces and constructions on groupoids. Yet spaces are very different from
groupoids: they are different types of mathematical structure, without
many analogies between the way they are defined. How can we make
analogies between constructions on them?

The answer is a very important principle. In mathematics, and in many
areas, analogies are not between objects themselves, but between the re-
lations between objects. We will define many constructions by their rela-
tions to all other objects of the same type—this is called a ‘universal prop-
erty’. A certain construction on topological spaces which we call ‘pushout’
is defined by its relation to all topological spaces; a certain construction
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on groupoids which we also call ‘pushout’ is defined by its relation to all
groupoids. Further, relations between topological spaces are given by the
continuous functions between them. Relations between groupoids are de-
fined by the morphisms between groupoids. Once the term pushout is de-
fined in each context, the analogy between the two definitions will be com-
pletely clear. However the construction of a pushout in spaces is necessarily
different in detail from the construction of a pushout of groupoids. Thus
without the universal properties, the analogy might not be seen. All this is
the essence of the ‘categorical approach’, and explains why category theory,
which we use explicitly or implicitly, has been a major unifying force in the
mathematics of the 20th century.

As an instance, the fact that the fundamental group of the circle is an
infinite cyclic group is seen as an analogy between the following two dia-
grams (which are both pushouts!)

{0, 1}

��

// {0}

��
[0, 1] // S1

spaces

{0, 1}

��

// {0}

��
I // Z

groupoids

The left hand diagram shows the circle as obtained from the unit interval
[0, 1] by identifying, in the category of spaces, the two end points 0, 1. The
right hand diagram shows the infinite group of integers as obtained from
the finite groupoid I, again by identifying 0, 1, but this time in the category
of groupoids. The right hand diagram is not available for groups.

The groupoid I with its special arrow ι : 0 → 1 has the following prop-
erty: if g is an arrow of a groupoid G then there is a unique morphism
ĝ : I → G whose value on ι is g. Thus the groupoid I with ι plays for
groupoids the same role as does for groups the infinite cyclic group Z with
the element 1: they are each free on one generator in their respective cat-
egory. However we can draw a complete diagram of the elements of I as
follows:

0::

ι
))
1

ι−1

ii dd

whereas we cannot draw a complete picture of the elements of Z.
The analogy between the above pushouts of spaces and groupoids gen-

eralises to the analogy between a space Y obtained from a space X by iden-
tifying various points of a discrete subspace, and a groupoid H obtained
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from a groupoid G by identifying various objects of G. The necessary alge-
bra of groupoids for this is developed in Chapter 8, and the relation with
topology in Chapter 9.

A necessary background to this method of universal properties is the no-
tion of a category, which we give in Chapter 6, developing just that amount
of theory needed for our results. We also develop some simple set theoretic
examples of universal properties in the Appendix.

Other analogies we make are in Chapter 10, between covering maps of
spaces, and covering morphisms of groupoids; and in Chapter 11, between
orbit spaces under the action of a group, and orbit groupoids under the
action of a group. Here also we prove the main result by verifying the re-
quired universal property of an orbit groupoid, and go on to examine ways
of constructing and calculating orbit groupoids. This approach is not only
easier to follow and more efficient, but also can suggest wider possibilities
for investigation.

The types of problems in this book which we translate from topology to
algebra using groupoids come largely under the heading of local-to-global

problems. These problems are an important feature of mathematics and
science. Much of algebraic topology is about methods for solving such
problems. The distinctive nature of the fundamental group in these meth-
ods of algebraic topology is that it gives a nonabelian invariant, and the
use of groupoids gives an extra power to this aspect. This power is also
shown by the increasing use of groupoids in many fields of mathematics
and physics, partly through allowing not only a more flexible approach to
symmetry than groups alone, but also allowing for an algebra correspond-
ing to transitions. Forms of multiple groupoids yield higher dimensional
nonabelian methods for local-to-global problems.

With regard to the index, we take the line as in previous editions that it
is better to be over- rather under-indexed, so that the index can possibly act
as a guide, particularly in the e-version, with hyperref. Thus ‘topological
group’ appears in the index under ‘topological’ and under ‘group’. We may
have failed on this principle in a number of instances, for which apologies
in advance.

The changes for this edition are modest but significant.

1) We have already mentioned the retitling of the book and some chapters,
and there has been a division of each the previous last two chapters into
two, in order to give a clearer structure to the content.

2) Corrections have been made where known and found, and the diagrams
have been improved where possible.

Finally, even if this is obvious to you, we must mention a major social
change in freedom of mathematics information since the last edition of
this book, namely the use since the 1980s of TEX and LATEX, and of course
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the growth of the Internet. These together have led in mathematics to:
free electronic journals; free independent Internet encyclopaedias; search
engines; the notion of e-book; the preprint arXiv; and many others. This
means that a reader with access to the Internet can follow up and evaluate
topics and concepts in a way not dreamt of in the 1980s. Hence if you want
to follow up any reference to wider reading given in this book, you are well
advised also to check out for yourself using Internet resources.
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Does the pursuit of truth give you as much pleasure as before? Surely it
is not the knowing, but the learning, not the possessing but the acquiring,
not the being there but the getting there, that afford the greatest satisfac-
tion. If I have clarified and exhausted something, I leave it in order to go
again into the dark. Thus is that insatiable man so strange; when he has
completed a structure it is not in order to dwell in it comfortably, but to
start another.

Karl Friedrich Gauss

I am a part of all that I have met;
Yet all experience is an arch wherethro’
Gleams that untravelled world, whose margin fades
For ever and for ever when I move.
How dull it is to pause, to make an end,
. . . . . . . . . . . . . . . . . .
And this gray spirit yearning in desire
To follow knowledge like a shining star,
Beyond the utmost bounds of human thought.
. . . . . . . . . . . . . . . . . .
Come, my friends,
’Tis not too late to seek a newer world.
. . . . . . . . . . . . . . . . . .
Made weak by time and fate, but strong in will
To strive, to seek, to find, and not to yield.

Alfred Lord Tennyson, Ulysses

Alice laughed. ‘There’s no use trying,’ she said, ‘one can’t believe impossible
things.’

‘I daresay you haven’t had much practice,’ said the Queen. ‘When I
was your age, I always did it for half-an-hour a day. Why, sometimes I’ve
believed as many as six impossible things before breakfast.’

Lewis Carroll, Through the looking glass



Chapter 1

Some topology on the real

line

In this chapter, we introduce the system of neighbourhoods of points on the
real line R; this presents R with structure additional to its usual structures
of addition, multiplication, and order. This additional structure makes R a
topological space, and the study of this and other topological spaces is the
subject matter of this book.

There are several reasons for giving this example of a topological space
before a definition of such an object. First of all, we hope in this way to
familiarise the reader with some of the techniques and terminology which
will recur constantly. Secondly, the real line is central to mathematics, in
the way that atoms are central to physics, and cells to biology. So time
devoted to this example is well spent.

1.1 Neighbourhoods in R

Definition Let N be a subset of R, and let a ∈ R. Then N is a neighbour-

hood of a if there is a real number δ > 0 such that the open interval about
a of radius δ is contained in N; that is, if there is a δ > 0 such that

]a− δ,a+ δ[ ⊆ N.

EXAMPLES

1. R itself is a neighbourhood of any a in R.
2. The closed interval [0, 1] is a neighbourhood of 1

2
, but not of 0, nor of 1.

3. The set {0} consisting of 0 alone is not a neighbourhood of 0.

1
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4. [0, 1[ ∪ ]1, 2] is not a neighbourhood of 1.
5. [0, 1] ∪ [2, 3] ∪ ]3 6

7
, 8[ is a neighbourhood of 2π.

6. The set Q of rationals is not a neighbourhood of any a ∈ R: for any
interval ]a − δ,a + δ[ (where δ > 0) must contain irrational as well as
rational points, and so ]a− δ,a+ δ[ cannot be contained in Q.
7. This is a mildly pathological example. For each integer n > 0, let

Xn = {x ∈ R : (2n + 1)−1 < |x| < (2n)−1}.

Let X be the union of {0} and the sets Xn for all n > 0 [cf. Fig. 1.1]. Then X
is not a neighbourhood of 0, since any interval about 0 contains points not
in X (in addition, of course, to points of X).

− 1
2

− 1
3

0 1
5

1
4

1
3

1
2

Fig. 1.1

The notion of neighbourhood is useful in formulating the definition of
something being true ‘near’ a given point. In fact, let P be a property which
applies to real numbers, and may or may not hold for any given real num-
ber. Let a be in R. We say P holds near a, or is valid near a, if P holds for
all points in some neighbourhood of a.

For example, let f : R → R be the function x 7→ x2 + x3. Then f is
positive near the point 1 (since f(x) > 0 for all x > 0); but it is not true that
f is positive near 0, or near −1.

There is still no notion of absolute nearness, that is, of a point x being
‘near a’. This is to be expected; the only definition of x being near a that
makes sense is that x is near a if x is in some neighbourhood of a. But any
x in R is then near a.

At this stage we could still dispense with the arbitrary neighbourhoods
and work entirely with intervals. However, the elegance and flexibility of
the general notion will appear as we proceed.

We now derive some simple properties of neighbourhoods.

1.1.1 Let a ∈ R, and let M, N be neighbourhoods of a. Then M ∩ N is a

neighbourhood of a.

Proof Since M, N are neighbourhoods of a, there are real numbers δ, δ ′ >
0 such that

]a− δ, a+ δ[ ⊆M, ]a− δ ′, a+ δ ′[ ⊆ N.

Let δ ′′ = min(δ, δ ′). Then

]a − δ ′′, a+ δ ′′[ ⊆M ∩N
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and so M ∩N is a neighbourhood of a. 2

1.1.2 Let a ∈M ⊆ N ⊆ R. If M is a neighbourhood of a, then so also is N.

Proof If M is a neighbourhood of a, then there is a δ > 0 such that ]a −

δ, a+ δ[ ⊆M. Hence ]a− δ, a+ δ[ ⊆ N, and the result follows. 2

1.1.3 An open interval is a neighbourhood of any of its points.

Proof Suppose first that I is an open interval of the form ]a,b[ where a,b ∈
R. Let x ∈ I, and let δ = min(x−a,b−x). Then δ is positive and ]x−δ, x+

δ[ ⊆ I, whence I is a neighbourhood of x.
The proofs for the other kinds of open intervals are also simple. 2

Clearly 1.1.3 is false if the word ‘open’ is removed.
A point a in R determines the sets N which are neighbourhoods of a.

Also a set A determines the set of points of which A is a neighbourhood;
this set is called the interior of A, and is written IntA; thus x ∈ IntA
if and only if A is a neighbourhood of x. Since x belongs to any of its
neighbourhoods, IntA is a subset of A.

EXAMPLES

8. If I is an open interval, then Int I = I.
9. If A is finite then IntA is empty.
10. If A = [a,b] then IntA = ]a,b[.
11. If A = Q the set of rationales, then IntA = ∅.
12. If A = R \Q, then IntA = ∅.

1.1.4 If A ⊆ B, then IntA ⊆ IntB.

Proof If A is a neighbourhood of x, then so also, by 1.1.2, is B. 2

1.1.5 If N is a neighbourhood of a, then so also is IntN.

Proof LetN be a neighbourhood of a, and let δ > 0 be such that ]a−δ, a+
δ[ ⊆ N. Then ]a − δ, a+ δ[ ⊆ IntN, by 1.1.4 and since the interior of an
open interval is the same interval. So IntN is a neighbourhood of a. 2

EXERCISES

1. Let a ∈ R and let N be a subset of R. Prove that the following conditions are

equivalent.

(a) N is a neighbourhood of a.

(b) There is a δ > 0 such that [a− δ, a+ δ] ⊆ N.

(c) There is an integer n > 0 such that [a− n−1, a+ n−1] ⊆ N.
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2. Prove that if A is a countable set of real numbers, then IntA = ∅.

3. Prove that Int(A ∩ B) = IntA ∩ IntB.

4. Does Int(A ∪ B) = IntA ∪ IntB?

5. Let (An) be a sequence of subsets of R. Does

Int

(
⋂

n

An

)
=
⋂

n

IntAn?

6. Let C be a neighbourhood of c ∈ R, and let a + b = c. Prove that there are

neighbourhoods A of a, B of b such that x ∈ A and y ∈ B implies x+ y ∈ C.

7. Write down and prove a similar result to that of Exercise 6, but with c = ab.

8. Let C be a neighbourhood of c, where c 6= 0. Prove that there is a neighbourhood

C ′ of c−1 such that if x is in C ′, then x−1 is in C.

9. Prove that Int(IntA) = IntA.

10. Let A1 = [−1, 1[\{0}, A2 = {2}, A3 = Q∩ [3, 4], and let A = A1∪A2∪A3. Show

that exactly fourteen distinct subsets of R may be constructed from A by means of

the operations Int and complementation with respect to R.

1.2 Continuity

In this section, we define continuity of real functions (that is, functions
whose domain and range are subsets of R). This definition is entirely in
terms of neighbourhoods. In this section, we shall usually take the range
of a real function to be R itself, but the definitions and results are the same
as for the general case, when the range is any subset of R.

Let f : A→ R be a function, where A is a subset of R. Let a ∈ A.

fa

N

f[M]

M a

f

Fig. 1.2

Definition C The function f is continuous at a if for each neighbourhood
N of f(a) there is a neighbourhood M of a such that f[M] ⊆ N. Further, f
is continuous if f is continuous at each a in A.
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In this definition, f[M] is the image‡ of the setM by f. So the definition
can be restated:

Definition C ′ The function f is continuous at a if, for each neighbourhood
N of f(a), there is a neighbourhood M of a such that for all x ∈ R

x ∈M ∩A⇒ f(x) ∈ N.

The statement f[M] ⊆ N is equivalent toM∩A ⊆ f−1[N]. Suppose now
that A is a neighbourhood of a. Then M ∩ A is a neighbourhood of a, so
that f[M] ⊆ N implies that f−1[N] is a neighbourhood of a. On the other
hand, we always have

ff−1[N] ⊆ N.

So if f−1[N] is a neighbourhood of a, then f−1[N] is itself a neighbour-
hood M of a such that f[M] ⊆ N. This shows that if A is a neighbourhood
of a, we can restate Definition C as:

Definition C ′′ The function f is continuous at a if, for every neighbourhood
N of f(a), f−1[N] is a neighbourhood of a.

This last definition has only one quantifier, whereas Definition C has
two, and Definition C′ has three. Thus Definition C′′ is the easiest to un-
derstand, but we emphasise that it applies only to the case when A, the
domain of f, is a neighbourhood of a.

Another advantage of Definition C′′ is that it is easy to negate. We
suppose A is a neighbourhood of a: then f is not continuous at a if, for
some neighbourhood N of f(a), f−1[N] is not a neighbourhood of a. This
is illustrated in the examples which follow.

EXAMPLES

1. Let l ∈ R and let f : R → R be the constant function x 7→ l. Let
a ∈ R. The domain of f is R, which is a neighbourhood of a. If N is
a neighbourhood of l, then f−1[N] = R, which is a neighbourhood of a.
Therefore, f is continuous at a, and since a is arbitrary, f is a continuous
function.
2. Let f : R → R be the identity function x 7→ x. Let a ∈ R. The domain
of f is a neighbourhood of a, and f(a) = a. If N ′ is a neighbourhood of
f(a), then f−1[N] = N, so that f−1[N] is a neighbourhood of a. Thus f is a
continuous function.
3. Consider the function

f : R→ R

‡See A.1.5 of the Appendix.
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x 7→
{

0, x < 1

2, x > 1.

Here again, R is a neighbourhood of 1. In this case, f is not continuous
at 1. For let N = [1,→ [. Then N is a neighbourhood of f(1) = 2, but
f−1[N] = [1,→[ which is not a neighbourhood of 1.

N

2

1

1

Fig. 1.3

4. Consider the function

f : [1,→[ → R
x 7→ 2.

Here the domain of f is [1,→[ , which is not a neighbourhood of 1; so to
prove continuity at 1, we must use Definition C. Let N be a neighbourhood
of 2. Then

f[R] = {2}

which is a subset of N. Since R is a neighbourhood of 1, we have proved
continuity at 1. This example should be compared carefully with Example
3.

N
2

1

Fig. 1.4

5. Let f : R → R be defined as follows. If α is a rational number and
is, in its lowest terms, p/q where p,q are integers such that q > 0, then
f(α) = 1/q (in particular, f(0) = 1). If β is irrational, then f(β) = 0. We
prove that f is not continuous at any rational number, but is continuous at
any irrational number.
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Let α = p/q be such that f(α) = 1/q. Let N = ]0,→[. Then N is a
neighbourhood of f(α), but f−1[N] contains no irrational numbers and so
is not a neighbourhood of α. Therefore f is not continuous at α.

In order to prove that f is continuous at an irrational number β, we use
the fact that rational numbers of high denominators are needed to approx-
imate closely an irrational number.

Let N be a neighbourhood of 0 = f(β). We prove that M = f−1[N] is
a neighbourhood of β. Certainly, M contains all irrational numbers, since
these are all sent to 0 by f, and we show that all rational numbers close
enough to β are also contained in M.

Let n be a positive integer such that

[−n−1,n−1] ⊆ N;

such an integer exists since N is a neighbourhood of 0 [cf. Exercise 1 of
Section 1.1]. Let m be an integer such that β ∈ [m,m + 1]. There are only
a finite number of rational numbers p/q which are in [m,m + 1] and are
such that 0 < q 6 n. One of these, say r, will be closest to β. Let

|β− r| = δ, I = ]β− δ,β+ δ[.

Since β is irrational, δ is positive. Also, all rational numbers p/q in I satisfy
q > n. Hence

f[I] ⊆ ] − n−1,n−1[, whence I ⊆M.

ThereforeM is a neighbourhood of β, and f is continuous at β.

Examples 1, 2, and 5 show that some functions are proved continuous
by working directly with the definition. More usually, though, we construct
continuous functions by taking a basic stock of continuous functions and
giving rules for making more complicated continuous functions from those
of the basic stock.

We take from analysis the definitions and continuity of the functions sin
and log. These, with the identity function and the constant function, form
our basic stock. Let f : A→ R, g : B→ R be functions; then f + g, f.g, f/g
are respectively the functions

x 7→ f(x) + g(x), x 7→ f(x).g(x), x 7→ f(x)/g(x)

with respective domains A ∩ B, A ∩ B, (A ∩ B) \ {x ∈ B : g(x) = 0}. Let A,
B be subsets of R, and let a ∈ A ∩ B.

1.2.1 (Sum, product, and quotient rule.) If f, g are continuous at a, so also

are f+ g, f.g; if f/g is defined at a, then it is continuous at a.
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We omit the proof, which is given, for example, in many analysis books
[cf. also Exercise 1 following, and Sections 2.5, 2.8].

1.2.2 (Restriction rule) Let f : A→ R be a real function continuous at a ∈ A.

Let B be a subset of A containing a. Then f | B is continuous at a.

Proof Let g = f | B. Let N be a neighbourhood of g(a) = f(a). Since f
is continuous at a, there is a neighbourhood M of a such that f[M] ⊆ N.

Then
g[M] = g[M ∩ B] = f[M ∩ B] ⊆ f[M] ⊆ N.

So g[M] ⊆ N, and g is continuous at a. 2

The restriction rule can be used to deduce Example 4 from Example 1.
Let f : A → R, g : B → R be real functions, and let h : A ∩ f−1[B] → R

be the composite function x 7→ g(f(x)).

1.2.3 (Composite rule) If a ∈ A ∩ f−1[B], f is continuous at a and g is

continuous at f(a), then h is continuous at a.

Proof Let N be a neighbourhood of h(a). Since g is continuous at f(a),
there is a neighbourhood M of f(a) such that g[M] ⊆ N. Since f is contin-
uous at a, there is a neighbourhood L of a such that f[L] ⊆M. It is easy to
verify that

h[L] = g[f[L]],

whence h[L] ⊆ N. Therefore h is continuous at a. 2

1.2.4 (Inverse rule.) Let f : A → R be a real function which is injective, so

that f has an inverse f−1 : f[A] → A. If A is an interval and f is continuous,

then f−1 is continuous.

For a proof see many books on a first course in analysis. This result
is also a consequence of general theorems on connectivity and compact-
ness [cf. Chapter 3]. The assumption that A is an interval is essential [cf.
Exercise 4 of Section 1.2].

EXAMPLES

6. By repeated application of 1.2.1 to the identity function and constant
functions, we can prove in turn the continuity of x 7→ xn (n > 0), polyno-
mial functions, and rational functions.
7. The continuity of cos, tan, sec, cosec follows easily from 1.2.1 and 1.2.3.
For example, cos is the composite of sin and x 7→ π/2 − x, and tan is the
quotient sin / cos.

By 1.2.2, sin | [−π/2,π/2] is continuous; but this function is injective, so
its inverse sin−1 is continuous by 1.2.4. Similarly, we derive the continuity
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of cos−1, and tan−1. The function log is injective and continuous; therefore,
its inverse exp is continuous. The function n

√
is continuous, since it is the

inverse of x 7→ xn if n is odd, and of x 7→ xn (x > 0) if n is even. So we
can prove continuity of functions such as

x 7→ (sin x)1/n + log x+ x17.

EXERCISES

1. Prove 1.2.1 by use of Exercises 6, 7 of Section 1.1.

2. Prove the following ‘Sandwich Rule’ (also called the Squeeze Rule). Let λ,µ :

A → R be two functions continuous at a ∈ A and such that λ(a) = µ(a). Let

f : A→ R be a function such that for some neighbourhood M of a

x ∈M ∩A⇒ λ(x) 6 f(x) 6 µ(x).

Then f is continuous at a.

Use this rule to prove the continuity of the function

x 7−→
{
x sin x−1 x 6= 0

0 x = 0.

3. Let f : A→ R be a function, let a ∈ A, and let N be a neighbourhood of a. Prove

that if f | N ∩A is continuous at a, then so also is f.

4. Let f be the function

x 7−→
{

x 0 6 x 6 1

x− 1 2 < x 6 3.

Prove that f is continuous and injective, but that f−1 is not continuous at 1.

5. Let f : [a,b]→ [c,d] be a monotonic bijection. Prove that f is continuous.

6. Let f : R→ R. Prove that f is continuous if and only if for every subset A of R

f−1[IntA] ⊆ Int f−1[A].

7. Let f : A → R be a real function and let a ∈ A. Prove the equivalence of the

following statements:

(a) f is continuous at a.

(b) for all ε > 0, there is a δ > 0 such that

f ]a− δ,a+ δ[ ⊆ ]a− ε,a+ ε[.

(c) For all positive integers m there is a positive integer n such that

f ]a− n−1,a+ n−1[ ⊆ ]a−m−1,a +m−1[.

8. Prove the following ‘gluing rule’. Let A = A1 ∪ A2 ⊆ R, a ∈ A1 ∩ A2. Let

f : A → R be a function such that f | A1, f | A2 are continuous at a. Then f is

continuous at a. Prove also that f is continuous if f | A1, f | A2 are continuous and

A1 \A2 ⊆ IntA1, A2 \A1 ⊆ IntA2.

9. Prove that the set of all continuous functions [0, 1]→ R is uncountable.
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1.3 Open sets, closed sets, closure

In this section, we introduce some more topological concepts on the real
line R.

First we consider the open sets. A subset U of R is open if U is a neigh-
bourhood of each of its points. Now for any set U, IntU is the set of points
of which U is a neighbourhood. So U is open if and only if U = IntU.

Examples of open sets are the empty set (which has no points and so is
a neighbourhood of each of them) and, by 1.1.3, any open interval. Other
examples may be constructed by means of the following results.

1.3.1 The union of any family of open sets is open.

Proof Let (Ui)i∈J be a family of subsets of R such that each Ui is open,
and let U =

⋃
i∈JUi. If U is empty, it is open, if not, let u ∈ U; we prove

that U is a neighbourhood of u.
First, u ∈ Ui for some i. Since Ui is open, it is a neighbourhood of u.

Therefore U, which contains Ui, is also a neighbourhood of u. 2

1.3.2 A subset of R is open if and only if it is the union of a countable set of

disjoint open intervals.

Proof The union of any family of open intervals is open by 1.1.3 and 1.3.1.
To prove the converse, let U be an open set. If U is empty the result is

true since U is the union of the empty family of intervals.
Suppose U is not empty. Two points x, y of U are called equivalent,

written x ∼ y, if the closed interval with end points x, y is contained in U.
It is easily verified that ∼ is an equivalence relation on U. By the definition
of ∼, the equivalence classes are intervals of R (that is, if x,y belong to an
equivalence class E, and x < y, then any point z such that x < z 6 y also
belongs to E). These equivalence classes are also disjoint and cover U.

Now the open intervals of R are exactly those intervals of R which do
not contain any of their end points—this is a non-trivial fact about R being
a consequence of the completeness of the order relation (see the Glossary
under bounded and interval). So to prove the theorem let E be one of the
above intervals and let a be an end point of E. If a ∈ U then, for some
δ > 0, ]a − δ,a + δ[ is contained in U and hence also in E, and this is
absurd. Therefore a /∈ U and so a /∈ E. Thus E is an open interval.

Let ϕ be the function which sends each element of Q ∩ E to its equiv-
alence class. Then ϕ is a surjection to the set of equivalence classes since
each non-empty open interval of R contains a rational number. Since Q∩U
is countable it follows that the number of equivalence classes is countable.

2
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The simple criterion 1.3.2 allows some pathological and complicated
examples. For example, in Fig. 1.1 the union of all the sets Xn, that is, the
set X \ {0}, is an open set.

EXAMPLE The Cantor Set. This is a subset K of I = [0, 1] such that I \ K is
open.

The middle-third of a closed interval [a,b] is the open interval,

]a+ (b − a)/3,b− (b− a)/3[ .

If (Iα) is a family of disjoint closed intervals, and U =
⋃
Iα, then the

middle-third of U is the union of the middle-thirds of each Iα.
Now let I = [0, 1]; we define sets Xn, In by induction. First, X1 is the

middle third of I and

I1 = I \ X1.

Suppose Xn, In have been defined, and In is a finite union of disjoint closed
intervals. Then Xn+1 is defined to be the union of Xn and the middle-third
of In, and we set In+1 = I\Xn+1. The construction is illustrated in Fig. 1.5.

It is easy to prove by induction that In is the union of 2n closed intervals
each of length 3−n, that Xn is a union of disjoint open intervals, and that

I ⊇ I1 ⊇ I2 ⊇ · · · ; X1 ⊆ X2 ⊆ X3 ⊆ · · · .

Let X =
⋃

n>1 Xn so that X is open. The Cantor set is

K = I \ X =
⋂

n>1

In.

There is a convenient representation of the points of K by ternary dec-
imals. We recall (see any book on analysis) that each point of I can be
represented as

.a1a2a3 . . . =

∞∑

n=1

an3
−n, an = 0, 1, or 2.

The points of X1 have a1 = 1, and those of I1 of a1 = 1 or 2. The points of
X2 have a1 = 1 or a2 = 1, while for I2 neither a1 nor a2 can be 1. In fact, it
is not hard to prove by induction that the points of In are exactly those real
numbers whose representation as ternary decimals .a1a2 . . . have no 1’s in
the first n places. So the points of K are represented by ternary decimals
.a1a2 . . . with an 6= 1 for all n > 1; and the points of X are represented by
ternary decimals .a1a2 . . . in which at least one of the an is 1.
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I

X1

I1

X2

I2

X3

I3

Fig. 1.5

This completes our account of the Cantor set.

The open sets in R generalise the open intervals. The corresponding
generalisations of the closed intervals are the closed sets: a subset C of R
is closed if R \ C is open. Thus a closed interval [a,b] is closed since its
complement is ]←,a[ ∪ ]b,→[ which is open. Corresponding to 1.3.1, we
have,

1.3.3 The intersection of any family of closed sets is closed.

Proof Let (Cα) be a family of closed sets, and let C =
⋂
Cα. We must

prove that R \ C is open.

By the De Morgan laws,

R \ C =
⋃

(R \ Cα).

But Cα is closed, so that R\Cα is open, and
⋃
(R\Cα) is open by 1.3.1. 2

A corollary of 1.3.3 is that the Cantor set K is closed: for K =
⋂

n>1 In,
and R \ In is open, since it is the union of open intervals.

There are subsets of R which are neither open nor closed, for example,
the half-open interval [0, 1[. A natural question is: which subsets of R are
both open and closed?

1.3.4 The only subsets of R which are both open and closed are ∅ and R.

Proof Let U be a non-empty, open, proper subset of R.

By 1.3.2, U is the union of a family of disjoint open intervals. Since U
is neither ∅ nor R, one of these intervals has an end point, say a. Now
a ∈ R \ U, but R \ U cannot be a neighbourhood of a since a is the end
point of an interval contained in U. Therefore R\U is not open, so U is not
closed. 2
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The open sets U and R are characterised by the property: U = IntU.
There is another operation on subsets of R which characterises the closed
sets.

Let A be a subset of R. We divide the points of R into three sets. First,
we have the interior points of A; these form a set IntA which has already
been discussed. Second, we have the exterior points of A, which form a set
ExtA; these are the points which are interior to R \A, so that x ∈ ExtA if
and only if R \A is a neighbourhood of x. Finally, the points which remain
form the frontier FrA.

For example, let A = [0, 1[. The interior of A is ]0, 1[, the exterior of A
is ]←, 0[ ∪ ]1,→[, and the frontier of A consists of the points 0 and 1.

The closure A of a set A is obtained by adding to IntA the points of the
frontier of A; that is,

A = IntA ∪ FrA.

In fact A ⊆ A, so that A = A ∪ FrA. We prove A ⊆ A as follows: Let
x ∈ A. If x ∈ IntA, then certainly x ∈ A. Suppose x ∈ A \ IntA: then A
is not a neighbourhood of x, and neither is R \ A; hence x ∈ FrA, and so
x ∈ A.

We set out the definitions of these operators in terms of neighbour-
hoods:

(a) x ∈ IntA ⇔ A is a neighbourhood of x ⇔ some neighbourhood of x
does not meet R \A.

(b) x ∈ ExtA⇔ R \A is a neighbourhood of x⇔ some neighbourhood of
x does not meet A.

(c) x ∈ FrA⇔ every neighbourhood of x meets both A and R \A.

(d) x ∈ A⇔ every neighbourhood of x meets A.

It is necessary to explain why (d) defines A. Suppose first that x ∈ A,
and that N is a neighbourhood of x. If x ∈ A, then x ∈ N ∩ A and so
N meets A; if x ∈ FrA, then N meets A by (c). So if x ∈ A then every
neighbourhood of x meets A.

Conversely, suppose every neighbourhood of x meets A. If x ∈ A, then
x ∈ A; and if x ∈ R \ A, then every neighbourhood of x meets both A and
R \ A, so that x ∈ FrA. In either case, x ∈ A.

The closure operation is probably the most important of these topologi-
cal operators—when we define closure for subsets of a general topological
space, we shall take (d) above as the definition.

We conclude this section by proving:

1.3.5 A subset A of R is closed if and only if A = A.
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Proof Suppose A is closed. Then R \ A is open, so that ExtA = R \ A.
Hence

A = IntA ∪ FrA = R \ ExtA = A.

Conversely, suppose A = A. Then

R \A = ExtA = Int(R \A).

Therefore R \A is open, and A is closed. 2

EXERCISES

1. Prove that the Cantor set K is uncountable.

2. Prove that the function

f : K → [0, 2]
∞∑

1

an3
−n 7→

∞∑

1

an2
−n

is continuous, increasing, and surjective.

3. Let Xn be as in the construction of the Cantor set K. Prove that Xn \ Xn−1 is

the union of 2n−1 open intervals Xn,p each of length 3−n. Prove that the function

f of Exercise 2 takes the same value at the end points of each Xn,p. Deduce that f

extends to a continuous function g : I → I which is constant on each Xn,p. Sketch

the graph of g.

4. Determine the exterior, frontier, and closure of the following subsets of R: (i) Q,

(ii) R \Q, (iii) {0}, (iv) {n−1 : n a positive integer}, (v) Z.

5. Let A be a subset of R. Prove that

R \ A = Int(R \A).

6. Let A be a subset of R. Prove that if C is a closed set containing A, then C

contains A.

7. LetA be an open subset of R and f : A→ R a function. Prove that f is continuous

if and only if f−1[U] is open for each open set U of R.

8. Prove that any closed set of R is the intersection of countably many open sets.

[Use 1.3.2.]

1.4 Some generalisations

The idea of neighbourhood on which much of the previous sections was
based, is applicable to other situations and this will of course be discussed
in detail in later chapters. Here we wish to prepare the reader for the full
scale axiomatics of the next chapter by showing some other examples of
neighbourhoods.
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There is an easy generalisation to the Euclidean plane R2 = R× R. Let
us identify R2 with C, the set of complex numbers. Then, we can define in
C a neighbourhood of a complex number a to be any subset N of C which
contains a set

B(a, δ) = {z ∈ C : |z− a| < δ}

for some δ > 0. Here the ‘open ball’ B(a, δ) replaces what in R was the
open interval ]a − δ,a + δ[. As will be clear later, most of the previous
discussions and definitions go through without change. In particular, we
can define continuity for functions with domain and range subsets of either
R or C, since all that is needed for the definition of continuity is the notion
of neighbourhood.

a

δ

Fig. 1.6

Similarly, there is the notion of an open ball B(a, δ) in R3, namely, the
set of points z whose Euclidean distance from a is less than δ. Given the
notion of open ball, we can again define a neighbourhood of a in R3 to be
any subset of R3 containing an open ball B(a, δ) for some δ > 0. These
definitions of neighbourhood find their proper place in the definition of
neighbourhoods in metric spaces and in normed vector spaces.

These ideas also lead to definitions of neighbourhoods for subsets A of
R3; vis., if a ∈ A, then a neighbourhood in A of a is a set N ∩ A where N
is a neighbourhood of a in the above sense of neighbourhoods for points
of R3. For example, in Fig. 1.7 which pictures the 2-sphere (a) and Möbius

band (b), a neighbourhood in A of a is any subset of A containing a ‘disc’
about a such as that shown.

D

b

D1

aN∩A

(a)

D1

b
a

A =MA = S2

(b)

Fig. 1.7
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These examples are simple. But we can also give examples of neighbour-
hoods where it is not easy to visualise the whole set.

Consider the Möbius band M. This has only one edge, and this edge
E can be considered as a (somewhat twisted) circle. If we cut a disc D
out of the 2-sphere S2, then the edge of this disc is again a circle, E ′ say.
Let us suppose that these are models (in cloth perhaps) in R3 and that
we have arranged the models so that E and E ′ have the same length. It
would then seem reasonable to produce a new model by stitching E to E ′

and so joining the two models. Unfortunately, as experiment will show, the
whole thing gets hopelessly tangled. The point is, that this sort of model
making is impossible in R3—an extra dimension is needed. (The proof of
this assertion is very difficult and we will not give it.)

S2 \D

D ′
1

D1
E ′

b ′

E

b

M

Fig. 1.8

The question is: can we anyway say what we mean by this stitching
process without having to produce the result as a subset of R3? One of the
properties of the model we should like is that if in Fig. 1.7 the point b ′ of
S2 is identified with b in M, then the curve shown should be continuous.
This can be arranged by defining neighbourhoods suitably. First, the model
K should, as a set, be the union ofM and S2 \D (we suppose S2 andM are
disjoint). If a ∈ K \ E, then a ∈ S2 \D, or a ∈M \ E; about a we can find
discs contained in S2 \D orM\E as the case may be, and a neighbourhood
of a in K shall be any subset of K containing some such disc. For a point
b on E the situation is different. Suppose b is identified with b ′ on E ′.
About b and b ′ consider ‘half-discs’ D1 and D ′

1 (Fig. 1.8). Then any subset
of K containing D1 ∪ (D ′

1 \ E) is to be a neighbourhood in K of b, and all
neighbourhoods of b in K are to be obtained by this construction for some
half-discs D1, D ′

1. It is easy to see that this definition gives the required
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continuity for curves through b and b ′.
We must now leave the particular examples and go forward to the gen-

eral theory. Examples of the type of the last one will be discussed again in
chapter 4.

NOTES

The Cantor set is not used elsewhere in this book, but in many branches
of topology it furnishes a source of examples and constructions. For exam-
ple, it can be used in the construction of fractals and space filing curves
([Man77]).
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Chapter 2

Topological spaces

In section 2.1 of this chapter, we give the axioms for a topological space:
the topological spaces are the objects of study of the rest of this book.

A topological space consists of a set X and a ‘topology’ on X. The im-
portance for science of the notion of a topology is that it gives a precise
but general sense to the intuitive ideas of nearness and continuity. As we
saw in chapter 1 the basis of both these ideas is that of neighbourhood,
and so it is this idea of neighbourhood which we axiomatise at first. It will
appear quickly that there are equivalent ways of defining a topology, for
example by means of open sets, or of closed sets. These definitions do not
have the same intuitive appeal as the neighbourhood definition, but they
are logically simpler and in some cases give the best method of defining a
topology.

The type of structure of the real line R with its neighbourhoods of points
is that for each r in R we have a set of subsets of R called neighbourhoods
of r. More precisely, we have a function r 7→ N(r) where N(r) is the set of
neighbourhoods of r.

The way to generalise this structure is apparent. We consider a set X
and a function N : x 7→ N(x) assigning to each x in X a set N(x) of subsets
of X called neighbourhoods of x. The function N will be a topology on X if
it satisfies suitable axioms.

The question of what axioms are suitable can not be decided on a priori

grounds. The decision rests on the character of (a) the theory derived from
the axioms, and (b) the examples of objects which satisfy the axioms. We
shall see in later chapters how the theory presented here gives a language
which is essential for certain aspects (in fact the topological aspects!) of
geometry.

19
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2.1 Axioms for neighbourhoods

Let X be a set and N a function assigning to each x in X a non-empty set
N(x) of subsets of X. The elements of N(x) will be called neighbourhoods

of x with respect to N (or, simply, neighbourhoods of x). The function N is
called a neighbourhood topology if Axioms N1–N4 below are satisfied; and
then X with N is called a topological space.

The following axioms must hold for each x in X.

N1 If N is a neighbourhood of x, then x ∈ N.

N2 If N is a subset of X containing a neighbourhood of x, then N is a neigh-

bourhood of x.

N3 The intersection of two neighbourhoods of x is again a neighbourhood of
x.

N4 Any neighbourhood N of x contains a neighbourhood M of x such that

N is a neighbourhood of each point of M.

We allow the empty topological space in which X = ∅ and N is the
empty function from ∅ to {∅}, the set of subsets of ∅.

EXAMPLE The real line R with its neighbourhoods of points is a topological
space. The first three axioms have been verified in section 1.1, and we now
verify N4. Let N be a neighbourhood of x ∈ R; there is a δ > 0 such that
]x − δ, x+ δ[ ⊆ N. Let M = ]x− δ, x + δ[. Then M is a neighbourhood of
each of its points, and so N is a neighbourhood of each point of M.

This neighbourhood topology on R is called the usual topology on R.

The first three axioms for neighbourhoods have a clear meaning. The
fourth axiom has a very important use in the structure of the theory, that of
linking together the neighbourhoods of different points of X.

Intuitively, Axiom N4 can be expressed as follows: a neighbourhood of

x is also a neighbourhood of all points sufficiently close to x. Another way of
expressing the axiom is that each point is inside any of its neighbourhoods.
To explain what is meant by this, we introduce the notion of the interior or
a subset of X.

Any point x in X determines its neighbourhoods, which are subsets of
X. On the other hand, given a subset A of X we can find those points of
which A is a neighbourhood—the set of all such points is called the interior

of A and is written IntA.

2.1.1 IntA ⊆ A.

2.1.2 If A ⊆ B ⊆ X, then IntA ⊆ IntB.

2.1.3 IntA is a neighbourhood of any of its points.

2.1.4 Int(IntA) = IntA.
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Proof If IntA = ∅, then 2.1.1–2.1.3 (and so 2.1.4) are trivially satisfied.
Suppose then x ∈ IntA, so that A is a neighbourhood of x.

By Axiom N1, x ∈ A. Hence IntA ⊆ A. Further, if A ⊆ B then B is also
a neighbourhood of x (Axiom N2), so that x ∈ IntB. Hence IntA ⊆ IntB.

Let M be a neighbourhood of x such that M ⊆ A and A is a neighbour-
hood of each point ofM (such anM exists by Axiom N4). ThenM ⊆ IntA,
and so IntA is a neighbourhood of x, by Axiom N2. This proves 2.1.3.

By 2.1.3, IntA ⊆ Int(IntA). By 2.1.1 and 2.1.2 Int(IntA) ⊆ IntA. 2

The sentence ‘each point is inside any of its neighbourhoods’ means that
if N is a neighbourhood of x, then x belongs to IntN. Also, IntN is again a
neighbourhood of x. Thus Axioms N1–N4 imply:

N4 ′ If N is a neighbourhood of x, then so also is IntN.
This axiom implies Axiom N4, since, by definitionN is a neighbourhood

of each point of IntN.

EXERCISES

1. Let X be a set with a neighbourhood topology. Prove that if A, B are subsets of

X then,

IntA ∩ IntB = Int(A ∩ B)
IntA ∪ IntB ⊆ Int(A ∪ B).

Prove also that if (Xλ)λ∈L is a family of subsets of X then,

Int
⋂

λ∈L

Xλ ⊆
⋂

λ∈L

IntXλ.

2. Let 6 be an order relation on the set X. Let x ∈ X and N ⊆ X. We say that N is

a neighbourhood of x if there is an open interval I of X such that

x ∈ I ⊆ N.

Prove that these neighbourhoods of points of X form a neighbourhood topology

on X. This topology is called the order topology on X. What is the order topology

on R?

3. Prove that the following are neighbourhood topologies on a set X.

(a) The discrete topology: N is a neighbourhood of x if and only if x ∈ N ⊆ X.

(b) The indiscrete topology: N is a neighbourhood of x ∈ X if and only if N = X.

For what X do these topologies coincide? Let x ∈ X. What is Int{x} if X has the

discrete topology?, the indiscrete topology?

4. Prove that the order topology on Z is the discrete topology, but that the order

topology on Q is not discrete.

5. Let 6 be a partial order on the set X. Discuss the possibility, or impossibility, of

using 6 to define a neighbourhood topology on X.
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6. Let X be an uncountable set. Prove that the following define distinct neighbour-

hood topologies on X.

(a) N is a neighbourhood of x ∈ X if x ∈ N ⊆ X and X \N is finite.

(b) N is a neighbourhood of x ∈ X if x ∈ N ⊆ X and X \N is countable.

Can either of these topologies be the discrete topology?

7. Let X = Z and let p be a fixed integer. A set N ⊆ Z is a p-adic neighbourhood

of n ∈ Z if N contains the integers n +mpr for some r and all m = 0, ±1, ±2, . . .
(so that in a given neighbourhood r is fixed but m varies). Prove that the p-adic

neighbourhoods form a neighbourhood topology on Z, the p-adic topology. Is this

topology the same as the order topology?, the discrete topology?, the indiscrete

topology?

The reader familiar with ring theory should develop two generalisations of the

p-adic topology on Z. First, replace the ring Z by an arbitrary ring R, so that now

p ∈ R. Second, replace the element p by any ideal P of R. What is the P-adic

topology in R if (a) P = R, (b) P = {0}?

8. Prove that Axioms N1–N4 are independent.

2.2 Open sets

Let N be a neighbourhood topology on the set X. A subset U of X is open
(with respect to N) if U is a neighbourhood of each of its points. Thus U is
open if and only if U = IntU.

2.2.1 Let x ∈ X and N ⊆ X; N is a neighbourhood of x if and only if there is

an open set U such that

x ∈ U ⊆ N.

Proof If N is a neighbourhood of x, then IntN is an open set such that
x ∈ IntN ⊆ N. Conversely, if U is an open set such that x ∈ U ⊆ N, then U
is a neighbourhood of x and hence so also is N. 2

The most important properties of open sets are given by:

2.2.2 The open sets of X satisfy

O1 X and ∅ are open sets.

O2 If U, V are open sets, then U ∩ V is open.

O3 If (Uλ)λ∈L is any family of open sets, then
⋃

λ∈LUλ is open.

Proof The relation Int∅ ⊆ ∅ implies that Int∅ = ∅; thus ∅ is open. If
x ∈ X, then x has at least one neighbourhood N; but N ⊂ X and so X is a
neighbourhood of x. Thus X is open.

If U∩V is empty, then it is open. If it is not empty, let x ∈ U∩V . Then U
and V are both neighbourhoods of x, and hence U ∩ V is a neighbourhood
of x. Thus U ∩ V is open.



TOPOLOGICAL SPACES [2.2] 23

Let U =
⋃

λ∈LUλ. If U is empty, it is open. If not, let x ∈ U. Then
x ∈ Uλ for some λ ∈ L, and Uλ, being open, is a neighbourhood of x. But
Uλ ⊆ U. So U also is a neighbourhood of x. 2

We now show that the innocent seeming properties O1, O2, O3 suffice
to axiomatise topological spaces in terms of open sets.

Let U be a set of subsets of X, called open sets, satisfying O1, O2, O3.
For each x ∈ X a set M(x) of U-neighbourhoods of x is defined by:

N ∈M(x)⇔ N ⊆ X and there is a U ∈ U such that x ∈ U ⊆ N.

(Compare 2.2.1.) The function x 7→M(x) is said to be associated with U.
M is a neighbourhood topology on X. The Axioms N1, N2 are imme-

diately verified while Axiom N3 follows from O2. Also, if x ∈ U ∈ U, then
U ∈M(x), and this implies Axiom N4.

We now prove:

2.2.3 U is the set of open sets of M.

Proof Certainly, each U ∈ U is open with respect to M. Suppose, con-
versely, that U ⊆ X and U is open with respect to M. If U = ∅, then U ∈ U.
If U 6= ∅, then for each x ∈ U there is a set Ux in U such that x ∈ Ux ⊆ U.
Let U ′ be the union of these Ux for all x in U. Then U′ ⊆ U since each
Ux ⊆ U; and U ⊆ U ′ since each x in U belongs to Ux. So U = U ′. Hence,
U =

⋃
x∈UUx belongs to U by O3. 2

Suppose N is a neighbourhood topology on X, and U is the set of open
sets of N. It is immediate from 2.2.1 that N is the neighbourhood topology
associated with U. Since 2.2.1 is a consequence of Axiom N4, we have
shown another use for this axiom—it ties together the neighbourhoods and
the open sets.

A set of subsets of X called open sets and satisfying O1, O2, O3 is called
an open set topology on X. We have proved that the structures of open set
topology and neighbourhood topology determine one another: so topology
may be developed using either as a starting point.

As we shall see later, topological spaces may be axiomatised in terms of
other structures, for example, closed sets, closure, interior, or the relation
A ⊆ IntB. We shall use the word topology to denote the set of these equiv-
alent structures, and shall be more specific when necessary. A topological
space will be a set with a topology; thus a topological space carries all these
structures, and may be defined by any one of them.

A topological space is really a pair (X,T) where T is a topology on X. It
is often convenient to use the symbol X to denote this pair. Such a notation
causes confusion only when we are considering two topologies on the same
set X. In such case, we shall write XT for the topological space consisting
of the set X and the topology T. We call X the underlying set of XT .
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Closed sets, closure

Let X be a topological space. A subset C of X is closed if X \ C is open.

2.2.4 The closed sets of X satisfy

C1 X and ∅ are closed sets.

C2 If C, D are closed sets, then C ∪D is closed.

C3 If (Cλ)λ∈L is a family of closed sets of X, then
⋂

λ∈L Cλ is a closed set.

This is immediate from O1, O2, O3 and the De Morgan laws.
If C is a set of subsets of a set X, called closed sets, which satisfy C1, C2,

C3, then the set U of complements with respect to X of the elements of C is
a set of open sets satisfying O1, O2, O3; thus C determines a topology on
X, and C is exactly the set of closed sets of this topology. Thus topological
spaces may be axiomatised in terms of closed sets.

Let X be a topological space and let A ⊆ X. The closure of A is the set
A of points x in X such that every neighbourhood of x meets A.

2.2.5 X \A = Int(X \A).

Proof Each of the following statements is obviously equivalent to its suc-
cessor.

(a) x ∈ X \A.
(b) There is a neighbourhood N of x not meeting A.
(c) There is a neighbourhood N of x such that N ⊆ X \A.
(d) X \A is a neighbourhood of x.
(e) x ∈ Int(X \A). 2

2.2.6 A ⊆ A.
2.2.7 If A ⊆ B, then A ⊆ B.
2.2.8 A is a closed set.
2.2.9 If A is a closed set, then A = A.

2.2.10 A = A.

Proof Let x ∈ A. Then any neighbourhood N of x meets A (since x ∈ N).
So x ∈ A, and 2.2.6 is proved.

2.2.7 is obvious. For 2.2.8, X \ A = Int(X \ A), and Int(X \ A) is open
by 2.1.4. Hence A is closed.

Suppose A is a closed set and x /∈ A. Then X \A is a neighbourhood of
x not meeting A. So x /∈ A. Thus A ⊆ A and so A = A.

Finally, 2.2.10 follows from 2.2.8 and 2.2.9. 2

2.2.11 If A,B ⊆ X, then A ∪ B = A ∪ B.
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Proof This can be deduced from 2.2.5 and Exercise 1 of Section 2.1. Alter-
natively, we argue as follows.
A ∪ B is closed and contains A ∪ B. Hence A ∪ B ⊂ A ∪ B. On the

other hand, A ⊆ A ∪ B implies A ⊆ A ∪ B; similarly, B ⊆ A ∪ B, whence
A ∪ B ⊆ A ∪ B. 2

EXERCISES

1. What are the open sets of Xwhen X is discrete, that is, has the discrete topology?,

is indiscrete, that is, has the indiscrete topology? What is the closure of {x}, x ∈ X,

in these cases?

2. Let X be a topological space and let A ⊆ X. Prove that IntA is the union of all

open sets U such that U ⊆ A, and A is the intersection of all closed sets C such that

A ⊆ C.

3. Let X be a topological space, and let A ⊆ X. A point x in X is called a limit point

of A if each neighbourhood of x contains points of A other than x. The set of limit

points of A is written Â. Prove that A = A∪ Â, and that A is closed⇔ Â ⊆ A. Give

examples of non-empty subsets A of R such that (i) Â = ∅, (ii) Â 6= ∅ and Â ⊆ A,

(iii) A is a proper subset of Â, (iv) Â 6= ∅ but A ∩ Â = ∅.

4. Let X be a topological space and let A ⊆ B ⊆ X. We say that A is dense in B if

B ⊆ A, and A is dense if A = X. Prove that if A is dense in X and U is open then

U ⊆ A ∩U.

5. Let I = [0, 1]. Define an order relation 6 on I2 = I× I by

(x, y) 6 (x ′,y ′)⇔ y < y ′ or (y = y ′ and x 6 x ′).

The television topology on I2 is the order topology with respect to 6 (the name is

due to E. C. Zeemann). Let A be the set of points (2−1, 1−n−1) for positive integral

n. Prove that in the television topology on I2

A = A ∪ {(0, 1)}.

6. A topological space is separable if it contains a countable, dense subset. Which

of the following topological spaces are separable? (i) Q with the order topology, (ii)

R with the usual topology, (iii) I2 with the television topology, (iv) an uncountable

set with the indiscrete topology, (v) the spaces defined in Exercise 6 of Section 2.1.

7. Prove that if A is the closure of an open set, then A = IntA. Prove that at most

fourteen distinct sets can be constructed from A by the operations of closure and

complementation.

8. For any subset A of a topological space X, define ExtA (the exterior of A), BdA

(the boundary of A) and FrA (the frontier of A) as follows:

ExtA = Int(X \A),

BdA = A \ IntA,

FrA = BdA ∪Bd(X \A).

Prove that the following relations hold:
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(i) A = IntA ∪ FrA = A ∪ FrA = A ∪Bd(X \A).

(ii) Int(BdA) = ∅.

(iii) Bd(IntA) = ∅.

(iv) Bd(BdA) = BdA.

(v) FrA = A ∩ (X \A).

(vi) FrA is closed. If A is closed then BdA = FrA.

(vii) Fr(Fr(FrA)) = Fr(FrA) ⊂ FrA.

(viii) FrA = ∅⇔ A is both open and closed.

(ix) BdA = A ∩ (X \A).

(x) BdA is closed⇔ A is the union of a closed and an open set.

(xi) Ext(ExtA) = IntA.

(xii) ExtExtExtExtA = ExtExtA.

9. A topological space H is defined as follows. The underlying set of H is R, and for

each x ∈ H and N ⊆ H, N is a neighbourhood of x⇔ there are real numbers x ′, x ′′

such that

x ∈ [x ′, x ′′[ ⊆ N.

Prove that H is a topological space and that (i) each interval [a,b[ is both open

and closed, (ii)H is separable, (iii) ifA ⊆ H, then A\Â is countable. (This topology

on R is the half-open topology.)

10. Let X be a non-empty set and i : P(X) → P(X) a function such that for all

A,B ∈ P(X)

(i) i(A) ⊆ A
(ii) i(i(A)) = i(A)

(iii) i(X) = X

(iv) i(A ∩ B) = i(A) ∩ i(B).
For each x in X, define A to be a neighbourhood of x if x ∈ i(A). Prove that

these neighbourhoods form a topology N on X. Which of the axioms (i)–(iv) are

essential in the proof?

*11. With the notation of Exercise 10, prove that i is the interior operator for the

topology N.

*12. Let X be a non-empty set and � a relation on subsets of X such that

(i) ∅�∅, X� X

(ii) A ⊂ A ′, A ′
� B ′ and B ′ ⊂ B imply A� B

(iii) A� B implies A ⊂ B.

(iv) A� B and A ′
� B ′ imply A ∩A ′

� B ∩ B ′

(v) Ai � Bi for all i ∈ I implies ∪i∈IAi � ∪i∈IBi.

For each x ∈ X, A ⊆ X define A to be a neighbourhood of x if {x} � A. Prove

that these neighbourhoods define a topology on X for which A� B⇔ A ⊆ IntB.

*13. Show how to axiomatise topologies using the closure operator. [Use 2.2.5 and

Exercise 10.]
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2.3 Product spaces

Let X, Y be topological spaces. We consider the problem of defining a
reasonable topology on the set X × Y. For example, if X = Y = R, this
is the problem of finding the notion of ‘nearness’ in the Euclidean plane
R2 = R× R.

We consider the abstract situation. Let x ∈ X, y ∈ Y; we wish to define
neighbourhoods of (x,y) in X × Y in such a way that Axioms N1–N4 are
satisfied.

An obvious first attempt is to say that the neighbourhoods of (x,y) shall
be the setsM×N forM,N neighbourhoods of x, y respectively. This would
correspond to the intuitive idea ‘(x,y) is near to (x ′,y ′) if x is near to x ′ and
y is near to y ′’. However, with this definition Axiom N2 is not satisfied: the
set P in the following figure is not of the form M×N for any sets M ⊆ X,
N ⊆ Y.

Y

N
y (x,y)

M×N

x M X

P

Fig. 2.1

We therefore make a virtue of necessity. The sets M × N as above we
call the basic neighbourhoods of (x,y), and we define a neighbourhood of

(x,y) in X× Y to be any subset of X× Y containing a basic neighbourhood
of (x,y). We show that with these neighbourhoods X × Y is a topological
space.

Let P be a neighbourhood of (x,y), and M×N a basic neighbourhood
of (x,y) contained in P. Clearly, (x,y) ∈ P, and if P ⊆ Q then Q is a
neighbourhood of (x,y). This verifies Axioms N1 and N2.

Let M0 = IntM, N0 = IntN. Then M0 ×N0 is a basic neighbourhood
of (x,y) and of any (x ′,y ′) ∈ M0 × N0. Hence, P is a neighbourhood of
any (x ′,y ′) ∈M0 ×N0. This verifies Axiom N4.

Finally, let P ′ be a neighbourhood of (x,y) containing the basic neigh-
bourhoodM ′×N ′ of (x,y). Then (M∩M ′)× (N∩N ′) = (M×N)∩ (M ′×
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N ′) ⊆ P∩P ′, and so P∩P ′ is a neighbourhood of (x,y). This verifies Axiom
N3 and completes the proof that X× Y is a topological space.

The product X1 × · · · ×Xn of n topological spaces X1, . . . ,Xn is defined
inductively by

X1 × · · · × Xn = (X1 × · · · × Xn−1)× Xn.

It is easily shown that a set P ⊆ X1 × · · · × Xn is a neighbourhood of
(x1, . . . xn) if and only if there are neighbourhoods Mi of x, i = 1, . . . ,n,
such that M1 × · · · ×Mn ⊆ P. In particular, the product topology of Rn =

R× · · · × R is called the usual topology on Rn.

Let X, Y be topological spaces.

2.3.1 If U, V are open in X, Y respectively, then U× V is open in X× Y.

2.3.2 If C, D are closed in X, Y respectively, then C×D is closed in X× Y.

Proofs U is a neighbourhood of each x in U, V is a neighbourhood of each
y in V . So U× V is a neighbourhood of each (x,y) in U× V .

That C×D is closed is immediate from the formula

(X× Y) \ (C×D) = (X× (Y \D)) ∪ ((X \ C)× Y).

2

2.3.3 A set U is open in X× Y ⇔ there are sets Uλ, Vλ (λ ∈ L) open in X, Y
respectively such that U =

⋃
λ∈LUλ × Vλ.

Proof The implication⇐ is clear from 2.3.1 and property O3 of open sets.

In order to prove the implication ⇒, let U be open in X × Y. For each
λ ∈ U there is a basic neighbourhoodM×N of λ such thatM×N ⊆ U. Let
Uλ = IntM, Vλ = IntN. Then Uλ, Vλ are open and U =

⋃
λ∈UUλ × Vλ.

2

EXAMPLE Let α = (a,b) ∈ R2, and let r > 0. The open ball about α of

radius r is the set

B(α, r) = {(x,y) ∈ R2 : (x − a)2 + (y− b)2 < r2}.

This open ball is an open set: For, let α ′ = (a ′,b ′) ∈ B(α, r) and let s =√
(a ′ − a)2 + (b ′ − b)2. Then s < r. Let 0 < δ < (r − s)/

√
2, M = ]a ′ −

δ,a ′ + δ[, N = ]b ′ − δ,b ′ + δ[. Then M ×N ⊆ B(α, r) and so B(α, r) is a
neighbourhood of α ′.
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M×N

α′

r

α

Fig. 2.2

2.3.4 Let A ⊆ X, B ⊆ Y. Then

Int(A× B) = IntA× IntB,

A× B = A× B.

Proof The relation IntA × IntB ⊆ Int(A × B) follows from the fact that
IntA× IntB is an open set contained in A×B. On the other hand, suppose
(x,y) ∈ Int(A×B). ThenA×B is a neighbourhood of (x,y) and so contains
a basic neighbourhood M×N of (x,y). Thus, M ⊆ A, N ⊆ B and so A, B
are neighbourhoods of x, y respectively. Hence, (x,y) ∈ IntA× IntB.

The proof of the second relation is left as an exercise to the reader. 2

We recall that the projections p1 : X × Y → X, p2 : X × Y → Y are the
functions (x,y) 7→ x, (x,y) 7→ y.

2.3.5 If U is open in X× Y, then p1[U] is open in X, p2[U] is open in Y.

Proof We prove only that p1[U] is open in X. This is clear if p1[U] (and so
U) is empty.

Suppose x ∈ p1[U]. Then there is a y in Y such that (x,y) ∈ U. Since
U is open, it contains a basic neighbourhood M × N of (x,y). So M =

p1[M×N] ⊆ p1[U]. Hence, p1[U] is a neighbourhood of x. 2

It is not true that the projection of a closed set of X×Y is closed [Exercise
3].
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EXERCISES

1. State which of the following sets of points (x,y) of R2 are (a) open, (b) closed,

(c) neither open nor closed. (i) |x| < 1 and |y| < 1, (ii) |x|+ |y| 6 1, (iii) x2+y2 > 1,

(iv) |xy| < 1, (v) sinπx = 0, (vi) one of x, y is rational, (vii) y = sin(1/x), x 6= 0,

(viii) there is an integer n > 0 such that xy = 1/n, (ix) there are integers p, q such

that q > 0, p/q is in its lowest terms, and x = p/q, y = 1/q.

2. Find the closure and interior of each of the sets of Exercise 1.

3. Prove that the set {(x,y) ∈ R2 : xy = 1} is closed in R2 but that its projections in

R are not closed.

4. Prove the second relation in 2.3.4.

5. Let A ⊆ X × Y, x ∈ X, and let Ax = {y ∈ Y : (x,y) ∈ A}. Prove that Ax is open

(closed) in Y if A is open (closed) in X× Y. Give examples of subsets A of R2 such

that (i) A is not open but Ax is open for each x in R, (ii) A is not closed but Ax is

closed for each x in R.

6. Let A ⊆ R3 be the set of points

{((2+ cosαt) cos t, (2+ cosαt) sin t, sinαt) : t ∈ R}.

Prove that A is closed if and only if α is a rational multiple of π, and that if A is

not closed then A is the anchor ring

{(x, y, z) ∈ R3 : ((x2 + y2)
1
2 − 2)2 + z2 = 1}.

7. Prove directly that the open sets given by 2.3.3 satisfy the Axioms O1, O2, O3 for

an open set topology on X× Y.

8. Prove that if X, Y are separable spaces, then so also is X× Y.

9. Prove that X × Y is discrete (indiscrete) if and only if both X and Y are discrete

(indiscrete).

2.4 Relative topologies and subspaces

Let X be a topological space and A a subset of X. We consider the problem
of defining a topology on A so that A becomes a topological space. The
theory here works out slightly simpler if the topology is defined in terms of
open sets rather than in terms of neighbourhoods.

The induced, or relative, topology on A (with respect to X) is that in
which the open sets are the sets U ∩A where U is an open set of X. These
sets U∩A are called open in A. (Thus open in Xmeans the same as open.)

We must verify that this does define a topology.

(a) Axiom O1 is trivially verified, since A ∩∅ = ∅, A ∩ X = A.

(b) Let V , V ′ be open in A. Then V = U∩A, V ′ = U ′ ∩A where U, U ′ are
open in X. Hence, V ∩ V ′ = U ∩U ′ ∩A is open in A.
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(c) Let (Vλ)λ∈L be a family of sets open in A, and let V be the union of this
family. For each λ ∈ L, there is an open set Uλ such that Vλ = Uλ ∩A. So

V =
⋃

λ∈L

(Uλ ∩A) =
(
⋃

λ∈L

Uλ

)
∩A

is open in A.

EXAMPLE Let X = R, A = [0, 1[. Then A itself is open in A, and [0, 1
2
[ is

open in A; neither of these sets are open in X. On the other hand ] 1
2
, 1[ is

open in A and open in X.

Let X be a topological space. A topological space A which is a subset
of X and whose topology is the relative topology as a subset of X is called
a subspace of X. A subset of X is usually assumed to have the relative
topology (if it has a topology at all) and so to be a subspace of X. The
relative topologies on N, Z, Q as subsets of R are called the usual topologies

on these sets. In the case of N, Z, the usual topologies are the discrete
topologies: for, if n ∈ Z, then

{n} = Z∩ ]n−
1

2
,n+

1

2
[ ;

hence {n} is open in Z and so any subset of Z is open in Z. A similar
argument applies to N.

For the rest of this section, we suppose that A is a subspace of the
topological space X.

Let a ∈ A. The neighbourhoods of a for the topology of A are called
neighbourhoods in A of a.

2.4.1 Let a ∈ A. A set N ⊆ A is a neighbourhood in A of a ⇔ there exists

M, a neighbourhood in X of a, such that N =M ∩A.

Proof ⇐ Let N = M ∩ A, where M is a neighbourhood in X of a. Then
IntM is open in X and so (IntM) ∩ A is open in A. Hence N is a neigh-
bourhood in A of a since a ∈ (IntM) ∩A ⊆ N.

⇒ Let N be a neighbourhood in A of a. Then there is a set V open in
A such that a ∈ V ⊂ N. Also, V = U ∩ A where U is open in X. Then,
M = U ∪N is a neighbourhood in X of a such that M ∩A = N. 2

For example, if X = R, A = [0, 1], then [0, 1
2
[ is a neighbourhood in A of

0; and if A = {0} then A itself is a neighbourhood in A of 0.

Again, let X = R, A = {(x,y) ∈ R2 : x2 + y2 = 1}. The thickened part of
A in Fig. 2.3 is a neighbourhood in A of P, but is not a neighbourhood in
A of Q.



32 [2.4] TOPOLOGY AND GROUPOIDS

P

A

Q

Fig. 2.3

A subset C of A is closed in A if C is closed in the topology of A, that is,
if A \ C is open in A. Also, if C ⊆ A, then we denote by

ClA C

the closure of C with respect to the relative topology of A. This operation
is very simply related to the closure C of C in X.

2.4.2 If C ⊆ A, then

ClA C = C ∩A.

Proof Suppose M is a subset of X. Since C is contained in A, we have
M meets C if and only if M ∩ A meets C. It follows from this and 2.4.1
that if x ∈ A, then all neighbourhoods in A of x meet C if and only if all
neighbourhoods in X of x meet C. 2

2.4.3 If C ⊆ A, then C is closed in A if and only if there is a set D closed in

X such that C = D ∩A.

Proof If C is closed in A, then C = ClA C and so C = C ∩ A. The result
follows (with D = C).

Conversely, if C = D ∩ A where D is closed in X, then C ⊆ D and so
C ⊆ D. It follows easily that C = C∩A and so C = ClA C. This shows that
C is closed in A. 2

2.4.4 If A is closed in X, then any set closed in A is also closed in X. The

same holds with the word closed replaced by open.

Proof The first part follows from 2.4.3 and the fact that the intersection of
two closed sets is closed. The second part is similar. 2
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EXERCISES

1. Prove that the relation ‘X is a subspace of Y’ is a partial order relation for topo-

logical spaces.

2. Prove that the set {x ∈ Q : −
√
2 6 x 6

√
2} is both open and closed in Q.

3. Let A be the subspace of R of points 1/n for n ∈ Z \ {0}. Prove that A is discrete,

but that the subspace of A ∪ {0} of R is not discrete.

4. Prove that a subspace of a discrete space is discrete, and a subspace of an indis-

crete space is indiscrete.

5. Let A be the subspace [0, 2] \ {1} of R. Prove that [0, 1[ is both open and closed

in A.

6. Let x ∈ X and let A be a neighbourhood (in X) of x. Prove that the neighbour-

hoods in A of x are exactly the neighbourhoods in X of x which are contained in

A.

7. Let 6 be an order relation on the set X. If A ⊆ X then the restriction of 6 is an

order relation on A. Show that it is not necessarily true that if A, X have the order

topologies, then A is a subspace of X. What is the order topology on Q?

8. Let A, B be subspaces of X, Y respectively. Prove that A × B is a subspace of

X× Y.

9. Let A be a subspace of X, and let Int, IntA denote respectively the interior oper-

ators for X, A. Prove that if B ⊆ X, then

(IntB) ∩A ⊆ IntA(B ∩A).

Give an example for which (IntB) ∩A 6= IntA(B ∩A).
10. Let A be a subspace of X, and let Cl, ClA denote respectively the closure oper-

ators for X, A. Prove that if B ⊆ X, then

ClA(B ∩A) ⊆ (ClB) ∩A.

Give an example for which ClA(B ∩A) 6= (ClB) ∩A.

*11. A setA ⊆ X is locally closed if, for each a inA, there existsN, a neighbourhood

in X of a, such that N ∩ A is closed in N. Prove that A is locally closed⇔ A is the

intersection of a closed set and an open set of X.

12. Write an account of relative topologies inverting the order of the present sec-

tion; that is, define neighbourhoods in A using 2.4.1, prove that these neighbour-

hoods form a topology on A, and show that the sets open in A are as defined here.

*13. Let H be the real line with the half-open topology [Exercise 9 of Section 2.2].

Prove that the subspace {(x, x) ∈ H×H : x ∈ H} of H×H is not separable.

2.5 Continuity

One of the main reasons for studying the concept of a topological space is
that it provides the most natural context for dealing with continuity. In this
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section, we define continuity for functions X→ Y, where X, Y are topolog-
ical spaces, and we give also a number of important rules for constructing
continuous functions.

Let XS, YT be topological spaces with underlying sets X, Y and topolo-
gies S, T respectively. By a function XS → YT is meant the triple (f, S,T)

consisting of a function f : X→ Y and the two topologies S, T. The purpose
of this notation is that two functions (f, S,T), (f ′, S ′,T ′) are equal if and
only if f = f ′, S = S ′, T = T ′. However, we make an abuse of language and
denote such a function (f, S,T) also by f.

Let X, Y be topological spaces, and f : X → Y a function. We say f is
continuous if, for all x in X, N is a neighbourhood of f(x) implies f−1[N] is
a neighbourhood of x. This condition is obviously equivalent to: for all x
in X, if N is a neighbourhood of f(x), then there is a neighbourhood M of
x such that f[M] ⊆ N.

A map X→ Y is simply a continuous function X→ Y.

2.5.1 Let X, Y be topological spaces. Any constant function X→ Y is contin-

uous.

Proof Let f : X → Y be a constant function and let x ∈ X. If N is a
neighbourhood of f(x), then f−1[N] = X which is a neighbourhood of x. 2

2.5.2 Let X be a topological space. The identity 1x : X→ X is continuous.

This follows easily from the rule 1−1
X [N] = N for N ⊆ X.

2.5.3 Let f : X → Y be a map and let A ⊆ X, B ⊆ Y be such that f[A] ⊆ B.

Then f | A,B, the restriction‡ of f, is a map.

Proof Let g = f | A,B, let a ∈ A and let M be a neighbourhood in B of
f(a). Then there exists N, a neighbourhood in Y of f(a), such that M =

N ∩ B. Since f is a map, f−1[N] is a neighbourhood in X of a. Hence
g−1[M] = f−1[N] ∩A is a neighbourhood in A of a. 2

A corollary of 2.5.3 is that, if A ⊂ X, then the inclusion function i : A→
X is a map: for i = 1X | A.

2.5.4 If f : X→ Y, g : Y → Z are maps, so also is gf : X→ Z.

Proof Let x ∈ X and let N be a neighbourhood of gf(x). Then

(gf)−1[N] = f−1g−1[N]

and so (gf)−1[N] is a neighbourhood of x.

‡See A.1.4 of the Appendix.
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2.5.5 If X, Y are topological spaces, then the projections p1 : X × Y → X,
p2 : X× Y → Y are maps.

Proof Let N be a neighbourhood of x = p1(x,y). Then p−1
1 [N] = N× Y is

a neighbourhood of (x,y). 2

Now, functions f : Z → X, g : Z → Y determine uniquely a function
(f,g) : Z→ X× Y whose components are f, g, that is, (f,g) is z 7→ (fz,gz).

2.5.6 Let f : Z→ X, g : Z→ Y be maps. Then (f,g) : Z→ X× Y is a map.

Proof Let h = (f,g), so that h sends z 7→ (f(z),g(z)). Let P be a neighbour-
hood of h(z), and letM×N be a basic neighbourhood of h(z) contained in
P. Then h−1[P] contains the set

h−1[M×N] = {z ∈ Z : f(z) ∈M, g(z) ∈ N}

= f−1[M] ∩ g−1[N].

It follows that h−1[P] is a neighbourhood of z. �

This result can also be expressed: a function h : Z→ X×Y is continuous

⇔ p1h,p2h are continuous. The implication ⇒ follows from 2.5.4 and
2.5.5, while the converse implication follows from 2.5.6 since p1h,p2h are
the components f, g of h.

There are a number of useful corollaries of 2.5.6.

2.5.7 The diagonal map ∆ : X→ X× X is continuous.

2.5.8 The twisting function T : X× Y → Y ×X which sends (x,y) 7→ (y, x) is

continuous.

2.5.9 If f : X → X′, g : Y → Y ′ are continuous, then so is f × g : X × Y →
X′ × Y ′.

Proofs The diagonal map ∆ is simply (1X, 1X), and so is continuous. The
twisting map T is (p2,p1), where p1, p2 are the projections of X×Y. Finally,
f× g = (fp1,gp2), and so f× g is continuous. 2

EXAMPLES

1. We use some of these results to prove a sum and product rule for maps
X→ R. Let f,g : X→ R be maps. Then f+ g, f.g are the functions

X
(f,g)−→ R× R

+−→ R, X
(f,g)−→ R× R

.−→ R

respectively where +, . denote the addition and multiplication functions
(x,y) 7→ x + y, (x,y) 7→ xy. We shall prove later (see p. 50) that these
latter functions are continuous—the continuity of f + g, f.g follows.
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2. The following type of example will occur frequently in later chapters.
Suppose F : X× X→ X is a map, and consider the function

G : X× X→ X

(x,y) 7→ F(y, F(x,y)).

Then G is a map since it is the composite of the maps

X× X 1×∆−→ X× X× X T×1−→ X× X× X 1×F−→ X× X F−→ X

(x,y) 7→ (x,y,y) 7→ (y, x,y) 7→ (y, F(x,y)) 7→ G(x,y).

3. Let S1 = {(x,y) ∈ R2 : x2 + y2 = 1}, and consider the function

f : [0, 1[→ S1

t 7→ (cos 2πt, sin 2πt).

Then f is a bijection, and it is continuous since its components are continu-
ous. However f−1 is not continuous since M = [0, 1

2
] is a neighbourhood in

[0, 1[ of 0, but f[M] is not a neighbourhood in S1 of f(0) = (1, 0). This con-
firms the intuitive idea that breaking a loop of string is a non-continuous
process.

1

1
2

0

M

f

f[M]

Fig. 2.4

Continuity of a function is a ‘local’ property in the following sense.

2.5.10 Let X, Y be topological spaces and f : X → Y a function such that

each x ∈ X has a neighbourhood N such that f | N is continuous. Then f is

continuous.

Proof Let x ∈ X and let M be a neighbourhood of f(x). Let N be a neigh-
bourhood of x such that f | N is continuous. Then

(f | N)−1[M] = f−1[M] ∩N ⊆ f−1[M].

Since f | N is continuous, (f | N)−1[M] is a neighbourhood in N of x,
and so is also a neighbourhood in X of x (since N is a neighbourhood of x).
Therefore, f−1[M] is a neighbourhood in X of x. 2

Finally, we prove two versions of the ‘gluing rule’.
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2.5.11 Let X, Y be topological spaces and f : X→ Y a function. Let X = A∪B
where A \ B ⊆ IntA, B \ A ⊆ IntB. If f | A, f | B are continuous, then f is

continuous.

Proof Let x ∈ X and let P be a neighbourhood of f(x).
Suppose first x ∈ A ∩ B. By continuity of f | A, f | B and 2.4.1 there are

neighbourhoods M, N of x in X such that

f−1[P] ∩A = (f | A)−1[P] =M ∩A,
f−1[P] ∩ B = (f | B)−1[P] = N ∩ B.

SoM∩N ⊆ (M∩A)∪(N∩B) = f−1[P], and hence f−1[P] is a neighbourhood
of x.

Suppose next x ∈ A \ B. Then A is a neighbourhood of x and hence
so also is M ∩ A where M is constructed as above. A fortiori, f−1[P] is a
neighbourhood of x. A similar argument applies if x ∈ B \A. 2

2.5.12 Let X, Y be topological spaces and f : X → Y a function. Let A, B be

closed subsets of X such that X = A ∪ B. If f | A, f | B are continuous, so also

is f.

Proof Since A, B are closed and have union X, the set A \ B = X \ B is
open, and so A \ B ⊆ IntA. Similarly, B \ A ⊆ IntB. So the result follows
from 2.5.11. 2

EXERCISES

1. Prove the continuity of the following functions R3 → R.

(i) (x, y, z) 7→ P(x,y, z) where P is a polynomial.

(ii) (x, y, z) 7→ sin xz+ cos(x+ y+ z).

2. Let F,G : X× X→ X be maps. Prove the continuity of the functions

(i) X× X× X→ X, (x,y, z) 7→ F(G(y, z), x).

(ii) X× X× X→ X× X, (x,y, z) 7→ (F(x, z),G(y, y)).

3. Let X = A ∪ B, Y be topological spaces and let f : X→ Y be a function such that

f | A, f | B are continuous. Prove that f is continuous if

(A \ B) ∩ (B \A) = ∅, (A \ B) ∩ (B \A) = ∅.

4. Let X be a topological space and let f,g : X → R be maps. Prove that the

following functions X→ R are maps.

(i) x 7→ |f(x)|

(ii) x 7→ f(x)/g(x) (if g(x) is never 0)
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(iii) x 7→ max{f(x),g(x)}, x 7→ min{f(x), g(x)}.

5. Prove that X has the discrete topology ⇔ for all spaces Y any function X→ Y is

continuous. Find a similar characterisation of the indiscrete topology.

6. Let x0 ∈ X, y0 ∈ Y and let X∨Y be the subspace X× {y0}∪ {x0}×Y of X× Y. Let

i1 : X→ X∨Y, i2 : Y → X∨Y be the functions x 7→ (x,y0), y 7→ (x0,y) respectively.

Prove that a function f : X∨ Y → Z is continuous⇔ fi1, fi2 are continuous.

2.6 Other conditions for continuity

The set of neighbourhoods at a point x in a topological space X contains
‘large’ neighbourhoods, for example X itself. However, for many purposes,
such as deciding continuity, it is only necessary to look at ‘small’ neighbour-
hoods of x, or at neighbourhoods of a particular type. For example, in X×Y
it is the basic neighbourhoodsM×Nwhich are important. The precise way
of expressing these notions is in terms of a base for the neighbourhoods of
x.

A base for the neighbourhood at x ∈ X is a set B(x) of neighbourhoods of
x such that if N is a neighbourhood of x then N contains some B of B(x).

EXAMPLES

1. The set of all neighbourhoods of x is a base for the neighbourhoods at
x. So also is the set of all open neighbourhoods of x.
2. The intervals ]− 1/n, 1/n[ for positive integral n form a base for the
neighbourhoods of 0 in R. So also do the closed intervals [−1/n, 1/n].
3. The basic neighbourhoods M×N of (x,y) in X× Y form a base for the
neighbourhoods of (x,y).
4. Let M be a neighbourhood of x. The neighbourhoods N of x such that
N ⊆M form a base for the neighbourhoods of x.

If we have such a base B(x) for each x ∈ X, then the function B : x 7→
B(x) is called a base for the neighbourhoods of X. Our main result on bases
is the following.

Let B, B ′ be bases for the neighbourhoods of X, X′ respectively. Let
f : X→ X′ be a function.

2.6.1 f is continuous⇔ for each x in X and N ∈ B ′(f(x)), there is an M ∈
B(x) such that f[M] ⊆ N.

Proof The proof is simple.
⇒ Let x ∈ X, N ∈ B ′(f(x)). Then f−1[N] is a neighbourhood of x and

so there is an M ∈ B(x) such that M ⊆ f−1[N]. This implies f[M] ⊆ N.
⇐ Let x ∈ X and let P be a neighbourhood of f(x). Then there exists

N ∈ B ′(f(x)) such that N ⊆ P. By assumption there is an M ∈ B(x) such
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that M ⊆ f−1[N]. So f−1[P], which contains f−1[N], is a neighbourhood of
x. 2

The argument here is similar to that of 2.5.6.
The continuity of a function can also be described in terms of open

sets, closed sets, or closure. This fact, which is of vital importance later,
is contained in the following omnibus theorem (in which (a)–(d) are the
important conditions).

Let X, Y be topological spaces and f : X→ Y a function.

2.6.2 The following conditions are equivalent.

(a) f is continuous.

(b) If U is open in Y, then f−1[U] is open in X.

(c) If C is closed in Y, then f−1[C] is closed in X.

(d) If A is a subset of X, then

f[A] ⊆ f[A].

(e) If B is a subset of Y, then

f−1[B] ⊆ f−1[B].

(f) If D is a subset of Y, then

f−1[IntD] ⊆ Int f−1[D].

Proof (a) ⇒ (b) If f−1[U] is empty, then it is open. Otherwise, let x ∈
f−1[U]. Then f(x) ∈ U and so U is a neighbourhood of f(x). Hence f−1[U]
is a neighbourhood of x.
(b)⇒ (a) This follows easily from the fact that if N is a neighbourhood of
f(x), then IntN is open.
(b)⇔ (c) This is a simple consequence of

f−1[Y \ C] = X \ f−1[C].

(a) ⇒ (d) Let y ∈ f[A] so that y = f(x) where x ∈ A. Let N be a neigh-
bourhood of y. Then f−1[N] meets A since f−1[N] is a neighbourhood of x.
Hence N meets f[A], and so y ∈ f[A].
(d)⇒ (e) Let A = f−1[B] so that f[A] ⊆ B. Then

f[A] ⊆ f[A] ⊆ B

whence f−1[B] = A ⊆ f−1[B].
(e)⇔ (f) This is an immediate consequence of the rules

f−1[Y \D] = X \ f−1[D],

X \ f−1[D] = Int(X \ f−1[D]).
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(f)⇒ (b) Let U be open in Y, so that U = IntU. Then

f−1[U] = f−1[IntU] ⊆ Int f−1[U].

So f−1[U] = Int f−1[U] and f−1[U] is open. 2

It should be confessed that 2.6.2 is useful to solve rigorously some ear-
lier exercises, particularly those of section 2.3. For example, to prove that
the set A = {(x,y) ∈ R2 : |xy| < 1} is open in R2, we consider the func-
tion f : R2 → R which sends (x,y) 7→ |xy|. Then f is continuous and
A = f−1] − 1, 1[. Since ] − 1, 1[ is open in R, A is open in R2. The reader
should work again through the Exercises in Section 2.3 to show how 2.6.2
can be used.

EXAMPLES

5. Let f,g : X→ Rn be maps. Then the set A of points on which f, g agree
is closed in X. For let h = f− g : X→ Rn; then h is continuous (as we shall
prove later), {0} is closed in Rn and so, by 2.6.2(c), A = h−1[{0}] is closed
in X.
6. Let f : X → R be a map and let A ⊆ X × R be the graph of f. Then A is
closed in X×R since A is the set of points of X× R on which the maps p2,
fp1 agree.

For example, the set {(x,y) : y = x2 + ex + sin x} is closed in R2.
7. The function x 7→ x/|x| is a continuous function R 6=0 → R. The graph of
this function is closed in R 6=0 × R, but not in R2.
8. Let X be the graph of the function x 7→ sinπ/x (x 6= 0). Then X is closed
in Z = R 6=0 × R, but not in R2. In fact, let J = {(0,y) ∈ R2 : −1 6 y 6 1};
we prove that X, the closure of X in R2, is X ∪ J.

J

N

Fig. 2.5

First, sinπ/x assumes all values in [−1, 1] for x in any interval [1/(n +

1), 1/n] (n is a positive integer); therefore, if z ∈ J, then any neighbour-
hood N of z meets X. That is, X ∪ J ⊆ X.

Second, | sinπ/x| 6 1 (x 6= 0); therefore, if (x,y) ∈ X, then |y| 6 1.
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Third, X is closed in Z and hence X = Z ∩ X [2.4.2]. So the only points
of X which are not in X are the points of J.

EXERCISES

1. Let A be subspace of X and let B be a base for the neighbourhoods of X. Con-

struct from B a base of the neighbourhoods of A.

2. Let B(x), B ′(x ′), be bases for the neighbourhoods of x ∈ X, x ′ ∈ X ′ respectively.

Prove that the sets M × N for M ∈ B(x), N ∈ B ′(x ′), form a base for the neigh-

bourhoods of (x, x ′) ∈ X× X ′, and that the sets M ×M for M ∈ B(x) form a base

for the neighbourhoods of (x, x) ∈ X× X.

3. A topological space X is said to satisfy the first axiom of countability if there is

a base B for the neighbourhoods of X such that B(x) is countable for each x in

X. Prove that the following satisfy the first axiom of countability: R, Q, a discrete

space, a space with a countable number of open sets.

4. Prove that subspaces and (finite) products of spaces satisfying the first axiom of

countability also satisfy the first axiom of countability.

5. A topological space X has a countable base for the neighbourhoods at x. Prove

that there is a base for the neighbourhoods of x of sets Bn, n ∈ N, such that

Bn ⊇ Bn+1, n ∈ N.

6. Deduce Exercises 9 and 10 of Section 2.4 from 2.6.2(e), (f).

7. Prove that the continuity of f : X → Y is not equivalent to the condition: if

A ⊆ X, then Int f[A] ⊆ f[IntA].
8. Give an example of X, Y, a map f : X→ Y and subsetsA of X, and B, D of Y such

that f[A] 6= f[A], f−1[B] 6= f−1[B], f−1[IntD] 6= Int f−1[D]. [Let X have the discrete

topology.]

9. Let f,g : X→ R be maps. Prove that the sets

{x ∈ X : f(x) > g(x)}, {x ∈ X : f(x) 6 g(x)}

are closed in X.

10. Deduce the version 2.5.12 of the gluing rule from 2.6.2(c). Generalise this rule

to the case when X is the union of n closed sets C1, . . . ,Cn.

Is this rule true if the sets Ci need not be closed? if their number is not finite?

11. Let f : X→ R be a map and let A = {(x, 1/(f(x)) ∈ X×R : f(x) 6= 0}. Prove that

A is closed in X×R.

12. A map f : X → Y is closed if f maps closed sets of X to closed sets of Y, and is

open if f maps open sets of X to open sets of Y. Give examples of X, Y, f for which

(i) f is neither open nor closed, (ii) f is open but not closed, (iii) f is closed by not

open, (iv) f is both open and closed.

2.7 Comparison of topologies, homeomorphism

There is partial order on the set of topologies on a set X defined as follows.
Let S, T be topologies in X. We say S is finer than T (and T is coarser than
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S) if the identity function i : XS → XT is continuous. In such a case we
write S > T (or T 6 S). Clearly, this relation is transitive and reflexive.

Let S, T be topologies on X. If N ⊆ X, then i−1[N] = N. So we have: S
is finer then T if and only if for each x in X each T-neighbourhood of x is also

an S-neighbourhood of x. It follows easily that 6 is also an anti-symmetric
relation, which is to say that if S > T and T > S then S = T, and the
neighbourhoods of any x in X are the same for S as for T.

By 2.6.2 this relation can also be described in terms of open, or of
closed, sets: S > T ⇔ each set open for T is also open for S ⇔ each
set closed for T is also closed for S.

The finest topology on X is the discrete topology and the coarsest topol-
ogy is the indiscrete topology.

Two topologies S, T on X may be incomparable, in which case S is nei-
ther finer nor coarser then T. For example, let X = {x,y}, let S be the
topology whose open sets are ∅, {x}, X and let T be the topology whose
open sets are ∅, {y}, X. Clearly, S and T are incomparable.

Let X, Y be topological spaces. A function f : X → Y is a homeomor-

phism if (i) f is a bijection, and (ii) for all x in X, M is a neighbourhood
of x ⇔ f[M] is a neighbourhood of f(x). Clearly (i) and (ii) are equivalent
to (i) and (ii ′): for all x in X, N is a neighbourhood of f(x) ⇔ f−1[N] is a
neighbourhood of x.

This definition, though possibly the most intuitive, is not the most el-
egant or useful. Better conditions for homeomorphism are given in 2.7.1:
let X, Y be topological spaces and f : X→ Y a function.

2.7.1 The following conditions are equivalent.

(a) f is a homeomorphism.

(b) f is continuous, a bijection, and f−1 : Y → X is continuous.

(c) f is continuous and there is a continuous function g : Y → X such that

gf = 1X, fg = 1Y .

Proof (b) is obviously equivalent to (a). Given (b) then g = f−1 satisfies
gf = 1X, fg = 1Y . Conversely, if g exists as in (c), then fmust be a bijection
and g must be f−1. So (c) implies (b). 2

This shows that we may replace (ii) in the definition of homeomorphism
by (ii ′): U is open in X ⇔ f[U] is open in Y, or similar conditions involving
f−1, or closed sets.

It is important to note that a continuous bijection need not be a home-
omorphism. For example, let S, T be topologies on a set X. The identity
i : XS → XT is a homeomorphism⇔ S = T; and i is continuous ⇔ S > T.
The relation S > T does not imply S = T.

If f : X → Y is a homeomorphism we write f : X ≈ Y, and if a homeo-
morphism f : X ≈ Y exists we say that X is homeomorphic to Y or X is of
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the same homeomorphism type as Y and write X ≈ Y. We leave the reader
to check that the relation X ≈ Y is an equivalence relation.

2.7.2 Any two open intervals of R are homeomorphic.

Proof First let a,b ∈ R (a < b) and consider the function

f : ]0, 1[→ ]a,b[

t 7→ a(1− t) + bt.

Then f is continuous, a bijection, and with continuous inverse s 7→ (s −
a)/(b − a). Thus, f is a homeomorphism. It follows that all bounded open
intervals in R are homeomorphic.

We now show that any interval in R is homeomorphic to a bounded
interval. Consider the function

g : R→ ]− 1,+1[

r 7→ r/(1+ |r|).

Then g is continuous, a bijection and with inverse s 7→ s/(1− |s|), which is
continuous. Let I be an interval of R. Then g[I] is a bounded interval and
g | I, g[I] is a homeomorphism. 2

This example illustrates that to prove two spaces are homeomorphic,
one simply constructs a homeomorphism from one to the other. It is usually
more difficult to prove that two given spaces are not homeomorphic.

Topology is often characterised as the study of those properties of spaces
which are not changed under homeomorphism. For this reason, homeo-
morphic spaces are also called topologically equivalent.

Fig. 2.6

Topology has also been called ‘rubber sheet geometry’, because if a sur-
face X is constructed from sheets of rubber, then elastic deformations such
as pulling and squashing, do not change the homeomorphism type of X. As
an example, Fig. 2.6 illustrates surfaces in R3 which are all topologically
equivalent.

One final definition will be needed later. Let X, Y be topological spaces.
A function f : X → Y is an embedding if its restriction f | X, f[X] is a home-
omorphism. For example, any inclusion mapping of a subspace into a total
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space is an embedding and, in general, an embedding is the composite of a
homeomorphism and an inclusion map.

EXAMPLE Let X Y be topological spaces, and let y ∈ Y. The function
f : X→ X× Y, x 7→ (x,y), is an embedding. First, f is continuous, since its
components are the identity map and the constant map x 7→ y. Second, the
inverse of f | X, f[X] is simply the restriction of the projection p1 : X×Y → Y
and so this inverse is continuous.

The following gluing rule is often useful for constructing homeomor-
phisms (cf. Section 4 of Chapter 4).

2.7.3 Let X = X1 ∪ X2, Y = Y1 ∪ Y2 be topological spaces such that X1, X2

are closed in X and Y1, Y2 are closed in Y. Let f1 : X1 → Y1, f2 : X2 → Y2 be

homeomorphisms which restrict to the same homeomorphism f0 : X1 ∩ X2 →
Y1 ∩ Y2. Then the function

f : X→ Y

x 7→
{
f1x, x ∈ X1

f2x, x ∈ X2

is well-defined and is a homeomorphism.

Proof The function f is well-defined since f1, f2 agree on X1 ∩ X2. The
continuity of f follows from 2.5.12. A similar argument shows that f−1 is
defined and continuous. 2

EXERCISES

1. Construct homeomorphisms between the subsets A, B of R2 in each of the fol-

lowing cases.

(i) A = R2, B = {(x,y) : y > 0},

(ii) A = {(x,y) : x2 + y2 6 1}, B = {(x,y) : |x| 6 1, |y| 6 1},

(iii) A = {(x,y) : y > 0}, B = {(x,y) : y > x2},

(iv) A = R2, B = {(x,y) : x2 + y2 < 1},

(v) A = {(x,y) : y > 0 and |x| 6 1}, B = {(x,y) : y > 0 and |x| 6 (1+ |y|)−1},

(vi) A = {(x,y) : y 6= 0}, B = {(x,y) : y < 0 or y > 1}.

2. Let S1 = {z ∈ C : |z| = 1}, let α ∈ R be irrational. Prove that the function

f : R→ S1 × S1, t 7→ (e2πiαt, e2πit), is not an embedding.

3. Let f : [0, 1] → [a,b] be an order preserving bijection. Prove that f is a homeo-

morphism.

[In Exercises 4–7 it should be assumed that if f : [a,b]→ R is a map, then Im f

is a closed, bounded interval.]
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4. Let f : [0, 1] → [0, 1] be a homeomorphism. Prove that f(0) is 0 or 1, and that

f]0, 1[ = ]0, 1[.

5. Prove that [0, 2] is not homeomorphic to [−1, 0[ ∪ ]1, 2].

6. Prove that there is no continuous surjection [0, 1] → ]0, 1[; construct a continu-

ous surjection ]0, 1[ → [0, 1].

7. Let X ⊆ R be the union of the open intervals ]3n, 3n + 1[ and the points 3n + 2

for n = 0, 1, 2, . . . . Let Y = (X \ {2})∪ {1}. Prove that there are continuous bijections

f : X→ Y, g : Y → X, but that X, Y are not homeomorphic.

8. Is the half-open topology on R finer, coarser, or incomparable to the usual topol-

ogy on R?

9. Let A, the anchor ring, be the set of points in R3

(cos θ(2+ cosϕ), sinθ(2 + cosϕ), sinϕ), θ,ϕ ∈ R.

Construct a homeomorphism from A to the torus S1 × S1.

10. Let E2 = {(x,y) ∈ R2 : x2 + y2 6 1}. The space S1 × E2 is called the solid torus.

Prove that the 3-sphere

S3 = {(x1, . . . ,x4) ∈ R4 : x21 + · · ·+ x24 = 1}

is the union of two spaces each homeomorphic to a solid torus and with intersection

homeomorphic to a torus. [Consider the subspaces of S3 given by x21 + x
2
2 6 x23 + x

2
4

and by x21 + x
2
2 > x23 + x

2
4.]

11. Construct the homeomorphism f : I2 → I2 (where I2 = I× I) such that f maps

I× {0, 1} ∪ {0}× I onto {0}× I. [We use this in chapter 7.]

2.8 Metric spaces and normed vector spaces

Let K denote either the real numbers, the complex numbers or the quater-
nions. The reader not familiar with quaternions may simply not consider
them at this stage—in fact the only property of K we use is that K is a field
(with non-commutative multiplication if K is the quaternions) and that for
each element α ∈ K there is defined an absolute value, or modulus, |α| ∈ R
with the properties:

(a) |α| > 0 if α 6= 0, and |0| = 0,

(b) |αβ| = |α| |β|,
(c) |α+ β| 6 |α|+ |β|, for all α,β ∈ K.

We shall be considering vector spaces V over K. Now, it is usual in ele-
mentary work to write αx for the multiple of the vector x in V by the scalar
α in K—this is expressed by saying that V is considered as a left vector
space over K. However, it turns out that in the case K is non-commutative
it is more convenient to write xα instead of αx—that is, to consider V as a
right vector space over K, with scalar multiplication a function V ×K→ V .
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Given such a right vector space, we can always define left scalar multipli-
cation by αx = xα, v ∈ V ,α ∈ K. However, if α,β ∈ K, x ∈ V , then

β(αx) = (αx)β = (xα)β = x(αβ) = (αβ)x.

So we obtain the usual associativity rule β(αx) = (βα)x if and only if K is
commutative. Thus a vector space over R or C can, and will, be considered
as both a left and a right vector space, while a vector space over the quater-
nions H will be considered only as a right vector space. To cover all cases,
we frame our axioms for normed spaces in terms of right vector spaces.

Let V be any right vector space over K. A norm on V is a function

‖ ‖ : V → R

such that for any x,y in V and α in K:
NVS1 ‖x‖ > 0 if x 6= 0,
NVS2 ‖xα‖ = |α|‖x‖,
NVS3 ‖x+ y‖ 6 ‖x‖+ ‖y‖.
Then V with such a norm is called a normed vector space. Intuitively, a norm
gives a measure of the size of elements of V . From the formal viewpoint,
the three axioms tie in the norm with the addition and scalar multiplication
of the vector space structure on V .

The following examples show the importance of this concept.

EXAMPLES

1. The field K itself is a normed vector space over K with norm ‖x‖ =

|x|, x ∈ K.
2. More generally, the n-dimensional vector space Kn over K has many
norms of which two are particularly important. (i) The Euclidean norm or
modulus on Kn is written |x| and is defined by

|(x1, . . . , xn)| =

{
n∑

i=1

|xi|
2

} 1
2

, xi ∈ K.

The verification of Axioms NVS1 and NVS2 is trivial, while Axiom NVS3 fol-
lows from the well-known Cauchy-Schwarz inequality [cf. Section 5.4].
The resulting normed vector space is called n-dimensional Euclidean space

if K = R, n-dimensional unitary space if K = C, and n-dimensional symplec-

tic space if K = H, the field of quaternions. (ii) The Cartesian norm on Kn

is defined by

‖(x1, . . . , xn)‖ = max{|x1|, . . . , |xn|}, xi ∈ K.

The verification that this is a norm is very simple and is left to the reader.
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As a further example, let p be a real number such that p > 1, and let

‖(x1, . . . , xn)‖ =
{

n∑

i=1

|xi|
p

} 1
p

, xi ∈ K.

This defines a norm on Kn, Axiom NVS3 being the generalised Minkowski
inequality proved in many books on analysis.
3. Let C be a vector space over R of all maps [0, 1] → R. There are two
norms on C which are important in analysis, the sup norm defined by

‖f‖S = sup{|f(x)| : x ∈ [0, 1]}

and the integral norm defined by

‖f‖I =
∫1

0

|f(x)| dx.

The verification that the sup norm is a norm is entirely trivial—the continu-
ity of any f in C is used only to show that ‖f‖S is well defined. On the other
hand, the continuity of any f in C is used in an essential way in showing
that for the integral norm, ‖f‖I > 0 if f 6= 0.

As we shall see in the next section, a norm on a vector space V induces in
a natural way a topology on V , and also on subsets of V . However, a subset
of V need not be a vector space, and so not a normed vector space. For this
reason, we widen our outlook and consider the more general concept of a
metric space.

Let X be any set. A metric on X is a function d : X× X→ R>0 with the
following properties.
M1 d(x,y) = 0⇔ x = y

M2 d(x,y) = d(y, x)
M3 d(x, z) 6 d(x,y) + d(y, x).

A set X with a metric d is called a metric space, and is denoted by Xd or
simply X.
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EXAMPLES

4. Let V be a normed vector space and X a subset of V . Then the function

d(x,y) = ‖x− y‖, x,y ∈ X

is a metric on X. In particular, V itself will always be taken to have this
metric.
5. Let X be a set, and define d(x,y) to be 0 if x = y and 1 otherwise. This
is the discrete metric on X.
6. Let Xd be a metric space. Then we can define a new metric on X by

d ′(x,y) = min{1,d(x,y)}.

We can in a metric space define generalisations of open and of closed
intervals in R. Let X be a metric space with metric d. Let a ∈ X, r > 0. The
open ball about a of radius r is the set

B(a, r) = {x ∈ X : d(x,a) < r}.

The closed ball about a of radius r is the set

E(a, r) = {x ∈ X : d(x,a) 6 r}

and the sphere about a of radius r is

S(a, r) = {x ∈ X : d(x,a) = r}.

The closed ball is sometimes called a cell, or disc.
In a normed vector space V , the sets B(0, 1), E(0, 1), S(0, 1) are called

the standard ball, cell and sphere and are written B(V), E(V), S(V). In
particular, if V = Rn with the Euclidean norm, these are denoted by Bn,
En, Sn−1. The standard 1-cell E1 is of course the interval [−1, 1]. If V = Rn

with the Cartesian norm, then E(V) is the n-fold product of [−1, 1] with
itself, and is written Jn.

The following diagram illustrates E(V) when V = R2 with respectively
the Cartesian, Euclidean, ‖ ‖1, and ‖ ‖3/2, norms.

Fig. 2.7

Let X be a metric space and let a ∈ X, r > 0.
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2.8.1 (a) If a ′ ∈ B(a, r) then there is a δ > 0 such that

B(a ′, δ) ⊆ B(a, r).

r
a

a ′

δ

Fig. 2.8

(b) If a ′ ∈ X \ E(a, r), then there is a δ > 0 such that

B(a ′, δ) ⊆ X \ E(a, r).

Proof Let a ′ ∈ B(a, r). Then δ = r−d(a ′,a) is positive. Also if x ∈ B(a ′, δ)
then d(x,a) 6 d(x,a ′) + d(a ′,a) < δ + r − δ = r. This proves (a). The
proof of (b) is similar and is left to the reader. 2

Metric topologies

We now show how a metric d on X defines a topology on X.

Definition A set N ⊆ X is a neighbourhood of a ∈ X if there is a real
number r > 0 such that B(a, r) ⊆ N.

We verify Axioms N1–N4. The relation d(a,a) = 0 implies a ∈ B(a, r);
this verifies Axiom N1. The verification of Axioms N2 and N3 is simple and
is left to the reader. By 2.8.1 an open ball is a neighbourhood of each of its
points; so the verification of Axiom N4 is immediate.

Thus the neighbourhoods on X form a topology on X called the topology
induced by d or the metric topology. Clearly, the open balls B(a, r), all r > 0,
form a base for the neighbourhoods of a; so also do the open balls B(a, r)
for r rational and positive, or for r of the form 1/n, n a positive integer.
This proves that X has a countable base for the neighbourhoods at each
point. Notice also that E(a, r/2) ⊆ B(a, r), so the closed balls of radius
r > 0 also form a base for the neighbourhoods of r.
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EXAMPLES

7. The usual metric on R is the metric d(x,y) = |x − y|. The topology
induced by d is clearly the usual topology on R. Similarly, the fields C, H
of complex numbers and quaternions have topologies induced by d(x,y) =
|x− y|.
8. The Cartesian norm on Kn induces the product topology. This is proved
as follows. If Ni is a neighbourhood in K of ai, then Ni ⊃ B(ai, ri) for
some ri > 0. Let a = (a1, . . . ,an), δ = min{r1, . . . , rn}. Then

N1 × · · · ×Nn ⊇ B(a, δ).

This shows that each product neighbourhood of a is a metric neighbour-
hood of a. The converse is trivial since

B(a, r) = B(a1, r)× · · · × B(an, r).

9. Let X be a set and let d be the discrete metric on X. Then, if a ∈ X, the
open balls about a are given by

B(a, r) =

{
X, r > 1

{a}, 0 < r 6 1.

Hence, any set containing a is a neighbourhood of a. That is, the discrete
metric induces the discrete topology.
10. There is no metric on X inducing the indiscrete topology (unless |||

|

X 6

1). However, let us define a pseudo-metric to be a function d : X×X→ R>0

satisfying Axioms M2, M3 and the following weak form of Axiom M1.

M1 ′ d(x, x) = 0.

A pseudo-metric induces a topology on X in the same way as does a metric,
since Axiom M1 ′ is enough to show that a ∈ B(a, r). The indiscrete topol-
ogy on X is induced by the indiscrete pseudo-metric given by d(x,y) = 0 for
all x,y ∈ X.

It is clear from 2.8.1(a) that the open balls of X are open sets, and from
2.8.1(b) that the closed balls of X are closed sets. However, the closed ball
is not necessarily the closure of the open ball, since in Example 9 above

B(a, 1) = {a}, E(a, 1) = X.

Let X, Y be metric spaces and f : X→ Y a function. We can use 2.6.1 to
give another description of the continuity of f, namely, f is continuous ⇔
for each a ∈ X and each ε > 0, there is a δ > 0 such that

fB(a, δ) ⊆ B(fa, ε).
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Further, we may replace here any open ball by a closed ball, and also restrict
any or both of ε, δ to rational numbers 1/n for n a positive integer.

Let d, e be metrics on X. The metrics are equivalent if they induce the
same topology on X or, what is the same thing, if the identity 1 : Xd → Xe

is a homeomorphism. Let subscripts (e.g., Bd,Be) be used to distinguish
the balls for the two metrics. Then d, e are equivalent if and only if for each

a ∈ X

(a) for each ε > 0 there is a δ > 0 such that Bd(a, δ) ⊆ Be(a, ε), and

(b) for each ε > 0 there is a δ > 0 such that Be(a, δ) ⊆ Bd(a, ε).

EXAMPLE

11. Let d : R× R→ R>0 be defined by

d(x,y) =
|x− y|

1+ |x− y|
.

Then d is a metric on R; the only verification which is non-trivial is of the
triangle inequality M3, and this is proved as follows:

Let x 6= z. Then

d(x, z) = (1+ |x− z|−1)−1

6 (1+ (|x− y|+ |y− z|)−1)−1

= |x− y|(1+ |x− y|+ |y− z|)−1 + |y− z|(1+ |x− y|+ |y− z|)−1

6 d(x,y) + d(y, z).

This metric d is equivalent to the usual metric. For it is easily seen that

|x− y| < ε⇔ d(x,y) < ε(1+ ε)−1 ⇒ d(x,y) < ε.

Let B(x, ε) be the open ball for the metric d. Then

]x− ε, x + ε[ = B(x, ε(1 + ε)−1) ⊂ B(x, ε)

and this implies the equivalence of the two metrics. 2

A metric d on a set X is bounded if there is a real number r such that
d(x,y) 6 r for all x,y in X. The last example shows that R admits an
equivalent bounded metric, and a similar argument applies to any metric
space X. It is also easy to check that the metric d ′ of Example 6 of p. 46 is
a bounded metric equivalent to the given one.

There is a very useful continuity criterion for additive and bi-additive
maps on normed vector spaces. Let U,V ,W be normed vector spaces. A
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function f : V →W is additive if f(x+ y) = f(x) + f(y) for all x,y ∈ V; and
g : U× V →W is bi-additive if

g(x,y+ y ′) = g(x,y) + g(x,y ′),

g(x + x ′,y) = g(x,y) + g(x ′,y)

for all x, x ′ ∈ U, y,y ′ ∈ V .

2.8.2 (a) An additive function f : V → W is continuous if there is a real

number r > 0 such that

‖f(x)‖ 6 r‖x‖ for all x ∈ V .

(b) A bi-additive function g : U × V → W is continuous if there is a real

number r > 0 such that

‖g(x,y)‖ 6 r‖x‖‖y‖ for all x ∈ U,y ∈ V .

Proof We prove (b) first. Let ε > 0, (a,b) ∈ U×V . Let ‖X‖, ‖y‖ < δ where
δ < 1. Then

‖g(a+ x,b+ y) − g(a,b)‖ 6 ‖g(x,y)‖+ ‖g(a,y)‖ + ‖g(x,b)‖
6 r{‖x‖‖y‖+ ‖a‖‖y‖+ ‖b‖‖x‖}
< rδ{1+ ‖a‖+ ‖b‖} since δ < 1

= kδ say, where k > 0.

So g[B(a, δ) × B(b, δ)] ⊆ B(g(a,b), ε) if δ < ε/k. This proves continuity of
g.

We use (b) to prove (a). If f : V → W is additive and satisfies ‖f(x)‖ 6
r‖x‖, then g : V × K → W defined by g(x, λ) = f(x)λ is bi-additive and
satisfies ‖g(x, λ)‖ 6 r|λ|‖x‖. Since f = gi where i : V → V×K is x 7→ (x, 1),
the continuity of g implies that of f. 2

It is easy to give a direct proof of (a), and we leave this to the reader.

Remark For f linear and g bilinear the converses of 2.8.2(a) and (b) are
true. However we do not need this fact and so leave its proof as an exercise.

EXAMPLES

12. Let V × V be given the norm

‖(x,y)‖ = max{‖x‖, ‖y‖}.
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The axioms for a norm are easily verified. The addition map V × V → V
given by (x,y) 7→ x+ y is additive and satisfies

‖x+ y‖ 6 ‖x‖+ ‖y‖ 6 2‖(x,y)‖.
Therefore addition is continuous.
13. Let f : Rn × Rm → V be bilinear, that is, f is additive and also

f(λx,y) = f(x, λy) = λf(x,y) for λ ∈ R.

Let ej, j = 1, . . . ,n denote the standard basis elements of Rn, and let
Rn,Rm,Rl have Euclidean or Cartesian norm. This implies that if x =
∑
λjej, then |λj| 6 ‖x‖. Hence if x =

∑n
j=1 λjej, y =

∑m
i=1 µiei, then

‖f(x,y)‖ 6
∑

i,j

|λj||µi|‖f(ej, ei)‖

6 ‖x‖‖y‖
∑

i,j

‖f(ej, ei)‖.

It follows that f is continuous.
14. A similar, and simpler, argument to that of the last example shows
that if Rn has the Euclidean or Cartesian norms, then any linear function
Rn → V is continuous. This implies that the Euclidean and Cartesian norms
are equivalent (that is, define the same metric topology), since the identity
Rn → Rn is continuous whichever of these norms we put on each Rn.
Actually it can be proved, as an application of compactness, that on a finite

dimensional normed vector space any two norms are equivalent. [Exercise 11
of Section 3.5.]
15. The sup norm ‖ ‖S and the integral norm ‖ ‖I on the space C of con-
tinuous functions [0, 1] → R are not equivalent. For let 0 < r 6 1 and let
fr : [0, 1] → R be the function whose graph is shown in Fig. 2.9. Then
‖fr‖S = 1, but ‖fr‖I = r/2, Hence fr ∈ EI(0, r/2) but fr /∈ ES(0, 12 ). Thus
EI(0, r/2) * ES(0,

1
2
) for any 0 < r 6 1. So the two norms are not equiva-

lent.

0 r 1

1

Fig. 2.9
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16. Let V1,V2 be the same vector space V but with norms ‖ ‖1, ‖ ‖2 respec-
tively. If we apply 2.8.2(b) to the two identity maps V1 → V2, V2 → V1 we
see that these norms are equivalent if there are real numbers r, s > 0 such
that

‖x‖1 6 r‖x‖2, ‖x‖2 6 s‖x‖1.

(This sufficient condition is also necessary—cf. the Remark on p. 50). This
gives another proof that in Rn the Euclidean norm ‖ ‖2 and the Cartesian
norm ‖ ‖∞ are equivalent, since for any x in Rn

‖x‖∞ 6 ‖x‖2 6
√
n‖x‖∞.

In this section, we have shown that every metric on a set X induces a
topology on X. On the other hand, not every topology on X is induced
by a metric. One example of this, the indiscrete topology, has been given
already, and other examples will be given later. The characterisation of
metric topologies has been completely solved (for an account of this see
[Kel55], [Eng68]), but this kind of problem is outside the scope of this
book.

Products and subspaces

Let X, Y be metric spaces. On X× Y we can define a metric by

d((x,y), (x ′,y ′)) = max{d(x, x ′),d(y,y ′)}.

The verification of the axioms for a metric is simple, and is left to the reader.
The topology on X×Y induced by this metric is simply the product topology,
as is easily seen from the formula

B(a, r)× B(b, r) = B((a,b), r) ⊆ B(a, s)× B(b, t)

where r = min{s, t}.

Let X be a metric space with metric d and let A be a subset of X. Let
dA = d | A × A. It is easily verified that dA is a metric on A. The open
balls in X we write B(a, r) and in A, BA(a, r). Clearly

BA(a, r) = B(a, r) ∩A.

Fig. 2.10 gives a picture of a subset A of R2 (with the Euclidean metric)
and various open balls in A.
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Fig. 2.10

2.8.3 The metric topology on A is its relative topology as a subset on X.

Proof Let a ∈ A. If N is a neighbourhood of a in X, then N ⊇ B(a, r) for
some r > 0 and so N ∩ A ⊇ BA(a, r). Thus each subspace neighbourhood
of a is also a metric neighbourhood.

Conversely, supposeM is a neighbourhood of a for the metric dA. Then
M ⊇ BA(a, r) for some r > 0. Let

N = B(a, r) ∪M.

Then N is a neighbourhood of a in X and N∩A =M. Therefore,M is also
a subspace neighbourhood of a. 2

Because of this proposition, a subspace A of a metric space X will mean
a subset with the metric dA and the metric topology.

EXERCISES

1. Let X be a metric space. Prove that the topology of X is discrete if and only if for

each x in X there is an r > 0 such that B(x, r) = {x}.

2. Let f : R>0 → R>0 be a continuous function such that

(i) f(x) = 0⇔ x = 0,

(ii) x 6 x ′ ⇒ f(x) 6 f(x ′),

(iii) f(x + x ′) 6 f(x) + f(x ′).

Let d be a metric on X. Show that the composition e = fd is a metric on X equivalent

to d. Show also that the function x 7→ x/(1 + x) satisfies conditions (i), (ii), and

(iii) above.

3. Let X,Y be metric spaces. Show that the following formulae define metrics on

X× Y whose metric topology is the product topology.

(a) d((x,y), (x ′,y ′)) = d(x, x ′) + d(y,y ′),

(b) d((x, y), (x ′,y ′)) = [{d(x, x ′)}2 + {d(y, y ′)}2]
1
2 .
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4. In Euclidean space two open balls meet if the distance between their centres is

less than the sum of their radii. Is this true in an arbitrary metric space? in an

arbitrary normed vector space?

5. Let d : X× X→ R>0 be a metric on X. Prove that d is continuous.

6. Let d be a metric on X. Prove that the metric topology is the coarsest topology T

on X such that each function dx : XT → R>0, y 7→ d(x,y), is continuous.

7. Let V be a normed vector space over K, and let a ∈ V, α ∈ K (α 6= 0). Prove

that the functions V → V given by x 7→ x+ a, x 7→ xα are homeomorphisms. Prove

also that any open ball in V is homeomorphic to V.

8. Let V be a normed vector space and let a ∈ V, r > 0. Prove that B(a, r) is the

interior of E(a, r), and E(a, r) is the closure of B(a, r).

9. Let A,B be subsets of the normed vector space V. Prove that if one of A,B is

open, then so also is

A+ B = {a+ b : a ∈ A,b ∈ B}.
10. Let V1, . . . ,Vn, V be normed vector spaces over R. We say u : V1×· · ·×Vn → V

is multilinear if, for any λ,µ ∈ R, and xi,x
′
i ∈ Vi (i = 1, . . . ,n)

u(x1, . . . , λxi + µx
′
i, . . . ,xn) = λu(x1, . . . , xi, . . . , xn) + µu(x1, . . . ,x

′
i, . . . , xn).

Prove that such a multilinear map is continuous ⇔ there is a real number r > 0

such that for all xi ∈ Vi

‖u(x1, . . . , xn)‖ 6 r‖x1‖ · · · ‖xn‖.

(This applies to normed vector spaces over K, since such objects are also, by restric-

tion of the field, normed vector spaces over R.)

[Exercise 10 implies the necessity of the condition for equivalent norms given in

Example 16, p. 51.]

11. Let V1,V2 be the same vector space V with distinct, but equivalent, norms

‖ ‖1, ‖ ‖2 respectively. Construct homeomorphisms

B(V1)→ B(V2), E(V1)→ E(V2), S(V1)→ S(V2).

12. Let f : En → En be a map such that f | Bn,Bn is a homeomorphism. Prove that

f[Sn−1] ⊆ Sn−1.

13. Brouwer has proved the following theorem known as the Invariance of Domain

[cf. [Nag65], [Spa66]]. Let A,B be subsets of Rn and f : A→ B a homeomorphism.

Then f[IntA] ⊆ IntB.

Use the Invariance of Domain to prove (i) (Invariance of Dimension). If f : Rm →
Rn is a homeomorphism, then m = n. (ii) If f : En → En is a homeomorphism,

then f | Bn,Bn and f | Sn−1, Sn−1 are defined and are homeomorphisms.

14. Let p be a prime number. For each n ∈ N define νp(n) to be the exponent of

p in the decomposition of n into prime numbers. If x = ±m/n is any non-zero

rational number, with m,n ∈ N, define

νp(x) = νp(m) − νp(n).
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Finally, if x,y are rational numbers define

d(x,y) =

{
p−νp(x−y), x 6= y
0, x = y.

(i) Prove that d is a metric on Q and that d satisfies the following strong form of

the triangle inequality

d(x, z) 6 max{d(x,y),d(y, z)}.

The topology induced by d is called the p-adic topology.

(ii) Prove that the topology induced by d on Z is the p-adic topology of Exercise 7

of Section 2.1.

(iii) Justify the following statement: in the p-adic topology on Q, small rational

numbers are those which are multiples of large powers of p.

*15. A subset A of Rm is convex if for any x,y in A the line segment joining x to y

(that is, the set of points (1 − t)x + ty, 0 6 t 6 1) is contained in A. This exercise

outlines a proof that any two open convex subsets A,B of Rm are homeomorphic.

The steps are as follows:

(i) There is a homeomorphism f : Rm → Bm such that f[A] is convex. So we may

suppose A is bounded. Let a ∈ A. Then, there is a real number δ > 0 such that

B(a, δ) ⊆ A.

(ii) For each x in A, x 6= 0, let

r(x) = sup{λ ∈ R : λ(x− a) ∈ A}.

Then r(x) is well-defined and non-zero, and the function x 7→ r(x) is continuous.

(iii) The function x 7→ a+ (δ/r(x))(x − a) is a homeomorphism A→ B(a, δ).

(iv) A,B are homeomorphic.

2.9 Distance from a subset

Let X be a metric space with metric d, and let A be a (non-empty) subset
of X. For each x ∈ X we define the distance of x from A to be

dist(x,A) = inf{d(x,a) : a ∈ A}.

2.9.1 The function x 7→ dist(x,A) is a continuous function X→ R>0.

Proof We prove that for any ε > 0 there is a δ > 0 such that

d(x,y) 6 δ⇒ | dist(x,A) − dist(y,A)| 6 ε. (*)

For any a in A

d(x,a) 6 d(x,y) + d(y,a),

d(y,a) 6 d(y, x) + d(x,a).
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We apply infa∈A to each of these inequalities to obtain

dist(x,A) 6 d(x,y) + dist(y,A),

dist(y,A) 6 d(y, x) + dist(x,A).

whence
| dist(x,A) − dist(y,A)| 6 d(x,y).

This proves (*) with δ = ε. 2

2.9.2 x ∈ A⇔ dist(x,A) = 0.

Proof The inverse image of {0} under x 7→ (x,A) is a closed set containing
A, and so containing A. Thus x ∈ A⇒ d(x,A) = 0.

On the other hand, if x /∈ A, then there is a closed ball E(x, r), r > 0,
not meeting A. Hence dist(x,A) > r. 2

2.9.3 Let A,B be disjoint closed sets in X. There are disjoint open sets U,V

in X such that A ⊆ U, B ⊆ V .

Proof Let f : X → R be the function x 7→ dist(x,A) − dist(x,B), and let
U = f−1[R<0], V = f−1[R>0]. By 2.9.1, U and V are open, and they are
clearly disjoint. If x ∈ A, then dist(x,B) > 0 since B is closed and A,B are
disjoint. Therefore, f(x) < 0 and so x ∈ U. Thus A ⊆ U and, similarly,
B ⊆ V . 2

In a topological space, we say a subset N is a neighbourhood of a subset
A if there is an open set U such that A ⊆ U ⊆ N. We can express 2.9.3
succinctly as: in a metric space, disjoint closed sets have disjoint neighbour-
hoods. A topological space with this property is called normal—examples
of non-normal spaces are given in the Exercises.

EXERCISES

1. A topological space X is called T1 if, for each x in X, the set {x} is closed; and X

is called Hausdorff if distinct points of X have disjoint neighbourhoods. Prove that

a metric space is Hausdorff, and that a Hausdorff space is T1.

2. A subset A of a topological space X is called a Gδ-set if A is the intersection of a

countable number of open sets of X. Prove that a closed subset of a metric space is

a Gδ-set.

