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THE QUILLEN MODEL CATEGORY

OF TOPOLOGICAL SPACES

PHILIP S. HIRSCHHORN

Abstract. We give a complete and careful proof of Quillen’s theorem on
the existence of the standard model category structure on the category of
topological spaces. We do not assume any familiarity with model categories.
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1. Definitions and the main theorem

This note can be read as applying to any of the standard complete and cocom-
plete categories of topological spaces, e.g.,

• the category of all topological spaces,
• the category of compactly generated spaces (see, e.g., [1, Appendix]),
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2 PHILIP S. HIRSCHHORN

• the category of compactly generated weak Hausdorff spaces (see, e.g., [7],
or [2, Appendix]), or

• the category of compactly generated Hausdorff spaces (see, e.g., [6]).

It also applies to any other category of spaces that contains all inclusions of a sub-
complex of a CW-complex and in which Proposition 3.10 (that a compact subset of
a relative cell complex intersects the interiors of only finitely many cells) holds. The
main theorem (on the existence of the model category structure) is Theorem 1.5.

Definition 1.1. If there is a commutative diagram

A //

i

��

GF ED
1A

��
C //

j

��

A

i

��

B //@A BC
1B

OOD // B

then we will say that the map i is a retract of the map j.

We use the definition of model category from [3, Def. 7.1.3]; this differs from
Quillen’s original definition of a closed model category ([4,5]) in that we require the
existence of all colimits and limits (not just the finite ones), and we require that
the two factorizations be functorial.

Definition 1.2. A model category is a category M together with three classes of
maps (called the weak equivalences, the cofibrations, and the fibrations), satisfying
the following five axioms:

M1: (Limit axiom) The category M is complete and cocomplete.
M2: (Two out of three axiom) If f and g are maps in M such that gf is defined

and two of f , g, and gf are weak equivalences, then so is the third.
M3: (Retract axiom) If f and g are maps in M such that f is a retract of g (in

the category of maps of M; see Definition 1.1) and g is a weak equivalence,
a fibration, or a cofibration, then so is f .

M4: (Lifting axiom) Given the commutative solid arrow diagram in M

A //

i

��

X

p

��

B

>>

// Y

the dotted arrow exists if either
(1) i is a cofibration and p is both a fibration and a weak equivalence or
(2) i is both a cofibration and a weak equivalence and p is a fibration.

M5: (Factorization axiom) Every map g in M has two functorial factorizations:
(1) g = pi, where i is a cofibration and p is both a fibration and a weak

equivalence, and
(2) g = qj, where j is both a cofibration and a weak equivalence and q is

a fibration.

Definition 1.3. Let M be a model category.

(1) A trivial fibration is a map that is both a fibration and a weak equivalence.
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(2) A trivial cofibration is a map that is both a cofibration and a weak equiv-
alence.

(3) An object is cofibrant if the map to it from the initial object is a cofibration.
(4) An object is fibrant if the map from it to the terminal object is a fibration.
(5) An object is cofibrant-fibrant if it is both cofibrant and fibrant.

Definition 1.4. We will say that a map f : X → Y of topological spaces is

• a weak equivalence if it is a weak homotopy equivalence, i.e., if either X and
Y are both empty, or X and Y are both nonempty and for every choice of
basepoint x ∈ X the induced map f∗ : πi(X, x) → πi(Y, f(x)) of homotopy
groups (if i > 0) or sets (if i = 0) is an isomorphism,

• a cofibration if it is a relative cell complex (see Definition 3.2) or a retract
(see Definition 1.1) of a relative cell complex, and

• a fibration if it is a Serre fibration.

Theorem 1.5. There is a model category structure on the category of topolog-
ical spaces in which the weak equivalences, cofibrations, and fibrations are as in
Definition 1.4.

The proof of Theorem 1.5 is in Section 8.

2. Lifting

Definition 2.1. If i : A → B and f : X → Y are maps such that for every solid
arrow diagram

A //

i

��

X

f

��

B //

>>

Y

there exists a diagonal arrow making both triangles commute, then i is said to have
the left lifting property with respect to f and f is said to have the right lifting

property with respect to i.

Thus, the lifting axiom M4 (see Definition 1.2) asserts that

• cofibrations have the left lifting property with respect to all trivial fibra-
tions, and

• fibrations have the right lifting property with respect to all trivial cofibra-
tions.

2.1. Retracts and lifting.

Lemma 2.2 (Retracts and lifting).