3. Give examples of (i) a metric space X and a subset A of X which is not a Gδ-set,

(ii) a topological space X and a closed subset A of X which is not a Gδ-set.

4. Let X be the unit interval [0, 1] with the following topology. The neighbourhoods

of t for 0 < t 6 1 are the usual ones. The neighbourhoods of 0 are the usual

ones and also the sets N \ A where N is a usual neighbourhood of 0 and A is a set

{x1, x2, x3, . . . } of points xn such that xn 6= 0 for any n, and xn → 0 as n → ∞.

Prove that this defines a topology on X, and that X is Hausdorff but not normal.
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5. Prove that a topological space X is T1 ⇔ for each x,y in X there is a neighbour-

hood of x not containing y.

6. Let X be a metric space, A a subset of X, and r > 0. We define

B(A, r) = {x ∈ X : dist(x,A) < r}.

If B(A, r) ⊆ N ⊆ X for some r > 0, then N is a neighbourhood of A. Prove that the

converse of this implication is false.

7. Generalise the notion of a base for the neighbourhoods of a point to the notion

of a base for the neighbourhoods of a set. Give an example of a subset A of R such

that A does not have a countable base for its neighbourhoods.

2.10 Hausdorff spaces

We recall [Exercise 1 of Section 2.9] that a topological space X is Haus-
dorff if distinct points of X have disjoint neighbourhoods.‡ The following
characterisation of this property is more aesthetic, and often more useful.

2.10.1 A topological space X is Hausdorff if and only if the diagonal

∆(X) = {(x, x) ∈ X× X : x ∈ X}

is closed in X× X.

Proof Let ∆ = ∆(X). The following statements are each equivalent to their
successors (since x 6= x ′ ⇔ (x, x ′) /∈ ∆).

(a) X is Hausdorff.

(b) if x 6= x ′, then there exist neighbourhoods M,M ′ of x, x ′ such that
M ∩M ′ = ∅.

(c) if x 6= x ′, then there exist neighbourhoods M,M ′ of x, x ′ such that
(M×M ′) ∩∆ = ∅.

(d) if x 6= x ′, then (X× X) \ ∆ is a neighbourhood of (x, x ′).

(e) ∆ is closed in X× X.

‡A standard joke is that X is Hausdorff if any two points can be housed off from each other.
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X

M ′

∆

(x, x ′)

M X

Fig. 2.11

2

2.10.2 Let f,g : Y → X be maps of the topological space Y to the Hausdorff

space X. Then the set A of points on which f,g agree is closed in Y.

Proof A = (f,g)−1[∆(X)]. 2

2.10.3 Subspaces, and products, of Hausdorff spaces are Hausdorff.

Proof Let A be a subspace of the Hausdorff space X. Then

∆(A) = ∆(X) ∩ (A×A).

Therefore, ∆(A) is closed in A×A, and so A is Hausdorff.
Let X, Y be Hausdorff spaces and let

T : X× X× Y × Y → X× Y × X× Y
(x, x ′,y,y ′) 7→ (x,y, x ′,y ′).

Then T is a homeomorphism and

T [∆(X)× ∆(Y)] = ∆(X× Y).

Therefore, ∆(X× Y) is closed in X× Y × X× Y. 2

2.10.4 Let f : Y → X be a continuous injection and let X be Hausdorff. Then

Y is Hausdorff.

Proof Since f is an injection

∆(Y) = (f× f)−1[∆(X)].
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Therefore, ∆(Y) is closed in Y × Y. 2

This result has two important special cases.

(a) A finer topology than a Hausdorff topology is also Hausdorff.

(b) If X and Y are homeomorphic and X is Hausdorff, then so also is Y.

In this book, the spaces of main interest will all be Hausdorff. But the
reader should beware of thinking that non-Hausdorff spaces are of little
importance. In the Exercises we sketch the construction of two important
classes of non-Hausdorff spaces, firstly the Zariski topology and, secondly,
the sheaf of germs of functions.

EXERCISES

1. Write down proofs of 2.10.2, 2.10.3, and 2.10.4 using directly the definition of

Hausdorff spaces.

2. The Zariski topology on Rn (or on Cn) is that in which C is closed if and only if

there is a set of polynomials in n variables such that C is the set of points on which

all these polynomials vanish. In the case n = 1, this is the topology in which C is

closed ⇔ C = R or C is finite. The Zariski topology on R is not Hausdorff. (The

proof that the Zariski topology on Rn is not Hausdorff requires knowledge of the

ideal theoretic properties of polynomial rings—cf. [ZS60, Ch. VII §3].)

3. The sheaf of germs of functions. Let X, Y be topological spaces. For each x ∈ X let

F(x) denote the set of continuous functions from some neighbourhood of x to Y. An

equivalence relation ∼ is defined in F(x) by f ∼ g ⇔ f,g agree on some neighbour-

hood of x. The set of equivalence classes is written G(x), and G =
⋃

x∈X G(x).

An element of G(x) is called a function-germ or germ at x, and G is the sheaf

of germs of continuous functions. If f ∈ F(x), the germ of f (that is the equivalence

class of f) is written fx. The value of fx at x is well-defined by fx(x) = f(x). Let

U be an open set containing x, and let f : U → Y be continuous. Then f defines

a germ fy for each y ∈ U and the set fU = {fy : y ∈ U} is defined to be a basic

neighbourhood of fx. The topology on G is that in which a neighbourhood of fx is

any set containing a basic neighbourhood.

Prove that G is in fact a topological space, and that G is non-Hausdorff even if

X = Y = R. (If f,g : R → R are such that f(x) = g(x) for x 6 a, f(x) 6= g(x) for

x > a, then fa, ga are germs which do not have disjoint neighbourhoods.)

Prove that if X = Y = R the above construction can be varied by replacing the

word continuous by (i) integrable, (ii) differentiable, (iii) of class C∞, (i.e., with

derivatives of all orders), (iv) polynomial, (v) analytic (i.e., expressible locally by

power series). Prove that in the last two cases the corresponding sheaf of germs is

a Hausdorff space.

4. Let X be a topological space. Let (xn)n>0 be a sequence of points of X. If

Y ⊆ X, we say (xn) is eventually in Y if there is a number n0 such that n > n0

implies xn ∈ Y. If x ∈ X, we say xn → x as n → ∞, or (xn) has limit x, (or,

briefly, (xn) → x) if for any neighbourhood N of x, (xn) is eventually in N. Let
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L = {0} ∪ {n−1 : n ∈ N>0} have it relative topology as a subset of R. Prove that

(xn) → x if and only if the function g : L → X which sends n−1 7→ xn, 0 7→ x

is continuous. Prove also that if X is Hausdorff, then the conditions (xn) → x,

(xn)→ y, imply x = y.

5. Consider the following conditions on a space X: (a) X is Fréchet, that is, if x ∈ X
and A ⊆ X, then x ∈ A if and only if there is a sequence of points (xn) of A such

that (xn)→ x. (b) X is sequential, that is a subset U of X is open if and only if every

sequence converging to a point of U is eventually in U. (c) A subset U of X is open

if and only if U ∩ A is open in A for every countable subset A of X. Prove that (a)

is satisfied if X satisfies the first axiom of countability [Exercise 3 of Section 2.6],

and that (a) ⇒ (b) ⇒ (c). [Use Exercise 5 of Section 2.6 for the proof that first

countable implies Fréchet.]

6. Let X be a sequential space, let Y be a space and f : X → Y a function. Prove

that the following conditions are equivalent, (a) f is continuous, (b) fg : L → Y is

continuous for all continuous functions g : L → X, (c) for all x in X and sequences

(xn) in X, (xn)→ x implies (fxn)→ fx.

7. Let X be the space of Exercise 4 of Section 2.9 but defined using Q∩ [0, 1] instead

of [0, 1]. Prove that X is not sequential, but that X satisfies (c) of Exercise 5.

8. Let X be the set [0, 1] retopologised as follows. The neighbourhoods of t in ]0, 1]

are the usual neighbourhoods. The neighbourhoods of 0 are the usual neighbour-

hoods and also any set containing {0}∪U where U is the usual open neighbourhood

of L∗ = L \ {0}. Prove that X is sequential but not Fréchet. Prove also that X \ L∗ is

not sequential.

9. Give an example of a topological space X which is not indiscrete, and in which

limits of sequences are not unique.

10. Let X be an uncountable set with the topology that C ⊆ X is closed if C is

countable or if C = X. Let g : L → X be continuous. Prove that there is an integer

n0 such that n > n0 ⇒ g(n−1) = g(0). Prove also that in X limits of sequences are

unique. Let Y be the underlying set of X with the discrete topology. Let f : X → Y

be the identity function. Prove that f is not continuous, but fg is continuous for all

continuous functions g : L→ X.

11. Prove that the space X of Exercise 10 is not a pseudometric space. [A pseudo-

metric space satisfies the first axiom of countability.]

12. Let X be an uncountable set and let x0 ∈ X. Let X have the topology in which a

subset C of X is closed if C is countable or if x0 ∈ C. Prove that this is a topology

and that X with this topology is a Hausdorff, non-metric space.

13. Let △ ⊆ R2 be the set of points inside and on the right-angled triangle ABC,

which we suppose has a right-angle at A and satisfies AC > AB. This exercise

outlines the construction of a continuous surjection f : [0, 1] → △. Let D on BC be

such that AD is perpendicular to BC. Let a = .a1a2a3 . . . be a binary decimal, so

that each an is 0 or 1. Then we construct a sequence (Dn) of points of△ as follows:

D1 is the foot of the perpendicular from D onto the hypotenuse of the larger or

smaller of the triangles ADB, ADC according as a1 = 1 or 0 respectively. This

construction is now repeated using D1 in place of D and the appropriate triangle of

ADB, ADC in place of ABC. For example, Fig. 2.12 illustrates the points D1 to D5

for the binary decimal .10110 . . . .
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A

D2

D4

B D C

D5

D3

D1

.10110 ↔ D5

Fig. 2.12

The reader should give a decent inductive definition of the sequence (Dn) and

prove in turn: (i) the sequence (Dn) tends to a limit D(a) in △; (ii) if λ ∈ [0, 1] is

represented by distinct binary decimals a,a ′ then D(a) = D(a ′); hence, the point

D(λ) in △ is uniquely defined; (iii) if f : [0, 1]→ △ is the function λ 7→ D(λ) then f

is surjective. (iv) f is continuous.

14. Using the previous exercise, prove the existence of continuous surjections from

[0, 1] to the sets (i) E2, (ii) I2, (iii) In.

15. Prove that there is a continuous surjection R→ Rm.

NOTES

Most books on topology start with the axioms for open sets. However the
idea of neighbourhood seems more intuitive, and was found earlier. You
would find it helpful to look up some of the history of set theory and of
topology, in order to see the roots of our subject in analysis and in geometry.
(See for example [Man64], the historical notes in [Bou66], and [Wil49].)

The modern theory of locales axiomatises the main properties of the lat-
tice of open sets of a space, and gives a broader context in which to discuss
the notion of continuity. The theory of locales has been called pointless

topology. (See [Joh83], [Joh82]).

A variety of axiomatisations for topological spaces are listed in the Ex-
ercises of [Vai60]. Topological spaces are not adequate to deal with the
notion of uniform continuity—for this, there is needed the concept of uni-
form space which may be found for example in [DK70], [Bou66]. A general
account of the type of axiom system of which uniform spaces and topolog-
ical spaces form a particular example is given in [Csa63]. The relation
between convergence and topologies is best shown by means of the fil-
ters of [Bou66]. Spaces whose topology can be defined by sequences are
discussed, for example, by [Fra65]. For an account of the general theory
of sheaves see [God58]; applications of sheaves to algebraic topology are
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given in [Swa64] and to algebraic geometry in [Hir66] (but none of these
books on sheaves is for the beginner in topology).

The results on maps into products given on p. 33 are extended in later
sections by using universal properties in section A.4.

The idea of a sheaf has lead to an important generalisation of a topol-
ogy, namely a Grothendieck topology, in which the inclusions of open sets
are replaced by more general maps (cf. [Sch72], [Joh02]). This illustrates
the maxim that a good concept turns up in various disguises, generalisa-
tions, and ramifications. However, an understanding of this particular no-
tion requires a grounding in category theory (see chapter 6, and [Mac71],
[HS79], [Sch72]).



Chapter 3

Connected spaces, compact

spaces

3.1 The sum of topological spaces

Let X1,X2 be disjoint subspaces of a topological space X, and suppose X =

X1 ∪ X2. In general, it is not possible to recover the topology of X from
the topologies of X1,X2. For example, if a 6= b, then the set {a,b} has four
distinct topologies, while the sets {a}, {b} have each only one topology.

A case when the topology of X is determined by the topologies of X1,X2

is when U is open in X if both U ∩ X1 is open in X1 and U ∩ X2 is open in
X2. In this case, we say X is a topological sum of X1,X2 and we write

X = X1 ⊔ X2.

The open sets of X1 ⊔ X2 are then simply the unions U1 ∪ U2 for U1 open
in X1, U2 open in X2.

EXAMPLE Let X = [0, 2] \ {1} with its usual topology as a subspace of R.
Then X = [0, 1[ ⊔ ]1, 2]. On the other hand, [0, 2] itself is not [0, 1] ⊔ ]1, 2].

Intuitively, a sum should be thought of as a space which is in two pieces.
But one should bear in mind that any X is X ⊔∅.

3.1.1 Let X1,X2 be disjoint subspaces of the topological space X such that

X = X1 ∪ X2. The follows conditions are equivalent.

(a) X = X1 ⊔ X2,

(b) X1,X2 are both open in X,

65
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(c) X1 is both open and closed in X,

(d) X1 ∩ X2 = ∅ and X1 ∩ X2 = ∅.

Proof That (a) ⇒ (b) is immediate from the definition of X1 ⊔ X2, while
(b)⇔ (c) follows from the fact that X1 = X \ X2.

If X1 is open and closed in X, then so also is X2. Hence, X1 = X1,
X2 = X2, and so (c)⇒ (d). Conversely, X1 ∩ X2 = ∅ implies X2 is open, so
that X1 is closed, while X1 ∩ X2 = ∅ implies X1 is open. Thus (d)⇒ (c).

Finally we prove that (c)⇒ (a). Let Uα be open in Xα, α = 1, 2. Then
Uα is open in X and so U1 ∪U2 is open in X. �

The most useful property of the sum X1⊔X2 is concerned with functions
X1 ⊔ X2 → Y. Let i1 : X1 → X1 ⊔ X2, i2 : X2 → X1 ⊔ X2 be the two inclusion
functions.

3.1.2 If f1 : X1 → Y, f2 : X2 → Y are maps, then there is a unique map

f : X1 ⊔ X2 → Y such that f i1 = f1, f i2 = f2.

Proof We suppose f1, f2 given. Then f : X1 ⊔ X2 → Y given by x 7→ fα(x)

for x ∈ Xα (α = 1, 2) is the only function X1 ⊔ X2 → Y such that f i1 = f1,
f i2 = f2. We prove that f is continuous.

Let U be open in Y. Then

f−1[U] = (f−1[U] ∩ X1) ∪ (f−1[U] ∩ X2)

= f−1
1 [U] ∪ f−1

2 [U].

Therefore, f−1[U] is open in X1 ⊔ X2. �

The situation of 3.1.2 is summed up in the diagram

X1

i1 //

f1

""E
EE

EE
EE

EE
EE

EE
EE

X1 ⊔ X2

f

���
�
�
�
�

oo i2
X2

f2

||yy
yy
yy
yy
yy
yy
yy
y

Y

in which the dotted arrow indicates a function to be constructed.

A consequence of 3.1.2 is that a function f : X1 ⊔ X2 → Y is continuous
if f i1, f i2 are continuous. This fact is used in the proof of the next result,
in which {1, 2} is a discrete space.

3.1.3 Let X1,X2 be subspaces of X. Then X = X1 ⊔X2 if and only if there is a

map f : X→ {1, 2} such that Xα = f−1[α], α = 1, 2.
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Proof Suppose X = X1 ⊔ X2. Define f : X → {1, 2} by f[Xα] = α, α = 1, 2.
Then for α = 1, 2 f iα : Xα → {1, 2} is a constant function, and hence
continuous. Therefore f is continuous.

Now suppose that f : X → {1, 2} is continuous, and Xα = f−1[α], α =

1, 2. Then X1,X2 are disjoint and have union X. Also {1} is open and closed
in {1, 2} and so X1 is open and closed in X. �

3.1.4 Let Y be any space with underlying set X1 ∪ X2 such that X1 ∩ X2 = ∅
and the inclusions jα : Xα → Y, α = 1, 2 are continuous. Then the topology
of X1 ⊔ X2 is finer than that of Y.

Proof Let f : X1 ⊔ X2 → Y be the identity function, so that f iα = jα,
α = 1, 2. By 3.1.2, f is continuous. �

This result is expressed roughly by: X1⊔X2 has the finest topology such
that the inclusions iα : Xα → X1 ⊔ X2 are continuous.

We shall need in chapter 4 to form a sum of spaces X1,X2 which are not
disjoint. For this we take the universal property 3.1.2 as a definition.

Definition A sum of topological spaces X1,X2 is a pair of maps i1 : X1 → X,
i2 : X2 → X which is ϕ-universal: that is, if f1 : X1 → Y, f2 : X2 → Y are any
maps, then there is a unique map f : X→ Y such that f i1 = f1, f i2 = f2.

The usual universal argument [Appendix §4] shows that the space X is
then uniquely defined up to a homeomorphism. For this reason, we denote
a sum simply by X1 ⊔ X2.

A sum X1 ⊔ X2 can always be constructed: Its underlying set is to be a
sum of the underlying sets of X1,X2, so that we have injections i1 : X1 →
X1 ⊔ X2, i2 : X2 → X1 ⊔ X2. The open sets of X1 ⊔ X2 are to be the sets

i1[U1] ∪ i2[U2] = U1 ⊔U2

for U1 open in X1,U2 open in X2. We leave the reader to verify that this
does define a sum.

If fα : Xα → Y are maps (α = 1, 2) then the map X1 ⊔ X2 → Y defined
by f1, f2 is written (f1, f2)

t.

EXERCISES

1. Prove that if X1,X2 are metrisable, then X1 ⊔ X2 is metrisable.

2. Let X1,X2 be subspaces of X such that X = X1 ⊔ X2. Let f : Y → X be a map.

Prove that Y is the sum of f−1[X1] and f−1[X2].
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3. Let X1,X2,X3 be topological spaces. Prove that there are homeomorphisms,

X1 ⊔ X2 → X2 ⊔ X1,

X1 ⊔ (X2 ⊔ X3)→ (X1 ⊔ X2) ⊔ X3,

X1 × (X2 ⊔ X3)→ (X1 × X2) ⊔ (X1 × X3).

4. Prove that the following properties hold for X1 ⊔ X2 if and only if they hold for

both X1 and X2: separable, first axiom of countability, Hausdorff.

5. Let X0,X1,X2 be subspaces of X such that X = X1 ∪ X2, X0 = X1 ∩ X2 and

X \ X0 = (X1 \ X2) ⊔ (X2 \ X1).

Prove that a function f : X→ Y is continuous if f | X1, f | X2 are continuous.

3.2 Connected spaces

Let X be a topological space. A pair {X1,X2} of subspaces of X is called a
partition of X if X1,X2 are non-empty, disjoint, and X = X1⊔X2. Intuitively,
X has a partition if it falls into two bits. This leads to the definition; X
is connected if it has no partition, and otherwise is disconnected. We have
immediately from 3.1.1 and 3.1.3:

3.2.1 Let X be a topological space. The following conditions are equivalent.

(a) X is connected.

(b) If a subset A of X is open and closed in X, then A = ∅ or A = X.

(c) If X = A ∪ B where A ∩ B = ∅,A ∩ B = ∅ then A = ∅ or B = ∅.

(d) If f : X→ {1, 2} is continuous, then f is constant.

The last condition is probably the most useful.

A subset Y of a topological space X is connected if Y with its induced
topology is a connected space. The connectedness of Y can be described
in terms of the closure operator in X: Let A,B ⊆ Y, and let B, ClY B be
the closures of B in X, Y respectively. Then ClY B = Y ∩ B [2.4.2], so that
A ∩ B = A ∩ ClY B; and, similarly, A ∩ B = ClY A ∩ B. So Y is connected if
and only if the conditions Y = A ∪ B, A ∩ B = A ∩ B = ∅ imply A = ∅ or
B = ∅.

The connectedness of Y can also be described in terms of the open sets
of X [cf. Exercises 6, 7, 8].

It is to be expected from the fact that connectedness involves the open
sets of X that connectedness is a topological invariant: that is, if X is home-
omorphic to Y, then X is connected if and only if Y is connected. In fact,
we prove a stronger result.
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3.2.2 If X is connected, and f : X→ Y is continuous, then Im f is connected.

Proof Let f ′ = f | X, Im f. If Im f is disconnected, then there is continuous
surjection g : Im f → {1, 2}, and gf ′ : X → {1, 2} is a continuous surjection.
This implies that X is disconnected. �

A discrete space with more than one point is disconnected, while ∅ and
{a} are connected spaces. By 1.3.4, the real line R is connected. Any open
interval of R is homeomorphic to R and hence is connected by 3.2.2.

3.2.3 If A is dense in a topological space X, and A is connected, then X is

connected.

Proof Let A be connected and dense in X. Let f : X→ {1, 2} be continuous.
Then f | A is continuous and hence constant, say with value 1. By 2.6.2(d)

f[A] ⊆ f[A] = {1} = {1}.

Since A = X, this implies that f is constant. 2

A corollary of 3.2.3 is that if A ⊆ B ⊆ A ⊆ X and A is connected,
then B is connected— for the proof replace X in 3.2.3 by B with its relative
topology.

3.2.4 A subset X of R is connected if and only if X is an interval.

Proof If X is empty or a singleton, it is both an interval and is connected.
So suppose X has more than one point.

If X is an interval of R, then X is contained in the closure of an open
interval, and so is connected by the remark following 3.2.3.

Suppose, conversely, that X is connected. If X contains at most one
point, then it is an interval. If X contains points a,b with a < b, let
x ∈ ]a,b[ and suppose x /∈ X. Then the set

X ∩ ]←, x] = X ∩ ]←, x[

is a non-empty proper subset of X both open and closed in X. This con-
tradicts the assumption that X is connected. Hence, x ∈ X, and so X is an
interval. 2

A very direct way of proving that an interval X of R is connected is
to show that any map f : X → {0, 1} is constant—an outline proof is as
follows. Let x,y ∈ X and suppose for example x < y and fx = 0. Let
s = sup{z : x 6 z 6 y and fz = 0}. It is easy to prove that fs = 0 and to
derive a contradiction from the assumption s < y. Hence fy = 0, and so
fx = fy.



70 [3.2] TOPOLOGY AND GROUPOIDS

EXAMPLES

1. The interval I = [0, 1] is connected. The function t 7→ e2πit is a continu-
ous surjection I→ S1. Hence S1 is connected.
2. Let f : A → R be a map where A is an interval of R. By the last two
results, Im f is an interval. Hence f takes any value between two given
values.
3. A space is totally disconnected if its only (non-empty) connected sub-
sets consist of single points. Examples of totally disconnected spaces are
discrete spaces, Q, R \Q and also

L = {0} ∪ {n−1 : n a positive integer}.

(The notation L will be standard for this space.) The proof that the last
three space are totally disconnected is easy using 3.2.4.

3.2.5 Let (Aλ)λ∈Λ be a family of connected subspaces of X, whose intersection
is non-empty. Then

A =
⋃

λ∈Λ

Aλ

is connected.

Proof Let f : A → {1, 2} be continuous. Then f | Aλ is constant (since Aλ

is connected) and so f is constant (since
⋂

λ∈Λ

Aλ 6= ∅). Therefore, A is

connected. 2

(a) (b)

Fig. 3.1

For example, the space illustrated in (a) of Fig. 3.1 is connected, be-
ing the union of two spaces, homeomorphic to S1 and meeting in a single
point. By two applications of 3.2.5, the space illustrated in (b) of Fig. 3.1
is connected.

3.2.6 If X, Y are connected, then so also is X× Y.

Proof Let X, Y be connected and let f : X × Y → {1, 2} be continuous. We
prove that f is constant.
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Let (x,y), (x ′,y ′) ∈ X × Y. The space {x} × Y is homeomorphic to
Y and hence is connected. Therefore, f is constant on {x} × Y and, in
particular, f(x,y) = f(x,y ′). Similarly, f(x,y ′) = f(x ′,y ′). Therefore,
f(x,y) = f(x ′,y ′), and f is constant. 2

EXAMPLES

4. Since R is connected, so also is Rn.
5. In, the n-fold product of I = [0, 1], is connected.
6. Let X = {(x, sinπ/x) : 0 6= x ∈ R}, let J = {0} × [−1, 1] and let Y = X ∪ J
(cf. Fig. 2.5, p. 38). We prove that Y is connected.

Let X+ = {(x,y) ∈ X : x > 0}, X− = {(x,y) ∈ X : x < 0}. The function
R>0 → X+ sending x 7→ (x, sinπ/x) is continuous and surjective. Hence
X+ is connected. By 3.2.3, X+ ∪ J = X+ is connected. Similarly, X− ∪ J is
connected. By 3.2.5, X ∪ J is connected.

EXERCISES

1. Let X be a connected metric space with unbounded metric. Prove that every

sphere S(a, r) in X is non-empty. Is this true for X disconnected?

2. Let X ⊂ R2 be the subspace of points (x, y) such that either (i) x is irrational and

0 6 y 6 1, or (ii) x is rational and −1 6 y < 0. Prove that X is connected. Prove

also that if f : [0, 1]→ X is continuous, and p1 : X→ R is the projection on the first

coordinate, then p1f is constant.

3. Let A be a connected subset of the connected space X. Let B be open and closed

in X \ A. Prove that A ∪ B is connected. [Use Exercise 5 of Section 3.1 to extend a

map A ∪ B→ {1, 2} over X.]

4. Prove 3.2.3, 3.2.5 by using directly condition 3.2.1(b) for connectedness.

5. Let A be a connected subset of the topological space X. Is Int A necessarily

connected?

6. Let A be a subset of the metric space X. Prove that A is disconnected if and only

if there are sets U,V open in X such that (i) U ∩ V = ∅, (ii) A ⊂ U ∪ V, and (iii)

A ∩U, A ∩ V are non-empty.

7. Show that Exercise 6 is false for arbitrary spaces by considering the space X =

{0, 1, 2} in which ∅, X, {0}, {0, 1}, {0, 2} are the only open sets.

8. Prove that a subset A of a topological space X is disconnected if and only if there

are sets U,V open in X such that (i) U ∩ V ⊆ X \ A, (ii) A ⊆ U ∪ V, and (iii)

A ∩U,A ∩ V are non-empty.

9. If A,B ⊆ X,A is open, A ⊆ B, and B and Fr A are connected, then B \ A is

connected.

10. Let 6 be an order relation on X. This order is without gaps if ]x,y[ is non-empty

for each x,y in X such that x < y. Prove that X with its order topology is connected

if and only if the order is complete and without gaps.
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3.3 Components and locally connected spaces

Let X be a topological space and let x ∈ X. The component of x in X is C(x),
the union of all connected sets containing x. By 3.2.5, C(x) is connected;
therefore, C(x) is the largest connected set containing x. But C(x) is also
connected [3.2.3]. Therefore, C(x) = C(x). This proves:

3.3.1 The component of x in X is a closed subset of X.

A component need not be open. For example, in the space L the component
of 0 is {0}, which is closed but not open in L. Again, the components of
points of Q are not open in Q. An obvious question is therefore: under
what conditions are the components always open?

Definition A space X is locally connected at a point x in X if the connected
neighbourhoods of x form a base for the neighbourhoods at x. (This is
sometimes expressed as: x has a base of connected neighbourhoods.) The
space X is locally connected if it is locally connected at each x in X. Thus X
is locally connected if, for each x in X, each neighbourhood of x contains a
connected neighbourhood of x.

One more definition: if A ⊆ X, the components of A are the components
of the points of the subspace A. So the components of A are subsets of A,
except that the empty set ∅ has no components.

3.3.2 X is locally connected if and only if the components of each open set of

X are open sets of X.

Proof Suppose X is locally connected, V is open in X, C is a component of
V , and x ∈ C. Since V is a neighbourhood of x, and X is locally connected,
there is a connected neighbourhood U of x such that U ⊆ V . Therefore,
U ⊆ C, and C is a neighbourhood of x. Therefore, C is open.

For the converse, we start with a neighbourhood V of x which we may
suppose to be open (otherwise we replace V by IntV). The component of
V which contains x is open in X (by assumption), and so is a connected
neighbourhood of x contained in V . 2

A special case of 3.3.2 is that, if X is locally connected, then each com-
ponent of X is open.

EXAMPLES

1. The following spaces are not locally connected: the rationals, Q; the
irrationals, R \Q; and L = {0} ∪ {1/n : n ∈ N,n 6= 0}.

2. A connected set need not be locally connected: the space Y = X ∪ J of
Example 6, p. 66, is not locally connected, since points of J have no ‘small’
connected neighbourhoods [cf. Fig. 3.2].
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z

N

J ∩N

Fig. 3.2

In fact we leave as an exercise for the reader the detailed proof of the
following statement: if z ∈ J, there is in Y a neighbourhood N of z such
that the component of z in N is N ∩ J.
3. Let X consist of the line segment joining (1, 1) in R2 to the points of
L × {0} [Fig. 3.3]. Then X is connected, but not locally connected, since
(0, 0) has no ‘small’ connected neighbourhoods. (Here also, we leave a
detailed proof to the reader.) Is X \ {(1, 1)} connected?

(0, 0)

(1, 1)

Fig. 3.3

4. A discrete space is locally connected and also totally disconnected.

Cut points

Let f : X→ Y be a homeomorphism. If C is a component of a point x of X,
then f[C] is a component of f(x) in Y: this follows from the fact that A ⊆ X
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is connected if and only if f[A] is connected. Consequently, f induces a
bijection of the components of X to the components of Y. So the number of
components of X is a topological invariant of X. However, this is not a very
subtle invariant, since it fails to distinguish different connected spaces.

Definition Let X be connected space, and k a natural number or N. A
point x in X is a cut point of order k if X \ {x} has k components.

Let X be connected, and f : X→ Y a homeomorphism. A point x in X is
a cut point of order k in X if and only if f(x) is a cut point of order k in Y.
Therefore, the number of cut points of order k is a topological invariant of
X.

EXAMPLES

5. The closed interval [0, 1] has two cut points of order 1; the half-open
interval [0, 1[ has one cut point of order 1; the open interval ]0, 1[ has no
cut points of order 1. Therefore, no two of the spaces [0, 1], [0, 1[ and ]0, 1[

are homeomorphic.
6. The following 1-dimensional‡ spaces can be distinguished by the num-
bers of cut points of various orders:

Fig. 3.4

7. These methods however fail to distinguish between the following spaces:

Fig. 3.5

However, if we remove two points from the first space, two components
are left, while with the second space we can get one, two, or three compo-
nents by removing different pairs of points. Hence, the two spaces are not
homeomorphic.
8. The space Rn has cut points of order 1 only if n > 1. That is, if a ∈ Rn,
then Rn\{a} is connected if n > 1. For let x,y ∈ Rn\{a}, and let z ∈ Rn\{a}

be such that the lines L,M joining z to x,y respectively do not pass through
a (this is possible since n > 1). Then L ∪M is a connected set containing x
and y, so that x and y belongs to the same component of Rn \ {a}.

‡The term 1-dimensional is to be understood at this stage only intuitively.
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x

L

z

a

y

M

Fig. 3.6

This proves that Rn is not homeomorphic to R1 if n 6= 1. It is much
more difficult to prove the Invariance of Dimension: if Rm is homeomor-
phic to Rn, then m = n. All the present proofs of this theorem, as of the
Invariance of Domain, use techniques of homology theory or of subdivisions
of simplicial complexes.

Actually, a stronger result than the Invariance of Dimension is true: if
f : Rm → Rn is a continuous bijection, then m = n and f is a homeomor-
phism.
9. Another problem is to distinguish between surfaces, for example the 2-
sphere S2 and the torus T2 = S1×S1. This latter space is homeomorphic to
the anchor ring [Fig. 3.7(ii)].

(i) S2 (ii) T2

B

A

Fig. 3.7

Since removing points is a useful method for distinguishing
1-dimensional spaces, it seems reasonable that to distinguish 2-dimensional
spaces we need to remove 1-dimensional subspaces (supposing also that we
know what the words 1-dimensional and 2-dimensional mean). For exam-
ple, let A be the meridian circle on T2; then T2\A has only one component.
On the other hand, it seems likely that if B is any subspace of S2 homeo-
morphic to S1, then S2 \ B has two components. This is equivalent to the
Jordan Curve Theorem: if B is a subspace of R2 homeomorphic to S1 (i.e., B
is a simple closed curve in R2) then R2 \ B has two components. We prove
this in chapter 9.

As we shall see in chapter 9, S2 and T2 can be distinguished by their
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fundamental groups.
10. If two spaces are homeomorphic, they must have the same ‘local’ prop-
erties. Let X be the graph of x 7→ sin(π/x), and let Y = X∪{(0, 0)}. Then Y is
connected, and any point of Y is a cut point of order 2. But Y is not home-
omorphic to R, since R is locally connected, and Y is not locally connected
at (0, 0).
11. We can also define local cut points. A point x in X is a local cut point of
order k if each neighbourhood V of x contains a connected neighbourhood
U of x such that U \ {x} has k components. If X is homeomorphic to Y, then
X and Y must have the same number of local cut points of order k for each
k = 1, 2, . . . . The spaces of Fig. 3.8 are distinguished by the fact that one
has a local cut point of order 4, and the other does not.

Fig. 3.8

By the use of homology theory these methods can be generalised to
higher dimensional spaces.

EXERCISES

1. Prove that if X has a finite number of components, then each component is open.

2. Prove that the space X of Exercise 2 of Section 3.2 is not locally connected.

3. Decide whether or not the following 1-dimensional spaces are homeomorphic

Fig. 3.9

4. Construct a locally connected subspace X of R2 in which for each r > 0 there is

an x in X such that B(x, r) (the open ball in X) is not connected.

5. Prove that Rn is locally connected.

6. Let X = (L× I) \ ({0}×]0, 1[). Prove that the components of (0, 0) and (0, 1) in X

are single points. Let f : X→ {1, 2} be continuous. Prove that f(0, 0) = f(0, 1).

7. Let X be the subspace of R2

{0} ∪ {(x, x sinπ/x) : x 6= 0}

with the Euclidean metric. Prove that if r > 0 is sufficiently small then B(0, r) (the

open ball in X) is not connected.
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*8. Let A be a non-empty subset of a metric space X. We say A is bounded if

sup{d(x,y) : x,y ∈ A} exists, and then this number is called the diameter of A. Let

x,y ∈ X. If there is a connected set containing x,y and of diameter < 1, let σ(x, y)

be the infinum of the diameters of such sets. If no such set exists, let σ(x,y) = 1.

Prove that (x,y) 7→ σ(x, y) is a metric on X.

Let L ⊆ X be the subset of X of points at which X is locally connected. Prove

that σ induces the discrete topology on X \ L (if X \ L 6= ∅) and that σ induces the

same topology on L as does d.

Prove that in L, each open ball for the metric σ is connected if of radius < 1.

*9. Let X be connected and locally connected, and f : X→ Y continuous. Prove that

Im f is locally connected if f maps closed sets of X to closed sets of Y, but not in

general.

*10. Let C be a component of the open setU of the locally connected space X. Prove

that FrC ⊆ FrU ⊆ X \U.

3.4 Path-connectedness

In this section, we discuss a type of connectedness which is stronger (in
the precise sense given by 3.4.4 below) than that of section 3.2, and which
is to some extent more intuitive. For ‘nice’ spaces, for example, the cell-
complexes of chapter 4, the two notions of connectedness are equivalent.

A B

Fig. 3.10

Consider the spaces A and B of Fig. 3.10. It is intuitively clear that any
two points of B (such as those shown by dots) can be joined by a continuous
curve lying wholly in B. But this is false for the space A. The best general
expression of these ideas is in terms of paths and path-connectedness.

Let X be a topological space and let r ∈ R>0.

Definition A path in X of length r is a continuous function a : [0, r] → X.
We write |a| for r. Then a(0), the source of a is written σ(a), and a(r) the
target of a is written τ(a), and we say a joins σ(a) to τ(a). We call σ(a)
and τ(a) the end points of a.

A point x in X determines a unique constant path of length r with value
x. If r = 0, this path is called the zero path at x.
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It is important to note that a path in X is not just a set of points, but is a
function. For example, the two paths [0, 1]→ R given by t 7→ t and t 7→ t2

are distinct paths in R joining 0 to 1. Our illustrative figures should then
show the graph of a path—but it is usually more convenient to illustrate
the image of the path.

We now consider two simple operations on paths. The reverse of a path
a : [0, r]→ X is the path

−a : [0, r]→ X

t 7→ a(r− t).

Thus |− a| = |a| and −a joins τ(a) to σ(a).

σ(a)

a

τ(a)

τ(−a)

−a

σ(−a)

Fig. 3.11

The reverse of a path is always defined. On the other hand, the sum

b + a of two paths is defined if and only if the final point of a coincides
with the initial point of b (that is, if and only if τ(a) = σ(b)). In such case,
b+ a is the path

b+ a : [0, |b|+ |a|]→ X

t 7→
{
a(t), 0 6 t 6 |a|

b(t− |a|), |a| 6 t 6 |a|+ |b|.

Clearly the condition τ(a) = σ(b) is essential for b + a to be defined; and
with this condition, b+ a is continuous by the gluing rule [2.5.12].

σ(b + a) = σ(a)

a

τ(a) = σ(b)

b

τ(b + a) = τ(b)

Fig. 3.12

We use the additive notation because of its convenience in dealing with
differences (b− c is a good abbreviation of b+ (−c)). Our convention that
b + a means first a then b [Fig. 3.12] is related to the convention that the
composition gf of functions means first apply f, then apply g.
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The reader should be warned that addition of paths is not commutative:
if b + a is defined, then a+ b need not be defined. And even if both b + a

and a+ b are defined, they are in general unequal.

Definition A topological space X is path-connected if for any x,y in X, there
is a path in X joining x to y.

EXAMPLE

1. We recall that a subset A of a normed vector space V is convex if, for any
x,y in A, the line segment

[x,y] = {(1− t)x+ ty : 0 6 t 6 1}

is contained in A. A convex set A is path-connected, since if x,y ∈ A then
t 7→ (1− t)x+ ty is a path in A from x to y of length 1. Examples of convex
sets are B(x, r), E(x, r). For example, if y, z ∈ B(x, r) and 0 6 t 6 1, then

‖(1− t)y+ tz− x‖ 6 ‖(1− t)(y− x)‖+ ‖t(z− x)‖
< (1− t)r+ tr = r

whence (1− t)y+ tz ∈ B(x, r). Again, any interval of R is convex.

Other examples of path-connected sets may be constructed from the
following results.

3.4.1 Let f : X→ Y be continuous and surjective. If X is path-connected, then
so also is Y.

Proof Let y,y ′ ∈ Y; then there are points x, x ′ in X such that f(x) = y,
f(x ′) = y ′. Since X is path-connected, there is a path a joining x to x ′.
Then fa joins y to y ′. 2

3.4.1 (Corollary 1) Let X be homeomorphic to Y. Then X is path-connected if
and only if Y is path-connected.

3.4.2 Let (Aλ)λ∈Λ be a family of path-connected subspaces of X such that⋂
λ∈ΛAλ is non-empty. Then A =

⋃
λ∈ΛAλ is path-connected.

Proof Let x,y ∈ A, z ∈
⋂

λ∈ΛAλ, and suppose x ∈ Aλ, y ∈ Aµ. Since
Aλ is path-connected, there is a path a joining x to z. Since Aµ is path-
connected, there is a path b joining z to y. Then b + a is a path joining x
to y. 2

3.4.3 If X, Y are path-connected, then X× Y is path-connected.
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Proof Let (x,y), (x ′,y ′) ∈ X× Y. Let a be a path in X joining x to x ′, b be
a path of Y joining y to y ′. Then t 7→ (a(t),y) joins (x,y) to (x ′,y), and
t 7→ (x ′,b(t)) joins (x ′,y) to (x ′,y ′). The sum of these paths joins (x,y) to
(x ′,y ′). 2

We can use 3.4.2 to define path-components of X: if x ∈ X, then the
path-component of x is the union of all path-connected subsets P of X such
that P contains x. This union will be a path-connected by 3.4.2, and will
contain x. Hence it is the largest path-connected subset of X containing x.

A path-component need not be closed. To show this, we consider a little
the relationship between the two kinds of connectedness.

3.4.4 If X is path-connected, then X is connected.

Proof Let x,y ∈ X, and let a be a path joining x to y. Then Ima is by 3.2.2
a connected set containing x and y. Hence x and y belong to the same
component of X. Thus X has only one component, and must be connected.

2

EXAMPLE

2. Let Y = X ∪ J be the connected space of Example 2, p. 68 and Example
6, p. 66. Then Y is not path-connected.

Proof Let g : Y → {0, 1} be the function which sends points of J to 0 and
points of X to 1. Of course, g is not continuous, but we prove that for any
path f : [0, r]→ Y, the composite gf is continuous.

Let x ∈ [0, r]. If fx ∈ X, then fx has a neighbourhood N which does
not meet J; hence there is a neighbourhood M of x such that f[M] ⊂ N,
whence gf[M] = {1}; continuity of gf at x follows easily.

On the other hand, suppose fx ∈ J. As stated on p. 67, there is a
neighbourhood (in Y) of fx such that the component of fx in N is N ∩ J.
Therefore, there is a connected neighbourhood M of x such that f[M] ⊆
N ∩ J. Hence, gf[M] = {0}, and continuity of gf at x follows easily.

We have now proved that gf is continuous. Since [0, r] is connected it
follows that gf is constant. So Im f is contained either in X or in J, and Y is
not path-connected. 2

The philosophy of local path-connectedness is different from that of
local connectedness. The definition of the former concept that first suggests
itself is that a space X is locally path-connected if each point x in X has a
base of path-connected neighbourhoods. However, because of extensions
of this property to higher-dimensional kinds of connectedness, we take a
different definition which, it turns out, is equivalent to the above.
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Definition A space X is locally path-connected if, for each point x in X, any
neighbourhood of U of x contains a neighbourhood V of x such that any
two points of V can be joined by a path in U.

3.4.5 A space X is locally path-connected ⇔ each point of X has a base of

open path-connected neighbourhoods.

Proof The implication ⇐ is trivial, and so we prove the implication ⇒.
Let x ∈ X and let U be an open neighbourhood of x. Let U′ be the path-
component of U containing x.

Let y ∈ U′. Then U is a neighbourhood of y, and so U contains a
neighbourhood V of y such that any two points of V can be joined by a path
inU. This implies that V is contained inU′. HenceU′ is a neighbourhood of
y. Therefore (since x ∈ U′) U′ is an open, path-connected neighbourhood
of x. 2

EXERCISES

1. In the following, X is a subspace of R2 and x0, x1 are points of X. Write down, if

possible, explicit paths in X joining x0 to x1.

(i) X = {(x,y) ∈ R2 : |x| > 1 or |y| > 1}, x0 = (−2, 0), x1 = (2, 0).

(ii) X = {(x,y) ∈ R2 : x+ y 6= 1}, x0 = (4,−5), x1 = (−6, 8).

(iii) X = {(x,y) ∈ R2 : [x] = [y]}, x0 = (− 1
2
,−1), x1 = (1, 3

2
).

(iv) X = {(x,y) ∈ R2 : [x] + [y] = 1}, x0 = ( 3
2
, 0), x1 = (0, 3

2
).

2. Let V be a normed vector space over R. A ‘bent line’ in V is the union of a finite

number of line segments [ui,ui+1], i = 1, . . . ,n − 1, and such a bent line is said to

join u1 to un. A subset A of V of ‘polygonally connected’ if, for any two points u, v

of A, there is a bent line joining u to v and lying wholly in A.

Prove that any open, connected subset of V is polygonally connected. Give

examples of subsets of R2 which are path-connected but not polygonally connected.

3. Let X = {a,b, c} with the topology whose open sets are ∅, {c}, {a, c}, {b, c},X.

Prove that X is path-connected.

4. Prove that X is locally path-connected if and only if the path-components of each

open set of X are open. Give an example of a space which is path-connected but not

locally path-connected.

5. Prove that two points x,y in X lie in the same path-component if and only if they

can be joined by a path of length 1.

6. Let V be a normed vector space over R of dimension > 1. Prove that S(V) is

path-connected.

7. Prove that if X is a countable subset of Rn (n > 1), then Rn\X is path-connected.

8. Let X1,X2 be subsets of X such that X = IntX1 ∪ IntX2. Prove that, if X is

path-connected, then each path-component of X1 meets X2.
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3.5 Compactness

The reader will certainly be aware of the importance for mathematics of
the distinction between finite and infinite sets. As examples, consider the
statements (a) the sum of elements of a set of A of real numbers is well-
defined, (b) a setA of real numbers has a least element, (c) the intersection
of the elements of a set A of open sets is open. Each of these is true if
A is finite but may be false if A is infinite. This wide range of techniques
applicable to finite sets but not infinite ones is the reason for the importance
of the notion of a compact space in topology.

In order to define compactness we need some preliminary definitions.

Let X be a topological space. A cover of X is a set A of sets such that the
union of the elements of A contains X. A subcover of A is a subset B of A
such that B covers X. A cover A of X is open if each set of A is open in X.

EXAMPLES

1. Let k ∈ R>0, and let A be the set of intervals ]x−k, x+k[ for each x ∈ R.
Then A is an open cover of R. Similarly, in any metric space X, the set of
all open balls B(x, k), x ∈ X, is an open cover of X.
2. Let X be a metric space and let x ∈ X. The set of open balls B(x,n) for
all positive n in N is an open cover of X.
3. The set of intervals ]1/n, 1] for n a positive integer, is an open cover of
]0, 1].
4. If A is an open cover of Y, and f : X → Y is continuous, then the set of
f−1[A] for all A in A is an open cover of X.
5. For any topological space X, the set {X} is an open cover of X as is {X,∅}.

Definition A topological space X is compact if every open cover of X has a
finite subcover.

This means of course, that to prove a space X is compact we have to
start with any open cover A of X and construct a finite subcover of A. To
prove X non-compact, we have to produce an open cover A of X without
finite subcover.

EXAMPLES

6. An infinite discrete space X is not compact, since the set of singletons
{x} for each x in X is an open cover of X without finite subcover.
7. Any finite space X is compact, since any open cover of X is a finite set.
8. The interval ]0, 1] is not compact—the open cover of Example 3 has no
finite subcover.
9. If X is a metric space with unbounded metric, then X is not compact. To
prove this, let x ∈ X and consider the open cover of Example 2. This cover
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has a finite subcover if and only if X = B(x,n) for some n, in which case X
has bounded metric.
10. The previous example has a converse, namely, that if X is a non-
compact metric space, then X admits an equivalent unbounded metric. The
proof of this theorem is not as simple as that of its converse.

Compactness is a topological invariant. In fact, we have the stronger
result.

3.5.1 Let X be compact and f : X → Y continuous and surjective. Then Y is

compact.

Proof Let A be an open cover of Y. Since f is continuous the set B of sets
f−1[A] for all A in A is an open cover of X. Since X is compact, B has
a finite subcover C. The set of A in A for which f−1[A] is in C is a finite
subcover of A. 2

3.5.2 Remark

Let C be a subspace of the topological space X. Then we have covers of C
by sets open in X, and by sets open in C. We distinguish these by calling
them open covers of the set C, and of the space C, respectively. An open
cover of the space C clearly consists of sets A ∩ C for A in an open cover
of the set C. So the statements (a) every open cover of the space C has a
finite subcover, and (b) every open cover of the set C has finite subcover,
are equivalent, and either may be used as a criterion for compactness of C.

3.5.3 Remark

Let A be a cover of the space X. A refinement of A is a cover B of X such
that each set of B is contained in some set of A. Suppose B is an open
cover which refines an open cover A. Then, if B has a finite subcover, so
also does A. Thus, when trying to construct finite subcovers of an open
cover A we may at will replace A by an open refinement.

The next theorem gives the simplest non-trivial example of a compact
space. (The proof given here is due to R. M. F. Moss and G. Roberts.)

3.5.4 The unit interval I is compact.

Proof Let A be an open cover of I. For each x in I we choose an interval
Ux, open in I, such that Ux contains x and is contained in some set of A.
The set B of these intervals Ux is an open cover of I which refines A. By
Remark 3.5.3, we may assume from that start that each element of A is an
interval.
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Let f : I→ {0, 1} be the function defined by fx = 0 if [0, x] can be covered
by a finite number of sets of A, and fx = 1 otherwise. We shall prove that
f is constant on each set of A.

Let U ∈ A, let x ∈ U and suppose fx = 0. Then [0, x] is covered by a
finite subset B of A and so for any y in U, since U is an interval [0,y] is
covered by the finite set B ∪ {U}. Thus we have shown, as required, that f
is 0 either on all or none of U.

It follows immediately that f is continuous; therefore, f is constant
(since I is connected) and the image of f is {0} (since f0 = 0). Hence
[0, 1] can be covered by a finite number of sets of A. 2

It is instructive to examine the failure of similar attempts to prove that
the intervals ]0, 1] and [0, 1[ are compact (they are non-compact by Example
8 and a similar example for [0, 1[). The proof for ]0, 1] breaks down because
we cannot prove that the unique value of f is 0. The proof for [0, 1[ breaks
down because f1 is not defined.

3.5.5 A closed subset of a compact space is compact.

Proof Let C be a closed subset of the compact space X and, applying 3.5.2,
let A be an open cover of the set C. Since X \ C is open,

A′ = A ∪ {X \ C}

is an open cover of X. By compactness of X, A′ has a finite subcover B say.

Here B is an open cover of X, and so an open cover of the set C. If
B does not contain X \ C, then B is a finite subcover of A. In any case,
B \ {X \ C} is certainly a finite subcover of A. 2

The next theorem has a slightly complicated formulation—this is due to
the fact that we wish to include in one theorem (and one proof) a number
of highly important special cases.

3.5.6 Let B,C be compact subsets of X, Y respectively, and let W be a cover

of B × C by sets open in X × Y. Then B,C have open neighbourhoods U,V
respectively such that U× V is covered by a finite number of sets of W.

Proof The proof is carried out in two steps, first when B has a single point
b, and next for B arbitrary.

Step 1− B = {b}
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c
Nc Wc

{b}× C

Mc

b X

Fig. 3.13

For each c in C there are open neighbourhoods of Mc of b (in X), Nc

of c (in Y) such that Mc × Nc is contained in some set Wc of W. The set
{Nc : c ∈ C} is an open cover of the set C which, by compactness, has a
finite subcover {Nf : f ∈ F}. Let

U =
⋂

f∈F

Mf, V =
⋃

f∈F

Nf.

Since F is finite, U is an open neighbourhood of b. Clearly,

{b}× C ⊆ U× V ⊆
⋃

f∈F

Wf.

Step 2− B arbitrary

By step 1, for each b in B there are open neighbourhoods Ub of b (in
X), Vb of C (in Y), such that Ub × Vb is contained in a finite union, say⋃
{Wf : f ∈ Fb}, of sets of W. The set {Ub : b ∈ B} is an open cover of B

which, by compactness, has a finite subcover {Ug : g ∈ G}. Let

U =
⋃

g∈G

Ug, V =
⋂

g∈G

Vg.

Then U,V are open neighbourhoods of B,C respectively and U× V is con-
tained in the union of the finite number of sets Wf, f ∈ Fg,g ∈ G. 2

3.5.6 (Corollary 1) The product of compact spaces is compact.

Proof This follows from 3.5.6 by taking B = X, C = Y (and so U = X,
V = Y). 2

3.5.6 (Corollary 2) Let B,C be compact subsets of X, Y respectively, and letW
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be an open subset of X×Y containing B×C. Then B,C have open neighbour-
hoods U,V respectively such that U× V ⊆W.

Proof This is the case of 3.5.6 when W = {W}. 2

3.5.6 (Corollary 3) If B,C are disjoint compact subsets of the Hausdorff space

X, then B,C have disjoint open neighbourhoods.

Proof In 3.5.6 (Corollary 2), let X = Y and W = (X× X) \∆[X] where ∆ is
the diagonal of X × X;W is open since X is Hausdorff. Since B and C are
disjoint, B × C is contained in W. By 3.5.6 (Corollary 2), B,C have open
neighbourhoods U,V such that U× V ⊆W. Hence U ∩ V = ∅. 2

3.5.6 (Corollary 4) A compact subset of a Hausdorff space is closed.

Proof Let C be a compact subset of the Hausdorff space X, and let x ∈ X\C.
By 3.5.6 (Corollary 3), x and C have disjoint neighbourhoods. Hence X \C
is open. 2

As an application of these rules we prove

3.5.7 A subset of Euclidean n-space Rn is compact if and only if it is closed
and bounded.

LetA be a closed, bounded subset of Rn. Let Jr be the subspace of Rn of
points (x1, . . . , xn) such that |xi| 6 r—thus Jr is the product of the interval
[−r, r] with itself n times [cf. Exercise 8 of Section 2.4]. The interval [−r, r]
is homeomorphic to [0, 1] (if r > 0) and so is compact. By 3.5.6 (Corollary
1), Jr is compact. Since A is bounded, it is contained in Jr for some r. Thus
A is a closed subset of a compact space and so is compact.

The converse follows from Example 9 and 3.5.6 (Corollary 4). 2

EXAMPLES

11. The Cantor set K [The Example of Section 1.3] is a closed, bounded
subset of R and so is compact.
12. The subsets of Rn (with the Euclidean norm)

Sn−1 = {x ∈ Rn : ‖x‖ = 1},

En = {x ∈ Rn : ‖x‖ 6 1}

are both closed, bounded subsets of Rn and so are compact.
13. If X is indiscrete, then any subset A of X is compact, but A will be
closed in X only if A = ∅ or A = X.
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14. Let W be the subspace of R2 of points (x,y) such that y > |x|. Let
B = {0}, C = ]0, 1]. Then W is an open set of R2 containing B×C but, if U
is a neighbourhood of 0, then W does not contain even U× C.

A map f : X → Y of spaces is called closed if f[C] is closed in Y for each
closed set C of X. For example, a continuous bijection f : X→ Y is closed if
and only if f is a homeomorphism.

3.5.8 Any map from a compact space to a Hausdorff space is closed.

Proof Let f : X → Y be a map where X is compact and Y is Hausdorff. Let
C be closed in X. Then C is compact [3.5.5] whence f[C] is compact [3.5.1]
and so f[C] is closed [3.5.6 (Corollary 4)]. 2

3.5.8 (Corollary 1) A continuous bijection from a compact space to a Haus-

dorff space is a homeomorphism.

Proof If f is a closed bijection, then f−1 is continuous. 2

The following proposition is required later; the simple proof is left as an
exercise.

3.5.9 A topological space which is a finite union of compact spaces is itself

compact.

There is a characterisation of compactness by means of closed sets which
is of great importance in some contexts but not, as it turns out, in this book.
For this reason it has been left as an exercise [Exercise 10].

There is a generalisation of 3.5.6 which uses the product topology de-
fined in section 5.7:

3.5.10 (Tychonoff ’s theorem) The topological product of any family of com-

pact spaces is compact.

This theorem is of great importance in functional analysis and in a fur-
ther study of some of the topics in this book. However the theorem is not
essential to our present purposes, and so we refer the reader to [Kel55] or
[Dug68] for a proof.

EXERCISES

1. Give an example of a space with two points in which not all compact sets are

closed.

2. Prove that R with the Zariski topology is compact.

3. Prove that a discrete space is compact if and only if it is finite.
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4. Use the result of sections 3.2 and 3.5 to prove that if a,b ∈ R (a < b) and

f : [a,b]→ R is continuous, then Im f is a closed, bounded interval.

5. Let X be a compact topological space, and f : X → R a continuous function.

Prove that there are elements a,b in X such that f(a) = inf(Im F), f(b) = sup(Im f).

Deduce that if f(x) > 0 for all x in X, then there is a positive real number r such

that f(x) > r for all x in X.

6. Let X = R × Y where Y is an indiscrete space with two elements a,b. Prove

that in X the sets A = [0, 1[×{a} ∪ [1, 2]× {b}, B = [0, 1] × {a}∪ ]1, 2] × {b} are both

compact, but A ∩ B is non-compact.

7. Let (Ci)i∈I be a family of closed, compact subsets of X. Prove that ∩i∈ICi is

compact.

8. Let A,B be non-empty subsets of the metric space X. Let

dist(A,B) = inf{(d(a,b) : a ∈ A,b ∈ B}.

Prove that ifA,B are disjoint and closed, andA is compact, then there is an element

a of A such that

dist(A,B) = dist(a,B) > 0.

9. Prove that I2 with the television topology is compact, connected and Hausdorff.

10. Prove that the following conditions on a topological space X are equivalent. (i)

X is compact. (ii) If (Ci)i∈I is a family of closed subsets of X such that ∩i∈ICi = ∅,

then ∩a∈ACa = ∅ for some finite subset A of I. (iii) If (Ci)i∈I is a family of closed

subsets of X such that ∩a∈ACa 6= ∅ for all finite subsets A of I, then ∩i∈ICi 6= ∅.

11. Let F : Rn → V be a linear isomorphism, where Rn is Euclidean space and

V is a normed vector space over R. Prove that the function h : Sn−1 → R which

sends x 7→ ‖f(x)‖ is continuous, and that there is a positive real number δ such that

h(x) > δ for all x in Sn−1. Show that for all y in V, |f−1(y)| 6 δ−1‖y‖. Finally, prove

that f is a homeomorphism.

12. Prove that n-dimensional complex space Cn is linearly homeomorphic to R2n.

Prove that, if V is a finite dimensional normed vector space over R or C, then all

norms on V are equivalent. [This theorem is proved in [Die60] by completeness

methods. An advantage of such methods is that they also prove that any finite

dimensional subspace of a normed vector space V is closed in V.]

13. Let Xn be the subset {n−1}× [−n,n] of R2 and let Y = R2 \∪n>1Xn. Prove that

Y is connected but not path-connected.

*14. Let ϕ : X × C → R be a map where C is compact. Prove that the function

x 7→ supc∈C ϕ(x, c) is a continuous function X→ R.

3.6 Further properties of compactness

The basic results on compactness are given in the last section. The more
technical results of this section will be used in later chapters, but the study
of these results can be omitted till they are needed.
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Locally compact spaces, normal spaces

Definition A topological space X is locally compact if each x in X has a base
of compact neighbourhoods.

EXAMPLES

1. Euclidean n-space Rn is locally compact since, if x ∈ Rn, then the closed
balls E(x, r) for r > 0 are compact and form a base for the neighbourhoods
of x.
2. The space Q of rational numbers is not locally compact since a neigh-
bourhood of 0 in Q cannot be closed in R and so cannot be compact.

In the literature, it is common to define a space X to be locally compact
if each point of X has a compact neighbourhood. We have not adopted this
definition for two reasons:
(i) It would be contrary to the general spirit of local properties. If P is a
property of topological spaces, it is usual to say X is locally P if each point
of X has a base of neighbourhoods with property P.
(ii) The property of locally compact spaces needed later is exactly the one
we have taken for a definition.

For Hausdorff spaces the two definitions are equivalent. This is an easy
consequence of the following result.

3.6.1 A compact Hausdorff space is locally compact.

Proof Let X be compact and Hausdorff, let x ∈ X and let W be an open
neighbourhood of x. We must find a compact neighbourhood of x contained
in W.

Let C = X\W. Then C is closed in X and so is compact. By 3.5.6 (Corol-
lary 3), x and C have disjoint open neighbourhoods M,N say. The closure
M of M is contained in X \ N which is itself contained in W. Also M is
compact (since it is closed in X) and is a neighbourhood of x. 2

Definition A topological space X is normal if disjoint closed sets of X have
disjoint neighbourhoods.

It is immediate from 3.5.5 and 3.5.6 (Corollary 3) that any compact,
Hausdorff space is normal. We showed in section 2.9 that any metric space
is normal.

Normal spaces have another property important in many parts of topol-
ogy, for example in metrisation theorems and in the theory of ANRs. The
following theorem will be found in many texts.

3.6.2 (Tietze extension theorem) A space X is normal if and only if for any

closed subspace C of X any map f : C→ I extends over X (i.e., is the restriction

of a map X→ I).
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The proof that the extension condition implies normality is easy since
let C = C1 ∪ C2 where C1,C2 are disjoint, non-empty closed subsets of X
and let f : C → I be 0 on C1 and 1 on C2. Let g : X→ I be an extension of
f over X. Then, for each r in ]0, 1[, the sets

g−1[0, r[, g−1]r, 1]

are disjoint open sets containing C1,C2 respectively; in fact for various r
these sets form a kind of ‘continuous family’ of open sets between C1 and
C2. One word of warning—it is not always possible to find g such that
C1 = g−1[0], C2 = g−1[1]; conditions for this will be mentioned in the
Exercises.

Proper maps

Definition Let f : X → Y be a map of topological spaces. Then f is proper

if, for all spaces Z,
f× 1 : X× Z→ Y × Z

is a closed map.

By taking Z to consist of a single point, we see that a proper map is
always closed. Similarly, to say that a constant map X → {y} is proper is
equivalent to saying that for all Z the projection X × Z → Z is closed. The
result on proper maps that we shall need (in section 5.8) is the following
and its corollary.

3.6.3 If f : X → Y is a closed map such that f−1[y] is compact for each y in

Y, then f is proper.

Proof Let h = f×1 : X×Z→ Y×Z, let C be a closed subset of X×Z, and let
D = h[C]—we must prove thatD is closed, i.e., that the setD′ = (Y×Z)\D
is open.

Let (y, z) ∈ D′. Since the complement of f[X] × Z is open, we may
assume y ∈ f[X]. Let C′ = (X×Z)\C, so that C′ is open. It is easily verified
that

f−1[y]× {z} ⊆ C′

and so, by our assumptions and 3.5.6 (Corollary 2), there are open sets
U,V such that

f−1[y]× {z} ⊆ U× V ⊆ C′.

Let U′ = X \ U, V ′ = Z \ V . Then C ⊆ (U′ × Z) ∪ (X× V ′) and so

D = h[C] ⊆ (f[U′]× Z) ∪ (f[X]× V ′) = Q say.
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Since f is a closed map, Q is a closed set. Therefore,Q′ = (Y ×Z) \Q is an
open set contained in D′. But y /∈ f[U′], nor does z ∈ V ′, so it follows that
(y, z) ∈ Q′. Hence D′ is open. 2

The converse of 3.6.3 is true [see the Exercises], but will not be needed
here.

3.6.3 (Corollary 1) Any map from a compact space to a Hausdorff space is

proper.

Proof Let f : X→ Y be a map where X is compact and Y is Hausdorff. Then
f is closed by 3.5.8. If y ∈ Y, then {y} is closed in Y; hence f−1[y] is closed
in X and so f−1[y] is compact. 2

Lebesgue covering lemma

Let X be a metric space and A an open cover of X. We consider the following
question: is there a real number r > 0 such that the open cover Br =

{B(x, r) : x ∈ X} refines A? Clearly the set of all r for which this is so is
an interval L of R, and L may be empty. If L is non-empty, then the real
number l = sup L is called the Lebesgue number of the cover, A (we allow
the rather boring case l = ∞, which, intuitively, means A has lots of large
sets).

EXAMPLES

3. If A = Br then the Lebesgue number of A is r.
4. Let X = R, and let A consist of the open intervals ]n,n + 2[ for each
n ∈ Z. Then the Lebesgue number of A is 1

2
.

5. Let X = ]0, 1[ and let A consist of the open intervals ]n−1, 1[ for all
positive integral n. Then A has no Lebesgue number.
6. Let X = [0, 2]\ {1}, and let A consist of the intervals [0, 1[ and ]1, 2]. Then
A has no Lebesgue number.

3.6.4 (Lebesgue covering lemma) If X is a compact metric space, then any

open cover of X has a Lebesgue number.

Proof Let A be an open cover of X. Since X is compact, A has a finite sub-
cover and any refinement of this is a refinement of A. So we may assume
A finite.

For each A in A and x in X let

fA(x) = dist(x,X \A),

f(x) = max{fA(x) : A ∈ A}.

Each fA is continuous and hence f is continuous.
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If x ∈ X then x ∈ A for some A in A and for that A, fA(x) > 0 (since
X \A is closed). Hence f(x) > 0 for all x in X.

The set f[X] is a compact and hence closed subset of R. Therefore,
r = inf f[X] belongs to f[X], and so r > 0.

If x ∈ X then f(x) > r whence fA(x) > r for some A in A and so, by
definition of fA, B(x, r) ⊆ A. This proves that the cover Br refines A. 2

We now illustrate the main type of application of 3.6.4. Let a : [0, r] →
Z be a path in a topological space Z. A subdivision of a is a sequence
a1, . . . ,an (for some n) of paths in Z such that

a = an + · · ·+ a1. (*)

Such a subdivision is usually denoted by the expression (*).

3.6.4 (Corollary 1) Let U be an open cover of Z and a : [0, r]→ Z a path in Z.

Then there is a subdivision a = an + · · ·+ a1 such that for each i = 1, . . . ,n,

Imai is contained in some set of U.

Proof Let δ be the Lebesgue number of the covering {a−1[U] : U ∈ U} of
the compact metric space [0, r]. Let n be an integer such that 0 < r/n < 1

2
δ,

and let ai+1 be the path t 7→ a(t + ir/n), i = 0, . . . ,n − 1 of length r/n.
Then clearly a = an + · · · + a1. Further, for each i = 0, . . . ,n − 1, the
interval [ir/n, (i+ 1)r/n] is contained in some set a−1[U], U ∈ U; hence

Imai = a[ir/n, (i+ 1)r/n] ⊆ U.

2

Compactifications

If K is a compact space, then removing points from K is liable to produce a
non-compact space. The idea of compactification is the reverse procedure—
given a space X, can points be added to X to produce a compact space?
There are a variety of such compactifications. They will not be used else-
where in this book, but their importance is such that a brief survey should
be given of the ramifications.

The simplest compactification is the Alexandroff one-point compactifica-

tion X+ of X. Here X+ = X ∪ {ω}, where ω is a point not in X, with the
topology in which X is a subspace and the neighbourhoods of ω are the
complements in X+ of closed compact subsets of X. A precise definition
is given in Exercise 6, and the principal properties are summarised in Ex-
ercises 6–17. From these properties it can be shown that the one-point
compactification of Rn is homeomorphic to the n-sphere Sn.
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Another important compactification, but for which it is difficult to find
a textbook exposition, is the Freudenthal compactification X∧. The intuitive
idea is that the open interval ]0, 1[ should be compactified by adding two
ends, for example by adding 0 and 1 to give the closed interval [0, 1]. The
plane should be compactified by adding one end, as in the Alexandroff com-
pactification. On the other hand, the following infinitely branched space is
compactified with an infinite number of ends.

Fig. 3.14

The definition of the ends of a space involves the number of components
remaining when compact subsets are removed. The Freudenthal compacti-
fication X∧ is defined for a Hausdorff space X which has a base of open sets
(chapter 5) with compact boundary. Then X∧ \ X is a compact space con-
taining X as a subspace and such that X∧\X is zero-dimensional. For a good
account in English, see [Hou74]. The number of ends of a covering space
of a cell complex (see chapter 10) has important relations to group theory
(see the articles [Hou74], [SW79] and the introductory article [Sch79]).
The most striking recent result in the area is [Dun85].

A very large compactification of a space X is the Stone-Čech compact-
ification βX. There is a map i : X → βX with the property that (i) βX is
compact and Hausdorff, (ii) if g : X → Y is any map to a compact Haus-
dorff space Y, then there is a unique map g′ : βX→ Y such that g′i = g. It
is this universal property which gives this compactification its importance,
particularly in analysis. The map i : X→ βX is an embedding if and only if
X is completely regular, that is, X is T0 and for each point x of X and closed
subset A of X not containing x, there is a continuous function f : X→ [0, 1]

such that f(x) = 0 and f[A] = {1}. For more information, see [Wal74]
and [Joh82]. The reader should be warned that β applied to even a sim-
ple space such as the positive integers N yields a horrendously complicated
space which has been the subject of many papers.
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For information on other compactifications, follow up the references in
[IK87].

EXERCISES

1. Prove that the product of two locally compact spaces is locally compact.

2. Prove that a closed subspace of a locally compact space is locally compact, but

that an arbitrary subspace of a locally compact space need not be locally compact.

3. Let A be a compact subspace of a locally compact space, and let W be a neigh-

bourhood of A. Prove that there is a compact neighbourhood M of A such that

M ⊆W.

4. A space X is a k-space if a subset A of X is closed in X if and only if A ∩ C is

closed in C for every compact subset C of X. Prove that a locally compact space if

a k-space, as is any sequential space [Exercise 5 of Section 2.10]. Prove that the

space X of Exercise 4 of Section 2.9 is not a k-space.

5. Show that the following statement is true if f is open but not in general: if X is

locally compact and f : X→ Y is a continuous surjection, then Y is locally compact.

*6. The Alexandroff 1-point compactification. Let X be a topological space, letω be a

point not in X and let X∗ = X∪ {ω}. Define a neighbourhood topology on X∗ by (i) if

x ∈ X andM is a neighbourhood in X of x, thenM andM∪{ω} are neighbourhoods

in X∗ of x; (ii) if A is a closed compact subset of X, then X∗ \A is a neighbourhood

of ω. Prove (a) X∗ is compact and X is a subspace of X∗, (b) X is locally compact

and Hausdorff ⇔ X∗ is Hausdorff, (c) if X∗ is Hausdorff and i1 : X → X∗
1 is any

homeomorphism into a compact Hausdorff space X∗
1 such that the image of i1 is

the complement of a single point of X∗
1, then there is a unique homeomorphism

g : X∗ → X∗
1 such that gi = i1, where i : X→ X∗ is the inclusion. Prove also that, if

X is compact, then X∗ = X ⊔ {ω}. [The point ω is called the point at infinity of X∗.]

7. Given an open cover U of X, prove that the following prescription defines a topo-

logical space X′. (i) X′ = X∪ {ω} whereω is a point not belonging to X, (ii) if x ∈ X
then any subsetN of X′ such that x ∈ N is a neighbourhood of x, (iii) a subsetM of

X′ is a neighbourhood of ω if and only if ω ∈M and X′ \M is contained in a finite

union of sets of U. Prove that with this topology on X′, the set {ω} is open in X′ if

and only if U has a finite subcover.

8. Let X′ be the space defined by an open cover of X as in the previous exercise.

Prove that the projection X × X′ → X′ is closed if and only if {ω} is open in X′.

Deduce that if a constant map X→ {y} is proper, then X is compact.

9. Let f : X→ Y be continuous and injective. Then the following are equivalent: (a)

f is proper; (b) f is closed; (c) f is a homeomorphism onto a closed subspace of Y.

10. Let f : X → Y be continuous, let B ⊆ Y and let A = f−1[B]. Prove that, if f is

proper, then so also is f | A,B.

11. Prove that, if f : X→ Y is proper, then f is closed and f−1[y] is compact for each

y in Y.

12. Prove that if f : X→ X′, g : Y → Y′ are proper then so also if f× g. Deduce that

if f : X→ X′ is proper and X is Hausdorff, then Im f is Hausdorff.

13. Let f : X → Y, g : Y → Z be continuous. Prove that (a) if f,g are proper and

Im f is closed, then gf is proper; (b) if gf is proper and f is surjective, then g is
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proper; (c) if gf is proper and g is injective then f is proper; (d) if gf is proper and

Y is Hausdorff then f is proper. Deduce that (e) if f is proper, so also is f | A for any

closed subset A of X, (f) if X is Hausdorff and f : X→ Y, g : X→ Z are proper, then

(f,g) : X→ Y × Z is proper.

14. Prove that if f : X → Y is continuous, Im f is a Hausdorff k-space and f−1[K] is

compact for every compact subset K of Im f, then f is proper.

15. Let X,Y be locally compact, Hausdorff spaces and X∗,Y∗ their Alexandroff com-

pactifications. Let f : X→ Y be continuous and let f∗ : X∗ → Y∗ be the extension of

f which sends the point at infinity to the point at infinity. Prove that f is proper and

has closed image if and only if f∗ is continuous.

16. Prove the following (i) if C is closed in the normal space X then there is a map

f : X→ I such that C = f−1[0] if and only if C is a Gδ-set; (ii) if C1,C2 are disjoint,

closed Gδ-sets in the normal space X, then there is a map f : X → I such that

C1 = f−1[0], C2 = f−1[1]. [You should assume the Tietze extension theorem.]

17. A continuum is a compact, connected space. Read the proof of the following

theorem in [HY61] (Theorem 2.9): If a,b are two points of a compact Hausdorff

space X, and if X is not the union of two disjoint open sets one containing a and

the other containing b, then X contains a continuum containing a and b.

18. A subset Q of X is a quasicomponent of X if for any partition {X1,X2} of X,Q

is contained in X1 or in X2, and Q is maximal with respect to this property. Prove

that (i) the quasicomponents of X cover X, (ii) each quasicomponent of X is closed,

(iii) every component of X is contained in a quasicomponent, (iv) in a compact,

Hausdorff space the components and quasicomponents coincide.

NOTES

The first three chapters of [HY61] form excellent supplementary reading
to the topics we have discussed, particularly for the results on continua
(i.e., compact, connected spaces). Most other books on general topology
are biased more towards analysis. For more results on proper maps and, in
particular, for solutions of some of the exercises, see [Bou66]; however, the
proofs there use filters in an essential way. The Tietze extension theorem
has led to a large theory of retracts which is surveyed in [Hu65]. This
theorem is also used in the metrisation problem—the problem of finding
necessary and sufficient conditions of a topological character for a space to
be metrisable. An account of the solution of this is given in [Kel55]. In this
context, an important role is played by the paracompact spaces, although
the use of these spaces in topology is beginning to be taken over by the use
of partitions of unity, cf. [Mok64], [Dol63], [Eng68].

For a review of many properties of topological spaces, and for examples,
counterexamples, and tables of relationships, see [SS78].

The exercises on proper maps and the 1-point compactification cover
important material. I owe a number of these to W. F. Newns. For more
information and hints, see [Bou66], [Str76] and [Jam84]. The paper
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[Why42] suggests the excellent term compact map instead of proper map.
For the notion of compactifying a map, see [Why42], the references there,
[Her71], [Fir74], [Dyc72], [Dyc76], [Dyc84] and [Jam84]. Indeed, trac-
ing back the references in [Dyc84] will show the large amount of study
that has gone into the notion of proper or, equivalently, perfect, map. A
sequential version of proper maps is given in [Bro73].



Chapter 4

Identification spaces and

cell complexes

4.1 Introduction

In chapter 1, we considered briefly some examples of topological spaces
obtained by identifications. In this chapter, we shall discuss this process in
full generality. But first we shall consider some examples in order to clarify
the set-theoretic processes involved.

EXAMPLES

1. The interval [0, 2] can be thought of as obtained by joining two intervals
of length 1. The circle S1 is obtained from [0, 1] by identifying 0 and 1

[Fig. 4.1].

Fig. 4.1

2. From the square I2 = I × I we can obtain two spaces by identifying two
opposite sides according to the schemes shown in Fig. 4.2 (the figures have
used topological license in stretching and bending).

97
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(a) (b)

Fig. 4.2

The arrows on the sides indicate whether the sides should be stuck together
in the same or in opposite senses. In (a) the sides are stuck together in the
same sense and the result is the cylinder S1 × I. In (b), the sides are stuck
together in the opposite sense, and the result is the Möbius band.

3. By identifying two pairs of sides of I2 we can obtain the torus (or anchor

ring), which is simply S1 × S1 [cf. Exercise 9 of Section 2.7].

Fig. 4.3

4. If we try and identify the sides of I2 according to the scheme of Fig. 4.4
then, by making one identification, we obtain a cylinder but the final iden-
tification cannot be represented properly in three dimensions. We do in
fact obtain a space as we shall show in detail later; this space is called the
Klein bottle and is homeomorphic to the space constructed at the end of
chapter 1. There is a 3-dimensional model of the Klein bottle [Fig. 4.5],
but this model has ‘self-intersections’ which the ‘real’ Klein bottle does not
have.
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Fig. 4.4

Fig. 4.5

This last example illustrates a general principle, namely, that it may be
possible to describe a space Y as obtained by identifications from a simple
space X, and this description may be adequate to show us the properties of
Y even though Y cannot be visualised.

We have to formulate in general the notion of constructing a space Y by
identifications from a given space X. For the moment, let us forget about
the topologies on X and Y.

In X, we suppose, given a relation R, where the interpretation of aRb is
that a shall be identified with b. But if a is to be identified with b then b
must be identified with a; and if, further, b is to be identified with c then a
must also be identified with c. Also a is ‘identified’ with itself. This shows
that we must consider not only R but also the equivalence relation E gen-
erated by R [Appendix A.4], and that the totality of points of X identified
with a given point a of X are the points b such that bEa; the set of such b
is, of course, the equivalence class clsa.

The equivalence classes of E form a set of disjoint, non-empty, subsets
of X whose union is X. This set X/E of equivalence classes shall be the set
Y. There is a function f : X → Y which sends a 7→ clsa. Clearly, f is a
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surjection. So we have passed from the original relation R to a surjection
f : X→ Y, characterised by the universal property A.4.6 of the Appendix.

Conversely, suppose given a surjective f : X → Y, where Y is now any
set. Then the relation aEfb ⇔ f(a) = f(b) is an equivalence relation in X
whose equivalence classes are the sets f−1[y] for each y in Y. The function
f identifies all the elements of f−1[y] to the point y. This shows that the
notions of set with identifications and surjective function are closely related.

We shall need a generalisation of the above identifications. Suppose
there is given a family (Xα)α∈A of sets and for each α,β inA a relation Rαβ

from Xα to Xβ; that is Rαβ is a subset of Xα×Xβ, and aRαβbmeans a ∈ Xα,
and (a,b) ∈ Rαβ. The following result shows that there is a set Y obtained
from the family (Xα) by identifying a with b whenever a ∈ Xα, b ∈ Xβ,
and aRαβb. The set Y is characterised, as in the case of identifications in a
single set, by a ϕ-universal property.

4.1.1 There is a set Y and a family (fα : Xα → Y)α∈A of functions such that

(a) for all a,b, aRαβb⇒ fαa = fβb,

(b) if (gα : Xα → Z)α∈A is a family such that for all a,b

aRαβb⇒ gαa = gβb,

then there is a unique function g∗ : Y → Z such that

g∗fα = gα for all α in A.

Proof Let X =
⊔

α∈A

Xα be the sum of the family, and let iα : Xα → X be the

injections. In X we define a relation R by

iα(a)Riβ(b)⇔ aRαβb.

Let E be the equivalence relation generated by R, let Y = X/E and let
f : X→ Y be the projection. Let fα = fiα : Xα → Y.

The functions gα define a function g : X → Z such that giα = gα, α in
A. By (b), for any a,b in X, aRb⇒ ga = gb. So g defines g∗ : Y → Z such
that g∗f = g, whence g∗fα = g∗fiα = giα = gα, α in A.

If g ′ : Y → Z satisfies g ′fα = gα, then g ′fiα = giα. Hence g ′f = g and
so g ′ = g∗. 2

These considerations may, initially, seem abstract. However we shall see
that the main point of spaces with identifications is that they give a means
of constructing functions, and this is both a necessary and a sufficient con-
dition for their utility. Put in another way, we have moved from a local
consideration—what happens in a given space—to a global consideration—
the relation of this space to other spaces. This widening of the point of view
has proved very fruitful in mathematics.
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4.2 Final topologies, identification topologies

We have now treated the set theoretic part of the notion of identification
space, and shown that it can be subsumed under the general notion of a
family (Xα)α∈A of sets and a family

(fα : Xα → Y)α∈A

of functions. In specific situations, (fα) is often the universal family con-
structed in 4.1.1, but for the moment this fact is irrelevant.

We now suppose that each Xα is a topological space and we construct
from (fα) a reasonable topology on Y. The problem centres of course on
the word reasonable. In the case considered in 4.1.1, the specific virtue of Y
was that we could construct functions from Y. So the topology on Y which
we choose is that which enables us to decide whether or not functions from
Y are continuous.

Definition A topology F on Y is said to be final with respect to the functions
(fα) if, for any topological space Z and function g : YF → Z, we have g is
continuous if and only if gfα : Xα → Z is continuous for each α in A.

EXAMPLE

1. Suppose, for example, that we are in the situation of 4.1.1 and (fα :

Xα → Y) is a family satisfying the ϕ-universal property considered there.
Let each Xα be a topological space and let Y have the final topology. Then
we have: if (gα : Xα → Z)α∈A is any family of continuous functions such

that

aRαβb⇒ gαa = gβb

then there is a unique continuous function g∗ : Y → Z such that g∗fα =

gα,α ∈ A. In fact, the universal property ensures that there exists g∗ : Y →
Z, such that g∗fα = gα, α ∈ A. The continuity of g∗ follows from the fact
that Y has the final topology.

We shall show that a final topology always exists, but we first point out
some simple consequences.

4.2.1 If F is the final topology on Y with respect to (fα) then

(a) each fα : Xα → YF is continuous,

(b) if T is any topology on Y such that each fα : Xα → YT is continuous, then

F is finer than T.

Proof (a) The identity 1 : YF → YF is continuous and hence 1fα : Xα →
Y is continuous for each α in A. Since 1fα = fα, it follows that fα is
continuous.
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(b) Let g : YF → YT be the identity function. Then gfα = fα : Xα → YT is
continuous for each α in A. Hence g is continuous, and so F is finer than
T. 2

We now show that the final topology exists. We suppose given (Xα) and
(fα) as before.

4.2.2 The final topologyF on Y with respect to (fα) exists and is characterised

by either of the following conditions:

(a) If U ⊆ Y, then U is open in F if and only if f−1
α [U] is open in Xα for each

α in A.

(b) The same as (a), but with ‘open’ replaced by ‘closed’.

Proof First we show that (a) does define a topology. Clearly ∅, Y are open
in F. If U,V are open in F, then

f−1
α [U ∩ V ] = f−1

α [U] ∩ f−1
α [V ]

which is open in Xα, and so U ∩ V belongs to F. Similarly, the formula
f−1
α [
⋃
Ui] =

⋃
f−1
α [Ui], shows that the union of any family of sets open in

F is again open in F. Therefore (a) does define a topology. The proof that
(b) also defines a topology in terms of closed sets is similar, and the relation
f−1
α [Y \U] = Xα \ f−1

α [U] shows that these topologies are the same.

We now prove that this topology is the final topology. Clearly, each
fα : Xα → YF is continuous. Suppose g : YF → Z is a function where Z is a
topological space.

If g is continuous, then so also is each composite gfα. Suppose, con-
versely, that each gfα is continuous. Let U be open in Z. Then

f−1
α g−1[U] = (gfα)

−1[U]

and, therefore, f−1
α g−1[U] is open in Xα. It follows that g−1[U] is open in

YF. Hence g is continuous, as we were required to prove. 2

EXAMPLE

2. Let X =
⊔

α∈A Xα be the sum of the underlying sets of the family
(Xα)α∈A of topological spaces, and let iα : Xα → X be the injections. The
final topology on X with respect to (iα) is called the sum topology. Such a
topology was defined in chapter 3 when the indexing set was finite—clearly
the definitions coincide in this case.

By means of the topological sum we can reduce final topologies with
respect to a family (fα) to final topologies with respect to a single function
f. In fact, with the assumptions as for 4.2.1, 4.2.2 we have:
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4.2.3 Let X be the sum of spaces (Xα) and let f : X → Y be the function
determined by (fα). Then the final topologies on Y with respect to f and with

respect to (fα) coincide.

Proof Let iα : Xα → X be the injection. Let g : Y → Z be a function where
Z is a topological space. Then

gfα = gfiα

since fiα = fα. Also gf is continuous if and only if each gfiα is continuous.
Thus the conditions (a) g is continuous if and only if gf is continuous, and
(b) g is continuous if and only if each gfα is continuous, are equivalent. 2

We now concentrate attention on the case of a single function f : X→ Y.
Let Y have the final topology with respect to f. Let Y1 = Y \ f[X]. If y ∈ Y1
then f−1[y] is empty, and so {y} is both open and closed in Y. Also, f[X] is
open and closed in Y. Therefore, Y is the topological sum of f[X] and the
discrete space Y1. This shows that the case of major interest is when f is a
surjection.

Let X, Y be topological spaces and f : X → Y a function. We say f is
an identification map if f is a surjection and Y has the final topology with
respect to f. This topology on Y is also called the identification topology

with respect to f, and we say Y is an identification space of f.
There is a useful characterisation of identification topologies in addition

to those given by the definition and by 4.2.2. A subset A of X is saturated

(more precisely, saturated with respect to f, or f-saturated) if f−1f[A] = A.
For example, any set f−1[B] is saturated.

Let f : X → Y be an identification map. If B is a subset of Y then
ff−1[B] = B (since f is surjective). Also, if A is saturated, then f[A] =

ff−1f[A]. Hence the open sets of Y are the sets f[V ] for all saturated open sets

V of X; and the same statement holds with open replaced by closed.
There is a difficulty in the description of neighbourhoods in Y. LetA ⊆ Y

and suppose N is a neighbourhood of A. Then there is an open set U such
that A ⊆ U ⊆ N whence

f−1[A] ⊆ f−1[U] ⊆ f−1[N].

So N is a neighbourhood of A implies f−1[N] is a neighbourhood of f−1[A].
The converse of this last implication is false: for suppose f−1[N] is a neigh-
bourhood of f−1[A]. Then we can find an open set V such that f−1[A] ⊆
V ⊆ f−1[N], but it may be impossible to find such a V which is saturated
with respect to f [Exercise 1 of Section 4.3].

The following result gives a useful class of identification maps.
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4.2.4 Let f : X → Y be a continuous surjection. If f is an open map, or a
closed map, then f is an identification map.

Proof Suppose that f is an open map. Let U be a subset of Y. By conti-
nuity, if U is open in Y then f−1[U] is open in X. On the other hand f is a
surjection, so ff−1[U] = U. Hence f−1[U] is open if and only if U is open.

A similar proof applies with open replaced by closed. 2

4.2.4 (Corollary 1) A continuous surjection from a compact space to a Haus-

dorff space is an identification map.

Proof Such a function is a closed map, by 3.5.8 (Corollary 1). 2

A consequence of 4.2.4 (Corollary 1) is that if X is compact and f : X→
Y is a surjection, then there is at most one Hausdorff topology on Y such
that f is continuous. If such a Hausdorff topology exists, it is clearly the
most ‘reasonable’ topology on Y. Unfortunately, the identification topology
need not be Hausdorff, nor need it be, when X is not compact, the most
‘reasonable’ Hausdorff topology.

Since identification topologies are special cases of final topologies, we
can apply to identification topologies the results of 4.2.2. We illustrate this
in the proof of our next result, which can also be proved directly from the
definition.

4.2.5 The composite of identification maps is an identification map.

Proof Let f : X → Y, g : Y → Z be identification maps. Then gf : X → Z
is certainly continuous and surjective. We show that if h : Z→ W and hgf
are continuous, then h is continuous.

Suppose then hgf : X→W is continuous. Then hg is continuous (since
f is an identification map) and h is continuous (since g is an identification
map). 2

EXERCISES

1. Let X,Y be topological spaces and f : X → Y an injection. Prove that f is an

identification map if and only if f is a homeomorphism.

2. Let f : X→ Y be an identification map. What is the topology of Y if X is discrete?

indiscrete?

3. Prove that the following maps are identification maps

(i) The projections X× Y → X, X× Y → Y.

(ii) {(x,y) ∈ R2 : xy = 0}→ R, (x,y) 7→ x.

(iii) {(x,y) ∈ R2 : x2y2 = 1}→ R 6=0, (x,y) 7→ x.

(iv) I→ S1, t 7→ e2πit.
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4. Let Y have the final topology with respect to f : X → Y. Prove that f | X, f[X] is

an identification map.

5. Let X, Y be topological spaces and f : X → Y a continuous surjection. Suppose

that each point y in Y has a neighbourhood N such that f | f−1[N],N is an identi-

fication map. Prove that f is an identification map. Deduce that the covering map

p : R→ S1, t 7→ e2πit

is an identification map.

6. Let A be a subspace of X. A retraction of X onto A is a map r : X → A such that

r | A is the identity. Prove that a retraction of X onto A is an identification map.

Deduce that the map

Rn+1 \ {0}→ Sn, x 7→ x/|x|

is an identification map.

7. Prove that if f : X→ Y, f ′ : X ′ → Y ′, g : Y → Z are open surjections, then so also

are gf : X→ Z and f× f ′ : X× X ′ → Y × Y ′.

8. Let f : X → Y be an identification map. For each A ⊂ X, let f†[A] = {a ∈ A :

f−1f[a] ⊆ A}. Prove that the following conditions are equivalent. (i) f is a closed

map. (ii) If A is closed in X, then also is f−1f[A]. (iii) If A is open in X, then so also

is f†[A]. (iv) For each y in Y, every neighbourhood N of f−1[y] contains a saturated

neighbourhood of f−1[y].

9. Let f : X→ Y be an identification map, and let Rf = {(x, x ′) ∈ X× X : fx = fx ′}.

Prove that, if Y is Hausdorff, then Rf is closed in X × X. Prove that if f is an open

map, and Rf is closed in X× X, then Y is Hausdorff.

10. Prove the following ‘transitive law’ for final topologies. Suppose there are given

functions fαλ : Xαλ → Yλ for each λ in Λ and α in Aλ, and functions gλ : Yλ → Z for

each λ inΛ, and a topology for each Xαλ. Prove that if Yλ has the final topology with

respect to (fαλ)α∈Aλ
, then the final topology on Zwith respect to (gλ)λ∈Λ coincides

with the final topology with respect to the family of composites (gλfαλ)λ∈Λ,α∈Aλ
.

Show that 4.2.3 and 4.2.5 are corollaries of this transitive law.

11. Let Σ be a set of subspaces of X and for each S ∈ Σ let iS : S→ X be the inclu-

sion. The final topology on X with respect to (iS)S∈Σ is called the fine topology with

respect to Σ (or the weak topology with respect to Σ); and the set X with this topol-

ogy is written XΣ. Prove that: (i) Each inclusion iS : S → XΣ is a homeomorphism

into. (ii) If X ∈ Σ then X = XΣ. (iii) Σ is a set of subspaces of XΣ, and (XΣ)Σ = XΣ.

(iv) The identity XΣ → X is continuous.

12. Let Σ,Σ ′ be sets of subspaces of X,X ′ respectively. Let f : X→ X ′ be a function

such that for each S of Σ (i) there is an S ′ of Σ ′ such that f[S] ⊂ S ′, (ii) f | S is

continuous. Prove that f : XΣ → X ′
Σ is continuous. Suppose now that X = X ′: prove

that XΣ = XΣ′ if both Σ is a refinement of Σ ′ and Σ ′ is a refinement of Σ.

4.3 Subspaces, products, and identification maps

The following result is important in itself and will also help the discussion
of examples of identification spaces.
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Let f : X→ Y be an identification map, and let A ⊆ X. Then A, f[A] are
subspaces of X, Y respectively, and we ask: is g = f | A, f[A] an identifica-
tion map?

4.3.1 The following conditions are equivalent.

(a) g = f | A, f[A] is an identification map,

(b) each g-saturated set which is open in A is the intersection of A with an

f-saturated set open in X,

(c) as for (b) but with ‘open’ replaced by ‘closed’.

Proof We state an elementary exercise in set theory [Exercise 5 of Section
A.1 of the Appendix]: if U ⊆ f[A] and V ⊆ Y, then

U = f[A] ∩ V ⇔ g−1[U] = A ∩ f−1[V ].

(a)⇒ (b) Let U ′ be open in A and g-saturated. Then U = g[U ′] is open in
f[A], whence U = f[A] ∩ V where V is open in Y. So

U ′ = g−1g[U ′] = g−1[U] = A ∩ f−1[V ].

Clearly, f−1[V ] is open in X and f-saturated.
(b) ⇒ (a) Let U be a subset of f[A] such that g−1[U] is open in A. By
condition (b), g−1[U] = A ∩ f−1[V ] for some V open in Y. Hence U =

f[A] ∩ V , and so U is open in f[A].
The proof of (a)⇔ (c) is the same as the above but with the word ‘open’

replaced by ‘closed’. 2

4.3.1 (Corollary 1) Each of the following conditions implies that g = f |

A, f[A] is an identification map.

(a) For all U, if U is g-saturated and open in A, then f−1f[U] is open in X.

(b) As for (a), but with ‘open’ replaced by ‘closed’.

(c) The set A is f-saturated and open in X.

(d) As for (c), but with ‘open’ replaced by ‘closed’.

Proof We give the proof only for cases (a) and (c).
(a) For any subset U of A

g−1g[U] = A ∩ f−1f[U].

So condition (b) of 4.3.1 is satisfied.
(c) We reduce this to case (a). Let U be g-saturated and open in A. Then

f−1f[U] ⊂ f−1f[A] = A



IDENTIFICATION SPACES AND CELL COMPLEXES [4.3] 107

whence
f−1f[U] = g−1g[U] = U.

Also U is open in X since A is open in X. 2

EXAMPLES

1. Consider the subspace of R2

X = I× {0} ∪ I× {1}.

Let Y = [0, 1[ ∪ {y0,y1} where y0,y1 are distinct points not in [0, 1[.

X

·y1
·y0

Y
Fig. 4.6

Let f : X→ Y be the function

(t, ε) 7→






t, t 6= 1

y0, t = 1, ε = 0

y1, t = 1, ε = 1.

Thus f identifies (t, 0) with (t, 1) for each t in [0, 1[. Let

I0 = [0, 1[ ∪ {y0}, I1 = [0, 1[ ∪ {y1}.

Let f0 : I × {0} → I0 be the restriction of f. It is an easy deduction from
4.3.1 (Corollary 1a) that f0 is an identification map. Since f0 is a bijection,
it is therefore a homeomorphism [Exercise 1 of Section 4.2]. Thus I0 is
(both as a set and topologically) essentially I with 1 renamed y0. Similar
remarks apply to I1.

From this we have that the sets

]t, 1[ ∪ {y0}, t ∈ [0, 1[

form a base for the neighbourhood of y0, and there is a similar base for
the neighbourhood of y1. Hence every neighbourhood of y0 meets every
neighbourhood of y1; that is, Y is not Hausdorff.
2. Let A be a subset of the topological space X. Then X with A shrunk to

a point is a topological space, written X/A, which is obtained from X by
identifying all of A to a single point. More precisely, the elements of X/A
are the equivalence classes in X under the equivalence relation generated
by

x ∼ y⇔ x ∈ A and y ∈ A.
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These equivalence classes are therefore the sets {x} for x in X \A and also,
when A is non-empty, the set A.

It is convenient to identify the point x of X\A with the point {x} of X/A,
and so to regard X\A as a subset of X/A. This causes confusion only when
A ∈ X \A, in which case we can always replace the equivalence class A by
some point not in X \ A. Let f : X→ X/A be the projection

x 7→
{
x, x ∈ X \A

A, x ∈ A.

We give X/A the final topology with respect to f.
Now f is surjective and so an identification map. If A is empty, or con-

sists of a single point, then X/A can be identified with X.
The set X\A is f-saturated and f is the identity on X\A. By 4.3.1 (Corol-

lary 1), X \A is a subspace of X/A if A is open or is closed in X.
The application of Example 1 of Section 4.2 is important: if g : X→ Z is

any map such that g[A] consists of a single point of Z, then there is a unique

map g∗ : X/A→ Z such that g∗f = g.

The following terminology is convenient. A function g : X → Z is
constant on A if g | A is a constant map; also g shrinks A to a point if
g is constant on A, is surjective, and g | X \ A is injective. Thus, in the
latter case, the function g∗ : X/A → Z defined by g is a bijection. The
universal property of 4.1.1 and Example 1 above shows that if g : X → Z,
g ′ : X → Z′ are two identification maps which shrink A to a point, then
there is a unique homeomorphism h : Z→ Z′ such that hg = g ′.
3. We consider a special case of the last example. Let Y be any space. The
cone on Y is

CY = Y × I/Y × {0}.

The point v of CY which is the set Y × {0} is called the vertex of CY.

Y

v

Fig. 4.7

Let B be a subspace of Y, let i : B× I→ Y × I be the inclusion function,
and let p ′ : B × I → CB, P : Y × I → CY be the identification maps. Then
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pi[B × {0}] is the vertex of CY and so there is a unique map g : CB → CY
such that gp ′ = pi. Also, g is injective. We now show that g need not be
an embedding.

Y × I CY B× I CB

v v ′

Fig. 4.8

Let Y = I, B = [0, 1[, and let v, v ′ be the vertices of CY,CB respec-
tively. The difference between the topologies of CY and CB is illustrated in
Fig. 4.8. The neighbourhoods in CY of v look as expected, but the shaded
set in CB is a neighbourhood of v ′ since it is the image of a saturated open
neighbourhood of B × {0}. (A detailed justification of these pictures is left
as an exercise.)

In this case, it might be considered more reasonable to give CB the
topology which makes g : CB → CY an embedding. Actually, in chapter
5 we shall discuss the coarse topology which behaves better with regard to
subspaces than does the identification topology. Until chapter 5 we shall
need a topology on CY for which we can construct continuous functions
from CY to some other space. For these purposes the identification topology
is the best.

We shall see in section 4.6, that when Y is compact Hausdorff so also is
CY; in this case, the coarse and identification topologies on CY coincide.

Products of identification maps‡

Let f : X → Y, f ′ : X′ → Y ′ be identification maps. It is not true in general
that f× f ′ : X× X′ → Y × Y ′ is an identification map—an example is given
below. However we can prove:

4.3.2 Let f : X → Y be an identification map and let B be locally compact.

Then

f× 1 : X× B→ Y × B
is an identification map.

Proof Let W ⊆ X× B be open and saturated with respect to

h = f× 1.

‡The main result here and its application in 4.6.6 are not needed until chapter 7.
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We must prove that h[W] is open in Y × B.

To this end, let (y0,b0) ∈ h[W] and suppose y0 = fx0. Then (x0,b0) ∈
W since W is saturated. Let B0 be the subset of B such that

{x0}× B0 = ({x0}× B) ∩W;

this is the ‘x0-section’ of W. Since W is open, B0 is a neighbourhood of b0.
Since B is locally compact, B0 contains a compact neighbourhood C of b0.

Let U ⊆ X be the largest set such that U× C ⊆W, that is,

U = {x ∈ X : {x}× C ⊆W}.

Then

(y0,b0) ∈ f[U]× C ⊆ h[W].

So to prove that h[W] is a neighbourhood of (y0,b0), it is sufficient to prove
that f[U] is a neighbourhood of y0.

C
B0

W

B

b0 U× C

x0

U X

Fig. 4.9

U is open in X Let x ∈ U so that {x} × C ⊆ W. Since C is compact
and W is open, there is a neighbourhood M of x such that M × C ⊂ W
[3.5.6 (Corollary 2)]. This implies that M ⊆ U, by definition of U. So U is
open.

U is f-saturated We have U ⊆ f−1f[U] and

f−1f[U]× C = h−1h[U× C] ⊆ h−1h[W] =W.

So f−1f[U] ⊆ U, by definition of U. Hence f−1f[U] = U.

It follows that f[U] is a neighbourhood of y0. 2

EXAMPLE
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4. We now show that 4.3.2 is false without some assumptions on B. Let f :
Q→ Q/Z be the identification map and let h = f×1 : Q×Q→ (Q/Z)×Q.
Then h is not an identification map.

Proof Let r0 = 1 and for each non-zero n in Z let rn =
√
2/|n|—thus rn is

irrational and rn → 0 as n→∞. Let An be any open subset of [n,n+1]×R
such that the closure of An meets {n,n + 1} × R in the two points (n, rn)
and (n, rn+1) (such a set An is shaded in Fig. 4.10.) Let A be the union of
these sets An, n ∈ Z, and let B = A ∩ (Q × Q). Then B is closed in Q ×Q
and saturated with respect to h. We leave it as an exercise to the reader to
prove that in (Q/Z)×Q the point (f0, 0) belongs to the closure of h[B]. 2

(n, rn)
(n + 1, rn+1)

Fig. 4.10

The fact that 4.3.2 is false in general has led to suggestions for chang-
ing the maps used in topology, or for changing the product topology. [cf.
Section 5.9].
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EXERCISES

1. Let A be the subset L \ {0} of I and let p : I→ I/A be the identification map. Let

N = [0, 1
2
] ∪ {1}. Prove that N is a saturated neighbourhood of 0, but p[N] is not a

neighbourhood of p0.

2. Let f : R→ [−1, 1] be the function

x 7→
{
sin 1/x x 6= 0

0 x = 0

and let [−1, 1] have the identification topology with respect to f. Prove that the

subspace [−1, 1] \ {0} has its usual topology but the only neighbourhood of 0 is

[−1, 1].

3. Let A,B be subsets of X such that A is closed and A ⊆ B. Prove that B/A is a

subspace of X/A.

4. Let A ⊆ X. Prove that X \ A is a subspace of X/A if and only if the following

condition holds: a subset U of X \A is open in X \A if and only if U = V ∩ (X \A)

where V is open in X and V either contains A or does not meet A. Give an example

of X, A for which this condition holds, yet A is neither open nor closed in X. Give

an example of X, A for which this does not hold.

5. Let A be a subspace of X. Prove that X/A is Hausdorff if (i) X \ A is Hausdorff,

(ii) X \ A is a subspace of X/A, and (iii) if x ∈ X \ A then x and A have disjoint

neighbourhoods in X. Prove that if X = [0, 2],A = ]1, 2], then X/A is not Hausdorff.

6. Let A be a closed subset of X and let B be a proper subset of A. Let X ′ = X \ B,

A ′ = A \ B. Prove that X ′/A ′ is homeomorphism to X/A.

7. Let f : X → Y be an identification map and let A ⊆ X. Suppose that there is a

map u : X→ A such that for all x ∈ X, fux = fx. Prove that f[A] = Y and g = f | A

is an identification map.

8. [This and the following exercises use the notation of Exercises 11 and 12 of

Section 4.2.] Let Σ be a set of subspaces of X and let A ⊆ X. The restriction of Σ

to A is the set Σ | A = {S ∩ A : S ∈ Σ}. So we can form the space AΣ|A. On the

other hand, A with its relative topology as a subset of XΣ determines a space AΣ

say. Prove that the identity function AΣ|A → AΣ is continuous. Prove also that if A

and each S of Σ is closed in X, then AΣ|A = AΣ and AΣ is a closed subspace of XΣ.

9‡. For any space X, let CX denote the set of compact subspaces of X, and write kX

for XCX. Refer to the definition of a k-space in Exercise 4 of Section 3.6 in order to

prove that X is a k-space if and only if X = kX. Prove also that (i) X,kX have the

same compact subspaces, (ii) kX is a k-space, (iii) the topology of kX is the finest

topology T on the underlying set of X such that X and XT have the same compact

subspaces. ‡

10. Prove that a closed subspace of a k-space is a k-space.

11. Prove that an identification space of a k-space is a k-space.

12. The weak product of spaces X,Y is the space X ×W Y = k(X × Y). Prove that

X ×W Y has the fine topology with respect to the sets A × B for A compact in X,

‡In this and the following exercises, all spaces are assumed to be Hausdorff.
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B compact in Y. Prove also that (i) X ×W Y = kX ×W kY, (ii) the weak product

is associative and commutative, (iii) the projections from X ×W Y to X and Y are

continuous, (iv) if X × Y = X ×W Y, then X and Y are k-spaces, (v) the diagonal

map X→ X×W X is continuous if and only if X is a k-space, (vi) X×W Y = X× Y if

X and Y satisfy the first axiom of countability.

13. Prove that if X is a k-space and Y is a locally compact, then X× Y is a k-space.

[Use 4.2.3 to represent X as an identification space of a topological sum of compact

spaces, and then apply 4.3.2.]

14. A function f : X → Y of spaces is called k-continuous if f | C is continuous for

each compact subspace C of X. Prove that the following are equivalent. (i) f : X→ Y

is k-continuous, (ii) f : kX→ Y is continuous, (iii) f : kX→ kY is continuous. Prove

also that the identity X→ X is k-continuous and that the composite of k-continuous

functions is again k-continuous. Prove that if f : X→ Y, g : X→ Z are k-continuous,

then so also if (f, g) : X→ Y × Z.

15. A function f : X→ Y is called a k-identification map if f is k-continuous and for

all Z and all functions g : Y → Z, g is k-continuous if gf is k-continuous. Prove that

f : X → Y is a k-identification map if and only if f : kX → kY is an identification

map.

16. Let f : X→ Y be a k-identification map and letQ satisfy: each compact subspace

of Q is locally compact. Prove that f× 1 : X×Q→ Y ×Q is a k-identification map.

17. Let f : X → Y be an identification map. Suppose also that X,Q and X ×Q are

k-spaces. Prove that Y ×Q is a k-space if and only if f × 1 : X× Q → Y × Q is an

identification map. Hence give an example of k-spaces Y,Q such that Y ×Q is not

a k-space.

4.4 Cells and spheres

In this section, we shall be considering real n-space Rn with its Euclidean
norm, written | |, and its Cartesian norm, written ‖ ‖. The map

i : Rn → Rn+1

x 7→ (x, 0)

is called the natural inclusion—it is a linear homeomorphism onto the
closed subspace Rn × {0} of Rn+1. Also i is norm preserving, that is

|i(x)| = |x|,
‖i(x)‖ = ‖x‖, x ∈ Rn. (4.4.1)

We have already defined the standard n-cell, n-ball, and (n− 1)-sphere
as

En = {x ∈ Rn : |x| 6 1},

Bn = {x ∈ Rn : |x| < 1},

Sn−1 = {x ∈ Rn : |x| = 1}.
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For n = 0, this gives E0 = B0 = {0}, S−1 = ∅. Notice that Sn−1,En are
closed, bounded subsets of Rn, and so are compact.

It is clear from Equation (4.4.1) that

i[En] = En+1 ∩ (Rn × {0}),

i[Sn−1] = Sn ∩ (Rn × {0}).

We call i[Sn−1] the equatorial (n − 1)-sphere of Sn. This (n − 1)-sphere
divides Sn into two parts called the northern and southern hemispheres

En+ = {(x, t) ∈ Sn : x ∈ Rn, t > 0},

En− = {(x, t) ∈ Sn : x ∈ Rn, t 6 0}.

Thus Sn = En+ ∪ En− and En+ ∩ En− = i[Sn−1].

En+

i[S(n−1)]

Fig. 4.11

We shall continue to regard Rn+1 as Rn × R, so that the projection
p : Rn+1 → Rn simply omits the last coordinate. If x ∈ Sn, then |x| = 1

whence |p(x)| 6 1, i.e., p[Sn] ⊆ En.

4.4.2 The projection p : Rn+1 → Rn maps both En+ and En− homeomorphi-

cally onto En.

Proof The function

En → En+

x 7→ (x,
√
1− |x|2)

is well-defined and is a continuous inverse to p | En+,E
n [Fig. 4.11]. This

proves the result for En+, and the proof for En− is similar. 2

The sets Bn,En are convex and hence path-connected.
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4.4.3 Sn is path-connected for n > 1.

Proof From 4.4.2, En+,E
n
− are path-connected. But En+ ∩ En− is non-empty

for n > 1, and so Sn is path-connected by 3.4.2. 2

There is an important connection between cells, spheres, and the cone
construction. We recall that for any topological space X, the cone on X is

CX = X× I/X× {0}.

4.4.4 There is a homeomorphism h : CSn−1 → En.

Proof The function

k : Sn−1 × I→ En

(x, t) 7→ tx

is continuous and surjective. Since all the spaces concerned are compact
and Hausdorff, k is an identification map. Also k shrinks Sn−1 × {0} to the
point 0 of En. It follows that k defines a homeomorphism h : CSn−1 → En.

2

For any space X, let the suspension of X be

SX = CX/X× {1}.

Thus SX is obtained from X× I by shrinking to a point first X× {0} and then
X× {1}. Let l be the composite of the identification maps X×I→ CX→ SX;
by 4.2.5, l is an identification map.

The picture for SX is Fig. 4.12 in which each section X × {t}, t 6= 0, 1

is homeomorphic to X under the projection X × {t} → X. The subspaces
X × [ 1

2
, 1], X × [0, 1

2
] are mapped by l to subspaces C+X,C−X. By an easy

application of (d) of 4.3.1 (Corollary 1), l restricts to an identification map
X× [0, 1

2
]→ C−X and so we have an identification map

X× I→ X× [0, 1
2
]→ C−X

(x, t) 7→ (x, t/2) 7→ l(x, t/2)
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r+

r−

C+X

C−X

X× { 1
2
}

Fig. 4.12

which shrinks to a point X× {0}. It follows that there is a homeomorphism
CX → C−X. A similar argument (using the homeomorphism I → [ 1

2
, 1]

given by t 7→ 1 − t/2) shows that there is a homeomorphism CX → C+X;
on X× {1} both of these homeomorphisms send (x, 1) 7→ (x, 1

2
).

The argument of the last paragraph generalises the representation of Sn

as the union of its Northern and Southern hemispheres. In fact, by the last
paragraph, 4.4.2, and 4.4.4, we can construct the homeomorphisms

En+ → C+Sn−1, En− → C−Sn−1

which on i[Sn−1] are given by (x, 0) 7→ (x, 1
2
). By the gluing rule for home-

omorphisms [2.7.3] these homeomorphisms define a homeomorphism

Sn → SSn−1.

The composite

En h−1

−→ CSn−1 p−→ SSn−1

(where p is the identification map) is injective on Bn and shrinks the
boundary Sn−1 of En to a point. It follows that En/Sn−1 is homeomor-
phic to SSn−1, and hence there is a homeomorphism

k : En/Sn−1 → Sn.

This homeomorphism sends the shrunken Sn−1 to the South Pole P =

(0, . . . , 0,−1) of Sn. Further, Bn is a subspace of En/Sn−1 and k maps Bn
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homeomorphically onto Sn \ {P}. For this reason, we write

Sn = e0 ∪ en

where er denotes an open r-cell, or r-ball, that is, a space homeomorphic to
Br. In the case of Sn, e0 = {P}, en = Sn \ {P}.

It might be expected that Sn \ {x} is homeomorphic to Bn for any point
x of Sn. This is in fact true, and is a consequence of the homogeneity of Sn

by which is meant that for any points x,y of Sn there is a homeomorphism
σ : Sn → Sn such that σ(x) = y [cf. Exercise 5 of Section 5.4].

We conclude this section by proving a simple result which will have a
more general analysis in chapter 5.

4.4.5 There is a homeomorphism Em × En → Em+n.

Proof Let ‖ ‖ denote the Cartesian norm on Rn and let

Jn = {x ∈ Rn : ‖x‖ 6 1}.

Thus Jn is the n-fold product of the interval [−1, 1] with itself. The associa-
tivity of the product shows that Jm× Jn is homeomorphic to Jm+n. So our
result is proved if we exhibit a homeomorphism from Em to Jm.

Consider the function

f : Em → Jm

x 7→
{
‖x‖−1|x|x, x 6= 0

0, x = 0.

Then f is a bijection, and is continuous certainly at all x 6= 0. We prove f is
continuous at 0.

The closed ball about 0 of radius r in the Euclidean norm is rEm, and in
the Cartesian norm is rJm. Also

f−1[rJm] = rEm

But the sets rEm, and also the sets rJm, taken for all r > 0 form bases for
the neighbourhoods of 0. Therefore, f is continuous at 0.

A similar argument shows that f−1 is continuous. 2

Now Ei is a subset of Ri, i = m,n,m+n, so that Em×En is a subset of
Rm+n. Let ‘interior’ mean the interior operator on these Euclidean spaces.
Then the homeomorphism h : Em × En → Em+n constructed above maps
the interior of Em × En bijectively onto the interior of Em+n, that is, it
maps Bm × Bn bijectively onto Bm+n. Therefore, h maps the boundary
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of Em × En bijectively onto the boundary of Em+n; hence h restricts to a
homeomorphism

Sm−1 × En ∪ Em × Sn−1 → Sm+n−1. (4.4.6)

EXERCISES

1. Let x0 ∈ Sn and let Π be the hyperplane in Rn+1 which is perpendicular to x0
and which passes through the origin. Let s : Sn \ {x0} → Π be the stereographic

projection defined as follows: if x ∈ Sn \ {x0} then s(x) is the unique point of Π such

that s(x), x, and x0 are collinear. Let p : Rn+1 → Π be the perpendicular projection

onto Π. Prove that for each x ∈ Sn \ {x0}

s(x) = p(x)/(1 − cos θ)

where θ is the angle between x and x0. Prove also that s is a homeomorphism.

2. Prove that En+ is a retract of Sn. Prove also that each point x of Sn has a base B

for the neighbourhoods (in Sn) of x such that each element of B is a retract of Sn.

3. Let the points of Rp+q+2 be denoted by (x, y) where x ∈ Rp+1, y ∈ Rq+1. Define

subsets A+,A− of Sp+q+1 by

A+ = {(x,y) ∈ Sp+q+1 : |x| > |y|},

A− = {(x,y) ∈ Sp+q+1 : |x| 6 |y|}.

Prove that A+ is homeomorphic to Sp × Eq+1, A− is homeomorphic to Ep+1 × Sq,

and A+ ∩A− is homeomorphic to Sp × Sq.

4. Let X be a topological space and let x0 ∈ X. Define the reduced cone and reduced

suspension respectively by

ΓX = X× I/(X× {0} ∪ {x0}× I),

ΣX = X× I/(X× {0, 1} ∪ {x0}× I).

Prove that ΓSn−1 is homeomorphic to En, and that ΣSn−1 is homeomorphic to Sn.

4.5 Adjunction spaces

Arbitrary identification spaces are so general that it is difficult to say any-
thing about them. We therefore concentrate attention on a special kind of
identification space—the adjunction spaces—which occur commonly and
for which we can prove useful theorems.

Suppose there is given a topological space X, a closed subspace A of X
and a map f : A→ B. The adjunction space

B f⊔ X
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is obtained by ‘gluing’ X to B by means of f. More precisely, we have a
relation from X to B given by

x ∼ b⇔ x ∈ A and fx = b.

The elements of B f⊔ X are then the equivalence classes of B⊔X under the
equivalence relation generated by ∼.

Let F : B ⊔ X→ B f⊔ X be the projection. We have a diagram

A
f //

i

��

B

ī

��
X

f̄
// B f⊔ X

(4.5.1)

in which i is the inclusion and ī, f̄ are composites

B
i1 // B ⊔ X F // B f⊔ X, X

i2 // B ⊔ X F // B f⊔ X.

Clearly, diagram (4.5.1) is commutative, that is, f̄i = īf, since if a ∈ A
i2(a) ∼ i1f(a) in B ⊔ X.

An equivalence class of B ⊔ X either contains a single element i2(x) for
x in X \A or is {i1(b)}∪ i2f−1[b] for b in B. It is usual, therefore, to identify
x in X \A and b in B with their corresponding equivalence classes in B⊔X,
and so to regard B f⊔ X as the union of the sets B and X\A. This convention
causes confusion only when B meets X \A.

The topology on B f⊔ X is to be the final topology with respect to ī, f̄ or,
equivalently, the identification topology with respect to

F : B ⊔ X→ B f⊔ X.
If g : B f⊔ X → Y is any map, then we can construct a commutative

diagram of maps

A
f //

i

��

B

i ′

��
X

f ′
// Y

(4.5.2)

where i ′ = gī, f ′ = gf̄. The converse of this statement gives a method of
constructing maps from B f⊔ X to Y.
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4.5.3 If i ′ : B → Y, f ′ : X → Y are maps such that f ′i = i ′f, then there is a
unique map g : B f⊔ X→ Y such that

gī = i ′, gf̄ = f ′.

Proof Let x ∈ X, b ∈ B. The condition f ′i = i ′f ensures that

x ∼ b⇒ f ′(x) = i ′(b).

The result is immediate from Example 1 of Section 4.2. 2

In the usual way, the ‘universal’ property 4.5.3 characterises ī, f̄ up to a
homeomorphism—if the maps f ′, i ′ of diagram (4.5.2) are universal then
the map g : B f⊔ X→ Y of 4.5.3 is a homeomorphism. This type of universal
property occurs in diverse situations and so deserves a name. Suppose we
are given a commutative diagram of maps of topological spaces

X0

i1 //

i2

��

X1

u1

��
X2 u2

// X

(4.5.4)

Then we say (u1,u2) is a pushout of (i1, i2), and also that the square (4.5.4)
is a pushout, if the following property holds: if u′

1 : X1 → X′, u′
2 : X2 → X′

are maps such that u′
1i1 = u′

2i2, then there is a unique map u : X → X′

such that uu1 = u′
1, uu2 = u′

2. As usual, this property characterises the
pair (u1,u2) up to a homeomorphism of X. For this reason, it is common
to make an abuse of language and refer to X as the pushout of (i1, i2). In
such case, we write

X = X1 i1⊔ i2 X2.

(In chapter 7 we shall need the notion of a weak pushout: the definition
of this is the same as that of pushout except that the word unique is omitted.
Of course, the property that (4.5.4) is a weak pushout does not characterise
(u1,u2) up to a homeomorphism of X.)

We shall, as above, restrict the term adjunction space to a pushout of a
pair (f, i) in which i is an inclusion of a closed subspace; and, of course, we
are abbreviating B f⊔ i X to B f⊔ X. The map f is called the attaching map

of the adjunction space.

One of the good features of adjunction spaces is shown in the following
result.
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4.5.5 (a) ī is a closed map. (b) f̄ | X \A is an open map.

Proof (a) Let C be closed in B and let C′ = ī[C]. Then

ī−1[C′] = C, f̄−1[C′] = f−1[C].

The first set is closed in B (trivially) and the second set is closed in X be-
cause f is continuous and A is closed in X. Since B f⊔ X has the final
topology with respect to ī, f̄, it follows from 4.2.2(b) that C′ is closed in
B f⊔ X.
(b) Let U be open in X \ A and let U ′ = f̄[U]. Then

ī−1[U ′] = ∅, f̄−1[U ′] = U.

These sets are open in B,X respectively, and so U ′ is open in B f⊔ X. 2

It is immediate from 4.5.5 that ī is a homeomorphism onto a closed
subspace, and f̄ | X \ A is a homeomorphism onto an open subspace of
B f⊔ X. So if we identify B and X \ A with the corresponding subsets of
B f⊔ X, we obtain:

4.5.5 (Corollary 1) B is a closed subspace, and X \ A is an open subspace, of

B f⊔ X.

In some cases, adjunction spaces can be regarded as identification
spaces.

4.5.6 If f : A→ B is an identification map, then so also is f̄ : X→ B f⊔ X.

Proof Clearly f̄ is surjective. We prove that B f⊔ X has the final topology
with respect to f̄. Suppose g : B f⊔ X → Y is such that gf̄ : X → Y is
continuous. Then gf̄i = gīf is continuous. Since f is an identification map,
the continuity of gīf implies the continuity of gī. Finally, the continuity of
gf̄ and gī implies the continuity of g. 2
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EXAMPLES

1. If A is empty, then B f⊔ X = B⊔X. If A = X, then B f⊔ X = B. If X = B,
then B 1⊔ X = X.
2. Suppose X = B∪C, A = B∩C where B,C are closed in X. Let j : A→ B

be the inclusion. Then

X = B j⊔ C.

The only problem here is one of topology; the fact that X has the final
topology with respect to the inclusions B → X, C → X is a consequence of
the Gluing Rule [2.5.12].
3. Let B be the space consisting of a single point b, let A be non-empty, and
let f : A → B be the unique map. Clearly, f is an identification map, and
therefore so also is f̄ : X → B f⊔ X. Since f̄ simply shrinks A to a point it
follows that B f⊔ X is homeomorphic to X/A; the only difference between
these spaces is that in B f⊔ X the point A of X/A has been replaced by b.
4. Many common identification spaces can be regarded as adjunction
spaces. For example, let A1,A2 be closed in X and let ϕ : A1 → A2 be
a homeomorphism which is the identity on A1 ∩A2. Let f : A1 ∪A2 → A2

be the identity on A2 and ϕ on A1—the given conditions ensure that f is
well-defined and continuous. Let Y = A2 f⊔ X. It is easy to prove that f is
an identification map, and it follows that f̄ : X→ Y is an identification map.
Thus Y is obtained from X by the identifications a1 ∼ ϕa1 for all a1 ∈ A1.
5. One of our principal examples of adjunction spaces is when X = En,
the standard n-cell, and A = Sn−1, the standard (n − 1)-sphere. Thus, let
n = 1. Then E1 = [−1, 1], S0 = {−1,+1} and B f⊔ En can be pictured as
one of the spaces in Fig. 4.13.

B B

Fig. 4.13

For n > 1, and even for n = 2, it is usually impossible to visualise
B f⊔ En. But some special cases are of interest. First of all let B consist of
a single point: B f⊔ En is homeomorphic to En/Sn−1 which, as we have
seen in section 4.4, is homeomorphic to Sn.

Second, consider the function

f : S1 → B

z 7→ Re(z)
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where B = [−1, 1]. Then B f⊔ E2 is homeomorphic to S1. The picture for
this is Fig. 4.14 (which may be thought of as illustrating the operation of
zipping up a purse).

Fig. 4.14

Third, let f : S1 → S1 be the function z 7→ z2. Then f identifies the
points ±z for z in S1 and f is an identification map. Therefore S1 f⊔ E2 is
homeomorphic to S2 with antipodal points identified. This space is a model
of the real projective plane P2(R) of chapter 5.
6. A pointed space is a topological space X and a point x0 of X, called the
base point such that {x0} is closed in X. Let X, Y be pointed spaces. The
wedge of X and Y is the space X ∨ Y obtained from X and Y by identifying
x0 with y0. Fig. 4.15 illustrates S1 ∨ S2 (for some choice of base points)
and S2 ∨ S2 can be thought of as two tangential 2-spheres in R3.

Fig. 4.15

If we take the boundary of a square and identify opposite sides accord-
ing to the schemes of either Fig. 4.3 or Fig. 4.4 on p. 92, then the result is
essentially S1 ∨ S1.
7. Let T2 be the torus and let g : I2 → T2 be the identification map by which
opposite edges of I2 are identified. Let h : E2 → I2 be a homeomorphism
which maps S1 onto the boundary of I2 (in fact any homeomorphism E2 →
I2 does this), and let f̄ = gh : E2 → T2. Then f̄[S1] is essentially a subset
S1 ∨ S1 of T2 (the the last example). Since f̄ is an identification map we
can say that T2 is homeomorphic to (S1 ∨ S1) f⊔ E2 where f is a map
S1 → S1 ∨ S1.

We have shown how to construct spaces using adjunction spaces. On
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the other hand, it may help us to grasp the topology of a given space Q if
we can represent Q as an adjunction space or, at least, a homeomorph of
B f⊔ X. This can give a ‘structure’ to the spaceQ, in showing how it is made
up from smaller and often better understood pieces put together in a well
defined way. Further, by 4.5.3, we then know how to construct continuous
functions on Q in terms of continuous functions on these smaller pieces B
and X. We will see that constructing particular mathematical structures as
pushouts occurs widely in mathematics.

Suppose there is given then a closed subspace B ofQ, a closed subspace
A of X and a map f ′ : X→ Q such that f ′[A] ⊆ B. Consider the diagram

A
f //

i

��

B

ī

��
X

f ′
// Q

(4.5.7)

in which i, ī are the given inclusions, and f is the restriction of f ′. We then
ask for conditions which ensure that (4.5.7) is a pushout.

Suppose (4.5.7) is a pushout of spaces and maps. Then there is a home-
omorphism k : Q → B f⊔ X such that kf ′ = f̄, kī = ī. Because of the
construction of B f⊔ X it follows that h = f̄ | X\A,Q\B is a bijection. Also,
if this map h is a bijection, then (4.5.7) is a pushout of sets—if f ′ : X→ Y,
i ′ : B→ Y are functions such that f ′i = i ′f, then there is a unique function
g : Q → Y such that gī = i ′, gf̄ = f ′, where g is i ′ on B and x 7→ f ′h−1(x)

on Q \ B.
Suppose then h = f̄ | X \ A,Q \ B is a bijection and, as before, that B is

closed in Q, A is closed in X.

4.5.8 The square (4.5.7) is a pushout if f̄[X] is closed inQ and f̄ | X, f̄[X] is an

identification map. These conditions hold if X is compact and Q is Hausdorff.

Proof The last statement is clear. For the first statement, we have to prove
that Q has the final topology with respect to ī, f̄.

Let C be a subset ofQ such that ī−1[C], f̄−1[C] are closed in B,X respec-
tively. Then B ∩ C = ī−1[C] is closed in B and hence is closed in Q. Also
if

C′ = C ∩ f̄[X] = f̄f̄−1[C],

then C′ is closed in f̄[X] (since f̄ | X, f̄[X] is an identification map) and
therefore C′ is closed in Q). Therefore

C = (B ∩ C) ∪ C′
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is closed in Q. 2

We shall need the notion of attaching a number of spaces: this is a
simple extension of previous results, so we sketch the theory, leaving the
details as exercises.

Let B be a topological space, let (Xλ)λ∈Λ be a family of spaces, and for
each λ in Λ let Aλ be a closed subset of Xλ and let fλ : Aλ → B be a map.
The adjunction space

Q = B (fλ)⊔ (Xλ)

is obtained by identifying each aλ of Aλ with fλ(aλ) in B. Thus Q is an
identification space of the sum of B and all the Xλ. Providing the Xλ are
disjoint and do not meet B, the underlying set of Q can be identified with
the union of B and all the Xλ\Aλ. There is an inclusion i : B→ Q, and there
are maps f̄λ : Xλ → Q. The topology of Q is the final topology with respect
to the family consisting of ī and all f̄λ. The maps ī and f̄λ | Xλ \ Aλ are
closed and open maps respectively. The adjunction spaceQ is characterised
by the universal property: if iλ : Aλ → Xλ is the inclusion, and i ′ : B → Y,
gλ : Xλ → Y are maps such that gλiλ = i ′fλ, λ ∈ Λ, then there is a unique
map g : Q → Y such that gi = i ′, gf̄λ = gλ, λ ∈ Λ. In the case Λ is finite,
say Λ = {1, . . . ,n}, we write

Q = B f1⊔ X1 · · · fn⊔ Xn.

This notation is unambiguous since fi is a map to B.

EXERCISES

1. LetQ be the subspace of R2 which is the union of {0}× [0, 2] and the set {(x,y) ∈
R2 : 0 < x 6 1/π, sin 1/x 6 y 6 2}. Let B be the boundary of the subset Q of R2.

Prove that B is closed in Q, that Q \ B is homeomorphic to B2, but that Q is not

homeomorphic to B f⊔ E2 for any f : S1 → B.

2. Let B be a topological space and let fλ : Aλ → B be maps, where Aλ is a closed

subset of Xλ and λ = 1, 2. Let ī1 : B → B f1⊔ X1 be the inclusion. Characterise the

adjunction space

Q ′ = (B f1⊔ X1) īf2
⊔ X2

by a universal property and prove that Q ′ is homeomorphic to B f1⊔ X1 f2⊔ X2.

Generalise this result to arbitrary finite indexed families (fλ), (Xλ).

3. Let B be a closed subspace of Q. For each λ = 1, . . . ,n let f̄λ : Xλ → Q be a map,

and let Aλ be a closed subspace of Xλ such that (i) f̄λ[Aλ] ⊆ B, (ii) f̄λ | Xλ \ Aλ is

injective, (ii) the sets f̄λ[Xλ \Aλ] are disjoint and cover Q \ B, (iv) f̄λ | Xλ, f̄λ[Xλ] is

an identification map. Prove that a function g : Q → Y is continuous if and only if

g | B, gf̄λ is continuous, λ = 1, . . . ,n. Prove also that there is a homeomorphism

Q→ B f1⊔ X1 · · · fn⊔ Xn

which is the identity on B.



126 [4.6] TOPOLOGY AND GROUPOIDS

4. Let B f⊔ X be an adjunction space, where f : A → B. Prove that B is a retract

(see p. 120) of B f⊔ X if and only if there is a map g : X → B such that g | A = f.

Deduce that if A is a retract of X then B is a retract of B f⊔ X.

4.6 Properties of adjunction spaces

Throughout this section we suppose given an adjunction space B f⊔ X and
the pushout square

A
f //

i

��

B

ī

��
X

f̄
// B f⊔ X

Let F : B ⊔ X→ B f⊔ X be the identification map.

4.6.1 Let B′,X′ be subspaces of B,X respectively such that X′ ⊇ A and B′ ⊇
f[A]. Let g = f | A,B′. Then B′

g⊔ X′ is a subspace of B f⊔ X.

Proof We have to prove that the restriction of F

F′ : B′ ⊔ X′ → F[B′ ⊔ X′]

is an identification map, and for this we can use 4.3.1.
Notice that F is injective on (B \B′)⊔ (X \X′). Suppose that U ⊆ B⊔ X

and U ′ = U ∩ (B′ ⊔ X′). Then U is F-saturated⇔ U ′ is F′-saturated (since
all the identifications take place in B′ ⊔ X′). So 4.3.1 applies, and F′ is an
identification map. 2

We now consider the connectivity of B f⊔ X.

4.6.2 If A is non-empty and X and B are connected then B f⊔ X is connected.

Proof The space B f⊔ X is the union of the sets B and f̄[X] both of which
are connected. But B meets f̄[X] (since A is non-empty); therefore B f⊔ X
is connected [3.2.5]. 2

4.6.3 If A is non-empty and X and B are path-connected then B f⊔ X is

path-connected.

The proof of 4.6.3 is similar to that of 4.6.2.

4.6.4 If B f⊔ X and A are connected then B is connected.
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Proof Suppose that B is not connected and that i ′ : B → Y is a map onto
the discrete space Y = {1, 2}. Since A is connected, i ′f : A → Y is constant
with value 1 say. Let f ′ : X→ Y be the constant function with value 1. Then
i ′f = f ′i.

By the pushout property 4.5.3, there is a map g : B f⊔ X→ Y such that
gf̄ = f ′, gī = i ′. The last condition shows that g is surjective; hence B f⊔ X
is not connected. 2

If B,X are compact then so also is the sum B ⊔ X and hence B f⊔ X is
compact.

The question of whether B f⊔ X is Hausdorff is important but rather
delicate. It is true that if B and X are normal then so also is B f⊔ X [cf.
Exercise 6 and also [Hu64]]. We shall prove not this but instead a result
involving the placing of A in X which is satisfied in many cases [cf. Section
7.3].

We recall that a retraction of X onto A is a map r : X → A such that
r | A is the identity. If such a retraction exists we say A is a retract of X. To
prove that A is a retract of X it is of course sufficient to produce a retraction
X→ A—it is rather harder to prove that A is not a retract of X. A retraction
X → A is surjective: so A is not a retract of X if X is connected and A is
not connected. For example, S0 is not a retract of E1. We shall later be able
to prove that S1 is not a retract of E2; the proof that Sn is not a retract of
En+1 for any n is beyond the scope of this book.

We say A is a neighbourhood retract of X if A is a retract of some neigh-
bourhood of A in X. This neighbourhood may always be taken to be taken
to be open since, if A ⊆ IntN and r : N→ A is a retraction, then so also is
r | IntN.

EXAMPLES

1. A space X is a retract of itself. If x ∈ X then {x} is a retract of X. The
product of retractions is a retraction; hence for any Y, {x}× Y is a retract of
X× Y.
2. Sn is a neighbourhood retract of En+1 since the map

En+1 \ {0}→ Sn

x 7→ x/|x|

is a retraction.
3. L is not a neighbourhood retract of I. For supposeN is a neighbourhood
of L in I and r : N → L is continuous. For some ε > 0, N contains
[0, ε], which is connected. Hence r is constant on [0, ε] and so cannot be a
retraction.
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4.6.5 The adjunction space B f⊔ X is Hausdorff if the following conditions
hold:

(a) B and X are Hausdorff,

(b) Each x ∈ X \ A has a neighbourhood closed in X and not meeting A,

(c) A is a neighbourhood retract of X.

Proof Let Q = B f⊔ X and let y1,y2 ∈ Q. In order to find disjoint neigh-
bourhoods W1,W2 of y1,y2, we distinguish three cases.

(i) Suppose y1,y2 ∈ X \ A. Since X \ A is Hausdorff there are disjoint sets
W1,W2 which are neighbourhoods in X\A of y1,y2. But X\A is open in Q
[4.5.5 (Corollary 1)]. So W1,W2 are also neighbourhoods in Q of y1,y2.

(ii) Suppose y1 ∈ X \ A, y2 ∈ B. Let W1 be a neighbourhood of y1 closed
in X and not meeting A. Then W1 is also a neighbourhood in Q of y1.

Let W2 = Q \W1. Then

ī−1i[W2] = B, f̄−1[W2] = X \W1

which are open in B,X respectively. Hence W2 is open in Q.

(iii) Suppose y1,y2 ∈ B. Since B is Hausdorff there are in B disjoint open
neighbourhoods V1,V2 of y1,y2. Then f−1[V1], f

−1[V2] are open in A, but
not necessarily open in X. We therefore use the neighbourhood retraction
to enlarge them into sets open in X.

Let r : N→ A be a retraction where N is open in X. Let

V ′
i = r

−1f−1[Vi], i = 1, 2.

Then V ′
1,V

′
2 are disjoint open sets open in N and so open in X. Notice also

that because r is a retraction

V ′
i \A = V ′

i \ f
−1[Vi], i = 1, 2.

Let Wi be the subset of Q

Wi = Vi ∪ (V ′
i \A), i = 1, 2.

Then ī−1[Wi] = Vi, and

f̄−1[Wi] = f̄
−1[Vi] ∪ (V ′

i \A)

= V ′
i .

ThereforeWi is open in Q. Clearly, y1 ∈W1, y2 ∈W2. 2
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(The existence, for each A closed in X and each x ∈ X \ A , of a closed
neighbourhood of x not meeting A is one of the standard separation ax-
ioms. Such a space X is called T3 by [Bou66], who also calls X regular if it
is T3 and Hausdorff. The opposite terminology is used by [Kel55].)

EXAMPLES

4. If X is a metric space and A is closed in X then condition (b) of 4.6.5
is always satisfied. For suppose x ∈ X \ A; then dist(x,A) = ε > 0 [2.9.2]
and E(x, ε/2) is a closed neighbourhood of x not meeting A. The condition
is also satisfied if X is Hausdorff and A is compact [3.5.6 (Corollary 3)]. If
follows (for either reason!) that, if f : Sn−1 → B and B is Hausdorff, then
B f⊔ En is Hausdorff.
5. Let X, Y be topological spaces and let f : X → Y be a map. Let f ′ :

X× {0}→ Y be the map (x, 0) 7→ f(x). Since X× {0} is a closed subspace of
X× I we can define the adjunction space [Fig. 4.16]

M(f) = Y f′⊔ (X× I).

Y

X× {1}

Fig. 4.16

This is the mapping cylinder of f. It is a construction of great use in chapter
7. If X is Hausdorff, then so also is X× I. It is easy to verify the conditions
(b) and (c) of 4.6.5 with A,X replaced by X× {0}, X× I. Hence, if X and Y

are Hausdorff, then so also is M(f).

The mapping cone of f is

C(f) =M(f)/X× {1}.

We can prove by a similar method that if X and Y are Hausdorff, then so
also is C(f).

Our next result will become vital when we come to consider homotopies
of maps of adjunction spaces in chapters 7 and 9.
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4.6.6 Let Y be a locally compact space. In the following diagrams let the first
square be a pushout; then the second square is a pushout.

A
f //

i

��

B

ī

��
X

f̄
// Q

A× Y f× 1 //

i× 1

��

B× Y

ī× 1

��
X× Y

f̄× 1
// Q× Y

Proof As sets, Q = B⊔ (X \A), Q×Y = (B×Y)⊔ (X \A)×Y. So the only
problem is the topology on Q×Y. But since the map F : B⊔ X→ Q defined
by ī, f̄ is an identification map, so also is F × 1 : (B ⊔ X) × Y → Q × Y, by
4.3.2. This completes the proof. 2

The main utility of this result is that to specify a map Q × Y → Z it is
sufficient to give a commutative diagram

A× Y f× 1 //

i× 1

��

B× Y

j

��
X× Y

g
// Z

For further properties of adjunction spaces we refer the reader to §3 of
chapter IV of [Hu64] and also to [Mic66].

EXERCISES

1. Prove that the adjunction space B f⊔ X is a T1-space if B and X are T1-spaces.

2. Let X be a non-normal space. Prove that there are disjoint, closed subsets A,B

of X such that (X/A)/B is not Hausdorff.

3. Prove that R/Z does not satisfy the first axiom of countability.

4. Prove the following generalisation of 4.6.5: an adjunction space B (fλ)⊔ (Xλ)

is Hausdorff if for each λ in Λ (i) B and Xλ are Hausdorff, (ii) each x in Xλ \ Aλ

has a neighbourhood closed in Xλ and not meeting Aλ, (iii) Aλ is a neighbourhood

retract of Xλ.

5. Let X, Y be spaces and let x0 ∈ X, y0 ∈ Y. Prove that if P is the subspace



IDENTIFICATION SPACES AND CELL COMPLEXES [4.7] 131

X× {y0} ∪ {x0}× Y of X× Y then the square of inclusions

{(x0,y0)} //

��

{x0}× Y

��
X× {y0} // P

is a pushout square. Deduce that if x0,y0 are taken as base points of X,Y respec-

tively, then P is homeomorphic to X∨ Y.

6. Prove that an adjunction space B f⊔ X is normal if B and X are normal. Give an

example showing the converse is false. [Assume the Tietze Extension Theorem.]

7. Let the space X be the union of a family (Xi)i∈N of subspaces such that (i) for

each i ∈ N, Xi is a closed subset of Xi+1, (ii) a set C is closed in X if and only if

C ∩ Xi is closed in Xi for each i in N. Prove that if each Xi is a normal space, then

so also is X. [Assume the Tietze Extension Theorem.]

8. Let A be a closed subspace of X, and let f : A → B, g : B → C be maps. Prove

that the spaces

C g⊔ (B f⊔ X), C gf⊔X

are homeomorphic.

9. Let i : A → X, j : X → Y be inclusions of closed subspaces, and let f : A → B be

a map. Prove that the spaces

B f⊔ Y, (B f⊔ X) f̄⊔ Y

are homeomorphic.

10. Let A be a closed subspace of X and f : A→ B a map. Prove that the subspace

L = (B f⊔ X) × {0} ∪ B × I of M = (B f⊔ X) × I is homeomorphic to (B × I) f×1⊔
(X× {0} ∪A× I), where f× 1 : A× I→ B× I. Hence show that if X× {0} ∪A× I is

a retract of X× I, then L is a retract of M.

4.7 Cell complexes

In order to emphasise the intuitive ideas, we shall restrict ourselves to finite
cell complexes. Indeed the theory for infinite cell complexes involves, in the
main, arranging the topologies so that theorems and proofs for the finite
case carry over almost without change to the infinite case.

There are two useful ways of thinking about cell complexes: (a) con-
structive, (b) descriptive. In the first approach, we simply construct cell
complexes by starting in dimension −1 with the empty set ∅, and then at-
tach cells to ∅ in order of increasing dimension. In the second approach,
we suppose there is given a topological space X, and seek to describe X in
a useful way as the union of open cells. In both approaches, a vital role is
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played by the sequence of skeletons, the n-skeleton being the union of all
cells of dimension 6 n.

The constructive approach

We construct a sequence of spaces Kn such that Kn ⊆ Kn+1, n > −1. The
space K−1 is to be the empty set. Suppose that Kn−1 has been constructed.
We suppose given maps

fn1 , . . . , f
n
rn

: Sn−1 → Kn−1.

Then Kn is to be the adjunction space

Kn−1
fn1
⊔ En · · · fnrn⊔ En.

For n > 0, we allow the case r = 0, when Kn = Kn−1. In fact, since we
are dealing only with finite cell complexes, we shall assume that for some
N, Kn = Kn−1 for n > N, and define K = KN. Note that if K0 is empty, so
also is K.

Let us consider the intuitive picture, in low dimensions, of a non-empty
cell complex. The 0-skeleton K0 is a non-empty, finite, discrete space. The
1-skeleton K1 is formed by attaching to K0 a finite number (possibly 0) of
1-cells by means of maps f11, . . . , f

1
r1

: S0 → K0. Now S0 is the discrete space
{−1,+1}. So for each i = 1, . . . , r1 the map f1i is either constant or maps to
two distinct points of K0. Thus a representative picture for K1 is Fig. 4.17,
where the dots denote elements of K0.

Fig. 4.17

Next we form K2 by attaching a finite number of 2-cells to K1 by means
of maps f21, . . . , f

2
r2

: S1 → K1. It can be shown that if K1 has 1-cells (i.e., if
K1 6= K0) then there is an uncountable number of maps S1 → K1. It is even
possible to construct an uncountable set of spaces of the form I f⊔ E2, no
two of which are homeomorphic.
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The pictures in Fig. 4.18 are of two simple cell complexes of the form
E1

f⊔ E2, where K0 = {−1,+1}, K1 = E1. In (a), f[S1] = {+1}; in (b),
f[S1] = {0}.

(a) (b)
Fig. 4.18

It may be felt that, because of the wide latitude in the attaching maps,
cell complexes are bizarre spaces, and that the attaching maps should be
restricted in some way, for example to be the embeddings. However, many
important spaces, for example the projective spaces, have natural cell struc-
tures in which the attaching maps are not embeddings. Also we shall be
considering homotopies of attaching maps in chapter 7 and any restriction
on these maps would be inconvenient.

The burden of this section is that cell complexes are always ‘good’
spaces, although additional restrictions on the attaching maps might make
them ‘better’. In any case, by results of the last section, a cell complex is
always a compact, Hausdorff space.

The descriptive approach

We recall that an open n-cell (also called an n-ball) is a space e homeomor-
phic to the standard n-ball Bn. The dimension of e is the natural number
dim e = n. However the proof that this dimension is well-defined is non-
trivial, and depends on the Invariance of Dimension: if f : Rm → Rn is a
homeomorphism, thenm = n. Since Bn is homeomorphic to Rn, it follows
that if e is homeomorphic to Bm and to Bn then m = n; hence dim e is
well-defined.

An idea which occurred early in topology is that of a decomposition of
a space Q by open cells. In this, Q is given as the union

⋃
λ∈Λ eλ, where eλ

is an open nλ-cell and the sets eλ are disjoint.
The difficulty has always been what to do with such a decomposition,

since it gives relatively little information on the space Q. For example,
the ‘bad’ space Q of Exercise 1 of Section 4.5 has a decomposition with
two 0-cells, two 1-cells and one 2-cell. The two spaces of Fig. 4.19 have
decompositions with one 0-cell, and two 1-cells. Yet by simple local cut
point arguments they are not homeomorphic.
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Fig. 4.19

Let us consider what we are given with a decomposition by open cells,
Q =

⋃
λ∈Λ eλ. For each λ in Λ, there is a homeomorphism kλ : Bnλ → eλ.

Since dim eλ = nλ is uniquely defined, for each natural number n the n-
skeleton of Q is well-defined by

Qn =
⋃

nλ6n

eλ.

J. H. C. Whitehead realised that a satisfactory theory could be built by
assuming the extra condition that the homeomorphism kλ : Bnλ → eλ
extends to a map hλ : Enλ → Q such that hλ[Snλ−1] ⊆ Qnλ−1. This
ensures that eλ is part of the adjunction of a closed nλ-cell to Qnλ−1; it
takes us to the situation considered before and, from the technical point of
view, allows proofs by induction on the skeletons.

The last sentence is not quite correct. The reason for this is that if
the number of cells is infinite then the cells do not uniquely determine the
topology ofQ. For example, anyQ has a decomposition in which each point
of Q is a 0-cell. Therefore we restrict ourselves to the finite case, which
retains the geometric ideas without additional topological difficulties.

It is convenient in defining a cell complex to keep the above maps hλ as
part of the structure. It is also necessary to assume that Q is Hausdorff.

Let Q be a non-empty Hausdorff topological space. A cell structure on
Q is a finite set of maps

hλ : Enλ → Q, λ ∈ Λ,

called the characteristic maps. Let

eλ = hλ[B
nλ ].

The n-skeleton of the cell structure is

Qn =
⋃

nλ6n

eλ.
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Then we require that the characteristic maps satisfy:

CS1 hλ | Bnλ , eλ is a bijection.

CS2 the eλ are disjoint and Q =
⋃

λ eλ,

CS3 hλ[Snλ−1] ⊆ Qnλ−1.

A cell complex is a space Q with a cell structure on it. It is usual to denote
the cell complex simply by Q.

The space En is compact and Qn−1 is Hausdorff. Therefore Exercise 3
of Section 4.5 implies that Qn is homeomorphic to an adjunction space,

Qn−1
f1⊔ En · · · fn⊔ En

where fi is a map Sn−1 → Qn−1. This shows how the present definition
links with the constructive approach considered first.

Another easy consequence of the definition is that

eλ = hλ[E
nλ ] :

for the continuity of hλ implies that

hλ[E
nλ ] = hλ[Bnλ ] ⊆ hλ[Bnλ ];

on the other hand h[Enλ ] is a compact, and hence closed, set containing
eλ.

4.7.1 Let Q be a cell complex and g : Q→ X a function to a topological space

X. The following conditions are equivalent.

(a) g is continuous.

(b) ghλ is continuous for each characteristic map hλ.

(c) g | eλ is continuous for each cell eλ.

Proof Obviously (a)⇒ (b) and (a)⇒ (c). Also (c)⇒ (b) since hλ[Enλ ] =

eλ. Since Enλ is compact and Q is Hausdorff, the map hλ | Enλ , eλ is an
identification map.

To complete the proof we show that (b)⇒ (a). The proof is by induction
on the skeletons.

Since Q0 is discrete, g | Q0 is certainly continuous. But if g | Qn−1

is continuous, then by Exercise 3 of Section 4.5 so also is g | Qn. Since
Q = Qn for some n, it follows that g is continuous. 2

In order to extend the present theory to infinite cell complexes, it is
necessary to take the last result as one of the properties characterising the
topology of Q.
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The smallest integer n such that Q = Qn is called the dimension of the
cell complex Q. The methods which are used to prove the invariance of di-
mension can also prove that the dimension of a cell complex is a topological
invariant.

Our next result shows one of the ways in which cell complexes are ‘nice’
spaces.

4.7.2 If Q is a cell complex, then the following conditions are equivalent.

(a) Q1 is connected,

(b) Q is path-connected,

(c) Q is connected.

Proof Clearly, (b)⇒ (c). We prove also (c)⇒ (a)⇒ (b).

(c) ⇒ (a) The n-sphere Sn is connected for n > 1. Further Qn+1

is homeomorphic to a space obtained by attaching (n + 1)-cells to Qn.
Therefore by 4.6.4, if Qn+1 is connected and n > 1, then Qn is connected.
But Qn+1 = Q for some n. So the result follows by downward induction.

(a) ⇒ (b) By 4.6.3 and induction on the skeletons, if Q1 is path-
connected then so also is Q. So it is sufficient to prove the more general
result that each path-component of Q1 is both open and closed in Q1.

Let P be a path-component of Q1. If P contains no 1-cells of Q, the P
consists of an isolated point, which is certainly both open and closed in Q1.
We suppose then that P contains more than one point.

A point x of P must belong to ē1 for some open cell e1, for otherwise x
would be an isolated point. On the other hand, each ē1 is path-connected
(since it is the continuous image of E1) and so ē1 is either contained in or
disjoint from P. Therefore P is the union of a finite number of ē1, and so P
is closed.

We now prove P is open. Let x ∈ P. If x ∈ Q0, then the set N, consisting
of x and all open 1-cells e1 such that x ∈ ē1, is a path-connected neighbour-
hood of x, and so N ⊆ P. If x ∈ Q1 \Q0, then x belongs to some open 1-cell
e1; clearly e1 is contained in P, and therefore P is a neighbourhood of x. 2

Let Q be a cell complex with characteristic maps hλ, λ ∈ Λ. Let P be a
non-empty subset of Q and let M be the set of λ in Λ such that the image
of hλ is contained in P. For each λ in M, let gλ : Enλ → P be the restriction
of hλ : Enλ → Q. We say P is a subcomplex of Q if the characteristic maps
gλ, λ ∈M, form a cell structure on P. In this case P is covered by the open
cells eλ for λ inM and Q\P is covered by the open cells eλ for λ in M\Λ.

EXAMPLES

1. The n-skeleton Qn of Q is a subcomplex of Q.
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2. The intersection and the union of a family of subcomplexes of Q are
again subcomplexes of Q.
3. Let X be any subset of Q. Then the intersection of all subcomplexes of
Q containing X is the smallest subcomplex of Q containing X.

Let P, R be cell complexes and let f : P → R be a continuous function.
We say f is a cellular map if

f[Pn] ⊆ Rn, n > 0.

4.7.3 Let Q,R be cell-complexes, let P be a subcomplex of Q and let f : P → R

be a cellular map. Then the adjunction space R f⊔ Q can be given the structure

of a cell-complex.

Proof The open cells of R f⊔ Q are the open cells of R and ofQ\P. In order
to describe the characteristic maps, let f̄ : Q → R f⊔ Q, ī : R → R f⊔ Q be
the usual maps. Let hλ, λ ∈ Λ, be the characteristic maps of Q; gλ, λ ∈M,
those of P; and kν,ν ∈ N, those of R. If eν is an open cell of R, then its
characteristic map in R f⊔ Q is to be īkν. If eλ is an open cell of Q \P, then
its characteristic map in R f⊔ Q is to be f̄hλ.

The conditions CS1 and CS2 are obviously satisfied, as is CS3 for the
maps īkν, ν ∈ N. Since f is cellular, so also is f̄. Hence CS3 is satisfied for
the maps f̄hλ, λ ∈ Λ \M. 2

We now show that the product of cell complexes is a cell complex. Let
P,Q be cell complexes with characteristic maps fλ, λ ∈ Λ, gµ, µ ∈ M
respectively. Since P is the union of disjoint open cells eλ, and Q is the
union of disjoint open cells eµ, P×Q is the union of the disjoint sets eλ×eµ.
But eλ × eµ is an open (nλ + nµ)-cell. So the n-skeleton (P ×Q)n is well
defined and

Pm ×Qn ⊆ (P ×Q)m+n.

Suppose that eλ is an open m-cell of P, and eµ is an open n-cell of
Q. Let hmn : Em+n → Em × En be the homeomorphism constructed in
4.4.5—we recall that

hmn[S
m+n−1] = Sm−1 × En ∪ Em × Sn−1.

Let kλµ be the composite

Em+n hmn−→ Em × En fλ×gµ−→ P ×Q.

Then kλµ maps Bm+n bijection onto eλ×eµ and kλµ[Sm+n−1] is contained
in Pm−1×Qn∪Pm×Qn−1 which is itself contained in (P×Q)m+n−1. This
shows that the kλµ are characteristic maps for a cell structure on P ×Q.
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When exhibiting a space as a cell complex it is common practice to
write it simply as the union of open cells, and say afterwards what are the
characteristic maps. For example, the m-sphere has a cell structure with
one m-cell and one 0-cell, and we therefore write

Sm = e0 ∪ em.

Also, if em is an open m-cell of a cell complex Q with characteristic map
h : Em → Q, we make an abuse of language and call h | Sm−1,Qm−1 the
attaching map of em. In particular, we say that the cell em of Sm is attached
by the constant map.

Consider now Sm × Sn. If we take Sm = e0 ∪ em, Sn = e0 ∪ en, then
we can write

Sm × Sn = e0 ∪ em ∪ en ∪ em+n.

Here both em and en are attached by constant maps, so that e0 ∪ em ∪ en
is homeomorphic to Sm ∨ Sn. Thus Sm × Sn is, up to homeomorphism,
(Sm ∨ Sn) ∪ em+n. The attaching maps of the (m + n)-cell is a map w :

Sm+n−1 → Sm ∨ Sn called the Whitehead product map. [cf. Exercise 2 of
Section 5.7 for a generalisation of this map].

EXERCISES

1. Prove that the composite, and product, of cellular maps is cellular. Is the diago-

nal map Q→ Q×Q cellular?

2. Prove that if Q1,Q2 are cell complexes, then so also is Q1 ⊔ Q2.

3. Let Q,R be cell complexes, let i : P → Q be the inclusion of the subcomplex P of

Q, and let f : P → R be cellular. Prove that if K is a cell complex and i ′ : R → K,

f ′ : Q→ K are cellular maps such that i ′f = f ′i, then the unique map g : R f⊔Q→ K

such that gf̄ = f ′, ḡi = i ′ is cellular.

4. Read an account of the classification of surfaces [for example in [Cai61]] and

give cell structures for the normal forms of surfaces.

The following exercises outline a part of the theory of infinite cell complexes.

5. LetQ be a non-empty, not necessarily Hausdorff, space, and suppose given on Q

a cell structure {hλ}λ∈Λ in the sense of the definition on p. 124 except that Λ is not

supposed finite. We say Q is a CW-complex if the following axioms hold:

CW1 A set C ⊆ Qn is closed in Qn if and only if C ∩Qn−1 is closed in Qn−1 and

h−1
λ [C] is closed in En for each λ such that nλ = n.

CW2 A set C ⊆ Q is closed in Q if and only if C ∩Qn is closed in Qn for each n.

Let Λn = {λ ∈ Λ : nλ = n} and let Λn have the discrete topology. Define

q : Qn−1 ⊔ (Λn × En) → Qn to be x 7→ x on Qn−1 and (λ, e) 7→ hλe on Λn × En.

Prove that CW1 is equivalent to: Qn has the identification topology with respect to

q.

In the following exercises, Q denotes a CW-complex with cell structure {hλ}λ∈Λ.



IDENTIFICATION SPACES AND CELL COMPLEXES [4.7] 139

6. Prove that a function f : Qn → Y is continuous if and only if f | Qn−1 is con-

tinuous and fhλ : En → Y is continuous for each λ in Λ with nλ = n. Prove that

a function f : Q → Y is continuous if and only if f | Qn is continuous for each n.

Deduce that f : Q → Y is continuous if and only if fhλ is continuous for each λ in

Λ.

7. Let C be a closed subset of Q and g : C → I any map. Prove that g extends to

a map f : Q → I and thus prove that Q is normal. Prove that each point of Q is

closed, and hence show that Q is Hausdorff. [You may assume the Tietze extension

theorem.]

8. Prove that any compact subset of Q is contained in a finite union of cells eλ. [If

C ⊂ Q meets an infinite number of cells, choose points ci of C, i = 1, 2, . . . , which

lie in distinct cells eλi
. Define gci = 1/i and extend g over Q by Exercise 7.]

9. A CW-complex Q is said to be locally finite if each point x of Q has a neighbour-

hood N such that N is contained in a finite subcomplex of Q. Prove that Q is locally

finite if and only if it is, as a topological space, locally compact.

10. Prove that a CW-complex is a k-space. Prove that if P,Q are CW-complexes

then P ×Q, with the cell structure given in the present section, is a CW-complex if

and only if P ×Q is a k-space. Hence show that P ×Q is a CW-complex if P or Q

is locally finite. [Prove first that the weak product space P ×W Q of Exercise 12 of

Section 4.3 is always a CW-complex.]

NOTES

The idea of adjunction space is due to J. H. C. Whitehead, for whom the
concept evolved over a period of about ten years. I heard it said that he
took a year to prove that the product of CW-complexes one of which is
locally finite is also a CW-complex. The result 4.6.6 on the product of an
identification map is essentially due to Whitehead.

There are various books which deal with the case of infinite cell com-
plexes, that is, CW-complexes. For applications of these complexes in alge-
braic topology, see [Spa62] and [Whi78], as well as the basic paper on the
topic, [Whi49].

The fact that 4.6.6 is false without the locally compact assumption lead
R. Brown in his thesis ([Bro61]) to suggest Hausdorff k-spaces as an appro-
priate tool for topology. See also [Bro63], [Bro64] and section 5.9. Thus
4.6.6 gives one indication that the notion of topological space should not
be regarded as the final setting for the concept of continuity.
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Chapter 5

Projective and other spaces

5.1 Quaternions

In this section, we construct the algebra H of quaternions, and we show
that H is a field. The word field is here used in a slightly more general
sense than is usual, since the multiplication of H is non-commutative. In
fact, the term skew field is often used in this context.

As a set, and in fact as a vector space over R, H is just R× R3. Thus, if
q ∈ H then q = (λ, x) where λ is real and x is in R3; we call λ the real part

of q, x the vector part of q and write

Re (q) = λ, Ve (q) = x.

It is convenient to identify (λ, 0) with λ and (0, x) with x, and so to write

q = λ+ x.

We shall, as far as possible, keep this convention of using Greek letters for
the real part, and Roman letters for the vector part, of a quaternion. Thus
the addition and scalar multiplication of the vector space structure of H is
given by

(λ+ x) + (λ ′ + x ′) = λ+ λ ′ + x+ x ′.

λ ′(λ+ x) = λ ′λ + λ ′x.

We now define a distributive multiplication on H. To do this it suffices to
define the product xy of vectors, since the product of quaternions q = λ+x,
r = µ+ y must then, by distributivity, be defined by

qr = λµ+ λy+ µx+ xy (5.1.1)

141
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However, xy will not be a vector—in terms of the usual scalar and vector
product in R3 we set

xy = −x · y+ x× y (5.1.2)

The scalar and vector product of vectors are bilinear. It follows from
this and (5.1.1), (5.1.2) that multiplication of quaternions is bilinear—that
is, for any quaternions q, r, s and real number λ

q(r + λs) = qr+ λ(qs),

(r+ λs)q = rq+ λ(sq).
(5.1.3)

One of the points of definition (5.1.2) is that it replaces the non-
associative vector product by an associative product. By well-known rules

x(yz) = x(−y · z + y× z)
= −(y · z)x − x · y× z+ x× (y× z)
= −x · y× z − (y · z)x+ (x · z)y − (x · y)z

and a similar computation gives the same value for (xy)z. Hence x(yz) =
(xy)z. It follows from this and (5.1.1) that for any quaternions q, r, s

q(rs) = (qr)s;

that is, multiplication of quaternions is associative.
A vector a of R3 is a unit vector if a · a = 1; this is clearly equivalent to

a2 = −1. Two vectors a,b are orthogonal, that is a · b = 0, if and only if
ab is a vector. In such case

ab = a× b = −b× a = −ba.

Conversely, if ab = −ba, then by (5.1.2) a · b = 0 and so a and b are
orthogonal.

The ordered set a,b, c of vectors is said to form a right-handed or-

thonormal system if a,b, c are of unit length, are mutually orthogonal, and
a× b = c.

5.1.4 The set of vectors a,b, c is a right-handed orthonormal system if and

only if

(a) a2 = b2 = c2 = −1,

(b) abc = −1.

Proof Condition (a) holds if and only if a,b, c are of unit length. If further
a,b are orthogonal and a× b = c, then

−1 = c2 = (a× b)c = abc.
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Conversely, given (a) and (b), then

ab = −abc2 = c.

Thus ab is a vector and so a · b = 0, a× b = c. Clearly c is orthogonal to a
and b. 2

Suppose that a,b, c form a right-handed orthonormal system. Then
clearly

ab = c = −ba, bc = a = −cb, ca = b = −ac. (5.1.5)

Now any vector x of R3 can be written uniquely as

x = x1a+ x2b+ x3c, x1, x2, x3 ∈ R.

Therefore, the product xy of vectors is determined uniquely by 5.1.4(a),
(5.1.5) and the condition of bilinearity—in fact, these rules imply the ex-
pression (5.1.2) for xy. Now any quaternion q can be written uniquely
as

q = q0 + q1a+ q2b+ q3c, qi ∈ R.

The rules given allow us to work out the product of q and q ′ = q ′
0 + q

′
1a+

q ′
2b+ q

′
3c—we write out the complete formula for the one and only time:

qq ′ = q0q
′
0 − q1q

′
1 − q2q

′
2 − q3q

′
3

+(q0q
′
1 + q1q

′
0 + q2q

′
3 − q3q

′
2)a

+(q0q
′
2 + q2q

′
0 + q3q

′
1 − q1q

′
3)b

+(q0q
′
3 + q3q

′
0 + q1q

′
2 − q2q

′
1)c.

(5.1.6)

The real number 1 acts on the quaternions as identity: 1q = q1 = q for
any quaternion q. We prove that for any non-zero quaternion q there is a
quaternion q−1 such that qq−1 = q−1q = 1.

Let q = λ + x. The conjugate of q is defined by

q̄ = λ− x.

If x,y are vectors then

xy = x · y− x× y
= y · x+ y× x
= yx

= ȳx̄.

It follows from this and (5.1.1) that for any quaternions q, r,

qr = r̄q̄. (5.1.7)
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Notice also that q+ r = q̄+ r̄ and that if λ is real then λq = λq̄.
Let |x| denote, as usual, the square root of x · x. Then, if q = λ + x, we

have

qq̄ = λ2 + x · x = q̄q. (5.1.8)

So we may define the modulus of q to be

|q| = (qq̄)
1
2 .

Thus |q| is the Euclidean norm of q when q is considered as an element of
R4 (under the identification R× R3 = R4).

Let q, r ∈ H. Then

|qr|2 = (qr)(qr) = qrr̄q̄

= q|r|2q̄ = qq̄|r|2

= |q|2|r|2.

This proves the important rule

|qr| = |q||r|.

Clearly, q = 0 if and only if |q| = 0. Therefore, if q 6= 0

q(q̄/|q|2) = (q̄/|q|2)q = 1;

so we write q−1 = q̄/|q|2, and call this quaternion the inverse of q.

The quaternions satisfy all the usual axioms for a field, except that the
multiplication is not commutative. We also regard H as carrying the struc-
tures of vector space over R, the conjugation function q 7→ q̄, the modulus
q 7→ |q| and also the topology induced by this modulus (this topology is, of
course, the usual topology for R × R3). Thus H, like R and C, has a rich
structure and this is its advantage and interest.

For any unit vector x the set of quaternions λ + µx for λ,µ ∈ R is
a subfield of H isomorphic to the complex numbers under the function
λ + µx 7→ λ + µi. In particular, if we let i be the vector (1, 0, 0) of H and
identify i with the complex number i, then we can regard C as a subfield
of H. We emphasise, however, that the elements of C do not commute with
the elements of H since, if j is the vector (0, 1, 0) of H, then ij = −ji.

There are two generalisations of the quaternions. The Cayley numbers,
or octonions, O, are the elements of R8 with a distributive multiplication
with identity which also satisfies |xy| = |x||y|, x,y ∈ R8. Also, for any x 6= 0

in R8, there is an element x−1 such that xx−1 = x−1x = 1. However, this
multiplication is non-associative. An account of the Cayley numbers, and
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also a proof that the only multiplications on Rn which are bilinear and satisfy
|xy| = |x||y|, are for n = 1, 2, 4, 8, and in these cases the resulting algebras are

isomorphic to R,C,H, and O, is given in [Alb63] (cf. also [Kur63]).
A multiplication on Rn is said to have divisors of zero if there are non-

zero elements x,y of Rn such that xy = 0. It is true that Rn has a bilinear

multiplication with no divisors of zero only for n = 1, 2, 4, or 8. [cf. [Mil58].]
A different type of generalisation of the quaternions is the sequence of

Clifford algebras Cn, n > 1. These are associative, but have divisors of zero
for n > 2. They are closely related to orthogonal transformations of Rm.
For an account of octonions and Clifford algebras, see [Por69].

EXERCISES

1. Let q be a quaternion and let y be a vector orthogonal to Ve(q). Prove that

qy = yq̄.

2. Let q, r be quaternions such that |q| = |r|, Req = Re r. Prove that there is a unit

quaternion s such that qs = sr.

3. Let y be a unit vector. Prove that the mapping R3 → R3 given by x 7→ yxy is

reflection in the plane through the origin and perpendicular to y.

4. For any quaternion q, let Lq : H → H be the function x 7→ qx. Prove that Lq is

R-linear and that

LqLq̄ = |q|2L1.

Let Lq denote also the 4 × 4 real matrix of Lq with respect to a basis 1, a,b, c of H
where a,b, c is a right-handed orthonormal set. Prove that Lq̄ is the transpose of

Lq and deduce that det(Lq) = |q|4.

5. Since C is a subfield of H, we can regard H as a right vector space over C. Prove

that H is of dimension 2 over C with basis 1, j (where j = (0, 1, 0)). Prove that the

function Lq : H → H of the previous exercise is C-linear and that if q = z + jw

(z,w ∈ C) then Lq has matrix

Mq =

[
z −w̄

w z̄

]

Prove that Mq′Mq = Mqq′ . Hence such that H is isomorphic to the vector space

C2 over C with multiplication given by

(z ′,w ′)(z,w) = (z ′z− w̄ ′w,w ′z+ z̄ ′w).

6. An integer n is said to be a 4-square if there are integers n1,n2,n3,n4 such that

n = n2
1 + n

2
2 + n

2
3 + n

2
4. Prove that the product of 4-square integers is 4-square. [It

may be proved also that any prime number is 4-square.]

7. Let a,b, c be quaternions. Prove that the equation

aq+ qb = c

has a unique solution for q if 2aRe (b) + a2 = |b|2 6= 0.
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5.2 Normed vector spaces again

Let K denote one of the fields R,C, or H. We write d = d(K) for the
dimension of K as a vector space over R, so that

d(R) = 1, d(C) = 2, d(H) = 4. (5.2.1)

Let V be a vector space over K. The theory of linear dependence, bases
and dimension of V is usually given for the case K is commutative and
V is a left vector space over K. However, the change from left to right
vector spaces is purely formal, and the usual proofs of the basis theorems
do not use the commutativity of the field. We therefore assume this theory
as known. The reason for using right vector spaces will be clear later when
discussing the matrix of a linear transformation.

An example of a finite dimensional vector space over K is of course Kn;
the standard ordered basis of Kn consists of the elements e1, . . . , en where
the j-th coordinate of ei is δij. Any n-dimensional vector space over K is
isomorphic to Kn.

Now R is a subfield of K and so Kn can be considered as a vector space
over R. The dimension of this vector space is nd: as vector spaces over R,
K is isomorphic to Rd, whence, by associativity, Kn is isomorphic to Rnd.

Let V be a vector subspace (over K) of Kn. If we consider Kn as a vector
space over R, then V is also a vector subspace over R. We distinguish
the two notions of a subspace as K-subspace and R-subspace respectively.
This distinction is necessary since when K 6= R not all R-subspaces are
K-subspaces.

Thus C2 is a vector space of R-dimension 4. Any C-subspace of C2 is of
R-dimension 0, 2, or 4, but there are R-subspaces of C2 of R-dimension 1 or
3. It is not even true that every 2-dimensional R-subspace is a C-subspace.
For example, the R-subspace U spanned by (1, 0) and (0, i) contains (1, 0),
but not (i, 0). Therefore, U is not a C-subspace of C2.

For the rest of this section let V be a finite dimensional normed vector
space over K. Then V is also a finite dimensional normed vector space over
R; therefore, any two norms on V are equivalent [Exercise 12 of Section
3.5], and any linear function from V to a normed vector spaceW is contin-
uous. (We are here assuming a theorem not proved in the text—the reader
who does not wish to use this theorem may instead assume that V has, for
example, the Euclidean norm with respect to some basis.)

If V is n-dimensional over K, then V is nd-dimensional over R, and so
[cf. Exercise 11 of Section 2.8] there are homeomorphisms

E(V) ≈ End, B(V) ≈ Bnd, S(V) ≈ Snd−1.
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The intersection of anm-dimensional K-subspaceU with S(V) is the sphere
S(U), which we call a great K-sphere in S(V); here S(U) is homeomorphic
to Smd−1.

Let U be a K-subspace of V . We can, by choosing a basis for U and
extending it over V , find a linear function p : V → V such that pp = p and
Imp = U. If q = 1 − p, then q is linear and U = q−1[0]. Therefore U is
closed in V . Also, if Uc = p−1[0], then V is the direct sum U⊕Uc—we call
Uc a complementary subspace of U.

We end this section with a remark on the special case V = Kn with
the Euclidean norm. An element ϕ ∈ K can be written as a d-tuple
(ϕ1, . . . ,ϕd) of elements of R, and an element of Kn is an n-tuple
(ϕ1, . . . ,ϕn) of elements of K. The forementioned isomorphism Φ : Kn →
Rnd of vector spaces over R is simply

(ϕ1, . . . ,ϕn) 7→ (ϕ1
1,ϕ

1
2, . . . ,ϕ

n
d).

Since |ϕ|2 = |ϕ1|
2 + · · · + |ϕd|

2, this isomorphism is norm preserving, that
is, |Φ(x)| = |x|. Therefore, in this case, it is reasonable to identify E(Kn)

with End, B(Kn) with Bnd, and S(Kn) with Snd−1.

5.3 Projective spaces

Let V be an (n + 1)-dimensional normed vector space over K. We write V∗

for V \ {0}.
By a line in V∗ is meant the set U∗ = U \ {0} for any K-subspace U of

V of dimension 1. More precisely, this is a line in V through the origin 0

but with 0 excluded; however we shall have no need of other lines. The
exclusion of 0 is a technical convenience for describing the topology on the
set of lines.

If x ∈ V∗, we write px for the line in V∗ spanned by x, that is,

px = {xϕ : ϕ ∈ K∗}.

If l is any line in V∗ and x ∈ l then l = px.
The projective space of V is P(V), the set of all lines in V∗. In particular,

if V = Kn+1 (with the Euclidean norm) then P(V) is written Pn(K) and is
called n-dimensional projective space over K.

We relate this definition of Pn(K) with the common definition in terms
of homogeneous coordinates. It is often said that a point in Pn(K) is given
by homogeneous coordinates [x1, . . . , xn+1] where xi ∈ K, not all of the xi
are 0, and the convention is made that for any ϕ ∈ K∗

[x1ϕ, . . . , xn+1ϕ] = [x1, . . . , xn+1].
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This is the same as saying that the homogeneous coordinates of a point is
the set of (n+ 1)-tuples (x1ϕ, . . . , xn+1ϕ) for all ϕ ∈ K∗. This set is simply
px where x = (x1, . . .xn+1). Thus the two definitions of projective space
agree.

The fundamental map is the function

p : V∗ → P(V)

x 7→ px.

Clearly, p is a surjection. We give P(V) the identification topology with
respect to p.

5.3.1 The fundamental map is an open map.

Proof Let A be open in V∗. We prove that p−1p[A] is open in V∗. Now
p−1p[A] is the union of the sets Aϕ = {aϕ : a ∈ A} for all ϕ ∈ K∗. So we
have only to show that each such Aϕ is open.

Let xϕ ∈ Aϕ so that x ∈ A. Then B(x, r) ⊂ A for some r > 0. This
implies that B(xϕ, r|ϕ|) ⊆ Aϕ—hence Aϕ is open. 2

5.3.2 If U is any K-subspace of V , then P(U) is a closed subspace of P(V).

Proof Any line in U∗ is also a line in V∗—therefore P(U) is a subset of
P(V). Further, the fundamental map pV : V∗ → P(V) sends U∗ onto P(U).
Now U∗ is a closed, saturated subset of V∗. Therefore by 4.3.1 (Corollary
1) the restriction pV | U∗,P(U) is an identification map. 2

5.3.3 Let U,W be K-subspaces of V such that V = U ⊕ W and W is of

K-dimension 1. Then U† = P(V) \ P(U) is homeomorphic to U.

Proof Letw be a non-zero element ofW. Each element of V can be written
uniquely in the form x+wϕ where x ∈ U and ϕ ∈ K; and x+wϕ belongs
to U if and only if ϕ = 0.

The inverse image of U† under the fundamental map p is the open set
V∗\U∗. Let r : V∗\U∗ → U be defined by r(x+wϕ) = xϕ−1, x ∈ U,ϕ ∈ K.
Then r is continuous and r(v) = r(vψ) for any v ∈ V∗ \ U∗, ψ ∈ K∗.
Therefore r defines a map r ′ : U† → U such that r ′p = r, since V∗\U∗ → U†

is an identification map, by 4.3.1.

Let q : U→ U† be defined by x 7→ p(x +w). Then q is continuous and
r ′q = 1, qr ′ = 1 [cf. Fig. 5.1.] 2
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W

w xϕ−1 +w
U+w

x+wϕ

U 0 xϕ−1

Fig. 5.1

Remark As a special case of the last result, let V = Kn+1, U = Kn × {0},
and let us identify P(U) with Pn+1(K). We can then state 5.3.3 as: Pn(K) is
obtained from the n-dimensional space U by adding ‘at infinity’ a projective
(n − 1)-space Pn−1(K). The reason for the words ‘at infinity’ here are that
if ϕ tends to 0, then p(x + wϕ) tends to the point px of P(U), while the
corresponding point xϕ−1 of U ‘tends to infinity’.

5.3.4 P(V) is a Hausdorff space.

Proof By 5.3.3, it is sufficient to prove that any two (distinct) points of
P(V) belong to a set U† for U a K-subspace of V of dimension n.

Let px,py be distinct points of P(V). Let x1, . . . , xn+1 be a basis for V
such that x1 = x, x2 = x + y, and let U be the K-subspace spanned by
x2, x3, . . . , xn+1. Clearly U is of dimension n, and x,y ∈ V∗ \ U∗, so that
px,py ∈ U†. 2

Remark The preceding results extend on the whole to the case that V is of
infinite dimension. The main difficulty that occurs is that a subspace U of
V need not be closed in V , and that even if U is closed there may not be
a continuous projection map p : V → V such that pp = p and Imp = U.
However, it is a consequence of the Hahn-Banach theorem [cf. [Sim63]]
that, if U is a finite dimensional subspace of V , then such a projection map
does exist, and this is the essential fact for the previous proofs.

5.3.5 P(V) is a path-connected, compact space.

Proof If dimV = 1, then P(V) has only one point and so is path-connected.
If dimV > 1, then V∗ is path-connected, and hence so also is P(V).

The sphere S(V) is homeomorphic to Sd(n+1)−1 and so is compact. If
px is a point of P(V) then px = p(x|x|−1), and x|x|−1 ∈ S(V). Therefore p
maps S(V) onto P(V), whence P(V) is compact. 2
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The map hV = p | S(V) : S(V) → P(V) is called the Hopf map of V . Its
role in describing the structure of projective spaces is shown by the next
result.

5.3.6 Let U be a K-subspace of V of dimension n. There is a homeomorphism

P(V)→ P(U) h⊔ E(U).

Proof We have already seen that U† = P(V) \ P(U) is homeomorphic to U;
but it is difficult from this to see howU† is attached to P(U) since there is no
more of U to describe the attaching. However there is a homeomorphism

g : B(U)→ U,

x 7→ x(1− ‖x‖)−1.

Let q : U → U† be the map x 7→ p(x + w) of 5.3.3, where w is a point of
V \U. Then if x ∈ B(U)

qg(x) = p(x(1− ‖x‖)−1 +w)

= p(x+w(1 − ‖x‖)),

and this suggests considering the map

f : E(U)→ P(V)

x 7→ p(x+w(1 − ‖x‖)).

Clearly, f | S(U),P(U) is the Hopf map x 7→ p(x), while

f | B(U),P(V) \ P(U) = qg

which is a homeomorphism. Since E(U) is compact, and P(V) is Hausdorff,
the theorem follows from 4.5.8. 2

As an important corollary we have:

5.3.7 Projective n-space Pn(K) has a cell structure in which

Pn(K) = e0 ∪ ed ∪ e2d ∪ · · · ∪ end.

Proof The proof is by induction. The result is clearly true for n = 0, since
P0(K) consists of a single point. Suppose the result is true for n − 1. Let
U = Kn× {0}, let k : Edn → E(U) be a homeomorphism, and let f : E(U)→
Pn(K) be the map constructed in the proof of 5.3.6. Then we can take
fk : Edn → Pn(K) as characteristic map for the dn-cell of Pn(K). 2
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The case n = 1 of 5.3.7 is particularly simple. A cell complex e0 ∪ ed is
homeomorphic to Sd; hence there is a homeomorphism

P1(K)→ Sd.

The attaching map of the n-cell in 5.3.7 is the Hopf map h : Snd−1 →
Pn−1(K) (provided we identify Pn−1(K) and P(Kn × {0})). The inverse
images of h of points of Pn−1(K) are exactly the intersection of S(Kn) =

Snd−1 with lines in Kn; each such sphere is a great K-sphere, and a fortiori

a great R-sphere, homeomorphic to Sd−1; these spheres are disjoint and
cover Snd−1. This is represented symbolically by the diagram

Sd−1 → Snd−1 h−→ Pn−1(K).

In particular, let n = 2. We have a covering of S2d−1 by disjoint great
K-spheres homeomorphic to Sd−1. The identification space determined by
this covering is homeomorphic to P1(K) and so to Sd. Therefore we have a
diagram

Sd−1 → S2d−1 → Sd

in which the map S2d−1 → Sd is also called a Hopf map, and is written h.
The previous constructions can be followed through in detail to give a

formula for h : S2d−1 → Sd, but it is a rather complicated one. It is better
to define maps a,b

Sd
b←− Ed a−→ P1(K)

(sϕ, 1 − 2t2) 7→tϕ 7→ p(ϕ,
√

(1− t2))

where s = 2t
√
(1− t2), 0 6 t 6 1, ϕ ∈ K and |ϕ| = 1. Then ax = ay if and

only if bx = by. Therefore a and b define a homeomorphism P1(K)→ Sd.
We leave the reader to check that the composite S2d−1 → P1(K)→ Sd is

S2d−1 → Sd

(ϕ,ψ) 7→ (2ϕψ, |ψ|2 − |ϕ|2)
(5.3.8)

where ϕ,ψ are elements of K such that |ϕ|2 + |ψ|2 = 1.
In particular, let K = R, and identify R2 with C. Then the map (5.3.8)

is identical with S1 → S1, z 7→ −iz2.

EXERCISES

1. Let V be a normed vector space over K and let x,y in V be of modulus 1. Prove

that if r = dist(x,py), and s = r/(r + 2), then the two sets B(x, s),B(y, s) are

mapped into disjoint open neighbourhoods of px, py by p : V∗ → P(V).
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2. If U is a K-subspace of V of dimension m + 1, then P(U) is called an m-

dimensional projective subspace of P(V). Prove that if P1,P2 are projective sub-

spaces of P(V), then, under the ordering of subspaces by inclusion, P1,P2 have a

least upper bound P1 ∨ P2 and a greatest lower bound P1 ∧ P2, and that

dimP1 + dimP2 = dimP1 ∧ P2 + dim P1 ∨ P2.

3. Prove that if V = Rn, then V∗ is homeomorphic to R× Sn−1.

4. Let Hn,p,q denote the ‘quadric’ in Rn defined by the equation

x21 + x
2
2 + · · ·+ x2p − x2p+1 − · · ·− x2p+q = 1 (p + q 6 n).

Prove that Hn,p,q is homeomorphic to Sp−1 × Rn−p.

5. Let H ′
n,p denote the ‘quadric’ in Pn(R) defined by the equation in homogeneous

coordinates

x20 + x
2
1 + · · ·+ x2p−1 − x

2
p − · · ·− x2n = 0 (1 6 p 6 n).

Prove that H ′
n,1 and H ′

n,n are homeomorphic to Sn−1; for 2 6 p 6 n − 1, H ′
n,p is

homeomorphic to the subspace obtained by identifying each point (y, z) of Sp−1 ×
Sn−p with its opposite (−y,−z). Prove that every point H ′

n,p has a neighbourhood

homeomorphic to Rn−1. Prove also that H ′
3,2 is homeomorphic to S1 × S1.

6. A topological group consists of a topological space G and a group structure on G

such that the function G×G, (x,y) 7→ xy−1, is continuous. Prove that K∗ and S(K)

are topological groups.

7. An action (or operation) of the topological group G on the right of a space X is a

function X×G→ X, written (g,g) 7→ xg, such that if e is the identity element of G

then (i) xe = x for all x in X, (ii) if x ∈ X, g,h ∈ G, then x(gh) = (xg)h. Given such

an action, the orbit space of X is the space X/G whose elements are the equivalence

classes under the relation x ∼ y ⇔ there is a g in G such that xg = y; the topology

of X/G is the identification topology with respect to the projection p : X → X/G.

Prove that p is an open map. Show that 5.3.1 is a consequence (when G = K∗,

X = V∗).

8. Let U,U† be as in 5.3.3. Prove that there is a commutative diagram

U† ×K∗
s //

p1

��

V∗

p

��
U†

i
// P(V)

in which s is an embedding, i is the inclusion and p1 is the projection of the product.
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5.4 Isometries of inner product spaces

The object of this section is to give a brief description of some spaces of
isometries—these spaces are among the central objects of mathematics.

Since there are very good treatments of inner product spaces available
(e.g., [Hal60], [Por69], [Sim63]) we shall state without proofs the results
we need. But first we want to record a remark about matrices over a non-
commutative field.

Let V be a (right) vector space over K, let f : V → V be a linear function
and let v1, . . . , vn be a basis for V . Then for i = 1, . . . ,n we can write

fvj =

n∑

i=1

vifij

where the elements fij belong to K. The function (i, j) 7→ fij is an n × n
matrix f̃ over K. Suppose further g : V → V is linear with matrix g̃. Then it
is easy to check that

gfvj =
∑

h,i

vhghfij

and it follows that g̃f, the matrix of gf, is the product g̃f̃ of the matrices of
g and f. This result is false for left vector spaces over a non-commutative
field.

Let V be a (right) vector space over K. An inner product on V is a
function

V × V → K

(x,y) 7→ (x | y)

satisfying the following axioms: (all x,y, z ∈ V , ϕ ∈ K).

IPS 1 (x | y+ z) = (x | y) + (x | z),
IPS 2 (x | yϕ) = (x | y)ϕ,
IPS 3 (x | y) = (y | x),
IPS 4 x 6= 0⇒ (x | x) > 0.

These are the usual axioms for an inner product with due allowance
made for the fact that we have right instead of left vector spaces. It is easy
to prove from the axioms that | | defined by |x| =

√
(x | x) is a norm on V .

The standard inner product on Kn is defined by

(x | y) =

n∑

i=1

ϕiψi
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for x = (ϕ1, . . . ,ϕn), y = (ψ1, . . . ,ψn).

Let x,y ∈ V . We say x,y are orthogonal if (x | y) = 0. A subset X of
V is a orthogonal set if any two distinct elements of X are orthogonal; and
X is an orthonormal set if it is orthogonal and each x in X satisfies |x| = 1.
In particular, an orthonormal basis for a subspace U of V is an orthonormal
set which is also a basis for U. If X is a subset of V , then X⊥ is the subspace
of V of all y such that (y | x) = 0 for all x in X.

We now state without proof the basic results on inner product spaces.

5.4.1 If U is a vector subspace of V with a finite orthonormal basis, then V
is the direct sum of U and U⊥.

5.4.2 If V is finite dimensional then V has an orthonormal basis.

Let W be another inner product space. A function f : V → W is called
an isometry if (a) f is a (linear) isomorphism of vector spaces, (b) for all
x,y in V , (fx | fy) = (x | y).

5.4.3 Let f : V → W be a linear isomorphism. The f is an isometry
⇔ |fx| = |x| for all x ∈ V .

5.4.4 Let v1, . . . , vn be a an orthonormal basis for V . (a) If f : V → W is
linear then fv1, . . . , fvn is an orthonormal basis for W if and only if f is an
isometry. (b) If w1, . . . ,wn is an orthonormal basis for W, then there is a
unique isometry f : V →W such that fvi = wi, i = 1, . . . ,n.

5.4.5 If V is n-dimensional, then there is an isometry f : V → Kn.

5.4.6 Let f : V → V be linear, let v1, . . . , vn be an orthonormal basis for V
and let A be the matrix of f with respect to this basis. Then f is an isometry

if and only if A
t
A = I (where I is the unit matrix).

The set of all isometries V → V is written G(V)—it is clear that G(V) is
a group under composition.

Let Mn(K) denote the (right) vector space of all n × n matrices over
K. Then Mn(K) is isomorphic to Kn2

and this isomorphism determines
an inner product structure on Mn(K)—thus Mn(K) becomes a topological
space. With this topology, the product functionMn(K)×Mn(K)→Mn(K)

which sends (A,B) 7→ AB is continuous since it is R-bilinear [Example 13
of Section 2.8].
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The group G(Kn) will be identified with the topological subspace of

Mn(K) of matrices A such that A
t
A = I. The group G(K) is particularly

simple. If [ϕ] is a 1× 1 matrix, then

[ϕ] ∈ G(K)⇔ ϕϕ = 1⇔ |ϕ| = 1.

Therefore G(K) is homeomorphic to the sphere S(K) = Sd−1.

If K is commutative, that is, if K = R or C, then the determinant func-

tion det : Mn(K) → K is defined. If A ∈ G(Kn), then A
t
A = I and it

follows easily that ϕ = detA satisfies ϕϕ = 1. Hence det defines a mor-
phism of groups

det : G(Kn)→ S(K).

The kernel of this morphism, that is the set ofA inG(Kn) with determinant
+1, is called the special group of isometries and is written SG(Kn).

The groups G(Kn) are given particular names in the three cases K = R,
C, or H.

(a) G(Rn) is called the orthogonal group and is written O(n). In this case
det is a morphism O(n) → {−1,+1}, and the special orthogonal group
SO(n) is also called the group of rotations of Rn.

(b) G(Cn) is called the unitary group and is written U(n). In this case, det
is a morphism U(n)→ S1 whose kernel is SU(n).

(c) G(Hn) is called the symplectic group and is written Sp(n). (There is
another family of groups, the group of spinors and special spinors—these
groups are written Pin(n) and Spin(n) and are closely related to O(n) and
SO(n) respectively; cf. [Por69].)

These three families of groups are related. In fact, Cn is isomorphic as
normed vector space over R to R2n; hence, by 5.4.3, any isometry f : Cn →
Cn defines an isometry λn(f) : R2n → R2n. So λn defines an injection
morphism of groups

λn : U(n)→ O(2n).

5.4.7 There is an isomorphism of groups

µ : S1 → SO(2).

Proof Let µ be the composite of λ1 with the isomorphism S1 → U(1) de-
fined previously. Let R2 have R-basis the complex numbers 1, i. If z ∈ S1,
then µ(z) is the function R2 → R2, x 7→ zx. So if z = cosα+ i sinα, we find
that µ(z) has matrix [

cosα − sinα
sinα cosα

]
.
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On the other hand, it is easily checked (using the equations A−1 = At,
detA = 1) that any element A of SO(2) must be of this form. 2

A similar argument works for H and C: since Hn is isomorphic as
normed vector space over C to C2n, there is an injective morphism of
groups Sp(n)→ U(2n).

5.4.8 There is an isomorphism of groups

S3 → SU(2).

The proof is similar to that of 5.4.7 and is left to the reader.

Next we show how to determine SO(3) in terms of S3. We first need to
show that every element of SO(3) is a rotation about an axis.

5.4.9 Let f ∈ SO(3). Then there is an orthonormal basis a,b, c for R3 such

that with respect to this basis f has matrix




1 0 0

0 cosα − sinα

0 sinα cosα


 .

Proof Let A be the matrix of f with respect to some orthonormal basis. Let
AtA = I and detA = 1. Hence At(A − I) = I− At and so

det(A − I) = detAt(A − I)

= det(I −At)

= − det(A − I).

Therefore det(A − I) = 0. Hence there is a non-zero element a of R3, such
that (A− I)a = 0, that is fa = a. Replacing a by a/|a| if necessary, we may
suppose |a| = 1.

Let b, c be an orthonormal basis of the plane U through the origin and
orthogonal to a. Since f is an isometry and fa = a, we have f[U] ⊆ U.
Therefore g = f | U,U is defined and is an isometry. The equation fa = a
implies that detg = det f = 1. Therefore g has matrix with respect to b, c

[
cosα − sinα

sinα cosα

]

and the matrix for f follows. 2

The form of the matrix of 5.4.9 shows that f is a rotation through angle
α about the axis a.
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5.4.10 There is a surjective morphism

ν : S3 → SO(3)

with kernel the quaternions +1,−1.

Proof Let q be a unit quaternion, and let x ∈ R3. Define

r = qxq̄.

Then

2Re(r) = r + r̄

= qxq̄+ qx̄q̄

= q(x + x̄)q̄

= 0 since Re(x) = 0.

Therefore r is a vector. It follows that x 7→ qxq̄ defines a function νq :

R3 → R3—clearly νq is linear. It is also an isomorphism since it has inverse
x 7→ q̄xq.

Let x ∈ R3. Then

|νqx| = |qxq̄| = |q||x||q̄| = |x|.

Therefore νq is an isometry.

In fact, we can find a formula for νq.

Suppose q = cosα + a sinα where a is a unit vector. Let a,b, c be a
right-handed orthonormal system in R3. Then an easy check shows that

νqa = a

νqb = b cos 2α+ c sin 2α (*)

νqc = −b sin 2α+ c cos 2α.

Therefore νq is a rotation about the axis a through an angle 2α. In partic-
ular, νq belongs to SO(3) and any element of SO(3) is of the form νq for
some q in S3.

The function ν is a homeomorphism, since if q, r ∈ S3, then

νqr(x) = qr x qr

= qr x r̄q̄

= νqνr(x).
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It follows that νq = νr ⇔ νqr−1 = 1. If q = cosα + a sinα, then it
follows from (*) that νq = 1 if and only if α = nπ, n ∈ Z. Therefore,
νq = 0⇔ q = ±1, and so νq = νr ⇔ q = ±r. 2

5.4.10 (Corollary 1) There is a homeomorphism

SO(3)→ P3(R).

Proof The space SO(3) is Hausdorff since it is a subspace of the normed
vector space M3(R). Since S3 is compact, and ν is continuous, the space
SO(3) is obtained, like P3(R), by identifying antipodal points of S3. 2

This result gives, of course, a cell structure for SO(3). In fact, cell struc-
tures have been given for all the coset spaces G(Kn)/G(Km), 0 6 m < n;
for an excellent account of this, see [SE62].

EXERCISES

1. Prove the assertions 5.4.1—5.4.6.

2. Prove that G(Kn) is closed, bounded subset of Mn(K). Deduce that G(Kn) is

compact. [Use the equation A
t
A = I.]

3. Let an be the point (0, . . . , 0, 1) of Kn. Define

ρn : G(Kn)→ S(Kn), f 7→ fan.

Prove that ρn is continuous and surjective, and that ρ−1
n [an] is a subgroup of G(Kn)

isomorphic to G(Kn−1). Prove also that if K is commutative then ρn restricts to

a continuous surjection qn : SG(Kn) → S(Kn) such that q−1
n [an] is a subgroup of

SG(Kn) isomorphic to SG(Kn−1).

4. Prove that the groups SO(n), SU(n), U(n), Sp(n) are connected. [Use the pre-

vious result and induction.]

5. Let U,V be two vector subspaces of Kn of the same dimension. Prove that there

is an isometry σ : Kn → Kn such that σ[U] = V. Prove also that if x,y ∈ Sn−1, then

there is a rotation σ of Rn such that σx = y.

6. Let U be a subspace of Rn of dimension (n − 1), so that Rn = U ⊕ U⊥. The

function x + y 7→ x − y (x ∈ U, y ∈ U⊥) is called reflection in the hyperplane U.

Prove that such a reflection is an isometry of Rn, and also that any isometry of Rn

with U as its set of fixed points is a reflection in U.

7. Prove that all elements of O(n) are products of reflections. [Use induction.]

5.5 Simplicial complexes

Although cell complexes form a highly useful class of spaces, they are not
restrictive enough for many purposes. In this section we discuss the sim-
plicial complexes—these can be regarded as cell complexes but with a par-
ticular kind of attaching map of the cells. For applications of simplicial
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complexes we refer the reader to [HW60], [Lef49], [Cai61], or [Spa66].
The purpose of this section is mainly to link our results with the theories
described in these books.

A subset A of Rk is called an n-simplex if there are points a0, . . . ,an in
A such that A consists of all points which can be written uniquely in the
form

a = t0a0 + · · · + tnan
where

0 6 ti, t0 + · · · + tn = 1.

In such case A is said to be spanned by a0, . . . ,an and the numbers
t0, . . . , tn are called the barycentric coordinates of the point a = t0a0 +

· · ·+ tnan. (The reason for the latter name is that a is the centre of gravity,
or barycentre, of the particle system with weight ti at ai, i = 0, . . . ,n.) The
points a0, . . . ,an are called the vertices of A—we will see below that the
vertices are determined by the set A.

5.5.1 Let A be an n-simplex with vertices a0, . . . ,an. Let b0, . . . ,bm be

points of A and let s0, . . . , sm be positive real numbers whose sum is 1. Then

the point b = s0b0 + · · · + smbm belongs to A, and b = ai0 if and only if

b0 = · · · = bm = ai0 .

Proof Since bj ∈ A, we can write

bj =

n∑

i=0

tjiai, tji > 0,
∑

j

tji = 1.

It follows that
b =

∑

i,j

sjtjiai.

But sjtji > 0 and

∑

i,j

sjtji =
∑

j

sj
∑

i

tji =
∑

j

sj = 1.

Therefore b ∈ A.
Suppose that b = ai0 . Then for i 6= i0

∑

j

sjtji = 0.

Since the sj are positive, it follows that tji = 0, i 6= i0, and so

b0 = · · · = bm = ai0 .
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Conversely, this last condition clearly implies b = ai0 . 2

5.5.1 (Corollary 1) If A is a simplex spanned by both a0, . . . ,an and

b0, . . . ,bm, then m = n and the bj are a rearrangement of the ai.

Proof Since b0, . . . ,bm are vertices of A, we can write uniquely

ai =
∑

j

sjbj, si > 0, s0 + · · · + sm = 1.

By 5.5.1, if sji 6= 0 then bj = ai. Hence there is a unique ji such that
bji = ai. 2

IfA is an n-simplex then n is determined byA—we call n the dimension

of A.

Another obvious consequence of 5.5.1 is that an n-simplex A is convex,
and is in fact the smallest convex subset of Rk containing the vertices of A.

Let A be the simplex with vertices a0, . . . ,an. A face of A is a sim-
plex spanned by any subset of {a0, . . . ,an}. For example, the vertices
a0, . . . ,ai−1, ai+1, . . .an span an (n − 1)-simplex which is often written
∂iA—it is the face opposite the i-th vertex.

Suppose that a = t0a0 + · · · + tnan, where the ti are barycentric coor-
dinates, and suppose t0 6= 1. Let

a ′ = (1− t0)
−1(t1a1 + · · · + tnan).

Then a ′ belongs to the face ∂0A of A opposite a0 and

a = t0a0 + (1− t0)a
′.

Thus the points of A are the points of the line segments joining a0 to the
points of the (n− 1)-simplex ∂0A. This gives an inductive description of an
n-simplex and justifies the following pictures of n-simplexes for n 6 3.

Fig. 5.2

If A is an n-simplex, then Ȧ, the boundary of A, is the union of all faces
of A of dimension < n (this is not necessary the topological boundary BdA

of the set A).
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5.5.2 If A is an n-simplex, then there is a homeomorphism A → En which
maps Ȧ homeomorphically onto Sn−1.

Proof We first construct a homeomorphism from A to an n-simplex B in
Rn. Let B have vertices b0, . . . ,bn where b0 = n− 1

2 (−1, . . . ,−1) and
b1, . . . ,bn is the standard basis of Rn [cf. Fig. 5.3]. If A has vertices
a0, . . . ,an define

f : A→ B, t0a0 + · · ·+ tnan 7→ t0b0 + · · ·+ tnbn;

clearly f is a homeomorphism which maps A onto B.

A homeomorphism g : B → En is now constructed by radial projection
from the origin. 2

It follows from 5.5.2 that instead of using (En, Sn−1) as the standard
model from which to construct cell complexes, we could use instead (A, Ȧ)
for any n-simplex A—this is the method we shall use when showing that a
simplicial complex can be given a cell structure.

0 b1

b0

b2

Fig. 5.3

One further point will explain the utility of simplicial methods. A map
f : A → B from an n-simplex A to an m-simplex B is called linear if the
barycentric coordinates of fa are linear functions of the barycentric coordi-
nates of a in A. It is obvious that an m-simplex is linearly homeomorphic
to an n-simplex if and only ifm = n. The corresponding statement without
the word linearly is true but is much more difficult to prove—it constitutes
in fact the Invariance of Dimension.

A simplicial complex K is a finite set of simplices of Rk (for some k) with
the following properties:
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SIM 1 If A ∈ K then any face of A belongs to K.
SIM 2 Any two simplices of K meet in a common face (possibly empty).
The space of K is |K|, the union of all the simplices of K, with the topology
as a subspace of Rk.

In Fig. 5.4, (a) and (b) are pictures of the simplicial complexes but (c)
is not; however (c) can be made into a simplicial complex by adding extra
simplices.

If K is a simplicial complex, then Kn is the subset of K of all simplices
of dimensions 6 n.

(a) (b) (c)

Fig. 5.4

5.5.3 If K is a simplicial complex, then |K| has a cell structure whose open

cells are A \ Ȧ for each simplex A of K.

Proof It is clear from 5.5.2 that A \ Ȧ is an open cell, for each simplex A
of K. Also if A is of dimension n, then we can take A itself as a model of
the n-cell; the inclusion A → |K| is then a characteristic map for A which
maps Ȧ into the (n− 1)-skeleton of |K|. 2

5.6 Bases and sub-bases for open sets; initial

topologies

The aim of this section is the construction of the initial topology on X with
respect to a family of functions from X; this important construction is a
kind of ‘dual’ to that of final topologies in chapter 4. Before proceeding
with the definitions we need some of the theory of bases and sub-bases.

If B is a base for the neighbourhoods of a topological space X then B

defines the topology on X completely (since a subset N of X is a neighbour-
hood of a point x of X if and only if N contains a set B of B(x)). We now
consider the converse problem: let X be a set and B : x 7→ B(x) a func-
tion assigning to each x in X a non-empty set of subsets of X; under what
conditions is B a base for the neighbourhoods of a topology on X?
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5.6.1 For a function B as above, B is a base for the neighbourhoods of a
topology on X if and only if the following conditions hold:

(a) If x ∈ X and B ∈ B(x) then x ∈ B.

(b) If B,B′ ∈ B(x) then B ∩ B′ contains a set of B(x).

(c) If B ∈ B(x) then B contains a set M such that x ∈ M and also if y ∈ M
then M contains a set B′ of B(y).

Proof The topology defined by B, if it exists, is such that N is a neigh-
bourhood of x if and only if N contains a set of B(x). Then (a), (b), and
(c) are simply restatements of the Axioms N1, N3, and N4 respectively for
neighbourhoods. (Notice, by the way, that (a) is a consequence of (c).) 2

In the case when each element of B(x) is an open neighbourhood of x in
the topology defined by B, then we call B an open base for the neighbour-
hoods of X: the conditions for B to be an open base for the neighbourhoods
of a topology on X are clearly 5.6.1 (a), (b), and also (c’): if B ∈ B(x) then

B ∈ B(y) for each y in B.

We now consider similar questions for open sets.

5.6.2 Let X be a topological space and U an open cover of X. The following

conditions are equivalent:

(a) each open set of X is a union of elements of U,

(b) for each x in X, the set U(x) of elements of U which contain x is a base for

the neighbourhoods of x.

Proof (a)⇒ (b) If N is a neighbourhood of x, then N contains an open set
U such that x ∈ U. Since U is a union of elements of U there is a set Ux in
U such that x ∈ Ux. Hence x ∈ Ux ⊆ N.

(b) ⇒ (a) If U is an open set of X, then for each x in U there is an
element Ux of U(x) such that x ∈ Ux ⊆ U. Hence U =

⋃
x∈UUx. 2

If U is an open cover of X satisfying either of the conditions (a), (b)
of 5.6.2, then we say U is a base for the open sets of the topology of X, or,
simply, a base for the topology of X. Conversely, given a set U of subsets of
X, we wish to know under what circumstances U is a base for a topology
on X—if this topology exists it will clearly be unique.

5.6.3 A cover U of X by subsets of X is a base for a topology on X if and only

if for each U,V in U and x in U ∩ V there is a W in U such that

x ∈W ⊆ U ∩ V .

Proof The forward implication is easy, by 5.6.1(b).
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For the converse implication, let U(x) be for each x in X the set of ele-
ments of U which contain x. Then it is immediate that x 7→ U(x) is an open
base for the neighbourhoods of a topology on X. 2

EXAMPLES

1. Let X, Y be topological spaces. The sets U × V for U open in X, V open
in Y form a base for the product topology on X× Y.
2. Let X be a metric space. The open balls B(x, r) for all x in X and r > 0

form a base for the metric topology on X.
3. The intervals ]a,b[ for a,b in Q form a base for the usual topology of R.

A generalisation of the notion of base for a topology is that of sub-base:
this is a set V of subset of a topological space X such that the set of finite
intersections of elements of V is a base for the topology of X.

5.6.4 If X is a set and V any set of subsets of X, then V is a sub-base for a

unique topology on X.

Proof Let U be the set of finite intersections of elements of V. Then X ∈ U

(since X is the intersection of the empty set of elements of V!) and so
U covers X. Also, the intersection of two elements of U again belongs to
U—so U is a base for a topology T on X, by 5.6.3.

Any topology on X which has V as a sub-base has U as a base, and
therefore coincides with T. This proves uniqueness of the topology. 2

We shall next characterise continuity of functions in terms of bases and
sub-bases. However, for the applications of our results that we have in
mind, it is helpful to have a more general kind of function than that con-
sidered before.

Let X, Y be sets. By a partial function from X to Y, written

f : X Y,

we shall mean a triple consisting of X, Y and a subset F of X × Y with the
property that if (x,y), (x,y ′) ∈ F, then y = y ′. If (x,y) ∈ F, we write
y = fx. The domain Df of f is the set of x in X such that fx is defined—
thus we have extended the definition of function given in the Appendix by
allowing the domain of f to be any subset of X.

If f : X  Y, g : Y  Z are partial functions as above, then the com-
posite gf : X  Z has domain the set of x in X such that fx ∈ Dg, and gf
sends x 7→ gfx. The definitions of f[A] and f−1[A] for a set A and function
f : X Y apply without change.

Let X, Y be topological spaces and f : X Y a partial function. For our
purposes it is convenient to say that f is continuous if f−1[U] is open in X
for each open set U of Y. Since Df = f−1[Y], this implies that Df is open in
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X. It is easy to prove that the composite of continuous partial functions is
again continuous.

5.6.5 Let f : X  Y be a partial function where X, Y are topological spaces.

The following conditions are equivalent:

(a) f is continuous,

(b) if U is a base for the topology of Y, then f−1[U] is open in X for each U in
U,

(c) if V is a sub-base for the open sets of Y, then f−1[V ] is open in X for each

V in V.

Proof The implications (a)⇒ (b)⇒ (c) follow from the definition of con-
tinuity.

The implication (b) ⇒ (a) follows from the (easily verified) fact that
the inverse image of a union of sets is the union of their inverse images.
The implication (c) ⇒ (b) follows from the fact that the inverse image of
an intersection of sets is the intersection of their inverse images. 2

Suppose now that we are given a set X, a family (Xλ)λ∈Λ of topological
spaces and for each λ in Λ a partial function

fλ : X Xλ.

A topology I on X is initial with respect to (fλ) if it has the following prop-
erty: for any topological space Y a function k : Y  XI is continuous if and
only if the composite fλk : Y  Xλ is continuous for each λ in Λ.

5.6.6 If I is an initial topology on X with respect to (fλ) then I is the coarsest

of the topologies J on X such that each fλ : XJ  Xλ is continuous.

Proof Since the identity function 1 : XI → XI is continuous, it follows that
fλ = fλ1 is continuous. Suppose T is any topology on X such that each
fλ : XT  Xλ is continuous. Let k : XT → XI be the identity function. Then
fλk = fλ : XT  Xλ, and so k is continuous. 2

It follows from 5.6.6 that there is at most one initial topology on X with
respect to (fλ).

5.6.7 The initial topology on X with respect to (fλ) exists and is the topology

which has as a sub-base the sets

f−1
λ [U], all U open in Xλ, all λ in Λ.
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Proof Let I be the topology on X with the above sub-base. We prove that I
is initial.

Let k : Y  XI be a function where Y is a topological space, and suppose
first that k is continuous. By 5.6.5 each fλ : XI  Xλ is continuous and
hence fλk : Y  Xλ is continuous.

Suppose, conversely, that each fλk : Y  Xλ is continuous. Then again,
because the sets f−1

λ [U] for U open in Xλ form a sub-base for I, the function
k is continuous. 2

In the first two of the following examples the initial topologies are taken
with respect to functions whose domains are X itself.

EXAMPLES

4. Let X be a subset of the topological space X1 and let i : X → X1 be the
inclusion. The initial topology on X with respect to i has a sub-base the sets
i−1[U] for U open in X1. But i−1[U] = U ∩ X; so the initial topology with
respect to i is simply the relative topology on X.

More generally, if X1 is a topological space and i : X → X1 is an injec-
tion, then the initial topology with respect to i is that which makes i an
embedding.
5. Let (Xλ)λ∈Λ be a family of topological spaces, and let X be the product
of their underlying sets. The product topology on X is the initial topology
with respect to the family of projections pλ : X→ Xλ.

Suppose that U ⊆ Xλ. Then p−1
λ [U] consists of all points x in X such

that xλ ∈ U (the other coordinates of x being unrestricted). That is, p−1
λ [U]

is the product

∏

µ∈Λ

U ′
µ where U ′

µ =

{
Xµ, µ 6= λ
U, µ = λ.

A finite intersection of such sets, say p−1
λ1

[U1]∩· · ·∩p−1
λn

[Un], is the product

∏

µ∈Λ

U ′′
µ where U ′′

µ =

{
Xµ, µ 6= λ1, . . . , λn
Ui, µ = λi, . . . , λn.

Thus if Λ is finite, say Λ = {1, . . . ,n}, then a base for the open sets of X
consists of all products U1 × · · · × Un for Ui open in Xi, and the product
topology is that defined in section 2.3. However, if Λ = {1, 2, . . . }, then a
base for the open sets of X consists of all products U1 × U2 × · · · in which
Ui is open in Xi and Ui = Xi for all but a finite number of i.
6. Let M be a topological space, and let X be a set. An M-chart on X is an
injective partial function f : XM whose image is open inM. AnM-atlas

for X is a family A = {fα}α∈A ofM-charts for X such that if fα, fβ : XM
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are charts in A, then fα, f
−1
β : M  M is continuous. Given such an M-

atlas A, let X have the initial topology with respect to all M-charts in A.
Then f−1

α : M  X is continuous, since fβf
−1
α is continuous for all β ∈ A.

Hence fα maps its domain homeomorphically to its image. Topologies con-
structed from atlases in this way are a basic part of the theory of manifolds,
in which the space M, the model space for the manifold, is usually taken to
be a Euclidean space Rn or a suitable Banach space. Such a space is called
a manifold modelled on V—these spaces are important in many branches
of topology, geometry, and analysis. In fact, the notion of a topology arose
from the need to describe such spaces as Riemann surfaces, where the no-
tion of neighbourhood is clear locally, as in the definition of manifold.

There is a useful ‘transitive law’ for initial topologies.

5.6.8 Suppose there is given a set X; a family

(fλ : X Xλ)λ∈Λ

of partial functions from X; and for each λ in Λ a family

(gλµ : Xλ → Xλµ)µ∈Mλ

of partial functions from Xλ. If Xλ has the initial topology with respect to

(gλµ)µ∈Mλ
, then the initial topologies on X with respect to (fλ) and (gλµfλ)

coincide.

Proof Let k : Y  X be a function where Y is a topological space. Since
Xλ has the initial topology the functions gλµfλk, µ ∈Mλ, are continuous if
and only if fλk is continuous; the result follows easily. 2

5.6.8 (Corollary 1) Let i : X→ X1 be an inclusion function and let fλ : X1 

Xλ, λ ∈ Λ be a family of functions where Xλ is a topological space. If X1 has

the initial topology with respect to (fλ), then the initial topology on X with

respect to (fλi) is the subspace topology.

EXERCISES

1. A space X is second countable, or satisfies the second axiom of countability, if there

is a countable base for the open sets of X. Prove that if a space is second countable

then it is separable and first countable. Prove also that a separable metric space is

second countable.

2. Prove that any open cover of a second countable space has a countable sub-cover.

3. Let U be an open cover of X. For each U in U let iU : X  X be the inclusion

x 7→ x, x ∈ U. Prove that X has the initial topology with respect to the family

(iU)U∈U.
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4. Let X be a set, (Xλ)λ∈Λ a family of topological spaces, and (fλ : X  Xλ)λ∈Λ a

family of functions. Let Z be the topological product of the family (Xλ)λ∈Λ and let

f : X  Z be the unique function such that pλf = fλ, λ ∈ Λ. Prove that the initial

topology with respect to f is the same as the initial topology with respect to (fλ).

Given this topology on X, is f an open map?

5. Let C be a set of functions Y → X where Y,X are spaces. If C ⊆ Y, U ⊆ X

let MC(C,U) denote the set of functions f in C such that f[C] ⊆ U (when C can

be understood from the context we abbreviate this to M(C,U)). The compact-open

topology on C is that which has as a sub-basis for the open sets the sets MC(C,U)

for all compact subsets C of Y and open subsets U of X. In the following, C will

have the compact-open topology. Prove that (i) if D is a subset of C and D has the

compact-open topology, then D is a subspace of C; (ii) if X is Hausdorff, then C is

Hausdorff; (iii) if C contains all the constant functions Y → X, and C is Hausdorff,

then X is Hausdorff; (iv) if Y is discrete, and C consists of all functions Y → X, then

C is homeomorphic to the topological product
∏

y∈Y X of the family y 7→ X, y ∈ Y.

6. Let X be the topological product of the family of spaces Xλ, λ ∈ Λ, and let A

be the topological product of the subspace Aλ of Xλ for λ ∈ Λ. Prove that A is a

subspace of X. Which of the following are true? (i) If each Aλ is open in Xλ then A

is open in X. (ii) If each Aλ is closed in Xλ then A is closed in X. (iii) The closure

of A is the product of the closures of the Aλ. (iv) The interior of A is the product

of the interiors of the Aλ. (v) The boundary of A is the product of the boundaries

of the Aλ.

7. Let X be the product of uncountably many copies of the real line R. Let 0 be the

element of X with all components 0. Prove Prove that {0} is not a Gδ-set in X.

8. Read a proof of the Tychonoff theorem: any topological product of compact spaces

is compact. In particular, examine proofs which use ultrafilters, and investigate

further the uses of ultrafilters in constructing ‘non-standard’ models of the natural

numbers. [See many books on general topology.]

5.7 Joins

The join X ∗ Y of two topological spaces X, Y arises in a natural way when
X, Y are disjoint subspaces of some normed vector space V . Consider the
line segments [x,y] for x in X, y in Y and suppose X, Y are so placed in V
that two such line segments [x,y], [x ′,y ′] meet, if they meet at all, only in
end points.
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Y

X

(a)

Y

X

(b)

y0

X

y1

(c)

Fig. 5.5

The union of the line segments [x,y], x ∈ X,y ∈ Y with its topology as
a subspace of V , is then called the join of X and Y and is written X ∗ Y—the
points of X ∗ Y are thus the sums

rx+ sy, x ∈ X, y ∈ Y, r, s > 0, r+ s = 1.

This construction has several awkward features. First of all it is only
defined for subsets of a normed space. Second, it is not even defined for all
such subsets—for example, to define S1 ∗ S1 it is necessary to embed two
copies of S1 in some space in such a way that the above curious condition
on line segments holds. Thirdly, it is not obvious that the resulting space is
independent of the embeddings.

We shall generalise the above construction in two ways. First, we give a
canonical definition for topological spaces. Second, we give the definition
for the join of n spaces X1, . . . ,Xn.

Let X1, . . . ,Xn be topological spaces. The join

X = X1 ∗ · · · ∗ Xn

shall as a set consist of all 2m-tuples, 1 6 m 6 n,

x = (ri1 , xi1 , . . . , rim , xim)

where 1 6 i1 < i2 < · · · < im 6 n, rij > 0, ri1 + · · ·+rij = 1, and xij ∈ Xij .
This looks rather formidable—we therefore write x in the form

x = r1x1 + · · ·+ rnxn

where ri > 0, r1 + · · · + rn = 1, xi ∈ Xi and it is agreed that if ri = 0 then
the term rixi is to be ignored. This convention agrees well with our earlier
description of X ∗ Y for subspaces of a normed vector space. Notice also
that the conditions on the ri say that the point (r1, . . . , rn) belongs to the
(n − 1)-simplex ∆n−1 in Rn spanned by the standard basis vectors of Rn.
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We have also to define a topology on X—we do this by means of initial
topologies as defined in the previous section. Consider the functions

ξi : X→ I ηi : X Xi

r1x1 + · · ·+ rnxn 7→ ri r1x1 + · · · + rnxn 7→ xi

Here ηi has domain ξ−1
i ]0, 1]. If x ∈ X, we call the points ξix and ηix (when

defined) the coordinates of x; the functions ξi, ηi are called the coordinate

functions. If f : Z → X is a function, then the functions ξif, ηif are called
the coordinates of f.

The join topology on X = X1 ∗ · · · ∗Xn is the initial topology with respect
to the coordinate functions. Thus a function f : Z→ X is continuous if and
only if its coordinates are continuous; so with this topology we are well
placed for deciding continuity of a function into the join. However the only
functions out of the join of whose continuity we can be assured are the
coordinate functions ξi, ηi. The difficulties this leads to will be mentioned
later.

As an application of this topology we prove:

5.7.1 Let 1 6 i 6 n. There is a canonical homeomorphism

a : (X1 ∗ · · · ∗ Xi) ∗ (Xi+1 ∗ · · · ∗ Xn)→ X1 ∗ · · · ∗ Xn.

Proof Let a be the function which sends

x = r(r1x1 + · · · + rixi) + s(ri+1xi+1 + · · ·+ rnxn)
7→ rr1x1 + · · · + rrixi + sri+1xi+1 + · · · + srnxn

where of course xi ∈ Xi, (r, s) ∈ ∆1, (r1, . . . , ri) ∈ ∆i−1, (ri+1, . . . , rn) ∈
∆n−i−1. The coordinates of a (considered as a function into X1 ∗ · · · ∗ Xn)
are given by

ξj : x 7→
{
rrj, j 6 i

srj, j > i
ηj : x 7→ xj, j = 1, . . . ,n

where x is as above; notice that if r = 0, then the term r(r1x1 + · · · + rixi)
does not occur, but we interpret rrj as 0.

Suppose that j 6 i. Then ηj is the composite of the coordinate functions

x 7→ r1x1 + · · ·+ rixi 7→ xj

and so ηj is continuous. The points x for which r 6= 0 form an open set
and on this set ξj is the product of the coordinate function x 7→ r and the
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composite x 7→ r1x1 + · · ·+ rixi 7→ rj; hence ξi is continuous on this set. If
r = 0, then ξj is given by x 7→ 0, and the continuity of ξj at such points is
proved in a similar way to that of the sandwich rule [Exercise 2 of Section
1.2]; we leave details to the reader. The proof for j > i is similar.

The inverse of a sends the point

y = r1y1 + · · ·+ rnyn (yi ∈ Xi, (r1, . . . , rn) ∈ ∆n−1)

to the point

r(s1y1 + · · ·+ siyi) + s(si+1yi+1 + · · ·+ snyn),

where r = r1 + · · ·+ ri, s = ri+1 + · · · + rn,

sj =

{
r−1rj if r 6= 0

0 if r = 0
, 1 6 j 6 i, sk =

{
s−1rk if s 6= 0

0 if s = 0
, i+ 1 6 k 6 n.

The coordinates of a−1, as a function into the two-fold join, are thus
y 7→ r, y 7→ s, which are both clearly continuous, and also y 7→ s1y1+ · · ·+
siyi, y 7→ si+1yi+1 + · · · + snyn. The checking of the continuity of these
last two functions into the i-fold and (n− i)-fold joins respectively is left to
the reader. 2

In the future we shall leave details proofs of continuity which are similar
to the above as exercises for the reader.

5.7.1 (Corollary 1) There is a homeomorphism

X1 ∗ (X2 ∗ X3)→ (X1 ∗ X2) ∗ X3.

Proof This is immediate from 5.7.1 since both spaces are homeomorphic
to X1 ∗ X2 ∗ X3. 2

(We leave the reader to work out the formula for this homeomorphism.)

5.7.2 If X1, . . . ,Xn are Hausdorff, then so also is X1 ∗ · · · ∗ Xn.

Proof By 5.7.1 and induction it is sufficient to prove the result for the case
n = 2. We say sets A,A ′ separate x, x ′ if A,A ′ are disjoint neighbourhoods
of x, x ′ respectively. Let

x = rx1 + sx2, x ′ = r ′x ′1 + s
′x ′2

be points of X1 ∗ X2. If r 6= r ′, then the set ξ1
−1[U], ξ1

−1[U ′] for any sets
U,U ′ which separate r, r ′ in I, separate x, x ′. Suppose r = r ′ 6= 0, x1 6= x ′1.
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Let V1,V
′
1 separate x1, x

′
1. Then η1

−1[V1], η1
−1[V ′

1] separate x, x ′. A similar
argument applies for the remaining case

s = s ′ 6= 0, x2 6= x ′2.

This completes the proof. 2

We define the function

J : X1 × · · · × Xn × ∆n−1 → X1 ∗ · · · ∗ Xn

(x1, . . . , xn, r1, . . . rn) 7→ r1x1 + · · ·+ rnxn.

5.7.2 (Corollary 1) If X1, . . . ,Xn are compact and Hausdorff, then J is an

identification map.

Proof Clearly J is always surjective; it is also continuous because its com-
ponents are continuous. The (n − 1)-simplex ∆n−1 is a closed, bounded
subset of Rn and so is compact. Therefore J is a continuous surjection from
a compact space to a Hausdorff space, and so J is an identification map. 2

Without the condition of compactness 5.7.2 (Corollary 1) is false [cf.
Exercise 3], and so we have two topologies for the join, one convenient
for maps into the join, the other convenient for maps from the join, and in
general these topologies are distinct. Not only that, the join, when given
the identification topology, need not be associative. This awkwardness can
be resolved by working not in topological spaces and continuous maps but
in k-spaces and continuous maps, with a revised notion of product (see
section 5.9). So we have an interesting example of the way in which a
technical awkwardness can suggest an entirely new approach. However a
discussion of any of these topics would take us too far afield, and so we
shall often assume when dealing with joins that the spaces concerned are
compact and Hausdorff.

We now give some particular examples. Let e denote the unique point
of E0. The following function

X× I→ X× E0

(x, r) 7→ rx+ (1− r)e

is continuous because its coordinates are continuous; also it shrinks X× {0}

to a single point e of X× E0. So this map induces a continuous bijection

CX→ X ∗ E0.

Hence when X is compact and Hausdorff, CX is homeomorphic to X ∗ E0

[cf. Fig. 5.5(a)].
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Suppose now Y = S0 [cf. Fig. 5.5(c)]. For convenience, let us denote
the points 1,−1 of S0 by e+, e− respectively. The function

X× I→ X ∗ S0

(x, r) 7→
{
(2− 2r)x+ (2r− 1)e+, r > 1

2

2rx+ (1 − 2r)e−, r 6 1
2

is continuous because its coordinates are continuous; also it shrinks X× {1}

to the point e+, and X × {0} to the point e− of X × S0. Hence this map
induces a continuous bijection

SX→ X ∗ S0

which is a homeomorphism if X is compact and Hausdorff.
An alternative way of dealing with CX and SX is to use the bijections

CX → X ∗ E0, SX → X ∗ S0, together with the join topologies, to define
topologies on CX and SX. These topologies we call the coarse topologies.
As pointed out before, the coarse topologies are convenient for maps into,
rather than from, these spaces.

The join is also convenient when dealing with spheres. From the pre-
vious paragraphs and 5.7.1 we see that the n-fold join of S0 with itself is
homeomorphic to the (n−1)-th suspension of S0; by section 4.4 this n-fold
join is homeomorphic to Sn−1.

There is another relationship between joins and spheres. The sphere
Sp+q+1 may be taken as consisting of all pair (x,y) such that

x ∈ Rp+1, y ∈ Rq+1 and |x|2 + |y|2 = 1.

With this coordinatisation, we define

k : Sp+q+1 → Sp ∗ Sq

(x,y) 7→ rx ′ + sy ′

where x ′ = x/|x|, y ′ = y/|y|, rπ/2 = sin−1 |x|, sπ/2 = sin−1 |y|. Notice that
these definitions imply that r+ s = 1, that x ′ is defined only for x 6= 0 (and
so for r 6= 0), and that y ′ is defined for y 6= 0 (and so for only s 6= 0). It
follows that k is well-defined; k is continuous because its coordinates are
continuous. Also k is a bijection because it has inverse

rx ′ + sy ′ 7→ (x ′ sin rπ/2,y ′ sin sπ/2)

where, as usual, x ′ sin rπ/2, y ′ sin sπ/2 are taken as 0 when, respectively,
r, s are 0. Since all the spaces concerned are compact and Hausdorff, it
follows that k is a homeomorphism. We shall see that this result is related
to the existence of the homeomorphism of 4.4.5.
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5.7.3 If A,B are subspaces of X, Y respectively, then A ∗ B is a subspace of
X ∗ Y.

Proof This is an easy consequence of the transitive law for initial topolo-
gies. 2

5.7.3 (Corollary 1) The maps

X→ X ∗ Y Y → X ∗ Y
x 7→ 1.x y 7→ 1.y

are embeddings.

Proof This follows from 5.7.3 since, for example, the image of X under the
given map is the subspace X ∗∅ of X ∗ Y. 2

We shall use the maps of 5.7.3 (Corollary 1) to identify X, Y with the
corresponding subspaces of X ∗ Y.

Let us consider again the picture of X ∗ Y [Fig. 5.6]. By the top half of
X∗Y we mean the subspace of points rx+sy such that s > 1

2
. By the bottom

half of X ∗ Y we mean the subspace of points rx+ sy such that r > 1
2
. It is

intuitively clear from the picture that the top half of X ∗ Y is bijective with
CX × Y, and the bottom half of X ∗ Y is bijective with X× CY. Actually we
prove the following result.

X× Y

X

Y

Fig. 5.6

5.7.4 There is a homeomorphism

ν : X ∗ Y ∗ E0 → (X ∗ E0)× (Y ∗ E0)
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which restricts to a homeomorphism

X ∗ Y → (X ∗ E0)× Y ∪ X× (Y ∗ E0).

Proof The unique point of E0 is written e.
Consider first the case X = {x}, Y = {y}. We have then to produce, in

essence, a homeomorphism

∆1 ∗ E0 → ∆1 × ∆1

that is, a homeomorphism from a triangle to a square.

y

1
2
x+ 1

2
y

x

e

(e,y)

(x,y)

(e, e)

(x, e)

Fig. 5.7

This is done by splitting the triangle into two and mapping each half
linearly onto one of the triangles into which the square is divided by a
diagonal [Fig. 5.7].

We now consider the general case. Points of X ∗ Y ∗ E0 are rx + sy +

te where (r, s, t) ∈ ∆2, x ∈ X, y ∈ Y; points of (X ∗ E0) × (Y ∗ E0) are
(ux + ve,u′y+ v ′e) where (u, v), (u′, v ′) ∈ ∆1, x ∈ X, y ∈ Y. We require a
function which sends

x 7→ (x, e), y 7→ (e,y),

e 7→ (e, e), 1
2
x+ 1

2
y 7→ (x,y).

Hence for r 6 s (and so for r 6 1
2
) we have

rx+ sy+ te = 2r(1
2
x+ 1

2
y) + (s − r)y+ te

7→ 2r(x,y) + (s− r)(e,y) + t(e, e)

= (2rx+ (s − r+ t)e, (r + s)y+ te)

while for s 6 r (and so for s 6 1
2
) we have

rx+ sy+ te 7→ ((r + s)x+ te, 2sy+ (r− s + t)e).

These formulae agree for r = s and so define ν. The detailed proof of
continuity of ν (as a function into the product) is left to the reader.
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The inverse of ν is defined as follows. If u′ 6 u then

(ux + ve,u′y+ v ′e) = u′(x,y) + v(e, e) + (u− u′)(x, e)

7→ u′(1
2
x+ 1

2
y) + ve + (u− u′)x

= (u− 1
2
u′)x+ 1

2
u′y+ ve

while, if u 6 u′, then

(ux + ve,u′y+ v ′e) 7→ 1
2
ux + (u′ − 1

2
u)y + v ′e.

Again the proof of continuity is left to the reader.
Notice also that v(rx+ sy+ te) ∈ (X ∗E0)× Y ∪X× (Y ∗E0) if and only

if t is either 0, or r − s for r 6 s, or s − r for s 6 r, and one of the last two
conditions can hold only if r = s (since t > 0), that is, only if t = 0; but
t = 0 if and only if rx + sy + te ∈ X ∗ Y. This proves the last part of the
result. 2

5.7.4 (Corollary 1) If X, Y are compact Hausdorff, there is a homeomorphism

µ : C(X ∗ Y)→ CX× CY

which restricts to a homeomorphism

X ∗ Y → CX× Y ∪ X× CY.

Proof This is immediate from 5.7.4, the associativity of the join and the
fact that Z ∗ E0 is homeomorphic to CZ if Z is compact and Hausdorff. 2

Since Sp+q+1 is homeomorphic to Sp ∗ Sq, and CSn is homeomorphic
to En+1, there is also a homeomorphism

Sp+q+1 → Ep+1 × Sq ∪ Sp × Eq+1,

a fact we have prove by a different method in section 4.4.

EXERCISES

1. Prove that if K, L are cell complexes, then the topological space K∗L can be given

the structure of a cell complex.

2. Let X,Y be compact, Hausdorff spaces. Prove that if SX,SY have base point the

‘top’ vertex, then there is a homeomorphism

SX× SY → (SX∨ SY) w⊔ C(X ∗ Y)

for some map w : X ∗ Y → SX∨ SY. (This map w is called the Whitehead product

map.) [Let p : CX → SX = CX/X be the identification map. Use 4.5.8 on the

composite C(X ∗ Y) µ−→ CX×CY p×p−→ SX× SY].
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3. Show that the map J : X1 × X2 × ∆1 → X1 ∗ X2 of 5.7.2 (Corollary 1) is not in

general an identification map. [Use 5.7.3.]

4. Let X,Y be compact and Hausdorff. Let p : X × {1} × Y → X be the projection.

Prove that X ∗ Y is homeomorphic to

X p⊔ (CX× Y).

5. Let Zn denote the space obtained from

En × Sn−1 ∪ Sn−1 × En

by the identifications (x,y) = (y, x) (x ∈ En,y ∈ Sn−1). Prove that Zn is homeo-

morphic to Sn−1 ∗ Pn−1(R). [Define f : En × Pn−1(R)→ Zn as follows. Let x ∈ En,

y ∈ Pn−1(R). Draw a line through x parallel to y. This will meet Sn−1 in z, z ′ say,

where z, z ′ are named so that z is at least as near to x as z ′ is. Define f(x, y) to be

the equivalence class of (2x− z, z). Now use Exercise 4 and 4.5.8.]

6. The symmetric square of a space X is obtained from X × X by identifying (x, y)

with (y, x) for all x,y in X. Prove that if An denotes the symmetric square of En,

then An is homeomorphic to CZn, where Zn is as in the previous exercise. Deduce

that the symmetric square of Sn is homeomorphic to a mapping cone C(f) for a map

f : Sn−1 ∗ Pn−1(R)→ Sn. [cf. [JTTW63]]

5.8 The smash product

We recall that a pointed space is a topological space X and point x0 of
X, called the base point, such that {x0} is closed in X. We shall find it
convenient to denote both the base point x0 of a pointed space X and the
set {x0} by ·. Note also that we use the same symbol for a pointed space
and the underlying topological space.

The wedge of pointed spaces X, Y is the subspace of the product X × Y
defined by

X∨ Y = X× · ∪ ·× Y.
(It is easy to prove that X∨ Y is homeomorphic to the space obtained from
X⊔ Y by identifying the two base points to a single point.) Thus the wedge
consists of the ‘axes’ of the product X× Y.

The smash product of pointed spaces X, Y is the identification space

X |||
|

Y = X× Y/X∨ Y

with the set X ∨ Y taken as base point of X |||
|

Y. (This space has also been
called the reduced join, smashed product, collapsed product; other notations
used are X∧ Y, X ⊲⊳ Y.)

5.8.1 If X, Y are Hausdorff spaces then so also is X |||
|

Y.
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Proof Clearly X∨Y is closed in X |||
|

Y and (X×Y)\(X∨Y) is an open subset
of X |||

|

Y. Hence any two points of this subset are separated in X |||
|

Y. To
complete the proof we have only to show that the base point of X |||

|

Y is
separated from any other point (x,y).

Let U·,U be disjoint open neighbourhoods of ·, x respectively, and let
V·,V be disjoint open neighbourhoods of ·,y respectively. Then U· × Y ∪
X×V·, U×V are disjoint open neighbourhoods of X∨Y, (x,y) respectively.
Also these neighbourhoods are saturated with respect to the identification
map X× Y → X |||

|

Y. Therefore their images separate · and (x,y). 2

X× V·
(·, ·)

U· × Y

(x,y)
U× V

X

Y

Fig. 5.8

5.8.2 For any pointed spaces X, Y,Z there is a bijection

a : X |||
|

(Y |||
|

Z)→ (X |||
|

Y) |||
|

Z

which is continuous if X is locally compact, or Y and Z are compact and

Hausdorff. Further a−1 is continuous if Z is locally compact or X and Y are

compact and Hausdorff. Hence a is a homeomorphism if X and Z are locally

compact, or if two of X, Y,Z are compact and Hausdorff.

Proof Each of the composites

X× Y × Z 1×p−→ X× (Y |||
|

Z)
p−→ X |||

|

(Y |||
|

Z),

X× Y × Z p×1−→ (X |||
|

Y)× Z p−→ (X |||
|

Y) |||
|

Z

shrinks to a point of the subspace

·× Y × Z ∪ X× ·× Z ∪ X× Y × ·
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of X× Y ×Z. The existence of the bijection a is immediate. By 4.6.6, 1× p
is an identification map if X is locally compact, and p×1 is an identification
map if Z is locally compact. By 3.6.3 (Corollary 1), 1×p is closed if Y and Z
are compact and Hausdorff, and hence, in this case, 1×p is an identification
map. A similar result holds if X and Y are compact and Hausdorff. The
continuity of a and a−1 in the various cases follows (since also a compact
Hausdorff space is locally compact). 2

For any pointed space X, the reduced suspension of X is

ΣX = X |||
| S1.

The reason for this name is that if p ′ : I → S1 is the map t 7→ e2πit, then
the composite

X× I
1×p′

−→ X× S1
p−→ X |||

| S1

is an identification map (1× p ′ is an identification map by 3.6.3 (Corollary
1)) which shrinks to a point the subspace X × İ ∪ · × I of X × I. But the
suspension SX is obtained from X × I by shrinking each of X × {0}, X × {1}

to a point. It follows that ΣX is homeomorphic to

SX/ ·×I.

We shall prove below that ΣSn−1 is homeomorphic to Sn where Sn−1

has base point en−1 = (1, 0, . . . , 0). In the case n = 2, the following picture
shows how S2 is represented as S1 |||

| S1—each point of S2 is described by
coordinates (x,y) for x,y ∈ S1, with (x,y) = e2 the base point of S2 if x or
y is e1.

y

(x,y)

x

e2

Fig. 5.9

More generally we prove

5.8.3 There is a homeomorphism

Sm |||
| Sn → Sm+n.
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Proof By the last part of section 4.7, the product Sm × Sn has a cell struc-
ture

e0 ∪ em ∪ en ∪ em+n

in which the subcomplex e0 ∪ em ∪ en is Sm ∨ Sn. It follows that Sm |||
| Sn

has a cell structure e0 ∪ em+n. The attaching map of the (m + n)-cell is
constant, and so e0 ∪ em+n is homeomorphic to Sm+n. 2

In the case where X, Y are compact and Hausdorff there is a simple
relation between the join X∗Y and Σ(X |||

|

Y). Let R be the subspace of X∗Y
of points rx+ sy where x, or y, or both x and y, are at the base point.

X

Y

R

Fig. 5.10

5.8.4 There is a bijection

k : Σ(X |||
|

Y)→ (X ∗ Y)/R

which is continuous and which is a homeomorphism if X, Y are compact and

Hausdorff.

Proof The identification map

X× Y × ∆1 → X× Y × S1 → (X |||
|

Y)× S1 → Σ(X |||
|

Y)

has exactly the effect of shrinking to a point the subspace

·× Y × ∆1 ∪ X× ·× ∆1 ∪ X× Y × ∆̇1.

The composite
X× Y × ∆1 → X ∗ Y → (X ∗ Y)/R

is continuous and has exactly the same effect. However it can be shown
using Exercise 5 of Section 4.3 that (X ∗ Y)/R is Hausdorff if X and Y are
Hausdorff. So if X and Y are compact Hausdorff, then the latter composite
is an identification map. This proves the result. 2

The conditions imposed for this result show the desirability of some
fresh approach, for example that outlined in the next section.
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EXERCISES

1. Prove that any space with base point X is homeomorphic to X |||
| S0.

2. Prove that for any spaces with base point X,Y, the spaces X |||
|

Y and Y |||
|

X are

homeomorphic.

3. Prove that if K,L are cell complexes with base points vertices of K,L respectively,

then K |||
|

L can be given the structure of a cell complex.

5.9 Spaces of functions, and the compact-open

topology

The problem of finding a suitable topology for spaces of continuous func-
tions Y → Z has occupied a large amount of literature on general topology.
It is a problem crucial in many applications. For example we like to say that
the output of a radio is a continuous function of the position of the volume
knob. But the output of a radio is a signal, which itself can be described
as a function of time. Again, we would like to know if the solution of a
differential equation which itself has parameters depends continuously on
these parameters. The solution is some kind of function. Thus in both cases
we need to know what it means for a family of functions to be a continuous

family.
One criterion for topologising sets of functions arises as follows. Sup-

pose X, Y,Z are topological spaces and f : X × Y → Z is a continuous
function. If x ∈ X, then the function f(x,−) : Y → Z given by y 7→ f(x,y) is
continuous. Let ZY denote the set of all continuous functions Y → Z. Then
x 7→ f(x,−) defines a function

f̂ : X→ ZY .

The problem is whether there is a topology on all such sets ZY such that
the correspondence f 7→ f̂ defines a bijection

e : ZX×Y → (ZY)X.

If this can be done, then the continuous functions f : X×Y → Z are precisely
those which define continuous functions f̂ : X→ ZY .

For example, if f : R × R → R is given by (x,y) 7→ x2 + y2, then in
order to picture f we draw the contours f−1[c], for c ∈ R, as in Fig. 5.11(i).

However for each x ∈ R, f̂(x) : R → R is a function and the graphs of the
functions y 7→ x2 + y2 of this family are given in Fig. 5.11(ii). The aim is
to be able to say in mathematical terms what is clear from the picture, that
this family of parabolas f̂(x) ‘varies continuously with x’.
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(i) (ii)

Fig. 5.11

Strangely, the general case of this problem has proved not entirely
tractable within the traditional outlook of general topology, that is, using
topological spaces and continuous functions. In this section we describe
one method of dealing with this difficulty.

A space X is called a k-space if X has the final topology with respect
to all maps C → X for all compact Hausdorff spaces C. In such case, a
function f : X → Y is continuous if and only if ft : C → Y is continuous
for all compact Hausdorff spaces C and maps t : C → X. (The use of the
letter k is traditional. It was introduced because the German for compact is
kompakte.)

At first sight this definition seems ridiculous, since a property of a space
X is described by reference to a large class of spaces. However, as should
be clear from earlier chapters, this procedure is in the modern spirit and
can be convenient precisely because of this global reference. The following
result shows however that in order to test for a k-space we need look only
at a set of test spaces C.

5.9.1 Let X be a space. Then the following are equivalent:

(a) X is a k-space;

(b) there is a set CX of maps t : Ct → X for compact Hausdorff spaces Ct such

that a set A is closed in X if and only if t−1(A) is closed in Ct for all t ∈ CX;

(c) X is an identification space of a space which is a sum of compact Hausdorff

spaces.

Proof (a)⇒ (b) The set CX is constructed as follows. Since X is a k-space,
for each non-closed subset B of X there is a compact Hausdorff space CB

and map t : CB → X such that t−1[B] is not closed in CB. Choose one such
CB and one such t for each non-closed B, and let CX be the set of all these
t. That this set has the required property is clear.

(b) ⇒ (c) Suppose CX given as in (b). Let K be the sum of the spaces
Ct for all t ∈ CX, and let it : Ct → K be the inclusion. Let p : K→ X be the



PROJECTIVE AND OTHER SPACES [5.9] 183

unique map such that pit = t for all t ∈ CX. Then property (b), and the
defining property of the sum implies that a function f : X → Y to a space
Y is continuous if and only if fp is continuous. Hence p is an identification
map.

(c) ⇒ (a) Suppose p : K → X is an identification map where K is a
sum

⊔
α∈A Cα of compact Hausdorff spaces Cα. Let iα : Cα → K be the

inclusion. Let f : X → Y be a function to a topological space Y such that
ft : C → X is continuous for all test maps t : C → X. Then in particular,
f iα : Cα → Y is continuous for all a ∈ A. Hence fp : K→ Y is continuous.
Since p is an identification map, f is continuous. Hence X is a k-space. 2

5.9.1 (Corollary 1) Let X be a k-space and let Y be locally compact and Haus-

dorff. Then X× Y is a k-space.

Proof Let p : K → X, q : M → Y be identification maps where K is a
sum of compact Hausdorff spaces Cα, α ∈ A, and M is a sum of compact
Hausdorff spaces Dβ, β ∈ B. Since K is locally compact, it follows from
4.3.2 that r = 1 × q : K ×M → K × Y is an identification map. Similarly,
s = p × 1 : K × Y → X × Y is an identification map. Hence sr = p × q :

K ×M → X × Y is an identification map. But K ×M is a sum of compact
Hausdorff spaces Cα ×Dβ. By 5.9.1(c), X× Y is a k-space. 2

5.9.1 (Corollary 2) Any identification space of a k-space is a k-space.