(1) If the map i is a retract of the map j (see Definition 1.1) and j has the left
lifting property with respect to a map f : X → Y , then i has the left lifting
property with respect to f .

(2) If the map f is a retract of the map g and g has the right lifting property
with respect to a map i : A → B, then f has the right lifting property with
respect to i.

Proof. We will prove part 1; the proof of part 2 is similar.
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Suppose that we have the solid arrow diagram

A
p

//

i

��

GF ED
1A

��
C

r
//

j

��

A
t

//

i

��

X

f

��

B
q

//@A BC
1B

OOD
s

//

v

77

B
u

//

w

>>

Y .

Since j has the left lifting property with respect to f , there exists a map v : D → X

such that vj = tr and fv = us. We define w : B → X as w = vq. We then have
wi = vqi = vjp = trp = t and fw = fvq = usq = u. �

Proposition 2.3 (The retract argument).

(1) If the map g can be factored as g = pi where g has the left lifting property
with respect to p, then g is a retract of i.

(2) If the map g can be factored as g = pi where g has the right lifting property
with respect to i, then g is a retract of p.

Proof. We will prove part 1; the proof of part 2 is dual.
We have the solid arrow diagram

X
i

//

g

��

Z

p

��

Y

q

>>

Y .

Since g has the left lifting property with respect to p, the dotted arrow q exists.
This yields the commutative diagram

X

g

��

X

i

��

X

g

��

Y
q

//@A BC
1Y

OOZ
p

// Y ,

and so g is a retract of i. �

2.2. Pushouts, pullbacks, and lifting.

Definition 2.4.

(1) If there is a pushout diagram

A //

i

��

C

j

��

B // D

then we will say that the map j is a pushout of the map i.
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(2) If there is a pullback diagram

W //

g

��

Y

f

��

X // Z

then we will say that the map g is a pullback of the map f .

Lemma 2.5.

(1) If the map j is a pushout of the map i (see Definition 2.4) and if i has the
left lifting property with respect to a map f : X → Y , then j has the left
lifting property with respect to f .

(2) If the map g is a pullback of the map f and if f has the right lifting property
with respect to a map i, then g has the right lifting property with respect
to i.

Proof. We will prove part 1; the proof of part 2 is similar.
Suppose that we have the solid arrow diagram

A
s

//

i

��

C
t

//

j

��

X

f

��

B
u

//

w

77

D
v

//

g

>>

Y

in which the left hand square is a pushout, so that j is a pushout of i. Since i

has the left lifting property with respect to f , there is a map w : B → X such
that wi = ts and fw = vu. Since the left hand square is a pushout, this induces
a map g : D → X such that gu = w and gj = t. Since (fg)u = fw = (v)u and
(fg)j = ft = (v)j, the universal property of the pushout now implies that fg = v,
and so j has the left lifting property with respect to f . �

2.3. Coproducts, transfinite composition, and lifting.

Lemma 2.6. Let f : X → Y be a map. If S is a set and for every s ∈ S we
have a map As → Bs that has the left lifting property with respect to f , then the
coproduct

∐

s∈S As →
∐

s∈S Bs has the left lifting property with respect to f .

Proof. Given the solid arrow diagram

∐

s∈S

As
//

��

X

f

��∐

s∈S

Bs
//

AA

Y

the diagonal arrow can be chosen on each summand Bs, and these together define
it on the coproduct. �

Lemma 2.7. Let f : X → Y be a map. If

A0 → A1 → A2 → · · ·
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is a sequence of maps such that An → An+1 has the left lifting property with
respect to f : X → Y for all n ≥ 0, then the map A0 → colimn≥0 An has the left
lifting property with respect to f .

Proof. Given the solid arrow diagram

A0
//

��

X

f

��

A1

��

77

...

��

colim
n≥0

An
//

FF

Y

the diagonal arrow can be chosen inductively on each An and these combine to
define it on the colimit. �

3. Relative cell complexes

Definition 3.1. If X is a subspace of Y such that there is a pushout square

Sn−1 //

��

X

��

Dn // Y

for some n ≥ 0, then we will say that Y is obtained from X by attaching a cell.

Definition 3.2. A relative cell complex is an inclusion of a subspace f : X → Y

such that Y can be constructed fromX by a (possibly infinite) process of repeatedly
attaching cells (see Definition 3.1), and it is a finite relative cell complex if it can
be constructed by attaching finitely many cells. The topological space X is a cell

complex if the map ∅ → X is a relative cell complex, and it is a finite cell complex

if X can be constructed from ∅ by attaching finitely many cells.

Example 3.3. Every relative CW-complex is a relative cell complex, and every CW-
complex is a cell complex. Since the attaching map of a cell in a cell complex is
not required to factor through the union of lower dimensional cells, not all cell
complexes are CW-complexes.

Remark 3.4. We will often construct a relative cell complex by attaching more than
one cell at a time. That is, given a space X0, a set S, and for each s ∈ S a map
S(ns−1) → X0, we may construct a pushout

∐

s∈S

S(ns−1) //

��

X0

��∐

s∈S

Dns // X1
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and then perform a similar construction with X1, repeating a possibly infinite
number of times.

Remark 3.5. While a CW-complex can be built by a countable process of attaching
coproducts of cells, a general cell complex may require an arbitrarily long transfinite
construction. This is because the attaching map of a cell in a cell complex is not
required to factor through the union of lower dimensional cells.

Remark 3.6. Definition 3.2 implies that a relative cell complex is a map that can be
constructed as a transfinite composition of pushouts of inclusions of the boundary
of a cell into that cell, but there will generally be many different possible such
constructions. When dealing with a topological space that is a cell complex or
a map that is a relative cell complex, we will often assume that we have chosen
some specific such construction (see Definition 3.9). Furthermore, we may choose
a construction of the map as a transfinite composition of pushouts of coproducts of
cells, i.e., we will consider constructions as transfinite compositions in which more
than one cell is attached at a time.

Definition 3.7. We adopt the definition of the ordinals in which an ordinal is the
well ordered set of all lesser ordinals, and every well ordered set is isomorphic to
a unique ordinal (see [3, Sec. 10.1.1]). We will often view an ordinal as a small
category with objects equal to the elements of the ordinal and a single map from
α to β when α ≤ β.

Definition 3.8. If C is a class of maps and λ is an ordinal, then a λ-sequence in

C is a functor X : λ → Top

X0 → X1 → X2 → · · ·Xβ → · · · (β < λ)

such that the map Xβ → Xβ+1 is in C for β + 1 < λ and for every limit ordinal
γ < λ the induced map colimβ<γ Xβ → Xγ is an isomorphism. The composition of
the λ-sequence is the map X0 → colimβ<λ Xβ (see [3, Sec. 10.2]).

Definition 3.9. If f : X → Y is a relative cell complex, then a presentation of f
is a λ-sequence of pushouts of coproducts of elements of I

X0 → X1 → X2 → · · ·Xβ → · · · (β < λ)

such that the composition X0 → colimβ<λXβ is isomorphic to f . If e is a cell of
the relative cell complex, then the presentation ordinal of e is the first ordinal β
such that e is in Xβ .

3.1. Compact subsets of relative cell complexes.

Proposition 3.10. If X → Y is a relative cell complex, then a compact subset of
Y can intersect the interiors of only finitely many cells of Y −X .

Proof. Let C be a compact subset of Y . We construct a subset P of C by choosing
one point of C from the interior of each cell whose interior intersects C. We will
show that this subset P of C has no accumulation point in C, which implies that
P is finite, which implies that C intersects the interiors of only finitely many cells
of Y −X .

Let c ∈ C; we will show that there is an open subset U of Y such that c ∈ U

and U ∩ P is either empty or contains the one point c, which will imply that c is
not an accumulation point of P .
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Let ec be the unique cell of Y −X that contains c in its interior. Since there is
at most one point of P in the interior of any cell of Y −X , we can choose an open
subset Uc of the interior of ec that contains no points of P (except for c, if c ∈ P ).
We will use Zorn’s lemma to show that we can enlarge Uc to an open subset of Y
that contains no points of P (except for c, if c ∈ P ).

Let α be the presentation ordinal of the cell ec. If the presentation ordinal of
the relative cell complex X → Y is γ, consider the set T of ordered pairs (β, U)
where α ≤ β ≤ γ and U is an open subset of Y β such that U ∩ Y α = Uc and U

contains no points of P except possibly c. We define a preorder on T by defining
(β1, U1) < (β2, U2) if β1 < β2 and U2 ∩ Y β1 = U1.

If {(βs, Us)}s∈S is a chain in T , then (
⋃

s∈S βs,
⋃

s∈S Us) is an upper bound in T

for the chain, and so Zorn’s lemma implies that T has a maximal element (βm, Um).
We will complete the proof by showing that βm = γ.