Proof Let X be a k-space and let q : X → Y be an identification map. By
5.9.1 there is an identification map p : K → X such that K is a sum of
compact Hausdorff spaces. Then qp : K → Y is an identification map.
Hence Y is a k-space, by 5.9.1. 2

Examples are known of pairs of k-spaces whose product is not a k-space
[Exercise 10].

It is clear that a compact Hausdorff space is a k-space. The following
result gives a useful family of other examples of k-spaces. We say that a
space is first countable if it satisfies the first axiom of countability, that is, if
each point of the space has a countable base of neighbourhoods.

5.9.2 The following are k-spaces: (a) any locally compact, Hausdorff space;

(b) any first countable space.

Proof (a) Let X be a locally compact, Hausdorff space. Then each point
of X has a basis of compact, Hausdorff neighbourhoods. It follows that X
has the final topology with respect to all inclusions of compact Hausdorff
subspaces of X. Therefore X is a k-space.

(b) Let X be a first countable space. This means that each point x of X
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has a countable base B(x) of neighbourhoods of x. Let these neighbour-
hoods be written Bn(x), n ∈ N. Then it is easy to define a new base B′

n(x),
n ∈ N, of neighbourhoods of x such that B′

n(x) ⊇ B′
n+1(x) for all n. All

one has to do is set B′
0(x) = B0(x) and B′

n(x) = B′
n−1(x) ∩ Bn(x), for all

n ∈ N. Now let N+ be N ∪ {ω} with the topology in which if n ∈ N then
any subset of N+ containing n is a neighbourhood of n, while a subset N
of N is a neighbourhood of ω if and only if ω ∈ N and N contains all but a
finite number of elements of N. Essentially, N+ is the Alexandroff one-point
compactification of the discrete space N (cf. Exercise 6 of Section 3.6). Let
A be the set of all continuous functions N+ → X. We claim X has the final
topology with respect to this set A of functions.

For the proof, let g : X → Y be any function and suppose that gf :

N+ → Y is continuous for all f in A. Suppose g is not continuous. Then
there is a point x in X and neighbourhood W of g(x) such that for no
neighbourhood M of x is it true that g[M] ⊆ W. In particular, for each
n ∈ N there is a point xn in B′

n(x) such that g(x) /∈ W. Define f : N+ → X

by f(n) = xn, f(ω) = x. By the construction of the sets B′
n(x), the function

f is continuous. However, the function gf is clearly not continuous, and so
we have a contradiction. 2

Since all metric spaces satisfy the first axiom of countability, we have a
lot of useful examples of k-spaces. The following are some known examples
of spaces which are not k-spaces: (a) an uncountable product of copies of
the real line R (the proof is not easy, but may be found as part of a stronger
result in [Bro63]); (b) consider the identification space, often called the
wedge,

WA =

(
⊔

α∈A

I× {α}

)
/

(
⊔

α∈A

{0}× {α}

)

where I is the unit interval and A is a set. Then WA is a k-space since it
is an identification of such a space. However if A is countable and B is
uncountable then the product WA × WB is not a k-space. A proof is in
essence given in [Dow52], which says that this space is not a CW-complex;
(c) the space X of Exercise 8 of Section 2.10. The last example is the
one of which it is easiest to verify that it is not a k-space, but we do not
give the proof here. It is because the examples of spaces which are not
k-spaces are somewhat weird that the restriction to k-spaces is not going
to be unreasonable. A further justification for the method is the idea that
compact Hausdorff spaces are the most easily comprehended, and so it is
reasonable to use these as test spaces for more general kinds of spaces.

There is a method of constructing for any space X an associated k-space
kX. We simply let kX have the same underlying set as X, but the topology
on kX is the final topology with respect to all continuous maps C → X
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for all compact Hausdorff spaces C, and where X has its given topology.
By the basic properties of final topologies as in section 4.2, the identity
map i : kX → X is continuous and, for all compact Hausdorff spaces C, i
determines by composition a bijection between the set of continuous maps
C → kX and the set of continuous maps C → X. It follows that kX itself is
a k-space. In other words, kkX = kX.

For any spaces Y,Z let K(Y,Z) denote the set of functions Y → Z such
that ft : C → Z is continuous for all compact Hausdorff spaces C and
continuous functions t : C→ Y. In other words,

K(Y,Z) = ZkY .

The elements of K(Y,Z) will be called k-maps Y → Z. For example, the
identity function Y → kY is a k-map but in general is not a map. If f : Y → Z

is a k-map, then so also is f : Y → kZ, while f : kY → kZ is a map, i.e. is
continuous. It is convenient to topologise in the first instance the set of
k-maps.

By a test map (on Y) we mean a map t : C → Y for some compact
Hausdorff space C. Given such a test map and an open set U of Z, we
define

W(t,U) = {f ∈ K(Y,Z) : ft[C] ⊆ U}.

These sets are to form a sub-basis for the test-open topology on K(Y,Z).

Note that if Y is Hausdorff, then the image t[C] of a test map t : C→ Y

is also compact Hausdorff. Thus in this case the set of W(t,U) defines the
same topology as does the sub-base consisting of the set of W(C,U) = {f ∈
K(Y,Z) : f[C] ⊆ U} for all compact subsets C of Y and open subsets U of Z;
this topology on the function space K(Y,Z), or the corresponding relative
topology on a subspace, is known as the compact-open topology.

However, it is necessary to deal with non-Hausdorff spaces. For ex-
ample, they arise commonly as identification spaces. It may not be easy
or even possible to prove that a given space is, or is not, Hausdorff. The
problems of dealing with spaces which are not Hausdorff force one to the
test-open topology, and this often allows the technical question of whether
or not a given space is Hausdorff simply to be avoided. Most texts on topol-
ogy deal with the compact-open topology, but the more general case causes
only a slight extra difficulty in the proofs.

The intuitive idea for the compact-open topology is illustrated for the
case Y = Z = R as follows. Let C = [a,b] be a closed interval in R and
let U = ]c,d[ be an open interval. Then W(C,U) consists of those maps
f : R → R such that f[C] ⊆ U. The graph of such a map is shown in the
following picture.
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C X

U

Y

C×U f

Fig. 5.12

Now let us go to our main problem. We suppose given spaces X, Y,Z.
Our aim is to construct a bijection

e : K(X× Y,Z)→ K(X,K(Y,Z)), (1)

where all the function spaces have the test-open topology. The proof is
given in a series of partial results.

5.9.3 Let x ∈ X, f ∈ K(X × Y,Z). Then the function f(x,−) : y 7→ f(x,y) is

an element of K(Y,Z).

Proof Let t : C → Y be a test map. Then i × t : {x} × C → X × Y,
(x,y) 7→ (x, ty), is also a test map, and hence f(i × t) is continuous. It
follows easily that f(x,−)t : C→ Z is continuous. 2

5.9.4 Let f ∈ K(X × Y,Z), and let the function f̂ : X → K(Y,Z) be given by

x 7→ f(x,−). Then f̂ ∈ K(X,K(Y,Z)).

Proof Let s : B→ X be a test map. We have to prove that f̂s : B→ K(Y,Z)

is continuous. Let b ∈ B, and suppose W(t,U) is a sub-basic neighbourhood

of f̂s(b) = f(sb,−), where U is open in Z and t : C→ Y is a test map. Then
s× t : B×C→ X× Y is also a test map. Hence g = f(s× t) : B×C→ Z is
continuous. Further, g[{b}×C] ⊆ U. Hence {b}×C is contained in the open
set g−1[U]. By 3.5.6 (Corollary 2), b has an open neighbourhood V such
that V ×C ⊆ g−1[U]. It follows that for each v ∈ V , f(sv,−) maps t[C] into

U. Hence f̂s[V ] ⊆ W(t,U). That is, we have proved that f̂s is continuous.
2

Up to now, we have not used the Hausdorff property of the test spaces
C. This is used at the next and most subtle point, namely in proving that
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the function e of (1) is surjective. For this we introduce the evaluation map

ε : K(Y,Z)× Y → Z

(f,y) 7→ fy.

Note here an important aspect of function spaces. In the early days of
functions, people always thought of f(x) as meaning that f was fixed and x
was a variable. Now we think of both f and x as varying, and may even on
occasion want to keep x fixed and let f vary.

5.9.5 Let t : C→ Y be a test map. Then the composite

ε(1 × t) : K(Y,Z)× C→ Z

is continuous.

Proof Let δ = ε(1× t), let (f, c) ∈ K(Y,Z)×C, and let U be an open neigh-
bourhood of z = δ(f, c). Then ft(c) = z ∈ U. Since ft is continuous, there
is an open neighbourhood V of c such that ft[V ] ⊆ U. Since C is compact
Hausdorff, it is locally compact, and so there is a compact neighbourhood
B of c contained in V . Then ft[B] ⊆ U. Let s = t | B : B → Y. Then B is
compact Hausdorff and so s is a test map. By definition of W(s,U),

δ[W(s,U)× B] ⊆ U.

Since W(s,U) is a neighbourhood of f and B is a neighbourhood of c, it
follows that δ is continuous. 2

5.9.5 (Corollary) If Y is locally compact and Hausdorff, then

ε : K(Y,Z)× Y → Z

is continuous.

Proof If y ∈ Y then y has a compact Hausdorff neighbourhoodNy, since Y
is locally compact and Hausdorff. By 5.9.5, ε | K(Y,Z)×Ny is continuous.
Hence ε is continuous. 2

5.9.6 A function f : X × Y → Z is in K(X × Y,Z) if and only if f(s × t) :

B× C→ Z is continuous for all test maps s : B→ X, t : C→ Y.

Proof ⇒ If s, t are test maps, then so also is s × t : B × C → X × Y, and
hence f(s× t) is continuous.
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⇐ Let u : D→ X×Y be a test map. Then s = p1u : D→ X, t = p2u : D→ Y
are also test maps. By assumption,

f(s× t) : D×D→ Z

is continuous. But fu = f(s × t)∆, where ∆ : D → D ×D is the diagonal.
Hence fu is continuous. 2

We give a corollary of 5.9.6 which will be used later, although it is not
necessary for the immediate problem.

5.9.6 (Corollary) If X and Y are spaces, then

k(kX× kY) = k(X× Y).

Proof Since the identity functions kX→ X, kY → Y are continuous, so also
is the identity function

kX× kY → X× Y,
and hence the identity k(kX× kY)→ k(X× Y) is continuous. To prove the
identity f : k(X× Y)→ k(kX× kY) continuous we use 5.9.6. Let s : B→ X,
t : C→ Y be test maps. Then

s× t : B× C→ kX× kY

is a test map, as is s× t : B× C→ k(kX× kY). By 5.9.6, f is continuous. 2

5.9.7 Let g ∈ K(X,K(Y,Z)). Let ḡ : X×Y → Z be defined by (x,y) 7→ (gx)y.

Then ḡ ∈ K(X× Y,Z).

Proof Using 5.9.4, it is sufficient to suppose given test maps s : B → X,
t : C→ Y, and prove that ḡ(s× t) is continuous. Consider the commutative
diagram

B× C s× t //

s× 1

��

X× Y ḡ // Z

X× C g× 1 // K(Y,Z) × C.

ε(1 × t)

OO

We are given that gs is continuous, and by 5.9.3 ε(1 × t) is continuous.
Hence ḡ(s× t) is continuous. 2

It is now simple to prove our main result.
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5.9.8 (Exponential law for k-maps) The exponential map

e : K(X× Y,Z)→ K(X,K(Y,Z))

f 7→ (x→ (y 7→ f(x,y))

is a well defined bijection.

Proof It is proved in 5.9.2 that e : f 7→ f̂ is well defined. The previous
result, 5.9.5, shows that e′ : g 7→ ḡ is also well defined. Clearly e and e′

are mutual inverses. Therefore e is a bijection. 2

Useful applications for this theorem come from specialising to cases
where the set of k-maps coincides with the set of maps. First note that
if Y and Z are spaces then the set ZY of continuous maps Y → Z is a subset
of K(Y,Z). We therefore give ZY the relative topology.

5.9.9 If X, Y are k-spaces such that X × Y is a k-space, then the ‘topological

exponential map’

eT : ZX×Y → (ZY)X

is defined and is a bijection. In particular, eT is a bijection if

(a) X and Y are both first countable spaces, or

(b) X is a k-space and Y is locally compact, or

(c) X is locally compact and Y is a k-space.

Proof The conditions given first ensure that ZX×Y = K(X × Y,Z), that
ZY = K(Y,Z), and that (ZY)X = K(X,K(Y,Z)). This implies that eT is
a bijection. By 5.9.2, conditions (a), (b) or (c) ensure that X and Y are
k-spaces. It remains to show that they ensure that X× Y is a k-space.

If X and Y are first countable spaces, so also is X× Y. Hence in this case
X×Y is a k-space. In cases (b) and (c), X×Y is a k-space, by 5.9.1 (Corollary
1). 2

One can do a little better than 5.9.9(b) and show that eT is bijective
assuming only that Y is locally compact and Hausdorff.

It turns out that instead of looking for conditions which ensure that the
topological exponential map eT is a bijection, it is more useful to sidestep
these technical problems and work in a convenient class of spaces. This is a
class in which all the properties one would reasonably like to use do in fact
hold.

This raises the general question: what is the purpose of the theory of

topological spaces? A rough and ready answer is that the theory is intended
to give a useful, convenient and adequate setting for our notions of continu-
ity. These vague words can be defined only in terms of the way the theory
works in practice, and the sort of applications that arise in other areas of



190 [5.9] TOPOLOGY AND GROUPOIDS

mathematics. There is a danger that, when a theory has been around a
good while, then it acquires a certain sanctity—in spite of increasing com-
plications in the use of the theory, it can still be difficult to see how a theory
can be found which works better. At such a stage, it is important to consider
the basic requirements for, and purposes of, the theory. That is, why was it
worked out in the first place? The study of this kind of question is an area
which tends to be neglected in the teaching of mathematics, where it can
be forgotten that often the important question is not: What is the answer?,
but instead is: What is the question? In research, evaluation of work done,
and problem formulation, can be more important than problem solution.

The advance from metric spaces to topological spaces was important for
several reasons. One was that the proofs often were improved and clearer,
because the essential features of the problems were revealed by working
with a topology rather than a metric. The other, and the clincher, was that
many spaces arose in a natural way with a topology rather than a metric,
and even when a metric did exist, it was not always possible to find one
which was related to the geometric situation.

Since Hausdorff’s famous book Mengenlehre was published, topological
spaces have come to play a central role in mathematics. The problem is
that now the theory is becoming a bit ragged round the edges, as shown
by the difficulty of finding an adequate and convenient theory of function
spaces within the context of topological spaces and continuous maps.

Attempting to find a function space topology satisfying the exponential
correspondence leads to a messy theory for topological spaces and contin-
uous maps, with all sorts of technical conditions which seem inappropriate
and which divert attention from what is really going on. Thus we have an
anomaly, and it is right that an anomaly should be a starting point for a
new direction rather than an irritant.

One appropriate method in this case turns out to be to replace all spaces
by k-spaces, by applying k to everything in sight. This idea is best expressed
using the categorical language of the next chapter. But we can say enough
here to be able to see how the method works out.

Let Y,Z be k-spaces. We define K(Y,Z) to be the space obtained from
the space K(Y,Z) by applying k. So the underlying sets of K(Y,Z) and of
K(Y,Z) are the same but the second space has the larger topology. The
important point is that K(Y,Z) is now a k-space.

Further we have to change the product topology, because there is no
guarantee that the ordinary product of k-spaces is a k-space. So we define
for any spaces

X×k Y = k(X× Y).

This we call the k-product of X and Y. See Exercise 1 for its key property.
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5.9.10 Let X, Y, and Z be k-spaces. Then the exponential correspondence

eK : K(X×k Y,Z)→ K(X,K(Y,Z))

is defined and is a homeomorphism.

Proof Since X and Y are k-spaces, we have equalities of sets

K(X×k Y,Z) = K(X ×k Y,Z), K(X,K(Y,Z)) = K(X,K(Y,Z)).

It follows from 5.9.8 that eK is a well defined bijection. It remains to prove
that eK is a homeomorphism. Here we use the fact that eK is defined and
is a bijection for all k-spaces X, Y,Z, and in particular we can replace X, Y
and Z by function spaces of the form K(Y,Z).

We wish to prove that eK is continuous. But eK corresponds to a map

e′ : K(X×k Y,Z)×k X→ K(Y,Z)

which itself corresponds to the evaluation map

e′′ : K(X×k Y,Z)×k X×k Y → Z.

Since e′′ is continuous, it follows that e′ is continuous and hence, by the
same argument, that eK is continuous.

Let d be the inverse bijection to eK, so that d is a function

K(X,K(Y,Z))→ K(X×k Y,Z).

To prove that d is continuous it is sufficient to prove that the corresponding
function

d ′ : K(X,K(Y,Z))×k X×k Y → Z

is continuous. Now for x ∈ X, y ∈ Y, we have

(dg)(x,y) = (gx)(y).

It follows that
d ′(g, x,y) = (gx)(y).

This says that d ′ is the composite

K(X,K(Y,Z))×k X×k Y
εX×k1Y−→ K(Y,Z)×k Y

εY−→ Z

where εX and εY are the evaluation maps. But evaluation maps are con-
tinuous on these spaces. So d ′ is continuous. Hence d is continuous. This
proves that eK is a homeomorphism. 2
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We now make a deduction from the fact that eK is always a bijection.

5.9.10 (Corollary) Let X and Y be k-spaces and let f : Y → Z be an identifi-

cation map. Then 1×k f : X×kY→ X×k Z and f×k 1 : Y ×k X→ Z×k X are

identification maps.

Proof It is sufficient to prove that f ×k 1 is an identification map. By
5.9.1 (Corollary 2) we know that Z is a k-space. Let g : Z ×k X → W

be any function to a k-space W such that g(f×k 1) is continuous. We have
to prove that g is continuous.

Consider the diagrams

Y ×k X
f×k 1 //

l

$$H
HH

HH
HH

HH
HH

HH
HH

Z×k X

g

��
W

Y
f //

l′

""E
EE

EE
EE

EE
EE

EE
E Z

g ′

��
K(X,W)

By assumption, l = g(f ×k 1) is continuous. Hence the corresponding map
l′ : Y → K(X,W) is continuous. Let g ′ : Z → K(X,W) be the function
corresponding to g. Then g ′f = l′, and so g ′f is continuous. Since f is an
identification map, g ′ is continuous. Hence g is continuous. This proves
that f×k 1 is an identification map. 2

We shall not use greatly here the fact that eK is a homeomorphism rather
than just a bijection. However the proof of the previous results does illus-
trate nicely how the fact that 5.9.8 is valid for all spaces can be used. We
now give some further illustrations of the use of the powerful result 5.9.10.

For the remainder of this section, we assume that all spaces concerned
are k-spaces.

We first examine the composition function.

5.9.11 The composition function

c : K(Z,W)×k K(Y,Z)→ K(Y,W)

(g, f) 7→ gf

is continuous.

Proof Consider the function

c′ : K(Z,W)×k K(Y,Z)×k Y →W

(g, f,y) 7→ gf(y).
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Then c′ is the composition

K(Z,W)×k K(Y,Z)×k Y
1×kεY−→ K(Z,W)×k Z

εZ−→W.

It follows that c′ is continuous. But under the exponential correspondence,
c′ corresponds to c. Hence c is continuous. 2

Now we can show how K(Y,Z) behaves with regard to maps on Y and
on Z. Let g : Z → W, f : Y → Z be maps of k-spaces. Then g and f induce
by composition functions

g∗ : K(Y,Z)→ K(Y,W), f∗ : K(Z,W)→ K(Y,W)

h 7→ gh, k 7→ kf.

5.9.12 The induced functions g∗ and f∗ are continuous. Further,

(a) if g is a homeomorphism into, so also is g∗;

(b) if f is an identification map, then f∗ is a homeomorphism into.

Proof These induced functions are the composites of the composition func-
tion c of 5.9.11 with the maps

K(Y,Z)→ K(Z,W)×k K(Y,Z), K(Z,W)→ K(Z,W)×k K(Y,Z)

h 7→ (g,h) k 7→ (k, f)

respectively.

We now prove (a). Let ḡ : g[Z] → Z be the inverse of the restriction
of g. Then ḡ is continuous, by the assumption on g. Let M be the image
of g∗. Since g is injective, so also is g∗ and hence g∗ restricts to a contin-
uous bijection K(Y,Z) → M. Let m : M → K(Y,Z) be the inverse of this
restriction. We wish to prove m is continuous. For this it is sufficient to
prove that the corresponding map m ′ : M ×k Y → Z is continuous. But
m(gh)(y) = ḡh(y), so that m ′ is the composition

M×k Y
ε−→ g[Z]

ḡ−→ Z

which is continuous. It follows that m is continuous.

We now prove (b). Let N be the image of f∗. Since f is surjective, f∗

is injective, and so restricts to a continuous bijection K(Z,W) → N. Let
n : N → K(Z,W) be the inverse of this restriction. We wish to prove n
is continuous. For this it is sufficient to prove that the corresponding map
n ′ : N×k Z → W is continuous. Now n ′ is given by (kf, z) 7→ k(z) so that
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n ′ is defined by the commutative diagram

N×k Y
1×k f //

ε

$$H
HH

HH
HH

HH
HH

HH
HH

N×k Z

n ′

��
W.

But ε is continuous and 1×kf is an identification map, by 5.9.10 (Corollary).
It follows that n ′ is continuous. Hence n is continuous. 2

One application of the last result is to make the results of the previ-
ous two sections more convenient. By working entirely with k-spaces, and
using the identification topology on joins and smash products, one can ob-
tain associativity of the join and also relations between the join and smash
product without making the compact Hausdorff assumptions used earlier.
Indeed we do not have to bother to verify whether or not spaces might be
Hausdorff, since the methods work in any case. This makes the results ap-
plicable in a wide variety of situations. However we shall not pursue this
topic in this text.

We shall not use the results on function spaces elsewhere, except to
hint at them in chapter 7. But the basic ideas are so important, and so
widely applied, yet difficult to find in textbooks, that it seemed essential
to include an introduction to these topics. As explained above, they are
also interesting as showing some limitations of a traditional approach. It
is hoped that this will encourage the reader in a critical and questioning
attitude.

Another reason for including an account of function spaces is that the
notion of an ‘object of maps’ is proving to be increasingly important in
mathematics. For applications in mechanics see [Law66], and in computer
science, see [PAPR86], where the exponential map is referred to as curry-

ing.

In many situations where one has a structure of a specific kind, then for
two objects X and Y with this structure, one looks for an object S(X, Y) with
the same kind of structure and whose underlying set is the set of structure
preserving maps X → Y. For example, if X and Y are abelian groups, then
the set of group homomorphisms X → Y has the structure of an abelian
group, by addition of values.

There are however many situations when such an object S(X, Y) does
not seem to exist. For example, if X and Y are groups, then the set of
homomorphisms X → Y is not even closed under the product defined by
multiplication of values. In such cases, there are the options of accepting
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the situation, or of seeking a more convenient kind of structure in which to
work. In the case of groups, it is possible to enlarge the point of view to
that of groupoids, and recover a ‘groupoid of morphisms’.

There is one extension of the exponential law which is becoming in-
creasingly important, and which deals with the problem of topologising
spaces of partial maps. Let X and Y be topological spaces. The set of con-
tinuous partial functions X Y is written P(X, Y). We would like to know
what it may mean for a family of partial maps to be continuous, that is, we
would like a topology on P(X, Y) satisfying a kind of exponential law.

This is obtained by a device which first came into extensive use in the
the theory of toposes ([Joh02], [BW85]). Let Y be a set. By Y+ we mean
Y ∪ {ω} where ω is a point not belonging to Y. A partial function f : X Y
determines uniquely a function f+ : X→ Y+ defined by

f+(x) =

{
f(x) if x ∈ Df

ω otherwise.

This gives a bijection between the functions X → Y+ and the partial func-
tions X Y.

This device enables us to topologise certain spaces of partial maps by
topologising Y+ and using standard topologies on spaces of maps to Y+.
Two standard topologies on Y+ have been used in this situation, both given
in [BB78a].

Let Y be a topological space. The space Y∼ is the set Y+ with the topol-
ogy on which C is closed in Y∼ if and only if C = Y∼ or C is closed in Y . It
is easy to verify that this does indeed define a topology on Y∼ . Note that
apart from the empty set, all open sets of Y∼ include the point ω. So Y∼ is
a Hausdorff space if and only if Y is empty. If X is a topological space, then
the maps X→ Y∼ are bijective with the partial maps X Y with closed do-
main. This gives a procedure for topologising spaces of maps with closed
domain; applications of this method are given in [BB78a]. Note that we
obtain an exponential law of a different form: let KPC(X, Y) be the set of
partial k-maps with closed domain. Then for all spaces X, Y,Z

KPC(X× Y,Z) ∼= K(X× Y,Z∼) ∼= K(X,K(Y,Z∼)) ∼= K(X,KPC(Y,Z)).

Another topology on Y+ gives a space Y∧, say, in which a set U is open in
Y∧ if and only if U = Y∧ or U is open in Y. Then the maps X → Y∧ are
bijective with the partial maps X  Y with open domain. This method is
elaborated in [AB80], and it gives the same topology on the space of such
partial maps as was first introduced in [Ehr80]. In this setup it is not so
clear how best to handle partial k-maps with open domain. The difficulty
is that t : C → X is a test map and V is open in X, then t−1[V ] need not be
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compact. Of course it will be locally compact, and this possibly gives the
method of dealing with the situation. (cf. [Vog71]). However, just to give
an idea of the theory we stick to the case of maps, so that the exponential
law is valid only under restrictive circumstances.

Suppose then that X and Y are Hausdorff. Then the test-open topology
on ZX×Y coincides with the compact-open topology. Let PO(X,Z) be the set
of partial maps X → Y with open domain. Topologise PO(X,Z) so that the
natural map PO(X,Z) → (Z∧)X is a homeomorphism. Then the topology
on PO(X,Z) has as a sub-base the sets WO(C,U) of partial maps f : X Z
such that C is a subset of the domain of f and f[C] ⊆ U, for all compact
subsets C of X and open subsets U of Z. The exponential correspondence
is of the form

PO(X× Y,Z) ∼= (Z∧)X×Y ∼= ((Z∧)Y)X ∼= (PO(Y,Z))X.

This is valid if for example X and Y satisfy the conditions of 5.9.9. This
result has its uses even when Z is a singleton {1}. Then PO(Y,Z) is bijective
with the set O(Y) of open sets of Y, since a partial map Y  {1} is entirely
determined by its domain. This gives a topology on O(Y) with sub-base the
set of

W(C) = {U ∈ O(Y) : C ⊆ U}
for all compact subsets C of Y . Hence if X and Y are Hausdorff and locally
compact we get a homeomorphism

O(X× Y) ∼= (O(Y))X.

This says that an open setU in X×Y can in these circumstances be regarded
as a continuously X-indexed family x 7→ Ux of open sets of Y, where Ux =

{y ∈ Y : (x,y) ∈ U}.
The case for introducing spaces of partial maps is strong. Such maps

occur in elementary analysis. For example the functions

sin−1 x,
√
x, log x, (x− 1)−1 + (x + 3)−1

are all sensibly considered as partial maps R  R . Thus it is surprising
that the algebra and topology of such partial maps has been relatively little
considered. For example, it is difficult to find a book on functional analysis
in which partial functions rate a mention. One of the reasons may be the
difficulty of such a study, which is illustrated by the fact that it is not known
how to topologise in a sensible way the set of all partial maps X Y.

If Y is a singleton, then the partial maps X  Y are bijective with the
subsets of X . So the problem of topologising spaces of partial maps includes
the problem of topologising the set P(X) of subsets of a space X . There is a
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large literature on the topologies for spaces of closed subsets (such spaces
are called hyperspaces), but not so much on the general problem. Thus it is
not so clear what it might mean for a family of closed to have limit point
an open set, say.

An even more worrying question is the following. Let Aλ be the subset
of X = S1 × S1 of points (e2πit, e2πiλt) for all t ∈ R . It is known that Aλ is
closed in X if λ is rational, and is dense in X if λ is irrational. What is not
so clear is whether or not the function λ 7→ Aλ should be expected to be
continuous. On the one hand, the set Aλ seems to jump about from closed
to dense, and so seems unlikely to be conveniently regarded as a continuous
function of λ . On the other hand, Aλ is given by a formula involving
standard and well-behaved functions (e.g. the exponential function ez) and
so ought, as a function of λ, to be not only continuous, but even analytic!

One attempt to begin a resolution of these questions is the thesis
[Har86], which is based on work in [Joh83]. Again, it seems that the
problem is not resolvable within the context of topological spaces. But the
‘correct’ solution is not clear.

EXERCISES

1. Let X,Y,Z be k-spaces. Prove that the projections p1 : X ×k Y → X and p2 :

X ×k Y → Y are continuous, and that if f1 : Z → X and f2 : Z → Y are maps, then

there is a unique map f : Z→ X×k Y such that p1f = f1, p2f = f2.

2. Let U be a sub-base for the topology of Y. Prove that the sets W(t,U) for all

test maps t : C → X and all U ∈ U form a sub-base for the test-open topology on

K(X, Y). [Take the proof of a similar result from [Dug68] or [Jam84] and modify it

for the new situation.]

3. Use Exercises 1 and 2 to prove that the map

K(X, Y × Z)→ K(X, Y)×K(X,Z)

given by f 7→ (p1f,p2f) is a homeomorphism.

4. Prove that for all spaces X, Y,Z, the test-open topology on K(X × Y,Z) has as a

sub-base the sets W(s× t,U) for all test maps s : C→ X, t : D→ Y. [The hint here

is the same as for Exercise 2. I do not know if there is a result combining the results

of Exercise 2 and Exercise 3.]

5. Use Exercise 4 to prove that the function

K(X,Z)×K(Y, T)→ K(X× Y,Z× T)

which sends (f,g) 7→ f× g is a homeomorphism into.

6. Use Exercises 2 and 4 to prove that the exponential map e of 5.9.8 is a homeo-

morphism.
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7. Let X and Y be topological spaces and let C be any set of functions X → Y. For

any test map t : C→ X, and open subset U of Y, let WC(t,U) be the set of elements

f of C such that ft[C] ⊆ U. The test-open topology on C is defined like the test-open

topology on K(X, Y) but using WC in place of W. Prove that if D is a subset of C and

D also has the test-open topology, then D is a subspace of C. Prove also that: (i) if

Y is Hausdorff, then C is Hausdorff; (ii) if C contains all constant functions, and C is

Hausdorff, then Y is Hausdorff; (iii) if X is discrete, then K(X, Y) is homeomorphic

to the topological product
∏

x∈X Y of the constant family x 7→ Y.

8. Let f : X → W be a k-map and let g : Z → Y be continuous. Prove that

f and g induce by composition continuous maps K(X,g) : K(X,Z) → K(X, Y),

K(f, Y) : K(W, Y)→ K(X, Y). Prove that if g is a homeomorphism into, then so also

is K(X, g); and that K(f, Y) is a homeomorphism into if f is surjective and for each

test map s : B → W there is a test map t : C → X and a surjective map r : C → D

such that sr = ft.

9. Prove that the composition map c : K(Z,W) × K(Y,Z) → K(Y,W) is a k-map.

[Use the methods of 5.9.11.]

10. Let X ×S Y be the product set X× Y with the final topology with respect to all

inclusions {x} × Y → X× Y for all x ∈ X and all maps 1 × t : X× C→ X× Y for all

test maps t : C→ Y. Prove that k(X×S Y) = k(X×Y) , and that ZX×SY is a subspace

of K(X× Y,Z) . Hence show that the exponential map

eS : ZX×SY → (ZY)X

is a homeomorphism. [This is the exponential law for topological spaces proved in

the Hausdorff case in [Bro64] and in the general case in [BT80].]

11. Sketch the family of curves ft : x 7→ log(x + t) for all t ∈ R, and show how

the exponential law for partial maps with open domain makes t 7→ ft a continuous

family of such maps.

12. Let Q be the space of rational numbers and let Q/Z be the space Q with the

subspace of integers shrunk to a point. Prove that Q and Q/Z are k-spaces such

that the usual cartesian product Q×Q/Z is not a k-space.

13. Show how to obtain general versions of the results on joins and smash products

by using the k-product and identification topologies on k-spaces and joins.

NOTES

The combination of algebra, topology and geometry given in sections 5.1
to 5.5 is further developed in the text Topological geometry ([Por69]). The
study of groups of isometries leads naturally to the study of Lie groups
([Che46]), topological groups ([Pon46]; [Bou66, chapter 4]; [Hig63]; for
example). For a survey of some of their uses, see [Her66]. For examples
of the uses of the groups SU(1) and SU(3) in the physics of fundamental
particles, see the story of the ‘eight-fold way’ in, for example, [Pic86].

The idea of a group, because of its utility for expressing in mathematical
terms our intuitive ideas of symmetry, is a fundamental concept in mathe-
matics and its applications. But, as explained in the preface to the second
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edition of this book, there are strong indications that the idea of a group
should be properly subsumed in the idea of ‘groupoid’ (see the next few
chapters, the survey article [Bro82], and the books [Hig66] and [Mac05]).

The ideas of section 5.9 have a curious history. It was J. H. C. Whitehead
who first recognised the importance of dealing with products of identifica-
tion maps, and so formulated essentially 4.3.2. The idea of a Hausdorff
k-space began to crop up in the late 1950s, the weak product X×k Y began
to be used, and [Kel55] uses functions continuous on compact subsets in
dealing with function spaces.

The author in his thesis ([Bro61], which was widely circulated) proved
results analogous to those of 5.9.10 and its corollaries, but in the Hausdorff
case, as a by-product of studies of the homotopy type of function spaces
(for the meaning of the words homotopy type, see section 6.5). The paper
[Bro63] writes “It may be that the category of Hausdorff k-spaces is ade-
quate and convenient for all purposes of topology”, while [Bro64] states
“These results show that we cannot obtain a convenient category of spaces
simply by changing the product topology.” (For the notion of category, see
the next chapter.) The paper [Bro64] points out that “the category of Haus-
dorff spaces and continuous maps does not have all the formal properties
one would like. Specifically, there is no product and function space topol-
ogy such that

XZ×Y ∼= (XY)Z, (X× Y)Z ∼= XZ × YZ

for all X, Y,Z. (Another difficulty, discussed in [Bro63] is that the product
of identification maps is not in general an identification map.)” The paper
goes on to show that “these difficulties disappear in the category of Haus-
dorff spaces and functions continuous on compact subspaces”, and that an
alternative strategy is “replacing the usual subspace, product and function-
space topologies by the corresponding weak topologies”.

The term ‘convenient category of spaces’ was adopted in the paper
[Ste67]. This paper lists the desirable properties of a convenient category
of spaces to be that: (Y × Z)X = YX × ZX; ZX×Y = (ZY)X; the product
of identification maps is an identification map; a product of a sum is a
sum of products; a sum of identification maps is an identification map (in
fact a new terminology is used). The papers [Bro63], [Bro64] are cited in
[Ste67].

The method of dealing with the non-Hausdorff case was found by a
number of writers—see for example [Cla68], [Day68, Day72], [Vog71],
[BT80] and the references in [Her72, Her71]. See [Whi78] for a consistent
use of (Hausdorff) k-spaces in homotopy theory.

The study in the large of categories relevant to the considerations of
topology is part of the subject of categorical topology. One part of this sub-
ject deals with categories with a suitable ‘function space object’. These
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are called closed categories (cf. [Mac71]), and they have increased in im-
portance. For example, see [Law86] for a discussion related to physics;
[LS86] for uses in logic; [PAPR86] for applications in computer program-
ming; [Bro87] for applications to groupoids and groups.



Chapter 6

The fundamental groupoid

The topological invariants discussed in chapter 3 were not very subtle. One
reason for this lies in the nature of the invariants; a set of numbers is not a
subtle mathematical structure, and in order to probe further we need better
structures to model the geometric properties of spaces.

The invariants we want come from a study of paths in a space. The
paths on X with their addition form a category—this is an algebraic object,
defined by [EM45], which is basic to the study of much recent mathemat-
ics. From the category PX of paths on X we obtain another category πX
which, because of its extra properties, is called a groupoid. This fundamen-

tal groupoid πX, and its various subgroupoids, give a useful algebraic model
of X.

We have now use the word ‘model’ twice—a precise expression of the
idea is given by the notion of a functor which is a sort of homomorphism
between categories. Any functor of topological spaces, such as the fun-
damental groupoid, gives rise to a topological invariant of any space X.
Algebraic topology may be defined as the study of functors from the cate-
gory of topological spaces to a category of algebraic objects (e.g., groups,
rings, groupoids, etc.).

The importance of the study of categories and functors is that it gives
a mathematics of mathematical structures. The algebraic structures which
have been found useful to systematise our mathematical techniques have
also been found to lead to new mathematical structures which are inter-
esting and useful in their own right. This multiple level of mathematical
discourse is one of the fascinations of the subject.

Categories and functors are a good tool for making analogies across
areas of mathematics, such as between topology and algebra. As for most
mathematics, such analogies are not between the structures, the objects,

201
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themselves, but between the relations among the objects of each kind. That
is, we make analogies between structures of relations. In particular, the
notion of pushout which we have used previously for topological spaces
will now be developed for groupoids.

The high point of this chapter is in section 6.7, where we use methods
built up in this and previous chapters to show that the fundamental group
π(S1, 1) of the circle S1 is an infinite cyclic group, i.e. is isomorphic to
the additive group of integers. The next two diagrams show an analogy
between topology and algebra:

{0, 1}

��

// {0}

��
[0, 1] // S1

{0, 1}

��

// {0}

��
I // Z

spaces groupoids

The left hand diagram shows the circle as obtained from the unit interval
[0, 1] by identifying, in the category of spaces, the two end points 0, 1. The
right hand diagram shows the infinite group of integers as obtained from
the finite groupoid I again by identifying 0, 1, but this time in the category
of groupoids. So we have one verification that groupoids can give a useful
modelling of the topology.

It was finding this modelling that led to the commitment of this book to
the theory of groupoids, and which in turn led to new higher dimensional
developments treated elsewhere.

Of course the above result on the circle is just a start. The modelling of
the geometry of pushouts of spaces by pushouts of groupoids is continued
in chapters 8 and 9.

6.1 Categories

A category C consists of

(a) a class‡ Ob(C), called the class of objects of C,

(b) for each x,y in Ob(C) a set C(x,y) called the set of morphisms in C from

x to y,

‡For the distinction between sets and classes, see the Glossary of terms from set theory.
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(c) a function, called composition, which to each g in C(y, z) and to each f
in C(x,y) assigns an element gf in C(x, z); that is, composition is a function

C(y, z)× C(x,y)→ C(x, z).

These terms must satisfy the axioms:

CAT 1 (Associativity) If h ∈ C(z,w), g ∈ C(y, z), f ∈ C(x,y) then

h(gf) = (hg)f.

CAT 2 (Existence of identities) For each x in Ob(C) there is an element 1x
in C(x, x) such that if g ∈ C(w, x), f ∈ C(x,y) then

1xg = g, f1x = f.

We shall always assume that the various sets C(x,y) are disjoint and
shall write C also for the union of these sets: thus ‘f is an element of C’
and ‘f ∈ C’ both mean ‘f ∈ C(x,y) for some objects x,y of C’. Then the
structure of a category can be roughly stated as: a category is a set C with
a multiplication which is associative and has two-sided identities, but such
that the multiplication is partial, i.e., is not everywhere defined.

If f ∈ C(x,y) then we also write f : x → y, or x
f−→ y; the notation

x → y simply denotes some element of C(x,y). For each x in Ob(C) the
identity in C(x, x) is unique, since if 1x, 1

′
x are both identities in C(x, x)

then

1x = 1x1
′
x = 1 ′

x.

It is usually convenient to abbreviate 1x to 1 (this means that from equa-
tions such as fg = 1, gf = 1 we cannot deduce fg = gf since 1 may denote
different identities in each equation).

The definition of a category, and the notation, is suggested by Examples
2-5 below. In the first example, we show that the paths in a topological
space form a category in which composition of paths is written as addition.

EXAMPLES

1. Let X be a topological space. The category PX of paths on X has the
set X as its set of objects, and for any x,y in X the set PX(x,y) is the set
of paths in X from x to y. Composition of paths b,a is written, as before,
b+a. The identity in PX(x, x) is the zero path 0x. Finally, addition of paths
is associative since if c,b,a are paths of lengths r,q,p respectively, then
c + (b + a) is defined if and only if (c + b) + a is defined, and both paths
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are given by

t 7→






at, if 0 6 t 6 p

b(t− p), if p 6 t 6 p + q

c(t − p− q), if p + q 6 t 6 p + q+ r.

2. Let Set be the category whose objects are all sets and whose morphisms
X → Y are simply the functions from X to Y, and whose composition is
the usual composition of functions. The axioms for a category are clearly
satisfied, the identity in Set(X,X) being the identity function 1X.
3. Let Top be the category whose objects are all topological spaces and
whose morphisms X → Y are the maps, that is, the continuous functions,
X→ Y. Again the axioms are obviously satisfied.

Here we already see the double use of the idea of category. (a) Gen-
eral statements about topological spaces and continuous functions can in
many cases be regarded as statements of an algebraic character about the
category Top, and this is often convenient, particularly when it brings out
analogies between constructions for topological spaces and constructions
for other mathematical objects. (b) The category PX of paths on X is re-
garded as an algebraic object in its own right, as much worthy of study as
an example of a category as are examples of groups, rings or fields.
4. The category of all groups and all morphisms (i.e., homomorphisms) of
groups is written Grp.
5. On the other hand, if G is group, then G is also a category with one
object—namely, the identity 1 of G—with morphisms 1 → 1 the elements
of G, and with composition the multiplication of G. Actually, for this con-
struction one needs only that G is a monoid, that is, the multiplication is
associative and has a two-sided identity.

Let C,D be categories. We say D is a subcategory of C if

(a) each object of D is an object of C, i.e., Ob(D) ⊆ Ob(C).

(b) for each x,y in Ob(D), we have D(x,y) ⊆ C(x,y).

(c) composition of morphisms in D is the same as that for C, and

(d) for each x in Ob(D) the identity in D(x, x) is the identity in C(x, x).

The subcategory D of C is called full if

D(x,y) = C(x,y)

for all objects x,y of D; and D is a wide subcategory if Ob(D) = Ob(C).
For example, we can obtain full subcategories of any category C by taking
Ob(D) to be any class of objects of C, and then defining D(x,y) = C(x,y)

for all x,y in Ob(D). In this way, we obtain the full subcategories of Top
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whose objects are all Hausdorff spaces, all metrisable spaces, or all com-
pact spaces. On the other hand, we obtain a wide subcategory of Top by
suitably restricting the maps, for example to be open, or closed, or identifi-
cation maps. In fact, any property P of continuous functions defines a wide
subcategory of Top (in which the morphisms X → Y are the continuous
functions X → Y which have property P) provided only that any identity
map has property P, and that the composite of two maps with property P

also has property P.
Let C be a category, and suppose f,g are morphisms in C such that

gf = 1, an identity morphism. Then we call g a left-inverse of f and f a
right-inverse of g; we also say that g is a retraction, and f a co-retraction.

6.1.1 Let f : x→ y, g1,g2 : y→ x be morphisms in C such that

g1f = 1x, fg2 = 1y.

Then g1 = g2. If, further, gf = 1x, then g = g1.

Proof g1 = g11y = g1(fg2) = (g1f)g2 = 1xg2 = g2. Similarly, g = g2 and
so g = g1. 2

This result can be stated: if f has a left and a right inverse, then f has
an unique two-sided inverse. Such a morphism f is called invertible, or
an isomorphism, and the unique inverse of f is written f−1 or, when using
additive notation, −f. If there is an isomorphism x→ y, then we say x and
y are isomorphic. It is easy to prove that any identity is an isomorphism;
the inverse of an isomorphism is an isomorphism; and the composite gf of
two isomorphisms is an isomorphism. Note that in the last case (gf)−1 =

f−1g−1. It follows from these remarks that the relation ‘x is isomorphic to
y’ is an equivalence relation on the objects of C.

A category whose objects form a set and in which every morphism is
an isomorphism is called a groupoid. For example, a group, regarded as a
category with one object, is also a groupoid.

The category PX of paths on X is not a groupoid since if a is a path in
X of positive length then there is no path b such that b + a is a zero path.
This is an awkward feature of PX. Another awkward feature is that even for
simple spaces (e.g., X = I) PX(x,y) can be uncountable. In the next section
we shall show how to avoid both of these difficulties by constructing from
PX the fundamental groupoid πX of X.

EXERCISES

1. Prove that (i) the composite of retractions is a retraction, (ii) the composite of co-

retractions is a co-retraction, (iii) the composite of isomorphisms is an isomorphism.
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2. Let a,b, c be morphisms such that ba, cb are defined and are isomorphisms.

Prove a,b, c are isomorphisms.

3. A graph Γ is a set Ob(Γ) and for each x,y in Ob(Γ) a set Γ(x,y) called the set

of edges from x to y—the sets Γ(x,y) are supposed disjoint. A path in Γ from x

to y consists of either the empty sequence ∅ → Γ(x, x) if x = y or a sequence

(an, . . . ,a1), such that (i) ai ∈ Γ(xi, xi+1), (ii) x1 = x, xn+1 = y; the set of paths

from x to y is written PΓ(x, y). These paths are multiplied by the rule that if

a = (an, . . . ,a1), b = (bm, . . . ,b1) (a ∈ PΓ(x,y), b ∈ PΓ(y, z))

then ba = (bm, . . . ,b1,an, . . . ,a1); also the empty sequence in PΓ(x, x) is to act as

identity. Prove that PΓ is a category. (This is the category freely generated by Γ .)

4. Let C be a category. Prove that a category Cop, the opposite or dual of C, is

defined as follows. (i) Ob(Cop) = Ob(C), (ii) if x,y ∈ Ob(Cop) then Cop(x,y) =

C(y, x) (however, the elements of Cop(x,y) are written f∗ for each f in C(y, x)), (iii)

the composition in Cop is defined by g∗f∗ = (fg)∗.

5. Let C be a category. A morphism f : C → D in C is called monic (and a mono)

if for all A in Ob(C) and g,h : A → C in C, the relation fg = fh implies g = h; f

is called epic (and an epi) if for all B in Ob(C) and all g,h : D → B, the relation

gf = hf implies g = h [cf. Exercises 2, 3 of Section A.1]. Prove that (i) a co-

retraction is monic and a retraction is epic, (ii) an isomorphism is both epic and

monic, (iii) the composition of monos is monic, the composition of epics is epic.

Give an example of a category in which some morphism is epic and monic but not

an isomorphism.

6. Prove that f in C is monic⇔ f∗ in Cop is epic.

7. An object P of a category C is called initial in C if C(P,X) has exactly one element

for all objects X of C; and P is final if C(X,P) has exactly one element for all objects

X of C. Prove that all initial objects in C are isomorphic, as are all final objects. If P

is both initial and final, then P is called a zero object. Prove that (i) the categories

Set and Top have initial and final objects, but no zero, (ii) the category of groups,

and the category of vector spaces over a given field, both have a zero object.

8. Prove that in the category Grp of groups, a morphism f : G → H is monic if and

only if it is injective; less trivially, f is epic if and only if f is surjective. [Suppose

f is not surjective and let K = Im f. If the set of cosets H/K has two elements,

then K is normal in H and it is easy to prove f is not epic. Otherwise there is

a permutation γ of H/K whose only fixed point is K. Let π : H → H/K be the

projection and choose a function θ : H/K → H such that πθ = 1. Let τ : H → K be

such that x = (τx)(θπx) for all x in H and define λ : H → H by x 7→ (τx)(θγπx).

The morphisms α,β of H into the group P of all permutations of H, defined by

α(h)(x) = hx, β(h) = λ−1α(h)λ satisfy αh = βh if and only if h ∈ K. Hence

αf = βf].

9. Prove that in the category of Hausdorff spaces and continuous functions, a map

f : X→ Y is epic if and only if Im f is a dense subset of Y.

10. For sets X, Y define a relation from X to Y to be a triple (X, Y,R) where R is a

subset of X× Y. If R is a subset of X× Y, S is a subset of Y × Z, let SR be the subset

of X × Z of pairs (x, z) such that for some y in Y, (x,y) ∈ R and (y, z) ∈ S. Using

this product, define the composite of a relation from X to Y and a relation from Y
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to Z, and prove that sets and relations between sets form a category containing Set

as a wide subcategory. [An obvious question seems to be: what do the conditions

epic, monic, iso imply about a relation in this category?]

11. Let C be a category and let f : C→ D be a morphism in C. Prove that f induces

functions for each X in Ob(C)

fX : C(X,C)→ C(X,D) fX : C(D,X)→ C(C,X)

g 7→ fg g 7→ gf.

Prove that the following conditions are equivalent: (i) f is an isomorphism, (ii) fX is

a bijection for each X in Ob(C), (iii) fX is a bijection for each X in Ob(C). Prove also

that f is monic if fX is injective for all X, and f is epic if and only if fX is injective

for all X. Under what conditions is fX surjective for all X, fX surjective for all X?

6.2 Construction of the fundamental groupoid

The fundamental groupoid πX will be a groupoid such that the set πX(x,y)
is a set of equivalence classes of PX(x,y). In order to define the equivalence
relation, we consider first two paths a,b in PX(x,y) of the same length r.
A homotopy rel end points of length q from a to b is defined to be a map

F : [0, r]× [0,q]→ X

such that

F(s, 0) = a(s), F(s,q) = b(s), s ∈ [0, r]
F(0, t) = x, F(r, t) = y, t ∈ [0,q].

(6.2.1)

(0, 0)

(0,q)

(r, 0)

(r,q)

F

a

b

x y

Fig. 6.1

Notice that for each t in [0,q] the path Ft : s 7→ F(s, t) is a path in
PX(x,y); the family (Ft) can be thought of as a ‘continuous family of paths’
between F0 = a and F1 = b. Alternatively, we can think of F as a ‘deforma-
tion’ of a into b.

We use the notation F : a ∼ b to mean that F is a homotopy rel end
points from a to b (of some length). There is a unique homotopy of length
0 from a to a. If F : a ∼ b is a homotopy of length q, then −F, defined by
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(s, t) 7→ F(s,q− t), is a homotopy b ∼ a. If F : a ∼ b, G : b ∼ c are of length
q,q ′ respectively where a,b, c are of length r, then the sum of F and G

G+ F : [0, r]× [0,q+ q ′]→ X

(s, t) 7→
{
F(s, t), if 0 6 t 6 q

G(s, t− q), if q 6 t 6 q+ q ′

is continuous by the gluing rule [2.5.12] and is a homotopy a ∼ c.

Two paths a,b of the same length are called homotopic rel end points,
written a ∼ b, if there is a homotopy F : a ∼ b. We abbreviate homotopic
rel end points to homotopic since in the case of paths we have no need of
other homotopies. Then it is clear from the previous paragraph that the
relation a ∼ b is an equivalence relation.

Let F : [0, r]× [0,q]→ X be a homotopy a ∼ b. Then there is a homotopy
F′ : a ∼ b of length 1, namely

F′ : [0, r]× I→ X

(s, t) 7→ F(s,qt).

So for the rest of this chapter we restrict our attention to homotopies of
length 1.

It is convenient to have a flexible notation for homotopies. We think of
a homotopy F (of length 1) as a function t 7→ Ft where Ft is a path, and
then abbreviate t 7→ Ft to Ft. This enables us to say, for example, that if Ft
is a homotopy a ∼ b, then F1−t is a homotopy b ∼ a.

For any real number r > 0 and x in X, let rx denote the constant path at
x of length r. When no confusion can be caused, we abbreviate rx to r. In
particular, for any path a and r > 0, the paths a+ r, r+ a are well defined.

We can now state the basic lemmas on homotopies of paths.

6.2.2 Let a,b ∈ PX(x,y), c,d ∈ PX(y.z) where |a| = |b|, |c| = |d|.

(a) If a ∼ b, then −a ∼ −b.

(b) If a ∼ b, and c ∼ d, then c+ a ∼ d + b.

(c) For any r > 0, a+ r ∼ r+ a.

Proof (a) Let F be a homotopy a ∼ b. Then

(s, t) 7→ F(|a|− s, t)

is a homotopy −a ∼ −b.
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(b) Let F : a ∼ b, G : c ∼ d. Then

H : [0, |c|+ |a|]× I→ X

(s, t) 7→
{
F(s, t), if s 6 |a|

G(s− |a|, t), if |a| 6 s

is a homotopy c+ a ∼ d + b [cf. Fig. 6.2].

(0, 0)

(0, 1)

(|a|, 0) (|a|+ |c|, 0)

F G
H

x
a

b

y

c

d

z

Fig. 6.2

(c) Let |a| = r ′. We define [cf. Fig. 6.3]

F : [0, r+ r ′]× I→ X

(s, t) 7→






x, if 0 6 s 6 tr

a(s− tr), if tr 6 s 6 tr+ r ′

y, if tr+ r ′ 6 s 6 r + r ′.

2

It should be noticed that in the homotopy H of 6.2.2(b) the point y is
fixed (that is, H(|a|, t) = y for all t in I). However, there are homotopies
c + a ∼ d + b which do not have this property. This fact is exploited in the
next result.

a (r ′, 0) (r + r ′, 0)

(tr, t) y

x

(tr+ r ′, t)
(0, t)

(r, 1)

Fig. 6.3

6.2.3 If a ∈ PX(x,y) and |a| = r, then

−a+ a ∼ 2rx, a− a ∼ 2ry.
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Proof It is a little simpler to define a homotopy 2rx ∼ −a + a. We define
[cf. Fig. 6.4]

F : [0, 2r]× I→ X

(s, t) 7→






a(s), if 0 6 s 6 rt

a(2rt− s), if rt 6 s 6 2rt

x, if 2rt 6 s 6 2r.

a −a (2r, 1)

(2rt, t)(rt, t)

x

(0, t)

(r, 1)

Fig. 6.4

Clearly F is well-defined, continuous, and a homotopy 2rx ∼ −a + a. It
follows that −a+ a ∼ 2rx. On replacing a by −a we find a− a ∼ 2ry. 2

The path Ft of the proof of 6.2.3 is depicted for various t in Fig. 6.5. Of
course, a, and −a should really be superimposed.

x y x x x

a
−a

Fig. 6.5

We now define an equivalence relation between paths of various lengths.
Let a,b ∈ PX(x,y). We say a,b are equivalent if there are real numbers,
r, s > 0, such that r+a, s+b are homotopic (in which case, r, smust satisfy
|a| + r = |b| + s). This relation is obviously reflexive and symmetric (since
homotopy is reflexive and symmetric). It is also transitive; for given homo-
topies r+a ∼ s+b, s ′+b ∼ t+ c (where a,b, c are paths and r, s, s ′, t > 0)
then there are homotopies

s ′ + r+ a ∼ s ′ + s+ b = s + s ′ + b ∼ s+ t+ c.
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The definition of equivalence of paths is non-canonical (that is, it in-
volves choices) and this is perhaps unaesthetic. An alternative definition
yielding the same equivalence classes is suggested in Exercise 5.

EXAMPLES

1. Let a in P(x,y) be of length r > 0. Let r ′ > 0. Then a is equivalent to a
path of length r ′, namely, the path b : s 7→ a(sr/r ′). A specific homotopy
r ′ + a ∼ r+ b is given by

F : (s, t) 7→
{
a(rs/λt), if 0 6 s 6 λt

y, if λt 6 s 6 r+ r
′

where λt = r(1− t) + r
′t [cf. Fig. 6.6].

This argument does not show that any path a in PX(x, x) is equivalent
to a path of length 0 since, if we take r ′ = 0 in the formula for F(s, t), then
F is continuous if and only if a is constant. However, any constant path r is
equivalent to a zero path since r = r+ 0.
2. Equivalent paths of the same length are in fact homotopic. This can be
proved by constructing for any r, s > 0 a homeomorphism G : [0, r] × I →
[0, r+s]× I which is the identity on {0}× I∪ [0, r]× I and which maps {r}× I
homeomorphically onto [r, r+ s]× İ ∪ {r+ s}× I. So if F : [0, r+ s]× I→ X
is a homotopy s + a ∼ s + b where a,b have length r, then the composite
FG is a homotopy a ∼ b.

a (r, 0) (r+ r ′, 1)

(λt, t)

b (r ′, 1) (r+ r ′, 1)

Fig. 6.6

However this result, although it is interesting and will be used in chap-
ter 7, is not essential to this chapter. So we only state that in Fig. 6.7 G will
be the identity on the shaded areas, and on the remaining part will map
each line segment [z,w] linearly onto [z,w′]. Further details are left to the
reader.
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(0, 0) (r, 0) (r + s, 0)

z
w

w′

w

(0, 1) (r, 1) w′ (r + s, 1)

Fig. 6.7

If two paths a,b are equivalent we write a ∼ b—the last two examples
show that this will cause no confusion. The equivalence classes of paths
from x to y are called path classes from x to y, and the set of these path
classes is written πX(x,y). The class of the zero path at x is written 0, or
to avoid ambiguity, 0x. By Example 1, the zero path class 0x includes all
constant paths at x.

6.2.4 A negative and sum of path classes is defined by

− clsa = cls(−a), a ∈ PX(x,y), b ∈ PX(y.z)
clsb + clsa = cls(b+ a).

Proof Suppose a,a ′ are equivalent paths in PX(x,y); then there are con-
stant paths r, r ′ such that r+ a, r ′ + a ′ are homotopic. Hence

r− a ∼ −a+ r = −(r + a) ∼ −(r ′ + a ′) ∼ r ′ − a ′.

Therefore − clsa is well-defined.

Suppose further that b,b ′ are equivalent paths in PX(y.z) and that s+b,
s ′ + b ′ are homotopic, where s, s ′ > 0. Then

r+ s + b+ a ∼ r+ s ′ + b ′ + a

∼ s ′ + b ′ + r+ a

∼ s ′ + b ′ + r ′ + a ′

∼ s ′ + r ′ + b ′ + a ′.

2

6.2.5 Addition of path classes is associative. Further if α ∈ πX(x,y) then

α+ 0x = 0y + α = α,

−α+ α = 0x, α− α = 0y.
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Proof The first statement is obvious, since addition of paths is associative.
The equations α + 0x = 0y + α = α are immediate from the relations
a+ 0x = 0y + a = a for paths a in P(x,y).

The last equations are immediate from 6.2.3 and the fact that the zero
path class at x contains all constant paths at x. 2

We have now shown that πX is a groupoid whose objects are the points
of X and whose morphisms x → y are the path classes from x to y—this
groupoid is called the fundamental groupoid of X.

EXAMPLES

3. If X consists of a single point, then πX has one object x say and πX(x, x)
consists only of the zero path class. More generally, if the path-components
of X consist of single points, then

πX(x,y) =

{
∅, if x 6= y
{0x}, if x = y.

A groupoid with this property is called discrete.
4. Let X be a convex subset of a normed vector space, and let a,b be two
paths in X from x to y of the same length r. Then a and b are homotopic,
since

F : [0, r]× I→ X

(s, t) 7→ (1− t)a(s) + b(s)

is a homotopy a ∼ b. It follows easily that any two paths from x to y are
equivalent; so πX(x,y) has exactly one element for all x,y in X. A groupoid
with this property is called 1-connected, and also a tree groupoid; and if πX
is a tree groupoid we say X is 1-connected (this, of course, implies X is path
connected). For example, the unit interval I is 1-connected, since it is a
convex subset of R.
5. If each path-component of X is 1-connected then, for each x,y in X,
πX(x,y) contains not more than one element; we then say X, and also
πX, is simply-connected. Thus X is simply-connected means that any two
paths in X with the same end points are equivalent. A groupoid G is called
simply-connected if G(x,y) has not more than one element for all objects
x,y of G.
6. We have at this stage no techniques for showing that πX(x,y) can ever
contain more than one element. That is, we cannot yet show that PX(x,y)
can contain non-equivalent paths. However, anyone who has tied elastic
round sticks will find it reasonable to suppose that the two paths in R2 \E2

shown in Fig. 6.8 are not equivalent. A proof of this fact will appear later
when we have techniques for computing the fundamental groupoid.
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a

E2

b

Fig. 6.8

EXERCISES

In these exercises, X is assumed to be a topological space.

1. Let x,y, z ∈ X, and let a in PX(x,y), b in PX(y.z) be paths of length 1. Define

the path b.a of length 1 in PX(x, z) by

(b.a)(t) =

{
a(2t), if 0 6 t 6 1

2

b(2t− 1), if 1
2
6 t 6 1.

Prove that b.a is well-defined, and that b.a ∼ b+a. Let 1 denote as usual a constant

path of length 1. Prove that a.1 ∼ a ∼ 1.a, that a.(−a) ∼ 1, (−a).a ∼ 1, and that if

also c ∈ P(z,w) then

c.(b.a) ∼ (c.b).a.

2. If α : I→ R>0 is continuous, let

J(α) = {(s, t) ∈ R2 : 0 6 t 6 1, 0 6 s 6 α(t)}.

Prove that J(α) is compact.

Let a,b be paths from x to y in X. A wavy homotopy F : a ∼∼ b is a map

F : J(α) → X for some map α : I → R>0 such that α(0) = |a|,α(1) = |b| and for

0 6 t 6 1
F(0, t) = x, F(s, 0) = a(s), 0 6 s 6 |a|

F(α(t), t) = y, F(s, 1) = b(s), 0 6 s 6 |b|.

Prove that ∼∼ is an equivalence relation, and that a ∼∼ b if and only if a and b are

equivalent.

3. Let a,b be paths from x to y of the same length r. A weak homotopy F : a ∼W b

is a function F : [0, r] × I → X satisfying the usual conditions for a homotopy a ∼ b

except that F is only separately continuous, that is, for each s the function t 7→ F(s, t)

is continuous, and for each t the function s 7→ F(s, t) is continuous.

Let a,b : I → S1 be paths s 7→ e2πis, s 7→ 1, respectively. Prove that the map

(s, t) 7→ exp(2πist), (s 6= 0), (0, t) 7→ 1 is a weak homotopy b ∼W a. [This example

shows that weak homotopy gives an uninteresting theory.]

4. Let a,b be paths of length r in X,Y respectively and let c be the path X × Y,

s 7→ (a(s),b(s)). Prove that c is equivalent to b ′ + a ′ where a ′ is the path s 7→
(a(s),b(0)) and b ′ is the path s 7→ (a(r),b(s)).
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5. If a : [0, r]→ X is a path in X, let ā be the map

R>0 → X

s 7→
{
as, if 0 6 s 6 r

ar, if r 6 s.

Prove that the two paths a,b in PX(x,y) are equivalent if and only if there is a map

F : R>0 × I→ X such that there is an r0 > 0 such that for all (s, t) ∈ R>0 × I

F(s, 0) = ās; F(s, 1) = b̄s;

F(0, t) = x;

F(s, t) = y for all s > r0.

6. Let Y be a subspace of X and i : Y → X the inclusion. Assume that if a,b are

paths in Y with the same end points, then the paths ia, ib are equivalent in X. Let

P(X, Y) be the set of paths in X whose end points lie in Y. For a,b ∈ P(X, Y) write

a ≈ b if there are real numbers r, s > 0 and a map F : [0,u]× I→ X such that

F0 = r+ a, F1 = s+ b,

Ft(0), Ft(u) ∈ Y.
Prove that ≈ is an equivalence relation on P(X, Y) and that the set of equivalence

classes is a groupoid.

7. Define an equivalence relation ≡ among paths in PX as follows. (i) If a is a

path and r > 0, then a + r ≡ r + a ≡ a. (ii) If a ∈ PX(x,y) then a − a ≡ 0y,

−a+ a ≡ 0x. (iii) If a,b ∈ PX(x,y), then a ≡ b if we can write a = an + · · · + a1,

b = bn+ · · ·+b1 and ai = bi, i = 1, . . .n by rules (i) and (ii). Prove that addition of

paths induces an addition of equivalence classes by which these equivalence classes

form a groupoid. [This should perhaps be called the semi-fundamental groupoid of

X.]

6.3 Properties of groupoids

In this section, we prove some basic properties of groupoids and apply them
to the fundamental groupoid of a space. We shall use additive notation and,
in particular, −a will denote the inverse (or negative) of an element a of a
groupoid G. This enables us to write a − b for a + (−b) (when defined);
and to write a− b− c for both (a− b) − c and a− (c+ b) = a+ (−b− c).
Of course we shall also in this chapter write the operation in a group as
addition, but this does not mean that the groups which arise will all be
commutative—we do not suppose a+ b = b+ a.

Let G be a groupoid. A subgroupoid of G is a subcategory H of G such
that a ∈ H⇒ −a ∈ H; that is, H is a subcategory which is also a groupoid.
We say H is full (wide) if H is a full (wide) subcategory. We can construct
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full subgroupoids H of G by taking H to be the full subcategory of G on any
subset of Ob(G). Thus we allow the empty subgroupoid of G. Further, the
full subgroupoid of G on one object x of G is written G(x)—this groupoid
has one zero and a+ b is defined for all a,b in G(x). A groupoid with only
one object is called a group [cf. Example 5 of Section 6.1] and, in particular,
G(x) is called the object group (or vertex group) at x.

If X is a topological space and x ∈ X, then πX(x) is a group called
the fundamental group of X at x (this group will often be written π(X, x)).
More generally, if A is any set then the full subgroupoid of πX on the set
A ∩ X is written πXA. The elements of πXA are all path classes, that is all
equivalence classes of paths in X, joining points of A ∩ X. The use of πXA
for sets A not contained in X will prove convenient later.

A groupoid G is called connected if G(x,y) is non-empty for all objects
x,y of G. In particular, πX is connected if and only if X is path-connected.

Let x0 be an object of G, and let Cx0 be the full subgroupoid of G on
all objects y of G such that G(x,y) is not empty. If x,y are objects of Cx0,
then G(x,y) is non-empty since it contains elements b+a for b in G(x0,y),
a in G(x, x0). It follows that Cx0 is connected. Clearly, Cx0 is the maximal,
connected subgroupoid of G with x0 as an object, and so we call Cx0 the
component of G containing x0.

6.3.1 Let x,y, x ′,y ′ be objects of the connected groupoid G. There is a bijec-

tion

ϕ : G(x,y)→ G(x ′,y ′)

which if x = y, x ′ = y ′ can be chosen to be an isomorphism of groups.

Proof Since G is connected we can choose a : x→ x ′, b : y→ y ′ in G. We
define

x ′
ϕc
// y ′

x
c
//

a OO

y

bOO

ϕ : G(x,y) → G(x ′,y ′)

c 7→ b+ c− a

ψ : G(x ′,y ′) → G(x,y)

d 7→ −b+ d + a.

Clearly ϕψ = 1, ψϕ = 1 and so ϕ is a bijection.
If x = y, x ′ = y ′ then let a = b so that ϕ sends c 7→ a + c − a. If

c, c′ ∈ G(x, x) (which is G(x)) then

ϕc+ϕc′ = a+ c− a+ a+ c′ − a

= a+ c+ c′ − a

= ϕ(c + c′).
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Therefore ϕ is an isomorphism. 2

Thus the object groups of a connected groupoid are all isomorphic. For
this reason we shall sometimes speak loosely of the object group of a con-
nected groupoid. The isomorphismG(x)→ G(x ′) which sends c 7→ a+c−a
is written a××. If x = x ′, then a×× is simply an inner automorphism of G(x).

6.3.2 Let x, x ′ belong to the same component of G. Then a×× = b×× : G(x)→
G(x ′) for all a,b : x→ x ′ if and only if G(x) is abelian.

Proof We first note that

(−b + a)×× = (−b)××a×× = (b××)
−1a××.

Thus b−1
×× a×× is an inner automorphism of G(x). Also if c : x→ x, then

(b××)
−1(b + c)×× = c××

and every inner automorphism of G(x) is of the form b−1
×× a××. But the inner

automorphisms of a group are trivial if and only if the group is abelian. 2

These definitions and results apply immediately to the fundamental
groupoid πX. The components of πX are the groupoids πX0 for X0 a path-
component of X. If α is a path class in πX from x to x ′ then α determines
an isomorphism α×× : π(X, x) → π(X, x ′) of fundamental groups, and α×× is
independent of the choice of α if and only if π(X, x) is abelian.

We now give some examples of groupoids.

EXAMPLES

1. Let X be any set. The discrete groupoid on X is also written X; it has X
as its set of objects, one zero for each element of X, and no other elements.
Notice that if X is given the discrete topology, then this groupoid is πX.
2. LetG be a tree groupoid, so that G(x,y) has exactly one element say ayx
for all objects x,y of G. Then azy + ayx is the unique element of G(x, z)
and so we have the addition rule

azy + ayx = azx. (*)

Conversely, given any set Xwe can form an essentially unique tree groupoid
G such that Ob(G) = X by choosing distinct elements ayx for each x,y in
X and then taking G(x,y) to consist solely of ayx, with the addition rule
(*). Notice that a tree groupoid with n objects as n2 elements of which n
are zeros. Tree groupoids with two objects 0, 1 will be important, and will
be denote ambiguously by I, the unique element of I(0, 1) being written ı.

If X is 1-connected and A ⊆ X, then πXA is a tree groupoid. In particu-
lar, the fundamental groupoid of I on the set {0, 1} is exactly I—in symbols

πI{0, 1} = I.
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3. Let G be a connected groupoid and T a tree groupoid which is a wide
subgroupoid of G (we recall that wide means that T ,G have the same ob-
jects). Let x0 be an object of G and for each object x of G let τx be the
unique element of T(x0, x). If a ∈ G(x,y), then there is a unique element
a ′ of G(x) such that

a = τy + a ′ − τx.

If, further, b ∈ G(y, z) then

b+ a = τz + b
′ − τy + τy + a ′ − τx

= τz + b
′ + a ′ − τx.

Therefore

(b + a) ′ = b ′ + a ′.

This shows that G can be recovered from T and the group G(x0).
4. A groupoid G is totally disconnected if

G(x,y) = ∅ for x 6= y.

Such a groupoid is determined entirely by the family (G(x)), x ∈ Ob(G),
of groups. If X is a space, and A consists of exactly one point in each path-
component of X, then πXA is totally disconnected. A totally disconnected
groupoid is sometimes called a bundle of groups.

EXERCISES

1. Let E be a subset of X × X. Let C be defined by Ob(C) = X and for each x,y in

X, let

C(x,y) =

{
∅, (x, y) /∈ E
{(y, x)}, (x, y) ∈ E.

Prove that if E is a transitive relation on X, then an associative, partial multiplication

on C is defined by the rule

(z,y)(y, x) = (z, x) whenever (x,y), (y, z) ∈ E.

Prove that if, further, E is reflexive then C is a category and that if E is an equivalence

relation then C is a groupoid.

2. Find conditions on a groupoid G for G to have initial or final objects.

3. To what extent can 6.3.1, 6.3.2 be generalised to categories?

*4. Let A be the category of complete, Archimedean, ordered fields in which the

morphisms K → L are the Archimedean functions f : K → L such that f(1) = 1,

f(x + y) = fx + fy, f(xy) = fxfy, for all x,y ∈ K. Prove that A is a 1-connected

groupoid.
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6.4 Functors and morphisms of groupoids

It is usual when defining an algebraic object to define the mappings or
morphisms of that object—that is, it is usual to define a category of the
given objects. Now we agree to regard categories themselves as particular
algebraic objects. Therefore we must define the mappings or morphisms of
categories—these morphisms are known as functors.

Groupoids are special cases of categories and functors of groupoids will
be called groupoid morphisms. Actually, the main line of our applications
is to the case of groupoids. However, we will have applications of functors
of categories; further, many of our results are of general interest for cate-
gories and have applications outside the topics of this book. Some of these
applications will be indicated in the exercises, and in this way we hope to
show how these ideas run into the main stream of mathematics.

Let C,D be categories. A functor Γ : C → D assigns to each object x
of C an object Γx of D and to each morphism f : x → y in C a morphism
Γf : Γx → Γy in D; Γf is often called the morphism induced by f. These
must satisfy the axioms.

FUN 1 If 1 : x → x is an identity in C then Γ1 : Γx → Γx is the identity in
D; that is, Γ1x = 1Γx.

FUN 2 If f : x→ y, g : y→ z are morphisms in C, then

Γ(gf) = ΓgΓf.

Clearly we have an identity functor 1 : C → C and if Γ : C → D, ∆ :

D → E are functors, then we can form the composite functor ∆Γ : C → E.
Thus we can form the category Cat of all categories and functors. (There
is a logical difficulty here, since it seems that Cat being a category must
be one of its own objects, and from this one can obtain a contradiction by
considering the category of all categories which do not have themselves as
objects. For a brief mention of ways round this difficulty, see the Glossary,
under class.)

Before giving examples of functors we prove one elementary result.

6.4.1 Let Γ : C → D be a functor. Then Γf is a retraction, a co-retraction or

isomorphism if f is respectively a retraction, co-retraction or isomorphism.

Proof A relation gf = 1 implies ΓgΓf = 1. 2

EXAMPLES

1. If X is a space, then PX is a category. Suppose f : X → Y is a map of
spaces. If a is a path in X from x to y then the composite fa is a path in Y
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from fx to fy. If a is a zero path, then so also is fa. If b+ a is defined in X
then fb+ fa is defined in Y and

fb + fa = f(b + a).

Therefore f determines a functor Pf : PX→ PY.
2. Let us proceed further with the last example. If f is the identity X→ X,
then so also is Pf : PX→ PX. Further, it is easy to check that if f : X→ Y, g :

Y → Z are maps then P(gf) = PgPf. Thus P is a functor Top→ Cat. From
6.4.1 we deduce that if X is homeomorphic to Y, then PX is isomorphic to
PY. Thus PX is a topological invariant of X (though not a very tractable
one).
3. For any space X, there is a functor p : PX→ πX which is the identity on
objects and sends each path in X to its equivalence class.
4. Let G,H be groupoids. A functor G → H will also be called a mor-

phism of groupoids. So we obtain the category Grpd of all groupoids and
morphisms of groupoids.

6.4.2 The fundamental groupoid is a functor

π : Top→ Grpd .

Proof Let f : X → Y be a map of spaces and Pf : PX → PY the cor-
responding functor of path categories. Suppose first of all that a,b are
two homotopic paths in X of length r from x to x ′. Then there is a map
F : [0, r] × I → X such that F0 = a, F1 = b and F(0, t) = x, F(r, t) = x ′

for all t ∈ I. It is easily checked that the composite fF : [0, r] × I → Y is a
homotopy fa ∼ fb.

If a,b are equivalent paths in X from x to x ′, then there are constant
paths r, s such that r + a, s + b are homotopic, whence

r + fa = f(r + a) ∼ f(s+ b) = s + fb

and so fa is equivalent to fb. Thus we have a well defined function

πf : πX→ πY

clsa 7→ cls fa

and it is clear that πf is a morphism of groupoids. The verification of the
functorial relations π1 = 1, π(gf) = πgπf, is left to the reader. 2

6.4.2 (Corollary 1) If X is homeomorphic to Y, then πX is isomorphic to πY.

Proof This is immediate from 6.4.1 and 6.4.2. 2
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Of course, before 6.4.2 (Corollary 1) can be used it is necessary to be
able to compute πX—the techniques for this are given in chapter 9.

EXAMPLE

5. The fundamental group π(X, x) is only defined for a space X and point x
of X, so that the fundamental group is in no sense a functor Top→ Grp. In
order to obtain a functor, one introduces the category Top• of pointed spaces

(or spaces with base point). A pointed space is a pair (X, x) where x ∈ X and
X is a topological space. A pointed map (X, x) → (Y,y) is determined by
the two pointed spaces and a map f : X → Y such that fx = y (but such a
pointed map is usually written f). To any pointed space (X, x) we can assign
the fundamental group π(X, x) and to any pointed map f : (X, x) → (Y,y)

we can assign f∗ : π(X, x) → π(Y,y), the restriction of πf : πX → πY to
the appropriate object groups—this defines the fundamental group func-
tor Top• → Grp. Since it is easier to specify a group than a groupoid, the
fundamental group is often the useful topological invariant (of a pointed
space). For example, if X, Y are path-connected spaces, and X, Y have fun-
damental groups Z,Z2 respectively, then we know immediately that X is
not homeomorphic to Y.

6.4.3 Let f : C→ D be a functor. Then f is an isomorphism⇔ the functions

Ob(C)→ Ob(D), C(x,y)→ D(fx, fy), x,y ∈ Ob(C)

induced by f are all bijections.

Proof The implication⇒ is easy since an inverse g of f induces an inverse
to each of the functions induced by f.

For the converse, define g : D→ C to be the given inverse of f on Ob(D)

and on each D(x ′,y ′). Then it is easy to check that g is a functor, and is an
inverse to the functor f. 2

Consider now the case of groupoids. If f : G → H is a morphism, then
f induces a morphism of object groups G(x) → H(fx) which is written fx
or, simply, f. If f is an isomorphism then so also is each fx; but it is not
true that if each fx is an isomorphism and f is bijective on objects then f
is an isomorphism—for example, G could be totally disconnected and H
connected.

The groupoid I gives rise to some simple and useful morphisms. Let G
be any groupoid and let a ∈ G(x,y). Then a morphism â : I→ G is defined
on objects by â0 = x, â1 = y, and on non-zero elements by

âı = a, â(−ı) = −a
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where, as defined earlier, ı is the unique element of I(0, 1). The check that
â is a morphism is easy since I has only four elements, two of them zeros.
Notice that â is the only morphism I→ G which sends ı to a.

Products of categories

Let C1,C2 be categories. The product C1 × C2 is defined to have as objects
all pairs (x1, x2) for x1 in Ob(C1), x2 in Ob(C2) and to have as elements the
pairs (a1,a2) for a1 in C1, a2 in C2—thus the set C1×C2 is just the cartesian
product of the two sets. Also, if a1 : x1 → y1 in C1, a2 : x2 → y2 in C2, then
we take in C1 × C2

(a1,a2) : (x1, x2)→ (y1,y2).

The composition is defined as one would expect by

(b1,b2)(a1,a2) = (b1a1,b2a2)

whenever both b1a1,b2a2 are defined. It is very easy to show that C1 × C2

is a category.
Notice also that if a1,a2 have inverses a−1

1 ,a−1
2 then (a1,a2) has inverse

(a−1
1 ,a−1

2 ). It follows that if C1,C2 are both groupoids then so also is C1 ×
C2.

Let p1 : C1 × C2 → C1, p2 : C1 × C2 → C2 be the obvious projection
functors. Then we have the universal property: if f1 : D→ C1, f2 : D→ C2

are functors then there is a unique functor f : D→ C1×C2 such that p1f = f1,

p2f = f2. The proof is easy and is left to the reader. As usual, this property
characterises the product up to isomorphism.

The functor π : Top→ Grpd preserves products in the following sense.

6.4.4 If X = X1 × X2 then πX is isomorphic to πX1 × πX2.

Proof The projections pr : X→ Xr (r = 1, 2) induce morphisms

πpr : πX→ πXr

which, by the universal property determine

f : πX→ πX1 × πX2.

In fact f is the identity on objects and is defined on elements by

f(clsa) = (clsp1a, clsp2a)

for any path a in X.
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Let x = (x1, x2), y = (y1,y2) belong to X. We prove that f induces a
bijection

πX(x,y)→ πX1(x1,y1)× πX2(x2,y2).

Let a,b be paths in X from x to y and suppose first that there are ho-
motopies F1 : p1a ∼ p1b, F2 : p2a ∼ p2b. Then it is easy to check that

F : [0, r]× I→ X1 × X2

(s, t) 7→ (F1(s, t), F2(s, t))

is a homotopy F : a ∼ b. Suppose next only that

f(clsa) = f(clsb).

Then we know that p1a is equivalent to p1b, p2a is equivalent to p2b.
Because p1a,p2a have the same length, as do p1b,p2b, we can find real
numbers r, s > 0 large enough so that both r+ p1a is homotopic to s+p1b
and r + p2a is homotopic to s + p2b. It follows that r + a is homotopic to
s+ b and so clsa = clsb. Thus f is injective.

In order to prove that f is surjective, let clsa1 ∈ πX1, clsa2 ∈ πX2;
we may suppose a1,a2 are both of length 1. The path a = (a1,a2) then
satisfies p1a = a1, p2a = a2, and so

f(clsa) = (clsa1, clsa2).

Therefore f is surjective. 2

The proof of 6.4.4 shows a little more than stated—in fact the mor-
phisms

πX1
πp1←− π(X1 × X2)

πp2−→ πX2

are a product of groupoids in the sense of the universal property.
The coproduct G = G1⊔G2 of groupoids G1,G2 is a simple construction.

For simplicity, let us suppose that G1,G2 have no common elements or
objects. Then we define

Ob(G) = Ob(G1) ∪Ob(G2)

and define

G(x,y) =






G1(x,y) if x,y ∈ Ob(G1)

G2(x,y) if x,y ∈ Ob(G2)

∅ otherwise.

(The modification of this construction when G1,G2 are not disjoint is left
to the reader.)

It is very easy to prove
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6.4.5 There is an isomorphism of groupoids

π(X1 ⊔ X2)→ πX1 ⊔ πX2.

The proof is left to the reader.

EXERCISES

1. Let C be a category and let X ∈ Ob(C). Define CX : C → Set by CXC = C(X,C)

for C ∈ Ob(C), and if f : C→ D is a morphism in C, let

CXf : C(X,C)→ C(X,D)

g 7→ fg.

Prove that CX is a functor.

2. Let C,D be categories. A contravariant functor Γ : C → D assigns to each object

C of C an object ΓC of D and to each morphism f : C → D in C a morphism

Γf : ΓD → ΓC in D subject to the axioms (i) Γ1C = 1ΓC, (ii) if f : C → D,

g : D → E in C, then Γ(gf) = ΓfΓg. Prove that the contravariant functors C → D

are determined by the functors Cop → D (where Cop is the dual category of C). [A

functor as defined in the text is often called covariant.]

3. Prove that if X ∈ Ob(C), then there is a contravariant functor CX : C→ Set such

that CXC = C(C,X).

4. Let Γ : C → Set be a functor and let C ∈ Ob(C). An element u of ΓC is called

universal (for Γ) if the function

C(C,X)→ ΓX, f 7→ (Γf)u

is bijective for all X in Ob(C). If such a u exists, we say Γ is representable and that

(C,u)—or simply C—represents Γ . Prove that if (C,u), (C1,u1) represent Γ , then

there is a unique morphism f : C → C1 such that (Γf)u = u1, and this f is an

isomorphism.

5. The definition of the previous exercise is applied to a contravariant functor C→
Set by considering the corresponding (covariant) functor Cop → Set. Write out the

definition in detail.

6. Let C be a category and let X ∈ Ob(C). Which objects of C represent CX,C
X?

7. Let R be an equivalence relation in a topological space C and for each space X let

ΓX be the set of maps f : C → X such that cRc1 ⇒ fc = fc1. If g : X → Y is a map,

let Γg : ΓX → ΓY be defined by composition. Prove that Γ is a functor represented

by (C,p) where p : C→ C/R is the identification map.

8. For which functors are the product, sum of sets universal?

9. Let Γ : Grp→ Set be the functor which assigns to each groupG its underlying set,

and to each morphism the corresponding function. Prove that Γ is representable.

(This functor is called the forgetful functor from Grp to Set.)

10. Let Γ : Top → Set be the functor which assigns to each topological space its

underlying set and to each map the corresponding function. Prove that Γ is repre-

sentable. (This functor is called the forgetful functor from Top to Set.)
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11. Let V be the category of vector spaces over a given field and let Λ be a set. If V

is a vector space, let ΓV be the set of all functions Λ→ V. Prove that this defines a

representable functor Γ : V→ Set.

12. Let P• : Set → Set be the contravariant functor assigning to each set X the

set P(X) and to each functor f : X → Y the function P(Y) → P(X), A 7→ f−1[A].

Prove that P• is representable. Is the similar (covariant) functor P•, in which P•(f) :

P(X)→ P(Y) sends A 7→ f[A], representable?

13. Let R be an integral domain (i.e., a commutative ring with identity and no

divisors of zero). Let K be the category of fields and morphisms of fields (i.e.,

functions such that f(1) = 1, f(x + y) = f(x) + f(y), f(xy) = fxfy). Let Γ : K→ Set

assign to each field K the set of morphisms R→ K. Prove that Γ is representable.

14. The product of pointed spaces (X, x), (Y,y) is the pointed space

(X× Y, (x,y)).

Prove that the fundamental group of the product of pointed spaces is isomorphic to

the product of their fundamental groups.

15. Define and construct coproducts of categories.

16. Let X,Y be topological spaces. Are the following statements true: P(X × Y) is

isomorphic to PX× PY? P(X ⊔ Y) is isomorphic to PX ⊔ PY?

6.5 Homotopies

In defining the fundamental groupoid we have used homotopies of paths.
In describing the invariance properties of the fundamental groupoid we
must use homotopies of maps.

Let X, Y be topological spaces. A map F : X× [0,q]→ Y will be called a
homotopy of length q; for such F, the initial map and the final map of F are
respectively the functions

f : X→ Y g : X→ Y

x 7→ F(x, 0) x 7→ F(x,q).

We say F is a homotopy from f to g, and we write

F : f ≃ g.

If a homotopy (of some length) F : f ≃ g exists then we say f,g are homo-

topic and write f ≃ g.

6.5.1 The relation f ≃ g is an equivalence relation on maps X→ Y.

The proof is a simple generalisation of the argument for homotopies of
paths, and is left to the reader. It should be emphasised that the homotopies
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of section 6.2 were more restricted since the end points of the paths had to
be fixed during the homotopy (this kind of homotopy is subsumed under
the notion of homotopy relA which we use in chapter 7).

There is a continuous surjection λ : I → [0,q]; so if F : X × [0,q] → Y

is a homotopy of length q, then G = F(1 × λ) : X × I → Y is a homotopy
of length 1. Also F and G have the same initial and the same final maps.
So in discussing homotopies of maps it is sufficient to restrict ourselves to
homotopies of length 1, and this we shall do for the rest of this chapter. We
also denote a homotopy of length 1 by Ft : X→ Y (where t ∈ I).

6.5.2 Let f :W → X, g0,g1 : X→ Y, h : Y → Z be maps. If g0 ≃ g1, then

hg0f ≃ hg1f :W → Z.

Proof Let gt : g0 ≃ g1 be a homotopy. Then hgtf is a homotopy hg0f ≃
hg1f. 2

6.5.3 Let f0 ≃ f1 : X→ Y, g0 ≃ g1 : Z→W. Then f0 × g0 ≃ f1 × g1.

Proof If ft : f0 ≃ f1, gt : g0 ≃ g1, then the required homotopy is ft × gt.
The detailed proof of continuity of ft×gt (as a function X×Z×I→ Y×W)
is left to the reader [cf. Example 2, p. 34]. 2

Let f : X→ Y, g : Y → X be maps. If

fg ≃ 1Y

then we say g is a right homotopy inverse of f, that f is a left homotopy inverse

of g, and that X dominates Y. If g is both a left and a right homotopy inverse
of f, then g is called simply a homotopy inverse of f; further f is called a
homotopy equivalence and we write f : X ≃ Y. If a homotopy equivalence
X → Y exists, then we say X, Y are homotopy equivalent (or of the same
homotopy type) and we write X ≃ Y. (In much of the literature this relation
is written ≡). This relation is easily seen to be an equivalence relation on
topological spaces.

EXAMPLES

1. Let Y be a convex subset of Rn and let f0, f1 : X → Y be maps. Then
ft = (1− t)f0 + tf1 is a homotopy f0 ≃ f1.
2. A map is inessential if it is homotopic to a constant map—otherwise it is
essential. For example, any map to a convex subset of Rn is inessential, by
Example 1.
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3. A space X is contractible if it is of the homotopy type of a space with only
one point. In fact, X is contractible if and only if the identity map 1X : X→ X

is inessential.

Proof ⇒ Suppose f : X ≃ Y has homotopy inverse g, where Y is a single
point space. Then gf ≃ 1X and gf is a constant map. Therefore 1X is
inessential.
⇐ Let 1X ≃ f where f : X → X is a constant map with value x say. Let

Y = {x}, let i : Y → X be the inclusion and let f ′ : X→ Y be the unique map.
Then f ′i = 1Y and if ′ = f ≃ 1X. 2

It follows from these examples that any convex subset of Rn is con-
tractible.
4. Let ft : X → Y be a homotopy. Then for each x in X the map t 7→ ftx is
a path in Y from f0x to f1x and so f0x, f1x lie in the same path-component
of Y. It follows easily that, if X has more than one path-component, then
1 : X→ X is an essential map.
5. Let y, z ∈ S1 and let g,h : S1 → S1 × S1 be the maps x 7→ (x,y),
x 7→ (x, z) respectively [Fig. 6.9]. Then it is easy to prove that g ≃ h—in
fact if a is any path of length 1 in S1 from y to z, then ft : x 7→ (x,at) is a
homotopy g ≃ h. However, if k is the map x 7→ (y, x), then it is true that
g is not homotopic to k, but the proof needs more theory than we have yet
developed—in particular, we need to know that S1 is not simply-connected.

g

h

k

S1 × {y}

S1 × {z}

Fig. 6.9

We must now investigate the concept in the algebra of groupoids corre-
sponding to homotopy of maps of spaces. For this it is convenient first to
say something about functors on a product of categories.

Let F : C × D → E be a functor, where C,D,E are categories. If 1x is
the identity at x in C, then let us write F(x,b) for F(1x,b) where b is any
morphism in D. Similarly, let us write F(a,y) for F(a, 1y) for any object y
of D and a morphism a of C. Then, as is easily verified, F(x, ) is a functor
D → E (called the x-section of F) and F( ,y) is a functor C → E (called the
y-section of F). These two functors determine F. If a : x → x ′, b : y → y ′

are morphisms in C,D respectively then we have a commutative diagram
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F(x,y)
F(a,y)

//

F(x,b)

��

F(a,b)

$$H
HH

HH
HH

HH
HH

HH
HH

F(x ′,y)

F(x ′,b)

��
F(x,y ′)

F(a,y ′)
// F(x ′,y ′)

(6.5.4)

since F(1x′a,b1y) = F(a,b) = F(a1x, 1y ′b).

6.5.5 Suppose for each x in Ob(C) and y in Ob(D) we are given functors

F(x, ) : D→ E, F( ,y) : C→ E

such that F(x,y) is a unique object of E. Suppose for each a : x→ x ′ in C and

b : y → y ′ in D the outer square of (6.5.4) commutes. Then the diagonal

composite F(x,b) makes F a functor C×D→ E. All functors C×D→ E arise

in this way.

Proof The verification of FUN 1 for F is easy since

F(1x, 1y) = F(1x,y)F(x, 1y)

= 1F(x,y)1F(x,y)

= 1F(x,y).

The verification of FUN 2 involves a diagram of four commutative squares,
and is left to the reader. The last statement is clear from the discussion
preceding 6.5.5. 2

In order to model the notion of homotopy we need a model for cate-
gories of the unit interval. This is provided by the tree groupoid I.

Let C and E be categories. A homotopy (or natural equivalence) of func-
tors from C to E is a functor

F : C× I→ E.

The initial functor of F is then f = F( , 0) and the finial functor of F is
g = F( , 1); we say f is a homotopy from f to g and write F : f ≃ g. If such
a homotopy from f to g exists then we say f,g are homotopic and write
f ≃ g.‡

‡This definition of homotopy was pointed out to me by P. J. Higgins. I am grateful to
W. F. Newns for suggesting that the emphasis be placed on this definition (rather than that by
the function θ as below) and for other helpful comments on this section and section 6.7.
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According to 6.5.5, in order to specify a homotopy F it is sufficient to
give the initial and final functors f and g of F, and also for each object x of C
a functor F(x, ) : I→ E in such a way that the outside of (6.5.4) commutes.
However, the functors F(x, ) : I → E are entirely specified by invertible
elements θx of E where θx = F(x, ı). In these terms, (6.5.4) becomes (with
b = ı)

fx
fa //

θx

��

fy

θy

��
gx

ga
// gy

the commutativity of which asserts

(ga)(θx) = (θy)(fa). (6.5.6)

Since θx is invertible this shows that g is determined by f and θ. Thus,
given any functor f : C→ E and for each object x of C an invertible element
θx of E with initial point fx, then there is a homotopy f ≃ g where g is
defined by (6.5.6). We call θ a homotopy function from f to g and write
also θ : f ≃ g.

The function θ also gives rise to the useful diagram

C(x,y)
f //

g

$$I
II

II
II

II
II

II
II

E(fx, fy)

θ(x,y)

��
E(gx,gy)

(6.5.7)

in which θ(x,y) is the bijection a ′ 7→ (θy)a ′(θx)−1. The commutativity of
(6.5.7) is immediate from (6.5.6) with a ′ = fa.

6.5.8 Homotopy of functors is an equivalence relation.

Proof (a) The function x 7→ 1fx is a homotopy function f ≃ f.
(b) If θ is a homotopy function f ≃ g, then x 7→ (θx)−1 is a homotopy
function g ≃ f.
(c) If θ,ϕ are homotopy functions f ≃ g, g ≃ h respectively then x 7→ ϕxθx

is a homotopy function f ≃ h. 2

The proof of the following proposition is left as an exercise.
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6.5.9 Let f : C → D, g : D → E, h : E → F be functors and suppose g ≃ g ′.
Then hgf ≃ hg ′f.

Exactly as for topological spaces we have the notions of homotopy in-

verse of a functor, and homotopy equivalence of categories. Further, all
these notions apply a fortiori to groupoids and morphisms of groupoids.

The utility for topology of these notions is shown by:

6.5.10 If f,g : X → Y are homotopic maps of spaces, then the induced mor-

phisms πf,πg : πX→ πY are homotopic.

Proof Let F : X× I→ Y be a homotopy from f to g. Consider the composite

πX× I→ πX× πI ϕ−→ π(X× I)
πF−→ πY

in which the first morphism is inclusion (since I ⊆ πI) and the second
morphism is the isomorphism constructed in 6.4.4. We prove that the com-
posite G is a homotopy πf ≃ πg.

Let α ∈ πX(x,y), let a ∈ α be of length 1, and let cε be a constant path
at ε of length 1 for ε = 0, 1. Then

G(α, ε) = (πF)ϕ(α, ε)

= (πF)(cls(a, cε))

= cls F(a, cε)

=

{
cls fa, if ε = 0

cls ga, if ε = 1.

2

6.5.10 (Corollary 1) If f : X → Y is a homotopy equivalence of spaces, then

πf : πX→ πY is a homotopy equivalence of groupoids.

6.5.11 Let f : C→ C be a functor such that f ≃ 1. Then for all objects x,y of

C

f : C(x,y)→ C(fx, fy)

is a bijection.

Proof This is immediate from the commutativity of (6.5.7) and the fact
that θ(x,y) is a bijection. 2

6.5.12 Let f : C → E be a homotopy equivalence of categories. Then for all

objects x,y of C, f : C(x,y) → E(fx, fy) is a bijection. Hence, if further f is

bijective on objects then f is an isomorphism.
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Proof Let g : E → C be a homotopy inverse of f, so that gf ≃ 1, fg ≃ 1.
Consider the functions,

C(x,y)
f−→ E(fx, fy)

g−→ C(gfx,gfy)
f−→ E(fgfx, fgfy).

By 6.5.11, the composites of the first two, and of the last two, functions are
bijections. It follows easily that each function is a bijection. The last part
follows from this and 6.4.3. 2

6.5.12 (Corollary 1) If f : X → Y is a homotopy equivalence of spaces, then

for each x in X, πf : π(X, x) → π(Y, fx) is an isomorphism of fundamental

groups.

The application of this result to spaces must wait until we can com-
pute more readily the fundamental groupoid. However 6.5.10 (Corollary
1) focuses attention on the homotopy type of groupoids and so, more gen-
erally, of categories. The rest of this section is devoted to a simple result
which enables us to replace a given category by a simpler but homotopi-
cally equivalent category. This process is especially useful for computations
of the fundamental groupoid—in fact πX has an embarrassingly large num-
ber of objects, so any simplification of πX is welcome.

Let F : C × I → E be a homotopy, where C and E are categories. The
homotopy is called constant if F(x, ι) is an identity for all objects x of C. Let
θ be the homotopy function defined by F (so that θx = F(x, ι), x ∈ Ob(C)).
Then clearly F is constant if and only if θx is an identity of E for all x.

Suppose that D is a subcategory of C. Then we say F is a homotopy relD

if F | D × I is a constant homotopy, or, equivalently, if θx = 1 for all x in
Ob(D). In such case, the initial and final functors f,g of F are said to be
homotopic relD, written f ≃ g relD; these functors must of course agree on
D, but this alone, or even with the existence of a homotopy f ≃ g, is not
enough to ensure f ≃ g relD.

A subcategory D of C is a deformation retract of C if there is a functor
r : C → D such that ir ≃ 1C relD, where i : D → C is the inclusion.
Such a functor r is called a deformation retraction. It is a retraction, since
ir | D = 1C | D = i and so ri = 1D. Further, if F is the homotopy ir ≃ 1C
and a : x→ x ′ is an element of C, then by (6.5.4) with b = ı : 0→ 1

F(x ′, ı)ir(a) = aF(x, ı).

In particular, let a = F(x ′, ı) : rx ′ → x ′; then F(x, ı) = 1 since F is relD. So
we obtain

F(x ′, ı)r(a) = a

whence rF(x ′, ı) = 1. This shows that rF is the constant homotopy r ≃ r.
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We note also that if D is a deformation retract of C then i : D → C is a
homotopy equivalence.

To characterise deformation retracts we need a further definition. A
subcategory D of C is representative in C if each object of C is isomorphic to
an object of D.

6.5.13 A subcategory D of C is a deformation retract of C if and only if D

is a full, representative subcategory of C. In fact, if D is a full representative

subcategory of C and if we define θx = 1x for each object x of D, and choose

θy for any other object y of C to be an isomorphism of some x in Ob(D) with

y, then θ determines a deformation retraction r : C → D and a homotopy

ir ≃ 1 relD, where i : D→ C is the inclusion.

Proof We leave the proof of ‘only if’ as an exercise. That θ can be chosen
follows from the fact that D is representative in C. By the remarks following
(6.5.6), θ−1 determines a homotopy 1C ≃ g for some functor g, and this
homotopy is relD be construction. Now gy is an object of D for each
object y of C; since D is full it follows that ga ∈ D for each element a of C.
Therefore, we can write g = ir for some functor r : C→ D. 2

6.5.13 (Corollary 1) Any groupoid is of the homotopy type of a totally dis-

connected groupoid.

Proof Let G be a groupoid and H a full subgroupoid of G consisting of one
object group in each component of G. By 6.5.13, the inclusion H → G is a
homotopy equivalence. 2

This shows that the interesting invariant of homotopy type of a space X
is a groupoid consisting of one object group in each path-component of X.
It would thus seem likely that groupoids which are not totally disconnected
are of little interest.

We shall see later that this view is not valid. In fact, groupoids and
groupoid morphisms carry information (essentially of a graph theoretic
character) which it is more difficult to describe in terms of groups alone.

The situation is analogous to that of vector spaces. Vector spaces are of
course characterised up to isomorphism by a single cardinal number, the
dimension of the vector space. This does not imply that vector spaces can
reasonably be excised from the mathematical literature. One of the rea-
sons is that morphisms of vector spaces, and vector spaces with additional
structure, are of considerable importance in mathematics.
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EXERCISES

1. Prove that a category HTop is defined as follows: the objects of HTop are the

topological spaces; the maps X → Y are the homotopy classes of maps X → Y;

composition is defined by

(cls g)(cls f) = cls(gf).

Define HGrpd similarly and prove that π : Top → Grpd determines a functor

HTop→ HGrpd.

2. For any space X, let π0X be the set of path components of X. Prove that π0

determines a functor HTop→ Set. Deduce that if X ≃ Y, then |||
|

(π0X) = |||
|

(π0Y).

3. Prove that if X,X ′, Y, Y ′ are spaces and X ≃ X ′, Y ≃ Y ′ then X × Y ≃ X ′ × Y ′,

X ⊔ Y ≃ X ′ ⊔ Y ′.

4. Prove that if Y is contractible then any maps X → Y are homotopic. Prove that

if X and Y are contractible then any map X → Y is a homotopy equivalence. Prove

also that a retract of a contractible space is contractible. Prove results for groupoids

similar to those of this and the preceding two exercises.

5. Let VK be the category of finite dimensional vector spaces over a given field K.

Let K be the full subcategory of VK on the vector spaces Kn, n > 0. Prove that K is

a deformation retract of VK.

6. Let I→ be the category with two objects 0, 1 and only one non-identity element

ı : 0→ 1. If F : C× I→ → E is a functor, then f = F( , 0) and g = F( , 1) are called the

initial and final functors of F, and F is called a morphism, or natural transformation,

from f to g. Prove that there is a category Fun(C,E), whose objects are the functors

C→ E, whose morphisms are the morphisms of functors and such that the invertible

elements of this category are the homotopies.

7. Let V be the category of vector spaces over a (commutative) field K. For each

object V of V let V∗ = V(V,K), considered again as a vector space over K, and let

gV = V∗∗; let θV : V → V∗∗ be the function v 7→ (λ 7→ λv). Prove that g is a

functor V→ V and that θ determines a morphism 1V → g such that θV is invertible

if V is of finite dimension. [This example was a crucial one in the development of

category theory. For a discussion, see the fundamental paper [EM45] of Eilenberg

and Mac Lane.]

8. Let Γ : C → Set be a functor represented by (C,u) and let ∆ : C → Set be any

functor. Prove that the function

Fun(Γ ,∆)→ ∆C,

F 7→ F(C, ı)(u)

is a bijection. (This says that the natural transformations of a representable functor

are entirely determined by their values on the universal element.)

9. Prove that, if C,D are objects of C, then there is a bijection

Fun(CC,CD → C(C,D).

10. Prove that a functor Γ : C → Set is representable by C if and only if there is a

homotopy Γ ≃ CC.
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11. Let D be a category. Prove that if D̂ assigns to each pair of x,y of D the set

D(x,y) and to each pair of morphisms a : x→ x ′, b : y→ y ′ the morphism

D(a,b) : D(x ′,y)→ D(x,y ′)

c 7→ bca,

then D̂ is a functor Dop ×D→ Set.

12. Let C,D be categories and Γ : Cop×D→ Set a functor such that for each object

C of C the functor Γ(C, ) is representable by (∆C,uC). Prove that the function

C 7→ ∆C of objects extends uniquely to a functor ∆ : C→ D such that the bijection

D(∆C,D)→ Γ(C,D)

f 7→ Γ(C, f)(uC)

is a homotopy D̂(∆C× 1) ≃ Γ (where D̂ is as in Exercise 11).

*13. Let C,D,E be categories. Prove that there is an isomorphism of categories

Fun(C,Fun(D,E))→ Fun(C×D,E).

14. A functor f : C → D induces for all objects x,y of C a function f : C(x,y) →
D(fx, fy). If this function is injection for all x,y then f is called faithful; if it is

surjective for all x,y then f is called full; finally if each object z of D is isomorphic

to some object fx, then f is called representative. Prove that f is a homotopy equiv-

alence of categories if and only if f is full, faithful and representative. Prove also

that if g is a homotopy inverse of f, and if θ is a homotopy function fg ≃ 1D, then

we can choose a homotopy function ϕ : gf ≃ 1C such that fϕ = θf, gθ = ϕg.

15. Let both the path functor P and the fundamental groupoid functor π be consid-

ered as functors Top→ Cat. Prove that the assignment to each topological space X

of the projection p• : PX→ πX defines a natural transformation P → π.

6.6 Coproducts and pushouts

We have already used in several categories the idea of a coproduct. It
seems reasonable to formulate now the general definition. We shall also
define pushouts in a general category—there is a close relation between
coproducts and pushouts which is presented briefly in the Exercises.

Let C be a category. A coproduct (or sum) of two objects C1,C2 of C is a
diagram

C1
i1−→ C

i2←− C2 (6.6.1)

of morphisms of C with the followingϕ-universal property: for any diagram

C1
v1−→ C′ v2←− C2



THE FUNDAMENTAL GROUPOID [6.6] 235

of morphisms of C, there is a unique morphism v : C→ C′ such that

vi1 = v1, vi2 = v2.

The usual universal argument shows that this property characterises co-
products up to isomorphism. If (6.6.1) is a coproduct in C it is usual to
write

C = C1 ⊔ C2

and by an abuse of language, to refer to C (rather than i1, i2) as the co-
product of C1 and C2.

This definition is of course a simple extension to arbitrary categories
of definitions encountered already in the categories Set,Top, and Grpd—in
each of these categories, any two objects have a coproduct. This is also
true in the category Grp, but the proof, which will be given in chapter 8, is
non-trivial.

We now discuss pushouts. A diagram

C0

i1 //

i2

��

C1

u1

��
C2 u2

// C

(6.6.2)

of morphisms of C is called a pushout (of i1, i2) if
(a) The diagram is commutative: that is u1i1 = u2i2.
(b) u1,u2 are ϕ-universal for property (a); that is, if the diagram

C0

i1 //

i2

��

C1

v1

��
C2 v2

// C′

(6.6.3)

of morphisms of C is commutative, then there is a unique morphism v :

C→ C′ such that vu1 = v1, vu2 = v2.
The usual universal argument shows that if (6.6.2) is a pushout, then

(6.6.3) is a pushout if and only if there is an isomorphism v : C→ C′ such
that vuα = vα, α = 1, 2. Thus a pushout is determined up to isomorphism
by i1, i2.
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If (6.6.2) is a pushout it is usual to write

C = C1 i1⊔ i2 C2

and, by an abuse of language, to refer to C itself as the pushout of i1, i2.
It is important to note that we have not asserted that pushouts exist for

any C and i1, i2. The existence of arbitrary pushouts is to be regarded as a
good property of the category C. In the exercises we give a condition for
pushouts to exist—here we are more concerned with giving useful lemmas
for proving that a particular diagram is a pushout.

Suppose given in C a commutative diagram

C
h //

f

��

E
l //

k

��

G

m

��
D

g
// F

n
// H

(6.6.4)

Then the outer part of this diagram is also a commutative square which we
call the composite of the two individual squares. The abstract algebra of
such compositions is a ‘double category’, since there are possible composi-
tions both horizontally and vertically [cf. [Ehr65]]. But we shall need only
the horizontal composition.

6.6.5 In any category C, the composite of two pushouts is a pushout.

Proof We use the notation of (6.6.4). Suppose given a commutative dia-
gram

C
lh //

f

��

G

v

��
D

u
// K

By the pushout property for the first square, there is a unique morphism
w : F→ K such that

wg = u, wk = vl.

The two maps w and v determine, by the pushout property of the second
square, a unique map x : H→ K such that

xn = w, xm = v;
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it follows that
xng = u, xm = v.

To complete the proof we must show that x is the only morphism satisfying
these last equations.

Suppose that x ′ satisfies

x ′ng = u, x ′m = v.

Then x ′ng = u, x ′nk = x ′ml = vl. By uniqueness of the construction of
w, x ′n = w. Further, by uniqueness of the construction of x, x ′ = x. 2

Suppose, in particular, that C is the category Top and that f : C → D
is the inclusion of the closed subspace C of D. Then F,H are adjunction
spaces and 6.6.5 can be stated as

G l⊔ (E h⊔ D) = G lh⊔ D.

Other applications of 6.6.5 (mainly to groupoids) will occur later.
Our next result says, roughly, that a retract of a pushout is a pushout.

Now the term retract is meaningful in any category, so in order to give
meaning to the last sentence it is enough to define morphisms of commu-
tative squares.

Consider the following cubical diagram of morphisms of C.

C0

i1 //

c0   @
@@

@@
@@

i2

��

C1

c1

  @
@@

@@
@@

u1

��

D0

j2

��

j1 // D1

v1

��

C2 u2

//

c2   @
@@

@@
@@

C

c

  @
@@

@@
@@

@@

D2 v2
// D

//

�� ��<
<<

<<
<< 1

3
2

(6.6.6)

Let us write C for the back square (in direction 3) and D for the front square
(in direction 3), both of which we suppose commutative. If the whole
diagram is commutative, then it is called a morphism c : C → D. Clearly
we have an identity morphism C → C, and the composite of morphisms is
again a morphism.

So we have a category C2 of commutative squares and morphisms of
squares and in this category the notion of retraction is well-defined.
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6.6.7 Let C,D be commutative squares in C such that D is a pushout. If there
is a retraction D→ C then C is a pushout.

Proof Let c : C→ D, d : D→ C be morphisms such that dc = 1C. Suppose
also (referring to the diagram (6.6.6)) that we are given morphisms

C1
w1−→ C′ w2←− C2

such that w1i1 = w2i2. Consider the morphisms

D1
w1d1−→ C′ w2d2←− D2.

Since d is a map of squares, d1j1 = i1d1, d2j2 = i2d0. Hence

(w1d1)j1 = (w2d2)j2.

Since D is a pushout, there is a unique morphism x : D→ C′ such that

xv1 = w1d1, xv2 = w2d2.

Let w = xc : C→ C′. Then for α = 1, 2

wuα = xcuα = xvαcα = wαdαcα = wα

as we required.
Suppose w′ : C→ C′ also satisfied w′

αuα = wα, α = 1, 2. Then

w′dvα = w′uαdα = wαdα = xvα, α = 1, 2.

Hence w′d = x and so w′ = w′dc = xc = w. 2

EXERCISES

1. Let C be a category and let C1,C2 be objects of C. Let C be the category whose

objects are diagrams C1
i1−→ C

i2←− C2 (written (i1, i2,C)) and whose morphisms

(i ′1, i
′
2,d

′) are morphisms f : C → C of C such that fiα = i ′α, α = 1, 2. Prove

that an initial object of C ′ [Exercise 7 of Section 6.1] is a coproduct diagram C1 →
C1 ⊔ C2 ← C2.

2. Let C be a category and let C1,C2 be objects of C. A product of C1,C2 is a point

in the category C ′′ of diagrams (p1,p2,C) (where p1 : C → C1, p2 : C → C2) and

morphisms of such diagrams. Prove that the category of groups admits products.

3. Prove that if a category has an initial object and arbitrary pushouts, then it has

coproducts.

4. Let f,g : A→ B be morphisms in C. A coequaliser of f,g is a morphism c : B→ C

for some C such that c is ϕ-universal for the property cf = cg. Prove that the

categories Set,Top,Grp all admit arbitrary coequalisers.
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5. Prove that if a category C has coproducts and coequalisers, then it has arbitrary

pushouts.

6. Let f : A→ B, g : B→ C be morphisms in C. Prove that the square

A
f //

gf

��

B

g

��
C

l
// C

is a pushout if f is epic.

7. Prove that if in diagram (6.6.4) the composite square is a pushout, and g is epic,

then the right-hand square is a pushout.

8. Prove that the category of pointed spaces has a coproduct. [This coproduct is

called the wedge and is written X∨ Y.]

9. The square category 2 has four objects 0, 1, 2, 3 and it has non-identity mor-

phisms i1 : 0 → 1, i2 : 0 → 2, u1 : 1 → 3, u2 : 2 → 3, u : 0 → 3 with the rule

u1i1 = u2i2 = u. Prove that this does specify a category, that an object of C2 cor-

responds to a functor C : 2 → C, and that a morphism of squares corresponds to a

morphism of functors 2→ C.

10. The wedge category ∨ has three objects 0, 1, 2 and two non-identity morphisms

i1 : 0 → 1, i2 : 0 → 2. Prove that a commutative square in a category C can

be regarded as a morphism Γ → Γ ′ of functors ∨ → C such that Γ ′ is a constant

functor.

11. Let Γ : C → D be a functor. A morphism η : Γ → Γ ′ of functors is said to

be a colimit of Γ if (i) Γ ′ : C → D is a constant functor, (ii) η is ϕ-universal for

morphisms of Γ to a constant functor: that is, if δ : Γ → ∆ is a morphism such that

∆ is constant then there is a unique morphism δ ′ : Γ ′ → ∆ such that δ ′η = δ. Prove

that a pushout square in C can be regarded as a colimit of a functor ∨→ C.

12. Let U be an open cover of a space X. Regard U as a subcategory of Top with

objects the elements of U and morphisms all inclusions U→ V such that U,V ∈ U.

Prove that the inclusion functor U→ Top has as colimit a morphism to the constant

functor with value X.

13. Given categories C and D there is a category whose objects are the morphisms

of functors C → D—this category is essentially Fun(I→,Fun(C,D)) and it is iso-

morphic to Fun(C × I→,D). In any case, the notion of a retract of a morphism of

functors is well defined. Prove that a retract of a colimit is again a colimit. [This

generalises 6.6.7.]

14. The dual of a construction for categories is obtained in a category by carrying

out this construction in the opposite category Cop and the transferring the construc-

tion to C by means of the obvious contravariant functor D : Cop → C. In this way

a coproduct C1 ⊔ C2 in Cop becomes a product C1 ⊓ C2 in C; a pushout in Cop be-

comes a pullback in C; coequaliser becomes equaliser; colimit becomes limit; initial

object becomes terminal object and vice versa. Write out the definitions in C of these

constructions and discuss their properties.
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6.7 The fundamental groupoid of a union

of spaces

Throughout this section let X be a topological space and let X0,X1,X2 be
subspaces of X such that X0 = X1 ∩ X2 and the interiors of X1,X2 cover
X. Our aim is to determine the groupoid πX, and also certain of its full
subgroupoids, in terms of the groupoids πXi, i = 0, 1, 2 and the morphisms
induced by inclusions. The general interpretation of the theorem which we
prove must, however, wait until chapter 9 when the necessary algebraic
theory of groupoids has been developed. It is hoped that the reader will by
now be so familiar with the concept of pushout that the theorem will have
its appeal even with only one example of its use in computations. This
example is in any case a crucial example, namely the computation of the
fundamental group of the circle.

By 2.5.11, the following square of inclusions

X0

i1 //

i2

��

X1

u1

��
X2 u2

// X

(6.7.1)

is a pushout in the category of topological spaces. We denote this square
by X.

Let A be any set. If i : Y → X is the inclusion of a subspace Y of X, then
i induces a morphism

πYA→ πXA

which should be denoted by πiA, but which we shall denote simply by i.
We shall also denote Pi : PY → PX by i ′.

A set A is called representative in X if A meets each path-component of
X. Our main result is the following.

6.7.2 If A is representative in X0,X1,X2, then the square

πX0A
i1 //

i2

��

πX1A

u1

��
πX2A u2

// πXA
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is a pushout in the category of groupoids.

We write the above square of groupoid morphisms as πXA.

In using this theorem, it is usual to take X to be path-connected—
otherwise the result is used on each path-component of X at a time. Also,
we shall assume that A is a subset of X, since any points of A not in X are
irrelevant to the theorem. The sort of picture for X1,X2 is the following,
in which shading is used to distinguish X1,X2; points of A are denoted by
dots; and the components of X1,X2 should be thought of as complicated
spaces (for example, a real projective space) rather than the simple subsets
of R2 shown.

Fig. 6.10

The proof of 6.7.2 is in two parts—the case A = X, and the general
case. The first case is the only one involving topology.

Proof of 6.7.2—the case A = X

Consider the following three diagrams:

PX0
//

��

PX1

u′
1

��
PX2

u′
2

// PX

πX0
//

��

πX1

u1

��
πX2 u2

// πX

πX0
//

��

πX1

v1

��
πX2 v2

// G

PX πX

We know that the first two diagrams are commutative. Suppose also that
the third is commutative. We wish to prove that there is a unique morphism
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v : πX→ G such that vu1 = v1, vu2 = u2.

Step 1. We know that the projections pλ : PXλ → πXλ (λ = 0, 1, 2) and p :

PX→ πX are morphisms (a word we use here for functor). Let wλ = vλpλ
(λ = 1, 2). We use w1,w2 to construct a morphism w : PX→ G.

Let a be a path of X and suppose first of all that Ima is contained in
one or other of X1,X2. Then a is u′

1b1 or u′
2b2 for a unique path bλ in Xλ

and we define

wa = wλbλ.

This definition is sensible because if Ima is contained in X1∩X2 = X0, then
b1 = i1b, b2 = i2b for a path b in X0 and

w1b1 = w1i1b = w2i2b = w2b2.

Next, suppose a is any path in X. By a corollary of the Lebesgue covering
theorem [3.6.4 (Corollary 1)] there is a subdivision

a = an + · · · + a1

such that Imai is contained in one or other of X1,X2 for each i = 1, . . . ,n.
Then wai is well-defined and we set

wa = wan + · · · +wa1.

The usual arguments of superimposing subdivisions show that wa is inde-
pendent of the subdivision, and that if a,b are paths such that b + a is
defined then

w(b + a) = wb+wa.

Clearly w : PX→ G is a morphism, in fact, the only morphism such that

wu′
1 = w1, wu′

2 = w2.

It is also clear that w maps constant paths to zeros of G, since both w1 and
w2 do so.

(This part of the proof does not use the inverse of G. In effect we have
proved that PX is a pushout in Cat.)

We next show that w maps equivalent paths to the same element of G.
We know that this is true for w1,w2.

Step 2. Consider the rectangle R in R2 and a map F : R→ X such that Im F
is contained in Xλ (λ = 1 or 2). The map F determines on the sides of R
paths a,b, c,d [Fig. 6.11], such that a = u′

λaλ, . . . ,d = u′
λdλ.
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a

b

c

dR

Fig. 6.11

Since R is convex

bλ + aλ ∼ dλ + cλ

whence

wb +wa = wλ(bλ + aλ) = wλ(dλ + cλ) = wd +wc.

Step 3. This step is a quite simple cancellation argument.

Let a,b be paths in X and let F : [0, r]× I→ X be a homotopy a ∼ b. The
Lebesgue covering lemma shows that we can, by a grid composed of lines

{(ri/n, t) : t ∈ I}, i = 0, . . . ,n

{(s, j/n) : s ∈ [0, r]}, j = 0, . . . ,n

subdivide [0, r]× I into rectangles so small that each is mapped by F into X1

or X2. Let aj be the path s 7→ F(s, j/n)

aj
ci,j

aj+1,i

ci+1,j

aj,i

Fig. 6.12

so that a0 = a, an = b. The vertical lines determine a subdivision

aj = aj,n−1 + · · ·+ aj,0

and also paths ci,j : t 7→ F(ri/n, t+ j/n) such that

aj+1,i + ci,j ∼ ci+1,j + aj,i.
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Therefore

waj =

n−1∑

i=0

waj,i

=

n−1∑

i=0

{−wci+1,j +waj+1,i +wci,j} by Step 2

= −wcn,j +

n−1∑

i=0

waj+1,i +wc0,j

= waj+1

the first and last terms being zero since c0,j, cn,j are constant paths. Hence
by induction wa = wb.

Step 4. Let a,b be equivalent paths in X. Then there are constant paths r, s
such that r+ a is homotopic to s+ b. It follows that

wa = w(r + a) = w(s + b) = wb.

Thus w maps equivalent paths to the same element of G and so defines
a morphism v : πX → G such that vp = w. Thus for any path a in Xλ

(λ = 1, 2)

vuλ(clsa) = v clsu
′
λa = wu′

λa = wλa

= vλ(clsa)

whence

vuλ = vλ.

Step 5. Let v ′ : πX→ G be any morphism such that

v ′uλ = vλ, λ = 1, 2.

Then

v ′pu′
λ = v ′uλpλ

= vλpλ

= wλ.

Since v ′p is a morphism it follows that

v ′p = w = vp.
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Since p : PX(x,y) =→ πX(x,y) is surjective for each x,y in X, it follows
that

v ′ = v.