If βm < γ, then consider the cells of presentation ordinal βm+1. Since Y has the
weak topology determined by X and the cells of Y −X , we need only enlarge Um so
that its intersection with each cell of presentation ordinal βm+1 is open in that cell,
and so that it still contains no points of P except possibly c. If h : Sn−1 → Y βm is
the attaching map for a cell of presentation ordinal βm +1, then h−1Um is open in
Sn−1, and so we can “thicken” h−1Um to an open subset of Dn, avoiding the (at
most one) point of P that is in the interior of the cell. If we let U ′ equal the union
of Um with these thickenings in the interiors of the cells of presentation ordinal
βm + 1, then the pair (βm + 1, U ′) is an element of T greater than the maximal
element (βm, Um) of T . This contradiction implies that βm = γ, and so the proof
is complete. �

Proposition 3.11. Every cell of a relative cell complex is contained in a finite
subcomplex of the relative cell complex.

Proof. Choose a presentation of the relative cell complex X → Y (see Defini-
tion 3.9); we will prove the proposition by a transfinite induction on the presenta-
tion ordinal of the cell. The induction is begun because the very first cells attached
are each in a subcomplex with only one cell. Since the presentation ordinal of every
cell is a successor ordinal, it is sufficient to assume that the result is true for all
cells of presentation ordinal at most some ordinal β and show that it is also true
for cells of presentation ordinal the successor of β.

The image of the attaching map of any cell of presentation ordinal the successor
of β is compact, and so Proposition 3.10 implies that it intersects the interiors of
only finitely many cells, each of which (by the induction hypothesis) is contained
in a finite subcomplex. The union of those finite subcomplexes and this new cell is
then a finite subcomplex containing the new cell. �

Corollary 3.12. A compact subset of a relative cell complex is contained in a finite
subcomplex of the relative cell complex.

Proof. Proposition 3.10 implies that a compact subset intersects the interiors of only
finitely many cells, and Proposition 3.11 implies that each of those cells is contained
in a finite subcomplex; the union of those finite subcomplexes thus contains our
compact subset. �

3.2. Relative cell complexes and lifting.
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Definition 3.13. We will let I denote the set of maps

I =
{

Sn−1 → Dn | n ≥ 0
}

and we will call I the set of generating cofibrations.

Proposition 3.14. If a map has the right lifting property (see Definition 2.1) with
respect to every element of I (see Definition 3.13), then it has the right lifting
property with respect to all relative cell complexes and their retracts (see Defini-
tion 1.1).

Proof. If a map has the right lifting property with respect to every element of
I, then Lemma 2.6 implies that it has the right lifting property with respect to
every coproduct of elements of I, and so Lemma 2.5 implies that it has the right
lifting property with respect to every pushout of a coproduct of elements of I,
and so Lemma 2.7 implies that it has the right lifting property with respect to
every composition of pushouts of coproducts of elements of I, and so Lemma 2.2
implies that it has the right lifting property with respect to every retract of such a
composition. �

4. The small object argument

In this section we construct two functorial factorizations of maps that will be
shown in Section 5 to be the two factorizations required by the factorization axiom
M5 (see Definition 1.2). Both of these factorizations are examples of the small

object argument (see [3, Proposition 10.5.16]).

4.1. The first factorization.

Proposition 4.1. There is a functorial factorization of every map f : X → Y as

X
i

// W
p

// Y

such that i is a relative cell complex (see Definition 3.2) and p has the right lifting
property (see Definition 2.1) with respect to every element of I (see Definition 3.13).

Proof. We will construct the space W as the colimit of a sequence of spaces Wk

X W0
//

p0

��

W1
//

p1

}}③③
③
③
③
③
③
③

W2
//

p2

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

· · ·

Y

where each space Wk comes equipped with a map pk : Wk → Y that makes the
diagram commute. We construct the Wk inductively, and we begin the induction
by letting W0 = X and letting p0 = f .

For the inductive step, we assume that k ≥ 0 and that we have created the
diagram through Wk. To create Wk+1, we have the solid arrow diagram

∐

Sn−1 //

��

Wk

pk

��

||

Wk+1
pk+1

""∐

Dn //

99

Y
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where the coproducts on the left are indexed by
∐

n≥0

Map(Sn−1,Wk)×Map(Sn−1,Y ) Map(Dn, Y ) ,

which is the set of commutative squares

Sn−1 //

��

Wk

��

Dn // Y ;

there is one summand for each such square. We let Wk+1 be the pushout

∐

Sn−1 //

��

Wk

��∐

Dn // Wk+1 .

That defines the space Wk+1 and the map pk+1 : Wk+1 → Y . We let W =
colimk≥0 Wk, we let p : W → Y be the colimit of the pk, and we let i : X → W be
the composition X = W0 → colimWk = W .

Since W was constructed by attaching cells toX , the map i : X → W is a relative
cell complex.

To see that p : W → Y has the right lifting property with respect to every element
of I, suppose that n ≥ 0 and we have the solid arrow diagram

(4.2)

Sn−1 //

��

W

p

��

Dn //

<<

Y .

Since Sn−1 is compact, Corollary 3.12 implies that there is a positive integer k

such that the map Sn−1 → W factors through Wk. Thus, we have the solid arrow
diagram

Sn−1 //

��

Wk
// Wk+1

// W

p

��

Dn

55

// Y

and the map Sn−1 → Wk is one of the attaching maps in the pushout diagram that
built Wk+1 out of Wk. Thus, there exists a diagonal arrow Dn → Wk+1 that makes
the diagram commute, and its composition with Wk+1 → W is the diagonal arrow
required in (4.2).

To see that the construction is functorial, suppose we have a commutative square

X //

f

��

X ′

f ′

��

Y // Y ′ ;
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we will show that the construction of the factorization of f : X → Y maps to that
of f ′ : X ′ → Y ′, i.e., that there is a commutative diagram

Y

��

X W0
//

f0
��

//

W1
//

f1
��

00

W2
//

f2
��

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
· · ·

X ′ W ′
0

//

//

W ′
1

//

--

W ′
2

//

**❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚ · · ·

Y ′ .

We let f0 = f . Suppose that we’ve defined fn : Wn → W ′
n. The space Wn+1 is

constructed by attaching an n-cell to Wn for each commutative square

Sn−1 α
//

��

Wn

��

Dn

β
// Y .

We map the cell attached to Wn by α to the cell attached to W ′
n by the map fn ◦α

indexed by the outer commutative rectangle

Sn−1 α
//

��

Wn

��

fn
// W ′

n

��

Dn

β
// Y // Y ′ .

Doing that to each cell attached to Wn defines fn+1 : Wn+1 → W ′
n+1. �

4.2. The second factorization.

Definition 4.3. We will let J denote the set of maps

J =
{

Dn × {0} → Dn × I | n ≥ 0
}

and we will call J the set of generating trivial cofibrations.

Proposition 4.4. A map f : X → Y is a Serre fibration if and only if it has the
right lifting property (see Definition 2.1) with respect to every element of J (see
Definition 4.3).

Proof. This is just a restatement of the definition of a Serre fibration. �

Definition 4.5. If X is a subspace of Y such that there is a pushout diagram

Dn × {0} //

��

X

��

Dn × I // Y

for some n ≥ 0, then we will say that Y is obtained from X by attaching a J-cell

(see Definition 4.3).
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A relative J-cell complex is an inclusion of a subspace f : X → Y such that Y

can be constructed from X by a (possibly infinite) process of repeatedly attaching
J-cells.

Lemma 4.6. Every element of J is a relative cell complex (see Definition 3.2) with
two cells. If Y is obtained from X by attaching a J-cell, then X → Y is a relative
cell complex in which you attach a single n-cell and then a single (n + 1)-cell (for
some n ≥ 0).

Proof. There is a homeomorphism between Dn × I and Dn+1 that takes Dn × {0}
onto one of the two n-disks whose union is ∂Dn+1. Thus, Dn+1 is homeomorphic to
the result of first attaching an n-cell to Dn×{0} and then attaching an (n+1)-cell
to the result, and the pushout of

Dn × {0} //

��

X

Dn × I

is homeomorphic to the result of first attaching an n-cell to X and then attaching
an (n+ 1)-cell to the result. �

Remark 4.7. We will often construct a relative J-cell complex by attaching more
than one J-cell at a time. That is, given a space X0, a set S, and for each s ∈ S a
map Dns × {0} → X0, we may construct a pushout

∐

s∈S

Dns × {0} //

��

X0

��∐

s∈S

Dns × I // X1

and then perform a similar construction with X1, repeating a possibly infinite
number of times.

Proposition 4.8. Every fibration has the right lifting property (see Definition 2.1)
with respect to all relative J-cell complexes and their retracts (see Definition 1.1).