2

Proof of 6.7.2—the general case

For this it is sufficient, by 6.6.7, to prove that the square πXA is a retract
of πX. We do this by constructing retractions rλ : πXλ → πXλA (λ = 0, 1, 2

or ) consistent with the various morphisms induced by inclusion.

Since A is representative in X0 we can choose for each x in X0 a path
class θ0x in πX0 from some point of A ∩ X0 to x. Since A is representative
in X1 and in X2 we can choose for each x in Xλ \ X0 (λ = 1, 2) a path class
θλx in πXλ from some point of A ∩ Xλ to x, and we extend θλ over all of
Xλ by setting θλx = iλθ0x for x in X0. Finally, for any x in X we define

θx =

{
u1θ1x, if x ∈ X1

u2θ2x, if x ∈ X2.

Then θ is well-defined. Further, θλ (λ = 0, 1, 2, ) defines, by 6.5.13, a
retraction rλ : πXλ → πXλA; these morphisms define a retraction r : πX→
πXA. 2

As will be clear from chapter 9, 6.7.2 can often be interpreted to give in-
formation on the fundamental groups themselves. For example, if X0,X1,X2

are path-connected, then we can take A = {x0} where x0 is a point of X0,
and then 6.7.2 determines completely the fundamental group π(X, x0). But
we shall want to use 6.7.2 when X0 at least is not path-connected, and in
this case it is useful to carry out a further retraction. The main lemma for
this purpose is the following.

6.7.3 Let C,D be categories and f : C → D a functor such that Ob(f) is

injective. Then any full representative subcategory C ′ of C gives rise to a

pushout square

C
r //

f

��

C ′

f ′

��
D

r ′
// D ′

(*)

in which f ′ is a restriction of f and r, r ′ are deformation retractions.
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Proof Let D ′ be the full subcategory of D whose objects are those equal to
fx for x in Ob(C ′), and those not equal to fx for any x in Ob(C); that is

Ob(D ′) = f[Ob(C ′)] ∪ (Ob(D) \ f[Ob(C)]).

Then we have a commutative diagram

C ′ i //

f ′

��

C

f

��
D ′

j
// D

in which i, j are inclusions and f ′ is a restriction of f. We choose a defor-
mation retraction r : C→ C ′ and a homotopy function θ : ir ≃ 1 relC ′ as is
possible by 6.5.13.

For each y in Ob(D) let ϕy = fθx if y = fx and otherwise let ϕy = 1y.
Thus ϕf = fθ; ϕy is invertible, has initial point in Ob(D ′) and has final
point y; further, ϕy = 1y if y ∈ Ob(D ′). It follows that ϕ is a homotopy
function jr ′ ≃ 1 relD ′ where r ′ : D→ D ′ is a deformation retraction.

If a ∈ C(x, x ′) then

f ′r(a) = f((θx ′)−1a(θx))

= (ϕfx ′)−1fa(ϕfx)

= r ′f(a).

Therefore f ′r = r ′f and the square (*) commutes.
To prove (*) to be a pushout suppose there is given a commutative

diagram

C
r //

f

��

C ′

u

��
D

v
// E

If there is a functor w : D ′ → E such that wr ′ = v then

w = wr ′j = vj

and so there is at most one such w. On the other hand, let w = vj. Then

wf ′ = vjf ′ = vfi = uri = u.
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Further ϕy, and hence also vϕy, is the identity if y 6= fx for any x, while if
y = fx then

vϕf(x) = vfθ(x) = urθ(x) = u(1) = 1.

It follows that vϕ is the constant homotopy function and so

wr ′ = vjr ′ = v.

This proves that the square is a pushout. 2

We apply this result to the situation at the beginning of this section.
Thus we are given subspaces X1,X2 of X whose interiors cover X. Further
X0 = X1 ∩ X2, and A is a subset of X representative in X0,X1,X2. Note
that if X is path-connected then each path component of one of the spaces
X1,X2 meets the other space [Exercise 8 of Section 3.4]—it is then common
and convenient to take A as one point in each path-component of X0, but
this assumption is not essential. The main point is that A may be chosen in
a way appropriate to the geometry of the situation. This is the advantage
of using the groupoid πXA rather than just the fundamental group at some
point.

6.7.4 Let A ′ be a subset of A ∩ X1 representative in X1 and let A1 = A ′ ∪
(A \ X1). Then there is a pushout diagram

πX0A
i1 //

i2

��

πX1A
r // πX1A1

u1

��
πX2A u2

// πXA
r ′

// πXA1

(*)

in which r, r ′ are deformation retractions.

Proof If we insert the induced morphism πX1A → πXA in (*) we obtain
two squares. The left-hand square is a pushout by 6.7.2. To prove the
right-hand square a pushout we use 6.7.3 with the substitutions C = πX1A,
D = πXA, C ′ = πX1A

′ = πX1A1. Then we have

Ob(D ′) = A ′ ∪ (A \ (A ∩ X1)) = A
′ ∪ (A \ X1) = A1.

Finally, (*) itself is a pushout, since it is the composite of two pushouts. 2

The result will be used in chapter 9 to prove the Van Kampen theorem
on the fundamental group of an adjunction space. The interpretation of
that theorem in general requires a lot of preliminary algebra. Here we finish
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this chapter by showing that 6.7.4 enables us to determine the fundamental
group of a circle—this gives us our first simple example of a path-connected
but not simply-connected space.

6.7.5 There is an isomorphism

π(S1, 1) ≃ Z.

Proof

X

−1

ϕ1

ϕ2

1

X1

−1

θ1

1

X2

−1

θ2

1

Fig. 6.13

We use complex number notation. Let X1 = S1 \ {i}, X2 = S1 \ {−i},
A = {−1, 1}, A1 = {1}. Then X1,X2 are simply connected (they are both
homeomorphic to ]0, 1[) while X0 is the topological sum of two simply-
connected components. Therefore πX2A is isomorphic to the groupoid I

while πX0A is isomorphic to the discrete groupoid {0, 1}. Thus by 6.7.4 we
have a pushout

{0, 1} //

��

0

��
I

g
// π(S1, 1)

in which 0 is the trivial group and g is specified completely as a morphism
by the fact that

g(ı) = ϕ, say.

The above pushout implies the following: if f : I→ K is any morphism to a

group K, then there is a unique morphism h : π(S1, 1)→ K such that hg = f.
In particular, letting f : I→ Z be the morphism such that f(ı) is the element
1 of Z, there is a unique morphism h : π(S1, 1)→ Z such that h(ϕ) = 1.

Let k : Z → π(S1, 1) be the morphism n 7→ nϕ. Clearly hk(1) = 1 and
so hk = 1 : Z→ Z. On the other hand,

khg(ı) = kf(ı) = k(1) = ϕ = g(ı).
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Therefore khg = f and so, by the uniqueness part of the universal property,
kh = 1 : π(S1, 1)→ π(S1, 1). 2

The proof also shows that ϕ is a generator of π(S1, 1). In order to
determine ϕ, let θi be the unique element of πXi(1,−1) (i = 1, 2) and let
ϕi = uiθi in πS1(1,−1). The retraction r ′ satisfies

r ′ϕ2 = −ϕ1 +ϕ2

and so if we take the isomorphism πX2A → I to be that which sends θ2 to
ı we deduce that

ϕ = −ϕ1 +ϕ2.

Clearly ϕ is the class of the path t 7→ e2πit of length 1.

6.7.5 (Corollary 1) S1 is not a retract of E2.

Proof If r : E2 → S1 were a retraction, then so also would be r : πE2(1)→
πS1(1). Since a retraction is surjective this is clearly impossible. 2

EXERCISES

1. Prove that the fundamental group of the torus S1 × S1 is isomorphic to Z × Z.

Prove also that the two maps S1 → S1 × S1 which send x 7→ (x,a), x 7→ (a, x)

respectively are not homotopic.

2. The coproduct in the category of groups exists [cf. chapter 8]—it is called the

free product and it written ∗. Prove that the fundamental group of S1 ∨ S1 is

isomorphic to Z ∗ Z.

3. Suppose there is given the commutative square of 6.7.3 in which r, s are defor-

mation retractions and f ′ is the restriction of f. Suppose also that θ,ϕ are homotopy

functions ir ≃ 1 relC ′, js ≃ 1 relD ′ respectively. Prove that the square is a pushout

if the following condition holds: if y ∈ Ob(D) and ϕy 6= 1, then there are objects

x1, . . . xn of C such that ϕy = (fθxn) · · · (fθx1).
4. Suppose that in the situation of 6.7.2, A1,A2 are subsets of A representative in

X1,X2 respectively, and that A∩X0 = A1∩A2. Prove that there is a pushout square

πX0A
//

��

πX1A1

��
πX2A2

// πXA0

5. Prove that Sn−1 is a retract of En if and only if there is a map En → En without

fixed points.
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6. Let the open cover U of the space X be regarded as a category as in Exercise

12 of Section 6.6. The fundamental groupoid functor restricts to a functor π | U :

U→ Grpd. Prove that if U has a subcover V such that U consists of all intersections

V ∩ V ′ for V,V ′ in V, then the functor π | U has as colimit a morphism to the

constant functor with value πX.

7. [This exercise requires knowledge of ordinals and transfinite induction.] Let U

be an open cover of X such that the intersection of two elements of U belongs to

U. We say U is stratified if there is a function f from U to the ordinals such that

fU < fU ′ whenever U is a proper subset of U ′. Prove U is stratified if U is finite

or is well-ordered by inclusion. Let U be stratified, and let A be a subset of X

representative in each U of U. Prove that the functor U → Grpd, U 7→ πUA has

as colimit a morphism to the constant functor with value πXA. [Use the previous

exercise and Exercises 12, 13 of Section 6.6. See [BR84] for a better result.]

8. Let σX be the semi-fundamental groupoid of X as constructed in Exercise 7 of

Section 6.2. Investigate whether or not theorems corresponding to 6.7.2, 6.7.4 hold

for σ.

9. Prove that the coproduct of trivial groups is trivial. Deduce that in the situation

of 6.7.2, if X0,X1,X2 are 1-connected, then so also is X = X1 ∪ X2.

NOTES

The Bibliography gives a number of books on category theory which will
enhance the introductory account given here. The reader is urged to look
at the original paper defining categories ([EM45]), and to read the Presi-
dential address [Mac65].

Groupoids have been known since [Bra26]. The paper [Bro87] gives
a survey of their widespread use in mathematics, which includes group
theory, differential topology, ergodic theory, differential topology, algebraic
geometry, functional analysis, homotopy theory, Galois theory, and others
areas. Thus there is evidence that the groupoid concept is an extension of
the notion of group which gives considerably more flexibility and power
without any loss. Such a view has not yet appeared in many texts.

The fundamental group of a union K ∪ L of simplicial complexes K, L
such that K, L and K ∩ L are all connected was described in terms of gen-
erators and relations in [Sei31]. The fundamental group of a kind of ad-
junction space was given by [Kam33] (apparently not knowing of Seifert’s
paper); Van Kampen stated results more general than those of Seifert, since
he dealt also with the case of non-connected intersection, but the name
Van Kampen, or Seifert-Van Kampen, has usually been applied to any the-
orem on the fundamental group of a union of spaces. The proofs of the
results in Van Kampen’s paper are difficult to follow, partly because he did
not have the language to describe properly the situations in which he was
interested, and to use their formal properties.
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The modern version of the theorem and proof for the fundamental gr-
oup was given in [Cro59]. By this time, the notion of universal property
was well used and understood. A version in terms of non-abelian cohomol-
ogy was given in [Olu58], and this was generalised to the non-connected
case in [Bro65]. Another cohomological formulation for a general non-
connected union is given in [Wei61]. The paper [BHK83] derives the main
result of section 6.7 using non-abelian cohomology with coefficients in a
groupoid.

The results of section 6.7 and the general Van Kampen theorem given in
section 9.1 are taken from [Bro67]. A general formulation of the theorem
for the fundamental groupoid of infinite unions is given in [Raz76] and
with a different proof in [BR84]. This proof goes back in spirit to the proof
of [Cro59], and has a key advantage in that its deformation steps generalise
to higher dimensions1.

One way of formulating the conclusion of 6.7.2 is that it calculates the
“homotopy 1-type” of a space. and it can do this because groupoids have
structure in dimensions 0 and 1.

As explained in the Preface to the second edition of this book, writing
up this material on the fundamental groupoid suggested that there should
be a higher dimensional version of Van Kampen’s theorem. The intuitive
basis for this idea is explained in [Bro82]. To express this theorem, and
to prove it, one needs various notions of higher homotopy groupoids. One
form of these is the ω-groupoids of [BH78] and [BH81]; another is the
catn-groups of [Lod82] which were used by [BL87] to formulate and prove
a Van Kampen theorem for cubical diagrams of spaces, with powerful ap-
plications. It was possibly a general reluctance to make the extension from
groups to groupoids that prevented models of these kinds being discovered
earlier. On the other hand, whereas the proof of the Van Kampen theorem
for filtered spaces in [BH81] does follow the intuitive lines of the proof in
dimension 1, a number of new ideas are needed to make the methods work
in all dimensions. The main problem is that although it is clear what is
meant by the composite of the edges of a square, it is by no means clear
what is meant by the composite of the faces of a cube. That is, the prob-
lem is to generalise Steps 2 and 3 of the proof of 6.7.2. For this reason,
the general case needs considerable algebraic development of the theory of
ω-groupoids.

The theorem for n-cubes of spaces given in [BL87] uses in its proof
a gamut of techniques from algebraic topology; it is, though, limited to
pointed spaces. See [Bro84].

1For an introduction to this, see the following preprint
http://groupoids.org.uk/pdffiles/brouwer-honor.pdf.

http://groupoids.org.uk/pdffiles/brouwer-honor.pdf
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Chapter 7

Cofibrations

In the last chapter, we introduced the notion of homotopy type of spaces.
This is a coarser notion than homeomorphism type—more spaces are of the
same homotopy type than are of the same homeomorphism type. Hence in
a given class of spaces there are fewer homotopy types than homeomor-
phism types and so the determination of homotopy types can be expected
to be easier. In rough terms, although we will not be able to justify this
statement here, by passing to homotopy classes the classification problem
is in many cases reduced from an uncountable problem to a countable one.
Thus there is a countable set of homotopy types of (finite) 2-dimensional
cell complexes but an uncountable set of homeomorphism types.

The obvious question arises: how do we determine whether or not two
spaces are of the same homotopy type? This is a difficult problem, and
even for simply connected cell complexes of dimension 5 it is a problem of
current research (cf. [Bau88]). There are two useful techniques.

First, to prove X, Y are not of the same homotopy type we construct
homotopy type invariants. For example S1 is not of the homotopy type of a
point because S1 has fundamental group Z, which is not isomorphic to the
trivial group. On the other hand S2 and S3 both have trivial fundamental
group, yet are not of the same homotopy type. The proof of this requires
other invariants, for example homology groups, with which we do not deal
in this book.

Second, to prove X and Y are of the same homotopy type, we must
construct a homotopy equivalence X→ Y. For this, we need to know some-
thing about X and Y. A common case is that X and Y are given as repeated
adjunction spaces, and because of this we take as our main aim the discus-
sion of the homotopy type of adjunction spaces. The main tool used is a
gluing theorem for homotopy equivalences. To prove this theorem we need

253
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the notion of cofibration, and to conceptualise the proof it is convenient to
use the track groupoid and the operations of this groupoid. These opera-
tions are important in their own right. We obtain these operations from the
more general situation of a fibration of groupoids. This has the advantage
of applicability in other situations.

7.1 The track groupoid

For those who have studied section 5.9, which topologises the space YX of
continuous functions X→ Y, we can define the track groupoid πYX simply
as the fundamental groupoid of the space YX, and this gives us a theory
for the category of k-spaces equivalent to that exposed below. However, to
give an independent version, we define the track groupoid analogously to
the fundamental groupoid, but replacing paths by homotopies.

We refer the reader back to section 6.5 for the notion of a homotopy
F : f ≃ g of length q, where f and g are maps X → Y and q > 0. Then
we define −F : g ≃ f by (−F)(x, t) = F(x,q − t). If further G : g ≃ h is a
homotopy of length r, then we define G+ F : f ≃ h of length q+ r by

(G + F)(x, t) =

{
F(x, t) if 0 6 t 6 q,

G(x, t− q) if q 6 t 6 q+ r.

Note that G+F is continuous by 2.5.12 since X× [0,q] and X× [q,q+ r] are
closed subspaces of X × [0,q+ r]. There is also a constant homotopy f ≃ f
of length 0 for any map f. So, analogously to the case of paths, we obtain
a category PYX whose objects are the maps X → Y and whose morphisms
from f to g are the homotopies, of various lengths, from f to g.

We now wish to construct from this category a groupoid. In the case of
paths we used the notion of ‘homotopic rel end points’. In the present case,
we need the notion of two homotopies F,G : f ≃ g of the same length q
being homotopic rel end maps, which means that there is a map

H : X× [0,q]× I→ Y

such that for all x in X, s in [0,q] and t in I

H(x, s, 0) = F(x, s) H(x, s, 1) = G(x, s)

H(x, 0, t) = fx H(x,q, t) = gx.

This amounts to saying that if Ht denotes the map (x, s) 7→ H(x, s, t), then
H0 = F, H1 = G and each Ht is a homotopy f ≃ g of length q.
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We now define a constant homotopy of length q to be a map C : X ×
[0,q] → Y such that C(x, 0) = C(x, t) for all x in X, t in [0,q]. Such a
homotopy is denoted ambiguously by q. Then two homotopies F and G
are equivalent if there are real numbers q, r such that q + F, r + G are ho-
motopic rel end maps. This is an equivalence relation, and it is shown by
methods only formally different from those of chapter 6 that these equiva-
lence classes form a groupoid. This groupoid we call a track groupoid and
write it

πYX.

The components of this groupoid are the homotopy classes of maps X→Y.
The set of these homotopy classes is written

[X, Y].

We shall make essential use of the fact that these objects depend functorially

on X and on Y. This means that if h : Y → Z and i : A → X are maps, then
there are induced morphisms of groupoids

h∗ : πYX → πZX, i∗ : πYX → πYA

defined as follows. If f : X→ Y is a map, and so an object of πYX, then

h∗(f) = hf, i∗(f) = fi.

If F : X × [0,q] → Y is a homotopy representing an element cls F of πYX,
then we set

h∗(cls F) = clshF, i∗(cls F) = cls F(i× 1),

where i× 1 : A× [0,q]→ X× [0,q] is given by (a, t) 7→ (ia, t). It is easy to
check that h∗ and i∗ are well-defined morphisms of groupoids. Further, the
following functorial rules are satisfied: if also g : Z → W and j : B → A,
then

(gh)∗ = g∗h∗, (ij)∗ = j∗i∗,

while if h is the identity, so also is h∗, and if i is the identity, so also is i∗.

Spaces and groupoids each have a notion of homotopy. It is natural
therefore to ask how the above constructions of h∗ and i∗ behave with
regard to homotopies.

7.1.1 If h ≃ k : Y → Z, then h∗ ≃ k∗ : πYX → πZX. If i ≃ j : A → X, then

i∗ ≃ j∗ : πYX → πYA.
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Proof Let F : h ≃ k, G : i ≃ j be homotopies, and suppose for convenience
that both homotopies are of length 1. The homotopy F∗ : h∗ ≃ k∗ is defined
on an object f of πYX, i.e. for a map f : X → Y, to be the class of the
homotopy (x, t) 7→ F(f× 1). That is,

F∗(f) = cls F(f× 1).

To prove that F∗ is a homotopy of morphisms of groupoids, we have to
show that if H is a homotopy f ≃ g, then the homotopies kH+ F(f× 1) and
F(g× 1) + hH are homotopic rel end maps.

•
hg

F(g × 1)
// •

kg

•hf

hH OO

F(f× 1)
// • kf

kHOO

Define G : X× I× I→ Z by G(x, s, t) = F(H(x, s), t). Then

G(x, s, 0) = h(H(x, s)), G(x, s, 1) = k(H(x, s)),

G(x, 0, t) = F(fx, t), G(x, 1, t) = F(gx, t).

Of course G itself is not the required homotopy, but we can easily manufac-
ture the right one from G. We subdivide a square in two ways as shown in
Fig. 7.1 and define a map ϕ : I× I→ I× I by mapping the two parts of the
left hand square to the two triangles of the right hand square so that the
solid thick lines are shrunk to the two vertices, while the middle vertical
line is mapped to the diagonal. Let H = G(1 × ϕ). Then H is the required
homotopy.

Fig. 7.1

The proof that i∗ ≃ j∗ is similar and is left to the reader. 2

We now give some motivation for our next constructions and defini-
tions.
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Many geometric problems can be translated into factorisation problems
for maps. A typical such factorisation problem is the following. Suppose
given three spaces A,X, Y and two out of three of the maps in the diagram:

A

i

����
��
��
��
��
��
�

u

��@
@@

@@
@@

@@
@@

@@

X
f // Y.

(*)

The problem is to decide whether or not the third map can exist.
An example of this type of problem is to decide if a subspace A of X is a

retract of X. Then in diagram (*) we take i to be the inclusion, Y = A, and
u to be the identity. A retraction X→ A is simply a map f such that fi = 1.
For example, we can ask: is the n-sphere Sn a retract of the n-cell En+1?
The answer is: no. For n = 0, the proof is easy, since E1 is connected and
S0 is not. For n = 1, a proof can be given by considering the diagram

S1

i

����
��
��
��
��
��

l

��?
??

??
??

??
??

??

E2 f //___________ S1

and applying the fundamental group functor for some base point. This
leads to a diagram of morphisms of groups

Z

����
��
��
��
��
��
�

l

��@
@@

@@
@@

@@
@@

@

0 //__________ Z.

Clearly there is no dotted morphism making this diagram commute, and so
the retraction f : E2 → S1 cannot exist. There is a similar proof, using the
nth homology group, for the general case—for details, see any book on the
homology theory of spaces, for example [HW60], [Mas67], [Mun75]. Note
that the intuitive interpretation of this result for n = 1 is that the skin of
a drum cannot be deformed to the rim of the drum, without breaking the
skin.

It is a cliché that such a negative result, namely the non-existence of
a retraction, can be used to deduce positive results. In this case we can
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deduce the Brouwer fixed point theorem: Every map g : En+1 → En+1 has
a fixed point. For suppose g does not have a fixed point, that is, there is
no x in En+1 such that gx = x. For each x in En+1 let fx be the point in
Sn such that fx, x and gx lie in that order on a line. We leave the reader
to prove that f is well defined and continuous. But then f is a retraction
En+1 → Sn, which we already know cannot exist. So g must have a fixed
point. This proves the Brouwer Fixed Point Theorem. This theorem has
a range of applications in mathematics, because it is possible to transform
many useful existence problems into the problem of the existence of a fixed
point of some map.

Now we get back to our main aims. We wish to study in diagram (*)
the case where i and u are given, and the problem is the existence of the
map f. This is in general a difficult problem, and we follow the standard
practice in mathematics of introducing some simplifying procedure. In this
case, we fix i, and then ask: is the existence of f independent of the choice

of u in its homotopy class? That is, if fi = u and u ≃ v, must there be a g
such that gi = v? In order to study this question, and to use the relevant
condition on i, it is convenient to introduce some broader considerations.

Let Top denote the category of topological spaces and continuous maps.
Let A be a topological space. The category TopA of topological spaces under
A has objects the maps i : A → X for all topological spaces X. Since we
keep A fixed in what follows, we can where convenient write such a map
as (X, i). In the category TopA a morphism f : (X, i)→ (Y,u) consists of the
pairs (X, i), (Y,u) and a map f : X→ Y such that fi = u. Thus it is common
to write a morphism in TopA as a commutative diagram

A

i

����
��
��
��
��
��
�

u

��@
@@

@@
@@

@@
@@

@@

X
f

// Y.

We refer to f as a map under A. The composition in TopA is the obvious
one: the composite of f : (X, i) → (Y,u) and g : (Y,u) → (Z,w) is gf :

(X, i)→ (Z,w). It is clear that TopA becomes in this way a category.

We now define homotopy in TopA. Let f,g : (X, i) → (Y,u) be maps
under A. A homotopy under A is a homotopy F : f ≃ g of maps of spaces
such that F(ia, t) = ua for all a ∈ A and t ∈ I. If i is an inclusion, it is
common in the literature to refer to F also as a homotopy relA, and we
shall often use this terminology.

Many of the previous constructions on homotopies can also be carried
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out for homotopies under A. In particular, homotopy under A is an equiva-
lence relation on the set of maps (X, i)→ (Y,u) under A; the set of homo-
topy classes is written

[(X, i), (Y,u)].

As suggested above, one of our major tools will be an analysis of how the
set [(X, i), (Y,u)] depends on the homotopy class of u. For example, it will
be useful to know whether a homotopy α : u ≃ v determines a bijection

α || || : [(X, i), (Y,u)] → [(X, i), (Y, v)].

If this is so, then the domain of α || || is non-empty if and only if its range
is non-empty, and so the existence of a factorisation of u through i will
depend only on the homotopy class of u. We will impose on i the condition
of being a cofibration, and this will imply the existence of the bijection as
above. In order to apply the cofibration condition, it is convenient to define
a particular kind of morphism of groupoids called a fibration. These will be
studied in the next section.

We can use homotopies under A to define a track groupoid under A

which we shall write

π(Y,u)(X,i).

We shall not make too much use of this groupoid, but there is one special
case which it is worth relating to a body of standard work in homotopy
theory.

We write a singleton space as ·. Let X and Y be pointed spaces. Then
we have unique pointed maps i : ·→ X, u : · → Y mapping the element of
· to the respective base points. A map X → Y under · is simply a pointed
map. A homotopy under A of pointed maps is called a pointed homotopy.
We write

π·YX

for the track groupoid π(Y,u)(X,i). We abbreviate [(X, i), (Y,u)] to [X, Y]·.
The constant pointed map X→ Y is also written ·.

Recall that ΣX is the reduced suspension of a pointed space X (cf. Sec-
tion 5.8).

7.1.2 There is a bijection

(π·YX)(·)→ [ΣX, Y]·.

Hence [ΣX, Y]· obtains a group structure from that on the object group

(π·YX)(·).
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Proof The elements of G = (π·YX)(·) can be represented by homotopies
of length 1, i.e. by maps f : X × I →Y. The condition that f is a homotopy
under · is that f[·× I] = ·, where we ambiguously write · for any base point.
The condition that f is a homotopy of the constant map · to itself is that
f[X× İ] = ·. But ΣX is the space obtained from X× I by identifying

·× I ∪ X× İ

to a point. So the representatives f of length 1 of elements of G are bijective
with the pointed maps f̄ : ΣX→ Y. Under this correspondence, a homotopy
ft of such representatives corresponds to a homotopy f̄t of pointed maps
ΣX→ Y, by 4.3.2, and since I is locally compact. So the required bijection
is constructed.

The transfer of the group structure from (π·YX)(·) to [ΣX, Y]· is imme-
diate. 2

It is convenient to identify these groups by means of this bijection. The
track group [ΣX, Y]· plays an important role in homotopy theory. In particu-
lar, if X = Sn−1, we obtain the nth homotopy group πn(Y, ·), so that π1(Y, ·)
is essentially the fundamental group of Y at the base point. The calculation
of these homotopy groups, even for the case Y = S2, is very difficult and
has not been completed. For further information, see [Whi78], and other
books on homotopy theory.

It is a striking fact that the group [ΣΣX, Y]· is abelian, and in particular
the higher homotopy groups πn(Y, ·) are abelian for n > 2 (see Exercise
12). See Chapter 12 for more comments on this area.

EXERCISES

1. Let i : X → ΓX be the embedding x 7→ (x, 1) from the pointed space X to the

subset X × 1 of the reduced cone ΓX. Let u : X → Y be a pointed map. Prove that

the set S = [(ΓX, i), (Y,u)] may be identified with (π·YX)(·,u). Let β ′′,β ′,β be

elements of S. By using this identification, and a description of ΣX as Γ+X ∪ Γ−X
corresponding to the description of the unreduced suspension SX given on p. 108–

109, show how the element −β ′+β becomes an element d(β ′,β) of [ΣX, Y]·, called

the difference element. Prove that d(β ′′,β ′) + d(β ′,β) = d(β ′′,β).

2. Suppose further to the previous exercise, that

α ′,α ∈ [ΣX,Y]· = (π·YX)(·).

Then with these identifications, β + α can be regarded as an element of

[(ΓX, i), (Y,u)], and is then written β ⊥ α. Prove that (i) (β ⊥ α) ⊥ α ′ = β ⊥
(α+ α ′), (ii) β ⊥ 0 = β, (iii) d(β,β ⊥ α) = α.
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3. Let C be a category which admits coproducts. Prove that for any objects

C1,C2,C3 of C there are isomorphisms

C1 ⊔ C2 → C2 ⊔ C1, C1 ⊔ (C2 ⊔ C3)→ (C1 ⊔ C2) ⊔ C3.

Prove also that if 0 is an initial object of C then there are isomorphisms

C1 → C1 ⊔ 0, C1 → 0 ⊔ C1.

4. Suppose further to the previous exercise that for each pair (C1,C2) of C we

choose a specific coproduct and write this coproduct C1 ⊔ C2. Prove that ⊔ is a

functor C × C → C, and interpret the isomorphisms of the previous exercises as

natural equivalences of functors.

5. Let A,B,C be objects of the category C. Let CA,B denote the functor X 7→
C(A,X)×C(B,X) from C to Set, and let CC denote as usual the functor X 7→ C(C,X).

Prove that C is a coproduct ofA and B if and only if there is a natural equivalence of

functors CC ≃ CA,B. Use this and similar results to give another solution to Exercise

3.

6. A comultiplication on an object A of C is a morphism c : A → A ⊔A. Prove that

a comultiplication on A induces a natural transformation CA,A → CA. On the other

hand, any such natural transformation is called a natural multiplication on the sets

C(A,X), X ∈ Ob(C). Prove, conversely, that any natural multiplication on these sets

is induced by a comultiplication A→ A ⊔A.

7. Let c : A → A ⊔ A be a comultiplication on the object A of C. We say c is

associative if the following diagram commutes

A ⊔A 1 ⊔ c // A ⊔ (A ⊔A)

a

��

A

c
77oooooooo

c ''OO
OO

OO
O

A ⊔A
c ⊔ 1

// (A ⊔A) ⊔A

where a is the isomorphism given by Exercise 3. Prove that c is associative if and

only if the multiplication induced on each C(A,X), for X ∈ Ob(C), is associative.

8. Let c : A → A ⊔ A be a comultiplication on the object A of C, and for each

X in C let cX : C(A,X) × C(A,X) → C(A,X) be the induced multiplication. A

natural identity for cX is for each X an element eX of C(A,X) which is an identity

for the multiplication cX and which is natural, i.e., for any morphism f : X → Y

the induced function f∗ : C(A,X) → C(A, Y) maps eX to eY . Find necessary and

sufficient conditions on c for the induced natural multiplications to have a natural

identity. Further, supposing that cX has a natural identity, define a natural inverse

on C(A,X), X ∈ Ob(C) and find necessary and sufficient conditions on c for cX to

have a natural inverse.

9. Prove that, in the category HTop· of pointed spaces and homotopy classes of

pointed maps, the set [ΣA,X]· for all pointed spaces X, has a natural group structure

(that is, a natural multiplication which is associative and has natural identity and
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inverse). Prove that the wedge of pointed spaces is a coproduct in HTop·. Give an

explicit formula for a comultiplication ΣA → ΣA ∨ ΣA which induces the above

natural group structure.

10. Dualise (in the sense of Exercise 14 of Section 6.6) Exercises 3–8. [Here the

dual of a comultiplication A→ A ⊔A is a multiplication A ⊓A→ A.]

11. Let S be a set with two functionsm0,m1 : S×S→ S; we writemi(x,y) = x+iy,

x,y ∈ S. These additions induce additions in S× S be the usual rule

(x,y) +i (x
′,y ′) = (x+i x

′,y+i y
′).

We say that mi is a morphism for m1−i if mi(z+1−i w) =mi(z) +1−imi(w) for all

z,w ∈ S× S. Prove that m0 is a morphism for m1 if and only if

(x+1 x
′) +0 (y+1 y

′) = (x+0 y) +1 (x
′ +0 y

′)

for all x, x ′,y,y ′ ∈ S and that this is equivalent to m1 is a morphism for m0. Sup-

pose that these equivalent conditions hold. Suppose further that there are elements

00 and 01 in S which are zeros for +0 and +1 respectively. Prove that 00 = 01. Prove

also that +0 = +1, and that both additions are associative and commutative.

12. Prove that the group structure on [ΣA,X]· is natural with respect to maps of

A in the sense that a pointed map f : A → B induces a morphism of groups

f∗ : [ΣB,X]· → [ΣA,X]·, cls g 7→ cls(g(Σf)). Deduce that [Σ2A,X]· has two mul-

tiplications each of which is a morphism for the other; hence, show that these two

multiplications coincide and are commutative. Express these facts as statements

about Σ2A and its coproducts.

7.2 Fibrations of groupoids

Let p : E → B be a morphism of groupoids. We say p is a fibration if the
following condition holds: for all objects x of E and elements b in B with
initial point px, there is an element e of E with initial point x and such that
pe = b.

E

p

��
B

•x

e @@�
�

�

�
�

�

•
b
//px

Recall that we use additive notation in groupoids, so that a : x→ y and
b : y→ z have a sum b+ a : x→ z.

EXAMPLES
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1. An isomorphism E → B is a fibration. In particular, an identity mor-
phism B → B is a fibration. The projection p1 : B × F → B from a product
is a fibration. The proof is easy. Let x = (y, z), so that p1x = y. If b in B
has initial point y, then e = (b, 0z) is an element of B× F with initial point
x and such that pe = b.
2. Let Zn be the cyclic group of order n, with generator written t, so that
the elements of Zn are 0, t, 2t, . . . , (n − 1)t. Define a morphism p : I→ Zn

by its value on ı ∈ I(0, 1), namely pı = t. Then p(−ı) = (n− 1)t. It follows
that p is a fibration if and only if n = 1 or 2. Note that p is surjective if
n = 3.
3. Let E and B be groups and let p : E → B be a morphism. Then p
is a fibration if and only if p is surjective. Thus groupoids have a richer
theory than that of groups since there is a greater variety of morphisms of
groupoids than there is of groups. More examples of this variety will arise
in the next two chapters.
4. We will later give useful conditions on a map i : A→ X of spaces for the
induced morphism

i∗ : πYX → πYA

to be a fibration of groupoids.
Let p : E → B be a morphism of groupoids. If u is an object of B,

we write p−1[u] for the subgroupoid of E with objects those x in Ob(E)
such that px = u, and with elements those e in E such that pe = 0u. The
following result contains our basic construction of an operation, or action,
arising from a fibration of groupoids.

7.2.1 Let p : E→ B be a fibration of groupoids. Then there is an assignment

to each b ∈ B(u, v) of a function

b || || : π0p
−1[u]→ π0p

−1[v]

with the properties that

(a) if b is a zero, then b || || is the identity;

(b) if b ∈ B(u, v), c ∈ B(v,w), then (c+ b) || || = c || ||b || || ;

(c) each function b || || is a bijection.
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Proof The construction of b || || is as follows.

• y

•

e @@�
�

�

�
�

�

d
���
�

�

�

x

• e′//__ __x ′ • y ′

•
b
//u = px • v

Let x be an object of E such that px = u, so that x represents an element of
π0p

−1[u]. By the fibration condition, there is an element e in E with initial
point x and such that pe = b. Let y be the final point of e. We claim that
the class clsy of y in π0p

−1[v] is independent of the choices that have been
made.

To this end, suppose x ′ is another object of E such that px ′ = u and also
cls x ′ = cls x as elements of π0p

−1[u]. Then there is an element d ∈ E(x, x ′)
such that pd = 0u. Choose an element e′ in E with initial point x ′ and such
that pe′ = b. Let y ′ be the final point of e′. Then

p(e′ + d− e) = b + 0u − b = 0v.

Hence clsy = clsy ′ in π0p
−1[v]. This shows that b || || is well defined.

If b = 0u and px = u, then p(0x) = b. This proves (a).

If further c ∈ B(v,w), px = u, and e ∈ E(x,y) satisfies pe = b, choose f
in E with initial point y and such that pf = c. Then p(f+ e) = c+ b, and if
z is the final point of f, then

c || ||b || || (cls x) = c || || (clsy) = cls z = (c + b) || || (cls x).

This proves (b).

The proof of (c) is now easy, since (a) and (b) imply that (b || || )
−1 =

(−b) || || . 2

We express 7.2.1 by saying that the groupoid B acts, or operates, on the
family of sets π0p

−1[u], u ∈ Ob(B). We will use actions of groupoids on
families of sets in a different context in section 10.4.

We now come to a topological application of fibrations of groupoids.
Let i : A → X be a map of spaces. We say i is a cofibration if the following
condition holds for all spaces Y: if X : A → Y is a map, q > 0, and G :
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A × [0,q] → Y is a homotopy with initial map fi, then there is a homotopy
H : X × [0,q] → Y with initial map f such that H(i × 1) = G. We will give
many examples of cofibrations in the next section. In this section we shall
show that a cofibration i : A→ X is an embedding, with closed image if X is
Hausdorff. In the case where i is an inclusion we say that f : X→ Y extends

fi, and that a homotopy H on X extends the homotopy H(i × 1). For this
reason, it is also common to say that if an inclusion A→ X is a cofibration,
then the pair (X,A) has the homotopy extension property, which is often
abbreviated to HEP.

Here is an example of an inclusion which is not a cofibration. Let X =

L ∪ [−1, 0] and let A = [−1, 0]. The inclusion i : A → X extends to the
identity 1 : X→ X. But the homotopy (a, t) 7→ a− ta− t (which deforms i
to the constant map at −1) does not extend to a homotopy of 1 : X→ X.

−1 0 1

Fig. 7.2

7.2.2 Let i : A→ X be a cofibration. Then the induced morphism

i∗ : πYX → πYA

is a fibration of groupoids.

Proof Let f : X → Y be a map and let b be an element of πYA with initial
point fi. Then b has a representative G which is a homotopy of fi. By the
cofibration condition, there is a homotopy H of f such that H(i × 1) = G.
The class e of H in πYX satisfies i∗(e) = b. 2

The reader will have noted that the cofibration condition is stronger
than is required to obtain i∗ is a fibration. The exercises explore various
weakenings of the cofibration condition, although only one of these weak-
enings has been found to be generally useful.

In the definition of cofibration we use homotopies of arbitrary length q.
But the condition for a cofibration is satisfied for homotopies of any length
if it is satisfied for homotopies of length 1. So it is usually convenient to
restrict attention to such homotopies.
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Let i : A→ X be a map. Consider the diagram

A× 0
i× 1 //

ε0

��

X× 0

ε0

��
A× I

i× 1
// X× I

(7.2.3)

where as often in this chapter we find it convenient to denote a space {x}
by x, and where ε0 denotes the inclusion. A map f : X → Y is determined
by the map f ′ : X × 0 → Y sending (x, 0) 7→ fx; similarly, u : A → Y is
determined by u′ : A × 0 → Y. A homotopy U of u : A → Y is a map
U : A × I → Y whose restriction to A × 0 is u′. Thus the condition that
i : A → X is a cofibration is equivalent to the condition that (7.2.3) is a
weak pushout, a condition which is the same as the pushout condition but
without the uniqueness [cf. p. 113].

Let M(i) be the mapping cylinder of i; that is, M(i) is the adjunction
space (X× 0) i×1⊔ (A× I), and is given by the pushout diagram

A× 0
i× 1 //

ε0

��

X× 0

��
A× I //M(i).

Then diagram (7.2.3) determines a map µ :M(i)→ X× I.

7.2.4 Let i : A→ X be a map. The following conditions are equivalent.

(a) The map i is a cofibration.
(b) If Y is a space and G :M(i)→ Y is a map, then there is a mapH : X×I→
Y such that Hµ = G.

(c) There is a map ρ : X × I → M(i) such that ρµ = 1—that is, µ is a

coretraction.

Proof (a)⇔ (b) This is a restatement of the cofibration condition.
(b)⇔ (c) This is a special case of the following proposition: If j : C→ Z

is a map, then j is a coretraction if and only if for any map g : C → Y, there

is a map f : Z → Y such that fj = g. The proof is as follows. If r : Z→ C is
a map such that rj = 1, then gr : Z→ Y satisfies grj = g. For the converse,
take Y = C and g = 1. Then there is a map r : Z→ C such that rj = 1. 2
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For part of our next corollary, we need a definition. Let C and D be
subspaces of a space W. We say C and D satisfy the gluing property if for
any space Y, any maps C → Y and D → Y which agree on C ∩D define a
map on C ∪D; this is equivalent to saying that the square of inclusions

C ∩D //

��

C

��
D // C ∪D

is a pushout.

7.2.4 (Corollary 1) Let i : A→ X be a cofibration. Then

(a) i is an embedding;

(b) the pair i[A]× I, X× 0 of subspaces of X× I satisfies the gluing property;

and

(c) if further X is Hausdorff, then i is a closed map.

Proof Condition (b) of 7.2.4 implies that µ :M(i)→ X×I is an embedding.
Since M(i) is defined as a pushout, this proves (b). Also the composite

A→ A× 1→M(i)→ X× I

is an embedding. Since the map X → X × 1 → X × I is an embedding, it
follows that i : A→ X is an embedding, which proves (a).

If X is Hausdorff then so also is X × I, and hence µ[M(i)], which is the
subset of X× I on which the identity and µρ agree, is closed in X × I. This
proves (c). 2

Because of this last result, in the case that i is a cofibration we think of
M(i) as a subspace of X× I and picture M(i) as in Fig. 7.3.

A× 1

X× 0

Fig. 7.3
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7.2.4 (Corollary 2) Let i : A→ X be a cofibration and let B be a space. If i is

closed, or B is locally compact, then 1× i : B×A→ B× X is a cofibration.

Proof Since i is a cofibration, the map µ : M(i) → X × I is a coretraction
with retract ρ, say. Then

1× µ : B×M(i)→ B× X× I

is a coretraction with retract 1 × ρ. Now comes the subtle point, namely
that we need the natural map

M(1× i)→ B×M(i)

to be a homeomorphism, that is we need that the diagram

B×A× 0 //

��

B× X× 0

��
B×A× I // B×M(i)

(*)

is a pushout. This is true if B is locally compact, by 4.6.6. On the other
hand, if i is a closed cofibration, then by the gluing rule 2.5.12 for contin-
uous functions, the diagram

B× i[A]× 0 //

��

B× X× 0

��
B× i[A]× I // B× µ[M(i)]

is also a pushout. It follows that (*) is a pushout. 2

In order to apply the consequences of the fact that if i : A → X is a
cofibration, then p = i∗ : πYX → πYA is a fibration of groupoids, we need
to identify π0p

−1[u]. The main result is the following.

7.2.5 Let i : A → X be a cofibration. Let u : A → Y be a map. Let p = i∗ :

πYX → πYA. Then there is a canonical bijection

π0p
−1[u] ∼= [(X, i), (Y,u)].
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Proof Both sets are sets of equivalence classes of maps f : X→ Y such that
fi = u. On the left, the equivalence relation is homotopic by homotopies

H such that H(i × 1) is homotopic rel end maps to the constant homotopy.

On the right, the equivalence relation is homotopic under A, that is, by
homotopies H ′ such that H ′(i× 1) is the constant homotopy. The following
lemma shows that these two equivalence relations are the same.

7.2.5 (Lemma) Let i : A → X be a cofibration. Let H : X × I → Y be a

homotopy f ≃ g, and let G be a homotopy rel end maps G = H(i × 1) to a

homotopy G ′ : u ≃ v. Then H is homotopic rel end maps to a homotopy H ′

such that H ′(i× 1) = G ′.

Proof Since i is a cofibration, we may assume that i is an inclusion of a
subspace, and that M(i) = A× I ∪ X× 0. We next prove that

W = A× I× I ∪ X× İ× I ∪ X× I× 0

is a retract of Z = X × I × I. To prove this, choose a homeomorphism
ϕ : I× I→ I× I such that (see Fig. 7.4)

ϕ[İ× I ∪ I× 0] = I× 0.

Fig. 7.4

Then 1 × ϕ : X × I × I → X × I × I is a homeomorphism mapping W
to A × I × I ∪ X × I × 0. But i × 1 : A × I → X × I is a cofibration, by
7.2.4 (Corollary 2), since I is locally compact, and this implies that any
map on A× I× I∪X× I× 0 extends over Z. Hence any map onW extends
over Z.

To apply this last fact, we need to specify a map on W. Define

H ′ : X× I× 0→ Y by (x, s, 0) 7→ H(x, s);

f ′ : X× 0× I→ Y by (x, 0, t) 7→ f(x);

g ′ : X× 1× I→ Y by (x, 1, t) 7→ gx.

These are all continuous, agree on their common domains, and are defined
on closed subspaces of their union which we write T , say, which is consid-
ered as a subspace of X× I× I. Hence they define a map K on T . Now 1×ϕ
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maps T homeomorphically to X × I × 0, a space which with A × I × I has
the gluing property. Hence T and A × I × I have the gluing property. So
H ′, f ′,g ′ and G define a map on W. This extends to a map H on X× I× I,
and H is a homotopy of H rel end maps as required. 2

To go back to the main result, the lemma with u = v and G ′ the constant
homotopy shows that these two equivalence relations are identical. 2

The following is immediate from 7.2.1, 7.2.2, and 7.2.5.

7.2.5 (Corollary 1) Let i : A → X be a cofibration and let Y be a topological

space. Then the track groupoid πYA acts on the family of sets [(X, i), (Y,u)],

for maps u : A → Y, in the sense that if α ∈ πYA(u, v), then there is a

bijection

α || || : [(X, i), (Y,u)]→ [(X, i), (Y, v)]

such that 0 || || = 1 and β || ||α || || = (β + α) || || if further β ∈ πYA(v,w).
Also, if α || || (cls f) = cls g, then any representative of α extends to a homo-

topy f ≃ g. 2

Now we exploit the ‘functorial’ dependence of the sets [(X, i), (Y,u)] on
the space-under-A (Y,u). Suppose that f : Y → Z is a map of spaces. Then
f determines by composition a function

f∗ : [(X, i), (Y,u)]→ [(X, i), (Z, fu)]

cls g 7→ cls fg.

It is clear that if f is a homeomorphism, then f∗ is a bijection. Our next aim
is the following more subtle result.

7.2.6 Let i : A → X be a cofibration. Let f : Y → Z be a homotopy equiva-

lence. Then for each map u : A→ Y the function

f∗ : [(X, i), (Y,u)]→ [(X, i), (Z, fu)]

is a bijection.

Proof Let g : Z → Y be a homotopy inverse of f, so that gf ≃ 1, fg ≃ 1.
Consider the functions

[(X, i), (Y,u)]
f∗−→ [(X, i), (Z, fu)]

g∗−→ [(X, i), (Y,gfu)]

f∗−→ [(X, i), (Y, fgfu)].

We shall prove below that the composites of the first two functions, and
of the last two functions, are bijections. It follows easily that each of the
functions is a bijection (cf. Exercise 2 of Section 6.1).
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In order to prove that the composites g∗f∗ and f∗g∗ are bijections, we
use the following two lemmas.

7.2.6 (Lemma 1) Let i : A → X be a cofibration, and let f, f ′ : Y → Z
be homotopic maps. Then for each map u : A → Y there is an element

θ ∈ πZA(fu, f ′u) such that the following diagram commutes:

[(X, i), (Y,u)]
f∗ //

f ′∗

##G
GG

GG
GG

GG
GG

GG
GG

GG
GG

GG
GG

[(X, i), (Z, fu)]

θ || ||

��
[(X, i), (Z, f ′u)].

(7.2.7)

Proof Let Ft : Y → Z be a homotopy f ≃ f ′, and let θ be the class in πZA

of the homotopy Ftu. Then for each g : (X, i)→ (Y,u) the homotopy Ftg is
a homotopy fg ≃ f ′g which extends the homotopy Ftu : A→ Z. It follows
that θ || || (cls fg) = cls f ′g. 2

7.2.6 (Lemma 2) If f ≃ 1 : Y → Y, then for each map u : A→ Y the function

f∗ : [(X, i), (Y,u)] → [(X, i), (Y, fu)]

is a bijection.

Proof In diagram (7.2.7) we take Y = Z and f ′ = 1. The result follows
since f ′∗ = 1 and θ || || is a bijection. 2

This now completes the proof of 7.2.6. 2

Note that this proof is an analogue of the proof of 6.5.12. The idea for
the proof of 7.2.6 arose in the following way.

In texts on homotopy theory, one studies the homotopy groups πn(Y,y).
Here π1(Y,y) is the fundamental group of Y based at y, while for all
n > 1, the set πn(Y,y) can be identified with the set of homotopy classes
[(Sn, i), (Y, j)] of maps under AwhereA is a singleton {a}, ia is a given base
point x, say, of the n-sphere Sn, and ja = y. This set of homotopy classes
is more clearly written as [(Sn, x), (Y,y)]. One of the early results is usually
that a homotopy equivalence f : Y → Z of spaces induces an isomorphism
fn : πn(Y,y)→ πn(Z, fy) of the nth homotopy groups for all n > 1 and all
y ∈ Y. This result is proved by showing that the fundamental groupoid πY
acts on the family of groups πn(Y,y).
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There were many developments in homotopy theory which involved re-
placing the sphere Sn in the definition of homotopy groups by a general
space X with a chosen base point x, say. The above result on the effect of a
homotopy equivalence on homotopy groups then straightforwardly gener-
alises to give that a homotopy equivalence f : Y → Z induces a bijection of
sets

f∗ : [(X, x), (Y,y)]→ [(X, x), (Z, fy)]

if the inclusion {x}→ X is a cofibration.
The final generalisation is to replace the inclusion {x} → X by a gen-

eral cofibration A → X. Essentially the same proof then gives 7.2.6; all
that is needed is to set up an appropriate notation which will allow the
proof to be transcribed. The advantage of the new format is that it is more
symmetrical—there are two variables X and Y of roughly similar status. It
often happens in mathematics that reformulating a result to make it look
more pleasing can also make the result more powerful and useful. Our
present example will be exploited in section 7.4 to prove the gluing theorem
for homotopy equivalences. We can also prove immediately the following
result.

7.2.8 Let f : (X, i) → (Y,u) be a map under A and suppose that i : A → X

and u : A → Y are cofibrations. Let f : X → Y be a homotopy equivalence of

spaces. Then f : (X, i)→ (Y,u) is a homotopy equivalence under A.

Proof By 7.2.6, but with some roles reversed, the map

f∗ : [(Y,u), (X, i)] → [(Y,u), (Y,u)]

is a bijection. Hence there is a map g : (Y,u)→ (X, i) such that f∗(cls g) =
cls 1Y . This says that fg ≃ 1 under A. But f : X → Y is a homotopy
equivalence. Let g ′ be a homotopy inverse of f. Then

gf = 1Xgf ≃ (g ′f)(gf) = g ′(fg)f ≃ g ′1Yf = g
′f ≃ 1X.

So we have proved that g also is a homotopy inverse of f as maps of spaces;
but we have not yet proved that gf ≃ 1 under A.

However we can now apply the same argument to g : (Y,u)→ (X, i) to
find a map f ′ : (X, i) → (Y,u) such that gf ′ ≃ 1 under A. We then obtain
homotopies under A

gf ≃ gfgf ′ ≃ g1Yf ′ = gf ′ ≃ 1X.

This completes the proof. 2

Here is an application of the last result which will be useful later in
section 7.4. Let i : A→ X be an inclusion. We say A is a deformation retract
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of X if there is a retraction r : X → A such that ir : X → X is homotopic to
1X under A. In this case, a homotopy 1X ≃ ir under A is called a retracting

homotopy of X into A and r is called a deformation retraction. Another way
of stating these ideas is to say that A is a deformation retract of X if the
inclusion i gives a homotopy equivalence i : (A, 1A) → (X, i) of spaces
under A.

Clearly, to prove A is a deformation retract of X it is sufficient to exhibit
such a retracting homotopy, that is, to exhibit a homotopy Rt : X→ X under
A such that

R0 = 1X, R1[X] ⊆ A.

For example, 0 is a deformation retract of I. More generally, if a is a
point of the convex set X in a normed space, then a is a deformation retract
of X since the homotopy (x, t) 7→ (1 − t)x + ta is a retracting homotopy of
X onto a.

If A is a deformation retract of X, then of course the inclusion i : A→ X
is a homotopy equivalence. The converse is false. For example, let X = CL
(Fig. 7.5). In section 7.5 it is proved that CY is contractible for any space
Y. So X is contractible and hence the inclusion {(0, 0)} → X is a homotopy
equivalence. But (0, 0) is not a deformation retract of X. The reason, ex-
pressed intuitively, is that in deforming X to (0, 0), all points (n−1, 0) have
to move at least to the vertex of the cone, and so, by continuity, the point
(0, 0) also cannot remain stationary in such a deformation.

However, the converse is true if i is a cofibration.

0

CL

Fig. 7.5

7.2.8 (Corollary 1) Let i : A→ X be an inclusion which is both a cofibration

and a homotopy equivalence. Then A is a deformation retract of X.

Proof This is immediate from 7.2.8 and the fact that i defines a map
(A, 1A)→ (X, i) of spaces under A. 2

7.2.8 (Corollary 2) Let i : A→ X be an inclusion which is a cofibration. Then
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X× 0 ∪A× I is a deformation retract of X× I.

Proof The inclusion j : X×0∪A×I→ X×I is a homotopy equivalence since
both spaces contain X × 0 as a deformation retract. So the result follows
from the previous corollary if we can prove j is a cofibration. For this it is
sufficient to show that B = (X × I × 0) ∪ (X × 0 ∪ A× I) × I is a retract of
D = X× I× I.

There is a homeomorphism ψ : I × I → I × I which maps I × 0 ∪ 0 × I
to I × 0. Then 1 × ψ : D → D maps B to C = X × I × 0 ∪ A × I × I. But
i × 1 : A × I → X × I is a cofibration (7.2.4 (Corollary 2)), and so C is a
retract of D. Hence B is a retract of D. 2

There is a more direct proof of this corollary [Exercise 6], but the above
proof is an instructive use of the previous ideas.

We now return to fibrations of groupoids to explain the exact sequences

of a fibration. We give some applications of these to homotopy of spaces,
but in fact the idea is purely algebraic. There are a number of algebraic
applications, some of which we indicate in the Exercises. One reason for
giving some results in this area is that the idea of exact sequence is so
pervasive in algebraic topology, and some other areas of mathematics, that
it is worthwhile giving an impression of the method.

The statement of the next result is long since it contains a lot of small
individual points. The proofs are quite simple. The value of the result is in
systematising a number of related facts. Also, it suggest that whenever you
come across a fibration of groupoids, it is useful to consider the family of
exact sequences and to see what consequences can be drawn from it.

7.2.9 (The exact sequences of a fibration of groupoids) Let p : E→ B be a

fibration of groupoids. Let x be an object of E, and let Fx be the fibre p−1[0y]

of p over y = px . Then there is a sequence of maps of three groups and three

pointed sets

Fx(x)
i′−→ E(x)

p′

−→ B(y)
∂−→ π0Fx

i∗−→ π0E
p∗−→ π0B

in which i ′ is the restriction of the inclusion i : Fx → E, p ′ is the restriction

of p, i∗ and p∗ are the induced maps, and ∂ is given by ∂α = α || || x̄, where x̄

denotes the component of x in Fx and α || || is given by the operation of B(px)
on π0Fx of 7.2.1. The above sequence has the following properties:

(a) i ′ is injective and i ′[Fx(x)] = p
′−1[0y];

(b) ∂α = ∂β if and only if there is a γ ∈ E(x) such that p ′γ = −β+ α;

(c) if ū denotes the component in Fx of an object u of Fx, then i∗ū = i∗v̄ if

and only if there is an α ∈ B(y) such that α || || ū = v̄;
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(d) if ŷ denotes the component of y in B then

i∗[π0Fx] = p
−1
∗ [ŷ].

Proof (a) The injectivity of i ′ is clear, since i is injective. Also, by definition
of Fx, pi[Fx] = {0x}, and so i ′[Fx(x)] ⊆ p ′−1[0y]. We have to prove the
reverse inclusion. But this is clear, since if γ ∈ E(x) and pγ = 0y, then
γ ∈ Fx.

(b) Let ∂α = ∂β. Then α || || x̄ = β || || x̄ . This means that if α̃ ∈ E(x,u),
β̃ ∈ E(x, v) satisfy pα̃ = α, pβ̃ = β, then u and v lie in the same component

of Fx, that is there is an element δ ∈ Fx(v,u). Let γ = −α̃ + δ + β̃ ∈ E(x).
Then pγ = −α+ β.

u
δ

v

α̃

β̃

x

β

α

y

Fig. 7.6

Conversely, if −α+ β = pγ where γ ∈ E(x), then from (pγ) || || x̄ = x̄, we
deduce (−α) || ||β || || (x̄) = x̄. So α || || x̄ = β || || x̄, and hence ∂α = ∂β.

(c) Let u and v be objects of Fx, so that pu = pv = y. If i∗ū = i∗v̄,
then there is an α̃ ∈ E(u, v), and so α = pα̃ ∈ B(y) satisfies α || || ū = v̄.
Conversely, if there is an α ∈ B(y) such that α || || ū = v̄, then by definition of
the operation α || || there is an element α̃ ∈ E(u, v) and so i∗ū = i∗v̄.

(d) Let u be an object of Fx. Then pu = y and so i∗ū ∈ p−1
∗ [ŷ]. Suppose

conversely that v is an object of E whose component v ′ in E satisfies p∗v
′ =

ŷ. This means that pv and y belong to the same component of B and so
there is an element α ∈ B(pv,y). Since p is a fibration, there is an element
α̃ in E starting at v and such that pα̃ = α. Let u be the final point of α̃.
Then u is an object of Fx and i∗ū = v ′. 2

Here are some applications of the exact sequence to homotopy theory.
The second of these will be used in section 7.6.

7.2.10 Let the inclusion i :A→ X of A in X be a cofibration, and suppose that

r and s are two retractions X → A which are homotopic. Then r and s are

homotopic under A.
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Proof Consider the fibration of groupoids i∗ : πAX → πAA with base point
in πXA the retraction r : X→ A. Part of the exact sequence of the fibration
is

πAX(r)
i∗−→ πAA(1)

∂−→ [(X, i), (A, 1)].

LetHt be a homotopy r ≃ s. Let α be the class in πAA(1A) of the homotopy
Gt = Ht | A. Then α || || (cls r) = cls s. But α = i∗γ where γ is the class in
πAX(r) of the homotopy x 7→ Gtrx. So α || || (cls r) = cls r. Hence r ≃ s under
A. 2

Another way of expressing the conclusion of 7.2.10 is that the natural
map [(X, i), (A, 1)]→ [X,A] is injective.

7.2.11 Let a be a point of a space X and suppose that the inclusion i : {a}→ X
is a cofibration. Let f : X→ Y be an inessential map. Then there is a homotopy

under {a} of f to a constant map.

Proof Let Ht be a homotopy of f to a constant map. Then the sum of Ht

and the homotopy (x, t) 7→ H1−t(a) is a homotopy Kt : f ≃ g such that g
is constant and f(a) = g(a) = y, say. Consider the fibration of groupoids
i∗ : πYX → πY{a} and its fibre Fg determined by the base point g of πYX.
Part of the exact sequence of the fibration at this base point is

πYX(g)
i∗−→ πY{a}(h)

∂−→ [(X,a), (Y,y)]

where h is the restriction of g, i.e. h(a) = y. Let α be the class in πY{a}(h)

of the homotopy (a, t) 7→ Kt(a). Then α || || (cls f) = clsg. But α = i∗γ where
γ is the class of the homotopy (x, t) 7→ Kt(a). Hence α || || (cls f) = cls f. So
cls f = cls g and hence f is homotopic to g under {a}. 2

7.2.12 Let X, Y be pointed spaces, regarded as spaces under {a}. Suppose that

the inclusion i : {a} → X is a cofibration. Then the group π(Y, ·) operates on
the set [X, Y]· so that if Y is path-connected then the map [X, Y]· → [X, Y] is

surjective and two elements α,β of [X, Y]· have the same image in [X, Y] if and

only if there is an element γ ∈ π(Y, ·) such that γ · α = β.

Proof Since the map i is a cofibration, the induced morphism i∗ : πYX →
πY· is a fibration of groupoids. Part of the exact sequence of this fibration
is

πY·(·)→ [(X, ·), (Y, ·)]→ [X, Y]→ [·, Y].

We can identify πY·(·) with the fundamental group π(Y, ·) of Y at the base
point ·. The result now follows from 7.2.9, since if Y is path-connected then
[·, Y] is a singleton. 2
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Another application of the exact sequence is for the case of pointed
spaces X, Y with subspace i : A → X such that i is a cofibration. As base
point of YX we take the constant pointed map X → Y. The identifications
of section 7.1 then yield the exact sequence of sets of pointed homotopy
classes:

[Σ(X/A), Y]· → [ΣX, Y]· → [ΣA, Y]· → [X/A, Y]· → [X, Y]· → [A, Y]·

in which the exactness is as given in 7.2.9.
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EXERCISES

1. (i) Prove that if A is a deformation retract of B, and B is a deformation retract

of C, then A is a deformation retract of C.

(ii) Prove that if A is a deformation retract of X and B is a deformation retract of Y,

then A× B is a deformation retract of X× Y.

2. Let (X, i), (X ′, i ′) be spaces underA. Let f : X→ X ′ be a map underA. Prove that

if f is a homotopy equivalence under A, then f induces a bijection [(X ′, i ′), (Y,u)]→
[(X, i), (Y,u)]. Use such a homotopy equivalence to construct an action of πYA on

the family of sets [(X ′, i ′), (Y,u)] in the case i : A → X is a cofibration and f is a

homotopy equivalence under A.

3. Prove that π(Y × Z)A is isomorphic to πYA × πZA. Use this fact to prove that if

f ≃ f ′ : Y →W, then f∗ ≃ f ′∗ : πYA → πWA.

4. A map i : A → X is said to be a weak cofibration, or to have the weak homotopy

extension property (written WHEP), if for any map f : X → Y and any F of u = fi :

A → Y, there is a real number r > 0 such that the homotopy F + r of u extends

to a homotopy of f. Prove that if j : A → Z is a cofibration, and there are maps

g : X → Z, h : Z → X under A such that hg ≃ 1X under A, then i is a weak

cofibration.

5. Prove that if i : A→ X is a map, then i∗ : πYX → πYA is a fibration of groupoids

if and only if for any map f : X → Y and any homotopy H of u = fi, then H is

homotopic rel end map to a homotopy K such that K extends to a homotopy of f.

[If this property holds for all Y and all maps f, then we say i has the rather weak

homotopy extension property. This property, which was introduced in the exercises of

the first edition of this book, has been further studied by [Kie77]. See also Exercise

7 of Section 7.5.]

6. Let A be a subspace of X and let ρ : X × I → X × 0 ∪ A × I be a retraction.

Let ρ1 and ρ2 be the two components of ρ. Define Rt : X × I → X × I by (x, s) 7→
(ρ1(x, st), s(1 − t) + tρ2(x, s)). Prove that Rt is a homotopy rel X× 0 ∪ A × I such

that R0 = 1, Rt : (x, s) 7→ ρ(x, s).

7. Compare the 5-lemma for a map of fibrations of groupoids given in [Bro70] with

treatments of the 5-lemma in books on algebraic topology or homological algebra.

8. Let C and D be subspaces of a topological space W. Prove that C and D have

the gluing property if and only if for all subsets U of C ∪D, U is open in C ∪D if

and only if U ∩ C and U ∩D are open in C and D respectively.

7.3 Examples

It is convenient to define a cofibred pair (X,A) to be a space X and subspace
A of X such that the inclusion of A into X is a cofibration. The pair is closed

if A is closed in X. In much of the literature, a cofibred pair is called a pair
with the homotopy extension property. We shall derive our main examples
of cofibrations from the trivial examples that for any space X the pairs (X,X)
and (X,∅) are both cofibred, together with the following basic example.



COFIBRATIONS [7.3] 279

7.3.1 The pair (I, {0, 1}) is cofibred.

x ′ (1
2
, 0)

x x ′

x

(1
2
, 2) = z

Fig. 7.7

Proof Recall that we write İ for {0, 1}. We have to construct a retraction
I × I → I × 0 ∪ İ × I. The latter space is shown in thick lines in Fig. 7.7.
Let z be the point (1

2
, 2) in R2, and regard I × I as a subset of R2. For each

x in I × I let x ′ be the unique point of I × 0 ∪ İ × I such that z, x, x ′ are
collinear. Then ρ : x 7→ x ′ is the required retraction. We leave the reader to
work out a formula for ρ (e.g. by writing x = (1

2
+ s, 2 − t) where |s| 6 1

2

and 1 6 t 6 2) and so to prove that ρ is continuous. 2

In 7.2.4 (Corollary 2) we gave one way of constructing a new cofibration
from an old one. Here are some other ways of generating cofibrations.

7.3.2 The composite of cofibrations is a cofibration.

7.3.3 If (X,A) and (Y,B) are closed cofibred pairs, then so also is (X×Y,A×
B).

7.3.4 Let (X,A) be a closed cofibred pair, and let f : A → B be a map. Then

(B f⊔ X,B) is a closed cofibred pair.

7.3.5 For any spaces X,B, the pair (B ⊔ X,B) is a closed cofibred pair.

Proof of 7.3.2 Let i : A → X and j : X→ U be cofibrations. Let f : U→ Y

be a map and let G : A × I → Y be a homotopy with initial map fji. Since
i is a cofibration, there is a homotopy H of fj extending G, and since j is a
cofibration there is a homotopy K of f extending K. Then K extends G and
so ji is a cofibration. 2

Proof of 7.3.3 By 7.2.4 (Corollary 2) the maps i× 1 : A× B→ X× B and
1 × j : X × B → X × Y are cofibrations and hence by the previous result
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i× j = (1× j)(i× 1) is a cofibration. Clearly i× j is also closed. 2

Remark 7.3.6 In order to prove 7.3.4 we need a method of constructing
homotopies on adjunction spaces. First, it is convenient to stick to homo-
topies of length 1 and to write a homotopy H : X× I→ Y as Ht : X→ Y (it
being understood that 0 6 t 6 1), and to say Ht is a homotopy Ht : H0 ≃
H1. Second, suppose there is given a pushout

A
f //

i

��

B

ī

��
X

f̄ // B f⊔ X.

Since I is locally compact we can apply 4.6.6 which, with the above nota-
tion, becomes: if we are given a commutative square

A
f //

i

��

B

Gi

��
X

Fi
// Y

in which Ft and Gt are homotopies, then there is a unique homotopy Ht :

B f⊔ X→ Y such that

Htf̄ = Ft, Htī = Gt.

That is, the pushout property allows us to define not only maps but also ho-

motopies.

Proof of 7.3.4 Let g : B f⊔ X → Y be a map and let Kt be a homotopy of
gī. Then Ktf is a homotopy of gf̄i which, since i is a cofibration, extends to
a homotopyHt of gf̄. By the previous remark, K and Ht define a homotopy
Gt of g as required. 2

Proof of 7.3.5 This follows from 7.3.4 on taking A = ∅. A direct proof is
easy. 2

EXAMPLES
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1. For any A, the inclusion A× 0→ A× I is a cofibration.

Proof We know that the inclusion İ → I is a cofibration. By 7.3.5, the
inclusion 0 → İ is a cofibration. By 7.3.3 the inclusion 0 → I is a cofi-
bration. The identity A → A is a cofibration. So the result follows from
7.2.4 (Corollary 2). 2

2. Let f : A→ B be a map. Regard the mapping cylinder M(f) of f [Exam-
ple 5 of Section 4.6] as (A ⊔ B) f′⊔ (A × I) where f ′ : A × İ → B maps
(a, 0) 7→ fa, (a, 1) 7→ a. We claim that: the inclusions A ⊔ B → M(f),
A→M(f), B→M(f) are closed cofibrations.

Proof It follows from 7.3.1 and 7.3.3 that the inclusion A× İ→ A× I is a
closed cofibration. The result now follows from 7.3.4 and 7.3.2. 2

3. For any A the inclusion A→ CA of A into the cone on A, which identi-
fies A with the subset A× 1 of CA, is a closed cofibration.

Proof This follows from the previous example since CA = M(f) where
f : A→ {v} is the constant map. 2

4. Two maps i : A → X and j : B → Y are called homeomorphic if there
are homeomorphisms h : A → B and k : X → Y such that jh = ki. It is
clear that in such cases, i is a cofibration if and only if j is a cofibration,
and i is closed if and only if j is closed. Now the inclusion Sn−1 → En is
homeomorphic to the inclusion Sn−1 → CSn−1. By the previous example,
the inclusion Sn−1 → En is a closed cofibration. This, with 7.3.4, shows
that for any B and any map f : Sn−1 → B, the inclusion B → B f⊔ En is a
closed cofibration.
5. Let X be a cell complex and let A be a subcomplex of X. Then the
inclusion A→ X is a closed cofibration.

Proof The cell complex X is obtained from A by adjoining in order of in-
creasing dimension those cells of X which are not already in A. So this
example follows from the previous example and the fact that a composite
of closed cofibrations is a closed cofibration. 2

6. However, not all inclusions of closed subspaces are closed cofibrations,
as we showed earlier by an example.

We now derive a useful condition for a pair (X,A) to be closed cofibred.
This will imply a useful product rule for cofibrations. However, this rule
will not be used until the last part of section 7.5, and so the reader may
therefore wish to turn directly to applications of cofibrations in the next
section.

Consider a pair (X,A). By a Strøm structure on (X,A) is meant a pair
(w,h) consisting of a map w : X→ I such that w[A] = {0}, and a homotopy
h : X × I → X rel A of the identity 1X such that h(x, t) ∈ A whenever
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t > w(x). (See [Str66], [Str69]).

7.3.7 Let (X,A) be a pair where A is closed in X. Then (X,A) is cofibred if

and only if (X,A) admits a Strøm structure.

Proof Suppose (X,A) is cofibred, so that there is a retraction

ρ : X× I→ X× {0} ∪A× I.

We write ρ = (ρ1, ρ2) where ρ1 and ρ2 are the components of ρ. Define the
map

w : X→ I, x 7→ sup
t∈I

(t − ρ2(x, t)).

We postpone till the end of this section the proof thatw is continuous. That
w(x) > 0 follows from ρ2(x, 0) = 0. Clearly w[A] = {0}. Suppose w(x) = 0;
then ρ2(x, t) > t for all t whence ρ(x, t) ∈ A× I for all t > 0. Since A× I
is closed, this implies that ρ(x, t) ∈ A× I for t = 0; but ρ(x, 0) = (x, 0), so
that x ∈ A.

Let h = ρ1. Then h is a homotopy rel A of the identity map on X.
Suppose t > w(x). Then ρ2(x, t) > 0, and so ρ1(x, t) ∈ A.

Suppose conversely that (w,h) is a Strøm structure on (X,A). Then a
retraction ρ : X× I→ X× {0} ∪A× I is defined by

ρ(x, t) =

{
(0,h(x, t)) t 6 w(x)

(t−w(x),h(x, t)) t > w(x).

Hence (X,A) is cofibred. 2

The following result is a simple corollary of the last characterisation.

7.3.8 Let (X,A) and (Y,B) be closed cofibred pairs. Then the pair

(X× Y,A× X ∪ X× B)

is also a closed cofibred pair.

Proof Let (w,h) and (u, k) be Strøm structures for the pairs (X,A) and
(Y,B) respectively. Define v : X× Y → I by

v(x,y) = min(w(x), v(y)).

Define l : X× Y × I→ X× Y by

l(x,y, t) = (h(x, min(u(y), t)), k(y, min(w(x), t)).
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Then (l, v) is a Strøm structure for the pair (X × Y,A× X ∪ X× B). 2

Remark Let w : X → I be a map and let A = w−1[0]. Then A is the
intersection of the sets w−1[0,n−1[ for all 0 6= n ∈ N. Thus A is a Gδ-set
(the intersection of a countable family of open sets). It may be proved [cf.
Exercise 16 of Section 3.6] that if A is a closed Gδ-set in a normal space X,
then there is a map w : X→ I such that A = w−1[0].

Another general result which implies the product rule 7.3.8 is the fol-
lowing result due to [Lil73], following a suggestion in an exercise of the
first edition that a result with similar assumptions should be true. We leave
the reader to go through the proof (cf. [Jam84, Proposition 6.14]).

7.3.9 Let (X,A), (X,B) and (X,A∩B) be closed cofibred pairs. Then (X,A∪
B) is a closed cofibred pair. 2

In order to complete the proof of 7.3.7, and so of 7.3.8, we have a
continuity rule to prove. This follows from the following more general
result.

7.3.10 Let ϕ : X× C→ R be a map, let C be compact and define

w : X→ R

x 7→ sup
c∈C

ϕ(x, c).

Then w is well defined and continuous.

Proof For each x in X, ϕ[x×C] is a compact and hence bounded subset of
R. Therefore w is well defined.

Suppose that wx = r and that N = [r − ε, r + ε] is a neighbourhood of
r. By definition of r, c ∈ C⇒ ϕ(x, c) 6 r, and so

x× C ⊆ ϕ−1]←, r+ ε[.

By 3.5.6 (Corollary 2) there is an open neighbourhood U1 of x such that

U1 × C ⊆ ϕ−1]←, r+ ε[

and this implies that
w[U1] ⊆ ]←, r+ ε[. (*)

However, there is a c in C such that ϕ(x, c) ∈ IntN and so there is a
neighbourhood U2 of x such that

ϕ[U2 × c] ⊆ N. (**)
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So, if y ∈ U1 ∩ U2, then (*) implies w(y) 6 r + ε while (**) implies
w(y) > r− ε; hence w[U1 ∩U2] ⊆ N. 2

EXERCISES

1. Give an example of an inclusion i : A → X and maps u, v : A → Y such that

u ≃ v and u extends over X, but v does not extend over X.

2. Let A,B be disjoint closed subsets of X such that there are maps λ,µ : X→ [0, 1]

with A = λ−1[0], B = µ−1[0]. Prove that there is a map ν : X → [0, 1] such that

A = ν−1[0], B = ν−1[1].

3. Suppose given the pushout square of remark 7.3.6. Let u : B → Y be a map.

Prove that the function

f̄∗ : [(B f⊔ X, ī), (Y,u)]→ [(X, i), (Y,uf)]

cls g 7→ cls gf̄

is a bijection.

4. Give all the details of the proof that in the proof of 7.3.8, (l, v) is a Strøm struc-

ture as stated.

5. Let (w,h) be a Strøm structure for (X,A). Prove that if Rt is a retracting ho-

motopy (rel A) of X onto A, then it may be assumed that w is everywhere less

than 1. Hence show that if (X,A) and (Y,B) are closed cofibred pairs and B is a

deformation retract of Y, then X× B ∪A× Y is a deformation retract of X× Y.

7.4 The gluing theorem for homotopy

equivalences of closed unions

In 2.7.3 we proved a rather trivial gluing theorem for homeomorphisms.
The main objective of this section is a gluing theorem for homotopy equiv-

alences. This theorem is useful for constructing homotopy equivalences,
since it is often easy to recognise that ‘pieces’ of a map are homotopy equiv-
alences, while, as we shall see, the process of constructing the homotopy
inverse of the map obtained by gluing the pieces is not so straightforward.

In order to explain the proof, it is useful to introduce the category Top2

whose objects are the maps i : X0 → X of spaces and whose maps i → j,
where j : Y0 → Y, are the commutative diagrams of maps

X0

f0 //

i

��

Y0

j

��
X

f
// Y.

(7.4.1)
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Such a diagram is sometimes written (f0, f) : i→ j. The composition in the
category Top2 is the ‘horizontal’ composition:

(g0,g)(f0, f) = (g0f0,gf).

In this category a map (f0, f) is an isomorphism if and only if it is a home-
omorphism of maps in the sense defined in Example 4 of Section 7.3.

As usual in topological situations, we have a notion not only of maps
(in this case, maps of maps) but also of homotopies of maps (again, of
maps of maps). Let (f0, f) and (g0,g) be maps i → j of maps. A homotopy

(h, k) : (f0, f) ≃ (g0,g) is a pair of homotopies ht : f0 ≃ g0 and kt : f ≃ g
such that jht = kti for all t ∈ I. This means that each (ht, kt) is a map of
maps i→ j.

Again, as is usual when homotopy has been defined, we have the no-
tions of homotopic maps of maps, homotopy equivalence of maps, domina-

tion, and so on. We leave the reader to write down the definitions and basic
properties of these notions following the scheme of chapter 6.

The notion of homotopy equivalence of maps is more restrictive than
the notion of just a pair of homotopy equivalences. That is, in the diagram
(7.4.1), if we are given that both f0 and f are homotopy equivalences, it
does not follow that (f0, f) is a homotopy equivalence of maps. Of course
we know that f0 has a homotopy inverse g0 and that f has a homotopy
inverse g, but there is no reason why (g0,g) should be a map j → i, and
even if this is so, there is still no reason why there should be homotopies of
maps of the required form.

However this does follow if i and j are cofibrations, and this is our first
main result, and a crucial step in the proof of the main gluing theorem.

7.4.2 Suppose in the diagram (7.4.1) that f0 and f are homotopy equiva-

lences and that i and j are cofibrations. Then (f0, f) : i → j is a homotopy

equivalence of maps.

Actually our proof will give more information on the homotopies involved.
This information is used in the proof of the gluing theorem 7.4.3, and it also
implies that 7.4.2, with the next addendum, does generalise 7.2.8, which
dealt with homotopy equivalences under A.

7.4.2 (Addendum) Let g0 : Y0 → X0 be any homotopy inverse of f0 and let

H0
t : f0g0 ≃ 1, K0

t : g0f0 ≃ 1 be homotopies. Then g0 extends to a homotopy
inverse g of f such that the homotopy fg ≃ 1 extends H0

t while the homotopy

gf ≃ 1 extends the sum

K0 + g0H0f0 − g0f0K0
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of the homotopies

g0f0 = g0f01X0
≃ g0f0g0f0 ≃ g01Y0

f0 ≃ 1X0

determined by H0
t and K0

t.

Proof Consider the diagram

Y0
g0 // X0

f0 //

i

��

Y0
g0 //

j

��

X0

i

��
X

f
// Y

g
//_____ X.

We first work in the category of maps under Y0, and consider the induced
maps of sets of homotopy classes

[(Y, j), (X, ig0)]
f∗−→ [(Y, j), (Y, fig0)]

a || ||−→ [(Y, j), (Y, j)]

where α is the class in πYY0 of the homotopy jH0
t : jf0g0 ≃ j. Since f is a

homotopy equivalence, f∗ is a bijection [(7.2.7)]. Also α || || is a bijection. So
there is a homotopy class cls g in [(Y, j), (X, ig0)] such that

α || || f∗(cls g) = cls 1Y . (*)

Then in the first place gj = ig0. Also (*) in conjunction with 7.2.6 shows
that there is a homotopy fg ≃ 1 which agrees on Y0 with the given homo-
topy H0

t : f0g0 ≃ 1.

We next prove that g is a homotopy equivalence. This follows from
the fact that f is a homotopy equivalence and fg ≃ 1, since if g ′ is any
homotopy inverse of f then

gf = (gf)1X ≃ (gf)g ′f = g(fg ′)f ≃ g1Yf ≃ 1X.

(This argument is really the same as that in 6.1.1 which proves that any
right inverse of an isomorphism is itself an isomorphism. At that stage, the
argument seems trivial. At this stage, it acquires some real power.)

Now we can apply to g instead of f the argument which produced g.
This shows that there is a map f ′ : X→ Y which agrees with f0 on X0, and
that there is a homotopy Kt : gf ′ ≃ 1 which agrees on X0 with the given
homotopy K0

t : g0f0 ≃ 1.
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Finally we can apply again the kind of trick which proved g is a ho-
motopy inverse of f. That is we have homotopies determined by Ht and
Kt

gf1X ≃ gfgf ′ ≃ gf ′ ≃ 1X.

This proves 7.4.2 and the addendum. 2

We leave it as an exercise for the reader to deduce 7.2.8.
Our main gluing theorem is an easy consequence of 7.4.2, and in fact

the statement of the theorem is almost as long as the proof.

7.4.3 (The gluing theorem 1: closed subspaces) Let f : X → Y be a map of

spaces. Suppose that:

(a) X and Y are each given as the union of closed subspaces

X = X1 ∪ X2, Y = Y1 ∪ Y2

where X1 ∩ X2 = X0, Y1 ∩ Y2 = Y0, say.

(b) f(Xn) ⊆ Yn for n = 0, 1, 2.

(c) The restrictions of f

f0 : X0 → Y0, f1 : X1 → Y1, f2 : X2 → Y2

are homotopy equivalences.

(d) Each inclusion X0 → X1, X0 → X2, Y0 → Y1, Y0 → Y2 is a cofibration.

Then f is a homotopy equivalence.

Proof The main point is that we apply 7.4.2 and its addendum, with X and
Y replaced first by X1 and Y1, and then by X2 and Y2. This allows us to start
with a homotopy inverse g0 of f0 and to construct homotopy inverses g1,g2

of f1, f2 extending g0. Since all the subspaces are closed, the maps g1 and
g2 define a map g : Y → X.

Further, if we choose homotopies f0g0 ≃ 1, g0f0 ≃ 1, then for n = 1, 2

the homotopies fngn ≃ 1, gnfn ≃ 1 may be chosen to agree with each
other on the subspaces Y0 and X0 respectively, because of the specific for-
mulae given in the addendum to 7.4.2. So the homotopies on the subspaces
define also homotopies fg ≃ 1, gf ≃ 1, and the gluing theorem is proved.

2

Note that the proof of the theorem gives also information similar to
that in the addendum to 7.4.2. It would be possible to make this clearer by
setting up a category of triads (X;X1,X2) and their maps and homotopies.
However, for the purposes of this book, such formality would take us too
far afield, and would not bring too much benefit.

For an application of the gluing theorem, we first recall the suspension
SX of a space X as defined in section 4.4. We shall need the fact that SX
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can be written as the union of two closed subspaces C+X and C−X, with
intersection which can be identified with X. Further, each of C+X, C−X is
homeomorphic to the cone CX. In effect, we shall regard SX as given by a
pushout diagram

X //

��

C+X

��
C−X // SX.

The key property which we need of CX, and so of C+X and C−X, is that if

f : X→ Y is an inessential map, then f extends to a map CX→ Y. The proof
of this is easy: Let H : X → Y be a null-homotopy of f, that is H : g ≃ f
where g is constant. Then H is a map X × I → Y such that H[X × 0] is
a singleton. Hence H determines a map CX → Y which agrees with f on
X = X× 1.

We shall also need the fact that CX is contractible, and that hence so
also are C−X and C+X. This will be proved carefully in the next section, so
for the moment we just assume it. The two properties of contractible spaces
that we shall use are that any map to a contractible space is inessential, and
that any map between contractible spaces is a homotopy equivalence.

7.4.3 (Corollary) Let the space X be the union of closed subspaces X1 and

X2 with intersection X0 and such that the inclusions X0 → X1, X0 → X2

are cofibrations. Suppose that X1 and X2 are contractible. Then X is of the
homotopy type of the suspension SX0.

Proof Let in : X0 → Xn be the inclusion for n = 1, 2. Since Xn is con-
tractible, in is inessential, that is, in is homotopic to a constant map.
Hence i1 extends to a map f1 : C−X0 → X1 and i2 extends to a map
f2 : C+X0 → X2. These together define a map f : SX0 → X. Since X1

and X2 are contractible, as are C−X0 and C+X0, the maps f1 and f2 are
homotopy equivalences, as is their restriction to X0, namely the identity
X0 → X0. All the inclusions under consideration are closed cofibrations.
Hence by the gluing theorem, f is a homotopy equivalence. 2

In the next section we apply the gluing theorem for unions of closed
subspaces to prove a gluing theorem on the homotopy type of adjunction
spaces. This is a more general and often more immediately applicable re-
sult.

We conclude this section with a result of a somewhat technical character
but which will be used in section 7.6. It is not an application of the gluing
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theorem, but is placed here because it requires the notion of maps and
homotopies of maps which were defined at the beginning of the section.

Let i : A → X and j : B → Y be two inclusions of subspaces. By a map
of pairs f : (X,A) → (Y,B) is meant a map of maps (f0, f) : i → j, that is
a map f : X → Y such that f[A] ⊆ B, and where f0 denotes the restriction
f | A,B. By a homotopy f ≃ g of such maps we mean simply a homotopy of
maps as defined previously, and this is just a homotopy ft such that f0 = f,
f1 = g, and ft[A] ⊆ B for all t. We say f is deformable into B if there is a
homotopy f ≃ g such that g[X] ⊆ B. If also the homotopy is under A then
we say that f is deformable into B under A.

7.4.4 Let f : (X,A)→ (Y,B) be a map of pairs such that f is deformable into

B. Assume that the inclusion i :A→ X is a cofibration. Then f is deformable

into B under A.

Proof Let j : B → Y denote the inclusion. Let ft be a homotopy (f0, f) ≃
(g0,g) such that g[A] ⊆ B. Let α denote the class in πBA of the restriction
of the homotopy ft to a homotopy f0 ≃ g0. Let β = j∗α in πYA. We
consider the diagram

[(X, i), (B,g0)]
(−α) || || //

j∗

��

[(X, i), (B, jf0)]

j∗

��
[(X, i), (Y, jf0)]

β || || // [(X, i), (Y, jg0)]
(−β) || || // [(X, i), (Y, jf0)].

Let θ in [(X, i), (Y, jf0)] be the class of f : X→ Y so that

β || || (θ) = cls g.

But g[X] ⊆ B and so g = jg ′, where g ′ is the restriction of g to a map
X → B. Let ϕ = cls g ′. Then β || || (θ) = j∗ϕ and so since the above diagram
is commutative

θ = (−β) || ||β || || (θ)

= (−β) || || j∗(ϕ)

= j∗(−α) || || (ϕ).

So if h : X → B represents (−α) || || (ϕ) then jh represents θ = cls f. Hence f
is homotopic under A to jh. 2
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It should be confessed that a simpler proof of this result is possible
[Exercise 5], but the above proof is given here as another illustration of the
use of the operations.

EXERCISES

1. Generalise 7.4.3 to the case where X is the union of closed subspaces X1, . . . ,Xn

such that if X0 is the intersection of the Xi then

(i) each inclusion X0 → Xi is a cofibration,

(ii) Xi ∩ Xj = X0 if i 6= j,
and similar conditions hold for Y.

2. Let f : (X,A) → (Y,B) be a map of pairs such that B is a deformation retract of

Y. Prove that f is deformable into B under A.

3. Let the inclusion A → X be a cofibration, let B ⊆ Y and let Ft be a homotopy

such that (i) F1[X] ⊆ B, (ii) F0 and F1 agree on A, (iii) F0 mapsA homeomorphically

to B. Prove that F0 is homotopic to F1 relA. [Model the proof of 7.4.4.]

4. Prove 7.2.8 (Corollary 1), 7.2.10 and 7.2.11 using the previous exercise.

5. Let Rt : X× I→ X× I be a retracting homotopy of X× I onto W = X× 1∪A× I,
so that R0 = 1, Rt[X× I] ⊆W and Rt is a homotopy rel W. Let Ft : (X,A)→ (Y,B)

be a homotopy deforming F0 into B. Prove that the homotopy (x, t) 7→ FRt(x, 0)

deforms F0 into B rel A.

6. Let f : (X,A) → (Y,B) be a map of cofibred pairs. Prove that f has a right

homotopy inverse if (i) f : X→ Y is a homotopy equivalence and the restriction f0 :

A → B of f has a right homotopy inverse, or (ii) there is a map g : (Y,B) → (X,A)

such that fg ≃ 1Y and f0g0 ≃ 1B.

7. Prove that {0} is not a deformation retract of CL.
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7.5 The homotopy type of adjunction spaces

Suppose we are given an adjunction space B f⊔ X so that we have a pushout

A
f //

i

��

B

ī

��
X

f̄
// B f⊔ X.

(7.5.1)

In this section we shall apply the gluing theorem from the previous section
to show that if i is a cofibration then the homotopy type of B f⊔ X depends
only on the homotopy class of f and on the homotopy types of B and of the
map i.

We first need some simple lemmas on deformation retracts.

7.5.2 Let A ⊆ D ⊆ X and let D be a deformation retract of X. Then B f⊔ D
is a deformation retract of B f⊔ X.

Proof Let Rt : X→ X be a retracting homotopy of X onto D. Let

Ft = f̄Rt : X→ B f⊔ X, Gt = ī : B→ B f⊔ X.

Then Fti = Gtf (since D contains A); by Remark 7.3.6, Ft and Gt define a
homotopy Ht : B f⊔ X→ B f⊔ X. It is easily checked that Ht is a retracting
homotopy of B f⊔ X onto B f⊔ D. 2

Intuitively, 7.5.2 is ‘obvious’, since the homotopy which retracts X down
ontoD also retracts B f⊔ X onto B f⊔ D. But this last statement, although it
contains the essential idea, is not accurate and also does not indicate why
the resulting homotopy is continuous.

7.5.2 (Corollary 1) If A is a deformation retract of X, then B is a deformation

retract of B f⊔ X.

Proof Take A = D in (7.5.1). 2

We recall that {0} is a deformation retract of I. It follows easily that, for
any A, A × 0 is a deformation retract of A × I; so the following result is
immediate.

7.5.2 (Corollary 2) For any A, the vertex of the cone CA is a deformation

retract of CA.

A similar argument shows that if f : A → B is a map then B is a defor-
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mation retract of the mapping cylinder [Example 2 of Section 7.3]

M(f) = B f′⊔ (A→ I)

where f ′ : A × 0 → B is (a, 0) 7→ fa. In fact, if r : A × I → A × 0 is the
map (a, t) 7→ (a, 0), then r is a deformation retraction, and therefore so
also is the map q :M(f)→ B which is defined by the maps 1B and f ′r. Let
j : A →M(f) be the map a 7→ (a, 1) by which we identify A as a subspace
of M(f). Then we have a commutative diagram,

M(f)

q

��5
55

55
55

55
5

A

j

DD										

f
// B

in which j is an inclusion and q is a deformation retraction. This ‘factorisa-
tion’ of f is very useful.

7.5.3 The map f : A → B is a homotopy equivalence if and only if A is a

deformation retract of M(f).

Proof We know that q is a homotopy equivalence. Therefore, j is a homo-
topy equivalence if and only if f is a homotopy equivalence. But (M(f),A)

is cofibred [Section 7.3]. By 7.2.8 (Corollary 1) j is a homotopy equivalence
if and only if A is a deformation retract of M(f). 2

This result shows that two spaces are of the same homotopy type if and
only if there is a third space containing each as a deformation retract.

Consider again the adjunction space B f⊔ X of diagram (7.5.1). In order
to study the homotopy type of this space it is convenient to use some auxil-
iary space, namely, M(f), M(f)∪X and M(f̄); these spaces are represented
in the following figure.
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B f⊔ X M(f̄)

M(f) ∪ XM(f)

q

j ′

B

A

B

X A

X A

BB

X

Fig. 7.8

By 4.6.1 M(f) ∪ X is a subspace of M(f̄)—we write j ′ for the inclusion
map. Let q : M(f̄) → B f⊔ X be the standard deformation retraction. It
turns out that if (X,A) is cofibred then qj ′ is a homotopy equivalence, and
therefore, in this case, B f⊔ X can be replaced by M(f) ∪ X. The gluing
theorem 7.4.3 may then be conveniently applied to the union M(f) ∪ X.

7.5.4 If (X,A) is cofibred, then

p = qj ′ :M(f) ∪ X→ B f⊔ X

is a homotopy equivalence relB.

Proof We know q is a homotopy equivalence relB. It follows from 7.2.8
(Corollary 2) that X× 1 ∪A× I is a deformation retract of X× I. By 7.5.2
with A,D,X replaced by A× 1, X× 1∪A× I, X× I respectively (and with
X× 1 identified with X), M(f)∪X is a deformation retract of M(f̄). Thus j ′

also is a homotopy equivalence relB. 2

As a simple example of the previous result, let X = S2, let A consist of
the North and South Poles of S2, and let B consist of a single point. Then the
adjunction space B f⊔ X is simply S2 with North and South Poles identified.
On the other hand, M(f) ∪ X is homeomorphic to S2 with an arc C joining
the North to the South Pole. 7.5.4 shows that the map M(f) ∪ X→ B f⊔ X
which shrinks C to a point is a homotopy equivalence.
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B f⊔ X M(f) ∪ X
Fig. 7.9

The preceding result is false without some assumptions on the pair
(X,A) [cf. the Example on p. 284].

We now show that the homotopy type of M(f) ∪ X depends only on the
homotopy class of f.

Suppose that ft : f0 ≃ f1 is a homotopy of maps A→ B. Let

F :M(f0) ∪ X→M(f1) ∪ X

be the identity on B and on X, and on the part A × ]0, 1] of the mapping
cylinder be given by

F(a, t) =

{
f2ta, 0 < t 6 1

2

(a, 2t− 1), 1
2
6 t 6 1

(where (a, 1) is identified with a). The map F is illustrated for the case
X = A = {a} in Fig. 7.8 which amalgamates the pictures of M(f0), M(f1).
The proof of the continuity of F is left as an exercise.

a

a

f0a f1a
B

Fig. 7.10

7.5.5 The above map F is a homotopy equivalence rel(B ∪ X).

Proof Let G = F | M(f0),M(f1), and let iε : B → M(fε) (ε = 0, 1) be the
inclusion. Since G is the identity on B, Gi0 = i1. Since i0, i1 are homotopy
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equivalences, so also is G. Since G | B ∪ A, B ∪ A is the identity, and
(M(fε),B∪A) is cofibred, G is actually a homotopy equivalence rel(B∪A)
[7.2.8 (Corollary 1)]. Since F is the identity on X, it follows that F is a
homotopy equivalence rel(B ∪ X). 2

7.5.5 (Corollary 1) If (X,A) is cofibred and f0 ≃ f1 : A → B, then there is a

homotopy equivalence

B f0⊔ X→ B f1⊔ X relB.

Proof This follows from 7.5.5 and 7.5.4. 2

As a simple application of this fact, note that if B is path-connected then
B f⊔ E1 (where f : S0 → B) is always of the homotopy type of B∨ S1.

We now show the dependence of the homotopy type of B f⊔ X on the ho-
motopy types of B and of the map i : A→ X. Suppose given a commutative
diagram of maps

A
f //

ϕ0

��?
??

??
??

?

i

��

B

ϕ2

  @
@@

@@
@@

@

ī
��

C

j

��

g // D

j̄

��

X
f̄

//

ϕ1
��?

??
??

??
? Q

ϕ

��?
??

??
??

?

Y
ḡ

// R

(7.5.6)

where i and j are inclusions of closed subspaces.

7.5.7 (Gluing theorem for adjunction spaces) Suppose i and j are closed

cofibrations and the front and back squares of (7.5.6) are pushouts, deter-
mining Q and R as adjunction spaces

Q = B f⊔ X, R = D g⊔ Y.

Suppose that ϕ0, ϕ1, and ϕ2 are homotopy equivalences. Then the map

ϕ : B f⊔ X→ D g⊔ Y

determined by ϕ0,ϕ1,ϕ2 is a homotopy equivalence.
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Proof The main point of the proof is to replace the adjunction spaces Q =

B f⊔ X, R = D g⊔ Y by the corresponding homotopy pushoutsQ ′ =M(f)∪X,
R ′ =M(g) ∪ Y. The diagram (7.5.6) determines a map ψ : Q ′ → R ′ which
agrees with ϕ1 on X, with ϕ2 on B, and with ϕ0 × 1 on A× ]0, 1[. There is
a commutative diagram

M(f)
ψ2

//

q

��

M(g)

q ′

��
B

ϕ2
// D

in which ψ2 is the restriction of ψ and the vertical maps are the standard
deformation retractions. Since ϕ2, q and q ′ are homotopy equivalences, it
follows that ψ2 is a homotopy equivalence.

We now apply the gluing theorem 7.4.3 with

X0 = A, X1 =M(f), X2 = B,

Y0 = C, Y1 =M(g), Y2 = D

to the map ψ. The cofibration and homotopy equivalence conditions for
7.4.3 are satisfied. It follows that ψ is a homotopy equivalence.

However the following diagram is commutative:

M(f) ∪ X ψ //

p

��

M(g) ∪ Y

p ′

��
B f⊔ X ϕ // D g⊔ Y

where the vertical maps are the homotopy equivalences of 7.5.4. Since also
ψ is a homotopy equivalence, it follows that ϕ is a homotopy equivalence.

2

7.5.7 (Corollary 1) Let (ϕ0,ϕ1) : i → j be a homotopy equivalence of maps

where i : A → X and j : C → Y are closed cofibrations. Let g : C → D be a

map. Then the induced map

ϕ : D gϕ0⊔ X→ D g⊔ Y
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determined by (ϕ0,ϕ1) is a homotopy equivalence.

Proof This is the case B = D, ϕ2 = 1 of 7.5.7. 2

7.5.7 (Corollary 2) Let i : A→ X be a closed cofibration and let f : A→ B be

a homotopy equivalence. Then the induced map

f̄ : X→ B f⊔ X

is a homotopy equivalence.

Proof This is the following special case of 7.5.7:

A
1 //

1
��@

@@
@@

@@
@

i

��

A

f

  A
AA

AA
AA

A

i
��

A

i

��

f // B

ī

��

X
1

//

1 ��?
??

??
??

? X
f̄

  @
@@

@@
@@

@

X
f̄

// Q.

Since f and the identity maps A → A and X → X are homotopy equiva-
lences, it follows that f̄ is a homotopy equivalence. 2

7.5.7 (Corollary 3) If i : A → X is a closed cofibration and A is contractible,

then the identification map p : X→ X/A is a homotopy equivalence.

Proof This is the case of the previous corollary when B consists of a single
point. 2

This last corollary has the following simple proof. Let Ft : A → A be
a homotopy such that F0 = 1 and F1 is constant. Let i : A → X be the
inclusion. Then iFt extends to a homotopy Gt : X → X such that G0 = 1

and G1[A] is a single point of A. Therefore, G1 defines a map g : X/A→ X

such that gp = G1—whence gp ≃ 1X. Also, since Gt[A] ⊆ A, Gt defines
a homotopy Ht : X/A → X/A such that H1p = pGt. Here H0 = 1X/A and
H1p = pG1 = pgp, whence H1 = pg. This proves that g is a homotopy
inverse of p.

Similar proofs can be given for some other cases of 7.5.7 (Corollary 2)
(this remark is useful in the solution of Exercise 8).
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7.5.7 (Corollary 2) is often useful when combined with 4.5.8 as follows.
Suppose given a Hausdorff space Q, a closed subspace B of Q and a closed
subspace A of the compact space X. Let h : X → Q be a map such that
h[A] ⊆ B and h | X \A,Q \ B is defined and is a bijection. Let f = h | A,B.
Finally, let (X,A) be cofibred.

7.5.8 Under these conditions, if f : A → B is a homotopy equivalence, then

so also is h : X→ Q.

Proof By 4.5.8 there is a homeomorphism g : B f⊔ X → Q such that
gf̄ = h. By 7.5.7 (Corollary 2) f̄ is a homotopy equivalence. Therefore h is
a homotopy equivalence. 2

The previous results are false without some conditions on the pair
(X,A).

EXAMPLE

1. Consider the subspaces of R

Y = {0} ∪
⋃

n>1

[
1

2n
,

1

2n− 1

]
, B = {0, 1}∪

⋃

n>1

[
1

2n+ 1
,
1

2n

]
.

Let i : L→ B be the inclusion, let f = q :M(i)→ B, A =M(i), X = A ∪ Y.
Then B f⊔ X ∼= B i⊔ Y ∼= I. But X is not path-connected (draw the picture
and compare with Example 2, p. 74). So f̄ is not a homotopy equivalence
even though f is.

We now give some applications of the preceding results, first of all using
only 7.5.5 (Corollary 1).

(i) (ii) (iii)

a

a a a

a

a

a

Fig. 7.11

The dunce’s hat is obtained from a triangle by identifying the sides ac-
cording to the pattern shown in the above figure. Two steps in the iden-
tification are shown; the final step is the identification of the two thickly
drawn circles in (iii). The following, somewhat intuitive, discussion shows
that the dunce’s hat is contractible.
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We can think of the dunce’s hat as a adjunction space S1 f⊔ ∆2 where
f : ∆̇2 → S1 is determined by the identification shown in (i). In fact,
regarding each side a of ∆2 as a map of a line segment onto S1, we can
write

f = a+ a− a.

It is clear that f is homotopic to the obvious homeomorphism g : ∆̇2 → S1.
But S1 g⊔ ∆2 is homeomorphic to E2. By 7.5.5 (Corollary 1), the dunce’s
hat is of the homotopy type of E2 and so is contractible.

Our next applications are to joins and smash products. For the remain-
der of this section all spaces will be assumed pointed, compact, and Hausdorff.

The base points of X, Y are to be x0,y0 respectively. The base point of X ∗ Y
will then be e = 1

2
x0 +

1
2
y0; the base point of SX will be the top vertex v1

(i.e., the set X×1). We will also identify X∨Y with the space obtained from
X⊔ Y by identifying the base point of X with that of Y. In CZ we identify Z
with the subspaceZ× 1 by the map z 7→ (z, 1).

7.5.9 There is a homotopy equivalence

S(X× Y)→ (X ∗ Y)∨ SX∨ SY.

Proof

C−

D

C+

ν1

ν0

S(X × Y) Z = X ∗ Y ∪CX ∪ CY

α

X

Y

e

Fig. 7.12

The points of S(X×Y) we write as (z, t) for z in X×Y and t in I, so that
(z, 0) = v0, (z, 1) = v1, for any z in X × Y. Let C−, C+, D be respectively
the set of points (z, t) such that t > 3

4
, t 6 1

4
, 1

4
6 t 6 3

4
. Obviously, we

have a homeomorphism from S(X× Y) to

W = (X× Y × I) ∪ C(X × Y × 0) ∪ C(X× Y × 1)

in which, C−, C+, D are mapped to C(X×Y×1), C(X×Y×0) and X×Y×I
respectively. So we now replace S(X× Y) by W.
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Consider the maps

p : C(X× Y × 0)→ CX p ′ : C(X× Y × 1)→ CY

(x,y, 0, t) 7→ (x, t), (x,y, 1, t) 7→ (y, t),
q : X× Y × I→ X ∗ Y

(x,y, s) 7→ (1− s)x + sy.

Clearly p,p ′ agree with q on X× Y× İ; therefore, these maps define a map

α :W → Z = X ∗ Y ∪ CX ∪ CY.

Now p,p ′ are homotopy equivalences, since they each are maps from a
contractible space to a contractible space. By 7.5.8 α is a homotopy equiv-
alence (in 7.5.8 take X = W, A = C(X × Y × 0) ∪ C(X × Y × 1); the
fact that (X,A) is cofibred is an easy consequence of results of section
7.3). We complete the proof by showing that Z is of the homotopy type
of (X ∗ Y)∨ SX∨ SY.

The inclusion t : X → X ∗ Y is homotopic to the constant map c with
value y0, since a homotopy i ≃ c is given by

(x, t) 7→ (1− t)x + ty0

(in Fig. 7.12, the shaded face of X ∗ Y is homeomorphic to CX, and this
homotopy is simply sliding X up the cone). Also, c itself is homotopic
to the constant map with value e (such a homotopy is given by (x, t) 7→
(1 − t)y0 + te). Since i is the attaching map of the cone CX and CX/X is
homeomorphic to SX, it follows from 7.5.5 (Corollary 1) that Z is of the
homotopy type of

((X ∗ Y)∨ SX) ∪ CY.
A similar argument shows that this space is of the homotopy type of (X ∗
Y)∨ SX∨ SY. 2

A pointed space X is called well-pointed if (X, {x0}) is cofibred. We recall
that all spaces are assumed compact and Hausdorff.

7.5.10 There is an identification map

X ∗ Y → Σ(X |||
|

Y)

which is a homotopy equivalence if X and Y are well-pointed.

Proof We proved in chapter 5 that Σ(X |||
|

Y) is homeomorphic to an identi-
fication space (X ∗ Y)/R. Thus, to complete the proof we have only to show
that if X, Y are well-pointed then R is contractible and (X ∗Y,R) is cofibred.
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X

y0

L

x0

Y

R

Fig. 7.13

Let L be the subspace of R of points rx0+sy0. Then R is the union of two
cones with a common ‘generator’ L. The inclusion L → CX is a homotopy
equivalence, since both L and CX are contractible. Also (X × I,X × 0 ∪
x0 × I) is cofibred by 7.3.8 and hence so also does (CX,Cx0) = (CX, L).
By 7.2.8 (Corollary 1) L is a deformation retract of CX. Similarly, L is a
deformation retract of CY and it follows that L is a deformation retract of
R. Therefore, R is contractible, since L is contractible.

Let J : X× Y × ∆1 → X ∗ Y be the identification map of 5.7.2 (Corollary
1). Then

J−1[R] = x0 × Y × ∆1 ∪ X× y0 × ∆1 ∪ X× Y × ∆̇1.

Now 7.3.7 applied to the product of the three pairs (X, x0), (Y,y0) and
(∆1,∆1) show that (X×Y×∆1, J−1[R]) is cofibred. Since J is an identification
map, it follows that (X ∗ Y,R) is cofibred, and the proof is complete. 2

7.5.11 If X is well-pointed then the identification map

SX→ ΣX = SX/Sx0

is a homotopy equivalence.

Proof By an argument similar to that in 7.5.10 the pair (SX, Sx0) is cofi-
bred. Since Sx0 is contractible, the result follows. 2

7.5.12 If X and Y are well-pointed then there is a homotopy equivalence

Σ(X× Y)→ Σ(X |||
|

Y)∨ ΣX∨ ΣY.

Proof As base point of X × Y we take (x0,y0) where x0,y0 are the base
points of X, Y respectively. By 7.3.2, X× Y is well-pointed and so Σ(X × Y)
is of the same homotopy type as S(X× Y). Similarly, we have a map

(X ∗ Y)∨ SX∨ SY → Σ(X |||
|

Y)∨ ΣX∨ ΣY



302 [7.5] TOPOLOGY AND GROUPOIDS

which is a homotopy equivalence on each ‘summand’ of the wedge. By two
applications of the gluing theorem 7.4.3, this map is a homotopy equiva-
lence (we leave the reader to verify the necessary cofibration conditions).
The result now follows from 7.5.9. 2

7.5.12 (Corollary 1) There is a homotopy equivalence

Σ(Sm × Sn)→ Sm+n+1 ∨ Sm+1 ∨ Sn+1.

Proof This is the case X = Sm, Y = Sn of 7.5.12. 2

EXERCISES

1. Let X,Y,Z be spaces and h : X → Z a map. (i) Let f : X → Y be a map; prove

that there is a map g : Y → Z such that gf ≃ h if and only if h extends over M(f).

(ii) Let g : Y → Z; prove that there is a map f : X → Y such that gf ≃ h if and

only if jh : X → M(g) is deformable into Y (where j : Z → M(g) is the inclusion).

Interpret these statements in the case X = Z, h = 1.

2. Let L have base point 0, and let CL have the same base point as L. Prove that

CL ∨ CL is not contractible. [Let Z = CL ∨ CL and let v1, v−1 be the vertices of

the two cones of Z. Let Ft be a homotopy Z → Z such that F0 = 1, F1 is constant.

Without loss of generality it may be assumed that Ft0 takes the values v1, v−1. Let

αε = inf{t : Ft(0) = vε} for ε = 1,−1. Show that either assumption α1 < α−1,

α−1 < α1 leads to a contradiction.]

3. (i) Let f : L → L× CL be the map x 7→ (x, 0). Prove that f̄ : I → (L × CL) f⊔ I
is not a homotopy equivalence. (ii) Prove that if e ∈ Sn, then Sn/(Sn \ {e}) is

contractible.

4. Prove that if X,Y are compact and Hausdorff then there is a homotopy equiva-

lence

SX× Y/v1 × Y → (X ∗ Y)∨ SX.
Deduce that if, further, X, Y are well-pointed, then there is a homotopy equivalence

ΣX× Y/ ·×Y → Σ(X |||
|

Y)∨ ΣX.

5. Let X1, . . . ,Xn be compact, Hausdorff, well-pointed spaces. For any non-empty

subset N of {1, . . . ,n} let Zn denote the smash product of the spaces Xi for i in N.

Prove that there is a homotopy equivalence from Σ(X1 × · · · × Xn) to the wedge of

the spaces ΣZN for all non-empty subsets N of {1, . . . ,n}.

6. Let A be a set of m points in Sn (n > 1). Prove that Sn/A has the homotopy

type of the wedge of Sn with (m− 1) circles.

7. Let A be a closed subspace of X. Prove that the following conditions are equiv-

alent: (i) There is a map v : X → I and a homotopy ψt : 1X ≃ ψ1 relA such that

v[A] = {0}, and for all x ∈ X, vx < 1 implies ψ1x ∈ A. (ii) There is a neighbourhood

V of A in X, a map u : X→ I such that u[X \ V] = {1} and u[A] = {0}, and a homo-

topy ϕt : V → X relA such that ϕ0 is the inclusion V → X and ϕ1[V] ⊆ A. [If these

equivalent conditions hold, we say A is a WNDR (weak neighbourhood deformation

retract) of X.]
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8. Let i : A → X be the inclusion of the closed subspace A of X and let A be

identified as usual with the subspace A × 1 of M(i). Let p : M(i) → X be the

projection. Prove that the following conditions are equivalent: (i) A is a WNDR of

X, (ii) there is a homotopy ht :M(i)→M(i) of the identity relA such that

h1[A× I] ⊆ A, ht[a× I] ⊆ a× I, a ∈ A,

(iii) p :M(i)→ X is a homotopy equivalence relA, (iv) there is a homotopy equiv-

alence M(i)→ X relA, (v) (X,A) has the WHEP. [cf. [Pup67].]

9. Consider the following properties of a pair (X,A), which we label as the rather,

very and completely WHEP. (RWHEP) If f : X → Y is a map and Ut : A → Y is a

homotopy of f | A, then Ut is homotopic rel end maps to a homotopy which extends

to a homotopy of f. (VWHEP) If f : X → Y is a map, u = f | A and u ≃ v, then

some homotopy u ≃ v extends to a homotopy of f. (CWHEP) If u, v : A → Y are

maps and u ≃ v, then u extends over X if and only if v extends over X. Prove that

WHEP ⇒ RWHEP⇒ VWHEP ⇒ CWHEP. Prove also that CWHEP is not a property

invariant under homotopy equivalence of pairs.

10. Show that 7.5.7 (Corollary 3) is true if (X,A) satisfies only the VWHEP.

11. Let f : (X,A) → (Y,B) have homotopy inverse g such that fg ≃ 1 relB. Prove

that if (Y,B) has the VWHEP, then so also does (X,A).

12. Let (X,A), (Y,B) have the WHEP, and let Z = (X × Y)/(X × B ∪ A × Y), with

the usual base point. Prove that (Z, ·) has the WHEP.

13. If f : X → Y is a map, then there is an inclusion map f ′ : Y → C(f) where C(f)

is the mapping cone [Example 5 of Section 4.5]. The following sequence of maps

X
f−→ Y

f′−→ C(f)
f′′−→ C(f ′)

f′′′−→ C(f ′′) −→ · · · f
(n)

−→ C(f(n−1))

is called the (unpointed, or free) Puppe sequence; here f(n) is defined inductively by

f(n) = (f(n−1)) ′. Prove that there is a diagram, commutative up to homotopy

C(f ′)
f ′′′ //

g

��

C(f ′′)

g ′

��
SX

Sf
// SY

in which g,g ′ are homotopy equivalences.

14. Prove a result similar to that of the previous exercise for the pointed case, in

which C is replaced by Γ and S by Σ.

15. A sequence A1
a1←− A2

a2←− A3 ←− · · · of pointed sets and pointed functions is

called exact if for each i > 2, Imai = a
−1
i−1[·]. A sequence X1

f1−→ X2
f2−→ X3 −→ · · ·

of pointed maps of pointed spaces is called exact if the induced sequence of sets

[X1,Z]·
f∗1←− [X2,Z]·

f∗2←− [X3,Z]· ←− · · ·
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is exact for any pointed space—here the base point of [Xn,Z]· is the class of the

constant map and f∗i is cls g 7→ cls gfi. Prove that the (pointed) Puppe sequence is

exact. Deduce that for any pointed map f : X→ Y there is an exact sequence

X
f−→ Y

f′−→ Γ(f) −→ ΣX
Σf−→ ΣY

Σf′−→ ΣΓ(f) −→ · · · .

Prove further that if X is a closed subspace of Y, f : X→ Y is the inclusion and (Y,X)

is cofibred, then there is an exact sequence

X
f−→ Y

p−→ Y/X −→ ΣX
Σf−→ ΣY −→ Σ(Y/X) −→ · · · .

16. Compare the last sequence with the sequence of sets in the proof of 7.2.12.

17. Let i : X → Y be the inclusion of the closed subspace X of Y. Let (Y,X) be a

pointed pair cofibred. We say X is retractile in Y if Σi : ΣX→ ΣY has a left-homotopy

inverse. Prove that the following conditions are equivalent: (i) X is retractile in Y,

(ii) ΣX is a retract of ΣY, (iii) for each Z the following sequence is exact

0→ [Σ(Y/X),Z]·
p∗

−→ [ΣY,Z]·
i∗−→ [ΣX,Z]· → 0

where 0 denotes a trivial group [cf. [Jam84]].

18. Prove that if X,Y are well-pointed, then X∨ Y is retractile in X× Y.

19. Let f : X → Y be a pointed map. Prove that Y is retractile in Γ(f) if and only if

Σf is inessential.

20. Let X,Y be well-pointed, compact, and Hausdorff. The homotopy equivalences

X ∗Y → Σ(X |||
|

Y), SX→ ΣX, SY → ΣY and the Whitehead product map w : X ∗Y →
SX ∨ SY determine a Whitehead product map w ′ : Σ(X |||

|

Y) → ΣX ∨ ΣY uniquely

up to homotopy. Prove that Σw ′ is inessential [cf. [Ark62]].

21. Let X, Y be well-pointed, and let Z = ΣX ∨ ΣY. Let ρ1 : Σ(X × Y) → Z be

i1(Σp1) where p1 : X × Y → X is the projection and i1 : ΣX → Z is the inclusion.

Let ρ2 : Σ(X × Y) → Z be defined similarly as i2(Σp2). Prove that the following

sequence

0→ [Σ(X |||
|

Y),Z]·
p∗

−→ [Σ(X× Y),Z]· i∗−→ [Z,Z]· → 0

is exact, and that if w ′ is defined as in the previous exercise then

p∗(clsw ′) = −σ2 − σ1 + σ2 + σ1 where σi = cls ρi.

7.6 The cellular approximation theorem

As motivation for the work of this section we consider the following ques-
tion: suppose X, B are cell complexes, A is a subcomplex of X and f : A→
B is a map; is then B f⊔ X of the homotopy type of a cell complex? We
know that B f⊔ X is a cell complex if f is a cellular map. Also we know
that the homotopy type of B f⊔ X depends only on the homotopy class
of f (by 7.5.5 (Corollary 1) and since (X,A) is cofibred). Our question
is thus answered by the cellular approximation theorem, a special case of
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which asserts that any map f : A → B is homotopic to a cellular map. The
word approximation here is used in a rough sense only—we will not be
concerned with questions of metrics nor with a real number ε > 0.

The main technical work is in the following result; the elegant formula-
tion of the proof is due to J. F. Adams.

7.6.1 The following statements are true for each n > 1.

α(n) Any map Sr → Sn with r < n is inessential.

β(n) Any map Sr → Sn with r < n extends over Er+1.

γ(n) Let B be path-connected and let Q be formed by attaching a finite
number of n-cells to B. Then any map

(Er, Sr−1)→ (Q,B)

with r < n is deformable into B.

The proof is by induction by means of the implications

γ(n)⇒ α(n)⇔ β(n)⇒ γ(n+ 1)

the only difficult step being the proof of β(n)⇒ γ(n + 1). The start of the
induction—the proof of γ(1)—is easy; in fact, since E0 consists of a single
point and S−1 is the empty set, γ(1) is equivalent to the statement that Q
is path-connected, and this is a special case of 4.6.3.

Proof of γ(n)⇒ α(n)

Let f : Sr → Sn be a map such that r < n. Let p : Er → Sr be an
identification map which shrinks the boundary Sr−1 of Er to a point x of
Sr, and let e0 = {fx}. Then Sn has a cell structure

Sn = e0 ∪ en

and so fp : Er → Sn defines a map

g : (Er, Sr−1)→ (e0 ∪ en, e0).

The hypothesis γ(n) implies that g is deformable into e0. By 7.4.2 g is
deformable into e0 relSr−1. Throughout this homotopy Sr−1 is mapped to
the point fx, and so, by Remark 7.3.6, this homotopy defines a homotopy
f ≃ f ′ : Sr → Sn rel{x} such that f ′ is constant. Thus f is inessential. 2

Proof of α(n)⇔ β(n)

The proof depends on the fact that there is a homeomorphism Er+1 → CSr

which is the identity on Sr (where Sr is identified with the subset Sr × 1 of
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CSr). Let p : Sr × I → CSr be the identification map and let g : Sr → X
denote a constant map.

A homotopy g ≃ f : Sr → X is a map Sr × I → X which is (x, 0) 7→ gx

on Sr × 0 and (x, 1) 7→ fx on Sr × 1. Since g is constant, such a homotopy
defines an extension CSr → X of f. Conversely, if f : Sr → X is a map and
F : CSr → X is an extension of f, then the composite Fp is a homotopy g ≃ f
such that g is constant. 2

Proof of β(n)⇒ γ(n+ 1)

Let İr denote the boundary of the r-cube Ir, that is, the set of points x of Ir

which have at least one coordinate with a value 0 or 1. The pairs (Er, Sr−1)

and (Ir, İr) are homeomorphic and so we can assume β(n) in the form that
any map İr+1 → Sn with r < n extends over Ir+1. Further, since (Ir+1, İr+1)

is cofibred, we can by (7.2.7) assume that this is true not only for Sn but
also for any space of the homotopy type of Sn.

We assume that

Q = B k1
⊔ En+1

k2
⊔ En+1 · · · km

⊔ En+1.

Let ki : En+1 → Q be the usual extension of ki : Sn → B. We use these
maps to define an open cover of Q.

Let Ui be the image under ki of the set {x ∈ En+1 : |x| < 2
3
}, and

let U ′
i be the image under ki of the set {x ∈ En+1 : |x| > 1

3
}. Let U =

B ∪U ′
1 ∪ · · · ∪U ′

m. Then Ui and U are open in Q and we set

U = {U,U1, . . . ,Um}.

Notice that U ∩ Ui is homeomorphic to the space of points x in En+1 such
that 1

3
< |x| < 2

3
, and this space is homeomorphic to Sn × ] 1

3
, 2
3
[. Hence

U ∩Ui is of the homotopy type of Sn, and so we have
(*): β(n) can be applied for maps into U ∩Ui rather than Sn.

U ′
i Ui U ∩Ui

Fig. 7.14

Suppose now we are given a map

f : (Ir, İr)→ (Q,B)
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where r < n+ 1. We must prove that f is deformable into B.
By means of hyperplanes in Rr with equations of the the form

xj = s/N, s = 1, . . . ,N− 1, j = 1, . . . , r

we may subdivide Ir into cubes of diameter 6
√
r/N. By the Lebesgue

covering lemma, N may be chosen so large that each such cube is mapped
by f into some set of U.

Let A be the union of all cubes J of all dimensions in this subdivision
such that f[J] ⊆ U. Let Kq be the union of all cubes J of dimension 6 q
(so that K−1 = ∅, K0 consists of isolated points, and Kr = Ir), and let
Kq = Kq ∪A.

A

f−1[U]

Fig. 7.15

We construct maps gq : Kq → Q by induction on q so that the following
conditions are fulfilled:
1q) gq agrees with f on A, and gq | Kq−1 = gq−1,
2q) if x ∈ Kq and fx ∈ Ui then gqx ∈ U ∩Ui.
To start the induction we define g−1 to be f | A—clearly conditions 1−1)

and 2−1) are satisfied. Suppose gq has been defined and satisfies 1q) and
2q); we extend gq over Kq+1.

Let Jq+1 be a (q + 1)-cube of Kq+1 which is not contained in A. Then
for some unique i, f[Jq+1] ⊆ Ui and it follows from 2q) that

gq[J̇
q+1] ⊆ U ∩Ui.

But q + 1 6 r < n + 1, whence q < n. By (*) above, gq extends to a map
Jq+1 → U∩Ui, and we define gq+1 : Kq+1 → Q to agree on Jq+1 with this
map. Clearly, conditions 1q+1) and 2q+1) are satisfied, so the induction is
complete.

Let g = gr : Ir → Q. We prove that f ≃ g.
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The map ki : En+1 → Q maps the set of points x with |x| < 2
3

bijectively
onto Ui: we suppose there is given a linear structure on Ui by means of
this bijection. We then define a homotopy ht : Ir → Q by

htx =

{
fx, fx ∈ no Ui

(1− t)fx+ tgx, fx ∈ some Ui.

Each r-cube Jr in the given subdivision of Ir is mapped by f into U or into
some Ui; thus the formula for ht shows that ht is continuous on Jr. Since
there cubes from a cover of Ir by closed subsets, this implies the continuity
of ht, as a function Ir × I→ Q.

Clearly h0 = f. We prove that h1 = g.
Suppose J is an r-cube of the subdivision and x ∈ J. If fx belongs to

some Ui, then the formula for h1 shows that h1x = gx. Suppose fx belongs
to no Ui (in which case h1x = fx). Then f[J] is contained in no Ui and so
f[J] ⊆ U. Hence x ∈ A and so h1x = fx = gx.

Since İr ⊆ A the homotopy ht is rel İr; hence ht defines a homotopy
f ≃ g where g : (Ir, İr)→ (Q,B) is the map defined by g.

Finally, Img ⊆ U and B is a deformation retract of U. Therefore, g is
deformable into B [cf. Exercise 2 of Section 7.4]. 2

The cellular approximation theorem itself is a consequence of the fol-
lowing deformation theorem. (We recall now that the r-skeleton of a cell
complex K is written Kr.)

7.6.2 Let L be a space and (Lr)r>0 a sequence of subspaces of L such that for

all r > 0

(a) Lr ⊆ Lr+1,

(b) any map (Er+1, Sr)→ (L, Lr) is deformable into Lr+1.

Let K be a cell complex, A a subcomplex of K and f : K→ L a map such that

f[Ar] ⊆ Lr, r = 0, 1, . . . .

Then f is homotopic relA to a map g : K→ L such that

g[Kr] ⊆ Lr, r = 0, 1, . . . .

Proof Let Kr = A ∪ Kr. We construct a sequence of maps fr : K → L and
homotopies fr−1 ≃ fr such that
1r), f

r[Ks] ⊆ Ls, 0 6 s 6 r,
2r), f

r agrees with fr−1 on Kr−1,
3r), f

r−1 ≃ fr relKr−1.
The induction is started with f−1 = f when the above conditions are vacu-
ously satisfied.
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By condition (b) any map (Er+1, Sr) → (L, Lr) is deformable into
Lr+1 rel Sr. It follows easily, using Remark 7.3.6, that if er+1 is any (r+ 1)-
cell of K \ A then fr | Kr ∪ er+1 is deformable into Lr+1 relKr. By ap-
plying this to each (r + 1)-cell of K \ A in turn we obtain a homotopy
fr | Kr+1 ≃ f ′ relKr such that f[Kr+1] ⊆ Lr+1. Since (K,Kr+1) is cofibred
this homotopy extends to a homotopy fr ≃ fr+1 relKr. Clearly, fr+1 satis-
fies 1r+1), 2r+1), 3r+1).

Since K = KN for some N, the map g = fN is the required map. 2

7.6.2 (Corollary 1) (the cellular approximation theorem). Let K, L be com-

plexes and A a subcomplex of K. If f : K → L is a map such that f | A is

cellular, then f is homotopic relA to a cellular map.

Proof This follows from 7.6.1 γ(n) and 7.6.2 with Lr = L
r. 2

EXERCISES

1. Let L0 be a subcomplex of L such that for all r > 0 any map (Er+1, Sr)→ (L, L0)

is deformable into L0. Prove that L0 is a deformation retract of L.

2. Let f0, f1 : K → L be cellular maps and A a subcomplex of K. Suppose that

F : f0 ≃ f1 is a homotopy such that for all t ∈ I, Ft[Ar] ⊆ Lr+1, r = 0, 1, . . .. Prove

that F is homotopic relA× I∪K× İ to a homotopy G : f0 ≃ f1 such that for all t ∈ I,
Gt[K

r] ⊂ Lr+1, r = 0, 1, . . ..

3. Let i : K2 → K be the inclusion of the 2-skeleton of the cell complex K. Prove

that for any subset A of K2, i induces an isomorphism πK2A→ πKA.

4. Prove that Sn is simply connected for n > 1. Prove also that for any point x of

Sn the ith homotopy group πi(Sn,x) [cf. Section 7.1] is 0 for i < n.

5. Prove the cellular approximation theorem for (infinite) CW-complexes.

6. Let K be a connected subcomplex of the complex L. Let j : K→ L be the inclusion

and let x ∈ K0, e ∈ Sr. Prove that any map (Er+1, Sr) → (L,K) is homotopic to a

map h such that he = x.

7. Continuing the notation of the previous exercise, suppose that j∗ : πr(K, x) →
πr(L, x) is injective. Let h : (Er+1, Sr) → (L,K) be a map such that he = x. Prove

that h1 : Sr → K is inessential rel e, and hence show that h is homotopic rel e to a

map k such that k[Sr] = {x}.

8. Suppose further to the previous exercise, that j∗ : πr+1(K, x) → πr+1(L, x) is

surjective. Prove that h is deformable into K.

9. Let j : K → L be the inclusion map of the subcomplex K of L. Let K, L be

connected, and suppose j∗ : πr(K, x) → πr(L,x) is an isomorphism for all r > 1

(where x ∈ K0). Prove that K is a deformation retract of L.

10. Let f : K → K ′ be a map of connected complexes such that f∗ : πr(K, x) →
πr(K

′, fx) is an isomorphism for all r > 1 (where x ∈ K0). Prove that f is a homo-

topy equivalence.
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NOTES

The notion of cofibration of spaces has a dual version, that of fibration. For
an account of these, see many books on algebraic topology or homotopy
theory. The notion of fibration of groupoids [Bro73] was borrowed from
the notion of fibration of spaces, using the idea that the groupoid I is for
groupoids a kind of model of the unit interval. Fibrations of spaces and of
groupoids generalise the covering maps of spaces and covering morphisms
of groupoids which will be treated in chapter 10. The notion of action of a
groupoid on sets generalises the notion of action of a group on a set, which
is important in many branches of mathematics.

The way in which the notion of homotopy occurs in different contexts
has lead to a number of abstract homotopy theories (for example [Qui67],
[Kam72a], [Mey84], [Bau88]). These have the usual advantages of ab-
stractions in mathematics, namely of (i) covering several examples at the
same time, (ii) suggesting the possibility of similar methods covering new
examples, and (iii) simplifying proofs, by allowing the concentration on
essential features. In particular, the gluing theorem for homotopy equiva-
lences has been proved in these theories (cf. [Shi84]).

The dual of the gluing theorem is called the cogluing theorem in
[BH70]. It is shown in [Hea70] that the gluing theorem follows from
the cogluing theorem. See [Hea78] for more information on the use of
groupoid methods in homotopy theory.

The papers [Rut72], [Rut74] give further results on joins and homotopy
types.

The notion of double mapping cylinder is an example of a homotopy

pushout. The general theory of constructions (particularly limits and col-
imits) ‘up to homotopy’ is playing an important role in a number of areas
of mathematics, such as the applications of algebraic topology to algebraic
geometry (cf. [BK72], [Vog73], [CP86] for some basic results and ideas
in this area). For other proofs of the gluing lemma, but with different as-
sumptions, see [SW57], [Die71], [Fuc83], [Jam84]. A generalisation of
7.2.8 which includes a result both for fibrations and cofibrations is given in
[Lam80].

Track groups (i.e. the object groups of πYX) were first studied exten-
sively in [Bar55a], [Bar55b], who gave the remarkable calculation that if
X = Y = Sr ∪ er+1, (r > 2), where the cell is attached by a map Sr → Sr of
degree 2, then the group of homotopy classes of pointed maps X→ Y, with
addition given by the representation of X as Σ(Sr−1 ∪ er), is cyclic of order
4. The easier part of this work, showing that the group concerned was an
extension of Z2 by Z2, involved the construction of exact sequences which
were later generalised to the relative case by [SW57], and also given an
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elegant formulation by [Pup58] (cf. Exercise 15 of Section 7.5).
The results of section 7.3 have a long history—see the references in

[Pup58] and the papers of Strøm ([Str66], [Str69], [Str72]).
I am indebted to conversations with D. Grayson on the notation and

style of the revision of this chapter.
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Chapter 8

Some combinatorial

groupoid theory

In this chapter we must build up some of the constructions on groupoids
used to describe in the next chapter various of the groupoids which arise as
πXA (for ‘nice’ spaces X) by application of the van Kampen theorem 6.7.2.

Here we encounter the fact that in the first instance groupoids are more
complicated than groups, so this seems to make for extra difficulties. On
the other hand, we find that we can use one construction on groupoids
to describe several constructions on groups, such as free groups and free
products of groups. The extra ‘spatial component’ to groupoids given by the
objects of a groupoid, allows for constructions on groupoids which model
the geometry, and make clearer the analogies between between the prop-
erties of constructions on spaces and constructions on groupoids.

A key construction on groupoids is to take a groupoid G with object
set X and change the object set X by a function σ : X → Y. We will ob-
tain a new groupoid u∗(G) and a morphism σ : G → σ∗(G) which has a
ϕ-universal property, i.e. we can construct morphisms from σ∗(G). This
construction will turn out to imply the constructions of free groupoids and
of free products of groupoids, and will also usefully model, as we show
in the next chapter, identifications of spaces by changing a discrete well
placed subspace.

A standard example of such an identification is the changing of the unit
interval [0, 1] by identifying 0 and 1. It is not so clear how to do this mod-
elling if you allow only one base point, that is, to consider only groups.

Another construction we need is the analogue of quotient groups by a
normal subgroup. This construction is more interesting than in the case

313



314 [8.1] TOPOLOGY AND GROUPOIDS

of groups, and a generalisation of it will be applied in Chapter 11, Section
11.3, in connection with orbit spaces under the action of a group. The
underlying graph structure of a groupoid allows groupoids better to model
the geometry under consideration than groups alone.

In essence, this chapter sets up some of the basic combinatorial
groupoid theory required for applications.

All these constructions are used in section 9.1 for computing fundamen-
tal groups of adjunction spaces, and then for more geometric applications.

8.1 Universal morphisms

We have seen that groupoids model well the product and sum of topolog-
ical spaces. In this section, we construct what in full could be called ϕ-
universal groupoids with respect to Ob, but which we shall find convenient
to call simply universal groupoids and universal morphisms. The universal
properties developed here are a special case of a more general theory in-
volving what are called opfibrations of categories, which are important in
many areas of mathematics, and which, as discussed in the Notes at the
end of the chapter, tend to have a different terminology from that we use
here.

Certainly the analogy should be borne in mind with the situation for fi-
nal topologies, where the forgetful functor giving the underlying set Top→
Sets is an opfibration. However, in an algebraic category such as that of
groupoids the construction of the universal objects is radically different
from that for spaces.

Let G be a groupoid, X a set and

σ : Ob(G)→ X

a function. We shall construct from G and σ a groupoid U and morphism
σ : G→ U such that (i) Ob(U) = X and (ii) σ is exactly σ on objects.

Our exposition gives the construction first and the universal property
afterwards, although there is a case for taking the opposite order!

The idea of this construction is as follows (we use multiplicative nota-
tion for groupoids throughout most of this chapter). Let a1 ∈ G(x1,y1),
a2 ∈ G(x2,y2). Then a2a1 is defined if and only if y1 = x2; in such a case,
a morphism σ : G→ U will satisfy

σa2σa1 = σ(a2a1).

Suppose, however, that y1 6= x2 but σy1 = σx2. Then σa2σa1 will be
defined in U but will not necessarily be σb for any b. So, in order to
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constructU fromG and σ, we must have a method of constructing elements
such as σa2σa1. This is done by means of ‘words’ in the elements of G.

Let x, x ′ ∈ X. A word of length n (n > 1) from x to x ′ is a sequence

a = (an, . . . ,a1)

of elements of G such that, if ai ∈ G(xi, x ′i), i = 1, . . . ,n, then
(a) x ′i 6= xi+1, i = 1, . . . ,n − 1,
(b) σx ′i = σxi+1, i = 1, . . . ,n − 1,
(c) σx1 = x, σx ′n = x ′,
(d) no ai is the identity.
These conditions ensure that no product ai+1ai is defined in G, but that
σai+1σai will be defined in U.

x1

a1

y1

σ σ

x2

a2

y2

Fig. 8.1

The set of all words from x to x ′ of length > 1 is writtenU(x, x ′); except
that, if x = x ′, we also include in U(x, x) the empty word of length 0 which
we write ( )x (and thus suppose that ( )x 6= ( )y when x 6= y).

We now define by induction on length a multiplication

U(x ′, x ′′)×U(x, x ′)→ U(x, x ′′).

The empty word in U(x, x) is to act as identity; that is, if a ∈ U(x, x ′) then

( )x′a = a,a( )x = a.

Suppose that a is as above and b = (bm, . . . ,b1) ∈ U(x ′, x ′′), where bj ∈
G(yj,y

′
j). We define ba to be, in the various cases:

(bm, . . . ,b1,an, . . . ,a1) if y1 6= x ′n,

(bm, . . . ,b2,b1an,an−1, . . . ,a1) if y1 = x ′n but b1an 6= 1,

(bm, . . . ,b2)(an−1, . . . ,a1) by induction if y1 = x ′n and b1an = 1.
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This can be expressed as: multiply the two words by putting them end to
end, computing in G and cancelling identities where possible.

The definition of multiplication shows that

(an, . . . ,a1)(a
−1
1 , . . . ,a−1

n ) = ( )x′ ,

(a−1
1 , . . . ,a−1

n )(an, . . . ,a1) = ( )x.

Thus each word has a left and right inverse.
We now show that multiplication is associative.

xn

an
x ′
n z1

c1
z ′
1

xn−1

an−1
x ′
n−1 y1

b1
y ′
1 z2

c2
z ′
2

Fig. 8.2

Let c = (cr, . . . , c1) ∈ U(x ′′, x ′′′) where ck ∈ G(zk, z ′k). If b is of length
0 then certainly c(ba) = ca = (cb)a; this is true, similarly, if a or c is of
length 0. Suppose that m = 1; we check the value of c(ba) and (cb)a in
each case that can arise. These values are

(cr, . . . , c1,b1,an, . . . ,a1) if x ′n 6= y1, y ′
1 6= z1,

(cr, . . . , c1,b1an,an−1 . . . ,a1) if y ′
1 6= z1, x ′n = y1, b1an 6= 1,

(cr, . . . , c1b1,an, . . . ,a1) if y ′
1 = z1, c1b1 6= 1, x ′n 6= y1,

(cr, . . . , c1)(an−1, . . . ,a1) if y ′
1 6= z1, b1an = 1,

(cr, . . . , c2)(an, . . . ,a1) if x ′n 6= y1, c1b1 = 1,

(cr, . . . , c1b1an,an−1, . . . ,a1) if y ′
1 = z1, x ′n = y1, c1b1an 6= 1,

(cr, . . . , c2)(an−1, . . . ,a1) if y ′
1 = z1, x ′n = y1, c1b1an = 1.

If m > 1 we proceed by induction. Write b = b ′′b ′ with b ′,b ′′ shorter
than b. Then

c(ba) = c((b ′′b ′)a) = c(b ′′(b ′a)) = (cb ′′)(b ′a)

= ((cb ′′b ′)a = (cb)a

as was to be shown.
So if we take X as the set of objects of U we have proved that U is a

groupoid.
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Notice that if x of x ′, does not belong to Imσ, then U(x, x ′) is either
empty (if x 6= x ′), or contains the identity alone (if x = x ′). Thus U =

U ′ ⊔ U ′′ where U ′ is the full subgroupoid on Imσ and U ′′ is the discrete
groupoid on X \ Imσ.

The groupoid U depends on G and on σ, and we therefore write Uσ(G)

for U.

We define a morphism σ : G → Uσ(G) to be σ on objects and to be
defined for a in G(x1, x

′
1) by

σa =

{
(a), a 6= 1

( )σx1
, x1 = x ′1 and a = 1.

Thus σ is injective on the set of non-identities of G and also maps no non-
identity to an identity. It is immediate from the definition of the multipli-
cation of Uσ(G) that σ is a morphism.

Although the above construction of Uσ(G) gives a good idea of its struc-
ture, the important property of Uσ(G) from a general point of view is that
σ satisfies a ϕ-universal property.

Let us, temporarily, identify the set of objects Ob(G) of a groupoid G
with the wide subgroupoid of G whose elements are all identities: thus we
regard Ob(G) as a subgroupoid ofG. (A reader who dislikes this convention
may instead call this wide subgroupoid Id(G), and replace suitably Ob by
Id in what follows.)

A morphism f : G→ H of groupoids is said to be universal, or simply to
be a universal morphism if the following square:

Ob(G)
Ob(f)

//

i

��

Ob(H)

j

��
G

f
// H

in which the vertical morphisms are inclusions, is a pushout (in the category
of groupoids). A useful restatement of this definition is:

8.1.1 A morphism f : G→ H of groupoids is universal with respect to Ob(f)

if and only if for any morphism g : G → K of groupoids and any function

τ : Ob(H)→ Ob(K) such that

Ob(g) = τOb(f)
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there is a unique morphism g∗ : H → K such that Ob(g∗) = τ and g∗f = g,
as shown in the diagram:

G
f

//

g

**H
g∗

//______ K

Ob(G)
Ob(f)

// Ob(H)
τ

// Ob(K)

Proof Let k be the inclusion Ob(K)→ K. Clearly the function τ : Ob(H)→
Ob(K) and the morphism τ ′ : Ob(H)→ K determine each other by the rule
τ ′ = kτ. The condition Ob(g) = τOb(f) is equivalent to gi = τ ′ Ob(f), and
the condition Ob(g∗) = τ is equivalent to g∗j = τ ′. So the result follows
from the definition of pushouts. 2

From now on we will often abbreviate ‘universal with respect to Ob(f)’
simply to ‘universal’.

The pushout property ensures that if f : G → H is universal, then H is
determined up to isomorphism by Ob(f) and G. On the other hand, given
G and σ : Ob(G) → X, there is a universal morphism f : G → H with
Ob(f) = σ. This is a consequence of:

8.1.2 Let G be a groupoid and σ : Ob(G) → X a function. The morphism

σ : G→ Uσ(G) is universal.

Proof We use 8.1.1. Let g : G → K be a morphism and τ : X → Ob(K) a
function such that Ob(g) = τσ. Let U = Uσ(G).

We wish a morphism g∗ : U → K such that Ob(g∗) = τ. Thus g is
determined on the identities of U by τ. An element of U which is not an
identity is a word

a = (an, . . . ,a1), ai ∈ G(xi, x ′i)

such that σx ′i = σxi+1, i = 1, . . . ,n − 1. If n = 1, then we set

g∗(a1) = ga1;

this is the only definition consistent with g∗σ∗ = g. If n > 1, then

gx ′i = τσx
′
i = τσxi+1 = gxi+1;

therefore we can set

g∗a = gan . . .ga1

= g∗(an) . . .g
∗(a1)
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the product on the right being defined in K. Clearly, this is the only possible
definition of a morphism g∗ consistent with g∗σ = g, Ob(g∗) = τ. To
complete this proof we verify that this g∗ is a morphism.

Suppose a is as above, b is a word (bm, . . . ,b1) where bj ∈ G(yj,y ′
j)

and ba is defined. The equation g∗(ba) = g∗bg∗a is clearly true if m or n
is 0. Suppose it is true for m = p − 1, n = q − 1. Then for m = p, n = q,
referring to the definition of ba, we find that g∗(ba) is

gbm . . .gb1gan . . .ga1 if y1 6= x ′n,

gbm . . .gb2(b1an)gan−1 . . .ga1 if y1 = x ′n, b1an 6= 1,

g∗((bm, . . . ,b2)(an−1, . . . ,a1)) if y1 = x ′n, b1an = 1.

This is the same as g∗bg∗a by the inductive hypothesis and the fact that g
is a morphism. 2

From now on, we identify each non-identity a1 of G with its image (a1)
in Uσ(G).

Let f : G → H be a morphism. We say f is strictly universal if for any
morphism g : G → K such that Ob(g) factors through Ob(f), there is a
unique morphism g∗ : H → K such that g∗f = g (this is the same as the
condition in 8.1.1 except that we drop the requirement that Ob(g∗) = τ).

8.1.3 A morphism f : G → H is strictly universal if and only if f is universal

and Ob(f) is surjective.

Proof Suppose f : G → H is strictly universal. Let σ = Ob(f). The given
universal properties imply that there is an isomorphism f∗ : H → Uσ(G)
such that f∗f = σ, Ob(f∗) = 1 the identity on Ob(H). It follows easily that
the morphism σ : G → Uσ(G) is universal. This implies that σ = Ob(f) is
surjective, for otherwise the condition g∗σ = g does not always determine
g∗ on the identities of Uσ(G) which are not images by σ of identities of G.

Suppose given g : G → K and τ : Ob(H) → Ob(K) such that Ob(g) =

τOb(f). Since f is a universal morphism, there is a unique morphism g∗ :

H → K such that g∗f = g and Ob(g∗) = τ. But the last condition is
redundant, since g∗f = g implies Ob(g∗)Ob(f) = Ob(g) = τOb(f) and so,
since Ob(f) is surjective, that Ob(g∗) = τ. 2

This shows that a strictly universal morphism is analogous to an identi-
fication map of topological spaces.

EXAMPLES

1. Let G be a groupoid and σ the unique function from Ob(G) to a single
point set {x}. ThenUσ(G) is a groupoid with only one object, that is, Uσ(G)
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is a group. This group is called the universal group of G and is written UG.
The morphism σ : G → UG is universal for morphisms from G to groups,
i.e., if g : G → K is a morphism to a group K, then there is a unique
morphism g∗ : UG→ K such that g∗σ = g. By the construction of UG, the
elements of this group are the identity and also all words (an, . . . ,a1) such
that ai ∈ G, no ai is the identity and no ai+1ai is defined in G.
2. In particular, consider the groupoid I with two objects 0, 1 and two non-
identities ı, ı−1 from 0 to 1, and 1 to 0 respectively. A word of length n in
UI is

ı ı . . . ı or ı−1ı−1 . . . ı−1

and these we can write ın and ı−n respectively. Clearly, there is an isomor-
phism UI→ Z which sends ı±n 7→ n.

Notice that the computation of π(S1, 1) in 6.7.5 is now easy—it is im-
mediate from 6.7.4 that there is a universaL morphism I→ π(S1, 1).
3. LetA be a set. A free group onA is a group FA and a function λ : A→ FA

which is universal for functions from A into groups, that is, if µ : A→ G is
any function to a group G then there is a unique morphism µ∗ : FA → G

such that µ∗λ = µ. We prove that a free group on A always exists.

Proof Let A be regarded as a discrete groupoid, let FA be the universal
group of A× I. In the following diagram

A
i //

µ

!!C
CC

CC
CC

CC
CC

CC
C A× I

µ
′

���
�
�
�
�

σ // FA

µ∗

||z
z
z
z
z
z
z

G

i is the function a 7→ (a, ı), σ is the universal morphism and µ is a given
function to a group G. The elements µa of G define uniquely a morphism
µ ′ : A × I → G which sends (a, ı) 7→ µa (so that µ ′i = µ). Since µ ′ is a
morphism to a group, µ ′ defines uniquely µ∗ : FA→ G such that µ∗σ = µ ′.
Hence µ∗σi = µ ′i = µ.

Suppose µ : FA→ G is any morphism such that µσi = µ. Then µσ = µ ′

whence µ = µ∗. This shows that FA with σi : A→ FA is a free group on A.
(We generalise this later to the existence of free groupoids on a graph.) 2

In the above proof, note that each (a, ı) is a non-identity of A × I; so σ
is injective on Im i, whence λ = σi is injective. Let us identify each a in A
with λa, so that (λa)−1 is written a−1 (note that a−1 = σ(a, ı−1)). Then
the non-identity elements of FA are uniquely written as products

aεn
n . . .aε1

1 , ai ∈ A, εi = ±1
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such that for no i is it true that both ai = ai+1 and εi+1 = −εi.
4. Let G,H be groupoids, and let

G
j1−→ K

j2←− H

be morphisms. We say these morphisms present K as the free product of
G and H if the following property is satisfied: if g : G → L, h : H → L
are any morphisms which agree on Ob(G) ∩Ob(H), then there is a unique
morphism k : K → L such that kj1 = g, kj2 = h. We prove that such a free

product always exists.

Proof Let X = Ob(G) ∪Ob(H) and let

σ : Ob(G) ⊔Ob(H)→ X

be the function defined by the two inclusions into X. Note that σ is always
a surjection, and σ is a bijection if and only if Ob(G), Ob(H) are disjoint.

In the following diagram

G
i1 //

j1
""D

DD
DD

DD
DD

DD
DD

D G ⊔H

σ

��

H
i2oo

j2
||zz
zz
zz
zz
zz
zz
zz

K

i1, i2 are the injections of the coproduct, K = Uσ(G ⊔ H) and j1 = σi1,
j2 = σi2. The universal property for j1, j2 is trivial to verify. 2

Notice that the universal property of the free product can also be ex-
pressed by saying that the following square is a pushout

Ob(G) ∩Ob(H)
i2 //

i1

��

H

j2

��
G

j1
// K

where i1, i2 are the inclusions.

The free product of G and H is usually written G ∗H. In particular, let
G, H be groups (supposed to have the same object). Then it is clear that
the injections into the free product G ∗H form a coproduct of groups. If G, H
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have no common elements, then the elements of G ∗H are the identity and
all products

kn . . . k2k1

where (i) each ki belongs to one or other of G, H, (ii) no ki is an identity,
(iii) for no i do ki, ki+1 belong to the same group. (When we write G ∗ H
for groups G, H we will always assume that this is the coproduct of groups
in the above sense.)

The aim of the rest of this section is to determine the universal group of
any connected groupoid. This is useful for the topological applications in
Chapter 9.

8.1.4 The composite of universal morphisms is universal.

Proof This is immediate from the definition and the fact that a composite
of pushouts is a pushout 6.6.5. 2

8.1.4 (Corollary 1) Let G be a groupoid and σ : Ob(G) → X, τ : X → Y

functions. Then UτUσ(G) is isomorphic to Uτσ(G).

Proof This is clear from previous results. 2

8.1.4 (Corollary 2) Let G,H be groupoids. Then the groups

U(G ⊔H), U(G ∗H), UG ∗UH
are all isomorphic.

Proof Let X be a set with one object. Consider the commutative diagram

{x,y}

%%LL
LL

LL
LL

LL
LL

LL
LL

LL
Ob(G) ⊔Ob(H)

σoo

��

τ // Ob(G) ∪Ob(H)

wwnnn
nn
nn
nn
nn
nnn

nn
nn
nn
n

X

in which the downward functions are constant, τ is the inclusion on Ob(G)

and on Ob(H), and σ maps Ob(G) to x and Ob(H) to y (where x 6= y).
Then we obtain a diagram of 0-identification morphisms.

UG ⊔UH

��

G ⊔Hoo //

��

G ∗H

��
UG ∗UH U(G ⊔H) U(G ∗H)
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By 8.1.4 (Corollary 1), all of the bottom groups in this diagram are isomor-
phic. 2

We now show how to determine UG for any connected groupoid G.
First we prove:

8.1.5 Let G be a connected groupoid and T a wide, tree subgroupoid of G.

Then for any object x0 of G, the canonical morphism

G(x0) ∗ T → G

determined by the inclusions, is an isomorphism.

Proof Let ji : G(x0) → G, j2 : T → G be the two inclusions. Each element
a of G(x,y) can be written uniquely as

τya
′τ−1

x

for a ′ ∈ G(x0) and τy, τx ∈ T . Therefore, morphisms f1 : G(x0) → K,
f2 : T → K which agree on x0 define a morphism f : G→ K by

fa = f2(τy)f1(a
′)f2(τ

−1
x )

and f is the only morphism such that fj1 = f1, fj2 = f2. 2

The proof of 8.1.5 shows that the isomorphism G → G(x0) ∗ T is given
by a 7→ τya

′τ−1
x (a ∈ G(x,y)).

8.1.6 If T is a tree groupoid, then UT is a free group. If further T has n

objects, then UT is a free group on (n − 1) elements.

Proof Let x0 be an object of T and for each object x of T let τx be the
unique element of T(x0, x). Let A be the set of these τx for all x 6= x0, and
in the groupoid A × I let ıx, ı

−1
x denote respectively (τx, ı) and its inverse

(τx, ı
−1).

Let f : A × I → T be the morphism which sends ıx 7→ τx, so that
σ = Ob(f) simply identifies all (τx, 0) to x0. In Uσ(A × I) the only non-
identity words are ıx, ı

−1
x , ıyı

−1
x (x 6= y). So the morphism ϕ : Uσ(A× I)→

T which sends ıx 7→ τx, ı−1
x → τ−1

x , ıyı
−1
x 7→ τyτ

−1
x is an isomorphism

such that ϕσ = f. Therefore f is a 0-identification. Hence the composite

A × I
f→ T → UT is strictly universal and so UT is isomorphic to FA, the

free group on A. Finally, if T has n objects, then A has (n − 1) elements.
2

8.1.6 (Corollary 1) If G is a connected groupoid and x0 is an object of G, then

UG is isomorphic to G(x0) ∗ F where F is a free group.

Proof By 8.1.4 (Corollary 2), 8.1.5 and 8.1.6 it is enough to find a wide
tree subgroupoid T of G. This can be done by choosing for each object
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x 6= x0 of G an element τx of G(x0, x) and defining T to have all elements
τx, their inverses and their products. The only element of T(x,y) is then
τyτ

−1
x and so T is a wide, tree subgroupoid of G. 2

EXERCISES

1. Define the coproduct ⊔α∈AGα for an arbitrary family in (i) the category of

groupoids, (ii) the category of groups. Prove that if (Gα)α∈A is a family of groupoids,

then the universal group of their coproduct is isomorphic to the coproduct (i.e., free

product) of their universal groups. Hence show that, if G is a groupoid, then UG is

isomorphic to the free product of the groups UGα for all components Gα of G.

2. Let C be a category, let X be a set and σ : Ob(C) → X a surjection. Prove that

there is a category U and a functor σ : C→ U such that (i) Ob(U) = X, Ob(σ) = σ,

(ii) if τ : C → D is any functor such that Ob(τ) factors through σ, then there is a

unique functor τ : U→ D such that τ∗σ = τ.

3. Let f : G → H be a morphism of groupoids such that Ob(G) = Ob(H) = X and

Ob(f) = 1X. Let σ : X → Y be a surjection. Prove that there is a unique morphism

f ′ : Uσ(G) → Uσ(H) such that f ′σ = σf, and that f ′ is injective (on elements) if f

is.

4. Prove that if f : G → H is a strictly universal morphism then f is epic in the

category of groupoids.

5. Prove that if f : G → H, g : H → K are morphisms of groupoids such that gf is

strictly universal and f is epic, then g is strictly universal.

6. A groupoid G is called the internal free product of subgroupoids Gλ if (i) each

identity of G lies in some Gλ, (ii) for each non-identity element x of G there is

a unique sequence λ1, . . . , λn (n > 1) with λi 6= λi+1, and unique non-identity

elements xi in Gλi
such that x = xnxn−1 . . . x1. Prove that G is the internal free

product of the Gλ if and only if the canonical morphism ⊔λGλ → G is strictly

universal. Prove that in such a case, any two distinctGλ meet in a discrete groupoid.

7. Let (Gλ) be a family of subgroups of the groupoid G such that any element x of

G is a product of elements of various Gλ. Prove that G is the internal free product

of the Gλ if and only if the following condition is satisfied: if xi ∈ Gλi
(i = 1, . . . ,n;

n > 1) with λi 6= λi+1 (i = 1, . . . ,n − 1) and if xn . . . x1 is defined in G and is an

identity element, then at least one of the xi is an identity element.

8. Suppose there is given a square of groupoid morphisms which is a pushout in

the category of groupoids.

G0

i1 //

i2

��

G1

u1

��
G2 u2

// G

Suppose also that σ1 = Ob(u1) and σ2 = Ob(u2) are surjective. Prove that the
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following square in which j1 = σ∗1i1, j2 = σ∗2i2, v1 = u∗
1, v2 = u∗

2, is also a pushout.

G0

j1 //

j2

��

Uσ1
(G1)

v1

��
Uσ2

(G2) v2
// G

9. Suppose that the first square of the previous exercise is a pushout, that G0,G1

are discrete and that Ob(i2) is surjective. Prove that u2 : G2 → G is a universal

morphism.

10. Let G ′ be a subgroupoid of G and let f : G→ H be a universal morphism. Prove

that there is a subgroupoid H ′ of H such that f restricts to a universal morphism

G ′ → H ′.

11. Compare our exposition of the construction of Uσ(G) with that in [Hig05], and

with the several proofs of normal form theorems for free groups and free products

of groups in [Coh89].

8.2 Free groupoids

The free groupoids generalise the free groups. As the reader will by now
have expected, free groupoids are defined by means of a universal
property—to express this we need a little of the language of graph theory.

A graph Γ consists of a set Ob(Γ) of objects (or vertices) and for each x,
y in Ob(Γ) a set Γ(x,y) (often called the set of edges from x to y). As usual
we write γ : x → y for γ ∈ Γ(x,y), and x is the initial, y is the final point
of γ. The sets Γ(x,y) for various x, y in Ob(Γ) are supposed disjoint. In
particular, if x 6= y then Γ(x,y) does not meet Γ(y, x), so that the graphs we
are concerned with are often called oriented or directed graphs. As we did
for categories, we shall usually write Γ for the union of the sets Γ(x,y) for
any x,y in Ob(Γ), so that a ∈ Γ , or a is an element of Γ , means a ∈ Γ(x,y)
for some x,y in Ob(Γ).

An object x of a graph Γ is called discrete (in Γ) if there are no elements
of Γ with initial or final point x. The graph is discrete if all its objects are
discrete.

Let Γ ,∆ be graphs. A graph morphism f : Γ → ∆ assigns to x in Ob(Γ)

and object fx of Ob(∆) and to each a in Γ(x,y) an element fa in ∆(fx, fy).
It is easy to verify that the graphs and graph morphisms form a category.

If Ob(Γ) ⊆ Ob(∆), Γ ⊆ ∆ and the inclusion Γ → ∆ is a graph morphism,
then we say Γ is a subgraph of ∆: further, Γ is wide in ∆ if Ob(Γ) = Ob(∆);
and Γ is full in ∆ if Γ(x,y) = ∆(x,y) for all x,y in Ob(Γ).
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Suppose Γ ′ is a subgraph of Γ and f : Γ → ∆ is a graph morphism.
Then by f[Γ ′] we mean the subgraph ∆ ′ of ∆ whose objects are fx for x in
Ob(Γ ′), and such that ∆ ′(w, z) is the union of the sets f[Γ ′(x,y)] for all x,y
in Ob(Γ ′) such that fx = w, fy = z. In particular, Im f is defined to be the
graph f[Γ ].

The coproduct in the category of graphs is clearly disjoint union. There
is a graph 2 which has two objects 0, 1 and one element ι : 0→ 1. If γ is an
element of a graph Γ then there is a unique morphism of graphs γ̂ : 2 → Γ
such that γ̂(ι) = γ.

Given a graph Γ , its dispersion D(Γ) is obtained as a disjoint union ∆ of
copies of the graph 2, one for each element of Γ , and of a discrete graph
on the discrete objects of Γ . The following picture gives an example of this
construction:

w
c

&&MM
MM

MM y

x

a
88qqqqqq

b

&&MM
MM

MM

p
e

&&LL
LL

LL z

u q

wc
c ′

''OO
OOO

O ya

xc xa

a ′ 77oooooo

pe
e′

''NN
NNN

N xb
b′

''NN
NNN

N

u qe zb

Γ D(Γ)

There is a graph morphism ϕ : D(Γ)→ Γ which re-identifies the objects of
D(Γ) to give Γ again: thus D(Γ) has the same discrete objects as Γ but for
each element a : x→ y of Γ there is an element a ′ : xa → ya of D(Γ), and
ϕ sends xa 7→ x,a ′ 7→ a.

If C is a category then C defines a graph, also written C, simply by
forgetting about the composition of elements of C. If f : C→ D is a functor,
then f defines also a graph morphism C → D—the converse, of course, is
false. Since groupoids are special kinds of categories, these remarks apply
also to groupoids and morphisms of groupoids. In particular, we can talk
about subgraphs of a groupoid. Notice that if f : G → H is a morphism of
groupoids then Im f is a subgraph of H but not usually a subgroupoid. For
example, if f : I → Z is the strictly universal morphism, then Im f has only
three elements 0, 1,−1.

Let Γ be as above a graph in a groupoid G. The subgroupoid of G
generated by Γ is the intersection of all subgroupoids of G which contain Γ :
it is thus the smallest subgroupoid of G containing Γ , and its elements are
clearly all identities at points of Ob(Γ) and all products

an . . .a1
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which are well defined in G and for which ai ∈ Γ or a−1
i ∈ Γ .

We come now to free groupoids. Let Γ be a graph in a groupoid G.
We say G is free on Γ if Γ is wide in G and for any groupoid H, any graph
morphism f : Γ → H extends uniquely to a morphism G→ H; and if such Γ
exists, we say G is a free groupoid.

The free groupoid on the graph 2 is clearly the unit interval groupoid I,
and the free groupoid on a discrete graph ∆ is the discrete groupoid on the
objects of ∆. The free groupoid on a coproduct of graphs is the coproduct
of the free groupoids on each.

8.2.1 Let Γ be a graph in a groupoid G. The following conditions are equiva-

lent:

(a) G is free on Γ .

(b) If ϕ : D(Γ) → Γ is the dispersion of Γ , then the induced morphism ϕ̄ :

F(D(Γ))→ G is strictly universal.

(c) Γ generates G and the non identity elements of G can be written uniquely

as products

aεn
n . . .aε1

1

such that ai ∈ Γ , εi = ±1 and for no i is it true that both ai = ai+1 and

εi = −εi+1.

Proof We prove (a)⇔ (b)⇔ (c).

(a) ⇒ (b) Let σ = Ob(ϕ). Suppose h : F(D(Γ)) → H is a morphism and
τ : Ob(G)→ Ob(H) is a function such that

Ob(h) = τσ.

We first construct from h and τ a graph morphism f : Γ → H.

On objects, f is to be τ; on elements fa = h(a ′). Clearly, f is a graph
morphism. By the assumption that G is free on Γ , f extends uniquely to a
morphism h∗ : G→ H. If a ∈ Γ then

h∗ϕ̄(a ′) = h∗a = fa = h(a ′);

it follows that h∗ϕ̄ = h. Since Γ is wide inGwe must also have Ob(h∗) = τ.

If h̄ : G → H is any morphism such that h̄ϕ̄ = h, then h̄ extends f and
so h̄ = h∗. This proves that ϕ̄ is strictly universal.

(b)⇒ (a) Let f : Γ → H be a graph morphism and let τ = Ob(f). We define
a morphism h : F(D(Γ)) → H by a ′ 7→ fa. Then Ob(h) = τσ and so there
is a unique morphism h∗ : G → H such that Ob(h∗) = τ and h∗ϕ̄ = h.
Thus Ob(h∗) = Ob(f) and for each element a of Γ , h∗a = h(a ′) = fa. This
shows that h∗ extends f.
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Let h̄ : G → H be any morphism extending f. Since Γ is wide in G, we
have Ob(h̄) = Ob(f). Further, if a ∈ Γ , then

h̄ϕ̄(a ′) = h̄a = fa

whence h̄ϕ̄ = h. If follows that h̄ = h∗.
(b)⇔ (c) This follows from the explicit construction of Uσ(A× I). 2

8.2.1 (Corollary 1) Let G be a free groupoid on Γ . If f : G → H is strictly

universal, then H is free on f[Γ ]. In particular, UG is a free group.

Proof This follows from 8.2.1 and 8.1.4. 2

8.2.1 (Corollary 2) Let G be a free groupoid on Γ and let ∆ be a subgraph of

Γ . If H is the subgroupoid of G generated by ∆, then H is free on ∆.

Proof We use 8.2.1(c). First of all, ∆ is certainly wide in H. Next, if a is
a non-identity of H, then, since ∆ generates H, a is a product aεn

n . . .aε1

1

such that ai ∈ ∆ and εi = ±1.
If for some i we have ai = ai+1, εi = −εi+1, then we can cancel

a
εi+1

i+1 a
εi

i . Further, we can repeat such cancellations until no relation of
this form holds. However, since ∆ ⊆ Γ and G is free on Γ , the resulting
expression for a is unique (by 8.2.1(c)). It follows again from 8.2.1(c) that
H is free on ∆. 2

In fact, any subgroupoid of a free groupoid is free, but this is more
difficult to prove [cf. Section 10.8].

Let G be a free groupoid on Γ . The cardinality of the set of elements of
Γ is called the rank of G. Now it is easy to see from 8.2.1(b) or (c) that no
element of Γ is an identity of G; so, if f : G → H is strictly universal, then
f is injective on the elements of Γ and hence G and H have the same rank.
But it may be proved that two free groups are isomorphic if and only if they
have the same rank [CF63, p. 48]. So the rank of G depends only on G and
not on the particular choice of Γ freely generating G.

IfG,G ′ are two free groupoids on a graph Γ , then the universal property
shows that there is a unique isomorphismG→ G ′ which is the identity of Γ .
On the other hand, given a graph Γ , then 8.2.1(b) shows how to construct
a free groupoid FΓ on Γ , while 8.2.1(c) exhibits the elements of FΓ .

Because of the form of elements given in 8.2.1(c), elements of the free
groupoid FΓ on Γ are called paths in Γ , and if w ∈ FΓ(x,y), then w is called
a path from x to y. The graph Γ is called circuit free (or a forest) if all the
object groups of FΓ are trivial, Γ is called a tree if FΓ is a tree groupoid; and
Γ is connected if FΓ is connected.

We shall need the following result which is basic in graph theory, but
whose proof is expressed nicely in groupoid language.
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8.2.2 If Γ is a connected graph, then Γ contains a tree T which is wide in Γ .

Proof The result is trivial if Ob(Γ) is empty, so we suppose Ob(Γ) non-
empty. Let T be the set of all trees contained in Γ ; T is non-empty since it
contains for example a tree with one object and no edges.

Clearly T is partially ordered by inclusion. We claim that an element of
T is maximal in T if and only if it is wide in Γ .

For the proof of the claim, suppose first that T is an element of T which
is wide in Γ . Suppose a is an element of Γ(x,y) such that a does not belong
to T .

Let w be the unique element of FT(y, x). Then wa is a non-trivial ele-
ment of the group FΓ(x, x), and so T ∪ {a} is not a tree. This contradiction
shows that T is maximal.

Suppose, conversely, that T is a tree in Γ which is not wide in Γ . Let
x ∈ Ob(T), y ∈ Ob(Γ) \ Ob(T). Since Γ is connected, there is an element
w ∈ FΓ(x,y). Write w = aεn

n . . .aε1

1 as in 8.2.1(c), so that w is a path
traversing objects x = x1, x2, . . . , xn, xn+1 = y. Let xi be the first of these
objects which does not lie in T . Let T ′ be obtained from T by adjoining
the object xi+1 and the edge ai. Then FT ′ is connected. Also FT ′ is a tree
groupoid since if u ∈ FT ′(x), then 8.2.1(c) shows that u ∈ FT(x), and
hence u = 1, since T is a tree. Since T ′ contains T , it follows that T is not
maximal.

We now show that the set T has a maximal element. If Γ is finite then
the set T is finite, and so has a maximal element. If Γ is not finite, we must
apply Zorn’s Lemma (cf. Glossary).

Let C be any non-empty ordered subset of T, and let C be the union of
the elements of C. If x,y ∈ Ob(C), then x,y ∈ Ob(C′) for some C′ in C.
Hence FC′(x,y), and so FC(x,y), is non-empty. If u, v ∈ FC(x,y), then by
8.2.1(c), u, v ∈ FC′′(x,y) for some C′′ in C containing C′. Hence u = v. So
FC is a tree groupoid, and so C ∈ T.

Hence any non-empty ordered subset of T has an upper bound in T. By
Zorn’s Lemma, T has a maximal element T. Then T is wide in Γ . 2

8.2.3 If G is a connected, free groupoid then each object group G(x) of G
is free. If further G is of rank n1 and has n0 objects, then G(x) is of rank

n1 − n0 + 1.

Proof Let x ∈ Ob(G) and let Γ be a graph freely generating G. It follows
from 8.2.2 that G contains a tree groupoid T such that T ∩ Γ generates T .
For each y in Ob(G) there is a unique element ty of T(x,y). By 6.5.11 (see
also 6.7.3), these elements define retractions r : T → {x}, r ′ : G→ G(x).
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Let ∆ be the wide subgraph of Γ whose elements are those a in Γ which
do not lie in T . Let H be the (free) subgroupoid of G generated by ∆. We
claim that G is the free product T ∗H.

Let us grant this claim for the moment. Consider the diagram

Ob(G) //

��

T
r //

��

{x}

��
H

i
// G

r ′
// G(x)

in which the left-hand square of inclusions is a pushout, since G = T ∗ H,
and the right-hand square is a pushout, by 6.7.3. Therefore the composite
square is a pushout. It follows that r ′i : H→ G(x) is strictly universal, and
so G(x) is a free group on r ′[∆].

IfG is of rankm then Γ hasm elements. If G has n objects then Γ∩T has
n−1 elements. Then ∆, and so also r ′[∆], hasm−(n−1) elements—hence
G(x) is of rank m− n+ 1.

To complete the proof we must show that G = T ∗ H. Let t : T → K,
h : H → K be morphisms which agree on Ob(G). Let Γ ′ = Γ ∩ T , so
that T is free on Γ ′. Then t,h restrict to graph morphisms t ′ : Γ ′ → K,
h ′ : ∆→ K which (since they agree on objects and Γ ′ ∩∆ has no elements)
together define a graph morphism f : Γ → K. Since G is free on Γ , f extends
uniquely to a morphism k : G→ K. However k | T extends t ′, k | H extends
h ′. Therefore k | T = t, k | H = h and this proves that t and h extend to a
morphism k : G→ H.

If k̄ : G→ H also extends t and h, then k̄ |Γ= f and it follows that k̄ = k.
2

EXERCISES

1. Prove that a groupoid G is free if and only if each component of G is free.

2. Prove that a simply-connected groupoid is free.

3. Prove that the coproduct, and free product of free groupoids is free.

4. Give another proof of 8.2.3 using 8.2.1(b), Exercise 3 of Section 6.7, and Exer-

cise 9 of Section 8.1.

5. Give another proof of 8.2.1 (Corollary 2) using Exercise 10 of Section 8.1.
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8.3 Quotient groupoids

Let G be a groupoid. A subgroupoid N of G is called normal if N is wide in
G and, for any objects x,y of G and G in G(x,y),

aN(x)a−1 ⊆ N(y)

that is,
a××[N(x)] ⊆ N(y).

This last condition implies that (a−1)××[N(y)] ⊆ N(x) and hence, since
(a−1)×× = (a××)

−1, we will in fact have

a××[N(x)] = N(y).

EXAMPLE

1. Let f : G → H be a morphism. Then Ker f, the wide subgroupoid of
G whose elements are all k in G such that fk is an identity of H, is a
normal subgroupoid of G. In fact, it is obvious that Ker f is wide in G, and
normality follows from

f(aka−1) = fafkfa−1 = fafa−1 = 1, k ∈ N(x), a ∈ G(x,y).

We note also that if Ob(f) is injective then Ker f is totally disconnected.
A morphism f : G → H is said to annihilate a subgraph Γ of G if f[Γ ] is

a discrete subgroupoid of H. Thus Ker f is the largest subgroupoid annihi-
lated by f.

8.3.1 Let N be a totally disconnected, normal subgroupoid of G. Then there

is a groupoid G/N and a morphism p : G → G/N such that p annihilates N
and is universal for morphisms from G which annihilate N.

Proof We define Ob(G/N) = Ob(G). If x,y ∈ Ob(G) we define G/N(x,y)

to consist of all cosets
aN(x), a ∈ G(x,y).

If a ∈ G(x,y), b ∈ G(y, z) then, by normality,

bN(y)aN(x) = baN(x)N(x)

= baN(x).

Therefore, multiplication of cosets again gives a coset. The associativity of
multiplication is obvious. The identity element of G/N(x, x) is the coset
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N(x) and the inverse of aN(x) is a−1N(y) (a ∈ G(x,y)). So G/N is a
groupoid.

The morphism p : G→ G/N is the identity on objects, and on elements
is defined by a 7→ aN(x)—clearly p is a morphism and Kerp = N.

The universal property of p is that if f : G → H is any morphism which
annihilates N, then there exists a unique morphism f∗ : G/N → H such
that f∗p = f. Now the cosets of N are exactly the equivalence classes of the
elements of G under the relation a ∼ b ⇔ ab−1 is defined and belongs to
N; so a ∼ b ⇔ pa = pb. The universal property follows easily from A.4.6.

2

Remark 8.3.1 is true on the assumption only thatN is normal [cf. Exercise
2]; we need this more complicated construction of G/N in chapter 11, and
give it there. We call G/N a quotient groupoid of G.

The usual homomorphism theorem for groups (that if f : G → H is a
morphism then Im f is isomorphic to G/Ker f) is false for groupoids, one
reason being that Im f need not be a subgroupoid of H; for example, the
strictly universal morphism f : I→ Z has I/Ker f isomorphic to I. However
we do have:

8.3.2 Let f : G→ H be a morphism such that Ob(f) is injective. Then Im f is

a subgroupoid of H and the canonical morphism

G/Ker f→ Im f

is an isomorphism.

Proof To prove that Im f is a subgroupoid of H, it is sufficient to prove that
if c,d ∈ Im f and d−1c is defined in H, then d−1c ∈ Im f.

Suppose c = fa, d = fb where a ∈ G(x,y), b ∈ G(z,w). Since d−1c
is defined, fy = fw, which implies (since Ob(f) is injective) that y = w.
Hence, b−1a is defined and d−1c = f(b−1a) which belongs to Im f.

Since f annihilates Ker f, which is a wide, totally disconnected and nor-
mal subgroupoid of G, there is a canonical morphism f ′ : G/Ker f → H

such that f ′p = f. Since f ′ is defined by f ′(aKer f) = fa, it is clear that
Im f ′ = Im f. Let f ′′ : G/Ker f→ Im f be the restriction of f ′. Then Ob(f ′′)

is bijective, and for each a,b ∈ G

f ′′(aKer f) = f ′′(bKer f)⇔ fa = fb

⇔ aKer f = bKer f.

It follows from 6.4.3 that f ′′ is an isomorphism. 2

We now consider relations in a groupoid. Suppose given for each object
x of the groupoid G a set R(x) of elements of G(x)—thus R can be regarded
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as a wide, totally disconnected subgraph of G. The normal closure N(R) of
R is the smallest wide normal subgroupoid of G which contains R. This ob-
viously exists since the intersection of any family of normal subgroupoids
of G is again a normal subgroupoid of G. Further, N(R) is totally discon-
nected since the family of object groups of any normal subgroupoid N of G
is again a normal subgroupoid of G.

Alternatively, N = N(R) can be constructed explicitly. Let x be an object
of G. By a consequence of R at x is meant either the identity of G at x, or
any product

ρ = a−1
n ρnan . . .a−1

1 ρ1a1 (*)

for which ai ∈ G(x, xi) and ρi, or ρ−1
i , is an element of R(xi). Clearly, N(x),

the set of consequences of R at x, is a subgroup of G(x) and the family N
of these groups is a wide totally disconnected subgroupoid of G containing
R. Also N is normal, since if a ∈ G(y, x) then

a−1ρa = (ana)
−1ρn(ana) . . . (a1a)

−1ρ1a1a

is an element of N(y). On the other hand, any normal, wide subgroupoid
of G which contains R must clearly contain all products such as (*) and so
must contain N. Hence N = N(R).

The projection p : G → G/N(R) clearly has the universal property :
if f : G → H is any morphism which annihilates R then there is a unique

morphism f ′ : G/N(R)→ H such that f ′p = f. We call G/N(R) the groupoid
G with the relations ρ = 1, ρ ∈ R.

In applications, we are often given G, R as above and wish to describe
the object groups of G/N(R). These are determined by the following result.

8.3.3 Let G be connected, let x ∈ Ob(G) and let r : G→ G(x) be a deforma-

tion retraction. Let H = G/N(R). Then H(X) is isomorphic to the group G(x)

with the relations

r(ρ) = 1, ρ ∈ R.

Proof The deformation retraction r and the morphism p : G → H de-
termine as in 6.7.3 a deformation retraction s : H → H(x) such that the
following square is a pushout

G
r //

p

��

G(x)

p ′

��
H

s
// H(x)

(**)
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where p ′ is the restriction of p. We verify that p ′ satisfies the required
universal property.

Let f : G(x) → K be a morphism such that f annihilates r[R], i.e. fr
annihilates R. Then there is a unique morphism g : H → K such that
gp = fr. Since (**) is a pushout, there is a unique morphism f ′ : H(x)→ K
such that f ′p ′ = f, f ′s = g. To complete the proof we must show that the
last condition is redundant as far as the uniqueness of f ′ is concerned.

Let f ′′ : H(X) → K be any morphism such that f ′′p ′ = f. Then f ′′sp =

f ′′p ′r = fr = gp. But p is surjective, so that f ′′s = g. The pushout property
of (**) now implies that f ′′ = f ′. 2

EXERCISES

1. Prove that there are morphisms f : I → Z, g : I → Z2 such that Ker f = Kerg

and Im f is not (graph) isomorphic to Img.

2. Let N be any normal subgroupoid of the groupoid G. Prove that there is a

groupoid G/N and morphism p : G → G/N such that p annihilates N and is uni-

versal for this property. [The elements of G/N are equivalence classes of elements

of G under the relation a ∼ b if and only if a = xby for some x,y in N.]

3. Prove that if f : G → H is a morphism with kernel N, then f = pf ′ where

p : G → G/N is the projection and f ′ : G/N → H has discrete kernel. If f ′ is an

isomorphism onto Im f, then we shall call f a projection.

4. Prove that any morphism f can be factored as f = f2f1 where Ob(f1) is the

identity and f2 is faithful [for faithful, cf. Exercise 14 of Section 6.5].

5. Prove that any f : G → H can be factored as f = gr where r is a deformation

retraction and Kerg is totally disconnected.

6. Prove that any deformation retraction is a projection.

7. Prove that if f : G→ H is faithful, then f = gr where r is a deformation retraction

and Ker g is discrete.

8. Prove that any projection is a deformation retraction followed by projection g

with Ob(g) = 1.

9. Prove that the category of groupoids admits coequalisers and deduce that any

morphisms G0 → G1, G0 → G2 have a pushout.

8.4 Some computations

We conclude this chapter with a computation of a pushout of groupoids
which arises in the determination of the fundamental group of the union
of two connected spaces with non connected intersection, for example as
shown in Fig. 8.3.
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Fig. 8.3

Note that one of the problems of attempting to solve this question with
the fundamental group alone is that a choice of base point is then required.
It is clear that a base point should be in a component of the intersection of
the two pieces, but it is not clear which component to choose. We therefore
avoid a decision by choosing a set of base points, one in each component of
the intersection, and so work with groupoids. This strategy of avoidance of
decision seems to be optimal.

The formulae that we obtain are stated in Van Kampen’s paper on the
fundamental group ([Kam33]) but his proof even of the connected case is
difficult to follow.

8.4.1 Suppose given a pushout of groupoids

C
i //

j

��

A

u

��
B

v // G

(1)

such that (a) all the groupoids have the same set J of objects, (b) i, j,u, v are

the identity on objects, and (c) A and B are connected groupoids. Let p be a

chosen element of J = Ob(C). Let r :A→ A(p), s : B → B(p) be retractions

obtained by choosing elements αx ∈ A(p, x), βx ∈ B(p, x), for all x ∈ J, with

αp = 1, βp ∈ 1. Let fx = (uαx)
−1(vβx) in G(p), and let F be the free group

on the elements fx, x ∈ J, with the relation fp = 1. Then the object group
G(p) is isomorphic to the quotient of the free product group

A(p) ∗ B(p) ∗ F

by the relations

(riγ)fx(sjγ)
−1f−1

y = 1 (2)

for all x,y ∈ J and all γ ∈ C(x,y).
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Proof We first remark that the pushout (1) implies that the groupoid C is
the quotient of the free product groupoid A ∗ B by the relations (iγ)(jγ)−1

for all γ ∈ C. The problem is to interpret this fact in terms of the object
group at p of G.

To this end, let T , S be the tree subgroupoids of A,B respectively gen-
erated by the elements αx,βx, x ∈ J. The elements αx,βx, x ∈ J, define
isomorphisms

ϕ : A→ A(p) ∗ T , ψ : B→ B(p) ∗ S

where if g ∈ G(x,y) then

ϕg = αy(rg)α
−1
x , ψg = βy(sg)β

−1
x .

So G is isomorphic to the quotient of the groupoid

H = A(p) ∗ T ∗ B(p) ∗ S

by the relations
(ϕiγ)(ψjγ)−1 = 1

for all γ ∈ C. By 8.3.3, the object group G(p) is isomorphic to the quotient
of the group H(p) by the relations

(rϕiγ)(rψjγ)−1 = 1

for all γ ∈ C.
Now if J′ = J \ {p}, then T , S are free groupoids on the elements αx,βx,

x ∈ J′, respectively. By 8.2.1 (Corollary 1), T ∗ S is the free groupoid on all
the elements αx,βx, x ∈ J′. It follows from 8.2.3, that (T ∗ S)(p) is the free
group on the elements rβx = α−1

x βx = fx, x ∈ J′. Let fp = 1 ∈ F. Since

rϕiγ = riγ, rψjγ = fy(sjγ)f
−1
x ,

the result follows. 2

There is a consequence of the above computation which we shall use
in the next chapter in proving the Jordan Curve theorem. First, if F and H
are groups, recall that we say that F is a retract of H if there are morphisms
ı : F→ H, ρ : H→ F such that ρı = 1. This implies that F is isomorphic to a
subgroup of H.

8.4.1 (Corollary) Under the situation of 8.4.1, the free group F is a retract of

G(p). Hence if J = Ob(C) has more than one element, then the group G(p) is

not trivial, and if J has more than two elements, then G(p) is not abelian.

Proof Let M = A(p) ∗ B(p) ∗ F, and let ı ′ : F → M be the inclusion. Let
ρ′ : M → F be the retraction which is trivial on A(p) and B(p) and is the
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identity on F. Let q :M→ G(p) be the quotient morphism. Then it is clear
that ρ′ preserves the relations (2), and so ρ′ defines uniquely a morphism
ρ : G(p) → F such that ρq = ρ′. Let ı = qi ′. Then ρı = ρ′i ′ = 1. So F is a
retract of G(p).

The concluding statements are clear. 2

Here is another application of the Van Kampen theorem for the funda-
mental groupoid, namely to HNN-extensions of groups. This construction is
named after the initial letters of the authors of the paper which introduced
the construction ([HNN49]).

Our approach also shows the advantage of the use of groupoids: be-
cause there is a homotopy theory of groupoids, we can make analogues in
groupoid theory of constructions for spaces, particularly double mapping
cylinders.

Let G be a group and let iA : A → G, iB : B → G be inclusions of two
subgroups of G. Suppose given an isomorphism θ : A → B. The aim is to
construct a new group H = G∗θ which contains A,B as subgroups and in
which there is an element t ∈ H which conjugates A to B, that is for all
a ∈ A we have tat−1 = θa in H.

To this end we form the pushout of groupoids

A× İ
i //

j

��

G

ϕ

��
A× I

ϕ
// H.

(8.4.2)

Here j is the inclusion; i is the morphism defined by (a, 0) 7→ iAa, (a, 1) 7→
iBθa; and ϕ,ψ are defined by the pushout, so that ϕi = ψj. Hence for
a ∈ A, ψ(a, 0) = ϕi(a, 0) = a, ψ(a, 1) = ϕi(a, 1) = ϕθa.

Note that if e denotes the identity element of the group G, and a ∈ A,
then, in the multiplication in A × I, we have (a, 1)(e, ı) = (e, ı)(a, 0). Let
t = ψ(e, ı) ∈ H. So in H

t(ϕa) = (ψ(e, ı)(ϕi(a, 0))

= ψ((e, ı)(a, 0))

= ψ((a, 1)(e, ı))

= (ψ(a, 1))t

= ϕ(θa)t.

Hence t(ϕa)t−1 = ϕ(θa) in H.



338 [8.4] TOPOLOGY AND GROUPOIDS

Note that this result and construction makes sense whether or not iA :

A → G is injective and whether or not θ is an isomorphism. However it
is a standard result of combinatorial group theory, see for example [LS77],
that if iA is injective and θ is an isomorphism, then ϕ is also injective. It is
in these circumstances that H is called an HNN-extension and written G∗θ.

This is a corollary of a more general result on graphs of groups [Ser80],
which has been put in a powerful way in terms of a normal for the elements
of the fundamental groupoid of a graph of groups in [Hig76]. This itself
has been generalised to the fundamental groupoid of a graph of groupoids in
Emma Moore’s Bangor thesis [EJM01] (which is available for download).
A consequence of her results is that in the situation of 8.4.1, if i, j are
injective, then so also are u, v.

NOTES

Most of the results on groupoids are due to Higgins ([Hig64], [Hig66],
[Hig05]) but the proof of 8.4.1 is new. The proof of the associativity of the
multiplication of the words of Uσ(G) is borrowed from the treatment of
free products of groups in [Lan65]. The construction of arbitrary colimits
of categories and groupoids is given in [Hig05], and indeed is a special case
of results of [Hig63]. The reader is invited to compare these approaches to
the construction of Uσ(G) with the standard constructions in combinatorial
group theory of free groups and free products, and the derivation of normal
forms. For example [Coh66] discusses four methods for obtaining these.
The paper [Hig76] has a very elegant treatment of normal forms for the
fundamental groupoid of graph of groups, and a computational form of
this is in Emma Moore’s thesis [EJM01].

The term ‘combinatorial groupoid theory’ seems appropriate though is
non standard, and it is an area which needs development. It certainly
includes methods of covering groupoids as presented in Chapter 9, and in
[Hig05]. Other contributions are [Bra04, Hum94]. The latter paper, and
[EJM01], also deal with computational aspects.

There is an important general theory of fibred, opfibred and bifibred
categories which was initiated by Grothendieck and developed strongly
by Jean Benabou. These notions are discussed in for example [Bor94],
[Joh02], [Tay99]. In particular, the functor Ob from groupoids to sets is,
in these terms, a bifibration (both fibration and opfibration) of categories.
Unfortunately, the terminology is not entirely stable (the last cited books
use the terms ‘prone, supine’ for what was previously called ‘cartesian, co-
cartesian’), so we have decided to stick with the terminology of Higgins
which dates back to 1963. However, similar ideas occur in module the-
ory, with notions of ‘change of ring’, and in the theory of Mackey functors,
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but there again with a different terminology. The work of Higgins on uni-
versal morphisms of groupoids was a stimulus for later work on ‘induced
crossed modules’, which are structures which carry homotopical informa-
tion in dimensions 0,1 and 2. The general problem is to develop language
and modes of calculation to describe how mathematical structures with in-
formation at various levels are changed in high levels when changes are
made in a low level.
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Chapter 9

Computation of the

fundamental groupoid

In this chapter we compute the fundamental groupoid of some useful ad-
junction spaces, and hence of cell complexes, by applying the methods de-
veloped in chapter 8. We then develop some geometric applications, to
knots, the Phragmen-Brouwer property, and the Jordan Curve Theorem.

9.1 The Van Kampen theorem for adjunction

spaces

In Section 6.7 we proved a van Kampen theorem for the fundamental
groupoid πXA when X is given as a union of open subsets.

Suppose given an adjunction space W f⊔ Z as in the pushout square

Y
f //

i

��

W

ī

��
Z

f̄
// W f⊔ Z.

(9.1.1)

Our object is to determine the groupoid

π(W f⊔ Z)B

for certain (useful) B.

341
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In chapter 7, we studied the homotopy type of W f⊔ Z and showed its
dependence on the homotopy types of W and (Z, Y) if (Z, Y) is cofibred.
This is a local condition on Y in Z. To determine the fundamental groupoid
π(W f⊔ Z) as a pushout, we also need some local conditions—these con-
ditions are essentially in dimensions 0 and 1, and are described in terms of
the natural map

p :M(f) ∪ Z→W f⊔ Z
and its induced morphism of fundamental groupoids.

Suppose that C is a subset of Z representative in Z and in Y, that D is a
subset of W representative in W, and that f[C] ⊆ D. Let

g = f | C ∩ Y,D, B = D g⊔ C.

Under these conditions we have:

9.1.2 (The Van Kampen theorem) The following square

πYC
f //

i

��

πWD

ī

��
πZC

f̄
// π(W f⊔ Z)B

(9.1.3)

is a pushout if and only if the morphism

p : π(M(f) ∪ Z)A→ π(W f⊔ Z)B

in which A = D ∪ C, is a homotopy equivalence of groupoids. In particular,

(9.1.3) is a pushout if (Z, Y) is cofibred.

Proof Let X =M(f) ∪ Z, X2 = X \W, X1 =M(f), X0 = X1 ∩ X2.

W

X X2

W

X1

Fig. 9.1
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The interiors of X1,X2 cover X and so we are in the position to apply 6.7.4
to give us a pushout isomorphic to (9.1.3).

Let A ′ = D, so that in the notation of 6.7.4, A1 = D ∪ (C \ Y). Then
p :M(f) ∪ Z→W f⊔ Z maps A1 bijectively onto B. Further A ′, and hence
also A1, is representative in X1. Indeed, A1 meets each path component
of W because D is representative in W. Also C ∩ Y is representative in Y
and each point c of C ∩ Y can be joined by the path down the mapping
cylinder of fc, which belongs to D; this path is shown as a thick line in X1

in Fig. 9.1. Notice also that if θc is the class in πX1A of this path, then
p(θc) is the identity at fc in πW.

Consider the following diagram in which (i) Q =W f⊔ Z, (ii) the front
square is the pushout determined by A1 and the above elements θc as in
6.7.4, (iii) the back square is (9.1.3).

πYC //

∼=
""D

DD
DD

DD
D

��

πWD

��

πX0A

i2

��

ri1 // πX1A1

u1

��

∼=
p

ccGGGGGGGGG

πZA //

∼= !!D
DD

DD
DD

D πQB

πX2A su2

// πXA1

p
ccFFFFFFFF

(9.1.4)

The left-hand square is induced by inclusions and so is commutative.
The right-hand square is induced by p and its restrictions, so the right-hand
square is commutative. The commutativity of the top and bottom squares
is a consequence of p(θc) = 1 (c ∈ C ∩ Y). Thus (9.1.4) is commutative.

Each morphism marked ∼= is induced by a homotopy equivalence and is
bijective on objects. Therefore these morphisms are isomorphisms. Hence,
each of the following statements is equivalent to its successor: (a) (9.1.3)
is a pushout, (b) (9.1.4) determines an isomorphism of its front square to
its back square, (c) p : πXA1 → πQB is an isomorphism.

However, the last morphism is bijective on objects so (c) is equivalent
to (d) p : πXA1 → πQB is a homotopy equivalence. Since πXA1 is a
deformation retract of πXA, (d) itself is equivalent to (e) p : πXA → πQB
is a homotopy equivalence.

This proves the main part of 9.1.2. The last statement of 9.1.2 follows
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from 7.5.4. 2

9.1.2 (Corollary 1) LetW,Z be closed inW∪Z, let (Z,W∩Z) be cofibred and

let B be a set representative in W ∩ Z, W, Z. Then the square of morphisms

induced by inclusions

π(W ∩ Z)B //

��

πWB

��
πZB // π(W ∪ Z)B

is a pushout.

Proof This is a consequence of 9.1.2 with f : Y →W the inclusion. 2

This result is, of course, similar to 6.7.2, and is in many cases more
convenient to use than the earlier result.

9.1.2 (Corollary 2) Suppose the assumptions of 9.1.2 (Corollary 1) hold and

also π(W ∩Z)B is discrete. Then π(W ∪Z)B is isomorphic to the free product

of groupoids

πZB ∗ πWB.

Proof From the pushout square of 9.1.2 (Corollary 1) it is easy to deduce
the morphism πZB⊔ πWB→ π(W∪Z)B determined by the two inclusions
of Z,W into W ∪ Z is a universal morphism. 2

Remark Even this corollary is false without some local assumptions on Y
in Z (or in W). For example, let H be the subspace of R2 which is the
union of all circles centre (1/n, 0) for n a positive integer—this space has
been called the ‘Hawaiian earring’. Let 0 = (0, 0) be the base point of H.
The space CH is contractible and so the group π(CH, 0) is trivial. However,
[Gri54], [Gri56] has shown that π(CH ∨ CH, 0) is non-trivial and in fact
can be generated only by an uncountable number of elements. Again, the
fundamental group of H∨H is not the free product π(H, 0) ∗ π(H, 0).
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a

X

Fig. 9.2

However the space X of Fig. 9.2 formed by joining two Hawaiian ear-
rings together does have has its fundamental group isomorphic to π(H, 0) ∗
π(H, 0)—this is easy to prove from 9.1.2 (Corollary 2) by taking W,Z to be
left- and right-hand halves of X meeting in {a}. In this case, the obvious
map X→ H∨H induces a morphism π(X,a)→ π(H∨H, 0) which is injec-
tive but not surjective (the proof of this statement is not easy—cf. [Gri54]
and [MM86]).

Suppose now that we are in the situation of 9.1.2, that (Z, Y) is cofibred,
that C ⊆ Y and B = D = f[C].

9.1.2 (Corollary 3) If further πYC, πWD are discrete then

f̄ : πZC→ π(W f⊔ Z)D

is a universal morphism.

Proof This follows from 9.1.2 and the definition of universal morphism. 2
We can derive a number of useful results from this. For example, if

D consists of a single point d (and the other assumptions of 9.1.2 (Corol-
lary 3) hold) then the fundamental group π(W f⊔ Z,d) is isomorphic to
U(πZC), the universal group of πZC. In particular, if Z is path-connected
and c0 ∈ C, then

π(W f⊔ Z,d) ∼= π(Z, c0) ∗ F
where F is a free group with one generator for each element of C other than
c0.

We now derive the fundamental group of a cell complex, first dealing
with the 1-dimensional case.

9.1.5 If K is a connected cell complex and v ∈ K0, then the groupoid πK1K0

is a free groupoid and the fundamental group π(K1, v) is a free group on

r1 − r0 + 1 generators where rn is the number of n-cells of K, n = 0, 1.

Proof K1 is obtained by adjoining 1-cells to K0, that is,

K1 = K0
f⊔ (Λ× E1)
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where Λ is a discrete set and f : Λ × S0 → K0 is the attaching map. Let
C = Λ×S0; since K1 is connected, f[C] = K0. Since π(Λ×S0)C and πK0K0

are discrete groupoids (and also (Λ×E1,Λ×S0) is cofibred) the morphism

f̄ : π(Λ× E1)C→ πK1K0

is a universal morphism. But π(Λ × E1)C is isomorphic to Λ × I. So the
result follows from the discussion of free groupoids in section 8.2. 2

Notice that 9.1.5 also gives the generators of πK1K0 as follows. For
each λ in Λ let ıλ denote the unique path class in π(λ× E1)C from (λ,−1)

to (λ,+1). Then the generators of πK1K0 are the elements f̄(ıλ), λ in Λ;
thus if v0, v1 are vertices of K joined by a 1-cell, then the path class in
πK(v0, v1) determined by the characteristic map of this 1-cell is one of these
generators.

9.1.5 (Corollary 1) The fundamental group of the circle, π(S1, 1) is isomor-

phic to Z, with generator the class of the path

I→ S1

t 7→ e2πit.

Proof This is immediate from 9.1.2 and the previous remark, since the
given path is a characteristic map for the 1-cell of S1. 2

We now show that π(K2, v) is isomorphic to π(K1, v) with relations for
each 2-cell. Let us suppose

K2 = K1
g⊔ (M× E2)

where g :M× S1 → K1. Suppose also that K1 is connected. For each m in
M, let vm = g(m, e) where e = (1, 0) and let

ρm = g(ım) ∈ π(K1, vm)

where ım is a generator of the fundamental group of M× S1 at (m, e). Let
v be an element of K1 and let am be an assigned element of πK1(v, vm)

(with am = 1 if perchance vm = v).

9.1.6 The fundamental group π(K2, v) is isomorphic to the free group

π(K1, v) with the relations

a−1
m ρmam = 1, m ∈M.



COMPUTATION OF THE FUNDAMENTAL GROUPOID [9.1] 347

Proof We first show that if V = {vm : m ∈ M} ∪ {v} then πK2V is the
groupoid πK1V with the relations ρm = 1, m ∈ M. Let C = M × {e}. We
have a pushout square

π(M× S1)C
g //

i

��

πK1V

ī

��
π(M× E2)C

ḡ
// πK2V .

Suppose f : πK1V → F is any morphism such that fρm = 1, m ∈ M.
Then Im(fg) is discrete. Since π(M × E2)C is a discrete groupoid on C,
f defines a morphism f̄ : π(M × E2)C → F such that f̄i = fg. So there
is a unique morphism f ′ : πK2V → F such that f ′ ī = f, f ′ḡ = f̄. The last
condition is redundant, since π(M×E2)C is discrete and so ḡ is determined
by Ob(ḡ) = Ob(g) : C→ V , a surjective function.

This proves that πK2V is πK1V with relations ρm = 1, m ∈ M. The
conclusion of 9.1.6 follows from 8.3.3. 2

9.1.7 If K is a cell complex and A a subset of K2, then the inclusion K2 → K
induces an isomorphism πK2A→ πKA.

Proof We first prove that Sn is simply-connected for n > 1. Let e be a point
of Sn−1 = En+ ∩ En−. By 9.1.2 (Corollary 1) we have a pushout square

π(Sn−1, e) //

��

π(En+, e)

��
π(En−, e)

// π(Sn, e).

But En+,E
n
− are homeomorphic to En and so are simply-connected. Hence

π(En+, e),π(E
n
−, e) are trivial groups and therefore π(Sn, e) is trivial.

Now consider any adjunction space W f⊔ En+1 where f : Sn → W and
n > 1. Let e ∈ Sn and suppose W is path-connected. There is a pushout
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square

π(Sn, e)
f //

i

��

π(W, fe)

ī

��
π(En+1, e)

f̄
// π(W f⊔ En+1, fe).

Since the two left-hand groups are trivial, ī is an isomorphism. 2

In order to compute the fundamental group of spaces, it is clearly neces-
sary to compute maps π(S1, e)→ π(K1, fe). The following result is crucial.

9.1.8 Let f : S1 → S1 be the map z 7→ zn, n an integer. Then the induced

morphism f : π(S1, e)→ π(S1, e) of additive groups is multiplication by n.

Proof The result is clearly true if n = 0, since f is then constant, or if n = 1,
since f is then the identity. Suppose n > 1; let w be the complex number
e2πi/n and let wr = e2πir/n, r = 0, 1, . . . ,n − 1. Let Xr be the subset of S1

of points e2πiθ, r/n 6 θ 6 (r + 1)/n, let Cr consist solely of wr,wr+1 and
let C = {wr : 0 6 r < n}. Since Xr is simply-connected there is a unique
element ır in πXr(w

r,wr+1). The morphism πXrCr → πS1C induced by
inclusion is injective and so we regard πXrCr as a subgroupoid of πS1C. A
generator a of π(S1, e) where e = w0, is then given by

a = ın−1 + · · ·+ ı0.

The map f : S1 → S1 determines by restriction f ′ : Xr → S1; clearly
f ′ır = a. Therefore,

fa = f(ın−1 + · · · + ı0) = a+ · · ·+ a = na.

If n < 0, let m = −n. The z 7→ zn is the composite of g : z 7→ z−1 and
z 7→ zm. But if b : I→ S1 is the path t 7→ e2πit, then gb is t 7→ e−2πit, that
is, gb = −b. Hence, in π(S1, e), ga− fa; therefore fa = −ma = na. 2

If f : S1 → S1 is a map such that f : π(S1, 1)→ π(S1, 1) is multiplication
by n, then we say f is of degree n.

EXAMPLES

1. Let K = S1 ∨ · · · ∨ S1 be a wedge of n circles, with the cell structure
e0 ∪ e11 ∪ · · · ∪ e1n. Let v be the vertex of K. Then π(K, v) is a free group on
n-generators, the generators being the classes of the loops which pass once
round one of the circles.
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2. The fundamental group of the real projective plane P2(R) and the real
projective n-space Pn(R) (n > 1) are the same, by 9.1.7 and the fact that
P2(R) can be identified with the 2-skeleton of Pn(R). Also, P2(R) = S1 f⊔
E2 where f : S1 → S1 is of degree 2 [Section 5.3]. It follows that the
fundamental group of P2(R) is the group Z/2Z = Z2.
3. We can also state that the fundamental groups of S2 and S1 × S1 are 0

and Z × Z respectively. It follows that no two of the spaces S2, S1 × S1,
Pn(R) are of the same homotopy type; a fortiori, no two of these spaces are
homeomorphic.
4. The Klein bottle has a cell structure K = e0 ∪ e11 ∪ e12 ∪ e2. From Fig. 4.4,
p. 92, it is clear that, if {a,b} is a set of generators of π(K1, v) as given
in 9.1.5, then the relation determined by the 2-cell of K is abab−1. Thus
π(K, v) is a free group on two generators a,bwith the relation abab−1 = 1.

It is a simple consequence of 9.1.2 that if we form a pushout of spaces
Q = B f⊔ (X × I) by attaching a cylinder X × I to B by means of a map
f : X × İ → B then the fundamental groupoid of Q, on an appropriate
set, may be described as a pushout of groupoids in a manner analogous to
(8.4.2). We leave the reader to describe this precisely.

The last result on HNN-extensions, and our earlier proofs that that the
fundamental group of a circle is infinite cyclic, show that some groups are
well described as constructed from groupoids. On the other hand, it is
sometimes convenient to regard groups as object groups of groupoids. As
an example, consider the trefoil group Tr = gp〈x,y | x3y−2〉. This is known
to be an infinite group, but from this viewpoint it is not so easy to find a
normal form for its elements.

A different way into its structure comes from seeing the trefoil group as
a fundamental group of a cell complex given as a double mapping cylinder.
Let the unit circle S1 have base point e, say, and consider the double map-
ping cylinder M = M(3, 2) of the maps S1 → S1 given by z 7→ z3, z 7→ z2

respectively. This spaceM contains two copies of S1 with base points e3, e2,
say. Let E be the set of these base points. Then the fundamental groupoid

T̂ = π(M,E) has a presentation with three generators x̂ ∈ T̂(e3), ŷ ∈ T̂ (e2),
w ∈ T̂(e3, e2) with the relation wx̂3 = ŷ2w. An advantage of this ‘Trefoil

groupoid’ T̂ over the Trefoil group Tr is that the generator w acts as a kind
of ‘separator’ of the generators x̂, ŷ for any well defined word in these gen-
erators not containing consecutive symbols u,u−1, for u = x,y,w or their
inverses. For this reason, it is easy to give a normal form for words, and we
leave this as an exercise for the reader.

Notice also that the double mapping cylinder M as above is a cell com-
plex. By contrast, the pushout P of the two maps S1 → S1 as above is not
even Hausdorff, and it is not clear what might be its fundamental groupoid.
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By contrast, the groupoid T̂ is easily understood: it is the double mapping
cylinder in the category of groupoids of the two morphisms Z → Z given
by multiplication by 2 and by 3 respectively.

We now give an intuitive account of the computation of the fundamental
group of the complement of a graph embedded in Euclidean space R3. This
computation is important in knot theory.

By a graph in R3 we mean a cell complex K of dimension 1 which is
embedded in R3. Such a graph is usually represented by a diagram with
vertices, overpasses, edges and crossings as in Fig. 9.3.

v

u

z
x

y

Fig. 9.3

In order to avoid wildness problems, for example edges which wind in-
finitely often round others (see [FA49]) we suppose given a 1-dimensional
complex K and an embedding i : K × E2 → R3. That is, the edges of the
graph are taken to have a certain thickness.

The diagram D of the embedding can be regarded as the projection of
i[K× E2] onto R2 by the mapping (x,y, z) 7→ (x,y), and it is supposed that
the embedding is arranged so that the diagram has edges crossing only
at double points. This conforms with our picture. The diagram allows us
to divide the embedded graph into vertices, namely the images of v × E2

where v is a vertex of K at which more than two edges meet, and overpasses,
namely the edges between vertices, between crossings, or between vertices
and crossings. Thus the overpasses are labelled by letters in Fig. 9.3. We
also orient the graph by choosing a direction for each overpass as shown.

9.1.9 Under the above circumstances, the fundamental group π(R3 \ i[K ×
E2],p) has a presentation with a generator for each overpass and relations of

two types:

(a) at each vertex v there is a relation xε1

1 x
ε2

2 . . . xεr
r = 1, where the xi are the

edges at the vertex and the sign εi is +1 if the arrow for xi points towards the

vertex, and −1 otherwise;
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(b) at each crossing with overpass x crossing y and z as shown in Fig. 9.4 (ii),
there is a relation y = xzx−1.

(i) (ii)

x
y

z

Fig. 9.4

A proof goes roughly as follows. Imagine the graph i[K× E2] as part of
a slice S = R2× [−ε, ε] of R3, while S is regarded as the intersection of two
half spaces H+ = R2× [−ε,→[ and H− = R2× ]←, ε]. Surround each vertex
v by a solid ball Ev and each crossing c by a solid ball Dc as in Fig. 9.5.

Ev Dc

Fig. 9.5

Let X be the union of i[K × E2] and all the balls Ev and Dc. Arrange these
so that H+ \ X and H− \ X intersect in a non connected space with one
component for each region into which the diagram of the graph divides the
plane. By 6.7.2 and 8.4.1, the fundamental group R3 \ X is a free group
with one generator for each edge ei of the diagram between crossings or
vertices. Now replace the balls Ev and Dc with their intersection with
i[K× E2] excised. It is easy to see that Ev contributes a relation as given at
each vertex. The balls Dc contribute two relations. One of these ‘continues’
an overpass while the other is the relation we want; that is in the situation
shown in Fig. 9.6,

xi

xl

xm

xj

Fig. 9.6
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the relations are

xl = xm, xi = xlxjx
−1
k .

Another way of seeing the intuitive basis of these relations is given in
Fig. 9.7. The thick lines denote parts of the embedded graph, and the thin
lines denote various positions of a deformation of part of a path. The reader
is also urged to demonstrate these relations with string and wire models.

Fig. 9.7

As one application, for the pentoil shown in Fig. 9.8

v

w u

x y

Fig. 9.8

we obtain a presentation for the fundamental group of the complement
as having generators x,y,u, v,w with relations w = xyx−1, x = yuy−1,
y = uvu−1 and v = wxw−1. By elimination of u, v, and w we may obtain
the presentation with generators x and y and one relation

xyxyxy−1x−1y−1x−1y−1 = 1.

This relation corresponds to wrapping string around a part of knot model
as shown in Fig. 9.9.
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x

y

Fig. 9.9

If you wrap string around a model of the pentoil in precisely this way, and
then tie the ends together, the loop will disentangle itself from the knot,
thus demonstrating the calculation. (See [Bro88].)

For further information on knots and links, consult also [Kau87]. For
relations of the fundamental group to the important area of configuration
spaces (these are spaces of n distinct points in a space X) see also [Bir75].

EXERCISES

1. Prove that 9.1.7 is a consequence of the cellular approximation theorem.

2. Prove that the spaces Pn(H) are simply-connected.

3. Prove that S1 is not a retract of Pn(R), n > 1.

4. Let X = Y ∪ Z where Z, Y are path-connected and (X,Y) is cofibred. Let

a0,a1, . . . ,an be points one in each path-component of Y ∩ Z. Let i, j be the in-

clusions of Y ∩ Z into Y,Z respectively. Let αr ∈ πY(a0,ar), βr ∈ πZ(a0,ar),

r = 0, . . . ,n, with α0 = 1, β0 = 1. Let F be a free group on elements γr, r = 0, . . . ,n

with the relation γ0 = 1. Prove that π(X,a0) is isomorphic to the free product of

the groups π(Y,a0), π(Z,a0) and F with the relations

α−1
r (iρr)αr = γr(β

−1
r (jρr)βr)γ

−1
r

for all ρr ∈ π(Y ∩ Z,ar) and r = 0, . . . ,n. [Here γr corresponds to the element

(uβ−1
r )(vαr) of π(X,a0) where u, v are the inclusions of Y,Z respectively into X.]

5. Let K,L be 1-dimensional (finite) cell complexes. Prove that if ϕ : πKK0 → πLL0

is any morphism, then there is a map f : K → L such that πf = ϕ. Prove also

that if f, g : K → L are cellular maps such that πf ≃ πg : πKK0 → πLL0, then f is

homotopic to g.

6. Extend the results 9.1.5, 9.1.6, 9.1.7 to (infinite) CW-complexes. Prove that if G

is any group, then there is a CW-complex K and a vertex x of K such that π(K,x) is

isomorphic to G. Deduce that if G is any groupoid then there is a CW-complex K

such that πKK0 is isomorphic to G. [You may assume that if G is any group then

there is a free group F and a free subgroup R of F such that G is isomorphic to F/R.]

7. Prove that R2 and Rn for n > 2 are not homeomorphic.
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8. Let p : z 7→ zn + an−1z
n−1 + · · · + a1z+ a0 and q : z 7→ zn be polynomials with

ai ∈ C. For r > 0 let Cr = {z ∈ R2 : |z| = r}. Prove that for r large enough, p and q

restrict to homotopic maps Cr → R2 \ {0}. Prove that for any r > 0 this restriction

of q is essential and hence show that the polynomial p has a root. [This is known

as the Fundamental Theorem of Algebra.]

9.2 The Jordan Curve Theorem

The Jordan Curve Theorem states that if C is a subset of the plane R2

such that C is homeomorphic to the circle S1, then R2 \ C has exactly two
components, one of them bounded and the other unbounded, and each
with C as boundary. The set C is called a simple closed curve in R2. The
bounded component of R2 \ C is of course called the inside of the curve,
and the unbounded component is called the outside of the curve.

This theorem is a classic instance of a result which at first sight seems
intuitively obvious, but which needs some sophisticated machinery for its
proof. In fact the theorem is not quite so obvious intuitively. Consider
for example the computer generated simple closed curve in R2 shown in
Fig. 9.10. How do you determine the inside and outside? (I am indebted
to S. J. Abas for this diagram.)

Any method you choose for this curve might be defeated by a more
complicated example. In any case, if you try and work out the inside and
outside for this case, you begin to see the prospective complications of the
problem.

In this section we shall use the final results of the last section to give a
complete proof of the theorem; we also draw further consequences of the
method. For this reason, we take what might seem a circuitous route to the
theorem, by introducing a property which a space may or may not have.
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Fig. 9.10

A topological space X is said to have the Phragmen-Brouwer property

(here abbreviated to PBP) if X is connected and the following holds: if D

and E are disjoint, closed subsets of X, and if a and b are points in X\ (D∪E)
which lie in the same component of X\D and in the same component of X\E,

then a and b lie in the same component of X \ (D ∪ E). To express this more
succinctly, we say a subset D of a space X separates the points a and b if a
and b lie in distinct components of X \D. Thus the PBP is that: if D and E
are disjoint closed subsets of X and a,b are points of X not in D ∪ E such
that neither D nor E separate a and b, then D ∪ E does not separate a and
b1.

A standard example of a space not having the PBP is the circle S1, since
we can take D = {+1}, E = {−1}, a = i, b = −i. This example is typical,
as the next result shows. But first we remark that our criterion for the
PBP will involve fundamental groups, that is will involve paths, and so we
need to work with path-components rather than components. However,
if X is locally path-connected, then components and path-components of
open sets of X coincide, and so for these spaces we can replace in the PBP
‘component’ by ‘path-component’. This explains the assumption of locally
path-connected in the results that follow.

1Some corrections to this Section and to a published paper are given in
https://arxiv.org/abs/1404.0556.

https://arxiv.org/abs/1404.0556


356 [9.2] TOPOLOGY AND GROUPOIDS

9.2.1 Let X be a path-connected and locally path-connected space whose fun-
damental group (at any point) does not have the integers Z as a retract. Then

X has the PBP.

Proof Suppose X does not have the PBP. Then there are disjoint, closed
subsets D and E of X and points a and b of X \ (D ∪ E) such that D ∪ E
separates a and b but neither D nor E separates a and b. Let X1 = X \D,
X2 = X \ E, X0 = X \ (D ∪ E) = X1 ∩ X2. Let J be a subset of X0 such
that a,b ∈ J and J meets each path-component of X0 in exactly one point.
Since D and E do not separate a and b, there are elements α ∈ πX1(a,b)

and β ∈ πX2(a,b). Since X is path-connected, the set J is representative in
X0, X1 and X2. By 6.7.2 the following diagram of morphisms induced by
inclusions is a pushout of groupoids:

πX0J
i1 //

i2

��

πX1J

u1

��
πX2J u2

// πXJ.

Since X1 and X2 are path-connected and J has more than one element, it
follows from 8.4.1 (Corollary) that πXJ has the integers Z as a retract. 2

As an immediate application we obtain:

9.2.2 The following spaces have the PBP: the sphere Sn for n > 1; S2 \ {a}

for a ∈ S2; Sn \A if A is a finite set in Sn and n > 2. 2

In each of these cases the fundamental group is trivial.
An important step in our proof of the Jordan Curve Theorem is to show

that if A is an arc in S2, that is a subspace of S2 homeomorphic to the unit
interval I, then the complement of A is path-connected. This follows from
the following more general result.

9.2.3 Let X be a path-connected and locally path-connected Hausdorff space
such that for each x in X the space X \ {x} has the PBP. Then any arc in X has

path-connected complement.

Proof Suppose A is an arc in X and X \A is not path-connected. Let a and
b lie in distinct path-components of X \A.

By choosing a homeomorphism I→ A we can speak unambiguously of
the mid-point of A or of any subarc of A. Let x be the mid-point of A, so
that A is the union of sub-arcs A ′ and A ′′ with intersection {x}. Since X is
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Hausdorff, the compact sets A ′ and A ′′ are closed in X. Hence A ′ \ {x} and
A ′′ \ {x} are disjoint and closed in X \ {x}. Also A \ {x} separates a and b in
X \ {x} and so one at least of A ′,A ′′ separates a and b in X \ {x}. Write A1

for one of A ′,A ′′ which does separate a and b. Then A1 is also an arc in X.

In this way we can find by repeated bisection a sequence Ai, i > 1,
of sub-arcs of A such that for all i the points a and b lie in distinct path-
components of X \Ai and such that the intersection of the Ai for i > 1 is a
single point, say y, of X.

Now X \ {y} is path-connected, by definition of the PBP. Hence there is
a path λ joining a to b in X \ {y}. But λ has compact image and hence lies
in some X \Ai. This is a contradiction. 2

9.2.3 (Corollary) The complement of any arc in Sn is path-connected. 2

In this theorem the case n = 0 is trivial, while the case n = 1 needs a
special argument that the complement of any arc in S1 is an open arc. The
case n > 2 follows from the above results.

We now prove one step along the way to the full Jordan Curve Theorem.

9.2.4 (The Jordan Separation Theorem) The complement of a simple

closed curve in S2 is not connected.

Proof Let C be a simple closed curve in S2. Since C is compact and S2 is
Hausdorff, C is closed, S2 \ C is open, and so path-connectedness of S2 \ C
is equivalent to connectedness.

Write C = A ∪ B where A and B are arcs in C meeting only at a and b
say. Let U = S2 \ A, V = S2 \ B, W = U ∩ V , X = U ∪ V . Then W = S2 \ C
and X = S2 \ {a,b}. Also X is path-connected, and, by 9.2.3 (Corollary), so
also are U and V .

Let x ∈ W. Suppose that W is path-connected. By 6.7.2, the following
diagram of morphisms induced by inclusion is a pushout of groups:

π(W, x) //

��

π(U, x)

i∗

��
π(V , x)

j∗
// π(X, x).

Now π(X, x) is isomorphic to the group Z of integers. We derive a contra-
diction by proving that the morphisms i∗ and j∗ are trivial. We give the
proof for i∗, as that for j∗ is similar.
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Let f : S1 → U be a map and let g = if : S1 → X. Choose a homeomor-
phism h : S2 \ {a} → R2 which takes b to 0 and such that hg maps S1 into
R2 \ {0}. Since hg[S1] is compact, there is only one unbounded component
of R2\g[S1], and we may assume this contains 0. Again since hg[S1] is com-
pact, there is an r > 0 such that hg[S1] ⊆ B(0, r). Choose a point y in R2

such that ‖y‖ > r. Then there is a path λ, say, joining 0 to y in R2 \ hg[S1],
since 0 lies in the unbounded component of this set.

Define G : S1 × I→ R2 by

G(z, t) =

{
hg(z) − λ(2t) if 0 6 t 6 1

2
,

(2− 2t)hg(z) − y if 1
2
6 t 6 1.

Then G is well-defined. Also G never takes the value 0 (this explains the
choices of λ and y). So G gives a homotopy in R2 \ {0} from hg to the
constant map at −y. So hg is inessential and hence g is inessential. This
completes the proof that i∗ is trivial. 2

As we shall see, the Jordan Separation Theorem is used in the proof of
the Jordan Curve Theorem.

9.2.5 (Jordan Curve Theorem) If C is a simple closed curve in S2, then the

complement of C has exactly two components, each with C as boundary.

Proof As in the proof of 9.2.4, write C as the union of two arcs A and B
meeting only at a and b say, and let U = S2 \ A, V = S2 \ B. Then U and
V are path-connected and X = U ∪ V = S2 \ {a,b} has fundamental group
isomorphic to Z. AlsoW = U∩V = S2\C has at least two path-components,
by 9.2.4.

IfW has more than two path-components, then the fundamental group
G of X contains a copy of the free group on two generators, by 8.4.1 (Corol-
lary), and so G is non-abelian. This is a contradiction, since G ∼= Z. So W
has exactly two path-components P and Q, say, and this proves the first
part of 9.2.5.

Since C is closed in S2 and S2 is locally path-connected, the sets P and
Q are open in S2. It follows that if x ∈ P \ P then x /∈ Q, and hence P \ P is
contained in C. So also is Q \Q, for similar reasons. We prove these sets
are equal to C.

Let x ∈ C and let N be a neighbourhood of x in S2. We prove N meets
P \ P. Since P \ P is closed and N is arbitrary, this proves that x ∈ P \ P.

Write C in a possibly new way as a union of two arcs D and E intersect-
ing in precisely two points and such that x is in the interior with respect to
D of D. Choose points p in P and q in Q. Since S2 \ E is path-connected,
there is a path λ joining p to q in S2 \E. Then λ must meetD, since p and q
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lie in distinct path-components of S2\E. In fact if s = sup{t ∈ I : λ[0, t] ⊆ P},
then λ(s) ∈ P \ P. It follows that N meets P \ P.

So P \ P = C and similarly Q \Q = C. 2

NOTES

There are many books containing a further discussion of this area. For more
on the Phragmen-Brouwer property, see [Why42] and [Wil49].
Wilder lists five other properties which he shows for a connected and lo-
cally connected metric space are each equivalent to the PBP. The above
proof of the Jordan Curve Theorem is adapted from [Mun75]; because he
does not have our Van Kampen theorem for non-connected spaces, he is
forced into rather special covering space arguments to prove his replace-
ments for 9.1.9 (Corollary) and for 9.2.1. As far as I am aware, 9.2.1 and
9.2.2 are not previously published.

A different kind of proof of the Jordan Curve Theorem is given in
[Mae84]; this uses only the Brouwer Fixed Point Theorem and the Tietze
Extension Theorem.

An important strengthening of the Jordan Curve Theorem is the Schoen-
flies Theorem: if C is a simple closed curve in S2 then each component of

S2 \ C is homeomorphic to R2; in fact, there is a homeomorphism h : R2 →
R2 which takes C to the standard circle S1. For more information on
this area, see for example [Moi77], [Bin83], [Sie05], and the web site
www.maths.ed.ac.uk/~aar/jordan/.

For exercises in this area, see [Mun75].
An important part of algebraic topology deals with braids, links and

mapping class groups [Bir75], but the results on groupoids given here in
this book have hardly been used in that area.

www.maths.ed.ac.uk/~aar/jordan/
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Chapter 10

Covering spaces, covering

groupoids

The notion of a covering space is of interest for several reasons. First, the

construction of a covering space X̃ from a given space X (which we give in

section 10.5) is useful since the structure of X̃ is in a sense simpler than that

of X (X̃ has a ‘smaller’ fundamental group than X). Second, the method of
studying a given space X by means of particular kinds of maps into X is
of wide importance in topology—the covering maps onto X exemplify this,
and indeed form a particular example of the fibre maps whose ramifica-
tions extend through topology, differential geometry, analysis, and even
algebra. Third, and most important from the point of view of this book, the
topology is here very nicely modelled in the notion of covering morphism
of groupoids. With this account, we give a further aspect of combinatorial
groupoid theory, and one which is important for applications to topology
and to group theory. It may be that the results of the next chapter will also
come to be seen in this light.

These results also imply that the fundamental group of the circle is in-
finite cyclic, and indeed this is the classical method of proof. However the
groupoid viewpoint adds new insight to this and other results.

The main result is the equivalence of categories between the category
of covering maps of a ‘locally nice’ space X and the category of covering
morphisms of the fundamental groupoid πX. In this way, we really do
show a tight analogy between topology and algebra. The method of proof
gives tighter results than those usually given, and has also been applied to
other situations, such as when X is a topological group.

We shall use additive notation for groupoids in this chapter.

361
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10.1 Covering maps and covering homotopies

Throughout this chapter all spaces will be assumed locally path-connected

(or proved to be so). This assumption is not essential for all the results (for
an alternative approach see [HW60] or [Spa66]) but it does seem to lead
to a smoother theory; also the study of covering maps for spaces which are
not locally path-connected is something of a curiosity.

Definitions Let p : X̃→ X be a map of topological spaces. A subset U of X
is called canonical (with respect to p) ifU is open, path-connected, and each

path-component of p−1[U] is open in X̃ and is mapped by p homeomorphi-
cally onto U; each path-component of p−1[U] is also called canonical. The
map p is called a covering map if each x in X has a canonical neighbour-

hood; and in such case X̃ is called a covering space of X. The covering map

p is called connected if both X̃ and X are path-connected.

The local picture of a covering map is thus that of Fig. 10.1(a).

}
(a)

U

p

p−1[U]

(b)

−1 1

q

Fig. 10.1

EXAMPLES

1. Consider the map p : R→ S1, t 7→ e2πit. The sets

U1 = S1 \ {1}, U−1 = S1 \ {−1}

form an open cover of S1. The path-components of p−1[U1] (respectively
p−1[U−1]) are open intervals ]n,n+ 1[ (respectively ]n− 1

2
,n+ 1

2
[ ) for all

n ∈ Z. So p is a covering map. A good picture of p is obtained by writing
p = qr where r : R → R2 × R is t 7→ (pt, t) and q : R2 × R → R2 is the
projection. Thus the image of r is the helix of Fig. 10.1(b).
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2. Let f : S1 → S1 be the map z 7→ zn, where n is a non-zero integer. It
is easily proved by using the sets U1,U−1 of Example 1 that f is a covering
map.

3. If p : X̃→ X is a covering map, then for each x in X the subspace p−1[x]

of X̃ is a discrete space—this follows from the fact that if U is a canonical

set then the path-components of p−1[U] are open in X̃. It follows that the
fundamental map p : Rn+1

∗ → Pn(R) is not a covering map.
4. However, let i : Sn → Rn+1

∗ be the inclusion so that h = pi is the
Hopf map. Let Ui be the subset of Pn(R) of points px such that the ith
coordinate of x is non-zero. The sets Ui, i = 1, . . .n+1 form an open cover
of Pn(R). The path-components of h−1[Ui] are two open hemispheres of Sn

each of which is mapped homeomorphically by h onto Ui. (For example,
h−1[Un+1] = Sn \ Sn−1.) Therefore, h is a covering map.

Let p : X̃→ X be a covering map. If the diagram of maps

X̃

p

��
Y

f

@@�������������

h
// X

is commutative, then we say f is a lifting of h, or that f covers h. We shall
see that the central properties of covering maps are concerned with liftings;
for example, we have the following covering homotopy property.

10.1.1 Let p : X̃ → X be a covering map and suppose given a commutative

diagram of maps (in which i is z 7→ (z, 0))

Z
f //

i

��

X̃

p

��
Z× [0, r]

H
// X

so that H is a homotopy of pf. Then H is covered by a unique homotopy

F : Z× [0, r]→ X̃ of f.

Proof Since Z is locally path-connected, each path-component of Z is open
in Z. Therefore, it is sufficient to work in each path-component of Z at a
time, that is, to assume Z is path-connected.
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Step 1. Suppose that ImH is contained in a canonical subset U of X.
Since Z is path-connected, Im f is contained in a path-component V of
p−1[U]. Let pV be the inverse of the homeomorphism p | V ,U. Then
the map

F : Z× [0, r]→ X̃

(z, t) 7→ pVH(z, t)

is a homotopy of f which covers H. Since Z × [0, r] is path-connected, it is
also the only such homotopy of f.

Step 2. Suppose that the homotopy H is a sum

H = Hn + · · ·+H1

such that the image of each Hi is contained in a canonical subset of X.
By Step 1, we can define inductively unique homotopies Fi : fi ≃ fi+1,
i = 1, . . . ,n, such that f1 = f and Fi covers Hi. Clearly,

F = Fn + · · ·+ F1

is a homotopy of f which covers H. If F′ is any other homotopy of f which
covers H, then the given subdivision of H determines a subdivision F′ =

F′n + · · · + F′1. It follows by induction that F′i = Fi, i = 1, . . . ,n and so
F′ = F.

Step 3. Let z ∈ Z. We use Step 2 to show that the result is true with Z
replaced by some neighbourhood Mz of z.

For each t in [0, r] there are open neighbourhoodsMt,Nt of z, t respec-
tively such that H[Mt×Nt] is contained in a canonical subset of X. The set
{Nt : t ∈ [0, r]} is an open cover of [0, r] which, by compactness, has a finite
subcover {Nt : t ∈ A} say. Let

M =
⋂

t∈A

Mt

and let Mz be an open path-connected neighbourhood of z contained in
M.

Let l be the Lebesgue number of the cover {Nt : t ∈ A} and let n be
an integer such that 0 < r/n < l/2. For each i = 1, . . . ,n the interval
Li = [(i − 1)r/n, ir/n] is contained in some Nt, t ∈ A, and so H[Mz × Li]
is contained in a canonical subset of X.

Let Hz
i be the homotopy

Mz × [0, r/n]→ X

(w, t) 7→ H(w, (i − 1)r/n+ t)
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and let

Hz = H |Mz × [0, r] = Hz
n + · · ·+Hz

1.

By Step 2, Hz is covered by a unique homotopy Fz of f |Mz.

Step 4. Let F : Z × [0, r] → X̃ be the function (z, t) 7→ Fz(z, t). The
uniqueness part of the above argument shows that for each z ∈ Z

F |Mz × [0, r] = Fz.

Since Mz is a neighbourhood of z, it follows that F is continuous. Clearly, F
is the unique homotopy of f covering H. 2

Our main use of the covering homotopy property is to prove the follow-
ing path lifting property.

10.1.2 Let p : X̃ → X be a covering map, let x̃ ∈ X̃ and let x = px̃. Then
paths a,b in X with initial point x lift uniquely to paths ã, b̃ with initial point

x̃; and a is equivalent to b if and only if ã is equivalent to b̃.

Proof The existence and uniqueness of ã (and also b̃) is immediate from
10.1.1 by taking Z to consist of a single point z and defining

fz = x̃, H(z, t) = at, t ∈ [0, r], r = |a|.

Suppose next that a,b are paths from x to y of length rwhich are homo-
topic rel end points. Then, twisting the usual way of writing a homotopy,
there is a map

H : I× [0, r]→ X

such that

H(s, 0) = x, H(s, r) = y, s ∈ I

H(0, t) = at, H(1, t) = bt, t ∈ [0, r].

Let f : I → X̃ be the constant map with value x̃. Then H is a homotopy of
pf and so, by 10.1.1, H is covered by a unique homotopy F of f.

The paths in X̃

t 7→ F(0, t), t 7→ F(1, t)

have initial point x̃ and cover a,b respectively; so these paths are ã, b̃ re-
spectively. The path s 7→ F(s, r) covers the constant path at y and so (by
uniqueness) is itself constant; the path s 7→ F(s, 0) is constant by definition
of F. Therefore, F (suitably twisted) is a homotopy rel end points ã ≃ b̃.
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Finally, if there are real numbers s, s ′ > 0 such that s + a, s ′ + b are
homotopic rel end points, then s+ ã, s ′ + b̃ cover s+ a, s ′ + b respectively,
and hence ã is equivalent to b̃. 2

Remark In fact, we shall use only the consequence 10.1.2 of 10.1.1 and not
10.1.1 itself. A simpler proof of 10.1.1 can be given in the case Z = [0,q]

by subdividing the rectangle [0,q]× [0, r] into rectangles so small that each
is mapped by H into a canonical subset of X. But the interest of 10.1.1
is that, provided the word uniqueness is omitted, it applies to many other
situations. For example, the fundamental map Kn+1

∗ → Pn(K) satisfies
this weaker covering homotopy property—this follows from Exercise 8 of
Section 5.3 and results of [Dol63] (see also [Spa66, 2.7.12]).

EXERCISES

1. Which of the following maps are covering maps?

(i) R→ R, x 7→ x2.

(ii) R→ R, x 7→ x3.

(iii) R∗ → R∗, x 7→ x2.

(iv) S1 → S1, eiθ 7→ e2i|θ| (−π < θ 6 π).

(v) ]0, 3[→ S1, t 7→ e2πit.

2. Let f : Y ′ → Y, g : X → X ′ be homeomorphisms and let p : Y → X be a covering

map. Prove that gpf : Y ′ → X ′ is a covering map.

3. Let p : X̃ → X be a covering map, let f : Y → X̃ be a map, let i : A → Y be an

inclusion and let G : A× I→ X̃ be a homotopy of f | A. Prove that, if H : Y × I→ X

is a homotopy of pf which agrees with pG on A, then H is covered by a homotopy

F of f such that F extends G. Deduce that for any map u : A → X̃, p induces an

injection p∗ : [(Y, i), (X̃,u)]→ [(Y, i), (X,pu)].

4. Prove that 10.1.1 is true without the assumption that Z is locally path-connected.

5. Let p : X̃→ X be a covering map and let f : Y → X be a map. Let

X̃f = {(y, x̃) ∈ Y × X̃ : fy = px̃}

and let pf : X̃f → Y be the restriction of X̃f of the projection Y × X̃→ Y. Prove that

X̃f is locally path-connected. Prove also that pf is a covering map. Prove also that f

lifts to X̃ if and only if there is a map s : Y → X̃f such that pfs = 1.

6. Let p : X̃ → X be a covering map and let i : A → X be the inclusion of the

subspace A of X. Prove that if q = p | p−1[A],A then there is a homeomorphism

g : X̃i → p−1[A] such that qg = pi (where X̃i,pi are as in the previous exercise).

7. Let G be the sheaf of germs of continuous functions from R to R [Exercise 3 of

Section 2.10]. Prove that the projection p : G → R, fx 7→ f(x), is not a covering

map.
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8. Give another proof of 10.1.1 on the following lines. First prove it is true when Z

consists of a single point. In the general case, we then have that for each z in Z then

map H | {z}× [0, r] lifts to a homotopy F | {z}× [0, r] of f | {z}. So we have a function

F : Z× [0, r]→ X̃. Prove that F is continuous by supposing that F is non-continuous

and obtaining a contradiction by considering the infinum of the set of t such that F

is not continuous at some (z, t).

9. Let p : X̃ → X be a connected covering map which is non-trivial (i.e., it is not

a homeomorphism). Let Y = X × X × X × · · · be the countable product of X with

itself, and let X̃n be the n-fold product of X̃ with itself. Let Ỹn = X̃n × Y. Define

pn : Ỹn → Y by (x̃1, . . . , x̃n,x1, x2, . . . ) 7→ (px̃1, . . . ,px̃n, x1, x2, . . . ). Prove that pn
is a covering map. Let

Z̃ = ⊔n>1Ỹn

and let Z be the countably infinite topological sum of Y with itself. Let q = ⊔pn :

Z̃→ Z and let r : Z→ Y be the obvious projection. Prove that q and r are covering

maps but that the composite rq is not a covering map.

10.2 Covering groupoids

In this section we shall show how covering spaces are modelled in the cat-
egory of groupoids.

Let G be a groupoid. For each object x of G the star of x in G, denoted
by StG x, is the union of the sets G(x,y) for all objects y of G. Thus StG x

consists of all elements of G with initial point x. When no confusion will
arise we abbreviate StG x to St x.

Definition Let p : G̃ → G be a morphism of groupoids. We say p is a

covering morphism if for each object x̃ of G̃ the restriction of p

St
G̃
x̃→ StG px̃

is bijective; in such case, we call G̃ a covering groupoid of G. The covering

morphism p is called connected if both G̃ and G are connected.

For any morphism p : G̃ → G and object x̃ of G̃ we call the subgroup

p[G̃(x̃)] of G(px̃) the characteristic group of p at x̃—by an abuse of lan-

guage, we also refer to this group as the characteristic group of G̃, x̃. If p

is a covering morphism, then p maps G̃(x̃) isomorphically onto this charac-
teristic group; also, if a ∈ G(px̃), then there is a unique element ã of St x̃

such that pã = a, but ã will be a loop, that is ã will belong to G̃(x̃), if and

only if a itself belongs to the characteristic group of G̃, x̃.

The sense in which a characteristic group of a covering morphism p

characterises p will be discussed later.
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EXAMPLES

1. Recall that I is a simply-connected groupoid with two objects 0, 1 and
one element ı of I(0, 1). If 0 denotes ambiguously the zero of I at 0 or 1, we
have

StI 0 = {0, ı}, StI 1 = {0,−ı}.

In the group Z2 (which has one object 0 say)

StZ2
0 = {0, 1}.

Hence if p : I → Z2 is the unique morphism such that pı = 1, then p is a
covering morphism. Also each characteristic group of p is trivial.
2. In the group Z3 (with one object 0)

StZ3
0 = {0, 1,−1}.

Hence, although the morphism p : I→ Z3 which sends ı to 1 and −ı to −1

is surjective on the elements, p is not a covering morphism.
3. For groups, the only covering morphisms are isomorphisms.

We now show the utility for topology of covering morphisms.

10.2.1 Let p : X̃ → X be a covering map, let A be a subset of X and let

Ã = p−1[A]. Then the induced morphism

πp : πX̃Ã→ πXA

is a covering morphism.

Proof Let x̃ ∈ Ã and let px̃ = x. For each path a in Xwith initial point x, let

ã denote the unique covering path of X̃ with initial point x̃. If the final point

of a is in A, then the final point of ã is in Ã. Also, the equivalence class of
ã depends only on the equivalence class of a (by 10.1.2). So the function
clsa 7→ cls ã is inverse to the restriction of p which maps St x̃ 7→ St x. 2

Once more we obtain:

10.2.1 (Corollary 1) The circle S1 has fundamental group isomorphic to the

integers Z.

Proof Let p : R→ S1 be the covering map t 7→ e2πit so that

p ′ = πp : πRZ→ π(S1, 1)

is a covering morphism. Now πRZ is 1-connected: so for each n ∈ Z there
is a unique element τn of πR(0,n). Of course, τ1 is represented by the path
I → R, t 7→ t, while τn+1 − τn—the unique element of πR(n,n + 1)—is
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represented by the path I→ R, t 7→ t+ n. It follows from the definition of
p that

p ′(τn+1 − τn) = p
′τ1.

Hence, if τ = p ′τ1, then

p ′τn = p ′(τn − τn−1) + · · · + p ′(τ2 − τ1) + p
′τ1

= nτ.

Since p ′ is a covering morphism, p ′τn 6= 0, and so

nτ 6= 0.

Also, if a ∈ π(S1, 1), then a = p ′τn for some n and hence

a = nτ.

This shows that π(S1, 1) is an infinite cyclic group with generator τ. 2

10.2.1 (Corollary 2) For n > 1, real projective n-space Pn(R) has fundamen-

tal group isomorphic to Z2.

Proof The Hopf map h : Sn → Pn(R) is a covering map, and by the proof
of 9.1.7 Sn is 1-connected for n > 1. Let x̃,−x̃ be antipodal points of Sn

and let x = hx̃ = h(−x̃). By 10.2.1, the morphism

πh : πSn{x,−x}→ π(Pn(R), x)

is a covering morphism. However, the groupoid πSn{x̃,−x̃} is isomorphic
to I. It follows that the group π(Pn(R), x) has two elements, and so is
isomorphic to Z2. 2

We give in this section some simple results on covering groupoids.

10.2.2 Let p : G̃→ G be a covering morphism such that G is connected. If a,

b are any elements of G, then p−1[a], p−1[b] have the same cardinality.

Proof Suppose c ∈ G(x,y). It is an easy deduction from the definition of
covering morphism that the functions

p−1[c]→ p−1[x], p−1[c]→ p−1[y]

which send an element of p−1[c] to its initial and its final point respectively,
are both bijections.

Suppose now a ∈ G(x, x1), b ∈ G(y,y1). Since G is connected, there is
an element c in G(x,y) and we deduce

|||
|

p−1[a] = |||
|

p−1[x] = |||
|

p−1[y] = |||
|

p−1[b].
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2

In particular, if p−1[a] has n elements for each a in G, then we call p
an n-fold covering morphism. We shall see later that for connected covering
morphisms, this number n is the index in G(px̃) of the characteristic group

of p at x̃ (x̃ ∈ Ob(G̃)).

10.2.3 Let r : K → H, q : H → G be morphisms of groupoids. If q and r

are covering morphisms, so also is qr. If q and qr are covering morphisms, so

also is r. If r and qr are covering morphisms and Ob(r) is surjective, then q
is a covering morphism.

Proof Let x ∈ Ob(K) and consider the composite (qr) ′ = q ′r ′

StK x
r′

−→ StH rx
q′

−→ StG qrx

where q ′, r ′ are induced by q, r. Clearly, if any two of q ′, r ′, and q ′r ′ are
bijections, then so is the third. For the last part one needs that any y in
Ob(H) is rx for some x. 2

It is not hard to prove for spaces the result corresponding to the one
part of 10.2.3. The other part is more tricky (it is false in general) and will
be left till an exercise in section 10.5.

10.2.4 If r : Z → Y, q : Y → X are maps of spaces such that qr and q are

covering maps, then r is a covering map.

Proof Let x ∈ X, let U be a canonical neighbourhood of x for the map q,
and let V be a canonical neighbourhood of x for the map qr. Let W be an
open, path-connected neighbourhood of x contained in U ∩ V . Clearly, W
is canonical for both q and qr (since any open, path-connected subset of a
canonical set is again canonical).

For each y in q−1[x], let Wy be the path-component of q−1[W] which
contains y—these sets Wy are disjoint and open in Y. Clearly,

r−1q−1[W] =
⋃

{r−1[Wy] : y ∈ q−1[W]}

and the sets r−1[Wy] are disjoint and open in Z. Therefore, each path-
component W ′ of r−1[Wy] is also a path-component of r−1q−1[W]. But
qr |W ′,W and q |Wy,W are homeomorphisms. Therefore r |W ′,Wy is a
homeomorphism. 2
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EXERCISES

1. Let f : S1 → S1 be the map z 7→ zn, where n is a non-zero integer. Prove that the

induced map πf : π(S1, 1)→ π(S1, 1) is multiplication by n.

2. Let p : G̃ → G be a covering morphism. Prove that if G is connected and G̃ is

non-empty then Ob(p) is surjective.

3. Prove that a 1-fold covering morphism is an isomorphism.

4. Let p : X̃→ X be a covering map of spaces such that X is path-connected. Prove

that the sets p−1[x] have the same cardinality for all x in X, and that if X̃ is non-

empty then p is surjective.

5. Let r : Z→ Y, q : Y → X be covering maps such that q−1[x] is finite for each x in

X. Prove that qr is a covering map.

6. Show that the notion of covering morphism for groupoids extends to functors

of categories in such a way that if p : X̃ → X is a covering map of spaces, then

Pp : PX̃→ PX is a covering functor of categories.

10.3 On lifting sums and morphisms

Let p : G̃ → G be a covering morphism. Because of the analogy with the

fundamental groupoid of covering spaces, we say that an element ã of G̃

covers, or is a lifting, of pã; similarly, we say a sum ãn+ · · ·+ã1 in G̃ covers,
or is a lifting, of pãn+ · · ·+pã1. The basic property of covering morphisms

is that not only elements of G but also sums in G can be lifted into G̃.

10.3.1 Let x̃ be an object of G̃ and let px̃ = x. If

a = an + · · · + a1

belongs to St x, then there are unique elements ãn, . . . , ã1 of G̃ such that

(a) pãi = ai, i = 1, . . . ,n

(b) ã = ãn + · · ·+ ã1 is defined and belongs to St x̃.

Proof Since p : St ỹ → Stpỹ is bijective for each object ỹ of G̃, the ele-
ments ãi are uniquely defined by the inductive conditions (i) pãi = ai, (ii)
ã1 ∈ St x̃, (iii) ãi ∈ St x̃i where x̃1 = x̃ and x̃i is the final point of ãi−1 for
i > 1. 2

As mentioned in the last section, the characteristic group of G̃, x̃ (that is,

the subgroup p[G̃(x̃)] of G̃(px̃)) plays an important rule in the theory. The
relationship of these groups for various x̃ is described in the next result.