Proof. Proposition 4.4 implies that a fibration has the right lifting property with
respect to every element of J , and so Lemma 2.6 implies that it has the right lifting
property with respect to every coproduct of elements of J , and so Lemma 2.5 implies
that it has the right lifting property with respect to every pushout of a coproduct
of elements of J , and so Lemma 2.7 implies that it has the right lifting property
with respect to every composition of pushouts of coproducts of elements of J , and
so Lemma 2.2 implies that it has the right lifting property with respect to every
retract of such a composition. �

Proposition 4.9. There is a functorial factorization of every map f : X → Y as

X
j

// W
q

// Y

such that j is a relative J-cell complex (see Definition 4.5) and q has the right lifting
property (see Definition 2.1) with respect to every element of J (see Definition 4.3).
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Proof. The construction of the factorization is the same as in Proposition 4.1, except
that we use the set J of generating trivial cofibrations (see Definition 4.3) in place
of the set I of generating cofibrations (see Definition 3.13).

Since the spaceW was constructed by attaching J-cells toX , the map j : X → W

is a relative J-cell complex.
Since constructing Wk+1 from Wk consists of attaching many copies of Dn × I

along Dn×{0} (for all n ≥ 0), Lemma 4.6 implies that it can be viewed as a 2-step
process:

(1) Attach many n-cells (for all n ≥ 0) to Wk to create a space we’ll call W ′
k.

(2) Attach many (n+ 1)-cells (for all n ≥ 0) to W ′
k to form Wk+1.

If, for k ≥ 0, we let V2k = Wk and V2k+1 = W ′
k, then W is the colimit of the

sequence

X = V0 → V1 → V2 → · · ·

where each space Vk+1 is built from Vk by attaching cells to Vk. Thus, the mapX →
W is a relative cell complex, and Corollary 3.12 implies that any mapDn×{0} → W

factors through Wk for some k ≥ 0.
The proof that q : W → Y has the right lifting property with respect to every

element of J and the proof that this construction is functorial now proceed exactly
as in the proof of Proposition 4.1. �

Proposition 4.10. The relative J-cell complex constructed in the proof of Propo-
sition 4.9 is a relative cell complex.

Proof. This follows from the proof of Proposition 4.9. �

5. The factorization axiom

In this section we show that the two factorizations of maps constructed in Sec-
tion 4 are the two factorizations required by the factorization axiom M5 (see Defi-
nition 1.2).

5.1. Cofibration and trivial fibration.

Proposition 5.1. The functorial factorization constructed in Proposition 4.1 of a

map f : X → Y as X
i
−→ W

p
−→ Y where i is a relative cell complex and p has the

right lifting property with respect to every element of I (see Definition 3.13) is a
factorization into a cofibration followed by a map that is both a fibration and a
weak equivalence.

Proof. Since the cofibrations are defined to be the relative cell complexes and their
retracts (see Definition 1.4), the map i is a cofibration.

Lemma 4.6 implies that every element of J is a relative cell complex and Propo-
sition 3.14 implies that the map p has the right lifting property with respect to all
relative cell complexes. Thus, Proposition 4.4 implies that the map p is a fibration.

To see that the map p is a weak equivalence, first note that because it has the
right lifting property with respect to the map ∅ → D0, it is surjective, and so every
path component of Y is in the image of a path component of W . Thus, X and Y

are either both empty or both nonempty.
To see that every map of homotopy groups (or sets) πiW → πiY (for i ≥ 0) at

every basepoint of W is injective, note that every element of the kernel gives rise
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to a commutative solid arrow diagram

(5.2)

Si //

��

W

��

Di+1 //

<<

Y

and the existence of the diagonal arrow shows that that element of the kernel is
the zero element of πiW . (If i = 0, then the fact that this is true for every choice
of basepoint implies that π0W → π0Y is a monomorphism.)

To see that every map of homotopy groups πi+1W → πi+1Y (for i ≥ 0) at every
basepoint of W is surjective, note that every element of πi+1Y gives rise to a solid
arrow diagram Diagram 5.2 in which the top horizontal map is the constant map
to the basepoint, and the existence of the diagonal arrow shows that the chosen
element of πi+1Y is in the image of πi+1W . �

5.2. Trivial cofibration and fibration.

Proposition 5.3. The functorial factorization constructed in Proposition 4.9 of

a map f : X → Y as X
j
−→ W

q
−→ Y where j is a relative J-cell complex (see

Definition 4.5) and q has the right lifting property with respect to every element of
J (see Definition 4.3) is a factorization into a map that is both a cofibration and a
weak equivalence followed by a map that is fibration.

Proof. The proof of Proposition 4.9 showed that the relative J-cell complex is a
relative cell complex, and so the map j is a cofibration.