First we need a definition: subgroups C of G(x), D of G(y) are called
conjugate (in G) if there is an element c of G(x,y) such that

c+ C− c = D.
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This relation implies easily that −c+D+ c = C.

10.3.2 Let C be the characteristic group of G̃, x̃.

(a) If D is the characteristic group of G̃, ỹ, and x̃, ỹ lie in the same component

of G̃, then C and D are conjugate.

(b) If D is a subgroup of G(y) and D is conjugate to C, then D is the charac-

teristic group of G̃, ỹ for some ỹ.

Proof (a) Let ã be an element of G̃(x̃, ỹ) and let a = pã. If c ∈ C, then

c is covered by an element c̃ of G̃(x̃). By 10.3.1, a + c − a is covered by

ã + c̃ − ã, which is an element of G̃(ỹ). Therefore a+ c− a belongs to D.
This proves (a).

(b) Suppose a + C − a = D where a ∈ G(x,y). Let ã be an element of
St x̃ covering a, let ỹ be the final point of ã, and let D ′ be the characteristic

group of G̃, ỹ. We prove that D = D ′.

If d ∈ D, then d = a + c − a, where c ∈ C. It follows that d is covered
by an element ã + c̃ − ã of G̃(ỹ), whence d ∈ D ′. Conversely, if d ∈ D ′,

then d is covered by an element d̃ of G̃(ỹ), whence d = a + c − a where
c = p(−ã+ d̃+ ã) ∈ C. 2

We shall now show the sense in which the characteristic group of G̃, x̃ is

characteristic. It is convenient to work in the category of pointed groupoids:
a pointed groupoidG, x consists of a groupoidG and object x ofG. A pointed

morphism G, x → H,y of pointed groupoids consists of G, x and H,y and
a morphism f : G → H such that fx = y; such a pointed morphism is
usually called a morphism G, x → H,y and is often denoted simply by
f. The characteristic group of a pointed morphism f : G, x → H,y is the
characteristic group of f at x.

If p : G̃, x̃ → G, x is a pointed morphism, then we say p is a covering

morphism if the morphism p : G̃ → G is a covering morphism. Similarly, if
we are given a commutative diagram of pointed morphisms

G̃, x̃

p

��
F, z

f̄

>>|||||||||||||

f
// G, x

then we say f̃ is a lifting of f.
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10.3.3 Let p : G̃, x̃ → G, x be a covering morphism, and f : F, z → G, x a

morphism such that F is connected. Then f lifts to a morphism f̃ : F, z→ G̃, x̃
if and only if the characteristic group of f is contained in that of p; and if this

lifting exists, then it is unique.

Proof Suppose first that f̃ exists; the relation pf̃ = f implies

f[F(z)] ⊆ p[G̃(x̃)]

and this proves the necessity of the condition.

Suppose, conversely, that the characteristic group of f is contained in the

characteristic group C of p. Since p restricts to an isomorphism G̃(x̃)→ C,
the morphism

f : F(z)→ G(x)

lifts uniquely to a morphism

f̃ : F(z)→ G̃(x̃).

For each object v of F let τv be an element of F(z, v) (with τz = 0). If
a ∈ F(u, v) then a can be written uniquely as

a = τv + a
′ − τu

with a ′ ∈ F(z); and if, further, b ∈ F(v,w), then (b + a) ′ = b ′ + a ′. Now
each element fτv is covered by a unique element f̃τv of St x̃; so we define

f̃a = f̃τv + f̃a
′ − f̃τu

and it follows that

f̃b + f̃a = f̃τw + f̃b ′ + f̃a ′ − f̃τu

= f̃τw + f̃(b + a) ′ − f̃τu

= f̃(b + a).

Therefore f̃ is a morphism.

Clearly f̃ lifts f. Also any morphism which lifts f must agree with f̃ on
F(z) and on the elements τv; therefore, such a lifting must coincide with f̃.
This proves the uniqueness of the lifting. 2

10.3.3 (Corollary 1) If p : G̃, x̃ → G, x and q : H̃, ỹ → G, x are connected

covering morphisms with characteristic groups C,D respectively, and if C ⊆
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D, then there is a unique covering morphism r : G̃, x̃→ H̃, ỹ such that p = qr.
If C = D then r is an isomorphism.

Proof By 10.3.3, p lifts uniquely to a morphism r : G̃, x̃ → H̃, ỹ such that
qr = p. By 10.2.3, r is a covering morphism. Finally, if C = D the usual
universal argument shows that r is an isomorphism. 2

10.3.3 (Corollary 2) A 1-connected covering groupoid of G covers every cov-

ering groupoid of G.

Proof If p : G̃, x̃→ G, x is a covering morphism and G̃ is 1-connected, then
the characteristic group of p is trivial and so contained in any subgroup of
G(x). 2

Because of 10.3.3 (Corollary 2) a 1-connected covering groupoid of G
is called a universal covering groupoid of G. The existence of such for con-
nected G will be proved later; its uniqueness, as a pointed groupoid, is a
consequence of the last part of 10.3.3 (Corollary 1).

EXERCISES

Throughout these exercises we suppose given a covering morphism p : G̃, x̃ →
G, x.

1. Let a,b ∈ G(x,y) and let c = −a + b. Let ã, b̃, c̃ be elements of St x̃ covering

a,b, c respectively. Prove that c̃ belongs to G̃(x̃) if and only if ã, b̃ have the same

end point.

2. Prove that if p is connected then the following are equivalent: (i) p is an isomor-

phism; (ii) p is bijective on objects; (iii) p has characteristic group G(x).

3. Prove that if Γ is a graph which generates G, then Γ̃ = p−1[Γ ] is a graph which

generates G̃. Prove also that if Γ generates G freely, then Γ̃ generates G̃ freely.

4. The covering morphism p is called regular if p is connected and for all a in G(x)

the elements of p−1[a] are either all or none of them loops. Prove that p is regular

if and only if p is connected and has characteristic group normal in G(x).

5. A cover transformation of p is an isomorphism h : G̃→ G̃ such that ph = p. Prove

that if p is regular, then the group of cover transformations is under composition a

group anti-isomorphic to the quotient group G(x)/p[G̃(x̃)].

6. Let p : H → G be a fibration of groupoids. Prove that if the diagram of mor-

phisms

F
f //

i

��

H

p

��
F× I

ϕ
// G



COVERING SPACES, COVERING GROUPOIDS [10.4] 375

is commutative, where i is given by a 7→ (a, 0), then there is a morphism ψ : F×I→
H such that ψi = f, pψ = ϕ. Prove further that if p is a covering morphism then

ψ is unique. [This is the covering homotopy property for fibrations and coverings of

groupoids; it would be possible, and indeed reasonable, to use this as the definition

of these terms.]

7. Let H and K be groupoids. The groupoid GPD(H,K) is defined to have objects

the morphisms H → K and morphisms from f to g the pairs (h, f) where h is a

homotopy f ≃ g. Make this construction explicit by defining the sum of homotopies

and verifying that this does give a groupoid. Prove that if H,K are groups, then

the object group of GPD(H,K) at the morphism f : H → K is isomorphic to the

centraliser of f[H] in K.

8. Prove that if also G is a groupoid, then there is a bijection

θ : Grpd(G×H,K)→ Grpd(G, GPD(H,K)).

[This is a lengthy exercise.]

9. Let p : K → L be a morphism of groupoids. Show how p induces through

composition a morphism p∗ : GPD(H,K)→ GPD(H,L) such that if p is a fibration,

then so also is p∗. Interpret the exact sequence of this fibration for specific cases.

10.4 Existence of covering groupoids

Our main purpose in this section is to prove that if x is an object of the
connected groupoid G, then any subgroup of G(x) is the characteristic gr-

oup of some covering morphism G̃, x̃ → G, x. We shall deduce this from a
more general construction of covering groupoids which is of considerable
importance even for the case G is a group.

LetG be a groupoid. An action ofG on a set consists of a set S, a function
w : S → Ob(G), and a partial function G × S  S, (g, s) 7→ g · s, which
for each x,y ∈ Ob(G), assigns to an element (g, s), where g ∈ G(x,y)
and s ∈ w−1[x], an element g · s ∈ w−1[y]. The following rules are to be
satisfied.

10.4.1 (i) If x ∈ Ob(G), s ∈ w−1[x], then 0x · s = s.
(ii) If g ∈ G(x,y), h ∈ G(y, z), s ∈ w−1[x], then

(h+ g) · s = h · (g · s).

We also say G acts on S via w, and that S is a G-set.

EXAMPLE

1. Let p : G̃→ G be a covering morphism of groupoids, and let S = Ob(G̃),
w = Ob(p). Then we obtain an action of G on S via w by assigning to s ∈ S
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and g ∈ StG ps the target of the unique lift of g with source s. This action
is one of the essential features of 10.2.2.

It follows from the rules for an action that an element g ∈ G(x,y)

defines a bijection g || || : w
−1[x] → w−1[y], s 7→ g · s. The action is said

to be transitive if for all x,y in Ob(G), s ∈ w−1[x], t ∈ w−1[y], there is a
g ∈ G(x,y) such that g · s = t. In this case, all the sets w−1[x], x ∈ Ob(G),
have the same cardinality.

If s ∈ w−1[x], the group of stability of s is the subgroup Gs of G of
elements g such that g · s = s. Such an element g is said to stabilise, or fix,
s, and s is said to be a fixed point of g.

Given such an action, the semidirect product groupoid S ⋊ G is defined
to be the groupoid with object set S and elements of (S⋊G)(s, t) the pairs
(s,g) such that g ∈ G(ps,pt) and g · s = t. The addition in S⋊G is defined
to be

(t,h) + (s,g) = (s,h+ g).

s

(s,g)

t = g · s

(t,h)

h · t

10.4.2 (a) The above construction makes S⋊G a groupoid.

(b) The projection p : S⋊G→ G, given on objects by w : S→ Ob(G) and on

elements by (s,g) 7→ g, is a covering morphism of groupoids.

(c) The groupoid S⋊G is connected if and only if the action is transitive.

(d) If s ∈ S, then the object group (S ⋊ G)(s) is mapped by p isomorphically

to Gs, the group of stability of s.

(e) The action ofG on S determined by the covering morphism p is the original

action.

Proof The proof of (a) is easy. Associativity is easily checked. The zero at
s is (s, 0ps), and the negative of (s,g) is (g · s,−g).

It is clear from the definition that p is a morphism of groupoids. Also p
is a covering morphism, because if g ∈ G(x,y), s ∈ w−1[x], then (s,g) is
the unique element of S⋊G which has source s and projects to g.

For (c), we need only note that (S⋊G)(s, t) is non-empty if and only if
there is a g in G such that g · s = t.

For (d), (S⋊G)(s) consists of those (s,g) such that g · s = s, and so this
object group is mapped by p to Gs.

Finally, (e) is clear. 2

To use this result, we need a supply of actions of a groupoid. Here is a
way of obtaining a transitive action.
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10.4.3 Let x be an object of the connected groupoid G, and let C be a sub-
group of the object group G(x). Let S be the set of (left) cosets

a+ C = {a+ c : c ∈ C}

for a in StG x. Let w : S → Ob(G) send a + C to the final point of a. Then

G acts transitively on S by g · (a + C) = g + a + C. The corresponding

connected covering morphism p : S⋊G, x̃→ G, x, where x̃ is the coset C, has

characteristic group C. Further, p−1[x] is the set G(x)/C of left cosets of C in

G(x).

Proof Suppose a ∈ G(x,y), g ∈ G(y, z). Thenw(a+C) = y,w(g+a+C) =
z. The rules 10.4.1(i) and (ii) are clearly satisfied. The action is transitive,
because if a+C, b+C are cosets, and g = b− a, then g+ a+C = b+ C.
It follows that S⋊G is connected.

The required characteristic group consists of the elements a of G such
that the coset a+C is defined and is C, and this holds if and only if a ∈ C.
Hence the characteristic group is C.

The final statement is obvious. 2

The pointed groupoid constructed in 10.4.3 is sometimes in the litera-
ture written Tr(G,C). It could also be written (G/C) ⋊ G. It is commonly
called the covering groupoid of G based on the subgroup C of G(x). The
results of the previous section show that a pointed, connected covering
morphism is determined up to isomorphism by its characteristic group, so
the particular construction of Tr(G,C) is not always needed.

10.4.3 (Corollary 1) Any connected groupoid has a universal covering

groupoid.

Proof If G is a connected groupoid, and x ∈ Ob(G), then a universal cov-
ering groupoid of G is Tr(G, 0x), where 0x is the trivial subgroup of G(x).
Notice that in this case the set on which G acts is simply StG x, and the
action is via the target map τ : StG x→ Ob(G). 2

The universal covering groupoid of G constructed in this corollary is
called the universal covering groupoid of G based at x. Note that there is no
unique universal covering groupoid of G, but only a family StG x ⋊ G of
them indexed by the objects of G.

10.4.3 (Corollary 2) A connected covering morphism G̃, x̃→ G, x is an n-fold

covering if and only if its characteristic group has index n in G(x).

Proof By 10.3.3 (Corollary 1) G̃ is isomorphic to Tr(G,C) where C is the

characteristic group of G̃, x̃. 2
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Here is a nice application of the idea of an action of a groupoid on
a set. Let H be a groupoid, and let N be a totally disconnected normal
subgroupoid of H. Then we can form the quotient groupoid H/N (section
8.3), which has the same objects as H, but the elements of (H/N)(x,y)
are the cosets h + N(x), or, equally, N(y) + h, for all h ∈ H(x,y). It is
convenient to write such a coset as h + N, or N + h. There is a quotient

morphism p : H→ H/N sending an element h to the coset h+N. Note that
the star of H/N at x consists of the cosets h+N(x) for all h in StH x.

Now we give an action of the groupoid H × H on the set H/N via the
function w : H/N → Ob(H) × Ob(H) which sends an element h + N ∈
(H/N)(x,y) to the pair (x,y). If a ∈ H(x,u), b ∈ H(y, v), and h + N ∈
(H/N)(x,y), then we define

(a,b) · (h+N) = b + h− a+N ∈ (H/N)(u, v).

This can be conveniently represented by the diagram

x
a //

h+N

��

u

b + h− a+N

��
y

b
// v.

The rules for an operation are easy to verify, using the normality of N,
which gives h+N = N+ h for all h in H. Hence if h+N = k +N then

b+ h− a+N = b + h+N − a

= b + k +N− a

= b + k − a+N

so that the operation is well defined. Clearly (0x, 0y) · (h +N) = h +N. If
further c ∈ H(u,w), d ∈ H(v, z), then

(c,d) · (b + h− a+N) = d + b+ h− a− c+N

= (c+ a,d+ b) · (h+N),

as required.

Let (x,y) be an object ofH×H. Then the group of stability of the action
at (x,y) consists of pairs (a,b) ∈ H(x)×H(y) such that b+h−a+N = h+N,
or, equivalently,

b + h+N = h+ a+N.
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Let �NH be the semidirect product groupoid (H/N) ⋊ (H × H). Then the
object group of �NH at the object (x, x) consists of pairs (a,b) such that
a,b ∈ H(x) and a +N(x) = b +N(x). Thus (�NH)(x, x) is isomorphic to
the semidirect product group N(x)⋊H(x), which consists of pairs (n,a) ∈
N(x)×H(x) with addition

(n,a) + (n ′,a ′) = (−a ′ + n + a ′ + n ′,a+ a ′)

the isomorphism being given by

(a,b) 7→ (−b + a,b).

A special case of this construction is when N is trivial, i.e. consists
only of the zeros of H. Then we write 0 for N, and find that (�0H)(x) is
isomorphic to H(x).

Going back to the general case, let ψ be the composite

�NH→ H×H→ H

of the covering morphism and the first projection. If x is an object of H,
then the groupoid ψ−1[0x] is precisely the covering groupoid Tr(H,N(x))
of H determined by the subgroup N(x) of H(x). Thus the groupoid �NH

gives a global description of the union of all the covering groupoids of
H determined by the subgroups N(x) for all objects x of H. This global
description is, of course, restricted to the case of normal subgroups. We
will study this case further under the term regular covering groupoids in
section 10.6.

We will use these constructions in the next section to give a convenient
topology on the groupoid (πX)/N for a normal totally disconnected sub-
groupoid of the fundamental groupoid πX, for suitable X.

Remark In the theory of groups it is embarrassing that a subgroup C of a
group G determines a quotient group G/C if C is normal in G, but in the
general case it seems to determine nothing. In fact the action of G on the
set of cosets G/C is important, and this action is nicely represented in the
theory of groupoids by the covering morphism (G/C) ⋊ G → G. Thus if
we regard a group as a groupoid, then a subgroup of a group determines a
structure of the same type. More generally, actions of groups on sets play
an important role in the applications of groups, for example in enumeration
questions such as determining the numbers of necklaces with given num-
bers of beads of various colours, and in chemistry determining the numbers
of isomers of a given type. Some problems involving group actions are con-
veniently formulated in terms of the exact sequence of a covering discussed
in the exercises.
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EXERCISES

1. Let p : G̃→ G be a covering morphism of groupoids and let x̃ ∈ Ob(G̃). Let S be

the set p−1[px̃]. Show that the exact sequence of a fibration specialises to the exact

sequence

0→ G̃(x̃)→ G(px)→ S→ π0G̃→ π0G,

where exactness is formulated in section 7.2 for a fibration of groupoids. Show how

in the case G is a group, this sequence includes the information given by Lagrange’s

theorem on the index of a subgroup.

2. Let G be a group acting on a set S and let H be a group acting on a set T . Let

θ : G → H be a morphism of groups, and let ϕ : S → T be a function. Assume

that for all g ∈ G and s ∈ S, ϕ(g · s) = (θg) · (ϕs). Show that the function

ψ : S⋊ G→ T ⋊H given by (s,g) 7→ (ϕs, θg) is a morphism of groupoids and that

ψ is a fibration if and only if θ is surjective.

3. Continuing the notation of Exercise 2, let K = Kerθ, let s ∈ S and let F =

ϕ−1[ϕs]. Show that if g ∈ K then g · F ⊆ F, and that ψ−1[ϕs] = F ⋊ K. Assume

now that θ is surjective. Show how the exact sequence of a fibration gives rise to

an exact sequence of groups and pointed sets

1→ Ks → Gs → Hϕs → F/K→ S/G→ T/H

and describe the exactness properties in detail. Interpret this exact sequence in the

case that T is a singleton.

4. Assume that θ : G → H is an epimorphism of groups and that K = Kerθ. Let

G,H and K act on themselves by conjugation. Prove that if s ∈ G then there is an

exact sequence

1→ CK(s)→ CG(s)→ H→ [K]→ [G]→ [H]

where CG(s), the centraliser of s in G, is the set of g ∈ G such that g + s = s + g,

and [G] is the set of conjugacy classes of G. [Exercises 2, 3, 4 are from [HK82].]

5. Let H be a groupoid with object set X. An admissible section of H is a function

u : X → H such that ux has source x for all x ∈ X and the function sending x to

τux, the target of ux, is a bijection X → X. Prove that the set Γ(H) of admissible

sections of H is a group under the product vu : x 7→ vτux+ux. Prove that Γ(H) acts

on X by u · x = τux. Let G be a group acting on X. Prove that there is a bijection

between the set of morphisms f : G → Γ(H) such that (fg) · x = g · x for all x ∈ X,

and the set of morphisms X ⋊ G → H which are the identity on X. [The group of

admissible sections has an old history in work of [Ehr80].]

6. Let p : Y → X be a function of sets X,Y and let H be a groupoid with object set

Y. Define a groupoid p!(H) with object set X and an action of p!(H) on Y via p as

follows. The elements from x to x ′ are the functions u : p−1[x]→ H such that u(y)

has source y and target in p−1[x ′] and y 7→ τu(y) is a bijection p−1[x] → p−1[x ′].

The addition is given by

v+ u : y 7→ v(τuy) + u(y).
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The action is u · y = τu(y). Generalise Exercise 5 to obtain, for G a groupoid on X

operating on Y via p, a bijection of morphisms f : G→ p!(H) which are the identity

on objects and satisfy f(g) · y = g · y, and morphisms f∗ : Y ⋊G→ H which are the

identity on objects. [Exercises 5 and 6 are in [Cha77].]

7. Prove that a subgroup C of a free group G is free, and that if G is of rank r and

C is of index n in G, then C is of rank nr−n+ 1. [Construct G̃ = Tr(G,C) and use

Exercise 2 of Section 10.3 and 8.2.1(c).]

8. Let R be a ring and I a left ideal of R; then, considering I simply as a subgroup of

the abelian group R, we can form the groupoid Tr(R, I). What additional structure

can be put on this object by using the multiplication? [This is more of a research

project than an exercise! Are the algebroids of [Mit85] relevant?]

9. Let G be a groupoid and let Cov(G) be the category whose objects are covering

morphisms p : G̃ → G and whose morphisms from p : G̃ → G to p ′ : G̃ ′ → G are

determined by p,p ′ and a morphism r : G̃ → G̃ ′ such that p ′r = p. Prove that

Cov(G) is equivalent to the category Fun(G,Set) [Exercise 6 of Section 6.6]. [If

p : G̃ → G is a covering morphism, define a factor Lp : G → Set which on objects

sends x 7→ p−1[x], and if a ∈ G(x,y), x̃ ∈ p−1[x], then Lp(a)(x̃) is to be the target

of the element ã which starts at x̃ and covers a.]

10.5 Lifted topologies

In this section we apply the previous results to prove the existence of liftings
of maps and the existence of covering spaces—that is, we prove topological
theorems corresponding to 10.3.3 and 10.4.1. However this correspon-

dence is not complete since the existence of a covering map X̃→ X implies
a local condition on X. (We recall that all spaces are, in any case, assumed
locally path-connected.)

We introduce some useful language. If f : H → G is a morphism of
groupoids, and x ∈ Ob(G), then χf(x) denotes G(x) if f−1[x] is empty, and
otherwise denotes the intersection of the characteristic groups of f at y for
all y ∈ f−1[x]. Thus χf is a wide, totally disconnected subgroupoid of G.

The notion of characteristic group and of χf will be used for maps of
spaces. More precisely, if f : Y → X is a map, then the characteristic group

of f at y is simply the characteristic group of πf : πY → πX at y; and this
group is also called the characteristic group of f : Y,y → X, fy or even, by
an abuse of language, the characteristic group of Y,y. Similarly, we write
χf for χπf, so that χf is a subgroupoid of πX.

Let X be a space and let χ be any wide subgroupoid of πX. A subset U
of X is called weakly χ-connected if for all x in U the characteristic group
at x of the inclusion U → X is contained in χ(x). Clearly, any subset of a
weakly χ-connected set is again weakly χ-connected.

We say X itself is semi-locally χ-connected if each x in X has a weakly
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χ-connected neighbourhood; if χ is simply connected, this is also expressed
as: X is semi-locally simply-connected. Our first result shows the utility of
these definitions.

10.5.1 Let p : X̃→ X be a covering map. Then X is semi-locally χp-connected.

Proof Let U be a canonical subset of X. If x ∈ U and x̃ ∈ p−1[x] then

the inclusion i : U, x → X, x lifts to a map U, x → X̃, x̃. So the morphism
πU, x → πX, x lifts, and it follows that the characteristic group of U, x is
contained in the characteristic group of p at x̃. This is true for all x̃ in
p−1[x] and so the characteristic group of U, x is contained in χp(x).

Thus any canonical subset of X is weakly χp-connected. By definition of
covering map, any x in X has a canonical neighbourhood. 2

The following corollary is immediate.

10.5.1 (Corollary 1) If X is path-connected and has a 1-connected covering

space, then X is semi-locally simply-connected.

It may be proved using the methods of chapter 9 that the Hawaiian ear-
ring [cf. Fig. 9.2, p. 326] is not semi-locally simply-connected (the origin
being a ‘bad’ point) and so this space has no 1-connected covering space.

Suppose now that X is a space and

q : G̃→ πX

is a covering morphism of groupoids. Let X be semi-locally χq-connected,
and let

X̃ = Ob(G̃), p = Ob(q) : X̃→ X.

We shall use q to ‘lift’ the topology of X to a topology on X̃.
Let U be the set of all open, path-connected, weakly χq-connected sub-

sets of X. If U is any element of U consider the diagram

G̃

q

��
πU

ĩ

>>|
|

|
|

|
|

|

i
// πX

where i is induced by inclusion. By 10.3.3, i lifts to a morphism ĩ : πU→ G;

the set ĩ[U] is a subset Ũ of X̃ which we call a lifting of U. The set of all such

liftings ofU for allU in U is written Ũ. Since X is semi-locally χq-connected,

the set Ũ covers X̃.
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We need a lemma about these liftings.

Let V be path-connected and g : V → X a map such that g[V ] is con-

tained in a set U of U. Let g ′ : πV → G̃ be a lifting of πg : πV → πX, and

let Ũ be a lifting of U.

10.5.2 If g̃ = Ob(g ′), and g̃[V ] has one point in common with Ũ, then

g̃[V ] ⊆ Ũ.

Proof Let x̃ = g̃v be an element of g̃[V ] ∩ Ũ and let x = px̃ = gv. Consider
the diagram

G̃, x̃

q

��
πV , v

g ′

66llllllllllllllllllllllllll

g ′′
// πU, x

ĩ

<<yyyyyyyyyyyyyy

i
// πX, x

in which g ′′ is induced by the restriction of g and ĩ is a lifting of the mor-
phism i induced by inclusion. Both g ′ and ĩg ′′ are liftings of πg : πV , v →
πX, x. But V is path-connected, and so g ′ = ĩg ′′ (by 10.3.3). It follows that

g̃[V ] ⊆ Ũ. 2

A corollary of 10.5.2 is that if two liftings of an element U of U have
a point in common, then they coincide—that is, two liftings of U either
coincide or are disjoint.

We now prove that Ũ is a base for the open sets of a topology on X̃

[cf. 5.6.3]. Let Ũ, Ṽ be respectively liftings of elements of U, V of U, and

suppose w̃ ∈ Ũ ∩ Ṽ. Let w = pw̃ and let W be an open path-connected set
such that w ∈ W ⊆ U ∩ V; then W is weakly χq-connected and so has a

lifting W̃ such that w̃ ∈ W̃. By 10.5.2, W̃ is contained in both Ũ and Ṽ and

hence W̃ ⊆ Ũ ∩ Ṽ .

This completes the proof that Ũ is a base for the open sets of a topology

on X̃. This topology on X̃ will be called the topology of X lifted by q or
simply the lifted topology.

Suppose now that X̃ has this topology.

10.5.3 Let f : Z → X be a map. If πf : πZ → πX lifts to a morphism

f ′ : πZ→ G̃, then

f̃ = Ob(f ′) : Z→ X̃

is continuous and is a lifting of f : Z→ X. All liftings of f arise in this way.
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Proof Let z ∈ Z and let Ũ be a lifting of a setU of U such that f̃z ∈ Ũ. Then
U is a neighbourhood of fz and so there is an open neighbourhood V of z,
which may be assumed path-connected, such that f[V ] ⊆ U. Let j : V → Z

be the inclusion. Then f ′π(j) is a lifting of π(fj). By 10.5.2, f̃[V ] ⊆ Ũ. This
proves continuity of f̃.

If f̃ : Z→ X̃ is any lifting of f, then πf̃ lifts πf, and so all liftings arise in
the above way. 2

On the other hand, the lifted topology is relevant to the case of a given
covering map.

10.5.4 Let p : X̃→ X be a covering map. The topology of X̃ is that of X lifted

by πp : πX̃→ πX.

Proof LetU be a canonical subset of X. If Ũ is a path-component of p−1[U],

then the inclusion U → X lifts to a map U → X̃ with image Ũ. It follows

that Ũ is a lifting of U. Clearly, these liftings Ũ for all canonical subsets U

of X form a base for the open sets of the given topology on X̃.

On the other hand, let U be the set of open, path-connected, weakly χp-
connected subsets of X. We know that each canonical subset of X belongs

to U. Let U ∈ U, and let Ũ be a lifting of U. Because each point of U

has a canonical neighbourhood contained in U, it is easy to prove that Ũ is

open in X̃ and is mapped by p homeomorphically on to U. Therefore U is
canonical. Hence the lifted topology coincides with the given topology. 2

By combining 10.5.4 with 10.5.3 and the corollaries to 10.3.3 we obtain
the following results.

10.5.4 (Corollary 1) If p : X̃, x̃ → X, x and q : Ỹ, ỹ → X, x are connected
covering maps with characteristic groups C,D respectively, and if C ⊆ D,

then there is a unique map r : X̃, x̃ → Ỹ, ỹ such that p = qr. Further, r is a

covering map, and is a homeomorphism if C = D.

10.5.4 (Corollary 2) A 1-connected covering space of X covers every covering

space of X.

Because of 10.5.4 (Corollary 2) a 1-connected covering space of X is
called a universal covering space of X. It is a special case of the last part of
10.5.4 (Corollary 1) that any two universal covering spaces of a connected
space X are homeomorphic.

We now show that the lifted topology does give rise to a covering space.

Let q : G̃ → πX be a covering morphism, let X̃ = Ob(G̃), p = Ob(q).
Suppose also that X is semi-locally χq-connected and that U is the set of
open, path-connected, weakly χq-connected subsets of X.
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10.5.5 The lifted topology is the only topology on X̃ such that

(a) p : X̃→ X is a covering map;

(b) there is an isomorphism r : G̃ → πX̃ which is the identity on objects and

such that the following diagram commutes.

G̃
r //

q

  @
@@

@@
@@

@@
@@

@@
πX̃

πp

��
πX

Proof We first prove that if X̃ has the lifted topology then p is a covering
map.

Let Ũ be the set of liftings of elements of U, so that Ũ is a base for the
open sets of the lifted topology on X. If U ∈ U, then p−1[U] is a union of

elements of Ũ; therefore p is continuous. Also, if Ũ ∈ Ũ, then p[Ũ] ∈ U;

therefore p is open. If Ũ is a lifting of a setU of U then p | Ũ,U is a bijection

and hence a homeomorphism; since also Ũ is open in X̃, it follows that Ũ

is canonical in X̃ and U is canonical in X. Therefore p is a covering map.

We now define a morphism r : G̃ → πX̃. On objects, r is to be the

identity. Let α ∈ G̃(x̃, ỹ), and suppose qα ∈ πX(x,y). Let a : I → X be a
representative of qα; then a induces a morphism πa : πI→ πX such that

(πa)(ı) = qα

where ı is the unique element of πI(0, 1).
Since I is 1-connected, πa lifts uniquely to a morphism

a ′ : πI, 0→ G̃, x̃.

Notice that a ′(ı) is a lifting of qα, so that

a ′(ı) = α.

By 10.5.3 ã = Ob(a ′) : I→ X̃ is continuous, and we define

rα = cls ã;

clearly, rα ∈ πX̃(x̃, ỹ). Also, rα is independent of the choice of represen-
tative a in qα, since different representatives a1,a2 are equivalent and so
have equivalent liftings ã1, ã2.

Suppose that β ∈ G̃(ỹ, z̃). Then r(β+α) and rβ+ rα both lift q(β+α).
Hence r(β + α) = rβ + rα. This proves that r is a morphism and, by
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definition of r, (πp)r = q. By 10.2.3, r itself is a covering morphism. This

implies that for each x̃, ỹ in X̃

r : G̃(x̃, ỹ)→ πX̃(x̃, ỹ)

is injective. It is also surjective, since any γ in πX̃(x̃, ỹ) is covered by an

element γ̃ of St
G̃
x̃; if γ̃ ∈ G̃(x̃, ỹ ′) then rỹ = rỹ ′ and so ỹ = ỹ ′. Hence r

is an isomorphism. This proves that (a) and (b) are satisfied by the lifted
topology.

The uniqueness of a topology satisfying (a) and (b) follows from 10.5.4:
since r is the identity on objects, the topology of X lifts by q and by πp to

the same topology on X̃. 2

We now discuss covering spaces of cell complexes.

10.5.6 Let p : X̃ → X be a finite covering map and let X be a cell complex.

Then X̃ can be given a cell structure for which p is a cellular map.

Proof Let hα : Enα → X be a characteristic map for an nα-cell of X. By
10.5.3, 10.5.4, and since Enα is 1-connected, hα lifts to a map h̃α : Enα →
X̃. Since Enα is compact and X̃ is Hausdorff, h̃α is a closed map; it is also
injective on Bnα (since hα is) and so h̃α maps Bnα homeomorphically to

a subset ẽnα of X̃. That is, the open cells of X̃ are liftings of the open cells

of X. By the uniqueness of liftings of maps, these cells of X̃ are disjoint;

clearly they cover X̃.

It is clear that X̃n = p−1[Xn]. It follows that for each lifting h̃α of hα,

we have h̃α[Sn−1] ⊆ X̃n−1. The number of liftings of hα is finite. So the

maps h̃α are characteristic maps of a cell structure on X̃. The cellularity of
p is obvious. 2

A similar result is true for any covering space of a cell complex. But if

the covering is infinite then the number of cells of X̃ is infinite, and so it
is necessary for this to discuss the topology of infinite cell complexes. The
general topology useful for proving a covering space of a CW-complex is a
CW-complex is given in [Mas67, p. 183–184].

We now give an entertaining application of these results on covering
spaces.

10.5.7 If n > 2 there is no map f : Sn → S1 such that f(−x) = −fx for all x

in Sn.
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Proof Suppose there is such an f and consider the diagram

Sn
f //

h

��

S1

k

��
Pn(R)

g ′

=={
{

{
{

{
{

{

g
//_____ S1

in which h is the Hopf map and k is the map z 7→ z2. Both h, k are covering
maps which identify antipodal points of the spheres they are defined on.

By the given condition on f, kf(−x) = kfx for all x in Sn. Therefore f
defines a map g : Pn(R) → S1 such that gh = kf. Since Pn(R), S1 have
fundamental groups Z2, Z respectively, any characteristic group of g is 0.
So g lifts to a map g ′ such that kg ′ = g. Notice that

kg ′h = gh = kf

so that g ′h and f are liftings of the same map. Hence g ′h and f agree at all
points if they agree at one.

Let x ∈ Sn. Then the points g ′hx, fx are either the same or antipodal
points. In the latter case, g ′h(−x) = g ′hx = −fx = f(−x). So g ′h, f agree
at either x or −x. Hence they agree everywhere, i.e., g ′h = f. But this
implies that f(−x) = fx, and so we have a contradiction. 2

10.5.7 (Corollary 1) Let n > 2 and let g : Sn → R2 be a map. Then there

exists a point x0 in Sn such that g(x0) = g(−x0).

Proof Let h : Sn → R2 be the map x 7→ g(x)−g(−x). Then h(−x) = −h(x)
for all x in Sn.

Suppose there is no x0 in Sn such that g(x0) = g(−x0). Then h(x0) is
never zero, and so the map f : Sn → S1, x 7→ h(x)/‖h(x)‖, is well-defined.
But then f(−x) = −f(x) for all x in Sn; this is impossible by 10.5.7. 2

The above result with R2 replaced by Rn is known as the Borsuk-Ulam
Theorem. However, this more general theorem cannot be proved with the
methods treated in this book.

Here is a nice application of the lifted topology.

10.5.8 Let X be a semi-locally simply connected space, and let N be a to-

tally disconnected normal subgroupoid of πX. Then the set of elements of the

quotient groupoid (πX)/N may be given a topology such that the projection

q = (σ, τ) : (πX)/N → X × X is a covering map and for x ∈ X the target
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map τ : StπX x→ X is the covering map determined by the subgroup N(x) of
π(X, x). Further there is a canonical isomorphism of groupoids

π((πX)/N) ∼= �NπX.

Hence the fundamental group of the space (πX)/N at x is isomorphic to the

semidirect product group N(x)⋊ π(X, x).

Proof Let H = πX. In section 10.4 we constructed a covering groupoid
�NH of the product groupoid H × H such that �NH has object set H/N.
We now use 10.5.5 to lift the topology of X to give a topology on the ob-
ject set H/N of �NH. The formulae for the fundamental groupoid and
fundamental group follow.

In order to identify the subspace St(πX)/N x of (πX)/Nwith the covering

space X̃N,x of X we have to examine in more detail the lifted topology on
(πX)/N. This topology has a basis of sets (πV) + g + (πU) for g : x → y

in (πX)/N and U and V canonical neighbourhoods of x and y (where πU
and πV also denote here their images in (πX)/N). The restriction of this
topology to St(πX)/N x has a basis of sets (πV) + g, for g ∈ St(πX)/N x. So
the subspace topology is the lifted topology, as required. 2

It is also true that (πX)/N is what we call a topological groupoid—that
is, all the structure maps of this groupoid are continuous for the given

topology. Thus all the covering spaces X̃N,x of X are nicely tied together
in the one topological groupoid structure (πX)/N. However, we do not
prove this here, but refer the reader to [BD75]. For more information on
topological groupoids, we refer the reader to [Mac05] and the references
in [Bro87].

Finally for this section, we should mention an important fact about uni-
versal covers of surfaces. Many readers will be familiar with the classifi-
cation of compact, connected surfaces without boundary, as given in many

texts. The universal cover S̃ of such a surface S is known to be either the
sphere S2 or the plane R2. For a proof, see for example [Sti80]. The key
point of the proof is to show that the universal cover of the orientable sur-
face of genus two is R2.

EXERCISES

1. Prove that if q : X̃ → X, r : Ỹ → Y are covering maps, then so also is q × r :

X̃× Ỹ → X× Y.

2. Let q : X̃→ πX be a covering morphism and let X be semi-locally χq-connected.

Let U be a set of open, path-connected weakly χq-connected subsets of X such that

U is a base for the open sets of X. Let Ũ be the set of liftings of elements of U. Prove

that U is a base for the open sets of the lifted topology on X̃ = Ob(G̃).
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3. Let r : Z → Y, q : Y → X be covering maps. Prove that qr : Z → X is a covering

map if and only if X is semi-locally Xqr-connected.

4. Prove that the Borsuk-Ulam Theorem does imply 10.5.7 (Corollary 1).

5. Prove that no subspace of R2 is homeomorphic to S2.

6. Let n > 2 and g : Sn → R2 be a map such that g(−x) = −g(x) for all x in Sn.

Prove that there is a point x0 in Sn such that g(x0) = 0.

10.6 The equivalence of categories

In this section we give a more sophisticated and comprehensive view of the
previous material by showing that there is a complete ‘translation system’
from covering spaces to covering groupoids. The ‘translation system’ or dic-
tionary is given by an equivalence of categories. This itself is illustrative of a
modern trend in mathematics. Very often an equivalence of categories can
hold a lot of information, giving two different views of what is essentially
the same kinds of objects. Each view can be more appropriate and use-
ful in some circumstances than the other. The interplay can then be quite
powerful. In our particular case, the equivalence between covering spaces
of X and covering groupoids of πX gives a complete translation between
topology and algebra, and in an elegant form. This translation is important
because of the wide occurrence of covering spaces in mathematics. For a
survey of this, see [Mag76] and [DD77, DD79].

We now define the categories we wish to prove equivalent. First we give
the topological example.

Let X be a Hausdorff, locally connected space. The category CovTop(X)

of covering spaces of X has objects the covering maps p : Y → X and has
as arrows or morphisms the commutative diagrams of maps, where p and
q are covering maps,

Y
f //

p

��@
@@

@@
@@

@@
@@

@ Z

q

��~~
~~
~~
~~
~~
~~

X.

It is convenient to write such a diagram as a triple (f,p,q). The composition
in CovTop(X) is then given by (g,q, r)(f,p,q) = (gf,p, r). Note that we
make no assumption that X, Y or Z are connected. By 10.2.4, f also is a
covering map.

Let G be a groupoid. The category CovGrp(G) of covering morphisms
of G has objects the covering morphisms p : H → G and has as arrows or
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morphisms the commutative diagrams of morphisms, where p and q are
covering morphisms,

H
f //

p

  @
@@

@@
@@

@@
@@

@@
K

q

��~~
~~
~~
~~
~~
~~
~

G.

Again it is convenient to write such a diagram as a triple (f,p,q), and the
composition is as in the topological case. By 10.2.3, f also is a covering
morphism.

Now we come to our main result.

10.6.1 If X is a Hausdorff, locally connected and semi-locally 1-connected

space, then the fundamental groupoid functor π induces an equivalence of

categories

π! : CovTop(X)→ CovGrp(πX).

Proof If p : Y → X is a covering map of spaces, then π(p) : πY → πX is a
covering morphism of groupoids, by 10.2.1. Since π is a functor, we also
obtain the functor π!.

To prove π! an equivalence of categories, we construct a functor ρ :

CovGrp(πX)→ CovTop(X) and prove that there are homotopies of functors
1 ≃ ρπ!, 1 ≃ π!ρ. The technical work for this has already been done, and it
is simply a matter of assembling the facts.

Let q : G̃ → πX be a covering morphism of groupoids. We suppose

the space X is given. Let X̃ = Ob(G̃), and let p = Ob(q) : X̃ → X. By

10.5.5, there is a topology on X̃ making p a covering map, and there is

an isomorphism r : G̃ → πX̃. We have to prove that this topology on X̃ is
natural with respect to morphisms in the category CovGrp(πX), and that r
also is natural.

Let (f,q, s) be a morphism in CovGrp(πX), where f : G̃ → H̃. Let U be
the set of all open, path-connected, subsets U of X such that the inclusion
U → X maps the fundamental group of U trivially. In section 10.5 we

showed how to lift the cover U to give covers Ũq, Ũs of X̃ = Ob(G̃) and

Ỹ = Ob(H̃) respectively. These covers are bases for the topologies of X̃ and

Ỹ respectively. Let x̃ ∈ X̃, and suppose Ũs is an element of Ũs containing fx̃.

Then U = s[Ũs] belongs to U and U lifts to an element Ũq of Ũq containing
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x̃. Further f[Ũq] = Ũs. So f : X̃ → Ỹ is continuous. This defines ρ on
morphisms, and it is clear that ρ is a functor.

The homotopy of functors r : 1 ≃ π!ρ is defined in essence in 10.5.5.
The only extra fact which has to be proved is that r is natural. So let
(f,q, s) be a morphism in CovGrp(πX) as above. We have to prove that the
following diagram is commutative:

G̃
r //

f

��

πX̃

π(Ob(f))

��
H̃

r // πỸ.

This requires examining the definition of r. Let α be an element of G̃ which
starts at x̃. Let a : I→ X be a representative of qα ∈ πX. Then a induces a
morphism πa : πI→ πX such that (πa)(ı) = qα. Further, πa lifts uniquely

to a morphism a ′ : πI, 0 → G̃, x̃. Then rα is the class of the path Ob(a ′) :

I → X̃. Let β = fα, and apply the same process to give b ′ : πI, 0 → H̃, fx̃,
where b = Ob(f)a. Since b ′ is uniquely determined by b, it follows that
rf(α) = π(Ob(f))r(α).

Finally we have to construct a homotopy θ : 1 ≃ ρπ!. But X̃ = Ob(πX̃)

and the topology of X̃ is precisely the lifted topology. So in fact 1 = ρπ!. So
the proof is complete. 2

The significance of this result is that it shows that the functor π! allows
us to translate a topological problem on covering spaces to an algebraic
problem on covering groupoids. This is one of those rare examples of a
complete and faithful translation. Usually a functor ‘forgets’ some of the
original formulation. Such forgetting has the advantage of translating a
problem into a simpler one, and one possibly with more opportunities for
calculation, but it does mean that some of the original geometry is lost.

As one example of the use of this translation, we will study the auto-
morphisms of an object of the category CovGrp(G). This gives the group of

covering isomorphisms of a covering morphism, and our results will then, by
virtue of the equivalence of categories, yield results on the automorphisms
of an object of CovTop(X). But first we solve a more general problem for
which we require some notation.

Let A be a group, and let F,C be subgroups of A. We define

MA(F,C) = {a ∈ A : F ⊆ a+ C− a}.

Let us temporarily write this set asM. In general it is not true that a,b ∈M
implies a+b ∈M. However, this is true if F = C, in which case the addition
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gives M the structure of a monoid (i.e. it satisfies the associativity and unit
axioms, but inverses need not exist); in general, M is not in this case a
group. To obtain a group in this case we consider the usual normaliser of F
in A, namely

NA(F) = {a ∈ A : F = a+ F− a}.

Then NA(F) is the largest subgroup of A in which F is a normal subgroup.

10.6.2 Let Z,G,H be connected groupoids, and let p : H → G be a covering

morphism. Let f : Z → G be a morphism of groupoids, and let L(f,p) be the

set of liftings of f to morphisms Z → H. Let z ∈ Ob(Z), x ∈ Ob(H) and

suppose px = fz. Let

A = G(px), F = f[Z(z)], C = p[H(x)].

Then there is a surjection ϕ from MA(F,C) to L(f,p) with the property that

ϕa = ϕb if and only if there is an element c ∈ C such that b = a+ c.

Proof Let M = MA(F,C) and let a ∈ M. Then a lifts uniquely to an
element ã in StG x. Let y be the end point of ã. By 10.3.2, the characteristic
group of p at y is a + C − a. Since F ⊆ a + C − a, it follows from 10.3.3
that f lifts uniquely to a morphism f̃ such that f̃(z) = y. We set ϕ(a) = f̃.

ã

y x

a

Fig. 10.2

If f̃ : Z → H is any lifting of f, then since H is connected, there is an
element ã in H(x, f̃(z)). If a = pã then ϕ(a) = f̃. This proves that ϕ is
surjective.

Suppose now that a,b ∈ M, and that ã, b̃ are lifts of a,b starting at x.
If b = a+ c where c ∈ C, then c has a lift c̃ ∈ H(x) and then ã+ c̃ also lifts
b, and has the same target as ã. Hence ϕ(a) = ϕ(b). On the other hand, if
ϕ(a) = ϕ(b) then ã and b̃ have the same target and so c̃ = −ã+ b̃ is well
defined. Let c = p(c̃). Then b = a+ c. This proves the result. 2

In the case f = p we can make the result a bit stronger. Recall that
a covering isomorphism h : H → H of a covering morphism p : H → G
is an isomorphism of groupoids such that ph = p. Clearly the set of these
covering isomorphisms forms under composition a group, and we write this
group as Aut(p).
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10.6.3 Let p : H → G be a covering morphism of connected groupoids, let
x ∈ Ob(H) and let C = p[H(x)] be the characteristic group of p at x . Then

Aut(p) is anti-isomorphic to the quotient of the group NG(px)(C) by its nor-

mal subgroup C.

Proof Let A = G(px). Then N = NA(C) is the normaliser of C in A and
C is normal in N so that the quotient group N/C is well defined. We know
that if a,b ∈ N then ϕ(a),ϕ(b) are morphisms h, k : H→ H, say, such that
ph = h, pk = k. We now prove that ϕ(b + a) = hk.

Let ã, b̃ ∈ StH x have final points y and u, and lift a,b respectively.
Then h(x) = y, k(x) = u, and so h(u) = hk(x). Hence h(b̃) ∈ H(y,hk(x)).
But h(b̃) + ã is defined, belongs to StH x, and lifts b+ a. Since phk = p, it
follows that ϕ(b + a) = hk.

Since ϕ(0) is the identity H→ H, and ϕ is an anti-morphism, it follows
that h = ϕ(a) is an isomorphism. The result follows. 2

The next result is useful when combined with the previous one. First,
we say that an element g of a groupoid G is a loop if it belongs to some
vertex group of G, i.e. if g has the same source and target. As motivation
for the result, consider the following picture of two graphs whose labellings
show how they cover the space X = S1 ∨ S1 consisting of a wedge of two
circles labelled a and b.

a

b

a

b

a

b

a

b

a

b

a

b

Fig. 10.3

In the first example, the edges with a given label are either all or none of
them loops. In the second example, the edges labelled a consist of one loop
and two non loops.

10.6.4 Let p : H → G be a covering morphism of groupoids. Consider the

following conditions:

(a) for all loops a in G, either all or no lifts of a are loops;

(b) for all objects x of H, the characteristic group p[H(x)] is normal in G(px).

Then (a)⇒ (b), and if H is connected, (b)⇒ (a).

Proof (a) ⇒ (b) Let x be an object of H and let C = p[H(x)]. Let c ∈ C,
a ∈ G(px). We need to prove that −a + c + a ∈ C. Let b ∈ H(x,y) lift a.
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By (a), c lifts to an element d of H(y). Then −b + d + b belongs to H(x)
and is mapped by p to −a+ c+ a. Hence −a+ c+ a ∈ C.

d

y

b

x p

a

c

Fig. 10.4

(b) ⇒ (a) Let x,y be objects of H such that p(x) = p(y), and let c ∈
C = p[H(x)]. Since H is connected, there is an element b in H(x,y). Let
a = p(b). Now −a + c + a ∈ C, since C is normal in G(px), and so
−a+ c+ a = p(e) where e ∈ H(x). Then

p(b+ e− b) = a− a+ c+ a− a = c.

But b+ e− b belongs to H(y) and is a loop. So c lifts also to a loop at y. 2
A covering morphism p : H → G of groupoids is called regular if H and

G are connected and one of the conditions (a) or (b) of the previous result
is satisfied.

10.6.4 (Corollary 1) If p : H→ G is a regular covering morphism of groupoids,

and C is a characteristic group of p at an object x of H, then the group of cov-

ering isomorphisms of p is anti-isomorphic to the quotient group H(x)/C.

Proof This is immediate from 10.6.3 and 10.6.4. 2

We can now use the equivalence of categories to translate these ideas
and results to the topological case. Let p : Y → X be a covering map. If a
space Z, and also Y and X, are path connected, then the set of lifts of a map
f : Z→ X to a map Z→ Y can be entirely determined from 10.6.2, by con-
sidering the corresponding problem for the fundamental groupoids. Also,
p is called regular if the corresponding covering morphism of groupoids
πp : πY → πX is a regular covering morphism. So we immediately obtain:

10.6.4 (Corollary 2) Let p : Y → X be a regular covering map of spaces. Let

y ∈ Y. Then the group Aut(p), of homeomorphisms h : Y → Y such that

ph = p, is anti-isomorphic to the quotient group of the fundamental group

π(X,py) by the normal subgroup p∗[π(Y,y)]. In particular, if X is connected

and Y is a universal cover of X, then the group of homeomorphisms h : Y → Y

such that ph = p is anti-isomorphic to the fundamental group π(X, x) at any

point x in X. 2

The importance of this last result is that the fundamental group is shown
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to occur as a group of automorphisms. This links two basic motivating ex-
amples for group theory, namely symmetry groups and fundamental groups.
This link has proved useful in a number of areas of mathematics. There is
even a proof of the Van Kampen theorem for the fundamental group en-
tirely in terms of covering spaces, see for example [DD77, DD79]. However
a proof of theorem 6.7.2 in this spirit is not available in the literature.

There is also a notion of symmetry groupoid, whose applications to dif-
ferential geometry and topology were initiated by [Ehr80]. For further
references on this, see [Mac05] and the survey article [Bro73].

EXERCISES

1. Prove that a connected 2-fold covering morphism is regular.

2. We say two covering spaces Y,Z of X = S1∨S1 are equivalent if Y is homeomor-

phic to Z. Find representatives of all equivalence classes of 3-fold covering spaces of

X. Which of these are regular? For each connected 3-fold covering, use the method

of proof of the Nielsen–Schreier theorem (see 10.8.2) to give a subgroup H of the

fundamental group F of X at the base point, such that H determines the covering.

In the regular cases, write down the quotient group F/H.

3. Carry out a similar exercise to the previous one but for 4-fold covering spaces of

S1 ∨ S1.

4. Illustrate the application of 10.6.2 and 10.6.3 by explicit examples for the case

G and Z are groups.

5. With reference to the paragraph before 10.6.2, give an example where a,b ∈M
but a + b /∈M. Also, give an example of a group G, subgroup H of G and element

g ∈ G such that g+H− g is a proper subset of H. [An example of this type is given

in [Ros78, p. 62].]

6. Construct regular and non-regular but connected 3-fold coverings of the graphs

shown in Fig. 10.5:

Fig. 10.5

10.7 Induced coverings and pullbacks

In this section we deal with the important topics of restricting coverings to
subspaces, and pulling back coverings.

We have already defined pushouts in any category. The dual notion of
pullback arose earlier than pushout, in the theory of fibre spaces, and in fact
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suggested the term pushout for the dual term. We have defined pullbacks
in a general category in an exercise in chapter 6. Here we take a more
concrete approach.

Suppose given two maps f : A → X and p : Y → X. The pullback of f
and p, also called the fibre product, is the subspace P of A× Y given by

P = A f×p Y = {(a,y) ∈ A× Y : fa = py}.

It is common to write also P = A ×X Y, since we can think of A and Y as
spaces over X.

There is a diagram

P
f //

p

��

Y

p

��
A

f // X

(10.7.1)

in which p : (a,y) 7→ a, f : (a,y) 7→ y. Then the diagram (10.7.1) is
commutative: pf = fp. It is also a pullback in the following sense: given
any commutative diagram

P ′ f ′ //

p ′

��

Y

p

��
A

f // X

there is a unique map r : P ′ → P such that fr = f ′, pr = p ′. Here r is simply
the restriction of the map (p ′, f ′).

If f is injective then the point (a,y) of P is determined entirely by the
element y ∈ p−1f[A]. If further f is an embedding, then the map P →
p−1f[A], (a,y) 7→ y, is a homeomorphism with inverse y 7→ (f−1p(y),y).
This makes the important point that if f is the inclusion of a subspace A of
X, then we may identify A×X Y with p−1[A].

10.7.2 If p : Y → X is a covering map, then for any map f : A → X, the

induced map p : A ×XY → A is also a covering map. Further, if p is an n-fold

covering map, so also is p.

Proof We prove that if U is a canonical open set in X, then f−1[U] is a
canonical open set in A. Suppose then that ϕ : p−1[U] → U × F is a
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homeomorphism of the form y 7→ (py,ϕ2y), with inverse ψ, where F is a
discrete space. Then we may define maps

ϕ′ : p−1f−1[U]→ f−1[U]× F, ψ ′ : f−1[U]× F→ p−1f−1[U],

(a,y) 7→ (a,ϕ2y), (a, z) 7→ (a,ψ(fa, z))

and check that

ψ ′ϕ′(a,y) = ψ ′(a,ϕ2y) = (a,ψ(fa,ϕ2y))

= (a,ψ(py,ϕ2y)) = (a,ψϕy) = (a,y),

ϕ′ψ ′(a, z) = ϕ′(a,ψ(fa, z)) = (a,ϕ2ψ(fa, z)) = (a, z).

This proves that p is a covering map and also the statement about n-
coverings. 2

There are similar notions of pullback for groupoids. Let f : L → G and
p : H→ G be groupoid morphisms. The pullback square defined by f and p
is the diagram

Q
f //

p

��

H

p

��
L

f // G

(10.7.3)

in which Q is the subgroupoid of the product groupoid L×H of pairs (l,h)
(of elements or objects) such that fl = ph. The groupoid Q is also called
the fibre product of L and H over G, and is written L×GH. The morphisms
f and p are given respectively by (l,h) 7→ l, (l,h) 7→ h. We shall also need
the fact that:

10.7.4 If f : L → G and p : H → G are morphisms of groupoids, and p is a

covering morphism, then p : L×G H→ L is also a covering morphism.

Proof This is a straightforward check. Let Q = L ×G H and let (x,y) ∈
Ob(Q). Then fx = py. We have to prove that p : StQ(x,y) → StL x is
bijective. Let l ∈ StL x. Since p is a covering morphism, and fx = py,
there is an element h ∈ StH y such that fl = ph. Clearly p(l,h) = l, and
(l,h) ∈ StQ(x,y). Also (l,h) is the only such element, since p is a covering
morphism. 2

One special case of the pullback construction is important. Let p : H→
G be a morphism and let f : L → G be the inclusion of the subgroupoid L
of G. Then the element (l,h) of L×G H can be identified with the element
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h, subject to the sole condition that ph ∈ L. Hence we can identify L×G H
and p−1[L].

As may be expected, it is of interest to compare pullbacks of spaces and
pullbacks of the corresponding fundamental groupoids.

10.7.5 Suppose given a pullback (10.7.1) of spaces. Then there is an induced

morphism of groupoids

θ : π(A×X Y)→ πA×πX πY

which is the identity on objects. Further, if p is a covering map of spaces, then

θ is an isomorphism.

Proof The morphism θ is determined by the morphisms π(p), π(f), and the
properties of the pullback of groupoids. Clearly θ is the identity on objects.

Consider the diagram

πP
θ //

πp

$$H
HH

HH
HH

HH
HH

HH
HH

πA×πX πY

(πp)

��
πA.

We know that πp and (πp) are covering morphisms. It follows that θ is
a covering morphism. But θ is the identity on objects. Therefore θ is an
isomorphism. 2

Suppose then that (10.7.1) is a pullback of spaces and that p is a cov-
ering morphism. Our aim is to find information on πP. By the last result,
it is sufficient to prove a result about pullbacks of covering morphisms of
groupoids. The result we want is conveniently expressed in terms of an
exact sequence.

10.7.6 Suppose that (10.7.3) is a pullback of groupoids and that p is a cov-
ering morphism. Let (l,y) ∈ Ob(Q), so that fl = py = x, say. Then there is

a sequence

Q(l,y)
i−→ L(l) ×H(y) δ−→ G(x)

∆−→ π0Q
q−→ π0L×π0G π0H

in which

(1) i is the inclusion;

(2) L(l)×H(y) acts on the set G(x) by (λ, η) · γ = fλ + γ− pη, and ∂ is the

function (λ, η) 7→ fλ− pη;
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(3) ∆γ = cls(l, z) where z is the end point of the lift γ̃ of γ with initial point
y;

(4) q : cls(b, z) 7→ (clsb, cls z).

This sequence is exact in the sense that:

(a) i is a monomorphism and ∂(λ, η) = ∂(µ, ξ) if and only if (−λ + µ,−η +

ξ) ∈ Q;

(b) ∆γ = ∆δ if and only if there are elements λ ∈ L(l), η ∈ H(y) such that

δ = fλ + γ− pη;

(c) Im∆ = q−1(cls l, clsy);
(d) q is surjective.

Proof The functions in the sequence are well defined so that it only re-
mains to verify exactness.
(a) The morphism i is an inclusion and so a monomorphism. By definition
of ∂, we have ∂(λ, η) = ∂(µ, ξ) if and only if fλ − pη = fµ − pξ. This is
equivalent to f(−λ + µ) = p(−η + ξ), which is itself equivalent to (−λ +
µ,−η+ ξ) ∈ Q.
(b) Suppose δ = fλ + γ − pη as given. If γ̃ ∈ H(y, z) covers γ, then γ̃ − η

covers γ − pη and has initial point y, so that z = ∆γ = ∆(γ − pη). If

λ̃ ∈ H(z,w) covers fλ, then (λ, λ̃) joins (l, z) to (l,w) in Q, and so ∆(γ −

pη) = ∆(fλ+ γ− pη).
Suppose conversely that ∆γ = ∆δ. Let γ̃ ∈ H(y, z) cover γ and let

δ̃ ∈ H(y,w) cover δ. Since (l, z), (l,w) lie in the same component of Q,
there are elements λ ∈ L(l, l), κ ∈ H(z,w) such that fλ = pκ. Let η =

−δ̃+ κ + γ̃ ∈ H(y). Then

fλ = pκ = pδ̃+ pη− pγ̃ = δ+ pη− γ

which gives δ as required.
(c) Note that if γ̃ ∈ H(y, z) covers γ ∈ G(x), then

q∆(γ) = (cls l, cls z) = (cls l, clsy).

Suppose conversely that q(cls(b,w)) = (cls l, clsy). Then fb = pw and
there are elements λ ∈ L(l,b), κ ∈ H(y,w). Let η ∈ H(z,w) lift fλ, and let
γ = −fλ + pη. Then γ ∈ G(x) and −η + κ belongs to H(y, z) and lifts γ.
Hence ∆(γ) = cls(l, z). But cls(l, z) = cls(b,w) since (λ, η) : (l, z) → (b,w)

in Q.
(d) Finally we prove that q is surjective. Let clsb ∈ π0L, clsw ∈ π0H be
such that cls fb = clspw in π0G. Then there is an element κ : pw → fb

in G. Let η : w → z lift κ. Then (b, z) is an object of Q and q(cls(b, z)) =
(clsb, cls z) = (clsb, clsw). 2

10.7.6 (Corollary 1) If L and H are connected groupoids, then there is a
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bijection from π0Q to the set of distinct double cosets

f[L(l)]γp[H(y)]

for γ ∈ G(x).

Proof This just says that the orbits of the action of L(l)×H(y) on G(x) are
these double cosets. 2

10.7.6 (Corollary 2) Suppose that L and H are connected groupoids and that

H is simply connected, so that p : H → G is a universal covering morphism.

Then the pullback Q = L ×G H is connected if and only if f : L(l) → G(x) is

surjective; andQ is simply connected if and only if f : L(l)→ G(x) is injective.

Proof Since H is 1-connected and L is connected, the exact sequence of
10.7.6 becomes

1→ Q(l,y)→ L(l)→ G(x)→ π0Q→ 1,

from which the statements follow immediately. 2

These results on pullbacks of covering morphisms of groupoids have,
by 10.7.5, immediate applications to pullbacks of covering maps of spaces.
We leave the reader to make the obvious conclusions.

We refer the reader to the exercises for a different treatment of the
exact sequence in 10.7.6; it is deduced from the sequence for a covering
of groupoids by using the notion of homotopy pullback. This treatment
is more elegant but would have taken us too far afield. The advantage
of the use of homotopy pullbacks is that one obtains exact sequences for
any pair of morphisms of groupoids L → G, H → G, and in particular
there are exact sequences for the case L,G,H are groups. It is shown in
[BHK83] how the exact sequence of 10.7.6 can be used in conjunction with
non-abelian cohomology with coefficients in a groupoid to deduce the Van
Kampen theorem for the fundamental groupoid.

EXERCISES

1. [Exercises 1–5 are taken from [BHK84].] Let f : L → G and p : H → G be

morphisms of groupoids. The homotopy pullback Z = Z(f,p) is defined as follows.

The objects of Z are to consist of all triples (l,γ, y) where l ∈ Ob(L), y ∈ Ob(H),

and γ : fl → py in G. An element of Z((l,γ, y), (l ′,γ ′,y ′)) is a triple (γ, λ, η)

such that λ ∈ L(l, l ′), η ∈ H(y,y ′) and pη + γ = γ ′ + fλ. Define r : Z → L × H by

(l,γ,y) 7→ (l,y) on objects, (γ, λ, η) 7→ (λ, η) on elements. Prove that r is a covering

morphism and that the induced function π0Z→ π0L×π0Gπ0H is surjective. Explain

how Z derives from an action of the groupoid L×H.
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2. Continuing the notation of Exercise 1, let Q = L×G H be the pullback of f and

p. Define ϕ : Q→ Z by (l,y) 7→ (l, 1fl,y) on objects, (λ, η) 7→ (1, λ, η) on elements.

Prove thatϕ is full and faithful and that the induced morphism π0ϕ : π0Q→ π0Z is

injective. Prove that π0ϕ is surjective, and hence that ϕ is a homotopy equivalence,

if and only if for each object (l, γ,y) of Z there are elements λ : l → l ′ in L,

η : y ′ → y in H such that fl ′ = py ′ and γ = pη+ fλ. Use this result, Exercise 1, and

the exact sequence of a fibration to deduce 10.7.6.

3. Let G be a group and let L and H be subgroups of G. For γ ∈ G let κγ :

H ∩ γ−1Lγ → L × H send η 7→ (γηγ−1,η). By considering the exact sequence at

the base point (1,γ, 1) of the homotopy pullback of the inclusions L → G, H → G,

prove that G is bijective with the disjoint union of the cosets (L × H)/ Imκγ for γ

in a set of representatives of the double cosets LγH. Hence show that if G is finite

and |G| denotes the order of G then

|G| = |L||H|(Σγ|H ∩ γ−1Lγ|−1).

4. Let L and H be subgroups of the group G such that G = LH. Let γ ∈ L∩H. Prove

that there is an exact sequence

1→ CL∩H(γ)→ CL(γ) ×CH(γ)→ CG(γ)→ [L ∩H]→ [L]×[G] [H]→ 1

where CG(γ) is the centraliser of γ in G and [G] is the set of conjugacy classes of G.

[Let the given groups act on their underlying sets by conjugation and consider the

induced morphisms of groupoids L⋊ L→ G⋊G← H⋊H.]

5. Let f : L → G be a morphism of groupoids and let Pf = Z(f, 1G). Define i :

L → Pf by l 7→ (l, 1fl, fl) on objects and λ 7→ (λ, fλ) on elements. Prove that i is a

homotopy equivalence. Define p : Pf → G by (l,γ,y) 7→ y on objects and (λ, η) 7→ η

on elements. Prove that pi = f and that p is a fibration of groupoids. Interpret the

exact sequence of the fibration p in the case f is the inclusion of a subgroup of the

group G.

6. Let Set· be the category of pointed sets: thus an object of Set· is a pair (X, x)

where x ∈ X, and a morphism (X, x) → (Y,y) is a pair (f, x) where f : X → Y is a

function and f(x) = y. Let p : Set· → Set be the ‘forgetful’ functor which on objects

sends (X, x) 7→ X and on morphisms sends (f, x) 7→ f . Prove that p is a covering

morphism. Let q : G̃→ G be any covering morphism of groupoids. Prove that there

is a functor q ′ : G→ Set and an isomorphism r : G̃→ G×Set Set· such that pr = q.

10.8 Applications to subgroup theorems in

group theory

We give some other applications of covering spaces to what are called sub-

group theorems. The general problem is the following. Let H be a subgroup

of the group G and suppose that information on G is given: deduce useful

information on H. The classical result of this type is that a subgroup of a
free group is also a free group.
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Covering morphisms give a method for dealing with this kind of prob-
lem. For if H is a subgroup of the group G, then H is a vertex group of the

covering morphism p : G̃ → G determined by H. If the information on G

can be lifted to information on G̃, then the problem may be changed into
one of obtaining information on a vertex group of a groupoid from infor-
mation on the groupoid itself. Before going ahead with the theory, we work
out a specific example.

For the rest of this section we use multiplicative notation for the com-
position in groups and in groupoids.

EXAMPLE

1. Let F be the free group on the two elements x and y. Let H be the
normal subgroup of F generated by the elements x3, y2, and xyxy. The
quotient group F/H is well known to be the permutation group S3 on the set
{1, 2, 3}, where x represents the cyclic permutation (123) and y represents
the transposition (23). Thus H is the kernel of the quotient morphism q :

F → S3. The directed graph X = {x,y} which generates F can be pictured
as the wedge of two circles. Fig. 10.6(i) (do not pay attention to the dots
for the moment) is a picture of what is called the Cayley graph of the group
S3 for the generators x,y. What it shows is how the generators act on the
elements of the group. So an arrow labelled x is an arrow w → xw, and

an arrow labelled y is an arrow w→ yw, for w ∈ S3. We call this graph X̃.

Then X̃ = p−1[X] where p : F̃→ F is the covering morphism determined by

the subgroup H of F, so that F̃ = S3 ⋊ F, where S3 is here taken as a set on
which F acts.

(i)

1 x

y
x

y

y y

x x
x x

y y

(ii)

Fig. 10.6

We shall prove below that F̃ is the free groupoid on the graph X̃. Hence
we can use the methods of section 8.2 to obtain a basis for the vertex group

F̃(1) of F̃, a vertex group which is isomorphic to H. We choose a maximal

tree T in X̃, for example that given by Fig. 10.6(ii). This tree determines a

retraction r : F̃ → F̃(1), where we may identify F̃(1) and H, and the basis
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for H consists of the elements of r[∆] where ∆ consists of the edges of X̃ not
in T . In this instance the basis for H is then given by the seven elements

yy, y−1xyx, x−1yx−1y, xxx, y−1xxxy, xyxy, y−1x−1yx−1

where in the above the elements which come from ∆ are written in bold
type.

Another interesting feature which can be drawn from Fig. 10.6(i) is that
of an identity among relations. Write r = x3, s = y2, t = xyxy. These are
elements of the free group F. The following wordw in F, in which vu means
u−1vu,

w = t(s−1)xyty
−1xy(r−1)ys−1(s−1)x

−1y−1

tx

represents a path in X̃ which starts from the base point 1, then goes out to
a base point, as represented by a dot, of a 2-cell of our planar diagram of

X̃, goes once round the 2-cell, and then returns to the base point 1, before
traversing another such path, till each 2-cell has been traversed once. A
direct check shows that w = r, so that wr−1 = 1 in F. This word wr−1

in r, s, t and their inverses and conjugates is called an identity among the

relations for the presentation 〈x,y : r, s, t〉 of the group S3. These ideas are
the start of a 2-dimensional theory corresponding to that of free groups and
fundamental groupoids. For more information, see [BH82] and [Bro70].

Now we return to subgroup theorems. The key result for our purposes
is the following, which links the methods of universal groupoids of chapter
8 with those of covering morphisms. We use the notion of pullback from
the last section.

10.8.1 Let f : L → G be a universal groupoid morphism, and let p : G̃ → G

be a covering morphism. Consider the pullback diagram

L×G G̃
f̄ //

p̄

��

G̃

p

��
L

f // G.

Then f̃ is universal.

Proof We use the description of universal groupoid morphisms given in

section 8.1. Let h be a non-identity element of G̃. We prove that h has
a unique representation as a product h = (f̄qn) · · · (f̄q1) where the qi are
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non-identities in Q = L ×G G̃ and no product qi+1qi exists in Q. Let
g = ph. Since f is universal, and ph is not an identity ofG, there is a unique
representation ph = (fln) · · · (fl1) where the li are non-identities in L and
no product li+1li exists in L. Hence we can uniquely write h = hn · · ·h1

where phi = fli. Setting qi = (li,hi) gives the required representation.

We still have to prove this representation is unique. Suppose also h =

(f̄q ′
m) · · · (f̄q ′

1), where the q ′
i satisfy conditions similar to those for the qi.

Since p̄ is a covering morphism, the p̄q ′
i are not identities in L. Also the

product (f̄q ′
i+1)(f̄q

′
i) exists in H, and therefore the product (p̄q ′

i+1)(p̄q
′
i)

does not exist in L. Therefore m = n and p̄q ′
i = li, since f is universal. It

now follows that q ′
i = qi for all i. Hence f̄ is universal. 2

10.8.1 (Corollary 1) Let p : H→ G be a covering morphism and suppose that
G is the free groupoid on a graph X. Then H is the free groupoid on the graph

p−1[X].

Proof Let ϕ : D(X) → X be the dispersion of the graph X (see section
8.2). According to 8.2.1(a), the induced morphism ϕ̄ : F(D(X)) → G is
strictly universal. Let Q be the pullback F(D(X)) ×G H. It is easy to check

that Q may be identified with F(D(X̃)) where X̃ has one element x̃ for each
element of p−1[X]. By 10.8.1, f̄ : Q → H is universal. Hence H is free on
p−1[X]. 2

10.8.1 (Corollary 2) Let the groupoid G be given as the free product G1 ∗ · · ·∗
Gn of groupoids G1, . . . ,Gn. Let p : H → G be a covering morphism. Then

the groupoid H is the free product of the groupoids p−1[G1], . . . ,p
−1[Gn].

Proof This again is a simple consequence of 10.8.1, since a free product
may be described in terms of 0-identification morphisms, as in section 8.1.

2

Now we can give our first subgroup theorem. Recall that the index
[G : L] of a subgroup L of a group G is the number of cosets of L in G.

10.8.2 (Nielsen-Schreier theorem) A subgroup L of a free group G is itself a

free group. Further, if G is of rank r and L is of index i in G, then L is of rank
l = ri− i+ 1. Hence

[G : L] =
l− 1

r − 1
.

Proof Let X be a basis of G. Let p : H → G be the covering morphism
determined by the subgroup L of G. By 10.8.1 (Corollary 1), H is the free
groupoid on p−1[X]. By 8.2.3, the vertex groups of H are also free groups.
This proves the first part of the theorem. The second part follows also from
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8.2.3, since if X has r elements, then p−1[X] has ri elements and i vertices.
2

Note also that the method of proof of 8.2.3, which involves choosing
a maximal tree in the generating graph p−1[X], also gives a method of
writing down generators of the characteristic group L. This is essentially
the procedure we followed in our example which involved the symmetric
group S3.

A more elaborate analysis gives another famous theorem of group the-
ory.

10.8.3 (Kurosch theorem) Let the groupG be given as a free product ∗λ∈ΛG
λ,

where the Gλ are subgroups of G. Let L be a subgroup of G. Then L may be

written as a free product

(∗λ,µLλ,µ) ∗ F

with the following properties:

(a) each Lλ,µ (λ ∈ Λ, µ ∈ Mλ) is of the form L ∩ x−1
λµG

λxλµ, where, as µ

varies in Mλ, xλµ runs through a (suitably chosen) set of representatives of
the double cosets GλxL of L and Gλ in G;

(b) F is a free group; if Λ is finite with l elements, and L has finite index i in

G, then F has rank li− i−m+1 where m is the total number of double cosets

GλxL (λ ∈ Λ).

Proof Let p : H → G be the covering morphism determined by the sub-
group L of G. If 1 denotes the coset L of G/L, then p maps the object group
H(1) isomorphically to L. According to 10.8.1 (Corollary 2), we can write
H as a free product ∗λHλ where Hλ = p−1[Gλ]. The remainder of the proof
is similar to that of 9.1.8; in that result, we were amalgamating two con-
nected groupoids, and identifying the vertex group of the result. Here we
are amalgamating a number of possibly non-connected groupoids, but the
amalgamation is only by identifying objects.

For each λ let Hλµ (µ ∈ Mλ) be the components of Hλ. Then Hλ =

∗µHλµ and therefore H = ∗λ,µHλµ. Now Hλµ may be written Kλµ ∗ Tλµ
where Kλµ is an arbitrary vertex group of Hλµ and Tλµ is a wide tree
groupoid in Hλµ. Hence H = K ∗ T where K = ∗λµKλµ is totally dis-
connected and T = ∗λµTλµ is free. We can write T = T ′ ∗ F′ where T ′ is
a tree groupoid generated by elements from various Tλµ and F′ is a free
group at the object 1.
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We now argue as in the proof of 8.2.3. Consider the diagram

Ob(H) //

��

T ′ r //

��

{1}

��
K ∗ F′ // H

r ′ // H(1).

The left-hand square of inclusions is a pushout, and the right-hand square,
where r and r ′ are retractions determined by T ′, is also a pushout by 6.7.3.
Hence the composite K ∗ F′ → H(1) is universal. Let Lλµ = pr ′[Kλµ],
F = p[F′]. Then

L = p[H(1)] = (∗λµLλµ) ∗ F.
We now have to verify the stated description of Lλµ. By 10.7.6 (Corol-

lary 1) the components of Hλ correspond to the distinct double cosets
GλxL. There is a unique element hλµ of T ′ from the object 1 of H to
the unique object of Kλµ, and xλµ = phλµ lies in the double coset GλxL

corresponding to the component Hλµ. Hence

Lλµ = pr ′[Kλµ] = x−1
λµp[K

λµ]xλµ.

But p[Kλµ] is the stabiliser in Gλ of the coset xλµL, i.e.

p[Kλµ] = Gλ ∩ xλµLx−1
λµ,

which gives immediately the stated formula (a) for Lλµ.
In the finite case Hλ has i objects and a finite number mλ of compo-

nents. So ∗µTλµ is freely generated by i − mλ elements, and hence T is
freely generated by li−m elements, wherem is the sum of themλ. Hence
F′, and so also F, is freely generated by li −m− (i− 1) elements. 2

The above proofs are taken from [Hig05]. It should be emphasised that
the proofs follow some traditional lines (compare with [Mas67], [SW79])
but the reformulation in terms of covering groupoids allows for a more
geometric view of the algebra, while at the same time avoiding using topo-
logical information, for example that a covering space of a CW-complex is
also a CW-complex. Once again we can see that groupoids model the ge-
ometry more closely than do groups. A further advantage of the groupoid
proofs is that they have analogues for topological groups: see [BH75] and
[Nic81].

The groupoid methods have also led to more general results even in the
abstract case. A notable example of this is the following result for whose
proof we refer the reader to [Hig66] and [Hig05].
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10.8.4 (Higgins’ theorem) Let G,B be groups with free decompositions G =

∗λGλ, B = ∗λBλ (λ ∈ Λ), and let ψ : G→ B be a group morphism such that

ψ[Gλ] = Bλ for all λ ∈ Λ. Let H be a subgroup of G such that ψ[H] = B.

Then H has a decomposition H = ∗λHλ such that ψ[Hλ] = Bλ for all λ ∈ Λ.

The following corollary was first given a topological proof by Stallings
(for an account, see [SW79]).

10.8.4 (Corollary: Grushko’s theorem) Let B be a group with a free decompo-

sition B = ∗λBλ, and let F be a free group. Let ϕ : F→ B be an epimorphism.
Then F has a decomposition F = ∗λFλ such that ϕ[Fλ] = Bλ for all λ.

An interesting consequence of Grushko’s theorem is that if B is a free
group of rank n and X is a subset of B with n elements which generates B,
then X generates B freely. We leave the proof to the reader. Another proof
of this result uses Nielsen transformations (see [LS77]).

Braun in [Bra04] has proved a conjecture of Higgins which combines
the Kurosch Theorem and the Higgins Theorem as follows:

10.8.5 (Higgins’ conjecture) Let Θ : G =
∏∗

λ∈ΛGλ → B =
∏∗

λ∈Λ Bλ be a

group homomorphism such that GλΘ = Bλ for all λ ∈ Λ. Let H ⊆ G be

a subgroup such that HΘ = B. Then H =
∏∗

λ∈ΛHλ such that HλΘ = Bλ

where Hλ =
∏∗

xλ
(H ∩ Gxλ

λ ) ∗ Fλ such that xλΘ = 1 for all xλ, and for each

λ the xλ runs through a suitable set of representatives of double cosets GλxH

such that GλH is represented by 1. Furthermore, the Fλ are free.

There is another proof of 10.8.1 which also yields a result for the case
that p is a fibration of groupoids. This proof uses the sophisticated state-
ment that the pullback functor

p∗ : Grpd /G→ Grpd /G̃

has a right adjoint p∗ if and only if p is a fibration of groupoids. An ap-
plication of this to the case that p is an epimorphism of groups is given in
[BH87] (see also [HK88]). However the study of adjoint functors, and the
important result that if Γ and ∆ are functors such that Γ is a left adjoint of
∆ then Γ preserves colimits and ∆ preserves limits, would take us too far
afield.

EXERCISES

1. Let F be the free group on two generators x and y, and let G be the dihedral

group with generators x,y and relations x4 = y2 = xyxy = 1. Let q : F→ G be the
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quotient morphism given by the identity on the generators, and let H be the kernel

of q. Find a free basis for H. Can you formulate and prove a generalisation of this

for the general dihedral group?

2. Carry out a similar exercise to the previous one but for the group Z2 × Z2 with

generators x, y and relations x2 = y2 = xyx−1y−1 = 1. For this presentation, find

an identity among the relations, in an analogous manner to that found for the group

S3.

3. Compare the method of proof of the Nielsen-Schreier theorem given here in

terms of groupoids with proofs found in books on group theory using Schreier

transversals. Indeed, show that a choice of Schreier transversal is equivalent to

the choice of maximal tree as explained here.

4. Let the group G be the free product Z3 ∗ Z2 of cyclic groups of order 3 and 2

respectively, with generators x,y say. Let q : G → S3 be the morphism which is

the identity on the generators, where S3 has the generators given earlier. Let H be

the kernel of q. Find a free decomposition of H in accordance with the Kurosch

theorem.

5. Let B be a free group of rank n and let X be a generating subset of B such that X

has n elements. Prove that X generates B freely.

6. Read from a category theory text the theory of adjoint functors as far as the

result on preservation of limits and colimits referred to above. Discuss the existence

of some left and right adjoints to some standard functors, such as (i) the functor

Top → Set which sends a topological space to its underlying set, (ii) the functor

Grpd→ Set which sends a groupoid to its object set.

NOTES

A number of books on homotopy theory or algebraic topology show the link
between covering spaces and fibrations. A different approach to covering
spaces which does not use paths is given in [Che46]. The relation of cov-
ering spaces to other areas of mathematics is shown there and in [DD77],
[Mag76], [BG82].

Covering spaces form one of the older parts of algebraic topology, partly
because of the link with Riemann surfaces. By contrast, the development
of covering groupoids is in the latter half of the 20th century. Higgins in
[Hig64] introduces the groupoid Tr(G,C) for C a subgroup of the group
G, and mentions the generalisation to groupoids. In fact, these methods
were suggested to him by a reading of [HW60] on covering spaces (private
communication). Higgins defined covering groupoids, but assuming con-
nectedness, in lecture notes and in [Hig05]. An equivalent definition was
independently given in [GZ67] which also shows the connection between
covering groupoids of a group G and functors G→ Set. However the simi-

lar construction of a groupoid G̃ for the case of a group operating on a set
appears in [Rei32], (without any applications) and in [Ehr65, p. 49-50].
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Indeed the collected works of Ehresmann ([Ehr80]) show his long interest
in the idea that mathematical structure can be seen as a category operating
on a set, or, equivalently, as what he calls a hypermorphism of categories.

An earlier groupoid proof of the subgroup theorems is due to [Has60].
Another interesting relation is between graphs, groups and surfaces—

see [Big74], [Big84] and [Whi84]. In particular, the Cayley graph of a
group G with a set X of generators is seen as the 1-skeleton of the universal

cover p : K̃ → K of a CW-complex such that K0 is a single point, K1 has
1-cells in one-one correspondence with the elements of X, and K has fun-

damental group G. Thus the Cayley graph K̃1 is a directed graph without
loops whose edges are labelled via the map with the elements of X.

Covering spaces have an important generalisation to branched covering

spaces, or covering spaces with singularities. These occur in the theory of
Riemann surfaces, in knot theory, and in low-dimensional topology. For
more information, see [vE86], [Fox57], [Hun82], [Lin80], [Whi84].

It is not hard to prove that a connected covering space of a connected
topological group has the structure of a topological group. The
non-connected case is more tricky. This was studied by [Tay54], and was
re-examined by [BM94] using the equivalence of categories of section 10.6
in an essential way.
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Chapter 11

Orbit spaces, orbit

groupoids

In this chapter we give an introduction to the notion of orbit space by the

action of a discrete group, and the corresponding notion of orbit groupoid

of the action of a group on a groupoid. This gives another example of
the utility of the groupoid viewpoint: under reasonable conditions, the
fundamental groupoid of an orbit space X/G is isomorphic to the orbit
groupoid (πX)//G of the induced action on the fundamental groupoid. This
seems the best possible result! The proof, as for the Van Kampen theorem
in previous chapters, is by verifying the appropriate universal property. We
then give general methods of calculation of orbit groupoids to determine
some topological examples.

11.1 Groups acting on spaces

In this section we show some of the theory of a group acting on a space and
the associated notion of orbit space. It is difficult to exaggerate the impor-
tance of these ideas. The idea of a group action is related to basic intuitions
on the notion of symmetry, and specific groups occur naturally as acting on
spaces. For example, in chapter 5 we discussed various groups of isome-
tries on the spaces Kn for K the reals, complex numbers, or quaternions.
Let G be such a group of isometries. Then each element g of G is a function
g : Kn → Kn and so if x ∈ Kn then g(x) is defined. It is convenient to
write g · x instead of g(x) as the basic notation for a group action. The
reason for the changed notation is that for a general action of a group G
on Kn we may have distinct elements g,h of G such that for all x in Kn

411
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g · x = h · x. Thus in general the elements of G act as functions on Kn but
are not themselves functions on Kn. This distinction is important.

Associated with an action of a group G on a set X will be an orbit set

written X/G, whose elements are the orbits of the action, namely the classes
of X under the equivalence relation x ∼ y if and only if there is a g in G
such that y = g ·x. Thus the orbits are the sets in X swept out by the action
of G. The very word orbit calls to mind the origin of the word in celestial
mechanics, where the group acting is the additive group R of real numbers,
so that an element t ∈ R acts on the position of a planet at time s to give
the position at time t + s. The orbit of the planet is then the totality of all
its positions throughout time. Thus the theory of group actions on a space
is also part of the study of dynamical systems.

In this section we give an introduction to these ideas. We show some of
the theory of a group G acting on a topological space X, and describe the
orbit topological space, which is written X/G.

There arises the problem of relating topological invariants of the orbit
space X/G to those of X and the group action. In particular, it is a compli-
cated and interesting question to find, if at all possible, relations between
the fundamental groups and groupoids of X and X/G. This we shall do
for a particular family of actions which arise commonly, namely the discon-
tinuous actions. The resulting theory generalises that of regular covering
spaces, and has a number of important applications. A useful special case
of a discontinuous action is the action of a finite group on a Hausdorff space
(see below); there are in the literature many interesting cases of discontin-
uous actions of infinite groups (see [Bea83]).

We now come to formal definitions.

Let G be a group, with its group operation written as multiplication,
and let X be a set. An action of G on X is a function G × X → X, written
(g, x) 7→ g · x, satisfying the following properties for all x in X and g,h in
G:

11.1.1 (i) 1 · x = x,
(ii) g · (h · x) = (gh) · x.

Thus the first rule says that the identity of G acts as identity, and the
second rule says that two elements of G, acting successively, act as the
product of the two elements.

There are some standard notions associated with such an action. First,
an equivalence relation is defined on X by x ∼ y if and only if there is
an element g of G such that y = g · x. This is an equivalence relation.
Reflexivity follows since G has an identity. Symmetry follows from the
existence of inverses in G, using 11.1.1(i), (ii). Transitivity follows from
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the product of two elements in G being inG. The equivalence classes under
this relation are the orbits of the action. The set of these orbits is written
X/G.

Suppose given an action of the group G on the set X. If x ∈ X, then the
group of stability of x is the subgroup of G

Gx = {g ∈ G : g · x = x}.

The elements of Gx are said to stabilise x, that is, they leave x fixed by their
action. If Gx is the whole of G, then x is said to be a fixed point of the
action. The set of fixed points of the action is often written XG. The action
is said to be free if all groups of stability are trivial.

Another useful condition is the notion of effective action of a group. This
requires that if g,h ∈ G and for all x in X, g · x = h · x, then g = h. In this
case the elements of G are entirely determined by their action on X.

We now turn to the topological situation. Let X be a topological space,
and letG be a group. An action ofG on X is again a functionG×X→ Xwith
the same properties as given in 11.1.1, but with the additional condition
that when G is given the discrete topology then the function (g, x) 7→ g · x
is continuous. This amounts to the same as saying that for all g ∈ G, the
function g || || : x 7→ g · x is continuous. Note that g || || is a bijection with
inverse (g−1) || || , and since these two functions are continuous, each is a
homeomorphism.

Let X/G be the set of orbits of the action and let p : X → X/G be the
quotient map, which assigns to each x in X its orbit. For convenience we will
write the orbit of x under the action as x̄. So the defining property is that
x̄ = ȳ if and only if there is a g in G such that y = g ·x. Now a topology has
been given for X. We therefore give the orbit space X/G the identification
topology with respect to the map p. This topology will always be assumed
in what follows. The first result on this topology, and one which is used a
lot, is as follows.

11.1.2 The quotient map p : X→ X/G is an open map.

Proof Let U be an open set of X. For each g ∈ G the set g ·U, by which is
meant the set of g · x for all x in U, is also an open set of X, since g || || is a
homeomorphism, and g ·U = g || || [U]. But

p−1p[U] =
⋃

g∈G

g ·U.

Since the union of open sets is open, it follows that p−1p[U] is open, and
hence p[U] is open. 2
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Definition An action of the group G on the space X is called discontinuous
if the stabiliser of each point of X is finite, and each point x in X has a
neighbourhood Vx such that any element g of G not in the stabiliser of x
satisfies Vx ∩ g · Vx = ∅.

Suppose G acts discontinuously on the space X. For each x in X choose
such an open neighbourhood Vx of x. Since the stabiliser Gx of x is finite,
the set

Ux =
⋂

{g · Vx : g ∈ Gx}

is open; it contains x since the elements of Gx stabilise x. Also if g ∈ Gx

then g ·Ux = Ux. We say Ux is invariant under the action of the group Gx.
On the other hand, if h 6∈ Gx then

(h ·Ux) ∩Ux ⊆ (h · Vx) ∩ Vx = ∅.

An open neighbourhoodU of x which satisfies (h·U)∩U = ∅ for h 6∈ Gx

and is invariant under the action of Gx is called a canonical neighbourhood

of x. Note that any neighbourhood N of x contains a canonical neighbour-
hood: the proof is obtained by replacing Vx in the above by N ∩ Vx. The
image in X/G of a canonical neighbourhood U of x is written U and called
a canonical neighbourhood of x̄.

In order to have available our main example of a discontinuous action,
we prove:

11.1.3 An action of a finite group on a Hausdorff space is discontinuous.

Proof Let G be a finite group acting on the Hausdorff space X. Then the
stabiliser of each point of X is a subgroup of G and so is finite.

Let x ∈ X. Let x0, x1, . . . , xn be the distinct points of the orbit of x, with
x0 = x. Suppose xi = gi · x, gi ∈ G, i = 1, . . . ,n, and set g0 = 1. Since X
is Hausdorff, we can find pairwise disjoint open neighbourhoods Ni of xi,
i = 0, . . . ,n. Let

N =
⋂

{g−1
i ·Ni : i = 0, 1, . . .n}.

Then N is an open neighbourhood of x. Also, if g ∈ G does not belong
to the stabiliser Gx of x, then for some j = 1, . . . ,n, g · x = xj, whence
g ·N ⊆ Nj. Hence N ∩ g ·N = ∅, and the action is discontinuous. 2

Our main result in general topology on discontinuous actions is the fol-
lowing.

11.1.4 If the group G acts discontinuously on the Hausdorff space X, then

the quotient map p : X → X/G has the path lifting property: that is, if

ā : I→ X/G is a path in X/G and x0 is a point of X such that p(x0) = ā(0),

then there is a path a : I→ X such that pa = ā and a(0) = x0.
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Proof If there is a lift a of ā then there is an element g of G such that
g ·a(0) = x0 and so g · a is a lift of ā starting at x0. So we may ignore x0 in
what follows.

Since the action is discontinuous, each point x̄ of X/G has a canoni-
cal neighbourhood. By the Lebesgue covering lemma [3.6.4], there is a
subdivision

ā = ān + · · · + ā1
of ā such that the image of each āi is contained in a canonical neighbour-
hood. So if the path lifting property holds for each canonical neighbour-
hood in X/G, then it holds for X/G.

Now p : X → X/G is an open map. Hence for all x in X the restriction
px : Ux → Ux of p to a canonical neighbourhood Ux is also open, and
hence is an identification map. So we can identify Ux with the orbit space
(Ux)/Gx. The key point in this case is that the group Gx is finite.

Thus it is sufficient to prove the path lifting property for the case of
the action of a finite group G, and this we do by induction on the order of
G. That is, we assume that path lifting holds for any action of any proper
subgroup of G on a Hausdorff space, and we prove that path lifting holds
for the action of G. The case |G| = 1 is trivial.

Again let ā be as in the proposition, and we are assuming G is finite.
Let F be the set of fixed points of the action. Then F is the intersection for
all g ∈ G of the sets Xg = {x ∈ X : g · x = x}. Since X is Hausdorff, the set
Xg is closed in X, and hence F is closed in X. So p[F] is closed, since

p−1p[F] =
⋃

g∈G

g · F = F.

Let A be the subspace of I of points t such that ā(t) belongs to p[F]; that is,
A = ā−1p[F]. Then A is closed.

The restriction of the quotient map p to p ′ : F → p[F] is a homeomor-
phism. So ā | A has a unique lift to a map a | A : A → X. So we have to
show how to lift ā | (I \A) to give a map a | I \A and then show that the
function a : I→ X defined by these two parts is continuous.

In order to construct a | I \A, we first assume A = {1}.
Let S be the set of s ∈ I such that ā | [0, s] has a lift to a map as starting

at x. Then S is non-empty, since 0 ∈ S. Also S is an interval. Let u = sup S.
Suppose u < 1. Then there is a y ∈ X \ F such that p(y) = ā(u). Choose
a canonical neighbourhood U of y. If u > 0, there is a δ > 0 such that
ā[u− δ,u+ δ] ⊆ U. Then u− δ ∈ S and so there is a lift au−δ on [0,u− δ].
Also the stabiliser of y is a proper subgroup of G, since y /∈ F, and so by the
inductive assumption there is a lift of ā | [u− δ,u+ δ] to a path starting at
au−δ(u−δ). Hence we obtain a lift au+δ, contradicting the definition of u.
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We get a similar contradiction to the case u = 0 by replacing in the above
u − δ by 0. It follows that u = 1. We are not quite finished because all we
have thus ensured is that there is a lift on [0, s] for each 0 6 s < 1, but this
is not the same as saying that there is a lift on [0, 1[. We now prove that
such a lift exists.

By the definition of u, and since u = 1, for each integer n > 1 there is a
lift an of ā | [0, 1− n−1]. Also there is an element gn of G such that

gn · an+1(1 − n−1) = an(1− n−1).

Hence an and gn · (an+1 | [1− n−1, 1− (n + 1)−1]) define a lift of ā |

[0, 1− (n + 1)−1]. Starting with n = 1, and continuing in this way, gives a
lift of ā | [0, 1[. This completes the construction of the lift on I \ A in the
case A = {1}.

We now construct a lift of ā | I \ A in the general case. Since A is closed,
I \A is a union of disjoint open intervals each with end points in {0, 1}∪A.
So the construction of the lift is obtained by starting at the mid-point of any
such interval and working backwards and forwards, using the case A = {1},
which we have already proved.

The given lift of ā | A and the choice of lift of ā | I \A together define a
lift a : I→ X of ā and it remains to prove that a is continuous.

Let t ∈ I. If t /∈ A, then a is continuous at t by construction. Suppose
then t ∈ A so that y = a(t) ∈ F. Let N be any neighbourhood of y. Then
N contains a canonical neighbourhood U of y. If g ∈ G then g · y = y,
and so U is invariant under the action of G. Hence p−1p[U] = U. Since ā
is continuous, there is a neighbourhood M of t such that ā[M] ⊆ U. Since
pa = ā it follows that a[M] ⊆ p−1[U] = U. This proves continuity of a,
and the proof of the proposition is complete. 2

In our subsequent results we shall use the path lifting property rather
than the condition of the action being discontinuous.

EXERCISES

1. Let λ ∈ R and let the additive group R of real numbers act on the torus T =

S1 × S1 by

t · (e2πiθ, e2πiϕ) = (e2πi(θ+t), e2πi(ϕ+λt))

for t, θ,ϕ ∈ R. Prove that the orbit space has the indiscrete topology if and only if

λ is irrational. [You may assume that the group generated by 1 and λ is dense in R
if and only if λ is irrational.]

2. Let G be a group and let X be a G-space. Prove that the quotient map p : X →
X/G has the following universal property: if Y is a space and f : X → Y is a map

such that f(g · x) = f(x) for all x ∈ X and g ∈ G, then there is a unique map

f∗ : X/G→ Y such that f∗p = f.
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3. Let X,Y,Z be G-spaces and let f : X → Z, h : Y → Z be G-maps (i.e. f(g · x) =
g·f(x) for all g ∈ G and x ∈ X, and similarly for h). LetW = X×ZY be the pullback.

Prove that W becomes a G-space by the action g · (x,y) = (g · x,g · y). Prove also

that if Z = X/G and f is the quotient map, then W/G is homeomorphic to Y.

11.2 Groups acting on groupoids

Our aim now is to determine the fundamental groupoid of the orbit space
X/G. In general it is difficult to say much. However we can give reasonable
and useful conditions for which the question can be completely answered.
From our point of view the result is also of interest in that our statement
and proof use groupoids in a crucial way. This use could be overcome, but
at the cost of complicating both the statement of the theorem and its proof.

In order to make the transition from the topology to the algebra, it is
necessary to introduce the notion of a group acting on a groupoid.

Let G be a group and let Γ be a groupoid. We will write the group
structure on G as multiplication, and the groupoid structure on Γ as addi-
tion. An action of G on Γ assigns to each g ∈ G a morphism of groupoids
g || || : Γ → Γ with the properties that 1 || || = 1 : Γ → Γ , and if g,h ∈ G then
(hg) || || = h || || g || || . If g ∈ G, x ∈ Ob(Γ), a ∈ Γ , then we write g · x for g || || (x),
g · a for g || || (a). Thus the rules 11.1.1 apply also to this situation, as well as
the laws 11.1.1 (iii) g · (a + b) = g · a+ g · b, and (iv) g · 0x = 0g·x for all
g ∈ G, x ∈ Ob(Γ), a,b ∈ Γ such that a+ b is defined.

The action of G on Γ is trivial if g || || = 1 for all g in G.

11.2.1 Let G be a group acting on a groupoid Γ . An orbit groupoid of the

action is a groupoid Γ//G together with a morphism p : Γ → Γ//G such that:

(a) If g ∈ G, γ ∈ Γ , then p(g · γ) = p(γ).
(b) The morphism p is universal for (a), i.e. if ϕ : Γ → Φ is a morphism of

groupoids such that ϕ(g · γ) = ϕ(γ) for all g ∈ G, γ ∈ Γ , then there is a

unique morphism ϕ∗ : Γ//G→ Φ of groupoids such that ϕ∗p = ϕ.

The morphism p : Γ → Γ//G is then called an orbit morphism.

The universal property (b) implies that Γ//G, if it exists, is unique up to
a canonical isomorphism. At the moment we are not greatly concerned with
proving any general statement about the existence of the orbit groupoid.
One can argue that Γ//G is obtained from Γ by imposing the relations g·γ =

γ for all g ∈ G and all γ ∈ Γ ; however we have not yet explained quotients
in this generality. We will later prove existence by giving a construction

of Γ//G which will be useful in interpreting our main theorem. But our
next result will give conditions which ensure that the induced morphism
πX→ π(X/G) is an orbit morphism, and our proof will not assume general



418 [11.2] TOPOLOGY AND GROUPOIDS

results on the existence of the orbit groupoid. The reason we can do this is
that our proof directly verifies a universal property.

First we must point out that if the group G acts on the space X, then G
acts on the fundamental groupoid πX, since each g in G acts as a home-
omorphism of X and g || || : πX → πX may be defined to be the induced
morphism. This is one important advantage of groupoids over groups: by
contrast, the group G acts on the fundamental group π(X, x) only if x is a
fixed point of the action.

Suppose now that G acts on the space X. Our purpose is to give condi-
tions on the action which enable us to prove that

p∗ : πX→ π(X/G)

determines an isomorphism (πX)//G→ π(X/G), by verifying the universal
property for p∗. We require the following conditions:

11.2.2 (a) The projection p : X → X/G has the path lifting property: i.e. if

ā : I→ X/G is a path, then there is a path a : I→ X such that pa = ā.

(b) If x ∈ X, then x has an open neighbourhood Ux such that

(i) if g ∈ G does not belong to the stabiliser Gx of x, then Ux ∩ (g ·Ux) = ∅;

(ii) if a and b are paths in Ux beginning at x and such that pa and pb are

homotopic rel end points in X/G, then there is an element g ∈ Gx such that

g · a and b are homotopic in X rel end points.

x
b

g · y
g · a

a
y

Fig. 11.1

For a discontinuous action, 11.2.2(b)(i) trivially holds, while 11.2.2(a)
holds by virtue of 11.1.4. However, 11.2.2(b)(ii) is an extra condition. It
does hold if X is semi-locally simply-connected, since then for sufficiently
small U and x, g · y ∈ U, any two paths in U from x to g · y are homo-
topic in X rel end points; so 11.2.2(b)(ii) is a reasonable condition to use in
connection with covering space theory.

A neighbourhoodUx of x ∈ X satisfying 11.2.2(a) and (b) will be called
a strong canonical neighbourhood of x. The image p[Ux] of Ux in X/G will
be called a strong canonical neighbourhood of px.

11.2.3 If the action of G on X satisfies 11.2.2(a) and (b) above, then the

induced morphism p∗ : πX → π(X/G) makes π(X/G) the orbit groupoid of

πX by the action of G.



ORBIT SPACES, ORBIT GROUPOIDS [11.2] 419

Proof Let ϕ : πX → Φ be a morphism to a groupoid Φ such that ϕ(g ·
γ) = ϕ(γ) for all γ ∈ πX and g ∈ G. We wish to construct a morphism
ϕ∗ : π(X/G)→ Φ such that ϕ∗p = ϕ.

Let ā be a path in X/G. Then ā lifts to a path a in X. Let [b] denote
the homotopy class rel end points of a path b. We prove that ϕ[a] in Φ is
independent of the choice of ā in its homotopy class and of the choice of
lift a; hence we can define ϕ∗[ā] to be ϕ[a].

Suppose given two homotopic paths ā and b̄ in X/G, with lifts a and
b which without loss of generality we may assume start at the same point
x in X. (If they do not start at the same point, then one of them may be
translated by the action of G to start at the same point as the other.) Let
h : I × I → X/G be a homotopy rel end points ā ≃ b̄. The method now
is not to lift the homotopy h itself, but to lift pieces of a subdivision of h;
it is here that the method differs from that used in the theory of covering
spaces given in section 10.1.

Subdivide I × I, by lines parallel to the axes, into small squares each
of which is mapped by h into a strong canonical neighbourhood in X/G.
This subdivision determines a sequence of homotopies hi : āi−1 ≃ āi, i =
1, 2, . . . ,n, say, where ā0 = ā, ān = b̄. Keep i fixed for the present. Each
hi is further expressed by the subdivision as a composite of homotopies hij

(j = 1, 2, . . . ,m) as shown in the following picture in which for convenience
the boundaries of the hij are labelled:

ē1//

hi1

______

hij

ēj// ______
ēm//

him

āi−1

x̄ = c̄0 OO

āi

d̄1

// ______

c̄1OO c̄j−1 OO

d̄j

//

c̄jOO

______

OOc̄m−1

d̄m

//

c̄mOO

Choose lifts ai−1, ai of āi−1, āi respectively; express ai−1 as a sum
ai−1 = dm + · · · + d1 and ai as a sum ai = em + · · · + e1 where dj lifts d̄j
and ej lifts ēj. Choose for each j a lift cj of c̄j (with c0 the constant path at
x). For fixed j choose f,g,h ∈ G such that g · dj has the same initial point
as cj−1 and the sums

f · cj + g · dj, h · ej + cj−1

are defined. This is possible because of the boundary relations between the
projections in X/G of the various paths.

Now our assumption 11.2.2(b)(ii) implies that there is an element k ∈
G such that the following paths in X

k · (f · cj + g · dj), h · ej + cj−1
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are homotopic rel end points in X. On applying ϕ to homotopy classes of
paths in X and using equations such as ϕ(g · γ) = ϕ(γ) we find that

ϕ[ej] + ϕ[cj−1] = ϕ[h · ej] +ϕ[cj−1]

= ϕ[h · ej + cj−1]

= ϕ[k · (f · cj + g · dj)]
= ϕ[k · f · cj] +ϕ[g · dj]
= ϕ[cj] +ϕ[dj].

This proves that
ϕ[ej] = ϕ[cj] + ϕ[dj] −ϕ[cj−1].

It follows easily that
ϕ[ai−1] = ϕ[ai],

and hence by induction on i that ϕ[a] = ϕ[b].
From this it follows that ϕ∗ : π(X/G) → Φ is a well defined function

such that ϕ∗p = ϕ. The uniqueness of ϕ∗ is clear since p∗ is surjective on
elements, by the path lifting property of 11.2.2(a). The proof that ϕ∗ is a
morphism is simple. This completes the proof of 11.2.3. 2

In the next sections, we introduce some further constructions in the
theory of groupoids and groups acting on groupoids, in order to interpret
11.2.3 in a manner suitable for calculations. Once again, we will find that
an apparently abstract result involving a universal property can, when ap-
propriately interpreted, lead to specific calculations.

EXERCISES

1. Let G and Γ be groupoids and let w : Γ → Ob(G) be a morphism where Ob(G)

is considered as a groupoid with identities only. An action of G on Γ via w is an

assignment to each g ∈ G(x,y) and γ ∈ w−1[a] an element g · γ ∈ w−1[b] and with

the usual rules: h · (g ·γ) = (hg) ·γ; 1 ·γ = γ; g · (γ+ δ) = g ·γ+g · δ. In this case Γ

is called a G-groupoid. Show how to define a category of G-groupoids so that this

category is equivalent to the functor category Fun(G,Set).

2. Prove that if Γ is a G-groupoid via w, then π0Γ becomes a G-set via π0(w).

3. If Γ is a G-groupoid via w, then the action is trivial if for all a,b ∈ Ob(G),

g,h ∈ G(a,b) and γ ∈ w−1[a], we have g · γ = h · γ. Prove that the action is

trivial if for all a ∈ Ob(G), the action of the group G(a) on the groupoid w−1[a] is

trivial. Prove also that Γ contains a unique maximal subgroupoid ΓG on which G

acts trivially. Give examples to show that ΓG may be empty.

4. Continuing the previous exercise, define a G-section of w to be a morphism s :

Ob(G) → Γ of groupoids such that ws = 1 and s commutes with the action of G,

where G acts on Ob(G) via the source map by g · a = b for g ∈ G(a,b). Prove

that ΓG is non-empty if w has a G-section, and that the converse holds if G is
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connected. Given a G-section s, let ΓG(s) be the set of functions u : Ob(G) → Γ

such that wu = 1 and u commutes with the action of G (but we do not assume u is

a morphism). Show that ΓG(s) forms a group under addition of values, and that if

G is connected and a ∈ Ob(G), then ΓG(s) is isomorphic to the group Γ(sa)G(a) of

fixed points of Γ(sa) under the action of G(a).

11.3 General normal subgroupoids and quotient

groupoids

The theory of quotient groupoids is modelled on that of quotient groups,
but differs from it in important respects. In particular, the First Isomor-
phism Theorem of group theory (that every surjective morphism of groups
is obtained essentially by factoring out its kernel) is no longer true for
groupoids, so we need to characterise those groupoid morphisms (called
quotient morphisms) for which this isomorphism theorem holds. The next
two propositions achieve this; they were first proved in [Hig63].

Let f : K → H be a morphism of groupoids. Then f is said to be a
quotient morphism if Ob(f) : Ob(K) → Ob(H) is surjective and for all x,y
in Ob(K), f : K(x,y)→ H(fx, fy) is also surjective. Briefly, we say f is object

surjective and full.

11.3.1 Let f : K → H be a quotient morphism of groupoids. Let N = Ker f.
The following hold:

(a) If k, k ′ ∈ K, then f(k) = f(k ′) if and only if there are elements m,n ∈ N
such that k ′ = m+ k + n.

(b) If x is an object of K, then H(fx) is isomorphic to the quotient group

K(x)/N(x).

Proof (a) If k, k ′ satisfy k ′ = m + k + n where m,n ∈ N, then clearly
f(k) = f(k ′).

Suppose conversely that f(k) = f(k ′), where k ∈ K(x,y), k ′ ∈ K(x ′,y ′).
Then f(x) = f(x ′), f(y) = f(y ′).

x
k // y

m

���
�
�
�
�

x ′

n

OO�
�
�
�
�

k ′
// y ′

Since f : K(y,y ′) → H(fy, fy ′) is surjective, there is an element m ∈
K(y,y ′) such that f(m) = 0f(y). Similarly, there is an element n ∈ K(x ′, x)
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such that f(n) = 0f(x). It follows that if

n ′ = −k ′ +m+ k + n ∈ K(x ′),

then f(n ′) = 0f(x′), and so n ′ ∈ N. Hence k ′ = m + k + n − n ′, where
m,n − n ′ ∈ N. This proves (a).

(b) By definition of quotient morphism, the restriction f ′ : K(x)→ H(fx)

is surjective. Also by (a), if f ′(k) = f ′(k ′) for k, k ′ ∈ K(x), then there are
m,n ∈ N(x) such that k ′ = m+ k+ n. Since N(x) is normal in K(x), there
is an m ′ in N(x) such that m + k = k +m ′. Hence k ′ +N(x) = k +N(x).
Conversely, if k ′ +N(x) = k +N(x) then f ′(k ′) = f ′(k). So f ′ determines
an isomorphism K(x)/N(x)→ H(fx). 2

We recall the definition of normal subgroupoid.

Let G be a groupoid. A subgroupoid N of G is called normal if N is wide
in G (i.e. Ob(N) = Ob(G)) and, for any objects x,y of G and a ∈ G(x,y),
aN(x)a−1 ⊆ N(y), from which it easily follows that

aN(x)a−1 = N(y).

We now prove a converse of the previous result. That is, we suppose
given a normal subgroupoid N of a groupoid K and use 11.3.1(a) as a
model for constructing a quotient morphism p : K→ K/N.

The object set of K/N is to be π0N, the set of components of N. Recall
that a normal subgroupoid is, by definition, wide in K, so that π0N is also a
quotient set of X = Ob(K). Define a relation on the elements of K by k ′ ∼ k
if and only if there are elements m,n in N such that m + k + n is defined
and equal to k ′. It is easily checked, using the fact that N is a subgroupoid
of K, that ∼ is an equivalence relation on the elements of K. The set of
equivalence classes is written K/N. If clsk is such an equivalence class,
and k ∈ K(x,y), then the elements cls x, clsy in π0N are independent of the
choice of k in its equivalence class. So we can write cls k ∈ K/N(cls x, clsy).
Let p : K → K/N be the quotient function. So far, we have not used
normality ofN. Not surprisingly, normality is used to give K/N an addition
which makes it into a groupoid.

Suppose

clsk1 ∈ (K/N)(cls x, clsy), cls k2 ∈ (K/N)(clsy, cls z).

Then we may assume k1 ∈ K(x,y), k2 ∈ K(y ′, z), where y ∼ y ′ in π0N. So
there is an element l ∈ N(y,y ′), and we define

cls k2 + cls k1 = cls(k2 + l+ k1).
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We have to show that this addition is well defined. Suppose then

k ′
1 =m1 + k1 + n1,

k ′
2 =m2 + k2 + n2,

where m1,n1,m2,n2 ∈ N. Choose any l′ such that k ′
2 + l

′ + k ′
1 is defined.

Then we have the following diagram, in which a,a ′ are to be defined:

• k1//

n1 OO

• l//

m1��

• k2//

a

��

n2OO

•

m2��

a ′

��

•
k ′
1

// •
l′
// •

k ′
2

// •

Let a = n2 + l
′ +m1 − l. Then a ∈ N, and l = −a+n2 + l

′ +m1. Since N
is normal there is an element a ′ ∈ N such that a ′ + k2 = k2 − a. Hence

k2 + l+ k1 = k2 − a+ n2 + l
′ +m1 + k1

= −a ′ + k2 + n2 + l
′ +m1 + k1

= −a ′ −m2 + k
′
2 + l

′ + k ′
1 − n1.

Since a ′,m2,n1 ∈ N, we obtain cls(k2 + l+ k1) = cls(k ′
2 + l

′ + k ′
1) as was

required.
Now we know that the addition on K/N is well defined, it is easy to

prove that the addition is associative, has identities, and has inverses. We
leave the details to the reader. So we know that K/N becomes a groupoid.

11.3.2 Let N be a normal subgroupoid of the groupoid K, and let K/N be the

groupoid just defined. Then
(a) the quotient function p : k 7→ cls k is a quotient morphism K → K/N of

groupoids;

(b) if f : K → H is any morphism of groupoids such that Ker f contains N,

then there is a unique morphism f∗ : K/N→ H such that f∗p = f.

Proof The proof of (a) is clear. Suppose f is given as in (b). If m + k + n

is defined in K and m,n ∈ N, then f(m + k + n) = f(k). Hence f∗ is well
defined on K/N by f∗(cls k) = f(k). Clearly f∗p = f. Since p is surjective
on objects and elements, f∗ is the only such morphism. 2

In order to apply these results, we need generalisations of some facts
on normal closures which were given in section 8.3 for the case of a family
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R(x) of subsets of the object groups K(x), x ∈ Ob(K), of a groupoid K. The
argument here is based on [Hig05, Exercise 4, Chapter 12].

Suppose that R is any set of elements of the groupoid K. The normal

closure of R in K is the smallest normal subgroupoidN(R) of K containing R.
Clearly N(R) is the intersection of all normal subgroupoids of K containing
R, but it is also convenient to have an explicit description of N(R).

11.3.3 Let 〈R〉 be the wide subgroupoid of K generated by R. Then the normal
closure N(R) of R is the subgroupoid of K generated by 〈R〉 and all conjugates

khk−1 for k ∈ K, h ∈ 〈R〉.

Proof Let R̂ be the subgroupoid of K generated by 〈R〉 and all conjugates
khk−1 for k ∈ K, h ∈ 〈R〉. Clearly any normal subgroupoid of K containing

R contains R̂, so it is sufficient to prove that R̂ is normal.

Suppose then that k + a− k is defined where k ∈ K and a ∈ R̂ so that

a = r1 + c1 + r2 + c2 + · · · + rl + cl + rl+1

where each ri ∈ 〈R〉 and each ci = ki + hi − ki is a conjugate of a loop hi

in 〈R〉 by an element ki ∈ K.

•
kl
��

hl

�� •
ki−1

��

hi−1

�� •
k1
��

h1

��

• x •
k

oo
rl+1

//•
rl

// · · ·
ri

//•
ri−1

// · · · //•
r1

//• x
k

//•

Then a is a loop, since k + a− k is defined, and so also is

b = r1 + r2 + · · ·+ rl+1.

Let
di = k + r1 + · · ·+ ri + ci − ri − · · ·− r1 − k

so that di is a conjugate of a loop in 〈R〉 for i = 1, . . . , l. Then it is easily
checked that

k+ a− k = d1 + · · ·+ dl + k+ b− k
and hence k+ a− k ∈ R̂. 2

Notice that the loop b in the proof belongs to 〈R〉 rather than to R, and
this shows why it is not enough just to take N(R) to be the subgroupoid
generated by R and conjugates of loops in R.

The elements of N(R) as constructed above may be called the conse-

quences of R.
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EXERCISES

1. Let f : G → H be a groupoid morphism with kernel N. Prove that the following

are equivalent: (i) f is a quotient morphism; (ii) f is surjective and any two vertices

of G having the same image in H lie in the same component of G.

2. Prove that a composite of quotient morphisms is a quotient morphism.

3. Let H be a subgroupoid of the groupoid G with inclusion morphism i : H →
G. Let f : G → H be a morphism with kernel N. Prove that the following are

equivalent: (i) f is a deformation retraction; (ii) f is piecewise bijective and fi = 1H;

(iii) f is a quotient morphism, N is simply connected, and fi = 1H.

4. Suppose the following diagram of groupoid morphisms is a pushout

//

f

��

g

��//

and f is a quotient morphism. Prove that g is a quotient morphism.

5. Let f,g : H → G be two groupoid morphisms. Show how to construct the

coequaliser c : G→ C of f,g as defined in Exercise 4 of Section 6.4. Show how this

gives a construction of the orbit groupoid. [Hint: First construct the coequaliser

σ : Ob(G) → Y of the functions Ob(f), Ob(g), then construct the groupoid Uσ(G),

and finally construct C as a quotient of Uσ(G).]

11.4 The semidirect product groupoid

We next give the definition of the semidirect product of a group with a
groupoid on which it acts. Let G be a group and let Γ be a groupoid with G
acting on the left. The semidirect product groupoid Γ⋊G has object set Ob(Γ)
and arrows x→ y the set of pairs (γ,g) such that g ∈ G and γ ∈ Γ(g · x,y).
The sum of (γ,g) : x→ y and (δ,h) : y→ z in Γ ⋊G is defined to be

(δ,h) + (γ,g) = (δ+ h · γ,hg).
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This is easily remembered from the following picture.

•

•

(δ,h)

;;vvvvvvvvvvvvv •
δ

OO�
�
�
�
h · y

OO�
�
�
�

zOO�
�
�
�

•

(γ,g)

;;vvvvvvvvvvvvv •
γ

OO�
�
�
�
g · x

OO�
�
�
�

yOO�
�
�
�

•

h · γ

OO�
�
�
�
h · g · x

OO�
�
�
�

•
x

g
//______ •

h
//______ •

11.4.1 The above addition makes Γ ⋊G into a groupoid and the projection

q : Γ ⋊G→ G, (γ,g) 7→ g,

is a fibration of groupoids. Further:

(a) q is a quotient morphism if and only if Γ is connected;

(b) q is a covering morphism if and only if Γ is discrete;

(c) q maps (Γ ⋊ G)(x) isomorphically to G for all x ∈ Ob(Γ) if and only if Γ
has trivial object groups and G acts trivially on π0Γ .

Proof The proof of the axioms for a groupoid is easy: we have

(γ,g) = (γ,g) + (0x, 1)

= (0g·x) + (γ,g),

−(γ,g) = (g−1 · (−γ),g−1).

We leave the reader to check associativity.
To prove that q is a fibration, let g ∈ G and x ∈ Ob(Γ). Then (0g·x,g)

has source x and maps by q to g.
We now prove (a). Let x,y be objects of Γ . Suppose q is a quotient

morphism. Then q maps (Γ ⋊ G)(x,y) surjectively to G and so there is an
element (γ,g) such that q(γ,g) = 1. So g = 1 and γ ∈ Γ(x,y). This proves
Γ is connected.

Suppose Γ is connected. Let g ∈ G. Then there is a γ ∈ Γ(g · x,y), and
so q(γ,g) = g. Hence q is a quotient morphism.

We now prove (b). Suppose Γ is discrete, so that Γ may be thought of
as a set on which G acts. Then Γ ⋊G is simply the covering groupoid of the
action as constructed in section 10.4. So q is a covering morphism.

Let x be an object of Γ . If γ is an element of Γ with source x then (γ, 1)

is an element of Γ ⋊G with source x and which lifts 1. So if q is a covering
morphism then the star of Γ at any x is a singleton, and so Γ is discrete.
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The proof of (c) is best handled by considering the exact sequence based
at x ∈ Ob(Γ) of the fibration q. This exact sequence is (by 7.2.9)

1→ Γ(x)→ (Γ ⋊G)(x)
q′

−→ G→ π0Γ → π0(Γ ⋊G)→ 1.

It follows that q ′ is injective if and only if Γ(x) is trivial. Exactness also
shows that q ′ is surjective for all x if and only if the action of G on π0Γ is
trivial. 2

Here is a simple application of the definition of semidirect product
which will be used later.

11.4.2 Let G be a group and let Γ be a G-groupoid. Then the formula

(γ,g) · δ = γ+ g · δ

for γ, δ ∈ Γ , g ∈ G, defines an action of Γ ⋊G on the set Γ via the target map

τ : Γ → Ob(Γ).

Proof This says in the first place that if (γ,g) ∈ (Γ ⋊ G)(y, z) and δ has
target y, then γ + g · δ has target z, as is easily verified. The axioms for
an action are easily verified. The formula for the action also makes sense if
one notes that

(γ,g)(δ, 1) = (γ+ g · δ,g).
2

If X is a G-space, and x ∈ X, let σ(X, x,G) be the object group of the
semidirect product groupoid πX⋊G at the object x. This group is called by
Rhodes in [Rho66] and [Rho68] the fundamental group of the transforma-

tion group (although he defines it directly in terms of paths). The following
result from [Rho68] gives one of the reasons for its introduction.

11.4.2 (Corollary) If X is a G-space, x ∈ X, and the universal cover X̃x exists,

then the group σ(X, x,G) has a canonical action on X̃x.

Proof By 10.5.8, we may identify the universal cover X̃x of X at x with
StπX x. The function πX → πX, δ 7→ −δ, transports the action of πX ⋊ G
on πX via the target map τ to an action of the same groupoid on πX via the
source map σ. Hence the object group (πX⋊G)(x) acts on StπX x by

(γ,g) ∗ δ = −((γ,g) · (−δ)) = g · γ− γ.

The continuity of the action follows easily from the detailed description
of the lifted topology (see also the remarks on topological groupoids after
10.5.8). 2
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EXERCISES

1. Suppose the groupoid G acts on the groupoid Γ viaw : Γ → Ob(G) as in Exercise

1 of Section 11.2. Define the semidirect product groupoid Γ ⋊ G to have object

set Ob(Γ) and elements the pairs (γ,g) : x → y where g ∈ G(wx,wy) and γ ∈
Γ(g · x,y). The sum in Γ ⋊G is given by (δ,h) + (γ,g) = (δ+ h · γ,hg). Prove that

this does define a groupoid, and that the projection p : Γ ⋊G→ G, (γ,g) 7→ g, is a

fibration of groupoids. Prove that the quotient groupoid (Γ⋊G)/Kerp is isomorphic

to (π0Γ ⋊G).
2. Let G and Γ be as in Exercise 1, and let the groupoid H act on the groupoid ∆

via v : ∆ → Ob(H). Let f : G → H and θ : Γ → ∆ be morphisms of groupoids

such that vθ = Ob(f)w and θ(g · γ) = f(g) · θ(y) whenever the left-hand side is

defined. Prove that a morphism of groupoids (θ, f) : Γ ⋊ G → ∆ ⋊ H is defined

by (γ,g) 7→ (θ(γ), f(g)). Investigate conditions on f and θ for (θ, f) to have the

following properties: (i) injective, (ii) connected fibres, (iii) quotient morphism,

(iv) discrete kernel, (v) covering morphism. In the case that (θ, f) is a fibration,

investigate the exact sequences of the fibration.

3. Generalise the corollary to 11.4.2 from the case of the universal cover to the case

of a regular covering space of X determined by a subgroup N of π(X,x).

4. Let E : 1→ A→ E
p−→ G→ 1 be an exact sequence of groups. Prove that there

is an action of G on a connected groupoid Γ and an object x of Γ such that the above

exact sequence E is isomorphic to the exact sequence of the fibration Γ ⋊G→ G at

the object x. [Hint: the groupoid Γ is the action groupoid of the right action of E on

the set G via p.] [cf. [BD75].]

11.5 Semidirect product and orbit groupoids

Now we start using the semidirect product to compute orbit groupoids. The
next two results may be found in [HT82], [Tay82] and [Tay88].

11.5.1 Let N be the normal closure in Γ ⋊G of the set of elements of the form

(0x,g) for all x ∈ Ob(Γ) and g ∈ G. Let p be the composite

Γ
i−→ Γ ⋊G

ν−→ (Γ ⋊G)/N,

in which the first morphism is γ 7→ (γ, 1) and the second morphism ν is the

quotient morphism. Then

(a) p is a surjective fibration;

(b) p is an orbit morphism and so determines an isomorphism

Γ//G ∼= (Γ ⋊G)/N;

(c) the function Ob(Γ) → Ob(Γ//G) is an orbit map, so that Ob(Γ//G) may

be identified with the orbit set Ob(Γ)/G.
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Proof Let ∆ = (Γ ⋊G)/N. We first derive some simple consequences of the
definition of ∆. Let γ ∈ Γ(x,y), g,h ∈ G. Then

(0g·y,g) + (γ, 1) = (g · γ,g), (1)

(γ, 1) + (0x,h) = (γ,h). (2)

It follows that in ∆ we have

ν(h · γ, 1) = ν(γ,g). (3)

Note also that the set R of elements of Γ ⋊ G of the form (0g·x,g) is a
subgroupoid of G, since

(0hg·x,h) + (0g·x,g) = (0hg·x,hg),

and −(0g·x,g) = (0x,g
−1). It follows that π0N = π0R = Ob(Γ)/G, the

set of orbits of the action of G on Ob(Γ). Hence Ob(p) is surjective. This
proves (c), once we have proved (b).

We now prove easily that p : Γ → ∆ is a fibration. Let (γ,g) : x → y

in Γ ⋊ G be a representative of an element of ∆, and suppose νz = νx,
where z ∈ Ob(Γ). Then z and x belong to the same orbit and so there is an
element h in G such that h · x = z. Clearly h · γ has source z and by (3),
p(h · γ) = ν(γ,g).

Suppose now g ∈ G and γ : x → y in Γ . Then by (3) p(g · γ) = p(γ).
This verifies 11.2.1(a).

To prove the other condition for an orbit morphism, namely 11.2.1(b),
suppose ϕ : Γ → Φ is a morphism of groupoids such that Φ has a trivial
action of the group G and ϕ(g · γ) = ϕ(γ) for all γ ∈ Γ and g ∈ G. Define
ϕ′ : Γ ⋊ G → Φ on objects by Ob(ϕ) and on elements by (γ,g) 7→ ϕ(γ).
That ϕ is a morphism follows from the trivial action of G on Φ, since

ϕ′((δ,h) + (γ,g)) = ϕ(γ+ h.δ)

= ϕ(γ) +ϕ(h.δ)

= ϕ(γ) +ϕ(δ)

= ϕ′(δ,h) +ϕ′(γ,g).

Also ϕ′(0x,g) = ϕ(0x) = 0ϕx, and so N ⊆ Kerϕ′. By 11.3.2(b), there is a
unique morphism ϕ∗ : (Γ ⋊G)/N→ Φ such that ϕ∗ν = ϕ′. It follows that
ϕ∗p = ϕ∗νi = ϕ′i = ϕ. The uniqueness of ϕ∗ follows from the fact that p
is surjective on objects and on elements.

Finally, the isomorphism Γ//G ∼= ∆ follows from the universal property.
2

In order to use the last result, we analyse the morphism p : Γ → Γ//G in
some special cases. The construction of the orbit groupoid given in 11.5.1
is what makes this possible.
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11.5.2 The orbit morphism p : Γ → Γ//G is a fibration whose kernel is
generated as a subgroupoid of Γ by all elements of the form γ− g · γ where g

stabilises the initial point of γ. Furthermore,

(a) if G acts freely on Γ , by which we mean no non-identity element of G fixes

an object of Γ , then p is a covering morphism;

(b) if Γ is connected and G is generated by those of its elements which fix

some object of Γ , then p is a quotient morphism; in particular, p is a quotient

morphism if the action of G on Ob(Γ) has a fixed point;

(c) if Γ is a tree groupoid, then each object group of Γ//G is isomorphic to the

factor group of G by the (normal) subgroup of G generated by elements which

have fixed points.

Proof We use the description of p given in 11.5.1, which already implies
that p is a fibration.

Let R be the subgroupoid of Γ⋊G consisting of elements (0g·x,g), g ∈ G.
LetN be the normal closure of R. By the construction of the normal closure
in 11.3.3, the elements of N are sums of elements of R and conjugates of
loops in R by elements of Γ⋊G. So let (0g·x,g) be a loop in R. Then g·x = x.
Let (γ,h) : x→ y in Γ ⋊G, so that γ : h · x→ y. Then we check that

(γ,h) + (0x,g) − (γ,h) = (γ− hgh−1 · γ,hgh−1).

Writing k = hgh−1, we see that (γ − k · γ, k) ∈ N if k stabilises the initial
point of γ.

Now γ ∈ Kerp if and only if (γ, 1) ∈ N. Further, if (γ, 1) ∈ N then
(γ, 1) is a consequence of R and so (γ, 1) is equal to

(γ1 − k1 · γ1, k1) + (γ2 − k2 · γ2, k2) + · · · + (γr − kr · γr, kr)

for some γi, ki where ki stabilises the initial point of γi, i = 1, . . . , r. Let
h1 = 1, hi = k1 . . .ki−1 (i > 2), δi = hi.γ, gi = hikih

−1
i , i > 1. Then

(γ, 1) = (δ1 − g1 · δ1 + δ2 − g2 · δ2 + · · ·+ δr − gr · δr, 1)

and so γ is a sum of elements of the form δ − g · δ where g stabilises the
initial point of δ. This proves our first assertion.

The proof of (a) is simple. We know already that p : Γ → Γ//G is a
fibration. If G acts freely, then by the result just proved, p has discrete
kernel. It follows that if x ∈ Ob(Γ), then p : StΓ x → StΓ//G px is injective.
Hence p is a covering morphism.

Now suppose Γ is connected and G is generated by those of its elements
which fix some object of Γ . To prove p a quotient morphism we have to
show that for x,y ∈ Ob(Γ), the restriction p ′ : Γ(x,y) → (Γ//G)(px,py) is
surjective.
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Let (γ,g) be an element x → y in Γ ⋊ G, so that γ : g · x → y in
Γ . Using the notation of 11.5.1, we have to find δ ∈ Γ(x,y) such that
pδ = ν(γ,g). As shown in 11.5.1, ν(γ,g) = ν(γ, 1). By assumption, g =

gngn−1 . . .g1 where gi stabilises an object xi, say. Since Γ is connected,
there are elements

δ1 ∈ Γ(x1, x), δi ∈ Γ(xi, (gi−1 . . .g1) · x), i > 1.

The situation is illustrated below for n = 2.
x

δ1

x1

g1 · δ1

g1 · x

δ2

x2

g2 · δ2

g2g1 · x

γ

y

Fig. 11.2

Let

δ = γ+ (gn · δn − δn) + · · · + (g1 · δ1 − δ1) : x→ y.

Then p(δ) = ν(γ, 1). This proves (b).

For the proof of (c), let x be an object of Γ . Since Γ is a tree groupoid,
the projection (Γ ⋊G)(x)→ G is an isomorphism which sends the element
(0x,g), where g · x = x, to the element g. Also if g fixes x and h ∈ G then
hgh−1 fixes h ·x. Thus the image of N(x) is the subgroup K of G generated
by elements of G with a fixed point, and K is normal in G. Let x̄ denote the
orbit of x. By 11.3.1(b), and 11.5.1, the group (Γ//G)(x̄) is isomorphic to
the quotient of (Γ ⋊ G)(x) by N(x). Hence (Γ//G)(x̄) is also isomorphic to
G/K. 2

In 11.5.2, the result (a) relates the work on orbit groupoids to work
on covering morphisms. The result (b) will be used below. The result
(c) is particularly useful in work on discontinuous actions on Euclidean or
hyperbolic space.

In the case of a discontinuous action of a group G on a space X which
satisfies the additional condition 11.2.2(b), and which has a fixed point x,
we obtain from 11.5.2 a convenient description of π(X/G, x̄) as a quotient
of π(X, x). In the more general case, π(X/G, x̄) has to be computed as a
quotient of σ(X, x,G) = (πX ⋊ G)(x), as given in 11.5.1. Actually the case
corresponding to 11.5.2(c) was the first to be discovered, for the case of
simplicial actions [Arm65]. The general case followed from the fact that if

X has a universal cover X̃x at x, then σ(X, x,G) acts on X̃x with orbit space
homeomorphic to X/G.
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We give next two computations for actions with fixed points.

EXAMPLE

1. Let the group Z2 = {1,g} act on the circle S1 in which g acts by reflection
in the x-axis. The orbit space of the action can be identified with E1+, which
is contractible, and so has trivial fundamental group.

To see how this agrees with the previous results, let Γ = πS1, G = Z2. It
follows from 11.2.3 that the induced morphism πS1 → π(S1/G) is an orbit
morphism, and so π(S1/G) ∼= Γ//G. By 11.5.1, p : Γ → Γ//G is a quotient
morphism, since the action has a fixed point 1 (and also −1). Let the two
elements a± ∈ Γ(1,−1) be represented by the paths [0, 1]→ S1, t 7→ e±iπ t

respectively. The non trivial element g of G satisfies g · a+ = a−. Hence
the kernel of the quotient morphism p : Γ(1) → (Γ//G)(p1) contains the
element −a− + a+. But this element generates Γ(1) ∼= Z. So we confirm
the fact that (Γ//G)(p1) is the trivial group. 2

Before our next result we state and prove a simple group theoretic re-
sult. First let H be a group. It is convenient to write the group structure on
H as multiplication. The abelianisation Hab of H is formed from H by im-
posing the relations hk = kh for all h, k ∈ H. Equivalently, it is the quotient
of H by the (normal) subgroup generated by all commutators hkh−1k−1,
for all h, k ∈ H.

11.5.3 The quotient (H×H)/K of H×H by the normal subgroup K of H×H
generated by the elements (h,h−1) is isomorphic to Hab.

Proof We can regard H × H as the group with generators [h], 〈k〉 for all
h, k ∈ H and relations [hk] = [h][k], 〈hk〉 = 〈h〉〈k〉, [h]〈k〉 = 〈k〉[h] for
all h, k ∈ H, where we may identify [h] = (h, 1), 〈k〉 = (1, k), [h]〈k〉 =
(h, k). Factoring out by K imposes the additional relations [h]〈h−1〉 = 1, or
equivalently [h] = 〈h〉, for all h ∈ H. It follows that (H×H)/K is obtained
from H by imposing the additional relations hk = kh for all h, k ∈ H. 2

Definition (The symmetric square of a space) Let G = Z2 be the cyclic
group of order 2, with non-trivial element g. For a space X, let G act on the
product space X×X by interchanging the factors, so that g · (x,y) = (y, x).
The fixed point set of the action is the diagonal of X×X. The orbit space is
called the symmetric square of X, and is written Q2X.

11.5.4 Let X be a connected, Hausdorff, semi-locally 1-connected space, and

let x ∈ X. Let 〈x〉 denote the class in Q2X of (x, x). Then the fundamental

group π(Q2X, 〈x〉) is isomorphic to π(X, x)ab, the fundamental group of X at

x made abelian.
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Proof Since G = Z2 is finite, the action is discontinuous. Because of the
assumptions on X, we can apply 11.2.3, and hence also the results of this
section. We deduce that p∗ : π(X)×π(X)→ π(Q2X) is a quotient morphism
and that if x ∈ X, z = p(x, x), then the kernel of the quotient morphism

p ′ : π(X, x)× π(X, x)→ π(Q2X, z)

is the normal subgroup K generated by elements (a,b) − g · (a,b) = (a −

b,b − a), a,b ∈ πX(y, x), for some y ∈ X. Equivalently, K is the normal
closure of the elements (c,−c), c ∈ π(X, x). The result follows. 2

11.6 Full subgroupoids of orbit groupoids

To prepare for our next application to orbit groupoids, we give the follow-
ing result, due to Taylor [Tay88]. First recall that a morphism θ : Σ → Γ

of groupoids is full if for all x,y ∈ ObΣ, θ is surjective as a function
Σ(x,y)→ Γ(θx, θy).

11.6.1 Let θ : Σ → Γ be a morphism of G-groupoids, and consider the fol-
lowing diagram induced by θ:

L

θ ′

��

⊳ // Σ⋊G

θ⋊ 1

��
N

⊳
// Γ ⋊G

where: L is the normal subgroupoid of Σ⋊G generated by the elements (0x,g)

for x ∈ Ob(Σ), g ∈ G, and similarly for N and Γ ; and θ ′ is the restriction of

θ⋊ 1. Suppose

(*) the image of Ob(θ) meets each component of the fixed point groupoid of

each g ∈ G,

and θ is full, and injective on objects. Then θ ′ is full.

Proof Let x,y ∈ Ob(Σ) and let ν ∈ N(θx, θy). We have to prove ν = θλ

for some λ ∈ L(x,y).
Write ν = νr+· · ·+ν1 where each νi is of the form (0u,g) or a conjugate

of such an element. We may assume this sum is minimal in the sense that
no intermediate vertex of the νi is in the image of Ob θ, since otherwise we
may restrict to a part of the sum. Note that ν1 : z→ θy for some z ∈ Ob Γ .
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If ν1 = (0u,g) for some u,g, then 0u : g · z→ θy and hence u = g · z =
θy. So z = g−1 · θy = θ(g−1 · y). By minimality, ν = ν1, and so z = θx.
Hence θy = θ(g · x) so that, as θ is injective on objects, y = g · x and so
ν = θ ′(0x,g) where (0x,g) ∈ L(x,y).

If ν1 = (γ,h)+ (0u,g) − (γ,h) for some object u of Γ , then ν1 is a loop,
and so ν1 : θy → θy. Hence again, ν = ν1, θx = θy, and so x = y. Since
ν is a loop, so also is (0u,g), and so the object u must be a fixed point of
g. By hypothesis (*), there is an element β : u→ v of Γ such that g · β = β

and v = θz for some z. Now

ν1 = (γ,h) + (β, 1) − (β, 1) + (0u,g) + (β, 1) − (β, 1) − (γ,h)

= (δ,h) + (0v,g) − (δ,h)

where δ = γ+ h · β : h · θv→ v.

θx
−(γ,h)

//

−(δ,h)

  @
@@

@@
@@

@@
@@

@@
@@

@@
@ u

(0u,g) // u
(γ,h)

// θx

v

(β, 1)

OO

(0v,g)
// v

(δ,h)

>>~~~~~~~~~~~~~~~~~~

(β, 1)

OO

Since θ is full, there exists τ ∈ Σ(h · z, x) such that θτ = δ. The element
λ = (τ,h) + (0z,g) − (τ,h) then lies in L(x, x) and θ ′λ = ν, as required. 2

11.6.2 Let θ : Σ → Γ be an injective, full G-morphism, and suppose that

the image of Ob(Σ) meets each component of the fixed point groupoid of each

element of G. Then the induced morphism

θG : Σ//G→ Γ//G

is injective.

Proof We use the isomorphisms Σ//G → (Σ ⋊ G)/L, Γ//G → (Γ ⋊ G)/N
given by 11.5.1. In the following diagram:

Σ⋊G

θ⋊ 1

��

τ // (Σ ⋊G)/L

θ∗

��
Γ ⋊G

τ ′
// (Γ ⋊G)/N
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τ, τ ′ are the quotient morphisms, and θ∗ is the induced morphism. Then θ
injective implies θ⋊ 1 is injective, as is easily checked. Let τ(γ,g), τ(δ,h) ∈
Σ ⋊ G be such that θ∗τ(γ,g) = θ∗τ(δ,h). Then τ ′(θγ,g) = τ ′(θδ,h). So
there exists ν1,ν2 ∈ N such that

(θγ,g) = ν1 + (θδ,h) + ν2.

Now ν1,ν2 have vertices in the image of ObΣ. So, by the previous propo-
sition, there exists λ1, λ2 ∈ L which map to ν1,ν2 respectively, and α =

λ1+(δ,h)+λ2 is defined in Σ⋊G, has the same source and target as (γ,g),
and maps by θ ⋊ 1 to the same as does (γ,g). Since θ ⋊ 1 is injective,
(γ,g) = α, so τ(γ,g) = τ(δ,h), and so θ∗ is injective. 2

If A is a subset of Ob Γ , then ΓA will denote as usual the full sub-
groupoid of Γ on the object set A.

11.6.2 (Corollary 1) Let A be a G-invariant subset of Ob Γ which contains at

least one vertex from each component of the fixed point groupoid of each group

element. Then (ΓA)//G is a full subgroupoid of Γ//G so that the restriction
of the orbit morphism Γ → Γ//G to ΓA → (Γ//G)(A/G) is itself an orbit

morphism.

Proof The inclusion i : ΓA→ Γ is injective and full, and hence so too is the
induced morphism i∗A : ΓA→ Γ//G, by 11.6.2. Thus i∗A embeds (ΓA)//G in
Γ//G as a full subgroupoid. 2

11.6.2 (Corollary 2) If the action of G on X satisfies the conditions of 11.2.2,

andA is a G-stable subset of Xmeeting each path component of the fixed point

set of each element of G, then π(X/G)(A/G), the fundamental groupoid of

X/G on the set A/G, is canonically isomorphic to the orbit groupoid

(πXA)//G of πXA.

The results of this section answer some cases of the following question:

Question Suppose p : K → H is a connected covering morphism, and x ∈
Ob(K). Then p maps K(x) isomorphically to a subgroup of the group H(px).

What information in addition to the value of K(x) is needed to reconstruct the

group H(px)?

There is an exact sequence

0→ K(x)→ H(px)→ H(px)/p[K(x)]→ 0

in which H(px) and K(x) are groups while H(px)/p[K(x)] is a pointed set
with base point the coset p[K(x)]. Suppose now that p is a regular covering
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morphism. Then the group G of covering transformations of p is anti-
isomorphic to H(px)/p[K(x)], by 10.6.4 (Corollary 1). Also G acts freely on
K.

11.6.3 If p : K → H is a regular covering morphism, then p is an orbit

morphism with respect to the action on K of the group G of covering trans-
formations of p. Hence if x ∈ Ob(K), then H(px) is isomorphic to the object

group (K ⋊G)(x).

Proof Let G be the group of covering transformations of p. Then G acts
on K. Let q : K → K//G be the orbit morphism. If g ∈ G then pg = p,
and so G may be considered as acting trivially on H. By the condition
11.2.1(a), there is a unique morphism ϕ : K//G → H of groupoids such
that ϕq = p. By 11.5.2(a), q is a covering morphism. By 10.2.3, ϕ is
a covering morphism. But ϕ is bijective on objects, because p is regular.
Hence ϕ is an isomorphism.

Since G acts freely on K, the group N(x) of 11.5.1 is trivial. So the
description of H(px) follows from 11.5.1(b). 2

The interest of the above results extends beyond the case where G is
finite, since general discontinuous actions occur in important applications
in complex function theory, concerned with Fuchsian groups and Kleinian
groups. Unfortunately, a description of these applications would take us too
far beyond our allotted space, and we simply refer the reader to [Bea83]
and [IK87].

Another important type of result in the area of Fuchsian groups is the
theorem of Macbeath and Swan (for a recent account see [RT85]) which
says that if G acts on the connected space X and V is a connected open
neighbourhood of x ∈ X such that GV = X, then there is an exact sequence
of the form

1→ N→ π(X, x)→ Γ → G→ 1

where Γ is a group given by a presentation in terms of the intersections of
V with its transforms by elements of G. This result yields presentations of
G for example for special linear groups over number fields. Related results
are also obtained by means of groups acting on graphs ([Ser80]).

However the utility of groupoid methods in these areas has only recently
been found.

Finally, we should mention the book [Mon87], which relates in a geo-
metric spirit the notions of covering space, group actions, tessellations and
the modern theory of orbifolds.

EXERCISES
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1. Let Xn be the n-fold product of X with itself, and let the symmetric group Sn
act on Xn by permuting the factors. The orbit space is called the n-fold symmetric

product of X and is written QnX. Prove that for n > 2 the fundamental group of

QnX at an image of a diagonal point (x, . . . ,x) is isomorphic to the fundamental

group of X at x made abelian.

2. Investigate the fundamental groups of quotients of Xn by the actions of various

proper subgroups of the symmetric group for various n and various subgroups. [Try

out first the simplest cases which have not already been done in order to build up

your confidence. Try and decide whether or not it is reasonable to expect a general

formula.]

NOTES

The results in this chapter arose in the following circuitous way. In studying
group actions, [Rho66, Rho68] introduced σ(X, x,G), which he called the
fundamental group of the transformation group. This construction was then
used by Armstrong in a series of papers from 1966 to 1984 (see the ref-
erences in [Arm65]), to describe the fundamental group of an orbit space
of a discontinuous action. [BD75] pointed out that σ(X, x,G) is isomor-
phic to the object group at x of the semidirect product πX ⋊ G. This idea
was developed by [Tay82], [Tay88] and [HT82] in relation to Armstrong’s
results.

The path lifting property 11.1.4 for the quotient map by the action of
a discontinuous group is taken in essence from [Bre72, Theorem 6.2], but
with more detail given. The proof of 11.2.3 is taken from [BH86] and is es-
sentially a groupoid version of a result of [Arm82], which is there expressed
in terms of Rhodes’ fundamental group of a transformation group.

Another important topic is the relation between an action of a group G
on a space X, the fundamental group of X, and a so-called fundamental re-

gion, by which is meant a connected open set whose translates by the action
of G cover X. The paper [RT85] gives a proof of results which Macbeath
and Swan have applied to give presentations of special linear groups of
rings of algebraic integers. For more information, see the references in the
cited paper.

For work on fibre bundles, see [Ste51], [Hus66], [Mac05] and [IK87].
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Chapter 12

Conclusion

The initial aim for this book in the 1960s was to give an account of some
known basic ideas in algebraic topology, particularly homotopy type and
the fundamental group. It then became an exploration of the use of
groupoids in this area, for reasons explained in the Prefaces. The present
retitling and reorganisation emphasise this direction. The length of time to
make such changes does suggest the difficulty in recognising a change of
paradigm, even for a person involved in the change!

This use of the word ‘paradigm’ comes from the famous book of Thomas
Kuhn on ‘The structure of scientific revolutions’ [Kuh62]. This is discussed
in relation to mathematics in Corfield’s book [Cor03]. You are invited to
investigate the topic of paradigms and revolutions in mathematics!

It may seem strange to discuss matters of this type in a text—
professional mathematicians may argue that this is a distraction from get-
ting on with stating and proving theorems. However this book is also ad-
dressed to the beginner, and matters of methodology are important at var-
ious stages of any activity. Human beings rarely perform an activity well
without some mode of analysis and some knowledge at a higher level.

Einstein wrote in 1916 [Ein90]:

When I think of the ablest students whom I have encountered
in teaching—i.e., those who have distinguished themselves by
their independence and judgement and not only mere agility—
I find that they have a concern for the theory of knowledge.
They like to start discussions concerning the aims and meth-
ods of the sciences, and showed unequivocally by the obstinacy
with which they defend their views that this subject seemed im-
portant to them.

439
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This is not really astonishing. For when I turn to science not
for some superficial reason such as money-making or ambi-
tion, and also not (or at least exclusively) for the pleasure of
the sport, the delights of brain-athletics, then the following
questions must burningly interest me as a disciple of science:
What goal will be reached by the science to which I am ded-
icating myself? To what extent are its general results ‘true’?
What is essential and what is based only on the accidents of de-
velopment?. . . Concepts which have proved useful for ordering
things easily assume so great an authority over us, that we for-
get their terrestrial origin and accept them as unalterable facts.
They then become labelled as ‘conceptual necessities’, ‘a pri-
ori situations’, etc. The road of scientific progress is frequently
blocked for long periods by such errors. It is therefore not just
an idle game to exercise our ability to analyse familiar concepts,
and to demonstrate the conditions on which their justification
and usefulness depend, and the way in which these developed,
little by little. . .

For some, the main fascination in mathematics is the challenge of prob-
lems. Certainly, the solution of a famous problem will give the solver fame,
in at least the mathematical world. Yet problems can be stated only at a
given level of conceptualisation; so others see the progress of mathematics
as strongly involving the development of a rigorous language for:
description; verification; deduction; and calculation.
It can be argued that it is the development of such a language which has
been the main contribution of mathematics to culture, science and technol-
ogy over the centuries.

The elaboration of concepts is a key to this development. The problems
of doing this are indicated by Alexander Grothendieck, who in correspon-
dence with me in the 1980s, refers to ‘the difficulty of bringing new con-
cepts out of the dark’, and again to the fact that ‘mathematics was held back
for centuries for lack of the trivial concept of zero’. Elsewhere he suggests
that solving a problem is not like cracking a nut with a hammer, but more
like gradually softening the shell with water till it can be peeled away. The
immediate fame of Grothendieck was also that he developed new language
to invent and describe structures which could then be used to solve well
known problems. This made it easier for many to judge his achievement
against known targets. His enduring fame will be in the new worlds and
methods he opened up.

Shakespeare’s Theseus in ‘A Midsummer Night’s Dream’ describes the
rôle of the poet as:
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The Poet’s eye in a fine frenzy rolling
Does glance from heaven to earth, from earth to heaven,
And as imagination bodies forth the forms of things unknown
The Poet’s pen turns them to shapes, and gives to airy nothing
A local habitation and a name.

The last line could also be seen as relating to the mathematicians theories
and concepts.

In the preface to this edition we argued the case for the importance of
analogy in mathematics, and that we obtain analogies in mathematics not
between objects but between relations between objects. In so doing we try
to find the landscape, the structures, in which these objects lie. The slogan
of Ehresmann [Ehr66] was ‘to find the structure of everything’! This search
for new structures to express intuitions is for some of us a main part of the
fascination of mathematics; the solution of already formulated problems is
a useful test of the new concepts, more exciting is the view of new problems
and questions.

Many mathematical structures have been found as a result of trying
to understand, to make things clear, or even through laziness, to get one
exposition instead of several. In obtaining such an exposition, one is again
exploiting or finding analogies. This is the main point of abstract ideas in
mathematics.

The fact that the Van Kampen theorem for the fundamental groupoid
gave complete information on the fundamental group even in the non-
connected case was a surprise to me, as it seemed to conflict with current
methods in algebraic topology and homological algebra. These latter meth-
ods tend to give information in the form of exact sequences, and so do not
yield complete information. For example, they seemed unlikely to be able
to yield 8.4.1.

On the other hand the groupoid results seem to obtain their power be-
cause a groupoid has structure in the two dimensions 0 and 1, and this is
what is required in order to model the geometric identifications. This sug-
gested that higher dimensional results could be obtained by using algebraic
gadgets which had structure in a wider range of dimensions, so replacing
exact sequences by computations of colimits. Such a replacement would
probably not be complete, but it is of interest to see to what extent this phi-
losophy can lead to the investigation of interesting new algebraic gadgets
for modelling geometry.

Another input was the proof of the cellular approximation theorem in
section 7.6. This proof seemed to have elements of a higher dimensional
analogue of the proof of 6.7.2; that proof produced an algebraic result
because it had an algebraic structure to match the geometry. An analogous
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algebraic structure was lacking in higher dimensions.

Thus we have an anomaly: the examination and unpacking of this
anomaly has suggested a variety of new ideas.

The earliest move towards higher dimensional algebraic structures in
homotopy theory was the definition of the homotopy groups πn(X, x) of a
space X with base point x in [Č32]. However it was quickly proved that
these groups are abelian for n > 2, and this was thought to make them
not a sensible model of higher dimensional phenomena. For example, it
seemed unlikely that they could be handled by techniques of generators and
relations in a manner similar to techniques available for the fundamental
group. [H. Hopf told E. Dyer in 1966 of his embarrassment that he had
urged Čech to withdraw his full paper on higher homotopy groups for the
1932 International Congress, so that all that was published was a brief
paragraph.]

The striking early results in this area were the proof by Hopf in 1930
that the ‘Hopf map’ S3 → S2 is essential, and the results of Hurewicz in
1935 linking homotopy and homology (see for example [Whi78, Hat02]
for both these results). Such results inspired important work on higher ho-
motopy groups, so that the initial disappointment with their abelian nature
came to be looked on as a quirk of history.

The generalised Van Kampen theorems as given in [BH78] and [BL87]
bring to homotopy theory a novel style of result, involving ‘higher homo-
topy groupoids’, in which the basic tools are non-abelian. As sample re-
sults, the first paper gives the relative Hurewicz theorem (a tough nut in
basic homotopy theory) in the form of a relation between the relative ho-
motopy group πn(X,A, x) and the absolute homotopy group πn(X∪CA, x)
which is deduced from such a Van Kampen theorem, while the second pa-
per introduces a non-abelian tensor product of groups which yields new
computations of some third homotopy groups including new proofs that
π3(S2, x) ∼= Z and π4(S3, x) ∼= Z2. These methods suggest the existence of
a truly non-abelian homotopy theory whose extent is yet to be determined.

The key to these developments was the observation that groupoids have
a composition ab which is defined under geometric conditions: the final
point of b must be the initial point of a. From this starting point, it is easy
to see how to consider partially defined compositions of squares in two
directions. It is this partial composition which allows non abelian structures
in higher dimensions.

One interest in the development of new methods in homotopy theory is
the wide occurrence of the notion of ‘deformation’ as a tool for the clas-
sification of structures. Indeed it was for the classification of solutions
of dynamical problems such as the motion of three bodies under gravi-
tational forces, these solutions being regarded as paths in a suitable phase
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space, that was one of the influences that led Poincaré to work out the no-
tion of fundamental group in the first place. Another was the notion of
monodromy in complex variable theory. There is now a body of work on
groupoids, monodromy and holonomy.

There seems to be a lot of mileage in the naive approach that, since 1-
dimensional phenomena in homotopy theory are well modelled by the fun-
damental groupoid, then n-dimensional phenomena should be modelled
by n-dimensional groupoids. These latter algebraic structures are generali-
sations of groups. In view of the wide occurrence of groups in mathematics,
it will be interesting to see what impact such an approach to generalised
groups will have on other areas of mathematics.

We have explored the influence of groupoids only in one area. The
paper ‘From groups to groupoids’, [Bro87], gives more history and explains
wider impacts. For the area of Lie groupoids, see for example [Mac05].
For the impact on physics, and functional analysis, see [Con94] and later
work on ‘Non commutative geometry’, as well as [Pat99]. The book [BJ01]
shows the use of groupoids in the important area of Galois theory. The
book [MLM94] gives a wider framework for ‘internal groupoid’.

Our chapter 8 is titled ‘Combinatorial groupoid theory’, a novel term: it
represents at this stage, and as far it is distinct from combinatorial group
theory, a small subject. Two books which apply such ideas in directions
other than Higgins, [Hig05], and this one, are [Coh89] and [DV96]. There
is also a large subject of ‘computational group theory’. There is clearly work
to be done to test an extension of this!

The diagram of the relation of groupoids to other areas of mathematics
given on the back cover suggests further areas of work.

It is up to the reader to use this book to form a judgement on the extent
of the present and future utility of the groupoid concept. There is a trap
of suggesting that these results can be obtained in other ways. On this I
would like to quote G.-C. Rota:

“What can you prove with exterior algebra that you cannot prove with-
out it?” Whenever you hear this question raised about some new piece of
mathematics, be assured that you are likely to be in the presence of some-
thing important. In my time, I have heard it repeated for random vari-
ables, Laurent Schwartz’ theory of distributions, ideles and Grothendieck’s
schemes, to mention only a few. A proper retort might be: “You are right.
There is nothing in yesterday’s mathematics that could not also be proved
without it. Exterior algebra is not meant to prove old facts, it is meant to
disclose a new world. Disclosing new worlds is as worthwhile a mathemat-
ical enterprise as proving old conjectures.” (Indiscrete Thoughts, p.48)

A major work is to return to the roots of algebraic topology in geome-
try and analysis, and see if new outlooks can provide methods to answer
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questions of the pioneers. What may be the applications of these new non-
abelian methods to higher dimensional local-to-global problems? This con-
cluding chapter may be the end of the beginning.



Appendix A

Functions, cardinality,

universal properties

A.1 Functions

Let A,B be sets. A subset F of A× B is called functional if for each a ∈ A,
there is exactly one b ∈ B such that (a,b) ∈ F. A function f from A to B

will consist of the set A, the set B and a functional subset F of A× B; more
precisely, f is the triple (A,B, F). The set A is a domain of f, the set B is the
codomain of f, and the functional subset F of A× B is the graph of f. (The
codomain is sometimes called the range of f, but the word range is also
used for what we shall call the image of f.) If a ∈ A then the element b of
B such that (a,b) ∈ F is called the value of f on a, and is written f(a), or fa,
or even fa; we also say f sends, or maps, a to fa. In order to emphasise the

fact that f depends on both A and B we often write f : A → B, or A
f→ B,

for f. When a particular name is not required, a function from A to B is
written simply A→ B.

Our definition ensures that two functions f : A → B, f ′ : A ′ → B′ are
equal if and only if they have the same domain (i.e., A = A ′), the same
codomain (i.e., B = B′) and the same graph.

Functions are often defined by formulae. Thus the formulae 2x2 + sinx
defines a function R → R whose value on a real number x is 2x2 + sin x;
this function we denote by

R→ R

x 7→ 2x2 + sin x

and when the domain and codomain can be understood from the context

445
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we shall often denote such a function simply by x 7→ 2x2 + sin x. We
also allow that the domain of a function specified in this way shall be
the maximum domain on which the formula gives a unique answer; thus
x 7→ log x + (x2 − 1)−1 denotes a function with domain {x ∈ R : x > 0 and
x 6= 1}.

A.1.1 Let f : A → B, g : B → C be functions. The composite of these two
functions is the function

gf : A→ C

x 7→ gfx.

Sometimes, when extra clarity is essential, we write g◦f for gf. If h : C→ D
is another function, then we have the associative law

h(gf) = (hg)f.

The identity function on A is the function

1, or 1A : A→ A

x 7→ x.

If f : A→ B, then f1A = f, 1Bf = f.

A.1.2 A function f : A → B is surjective (and is a surjection) if for each b
in B, there is an a in A such that fa = b; f is injective (and is an injection)
if for all a,a ′ in A, fa = fa ′ implies a = a ′. Finally, f is bijective (and is a
bijection) if f is injective and surjective. For example, the identity 1 : A→ A
is a bijection.

A.1.3 Let f : A → B, g : B → A be functions such that gf = 1A. Then we
call g a left-inverse of f, and f a right inverse of g. If a ∈ A, then a = gfa,
and so g is surjective. If a,a ′ ∈ A and fa = fa ′, then a = gfa = gfa ′ = a ′;
so f is injective.

Suppose further that fg = 1B. Then f is surjective, g is injective. Thus
the two relations gf = 1A, fg = 1B imply that both f and g are bijective. If
these two relations hold, we say g is an inverse of f. This inverse is unique
because if, further, g ′f = 1A then

g ′ = g ′1B = g ′fg = 1Ag = g.

If g is the inverse of f, then f is the inverse of g, and we write

g = f−1, f = g−1.
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Suppose now f : A→ B is a bijection. Then the subset {(fa,a) ∈ B×A :

a ∈ A} is functional and so defines a function g : B→ A which sends each
b in B to the unique a in A such that b = fa. Thus g is the inverse of f.

A.1.4 Let f : A → B be a function, let A ′ ⊆ A, B′ ⊆ B and suppose that
a ∈ A ′ implies fa ∈ B′. The function

A ′ → B′

a 7→ fa

is called the restriction (or cut down) of f to A,B and is written

f | A ′,B′.

We also write f | A ′,B (i.e., in case B′ = B) simply as f | A ′.
In particular, the restriction

1A | A ′ : A ′ → A

of the identity function is called the inclusion function of A ′ into A. It is
clearly injective. We emphasise that if A ′ 6= A, then the inclusion function
A ′ → A is not the same as the identity function A ′ → A ′, since these
functions have different codomains.

A.1.5 Let f : A→ B be a function and let X, Y be any sets. The image of X
by f is the subset f[X] of B consisting of the elements f(a) for all a in A∩X.
That is,

f[X] = {b ∈ B : ∃a ∈ A ∩ X such that f(a) = b}.

We note that f[X] = f[X∩A]; but it is convenient to allow f[X] to be defined
for any set X, rather than restrict X to be a subset of A. The set f[A] is
called the image of f and is written Im f.

The inverse image of Y by f is the set f−1[Y] of elements a of A such
that f(a) ∈ Y. That is,

f−1[Y] = {a ∈ A : f(a) ∈ Y}.
In this case, f−1[Y] = f−1[Y∩Im f], but again it is convenient to allow f−1[Y]

to be defined for any set Y.
The purpose of the square bracket notation f[X] is to avoid ambiguity

between the image of a set and the value of the function. For example, f[∅]

is always the empty set, but if A = {∅}, then f(∅) will be an element of B,
not necessarily empty.

We shall make use of some abbreviations. For any y, we write f−1[y] for
f−1[{y}]. In some circumstances we omit the square brackets. For example,
f−1f[X] means f−1[f[X]], and if [a,b[ is an interval of R, then f[a,b[ means
f[[a,b[ ], and f−1[a,b[ means f−1[[a,b[ ].



448 [A.1] TOPOLOGY AND GROUPOIDS

EXAMPLES In the following examples we consider only functions whose
domains are subsets of R.
1. Let f be the function x 7→ x2. Then

f[−2, 1] = [0, 4], f−1[−2, 4] = [0, 2].

2. Let f be the function x 7→ − log x. Then

f[0, 3] = [− log 3,→[, f−1[0, 1[ = ]e−1, 1].

A.1.6 We use in this book a number of relations between images and
inverse images, and union and intersection. We state these here and leave
to the reader their proof and illustration with examples. Let f : A → B,
g : B→ C be functions, X, Y sets and (Xj)j∈J a family of sets.

A.1.6(1) f−1f[X] ⊇ X ∩A.

A.1.6(2) ff−1[Y] = Y ∩ f[A].

A.1.6(3) f[
⋃

j∈J

Xj] =
⋃

j∈J

f[Xj].

A.1.6(4) f[
⋂

j∈J

Xj] ⊆
⋂

j∈J

f[Xj].

A.1.6(5) f−1[
⋃

j∈J

Xj] =
⋃

j∈J

f−1[Xj].

A.1.6(6) f−1[
⋂

j∈J

Xj] =
⋂

j∈J

f−1[Xj].

A.1.6(7) (gf)[X] = gf[X].

A.1.6(8) (gf)−1[Y] = f−1g−1[Y].

A.1.6(9) f−1[B \ Y] = A \ f−1[Y].

Remark There are two other definitions of function than the one adopted
here. The first, and usual, definition is that a function is a set F of ordered
pairs with the property that (x,y), (x,y ′) ∈ F⇒ y = y ′. That is, a function
is identified with its graph. From F we can recover the domain of F, namely
the set {x : ∃y such that (x,y) ∈ F}, and the image of F, namely the set {y :

∃ x such that (x,y) ∈ F}. There are definite advantages to this definition,
particularly in analysis; for example, the inverse of an injective function is
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easy to define. However, this definition is not sufficient for our purposes.
We really do require that two functions A → B, A ′ → B′ are the same if
and only if they have the same graphs, and A = A ′, B = B′. In fact, when
A,B are sets with structures, the functions will be indexed also with these
structures.

A compromise between the two definitions, with the advantages of both,
is to define a function to be a triple f = (A,B, F) where F is a subset of A×B
such that (x,y), (x,y ′) ∈ F ⇒ y = y ′. The domain of f is then a subset of
A. A function f : A→ B is then called a mapping if its domain is all of A.

This definition is in fact required in one part of chapter 5, and a function
of this type will then be written f : A B and called a partial function from
A to B. For the rest of the book we require the domain of a function A→ B
to be all of A and so we keep to the first definition given.

EXERCISES

1. Let f : A→ B, g : B→ C be functions. Prove that

(a) If f and g are injective, so is gf.

(b) If f and g are surjective, so is gf.

(c) If f and g are bijective, so is gf.

(d) If gf is surjective, so also is g.

(e) If gf is injective, so also is f.

2. Let f : A→ B be a function.

(a) Prove that f is surjective if and only if for all C and all functions g,g ′ : B→ C,

the relation gf = g ′f implies g = g ′.

(b) Prove that f is injective if and only if for all C and all functions g,g ′ : C → A,

the relation fg = fg ′ implies g = g ′.

3. Prove the relations given in A.1.6.

4. Let f : X→ X ′, g : Y → Y ′ be functions. We define the cartesian product of f and

g to be the function

f× g : X× Y → X ′ × Y ′

(x,y) 7→ (fx,gy).

Prove that

(a) f× g is injective⇔ f,g are injective,

(b) f× g is surjective⇔ f,g are surjective.

Prove also that if f ′ : X ′ → X ′′, g ′ : Y ′ → Y ′′ then

(g ′ × f ′)(g× f) = g ′g× f ′f,
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and that 1X × 1Y = 1X×Y .

5. Let f : X → Y be a function, let A ⊆ X and let g = f | A, f[A]. Prove that if

U ⊆ f[A], V ⊆ Y, then

U = f[A] ∩ V ⇔ g−1[U] = A ∩ f−1[V].

A.2 Finite, countable and uncountable sets

We shall not attempt an account of all the properties we need of the basic
structures of mathematics (that is, such structures as N, Z, Q, R). In this
section, we begin by starting without proof some results on counting which
are particularly relevant. The details are in many books.

For each natural number n > 0, Nn denotes the set of natural number
less than n; N0 denotes the empty set.

A.2.1 If there is a bijection Nm → Nn, then m = n.

This result implies that the following definition makes sense. Let n ∈ N.
A set X has n elements if there is a bijection Nn → X. Such a bijection
f : Nn → X labels the elements of X as f(0), . . . , f(n − 1) and so, in effect,
counts them. By A.2.1, such a counting process leads to a unique answer.

A set X is finite if X has n elements for some natural number n.

A.2.2 A subset X of N is finite if and only if X is bounded above.

Here by X is bounded above is meant that there is a natural number
greater than every element of X. In such case, the set X has a greatest
element. But N itself has no greatest element. Therefore, N if infinite, that
is, N is not finite.

Another consequence of A.2.2 and of its proof is that if X is a finite
subset of N with n elements, then every subset Y of X is finite with at most
n elements. Further, if Y has n elements, then Y = X. An immediate
consequence is:

A.2.3 If X is a finite set with n elements, then every subset Y of X is finite

with at most n elements. Further, if Y has n elements, then Y = X.

The process of comparing a set X with Nn generalises to arbitrary sets.
Two sets X and Y have the same cardinality, written |||

|

X = |||
|

Y, if there is a
bijection X → Y. This relation between sets is an equivalence relation [cf.
Glossary].

A set X is countably infinite if |||
|

X = |||
| N; X is countable if X is finite

or countably infinite; and otherwise, X is uncountable. We shall prove later
that uncountable sets exist.
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A.2.4 Any subset of N is countable.

Consequently, any subset of a countable set is again countable. But
there are non-finite proper subsets of N, for example N \ {0}, the set of even
numbers, the set of prime numbers, and so on; all these must, by A.2.4, be
countably infinite. Thus the last part of A.2.3 does not generalise to infinite
sets. In fact, though we do not prove this, a set X is infinite if and only if
there is a proper subset Y of X such that |||

|

X = |||
|

Y.
When X is a finite set, we write |||

|

X for the number of elements of X. It
is not hard to prove, and we leave it as an exercise to the reader, that if X
and Y are finite then

|||
|

(X× Y) = |||
|

X · |||
|

Y

and that if also X and Y are disjoint, then

|||
|

(X ∪ Y) = |||
|

X+ |||
|

Y.

It might be thought that if X, Y are countably infinite, then X × Y is not
countable. Surprisingly, this is false.

A.2.5 N× N and N have the same cardinality.

Proof Consider the function

f : N× N→ N

(x,y) 7→ 2x3y.

Clearly, f is an injection, and so N× N is countable. But N× N is not finite
since it contains the infinite set N×{0}. Therefore N×N is countably infinite.

2

A more elementary proof of A.2.5 is suggested in Exercise 14 of Section
A.2. We use A.2.5 to prove two important results (A.2.7 and A.2.8). First
we need:

A.2.6 Let X be countable and f : X → Y a surjection. Then Y is countable,

and is finite if X is finite.

Proof If X is empty, then so also is Y and the result follows. We suppose
then that X is non-empty.

We first note that there is a surjection g : N → X. In fact, if X is
infinite, then there is a bijection g : N→ X; if X is finite, there is a bijection
e : Nn → X for some n > 0, and the function

g : N→ X

m 7→
{
e(m), m < n

e(n − 1), m > n
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is a surjection.
The function h = fg : N → Y is a surjection. Hence for each y in

Y, the set h−1[y] is non-empty, and so has a smallest element k(y). Then
hk(y) = y, whence the function k : Y → N is injective [A.1.6]. So Y is
countable by A.2.4.

If X is finite, then k[Y] ⊆ Nn, and so Y is finite. 2

We say a family (Xλ)λ∈L is countable if L, the set of indices, is countable;
and (Xλ)λ∈L is finite if L is finite.

A.2.7 The union of a countable family of countable sets is countable.

Proof Let (Xλ)λ∈L be a countable family such that each Xλ is countable.
Let X =

⋃
λ∈L Xλ, M = {λ ∈ L : Xλ 6= ∅}. Then M is countable and

X =
⋃

λ∈M Xλ. If M = ∅, then X = ∅ and the result follows. So suppose
M 6= ∅.

As shown in the proof of A.2.6, there is a surjection f : N →M and for
each λ in M there is a surjection gλ : N→ Xλ. Consider the function

g : N× N→ X

(m,n) 7→ gf(m)(n).

We prove that g is a surjection; this implies by A.2.6 and A.2.5 that X is
countable.

Let x ∈ X. Then x ∈ Xλ for some λ ∈ M; further, λ = f(m) for some
m ∈ N and x = gλ(n) for some n ∈ N. Thus x = gf(m)(n). 2

A.2.8 The set Q of rational numbers is countable.

Proof Any rational number is of the formm/n or −m/n form,n in N and
n 6= 0. Let X = {(m,n) ∈ N × N : n 6= 0}. Then X is a subset of N × N and
so is countable.

Let Q>0 (Q60) denote the set of non-negative (non-positive) rational
numbers. The function (m,n) 7→ m/n is a surjection X → Q>0. Therefore
Q>0 is countable. Similarly, Q60 is countable and so Q = Q>0 ∪ Q60 is
countable. 2

In order to construct uncountable sets from countable ones we need
the operation P(X), the power of a set X. By definition, P(X) is the set
of all subsets of X. For example, if X is empty, then P(X) consists of one
element, the empty set. If X = {0, 1}, then P(X) consists of ∅, {0}, {1},X. In
the exercises we shall suggest a proof that when X is finite

|||
|

P(X) = 2××X.

Here we prove:
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A.2.9 For any set X there is an injection X → P(X), but no bijection X →
P(X).

Proof The function x 7→ {x} is an injection X→ P(X).
Suppose f : X → P(X) is a bijection with inverse g : P(X) → X. We

derive a contradiction by a marvellous argument due to G. Cantor.

For each x in X, f(x) is a subset of X. So it makes sense to ask whether
or not x ∈ f(x). Let

A = {x ∈ X : x /∈ f(x)} (*)

and let a = g(A) so that f(a) = A. We now ask: does a ∈ A? If a ∈ A,
then by (*) a /∈ f(a). Since f(a) = A, we have a contradiction. On the
other hand, if a /∈ A, then, since A = f(a), we have a /∈ f(a). So a ∈ A by
(*), and we still have a contradiction. This shows that a bijection X→ P(X)
cannot exist. 2

This result implies that P(N) is uncountable.

A.2.10 The set R of real numbers is uncountable.

Proof It is sufficient to prove that R has an uncountable subset. For this
we construct an injection

χ : P(N)→ R.

For any subset X of N we define the characteristic function of X

χx : N→ {0, 1}

n 7→
{
0 if n /∈ X
1 if n ∈ X.

Clearly, χX = χX′ if and only if X = X′. We now define

χ : P(N)→ R

X 7→
∞∑

n=0

χX(n)/2
2n.

Certainly the series for χ(X) is convergent, and so χ(X) is a well-defined
real number. In fact, χ(X) is a binary decimal of the form

n0.0n10n20n30 · · · . (**)

It follows that if χ(X) = χ(X′), then χX(n) = χX′(n) for all n in N, whence
X = X′ (the presence of the 0’s in (**) ensures that there is no difficulty
with repeated 1’s). 2
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The argument of A.2.10 can be refined to show that |||
| R = |||

|

P(N), but
we do not need this fact.

The reader should keep well aware of the intuitive meaning of A.2.10.
The rational numbers are ‘dense’ in the real line in the sense that there are
rational numbers arbitrarily close to any real number; also between any
two rational numbers there is another. Thus the rational numbers appear
to fill up the real line. But this is illusory: by A.2.10 there are many more
real numbers than rational numbers.

A further point is that very little is known about the irrational numbers,
and particularly about the non-algebraic numbers (for whose definition see
Exercise 14). It can be argued that by the process of mathematical reason-
ing we can acquire at most a countable number of facts about R; yet R is
uncountable and so its properties must remain largely unexplored.

A.2.11 The sets R× R and R have the same cardinality.

Proof Let A = ]0, 1]. The function

f : Z×A→ R

(n,a) 7→ n+ a

is a bijection. Also Z is countably infinite (the function n 7→ 2n (n > 0),
n 7→ −2n − 1 (n < 0) is a bijection Z → N) and so there is a bijection
g : Z×Z→ Z. We shall prove below that there is a bijection h : A×A→ A;
the composite

R× R
f−1×f−1

−→ Z×A× Z×A 1×T×1−→ Z× Z×A×A g×h−→ Z×A f−→ R

in which T is the bijection (a,n) 7→ (n,a), is the required bijection R×R→
R.

Let B be the set of all sequences (mr)r>0 of natural numbers. We con-
struct a bijection i : A→ B as follows. Each a in A can be written uniquely
as a binary decimal,

.a1a2a3 · · ·
where at = 0 or 1 and the expression does not end in repeated 0’s (that
is, it is false that ar = 0 for r sufficiently large). We define i(a) to be the
sequence (mr)r>0 such that m0 is the number of 0’s between the decimal
point and the first 1, and mr (r > 0) is the number of 0’s between the rth
and the (r + 1)st 1. For example, if a = .01100101 · · · then i(a) is initially
the sequence 1, 0, 2, 1, · · · .

There is an obvious bijection j : B × B → B, where (lr) = j((mr), (nr))

is the sequence m0,n0,m1,n1, · · · , that is, l2r = mr, l2r+1 = nr. The
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composite

A×A i×i−→ B× B j−→ B
i−1

−→ A

is the required bijection. 2

EXERCISES

1. Prove that the function x 7→ x/(1 + |x|) is a bijection R→ ] − 1, 1[.

2. Let a,b be real numbers such that a < b. Construct a bijection [0, 1]→ [a,b].

3. Construct bijections [0, 1]→ [0, 1[ → ]0, 1[.

4. Let X, Y be disjoint sets such that |||
|

X = |||
|

Y = |||
| R. Prove that |||

|

(X ∪ Y) = |||
| R.

5. Let X, Y be finite sets with m,n elements respectively. Prove that YX, the set of

all functions X→ Y, has nm elements.

6. Let A be a set. For each subset X of A define the characteristic function of X

χX : A→ {0, 1}

a 7→
{
0 if a /∈ X
1 if a ∈ X.

Prove that the function X 7→ χX is a bijection P(A) → {0, 1}A. Deduce that if

|||
|

A = n, then |||
|

P(A) = 2n.

7. Continuing the notion of Exercise 6, prove that if X and X1, · · · ,Xn are subsets

of A then

(a) χ(A \ X) = 1− χ(X),

(b) χ(X1 ∩ · · · ∩ Xn) = χ(X1)χ(X2) · · ·χ(Xn),

(c) χ(X1 ∪ · · · ∪ Xn) = 1− (1− χ(X1))(1− χ(X2)) · · · (1− χ(Xn)).

Use the characteristic function to verify that

X ∩ (X1 ∪ · · · ∪ Xn) = (X ∩ X1) ∪ · · · ∪ (X ∩ Xn).

8. We define the projections

p1 : X× Y → X p2 : X× Y → Y

(x,y) 7→ x (x,y) 7→ y.

Let ∆ : Z→ Z× Z be the diagonal map z 7→ (z, z). Prove that the functions

ρ : (X× Y)z → Xz × Yz σ : Xz × Yz → (X× Y)z

f 7→ (p1f,p2f) (f, g) 7→ (f × g)∆

satisfy ρσ = 1, σρ = 1. Deduce that if l,m,n are natural numbers, then

(lm)n = lnmn.

9. Let X, Y be disjoint sets. Prove that there is a bijection

ZX∪Y → ZX × ZY .

Deduce that if l,m,n are natural numbers, then

lm+n = lmln.
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10. Let X,Y,Z be sets. Prove that the exponential map

e : XZ×Y → (XY)Z

f 7→ (z 7→ (y 7→ f(z, y)))

is a bijection. (The notation means that e(f) is the function such that e(f)(z)(y) =

f(z,y).) Deduce that if l,m,n are natural numbers, then

lnm = (lm)n.

11. Let X, Y be finite sets withm,n elements respectively wherem 6 n. Determine

the number of bijections X→ X and the number of injections X→ Y.

12. Read the proof of A.2.10 given in [Die60, 2.2.17].

13. Prove that the function

f : N×N→ N

(x,y) 7→ 1
2
(x+ y)(x+ y+ 1) + y

is a bijection.

14. A real number α is called algebraic if α satisfies an equation

αn + a1α
n−1 + · · ·+ an−1α+ an = 0

where ai ∈ Z. Prove that the set of algebraic numbers is countable.

15. Prove that the plane R× R is not the union of countably many lines.

A.3 Products and the axiom of choice

Let (Xλ)λ∈L be a family of sets and let X be the set of all families x =

(xλ)λ∈L such that xλ ∈ Xλ. Then X is called a product of the family (Xλ)λ∈L

and is denoted by
∏

λ∈L

Xλ.

The elements xλ of Xλ is called the λth coordinate of x. Thus we have
functions

pλ : X→ Xλ

x 7→ xλ;

the function pλ is called the λth projection. (Note that a family (xλ)λ∈L

such that xλ ∈ Xλ is a function x : L→ X′ where X′ =
⋃

λ∈L X, and that xλ
is the same as x(λ), the value of x at λ.)
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Suppose, in particular, that L = {0, 1}. The function
∏

λ∈L

Xλ → X0 × X1

x 7→ (x0, x1)

is a bijection, and this shows that the product
∏

λ∈L Xλ is a reasonable
generalisation of the cartesian product X0 × X1.

If one of the sets Xλ is empty, then so also is
∏

λ∈L Xλ. The converse of
this statement is the Axiom of Choice.

Axiom of Choice. If
∏

λ∈L Xλ is empty, then one of the sets Xλ is empty. Or,
alternatively, if each set Xλ is non-empty, then

∏
λ∈L Xλ is non-empty.

We shall discuss later why this is an axiom rather than a theorem. For
the moment, we illustrate the axiom by a simple consequence.

Let X, Y be sets. We say |||
|

Y 6 |||
|

X if there is an injection Y → X.

A.3.1 Let X, Y be sets and f : X→ Y a surjection. Then |||
|

Y 6 |||
|

X.

Proof We suppose X is non-empty, so that Y is non-empty. Then for each y
in Y the set f−1[y] is non-empty. By the Axiom of Choice there is an element
k of

∏
y∈Y f

−1[y].

Now k is a function Y → X. Since k(y) ∈ f−1[y] for each y ∈ Y, it
follows that fk = 1Y . Therefore, k is injective and so |||

|

Y 6 |||
|

X. 2

The reader should compare this proof carefully with that of A.2.6. In
A.2.6 an injection k : Y → N was constructed explicitly using properties of
the natural numbers; no such method is available here and we must rely
instead on the Axiom of Choice.

The following theorem was proved by Cantor using the Axiom of Choice.
Later, proofs were found not using this axiom, and for this reason the the-
orem is known as the Schröder-Berstein theorem.

A.3.2 Let X, Y be sets. If |||
|

X 6 |||
|

Y and |||
|

Y 6 |||
|

X, then |||
|

X = |||
|

Y.

On the other hand, the proof of the following theorem does involve the
Axiom of Choice.

A.3.3 If X and Y are sets, then either |||
|

X 6 |||
|

Y or |||
|

Y 6 |||
|

X.

Neither of these theorems is essential for this book, and so we omit the
proofs.

For any set X there is a set Y such that |||
|

Y > |||
|

X (for example, Y =

P(X)). An obvious problem is to determine all infinite cardinalities. With
out present notation we can state only the following result.
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A.3.4 There are sets AN, and An for each n in N, such that A0 = N and

|||
|

A0 < |||
|

A1 < · · · < |||
|

An < · · · < |||
|

AN.

Further, if X is not finite and has cardinality less than that of AN, then |||
|

X =

|||
|

An for some n in N.

There are also greater cardinalities than that of AN, but to describe
these, and also to prove A.3.2, the theory of ordinal numbers is required
[cf., for example, the Appendix to [Kel55]].

We can now ask: where, if anywhere, in the list given in A.3.2 does the
cardinality of R fall? We have already proved that |||

| R > N; Cantor spent
a large portion of his life trying to prove the

Continuum Axiom: |||
| R = |||

|

A1.

It is now known that his attempts were bound to fail, although we can
describe only roughly why this is so.

In order to decide whether or not this axiom, and the Axiom of Choice,
can be proved, it is first necessary to describe precisely what is meant by
a proof. This involves setting up carefully the system of logic used in our
normal arguments. Second, within this system it is necessary to construct
a Set Theory; such a theory is an axiomatic system, with undefined terms
such as set, membership, and so on, together with axioms guaranteeing
the existence or non-existence of certain sets and governing the use of the
undefined terms.

Once Set Theory is set up in this way, we can then ask: do the Axiom
of Choice and the Continuum Axiom follow from the other axioms of Set
Theory? It was proved by P. Cohen in 1962 that these two axioms are
independent of each other and of the other axioms of Set Theory. This
means that for each of these axioms we obtain three theories, in which the
axiom is either asserted, or denied, or simply left out (and so there are nine
theories from these two axioms!).

Few of these theories have been investigated, and there are other vari-
eties of Continuum Axiom which are the subject of current research. The
Axiom of Choice plays an important role in many branches of mathematics,
and we shall use it without further mention. The Continuum Axiom has
some (possibly undesirable) consequences in measure theory. There are
also applications in general topology of other Axioms. For a further discus-
sion of these topics we refer the reader to [Göd47], [Coh66], [Joh02], and
[IK87].
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A.4 Universal properties

One purpose of this section is to give an abstract characterisation of the
product of sets and to introduce the ‘dual’ notion of sum of sets (the word
dual is explained in chapter 6). The kind of argument used is of importance
in discussing adjunction spaces and computations of the fundamental gr-
oup. I suggest you read through this section quickly and return to master
it when you find the methods are needed.

Let (Xλ)λ∈L be a family of sets. We have seen that associated with the
product

∏
λ∈L Xλ is a family of projections

pλ :
∏

λ∈L

Xλ → Xλ.

The crucial property of these projections is that they determine completely
functions into the product.

A.4.1 Let Y be a set and let there be given a family of functions

fλ : Y → Xλ, λ ∈ L.

Then there is a unique function f : Y →
∏

λ∈L Xλ such that

pλf = fλ, λ ∈ L.

Proof An element x of
∏
Xλ is determined completely by its family of ‘co-

ordinates’ xλ = pλx. Therefore, we can define f by saying that for each y
in Y, f(y) is to have coordinates fλ(y) for each λ ∈ L. This is equivalent to
pλf(y) = fλ(y). 2

We now show that this property characterises the product in a certain
sense.

A.4.2 Let p ′
λ : X′ → Xλ, λ ∈ L be a family of functions. Then the following

conditions are equivalent.

(a) There is a bijection p ′ : X′ →
∏
Xλ such that

pλp
′ = p ′

λ, λ ∈ L.

(b) For any Y and any family of functions fλ : Y → Xλ, λ ∈ L, there is a

unique function f : Y → X′ such that

p ′
λf = fλ, λ ∈ L.
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Proof In order to bring out the structure of the argument we make some
definitions. All families in what follows will be indexed by L; the family
(Xλ) is given.

By an object we mean a pair (Y, (fλ)) consisting of a set Y and a family
fλ : Y → Xλ of functions. Such an object is abbreviated to (Y, fλ). By a map

f : (Y, fλ)→ (Z,gλ) of objects we mean a function f : Y → Z such that

gλf = fλ, all λ ∈ L.

We then have the following properties.
(i) The identity 1 : (Y, fλ)→ (Y, fλ) is a map.
(ii) If f : (Y, fλ)→ (Z,gλ) and g : (Z,gλ)→ (W,hλ) are maps, then so also
is gf : (Y, fλ)→ (W,hλ). (Since hλgf = gλf = fλ.)
(iii) If f : (Y, fλ) → (Z,gλ) is a map, and f : Y → Z is a bijection, then
f−1 : (Z,gλ) → (Y, fλ) is a map. (The relation gλf = fλ implies that
fλf

−1 = gλff
−1 = gλ.)

Let X =
∏
Xλ. The property A.4.1 can now be stated as: for any object

(Y, fλ) there is exactly one map f : (Y, fλ)→ (X,pλ). Similarly, the property
(b) above can be stated: for any object (Y, fλ) there is exactly one map f :

(Y, fλ)→ (X′,p ′
λ).

We now show that (b) ⇒ (a). By A.4.1 there is exactly one map p ′ :

(X′,p ′
λ) → (X,pλ). By (b) there is exactly one map p : (X,pλ) → (X′,p ′

λ).
By (ii), p ′p : (X,pλ) → (X,pλ) is a map; but there is only one map
(X,pλ) → (X,pλ) and by (i) this is the identity. Hence p ′p = 1. Simi-
larly, pp ′ : (X′,p ′

λ) → (X′,p ′
λ) is a map and so pp ′ = 1. These relations

show that p ′ is a bijection, while the relations given in (a) simply state that
p ′ is a map.

We now show that (a) ⇒ (b). Since p ′ is a bijection it has an inverse,
which we write p : X → X′. By (iii), p : (X,pλ) → (X′,p ′

λ) is a map. Let
(Y, fλ) be an object. By A.4.1 there is a unique map f : (Y, fλ) → (X,pλ)

and by (ii) pf : (Y, fλ) → (X′,p ′
λ) is a map. So we have constructed a map

as required, but we must show that this is unique.
Suppose then g : (Y, fλ) → (X′,p ′

λ) is a map. Then p ′g : (Y, fλ) →
(X,pλ) is a map and hence p ′g = f. It follows that g = pp ′g = pf. �

The property A.4.1 of the product is called a universal property, and the
method of proof of A.4.2 will be called the usual universal argument.

The important thing about a product is that it has projections which
satisfy the universal property. There is in many cases no canonical choice
for the actual set we take as the product: for example, if L consists of
three elements 1,2,3, then we can take for the product either

∏
λ∈L Xλ (as

defined above) or

(X1 × X2)× X3, or X1 × (X2 × X3)
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and there seems no reason to prefer one to another. The fact that in
each case we have projections satisfying the universal property ensures that
there are bijections between any two of these sets.

We therefore now define a product of the family (Xλ)λ∈L of sets to be a
set X with projections pλ : X→ Xλ, λ ∈ L, such that the universal property
of A.4.1 holds. The set X is then also written

∏
λ∈L Xλ.

In the case L is finite, say L = {1, . . . ,n}, then a product of X1, . . . ,Xn is
written X1 × · · · × Xn. If fλ : Y → Xλ, λ = 1, . . . ,n is a family of functions,
then the unique function f : Y → X1×· · ·×Xn such that pλf = fλ is written
(f1, . . . , fn), and fλ is called the λth component of f.

Sum of sets

We shall also need the less familiar construction of the sum (also called the
disjoint union, or coproduct) of sets. We define this ab initio by a universal
property.

Let (Xλ)λ∈L be a family of sets. A sum of the family is a set X together
with functions iλ : Xλ → X, called injections, with the following property:
for any Y and any family of functions fλ : Xλ → Y, λ ∈ L, there is a unique
function f : X→ Y such that fiλ = fλ, λ ∈ L.

The formal difference between the definitions of product and sum are
that we are given maps from the product and into the sum. So we distin-
guish between the two universal properties by saying that the product is
ι-universal (ı for initial) and the sum is ϕ-universal (ϕ for final).

A.4.3 Let iλ : Xλ → X (λ ∈ L) be a sum of the family (Xλ)λ∈L, and let

i ′λ : Xλ → X′ (λ ∈ L) be a family of functions. Then the following conditions

are equivalent.

(a) There is a bijection i ′ : X→ X′ such that

i ′iλ = i ′λ, λ ∈ L.

(b) X′ and the family (i ′λ)λ∈L is a sum of the family (Xλ)λ∈L.

Proof The method of proof is similar to that of A.4.2 and we only outline
it.

An object (Y, fλ) is defined to be a pair consisting of a set Y and a family
fλ : Xλ → Y of functions. A map f : (Y, fλ) → (Z,gλ) is defined to be a
function f : Y → Z such that

ffλ = gλ, λ ∈ L.

The properties analogous to (i), (ii), (iii) in the proof of A.4.2 are easily
verified.
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The object (X, iλ) is thus a sum if and only if there is exactly one map
(X, iλ)→ (Y, fλ) for any object (Y, fλ). The remainder of the proof is anal-
ogous to that of A.4.2 and is left to the reader. 2

If iλ : Xλ → X is a sum then we write

X =
⊔

λ∈L

Xλ.

In particular, if L = {1, . . . ,n} then we write

X = X1 ⊔ · · · ⊔ Xn.

We must now show that sums exist. Suppose first of all that the family
(Xλ) consists of disjoint sets. Let X =

⋃
λ∈L Xλ and let iλ : Xλ → X be the

inclusion. Then, clearly, we have a sum of the family, since first a function
f : X→ Y is completely determined by the functions fλ = f | Xλ = f iλ, and
second, any such family defines a function f. Thus for families of disjoint
sets, we can always take

⊔
λ∈L Xλ to be the union

⋃
λ∈L Xλ.

The situation is different if the sets are not disjoint. For example, two
functions f1 : X1 → Y, f2 : X2 → Y define a function f : X1 ∪ X2 → Y such
that f | X1 = f1, f | X2 = f2 if and only if f1, f2 agree on X1∩X2, a condition
which is vacuous if X1 ∩ X2 = ∅ but not otherwise.

A.4.4 Any family (Xλ)λ∈L of sets has a sum.

Proof The idea of the proof is to replace the given family by a family of
disjoint sets and then take the union. In fact we replace Xλ by X′

λ = Xλ×{λ};
then X′

λ meets X′
µ if and only if λ = µ.

Let X =
⋃

λ∈L X
′
λ and let

iλ : Xλ → X

x 7→ (x, λ).

Let fλ : Xλ → Y be a family of functions. Then the function

f : X→ Y

(x, λ) 7→ fλ(x)

is well-defined and is the only function X→ Y whose composite with each
iλ is fλ. 2

A.4.4 (Corollary 1) If iλ : Xλ → X is a sum, then each iλ is injective.

Proof If iλ : Xλ → X is the sum constructed in A.4.4, then it is obvious that
each iλ is injective. If i ′λ : Xλ → X′ is any sum, then there is a bijection
i ′ : X→ X′ such that i ′iλ = i ′λ, and it follows that each i ′λ is injective. 2
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In the case of a finite family X1, . . . ,Xn, the function f : X1⊔· · ·⊔Xn → Y
such that f iλ = fλ, λ = 1, . . . ,n, is sometimes written

(f1, . . . , fn)
t.

Equivalence relations

We need in chapter 4 some facts on equivalence relations in addition to
those given in the Glossary.

Let R be a relation on a set A. We define a new relation E on A by
aEb⇔ there is a sequence a1, · · · ,an of elements of A such that

(a) a1 = a, an = b,

(b) for each i = 1, . . . ,n− 1,

aiRai+1 or ai+1Rai or ai = ai+1.

A.4.5 The relation E is the smallest equivalence relation on A containing R.

Proof We first prove that E is an equivalence relation. Let a,b, c ∈ A.
Clearly aEa, since the sequence a,a satisfies (a) and (b). Suppose aEb,
and that a1, . . . ,an satisfies (a) and (b). Then the sequence an, . . . ,a1
ensures that bEa.

Finally, if aEb and bEc, then by splicing together two sequences we
obtain that aEc.

Suppose E ′ is an equivalence relation containing R. We have to prove
that E is contained in E ′, i.e., that aEb⇒ aE ′b.

Let aEb, and let a1, . . . ,an be a sequence satisfying (a) and (b). Now E ′

contains R. So aiE
′ai+1 for each i = 1, . . . ,n − 1 (by (b)). Hence a1E

′an,
i.e., aE ′b. 2

Because of A.4.5, we call E the equivalence relation generated by R. Let
p : A→ A/E be the projection a 7→ clsa. Then p can be characterised by a
ϕ-universal property.

A.4.6 (a) For all a,b in A, aRb⇒ pa = pb.

(b) If f : A→ B is any function such that

aRb⇒ fa = fb all a,b in A.

then there is a unique function f∗ : A/E→ B such that

f∗p = f.
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Proof The proof of (a) is obvious, since R ⊆ E and

pa = pb ⇔ clsa = clsb ⇔ aEb.

Let f : A→ B be a function, and let Ef be the relation on A given by

aEfb ⇔ fa = fb.

Then Ef is an equivalence relation. Suppose also aRb ⇒ fa = fb. Then
Ef contains R and so Ef contains E. Hence if clsa = clsb, then fa = fb.
Therefore the function

f∗ : A/E→ B

clsa 7→ fa

is well-defined, and clearly f∗p = f. The uniqueness of f∗ follows from the
fact that p is surjective. 2

The usual universal argument shows that if p ′ : A→ A ′ is any function
satisfying A.4.6(a) and (b) (with p replaced by p ′) then there is a unique
bijection p∗ : A/E → A ′ such that p∗p = p ′. Also, given a bijection p∗ :

A/E → A ′ for some A ′, then p ′ = p∗p satisfies A.4.6(a) and (b) (with p
replaced by p ′);

A
p //

f

  B
BB

BB
BB

BB
BB

BB
B A/E

p∗ //

f∗

��

A ′

B

(for if f : A→ B satisfies aRb⇒ fa = fb, then we can construct f∗ : A/E→
B such that f∗p = f, and then take f∗(p∗)−1 : A ′ → B).

EXERCISES

1. Prove that for any sets X1,X2,X3, there are bijections

X1 ⊔ X2 → X2 ⊔ X1,

X1 ⊔ (X2 ⊔ X3)→ (X1 ⊔ X2) ⊔ X3,

X1 × (X2 ⊔ X3)→ (X1 × X2) ⊔ (X1 × X3).

2. Let f1 : X1 → Y1, f2 : X2 → Y2 be functions. The function

f1 ⊔ f2 : X1 ⊔ X2 → Y1 ⊔ Y2

is by definition (i1f1, i2f2)
t. Prove that
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(a) f1 ⊔ f2 is injective⇔ f1, f2 are injective.

(b) f1 ⊔ f2 is surjective⇔ f1, f2 are surjective.

Prove also that if g1 : Y1 → Z1, g2 : Y2 → Z2, then

(g1 ⊔ g2)(f1 ⊔ f2) = g1f1 ⊔ g2f2.

3. An n-diagram is defined to be a pair of functions

{x}
j−→ X

f−→ X

such that x ∈ X and j is the inclusion. A map of n-diagrams is a commutative

diagram,

{x}
j //

g ′

��

X
f //

g

��

X

g

��
{x ′}

j ′
// X ′

f ′
// X ′

Let N be the n-diagram {0}→ N
s→ N where s is the function n 7→ n+ 1. Prove that

N is ϕ-universal: that is, if X is any n-diagram, then there is a unique map N → X

of n-diagrams. Show that this property expresses the principle of inductive (or

recursive) definition of a function. Show that if also N ′ is ϕ-universal, then there

are unique maps ϕ : N → N ′, ψ : N ′ → N such that ϕψ, ψϕ are the respective

identity maps.

Deduce from the ϕ-universal property the following: if h : N × Y → Y is a

function, and y0 ∈ Y, then there is a unique function k : N→ Y such that

k(0) = y0, k(n+ 1) = h(n, k(n)), n ∈ N.

Show that the ϕ-universal property implies the following form of the principle

of induction: if A ⊆ N and (i) 0 ∈ A, (ii) for all n, n ∈ A⇒ n+ 1 ∈ A, then A = N.

NOTES

The most important use of the principle of induction is to define functions.
It seems reasonable therefore to axiomatise the natural numbers in a way
which immediately allows such a definition. The above universal property
does exactly this. For more information, seek information on natural num-

ber objects. But note that we have shown in Chapter 6 that the integers Z
can be defined by a pushout from the finite groupoid I. It is easy to de-
fine the natural numbers by an analogous pushout in the category of small
categories.

As explained in the Preface to this edition, the notion of universal ar-
gument has proved very fruitful for obtaining analogies. This suggests the
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principle, which is quite well established, that in general definitions should
if possible be given in terms of universal properties; afterwards, the spe-
cific construction should, even must, be given, but this may seem to have
a certain ad hoc nature, and the construction should not be the definition.
Of course, in this book we have offended against this principle in a number
of places, sometimes for pedagogic reasons, and the reader is invited to
rewrite those parts in a different order, and to evaluate where the payoff
for using universal properties is clear!



Glossary of terms from set

theory

Agree Two functions f,g : X → Y agree at a point x in X if f(x) = g(x);
and f,g agree on a subset A of X if f | A = g | A.

Anti-symmetric cf. Relation.

Belongs to Synonyms for a belongs to A are: a is a member of A, a is an
element of A, a is in A, A contains a, a ∈ A, A ∋ a.

Bounded Let X be a set and 6 a partial order relation on X. Let A be a
subset of X. An upper bound for A is an element u of X such that a ∈ A⇒
a 6 u. A supremum, sup A, for A is an upper bound u for A such that if
v is any upper bound for A then u 6 v. The terms lower bound, infinum

(inf A) are defined as for upper bound and supremum but with 6 replaced
by >. The set A is bounded above if it has an upper bound, bounded below

if it has a lower bound, and bounded if it is bounded above and below. The
order relation is complete if every non-empty subset of X which is bounded
above has a supremum (and this implies that every non-empty subset of X
which is bounded below has an infinum).

Cartesian product The Cartesian product of two sets A,B is the set A× B
of all ordered pairs (a,b) for a in A, b in B.

Class There is a necessity to rescue set theory from some rather simple
contradictions. One way of doing this is by distinguishing classes and sets.
Here class is the general notion and a set is a class which is a member of
some other class [cf. [Kel55]]. A more useful method for category theory
is to assume axioms postulating the existence of ‘universes’ [cf. [Son62]].
Another approach is to axiomatise category theory instead of set theory [cf.
[Law66]]. See also [Bla84].

Classifier notation This is the notation {x : P(x)}; it denotes the set of all

467
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x having property P(x) (if such exists; otherwise it has no denotation). We
write {x ∈ A : P(x)} for {x : P(x) and x ∈ A}. If A can be understood from
the context it is common to abbreviate {x ∈ A : P(x)} to {x : P(x)}. If a ∈ A,
then the set {x ∈ A : x 6= a} is written A 6=a.

Commutative The following diagrams of functions

A
f //

g

��

B

h

��
C

k
// D

A
l //

n
��?

??
??

??
??

??
? B

m

��
C

are commutative if hf = kg (in the first case) and n = ml (in the second
case). This definition is extended to more complicated diagrams in the
obvious way.

Complement If A is a subset of B, the complement of A in B is the differ-
ence B \A. When B can be understood from the context, we refer to B \A
simply as the complement of A.

Complete See Bounded.

De Morgan laws Let A,B,X be sets, and let (Ai)i∈I be a family of subsets
of X. The De Morgan laws are:

X \ (A ∪ B) = (X \A) ∩ (X \ B), X \ (A ∩ B) = (X \A) ∪ (X \ B)

X \
⋃

i∈I

Xi =
⋂

i∈I

(X \ Xi), X \
⋂

i∈I

Xi =
⋃

i∈I

(X \ Xi).

Difference If X,A are sets, the difference of X and A is the set X \ A =

{x ∈ X : x /∈ A}. The difference satisfies

X \ (X \A) = X ∩A.

Disjoint Two sets A,B are disjoint if A ∩ B = ∅.

Distributivity law If A,B,X are sets, and (Xi)i∈I is a family of sets, then

X ∩ (A ∪ B) = (X ∩A) ∪ (X ∩ B)
X ∩

⋃

i∈I

Xi =
⋃

i∈I

(X ∩ Xi)
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Element An object or member of a set.

Empty set The set ∅ with no elements.

Equality Two sets are equal if and only if they have the same elements.

Equivalence relation An equivalence relation on a setA is a relation which
is symmetric, transitive, and reflexive on A. If ∼ is an equivalence relation
on A, then for each a ∈ A the set clsa = {b ∈ A : b ∼ a} is called the
equivalence class of a. Two sets clsa, clsb either coincide, or are disjoint.
The set of all such equivalence classes is written A/ ∼. The function A →
A/ ∼, a 7→ clsa is called the projection. We also abbreviate a ∈ clsa ∈ A/ ∼
to a ∈∈ A/ ∼.

Factors Let n : A→ C be a function and B a set. It is possible that there are
functions I : A → B, m : B → C such that n = ml. The existence of such
l,m is expressed by saying n factors through B. Given m, the existence of
such an l is expressed by saying n factors through l. Given l, the existence
of such an m is expressed by saying n factors through l. This definition is
extended to other categories [cf. chapter 6] than Set in the obvious way.

Family A family (Xλ)λ∈L with indexing set L is a function λ 7→ Xλ with
domain L. We allow the empty family, in which L = ∅. The restriction of
λ 7→ Xλ to a subset of L is called a subfamily of (Xλ)λ∈L.

Greatest element See Maximal element.

Inclusion See Subset.

Integers The set Z of integers has elements 0,±1,±2, . . .; Z may be con-
structed from the set N of natural numbers.

Intersection The intersection of two sets A,B is the set A ∩ B of elements
belonging to both A and B; thus

A ∩ B = {x : x ∈ A and x ∈ B}.

The intersection of a non-empty family of sets (Xλ)λ∈L is the set

⋂

λ∈L

Xλ = {x : x ∈ Xλ for all λ ∈ L}.

The intersection of an empty family is defined only when we are dealing
with families of subsets of a fixed set X, and then the intersection is X itself.

Interval Let X be a set and 6 an order relation on X. A subset A of X is
an interval if the conditions x 6 z 6 y and x,y ∈ A imply z ∈ A. Particular
intervals of X are X itself, the empty set and the subsets of X given by
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[x,y] = {z : x 6 z 6 y}, [x,→[ = {z : x 6 z}

]←, x] = {z : z 6 x}, [x,y[ = {z : x 6 z < y}

]x,y] = {z : x < z 6 y}, ]x,→[ = {z : x < z < y}
]x,→[ = {z : x < z}, ]←, x[ = {z : z < x}

for x,y in X such that x 6 y. The first three intervals are closed, the next two
half-open and the last three, as well as X and ∅, are open. The completeness

of the order is equivalent to the fact that any interval of X is of one of the
forms given above. An interval [x,→[ is also written X>x; similar notations
are used for other intervals involving → or ←. The end points of a non-
empty interval ]x,y] are x and y; then end point of ]←, x] is x; similar terms
are applied to the other intervals.

Least element See Maximal element.

Maximal element Let X be a set, 6 a partial order relation on X, and A a
subset of X. An element a of A is maximal if no element of A is larger than
a, i.e., if a ′ ∈ A and a 6 a ′ implies a = a ′. An element a of A is a greatest
element if a is larger than every element of A, i.e., if a ′ ∈ A implies a ′ 6 a.
A greatest element is maximal, and is unique. A maximal element need not
be a greatest element, nor need it be unique; however it will have both
of these properties if 6 is an order relation, and in this case the maximal
element of A (when it exists) is written max A. The terms minimal, least,
min A are defined as for maximal, greatest, max A, but with 6 replaced by
>, and larger replaced by smaller.

Meet Two sets A,B meet if A ∩ B 6= ∅; in such case we also say A meets
B, B meets A.

Natural number The set N of natural numbers has elements 0, 1, 2, . . . ;N
may be described axiomatically or constructed explicitly.

Order relation A partial order relation on X is a relation which is transi-
tive, anti-symmetric, and reflexive on X. A partial order is an order relation

if it is a total relation. A partial order is often written 6, in which case
x < y means x 6 y and x 6= y, while y > x means x 6 y.

Ordered pair Intuitively, the ordered pair (a,b) consists of the elements
a,b taken in order. The crucial property is that (a,b) = (a ′,b ′) if and only
if a = a ′, b = b ′. This property may be derived from the definition

(a,b) = {{a}, {a,b}}.

Point The word point is a geometric synonym for element, object.

Positive Greater than 0.

Proper See Subset.
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Rational number A rational number is a ratio m/n for m,n integers and
n 6= 0. The set Q of all rational numbers may be constructed from Z.

Real number The set R of real numbers satisfies axioms given, in many
books; R may be constructed from Q by Dedekind sections or Cantor se-
quences.

Reflexive See Relation.

Relation A relation on A is a subset R of A×A. If (x,y) ∈ R we write also
xRy. The relation R is reflexive if xRx for all x ∈ A; symmetric if xRy⇒ yRx

for all x,y ∈ A; anti-symmetric if xRy and yRx ⇒ x = y for all x,y ∈ A;
transitive if xRy and yRz⇒ xRz for all x,y, z ∈ A; total on A if xRy or yRx
for all x,y ∈ A.

Sequence A family with indexing set a subset of N.

Set A set is a ‘collection of objects viewed as a whole’. A rigorous treatment
of sets requires an axiomatic theory [cf. [IK87]]. The set whose elements
are exactly x1, x2, . . . , xn is written {x1, x2, . . . , xn}.

Subset The set A is a subset of B if every element of A is an element of B,
that is, if ∀x x ∈ A ⇒ x ∈ B. Synonyms for A is a subset of B are: A ⊆ B,
B ⊇ A, A is contained in B, A is included in B, B contains A. The set A is
a proper subset of B if A ⊆ B and A 6= B.

Symmetric See Relation.

Total See Relation.

Transitive See Relation.

Union The union of two sets A,B is the set A∪B whose elements are those
of A and those of B. That is,

A ∪ B = {x : x ∈ A or x ∈ B}.

The union of a family (Xλ)λ∈L of sets is the set

⋃

λ∈L

Xλ = {x : x ∈ Xλ for some λ ∈ L};

in particular, the union of the empty family is the empty set.

Zorn’s lemma This lemma, which is equivalent to the Axiom of Choice,
states that if T is a partially ordered set such that any ordered subset has
an upper bound in T, then T contains a maximal element.
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unbranched coverings (resumé)’. Contemp. Math (1982) 141–
155. 388

[HW48] Hurewicz, W. and Wallman, H. Dimension theory. Princeton
Univ. Press (1948).



BIBLIOGRAPHY 485

[Hus66] Husemoller, D. Fibre bundles. McGraw-Hill, New York (1966).
415

[IK87] Iyanaga, S. and Kawada, Y. (eds.). Encyclopaedic dictionary of
mathematics. MIT Press, Cambridge, Mass. and London, Eng-
land, third edition (1987). Produced by Mathematical Society
of Japan; reviewed by K. O. May. 87, 414, 415, 436, 449

[Jam58] James, I. M. ‘The intrinsic join’. Proc. London Math. Soc. 8 (3)
(1958) 507–535.

[Jam84] James, I. M. General topology and homotopy theory. Springer-
Verlag, Berlin-Heidelberg-Tokyo (1984). 89, 186, 269, 289, 295

[JT66] James, I. M. and Thomas, E. ‘Note on the classification of cross
sections’. Topology 4 (1966) 351–360.

[JTTW63] James, I. M., Thomas, E., Toda, H. and Whitehead, G. W. ‘On
the symmetric square of a sphere’. J. Math. Mech. 12 (1963)
771–776. 167

[Joh79] Johnstone, P. T. ‘A topological topos’. Proc. London Math. Soc.

38 (3) (1979) 237–271.

[Joh82] Johnstone, P. T. Stone spaces, Cambridge Studies in Advanced

Mathematics, Volume 3. Cambridge University Press, Cambridge
(1982). 60, 87

[Joh83] Johnstone, P. T. ‘The point of pointless topology’. Bull. American

Math. Soc. (New Series) 8 (1983) 409–419. 60, 186

[Joh02] Johnstone, P. T. Sketches of an elephant: a topos theory com-

pendium Volume 1, Oxford Logic Guides, Volume 43. Oxford Sci-
ence Publications, Oxford (2002). 60, 184, 322, 436

[Kam33] Kampen, E. H. van. ‘On the connection between the fundamen-
tal groups of some related spaces’. Amer. J. Math. 55 (1933)
261–267. 239, 318

[Kam72a] Kamps, K. H. ‘Kan-Bedingungen und abstrakte homotopietheo-
rie’. Math. Z. 124 (1972) 215–236. 295

[Kam72b] Kamps, K. H. ‘Zur homotopietheorie von gruppoiden’. Arch.

Math. 23 (1972) 610–618.



486 TOPOLOGY AND GROUPOIDS

[Kam87] Kamps, K. H. ‘Note on the gluing theorem for homotopy equiv-
alences and van Kampen’s theorem’. Cah. Top. Géom. Diff. Cat.
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Glossary of symbols

Standard spaces

C complex numbers 14
I unit interval 10
H quaternions 133
L {0} ∪ {n−1 : n = 1, 2, . . .} 58
N natural numbers (including 0) 448
Q rational numbers 449
R real numbers 449
Z integers 447
K one of C, R, H 43

İ {0, 1} 152
Kn standard n-dimensional space over K 44
Bn unit Euclidean ball 46
En unit Euclidean disc 46
Sn−1 unit Euclidean sphere 46
Jn n-cube 46
T2 torus 92
Mn(K) n× n matrices 146
∆n standard n-simplex 160

∆̇n simplicial boundary of ∆n 152
Pn(K) projective space 139

O(n) orthogonal group 147
SO(n) special orthogonal group 147

U(n) unitary group 147
SU(n) special unitary group 147
Sp(n) symplectic group 147
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Subsets

[x,y]
]←, x]

]x,y[

X>x






intervals in ordered set 447

X6=x X \ {x} 446
X \ A complement of A in X 446
[x,y] segment in normed space 73
B(a, r) ball of radius r 46
E(a, r) closed ball of radius r 46
S(a, r) sphere of radius r 46
B(V) unit ball 46
E(V) closed unit ball 46
S(V) unit sphere 46

V∗ V 6=0 139

Topological operations on subsets

IntA interior 18

A closure 22
ExtA exterior 23
BdA boundary 23
FrA frontier 23

Â derived set 23
ClA C relative closure 30
IntA C relative interior 31

Operations on spaces and sets

X1 × X2 Cartesian product of sets (spaces) 435 (25)
X1 ⊔ X2 sum of sets (spaces) 440 (61)
∏

α∈A

Xα product of a family of sets (spaces) 434 (157)

⊔

α∈A

Xα sum of a family of sets (spaces) 440 (96)

P(X) set of subsets of X 430
∆(P) diagonal of X 56
SX suspension of X 108
ΣX reduced suspension of X 111, 168
CX cone of X 101
ΓX reduced cone of X 111
X ∗ Y join 159
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X |||
|

Y smash product 167
X∨ Y wedge 116, 167
X1 i1⊔ i2 X2 pushout of i1, i2 113, 225
Bf ⊔ X adjunction space 111
X/A X with A shrunk to a point 101
M(f) mapping cylinder 122
C(f) mapping cone 122
M(f) ∪ X mapping cylinder union X 279
X ∪ en X union a cell 130
Xn n-fold Cartesian product
Kn n-skeleton of a cell complex 124
C(x) component of the point x 67
Br cover by balls of radius r 85
XY function space 171
X×W Y weak product 105
XΣ X with a weak topology 98

X̃ covering of X 341
G(V) isometry group 146
P(V) projective space 139

f̂ map to a function space 171
kX k-space of a space 174
K(Y,Z) space of k-maps 174
W(t,U) sub-basic set in test-open topology 174
W(C,U) sub-basic set in compact-open topol-

ogy
175

ε evaluation map 176
e exponential map 178
K(X, Y) 179
X×k Y k-product 180
Y+ 184
Y∼ 184

Y∧ 184
KPC(X, Y) partial k-maps with closed domain 184
PO(X,Z) partial k-maps with open domain 185
O(Y) set of open sets of Y 185

Functions

f : A→ B function from A 423
f : A B partial function 155, 427
f | A ′,B′ restriction of f 425
f | A ′ restriction of f 425
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f[A] image of A by f 425
f−1[A] inverse image of A by f 425
Im f image of f 425
x 7→ fx function 423
1 identity function 424
f× g product function 427
(f,g) function into product 33, 439
pα : X1×X2 → Xα projection 27, 434
iα : Xα → X1 ⊔ X2 injection 439
∆ : X→ X× X diagonal map 33
ī : B→ B f⊔ X 112
f̄ : X→ B f⊔ X 112
p : X∗ → P(V) fundamental map 140
h : S(V)→ P(V) Hopf map 141
ξα : X1 ∗ X2 → I coordinate function of join 160
η : X1 ∗ X2  Xα coordinate function of join 160

Paths, homotopies

|a| length of a 72
σ(a) final point of a 72
τ(a) initial point of a 72
−a reverse of a 72
b+ a sum of b and a 73
PX category of paths 193
πX fundamental groupoid 202
πXA fundamental groupoid on A ∩ X 205
π(X, x) fundamental group 205
Cop opposite category 196
πn(Y, ·) nth homotopy group 248
Ft homotopy 197, 215
a ∼ b homotopy of paths 197
a ∼ b equivalence of paths 200
f ≃ g homotopy of maps 214
G+ F sum of homotopies 198, 242
f ≃ g relA homotopy rel A 246
πXY track groupoid 242

h∗ : πYX → πZX induced morphism 243
i∗ : πYX → πYA induced morphism 243
[X, Y] set of homotopy classes 243
[(X, i), (Y,u)] set of homotopy classes under A 247
α || || operation of homotopy α 257
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Categories, groupoids

Ob(C) Objects of a category 192
Set sets 194
Top topological spaces 194

TopA the category of spaces under A 246
Grp groups 194
Grpd groupoids 209
Top· pointed spaces 210
HTop homotopy category 222
C× D product of categories 211
I tree groupoid on two objects 206
I→ a subcategory of I 222
Fun(C,D) functor category 222
G(x) object group at x 204
Cx component of x 205
Γ : C→ D functor 208
a×× conjugacy function 205
Cx,Cx functors to Set 213

Ĉ functor to Set 223
Uσ(G) universal groupoid 300
σ giving a final structure; 300

0-identification morphism
U(G) universal group 303
FA free group on A 304
G ∗H free product of G and H 305
Im f Image of f 309
Ob(Γ) objects of a graph Γ 309
FΓ free groupoid on Γ 312
Ker f Kernel of f 315
G/N quotient groupoid 315
N(R) groupoid of consequences 316
StG x star of x in G 347

G̃ covering groupoid 347
Tr(G,H) translation groupoid 357
χf characteristic groupoid of f 361
GS group of stability of s 356
S⋊G semidirect product groupoid 356
2NH (H/N)⋊ (H×H) 359
CG(S) centraliser of s 360
[G] set of conjugacy classes 360
CovTop(X) category of covering maps of X 369
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CovGrp(G) category of covering morphisms of G 369
π! functor induced by π 370
MA(F,C) 371
NA(F) normaliser of F in A 372
L(f,p) set of liftings of f 372
Aut(p) group of covering isomorphisms of p 374
Af×p Y pullback space 375
A×x Y pullback space 375
p, f maps from pullback 376

L×G H pullback groupoid 377
S3 symmetric group on {1, 2, 3} 381
g || || action of g 391
X/G orbit space 391
Γ//G orbit groupoid 395
Q2X symmetric space 410
Hab abelianisation of H 410
QnX symmetric product 415

Miscellaneous

cls x equivalence class of x 447
x ∈∈ E x ∈ cls x ∈ E 447
Re(q) Real part of a quaternion 133
Ve(q) Vector part of a quaternion 133
q̄ conjugate of q 135
|x| Euclidean norm of x 44
‖x‖ norm of x 43
d(K) dimension of K over R 138
(x | y) inner product 145
U⊥ orthogonal space of U 145

U† subset of P(V) 140
dist(x,A) distance of x from A 54
X cardinality of X 428
Zn integers mod n 251
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1-connected, 213

abelianisation, 430

abstract homotopy theory, 309

action

effective, 411

free, 411

transitive, 374

trivial, 415

action of a group, 152, 410

discontinuous, 412

on a groupoid, 415

on a space, 411

action of a groupoid, 263, 373

on a groupoid, 418

adjoint functor, 405

adjunction space, 119

for an arbitrary family, 125

product with Y, 130

subspace of, 126

admissible section, 378

Alexandroff compactification, 92, 94

algebraic number, 454

anchor ring, 30, 45, 75, 98

annihilate a subgraph, 329

anomaly, 440

associativity, of coproduct, 260

of words, 314

Axiom of Choice, 455

ball, 48

open in a metric space, 48

open in R2, 28

open r-, 48, 117

standard n-, 48, 114

barycentric coordinates, 159

base, 38, 162, see also open base for neigh-

bourhoods

for neighbourhoods, 38, 162

for open sets, 163

bijective, 444

Borsuk-Ulam theorem, 385

boundary

of a simplex, 160

of a subset, 25

bounded metric, 51, 82

bounded set, 77

branched covering, 407

Brouwer fixed point theorem, 258

canonical neighbourhood, 412

canonical subset, 360

Cantor set, 11–12, 86

cardinality, 448

cartesian norm, 47

cartesian product

of functions, 447

of sets, 455, 465

category, 202

closed, 200

convenient, 199

double, 236

dual, 206

freely generated by a graph, 206

full sub-, 204

of categories, 219

of commutative squares, 237

of covering maps, 387

of covering morphisms, 387

of groupoids, 220

of groups, 204

of paths, 203

501
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of pointed spaces, 221

of sets, 204

of topological spaces, 204

representative sub-, 232

wide sub-, 204

Cayley graph, 400

Cayley numbers, 144

Čech, 440

cell, 48

open r-, 117

standard n-, 48, 113

cell complex, 131–135

cell structure, 134

of adjunction space, 137

of covering space, 384

of Klein bottle, 347

of product, 137

of projective space, 150

of sphere, 138

cellular approximation theorem, 303, 308

cellular map, 137, 138

centraliser, 378

characteristic function, 451

characteristic group, 365, 379

characteristic map, 134

χ-connected, 379

circuit free graph, 326

class, 219

Clifford algebra, 145

closed category, 200

closed map, 41, 87

closed pair, 277

closed set, 24

and continuity, 39

in final topology, 102

in R, 12

in relative topology, 32

locally, 33

closure, 39

and continuity, 39

in R, 13

in relative topology, 32

of product set, 30

co-retraction, 205

coarse topology, 172

coarser topology, 42

codomain, 443

coequaliser, 238

coequalisers of groupoids, 332

cofibration, 253, 264

weak, 277

cofibred pair, 277

cogluing theorem, 309

collapsed product, see smash product

compact space, 82

locally, 89

compact-open topology, 167, 181, 185

compactification, 92

Alexandroff one-point, 92, 94

Freudenthal, 93

Stone-Čech, 93

complementary subspace, 147

completely regular, 93

complex

cell, 135

CW-, 138

product, 137

simplicial, 161

sub-, 136

complex numbers, 15, 45

component, see also path-component, quasi-

component

of a groupoid, 216

of a space, 72

composite, see composition

composition

horizontal, 284

in a category, 203

of cofibrations, 278

of commutative squares, 236

of continuous functions, 34

of covering maps, 365, 368

of covering morphisms, 368

of functions, 444

of identification maps, 104

comultiplication, 261

cone, 108, 115

mapping, 129

reduced, 118

configuration space, 351

conjugacy class, 378

conjugate quaternion, 143
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conjugate subgroups, 369

connected, see also path connected, 1-

connected

covering map, 360

covering morphism, 365

graph, 326

groupoid, 216

space, 68

connectivity

in order topology, 71

of adjunction space, 126

of cell complex, 136

of product, 70

of pullback groupoid, 398

of subsets of R, 69

of union, 70

consequence, 331, 423

constant function, 5, 34

constant homotopy, 231, 255

constant on A, 108

constant path, 78, 208

continuity

composite rule for, 8, 34

inverse rule for, 8

local property of, 36

of evaluation map, 187

of lifted map, 381

product rule for, 8, 35

quotient rule for, 8

restriction rule for, 8, 34

sum rule for, 8

continuous family, 181

continuous function, 4, see also separately

continuous

from R to R, 5

from X to Y, 34

continuous partial function, 164

continuum, 95

continuum axiom, 456

contractible space, 227

convenient category, 199

convenient class, 189

convex set, 57, 79, 160, 226

coordinates

barycentric, 159

in join, 169

in product, 454

coproduct, see also sum

for graphs, 324

in a category, 234

of categories, 225

of groupoids, 223

of groups, 249, 319

of sets, 459

coset, 329, 375

countability

first axiom of, 41, 62, 113, 130, 167,

183, 189

of rational numbers, 450

of unions, 450

second axiom of, 167

countable family, 450

countable set, 448

cover, 82, 369

cover transformation, 372

covering groupoid, 365

based on a subgroup, 375

universal, 372, 375

covering homotopy property, 361, 373

covering map, 360

regular, 392

covering morphism, 365

n-fold, 368

regular, 372, 392

covering space, 360

of a cell complex, 384

universal, 382

cut point, 74

local, 76

CW-complex, 138

cylinder

mapping, 129

deformable into B, 288

deformation, 207

deformation retract

for categories, 231

for spaces, 272

deformation retraction, 272

degree of a map, 346

dense, 25, 69

determinant, 155
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diagonal map, 35, 453

diameter, 77

difference element, 260

dimension

of a cell, 133

of a cell complex, 136

of a simplex, 160

of K over R, 146

directed graph, 323

disc, 48

disconnected space, 68

discontinuous action, 412

discrete groupoid, 213, 217

discrete metric, 48

discrete object of a graph, 323

discrete topology, 21

disjoint, 466

disjoint union, 459

dispersion of a graph, 324

distance from a subset, 57

divisors of zero, 145

domain

invariance of, 56, 75

of a function from A to B, 443

of a partial function, 164

dominates, 226

double coset, 398

dunce’s hat, 297

edge of graph, 206, 323

effective action, 411

eight-fold way, 198

element

of category, 203

of graph, 323

of set, 467

embedding, 44

ends, 93

epic morphism, 206

of groupoids, 322

equaliser, 239

equatorial sphere, 114

equivalence relation, 461, 467

generated by, 461

equivalent homotopies, 255

equivalent metrics, 51

equivalent paths, 210

essential map, 226

Euclidean norm, 46

Euclidean space, 47

evaluation map, 187

eventually in a set, 61

exact sequence

of a covering morphism, 398

of a fibration of groupoids, 274

of a pullback of groupoids, 396

exact sequences, 302

exponential map, 189, 454

topological, 189

extend, 264

extension property for homotopies, 264

exterior, 25

for subsets of R, 13

face of a simplex, 160

factorisation problems for maps, 257

faithful functor, 234

fibration

of groupoids, 254, 262

of spaces, 309

fibre bundle, 436

fibre product, 394

final point, 78

final topology, 101

fine topology, 105

finer topology, 42

finite family, 450

finite set, 448

first countable space, 183

fixed point, 374

fixed point theorem, 258

forest, 326

fractal, 17

Fréchet topological space, 62

free action, 411

free group, 318

subgroups of, 402

free groupoid, 325

free product of groupoids, 249, 319

internal, 322

free product of groups, 249, 319, 333

subgroups of, 403
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Freudenthal compactification, 93

frontier, 25

for subsets of R, 13

Fuchsian group, 434

full functor, 234

full subcategory, 204

full subgraph, 323

function, 443

additive, 52

bi-additive, 52

bijective, 444

identity, 444

inclusion, 445

injective, 444

inverse, 444

partial, 164, 447

restriction, 445

surjective, 444

twisting, 35

functor, 201, 219

adjoint, 405

contravariant, 224

covariant, 224

faithful, 234

full, 234

representable, 224

representative, 234

fundamental group, 216

of a transformation group, 425

of cell complex, 343

of complement of graph, 348

of CW-complex, 352

of Klein bottle, 347

of orbit space, 430

of product, 225

of projective space, 347, 367

of S1, 248, 344, 366

of symmetric product, 435

of symmetric square, 431

of torus, 249, 347

fundamental groupoid, 201, 213

of a sum, 224

of a union, 240

of adjunction space, 339

of an orbit space, 417

of covering map, 366

of I, 217

on a set, 216

fundamental map, 148

fundamental region, 436

Fundamental Theorem of Algebra, 352

G-set, 373

Gδ-set, 59, 95, 282

generate a groupoid, 324

freely, 325

generate an equivalence relation, 461

germ, 61

gluing property for subspaces, 266

gluing rule

for continuous functions, 10, 37

for homeomorphisms, 44

gluing theorem for adjunction spaces, 294

gluing theorem for homotopy equivalences,

253, 286

graph, 206, 323

Cayley, 206, 323

circuit free, 326

connected, 326

coproduct, 324

directed, 323

dispersion of, 324

freely generating in a category, 206

oriented, 323

tree, 326

graph in R3, 348

graph morphism, 323

group

action on a space, 152, 410

coproduct of, 319

free, 318

fundamental, 216

homotopy, 260

isometry, 154

Lie, xii, 198

object, 216

orthogonal, 155

special orthogonal, unitary and spinor,

155

stability, 374, 411

symplectic, 155

topological, 152



506 TOPOLOGY AND GROUPOIDS

track, 260

unitary, 155

universal, 318

vertex, 216

groupoid, 201, 205

1-connected, 213

action of a, 263

connected, 216

covering, 365

discrete, 213, 217

free, 325

free product, 319

fundamental, 213

higher homotopy, xi, 251, 440

normal sub-, 329

operation of a, 263

orbit, 415

pointed, 370

quotient, 329, 330, 419

semi-fundamental, 215, 250

semidirect product, 374

simply connected, 213

topological, 386

totally disconnected, 218

track, 254

tree, 213, 217

groups

free product of, 319

Grushko’s theorem, 405

Hahn-Banach theorem, 149

half-open topology, 26, 33

Hausdorff property

of adjunction spaces, 128

of CW-complex, 139

of join, 171

of metric space, 59

of product, 60

of projective space, 149

of smash product, 177

of subspace, 60

of X/A, 112

Hausdorff topological space, 58

Hawaiian earring, 342, 380

hemisphere, 114

Higgins’ conjecture, 405

Higgins’ theorem, 405

higher homotopy groupoid, xiii, 251, 440

HNN-extension, 335

homeomorphic maps, 280

homeomorphism, 42

homeomorphism into, 44

homogeneous coordinates, 147

homotopic rel end maps, 254

homotopy

constant, 255

of functors, 228

rel D, 231

of maps, 225

from adjunction spaces, 279

rel A, 258

of maps of maps, 284

of maps of pairs, 288

of paths, 207

wavy, 214

weak, 214

pointed, 259

retracting, 272

under A, 258

homotopy classes of maps, 255

homotopy equivalence

of categories, 229

of maps, 284

of spaces, 226

homotopy extension property, 264

rather, very, completely weak, 302

weak, 277

homotopy function, 229

homotopy group, 260, 271, 440

homotopy inverses, 226, 230

homotopy pullback, 398

homotopy pushout, 309

homotopy theory

abstract, 309

homotopy type, 226

homotopy type of adjunction space, 290

Hopf map, 150

and covering spaces, 361

horizontal composition, 284

Hurewicz theorem, 440

identification map, 103
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identification topology, 103

identity

among relations, 401

function, 444

in a category, 203

natural, 261

image of a function, 443, 445

inverse, 445

image of a morphism, 330

inclusion function, 445

incomparable topologies, 42

indiscrete pseudo-metric, 50

indiscrete topology, 21

induced morphisms, 255

induced topology, 30

inessential map, 226

infinite set, 448

initial point, 77

initial topology, 165

injection, 444

inner product, 153

inside of a simple closed curve, 352

integral norm, 47

interior, 20

and continuity, 39

and product set, 29

for subsets of R, 3

internal free product of groupoids, 322

invariance

of dimension, 57, 75, 133

of domain, 56, 75

invariant subset, 412

inverse

natural, 261

inverse function, 444

inverse image, 445

inverse in a category, 205

invertible morphism, 205

isometry, 154

isomorphism, 205

join, 168

join topology, 169

weak, 177

Jordan Curve Theorem, 352, 356

Jordan Separation Theorem, 355

k-continuous function, 113, 185

k-identification map, 113

k-product, 190

k-space, 182

k-space, 94, 112–113

K-subspace, 146

Klein bottle, 347

Kurosch theorem, 403

Lebesgue covering lemma, 91

Lebesgue number, 91

length of homotopy, 207

length of path, 77

length of word, 312

Lie group, xii, 198

lifted topology, 379, 381

lifting, 361, 369

limit point, 25

line in V∗, 147

linear function, 153

linear map of simplices, 161

local-to-global, xxii

locally closed, 33

locally compact, 89

locally path-connected, 81

loop, 365, 391

manifold, 166

map, 34

attaching, 121

cellular, 137

characteristic, 134

closed, 39, 87

covering, 105, 360

diagonal, 35, 453

essential, 226

evaluation, 187

exponential, 189, 454

Hopf, 150

identification, 103

inessential, 226

k-identification, 113

linear, 161

of spaces, 34

open, 41, 104, 105

pointed, 221
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proper, 90

test, 185

under A, 258

map of pairs, 288

mapping cone, 129

mapping cylinder, 129

maps

homeomorphic, 280

metric, 47

bounded, 51, 83

discrete, 48

metric topology, 49

metrisable, 95

Minkowski inequality, 47

Möbius band, 15, 98

monic, 206

monoid, 204

morphism

epic, 206

in a category, 202

monic, 206

of commutative squares, 237

of functors, 233

of graphs, 323

of groupoids, 219

covering, 365

epic, 322

n-fold covering, 368

orbit, 415

pointed, 370

strictly universal, 317

multiplication

natural, 261

multiplication of quaternions, 142

n-dimensional groupoid, 441

natural equivalence, 228

natural identity, 261

natural inverse, 261

natural multiplication, 261

natural transformation, 233

near, 2

neighbourhood, 19, see also base for neigh-

bourhoods

in a subset, 31

in identification topology, 103, 112

in product, 27

in R, 1

of a set, 58

neighbourhood retract, 127

neighbourhood topology, 20

Nielsen–Schreier theorem, 393, 402

norm, 46–47

normal closure, 331, 422

normal space, 58, 59, 89, 95

normal subgroupoid, 329

normaliser, 390

normality

of adjunction space, 131

of compact Hausdorff space, 89

of CW-complex, 139

of metric space, 58

normed vector space, 46, 146

Northern hemisphere, 114

object

discrete in a graph, 323

of a category, 202

of a graph, 323

object group, 216

object of maps, 194

octonions, 144

open base for neighbourhoods, 163

open cover, 82

open map, 42, 104, 105

open set, 22

and continuity, 39

in final topology, 102

in identification topology, 104

in product topology, 28, 166

in R, 10

in relative topology, 30

open set topology, 23

operation of a groupoid, 263, see also ac-

tion

orbifold, 435

orbit, 409

orbit groupoid, 415

orbit morphism, 415

orbit space, 152, 409

order topology, 21

and connectivity, 71
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and subspaces, 33

oriented graph, 323

orthogonal group, 155

orthogonal set, 153

orthonormal, 154

outside of a simple closed curve, 352

overpass, 348

p-adic topology, 22, 57

pair, 277

closed, 277

cofibred, 277

map of, 288

partial function, 164, 195, 447

partial multiplication, 203

partition, 68

path

in a graph, 206, 326

in a space, 77

path class, 212

path lifting property, 363, 413

path-component, 80

path-connected space, 79

paths

equivalent, 210

homotopic rel end points, 208

sum of, 78

pentoil, 350

Phragmen-Brouwer property, 353

point, 468

pointed groupoids and morphisms, 370

pointed homotopy, 259

pointed map, 221

pointed space, 123

power set, 450

product

free, 319

in a category, 238

of adjunction space and I, 131

of categories, 222

of cell complexes, 137

of cells, 117

of closed map and 1, 90

of closed sets, 28

of closures, 29

of compact spaces, 85, 88

of cones, 176

of connected spaces, 70

of covering maps, 386

of discrete spaces, 30

of Hausdorff spaces, 60

of identification maps, 110–111, 113,

192

of indiscrete spaces, 30

of interiors, 29

of k-spaces, 184

of k-spaces, 113

of locally compact spaces, 94

of open maps, 105

of open sets, 28

of path-connected spaces, 80

of pointed spaces, 225

of sets, 454, 459

of spaces (finite number), 28

of spaces (infinite number), 166

of suspensions, 176

smash, 177

product topology, 28, 166

projection for equivalence classes, 467

projection morphism, 332

projection of groupoids, 332

projection of product, 454

projective space, 147

proper map, 90

pseudo-metric, 50

indiscrete, 50

pullback, 239, 393

homotopy, 398

pullback of groupoids, 395

Puppe sequence, 302

pushout, xx

in a category, 235

of spaces, 120

weak, 121

quadric, 152

quasi-topological space, viii

quasicomponent, 95

quaternions, 141

quotient groupoid, 329, 419

quotient morphism, 419



510 TOPOLOGY AND GROUPOIDS

rank of a free group, 326

rank of a free groupoid, 326

reduced cone, 118, 259

reduced join, 177

reduced suspension, 118, 179, 259, 298–

301

refinement, 83

reflection, 158

regular

completely, 93

regular covering groupoid, 377

regular covering map, 392

regular covering morphism, 372, 392

regular topological space, 129

relation, 469

from X to Y, 99, 206

in a groupoid, 330, 415

relative Hurewicz theorem, 440

relative topology, 30

representable functor, 224, 233

representative functor, 234

representative set, 240

representative subcategory, 232

restriction, 445

retract, 127

not S1 in E2, 249, 257

not S1 in En+1, 258

not S1 in Pn(R), 351

of colimit, 239

retractile, 303

retracting homotopy, 272

retraction, 127

deformation, 272

for commutative square, 237

in a category, 205

is an identification map, 105

right-handed orthonormal system, 142

rotation, 155

sandwich rule, 9

saturated, 103

Schoenflies theorem, 357

Schreier transversal, 406

Schröder-Berstein theorem, 455

section, 227

semi-fundamental groupoid, 215, 250

semi-locally χ-connected, 379

semi-locally simply-connected, 380

semidirect product groupoid, 374, 424,

426

separability

of product, 30

of subspace, 33

separable space, 25, 26, 167

separate, 171, 214

separates, 353

sequential space, 62

set, 469

sets

product of, 459

sum of, 459

sheaf of germs, 61, 364

shrink to a point, 108

shrunk to a point, 107

simple closed curve, 352

simplex, 158

simplicial complex, 161

simply connected, 213

skeleton, 135

smash product, 177

solid torus, 45

source, 77

Southern hemisphere, 114

space, see also topological space

Euclidean, 47

inner product, 153

metric, 47

normed, 46

orbit, 152, 411

projective, 147

symplectic, 47

under A, 258

unitary, 47

space-filling curve, 17

special orthogonal, spinor and unitary

groups, 155

sphere, 48

and joins, 173

and smash product, 179

equatorial, 114

great K-, 147

standard n-, 48, 114
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spinor group, 155

stability group, 374, 411

star in a groupoid, 365

stereographic projection, 118

Stone-Čech compactification, 93

Strøm structure, 281

strong canonical neighbourhood, 416

sub-base for open sets, 164

subcategory, 204

full, 204

representative, 232

wide, 204

subcomplex, 136

subgraph, 323

full, 323

wide, 323

subgroup

conjugate, 369

subgroup theorem, 399

subgroupoid, 215, see also subcategory

normal, 329

subspace (metric), 55

subspace (topological), 31

for initial topology, 167

of adjunction space, 126

of Hausdorff space, 60

of identification space, 105

of join, 173

of k-space, 112

of metric space, 55

of order topology, 33

of product, 33

subspace (vector), 146

subspace of cone, 109

sum

in a category, 234

of homotopies, 208

of paths, 78

of sets, 459

of spaces (finite number), 65, 66

of spaces (infinite number), 102

sum topology, 65, 102

sup norm, 47

surjective, 444

suspension, 115–117

and join, 173

coarse topology for, 172

of product, 298–301

reduced, 179

symmetric product, 435

symmetric square, 177, 431

symmetry, xii

symplectic group, 155

symplectic space, 47

T1 topological space, 58, 130

T3 topological space, 129

target, 78

television topology, 25, 88

test map, 185

test-open topology, 185

Tietze extension theorem, 89, 95, 131,

139

topological exponential map, 189

topological group, 152

topological groupoid, 386

topological invariant, 68

topological space, 20

compact, 82

completely regular, 93

connected, 68

covering, 360

disconnected, 68

first countable, 41, 62, 113, 130,

167, 189

Fréchet, 62

Hausdorff, 58, 59

locally compact, 89

locally connected, 72

locally path-connected, 81

normal, 58, 59, 89, 95

path-connected, 79

regular, 129

second countable, 167

semi-locally χ-connected, 379

semi-locally simply connected, 380

separable, 25, 26, 30, 33, 167

sequential, 62

simply connected, 213

T1, 58, 130

T3, 129

totally disconnected, 70
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topologically equivalent, 43

topology, 23

coarse, 109, 172

compact-open, 167

discrete, 21

final, 101

fine, 105

half-open, 26, 33

identification, 103

indiscrete, 21

induced, 30

initial, 165

join, 169

lifted, 379, 381

metric, 49

neighbourhood, 20

open set, 23

order, 21, 33, 71

p-adic, 22, 57

product, 28, 166

relative, 30

sum, 65, 102

television, 25, 88

test-open, 185

usual

on N, Z, Q, 31

on R, 20

on Rn, 28

weak, 105

for join, 177

Zariski, 61

topos, 195

torus, 45, 75, 98, 249, 347

totally disconnected groupoid, 218

totally disconnected space, 70

track group, 260

track groupoid, 254

track groupoid under A, 259

transitive action, 374

transitive law

for final topology, 105

for initial topology, 167

transitive relation, 469

tree, 326

tree graph, 326

tree groupoid, 213, 217

triad, 287

trivial action, 415

Tychonoff’s theorem, 87, 168

uncountable set, 448

underlying set, 23

unitary group, 155

unitary norm, 47

unitary space, 47

universal

argument, 458

final, 459

initial, 459

morphism, 315

property, xx, 458

with respect to Ob(f), 315

universal cover of surface, 386

universal covering groupoid, 372, 375

universal covering space, 382

universal element, 224

universal group, 318

universal property, xi

usual metric on R, 50

usual topology

on N, Z, Q, 31

on R, 20

on Rn, 28

Van Kampen, 250

Van Kampen’s theorem, 340

vertex

of a graph, 323

of cone, 108

of simplex, 160

of suspension, 176

vertex group, 216

weak cofibration, 277

weak homotopy extension property, 277,

302

weak neighbourhood deformation retract,

301

weak product, 112, 139, 199

weak pushout, 121

weak pushout and cofibrations, 265

weak topology, 105
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for join, 177

weakly χ-connected, 379

wedge, 123

as coproduct, 239

well-pointed space, 299

WHEP, 277, 302

Whitehead product, 138, 303

Whitehead, J. H. C., 134

wide subcategory, 204

wide subgraph, 323

wildness problems, 348

word, 312

worm, xii

Zariski topology, 61

zero object, 206

Zorn’s lemma, 327
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End Note

This book is typeset using the math fonts given by the package eulervm.
These fonts do not go well with the standard Computer Modern text fonts.
Of the ones which do match well, we have chosen Charter, from Micropress.
We hope you like the result.
The following is extracted from the documentation on Euler-VM:

With Donald Knuth’s assistance and encouragement, Hermann
Zapf, one of the premier font designers of this century, was com-
missioned to create designs for Fraktur and script, and for a
somewhat experimental, upright cursive alphabet that would
represent a mathematician’s handwriting on a blackboard and
that could be used in place of italic. The designs that resulted
were named Euler, in honor of Leonhard Euler, a prominent
mathematician of the eighteenth century. Zapf’s designs were
rendered in METAFONT code by graduate students at Stanford,
working under Knuth’s direction.

Euler Virtual Math (Euler-VM) is a set of virtual fonts based
primarily on the Euler fonts.
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