Since each inclusion Dn ×{0} → Dn× I is the inclusion of a strong deformation
retract, each map Wk → Wk+1 in the construction of the factorization is also the
inclusion of a strong deformation retract, and is thus a weak equivalence. Thus, for
every i ≥ 0 the sequence

πiW0 → πiW1 → πiW2 → · · ·

is a sequence of isomorphisms. Since the Si andDi+1 are all compact, Corollary 3.12
implies that every map from Si or Di+1 to W factors through Wk for some k ≥ 0,
and so the map colimk πiWk → πiW is an isomorphism. Thus, the map πiX → πiW

is also an isomorphism, and the map j is a weak equivalence.
Proposition 4.4 implies that the map q is a fibration. �

6. Homotopy groups and maps of disks

This section contains some results on maps of disks that are needed for the proof
of the lifting axiom M4 in Section 7.

6.1. Difference maps.

Definition 6.1. For n ≥ 1 we let Sn
+ be the upper hemisphere of Sn

Sn
+ =

{

(x1, x2, . . . , xn+1) ∈ R
n+1 | x2

1 + x2
2 + · · ·x2

n+1 = 1, xn+1 ≥ 0
}

and we let Sn
− be the lower hemisphere of Sn

Sn
− =

{

(x1, x2, . . . , xn+1) ∈ R
n+1 | x2

1 + x2
2 + · · ·x2

n+1 = 1, xn+1 ≤ 0
}

.

We let p+ : Sn
+ → Dn be the homeomorphism

p+(x1, x2, . . . , xn+1) = (x1, x2, . . . , xn)
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and we let p− : Sn
− → Dn be the homeomorphism

p−(x1, x2, . . . , xn+1) = (x1, x2, . . . , xn) .

Definition 6.2. If X is a space and α, β : Dn → X are maps that agree on ∂Dn,
then we let d(α, β) : Sn → X be the map that is α ◦ p+ : Sn

+ → X on the upper
hemisphere of Sn and β ◦ p− : Sn

− → X on the lower hemisphere of Sn, and we call
it the difference map of α and β.

Lemma 6.3. Let X be a space and let α : Dn → X be a map. If [g] ∈ πn

(

X,α(p0)
)

is any element of πn

(

X,α(p0)
)

(where p0 is the basepoint of Dn), then there is a

map β : Dn → X such that β|∂Dn = α|∂Dn and [d(α, β)] = [g] in πn

(

X,α(p0)
)

.

Proof. The basepoint of Dn is a strong deformation retract of Dn, and so any
two maps Dn → X are homotopic relative to the basepoint. Thus, the restriction
of g to Sn

+ is homotopic relative to the basepoint to α ◦ p+. Since the inclusion
Sn
+ →֒ Sn is a cofibration, there is a homotopy of g to a map h : Sn → X such that

h|Sn
+
= α ◦ p+; we let β = h ◦ (p−1

− ), and we have h = d(α, β). �

Lemma 6.4 (Additivity of difference maps). IfX is a space, n ≥ 1, and α, β, γ : Dn →
X are maps that agree on ∂Dn, then in πn

(

X,α(p0)
)

(where p0 is the basepoint of
Dn) we have

[d(α, β)] + [d(β, γ)] = [d(α, γ)]

(where, if n = 1, addition should be replaced by multiplication).

Proof. Let T n = Sn ∪Dn, where we view Dn as the subset of Rn+1

Dn =
{

(x1, x2, . . . , xn+1) | x
2
1 + x2

2 + · · ·x2
n ≤ 1, xn+1 = 0

}

;

T n is then a CW-complex that is the union of the three n-cells Sn
+, S

n
−, and Dn,

which all share a common boundary. We let t(α, β, γ) : T n → X be the map such
that

t(α, β, γ)|Sn
+
= α ◦ p+

t(α, β, γ)|Dn = β

t(α, β, γ)|Sn
−

= γ ◦ p− .

Thus,

• the composition Sn →֒ T n t(α,β,γ)
−−−−−→ X is d(α, γ),

• the composition Sn → Sn
+ ∪Dn ⊂ T n t(α,β,γ)

−−−−−→ X (where that first map is
the identity on Sn

+ and is p− on Sn
−) is d(α, β), and

• the composition Sn → Dn ∪ Sn
− ⊂ T n t(α,β,γ)

−−−−−→ X (where that first map is
p+ on Sn

+ and is the identity on Sn
−) is d(β, γ).

The basepoint of Dn is a strong deformation retract of Dn, and so the map
β : Dn → X is homotopic relative to the basepoint to the constant map to α(p0)
(where p0 is the common basepoint of Sn and Dn). Since the inclusion Dn →֒ T n

is a cofibration, there is a homotopy of t(α, β, γ) relative to the basepoint to a map
t̂(α, β, γ) that takes all of Dn to the basepoint α(p0), and d(α, γ) is homotopic to
the composition

Sn →֒ T n t̂(α,β,γ)
−−−−−→ X .
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If T n → Sn ∨ Sn is the map that collapses Dn to a point, then t̂(α, β, γ) factors

as T n → Sn ∨ Sn αβ∨βγ
−−−−→ X , where αβ : S

n → X is homotopic to d(α, β) and
βγ : S

n → X is homotopic to d(β, γ). Thus, d(α, γ) is homotopic to the composition

Sn →֒ T n −→ Sn ∨ Sn αβ∨βγ
−−−−→ X .

and so we have [d(α, γ)] = [d(α, β)] + [d(β, γ)] if n > 1 and [d(α, γ)] = [d(α, β)] ·
[d(β, γ)] if n = 1. �

Lemma 6.5. If X is a space, α, β : Dn → X are maps that agree on ∂Dn, and
[d(α, β)] is the identity element of πnX , then α and β are homotopic relative to
∂Dn.

Proof. Since [d(α, β)] is the identity element of πnX , there is a map h : Dn+1 → X

whose restriction to ∂Dn+1 is d(α, β). View Dn × I as the cone on ∂(Dn × I) =
(Dn × {0}) ∪ (Sn−1 × I) ∪ (Dn × {1}) with vertex at the center of Dn × I. Let
p : Dn × I → Dn+1 be the map that

• on Dn × {0} is the composition Dn × {0}
pr
−→ Dn (p+)−1

−−−−→ Sn
+ →֒ Dn+1,

• on Dn × {1} is the composition Dn × {0}
pr
−→ Dn (p−)−1

−−−−→ Sn
− →֒ Dn+1,

• on Sn−1 × I is the composition Sn−1 × I
pr
−→ Sn−1 →֒ Sn

+ ∩ Sn
− ⊂ Dn+1,

• takes the center point of Dn × I to the center point of Dn+1, and
• is linear on each straight line connecting the center point of Dn × I to its
boundary.

The composition Dn × I
p
−→ Dn+1 h

−→ X is then a homotopy from α to β relative
to ∂Dn. �

6.2. Lifting maps of disks.

Proposition 6.6. Let f : X → Y be a map, let n ≥ 1, and suppose that we have
the solid arrow diagram

∂Dn h
//

i

��

X

f

��

Dn
g

//

<<

Y .

If F is the homotopy fiber of f over some point in the image of g and if πn−1F = 0,
then there exists a map G : Dn → X such that Gi = h and fG ≃ g relative to ∂Dn.

Proof. The map h defines an element [h] of πn−1X (at some basepoint) such that
f∗
(

[h]
)

= 0 in πn−1Y . Since πn−1F = 0, the long exact homotopy sequence of a
fibration implies that [h] = 0 in πn−1X , and so there is a map j : Dn → X such
that j ◦ i = h.

The maps fj : Dn → Y and g : Dn → Y agree on ∂Dn, and so there is a
difference map d(fj, g) : Sn → X (see Definition 6.2) that defines an element α of
πnY . Since πn−1F = 0, the long exact homotopy sequence implies that there is
an element β of πnX such that f∗(β) = −α (if n > 1) or f∗(β) = α−1 (if n = 1),
and Lemma 6.3 implies that we can choose a map G : Dn → X that agrees with
j : Dn → X on ∂Dn such that [d(G, j)] = β in πnX . Thus, Gi = h, and since
[d(fG, fj)] = [f ◦ d(G, j)] = f∗[d(G, j)] = f∗(β) = −α (if n > 1) or α−1 (if n = 1),
Lemma 6.4 implies that [d(fG, g)] = [d(fG, fj)] + [d(fj, g)] = −α+ α = 0 (with a
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similar statement if n = 1), and so Lemma 6.5 implies that fG is homotopic to g

relative to ∂Dn. �

Lemma 6.7. A map f : X → Y is a Serre fibration if and only if for every n ≥ 0
and every solid arrow diagram

(6.8)

(Dn × {0}) ∪ (∂Dn × I) //

��

X

f

��

Dn × I //

66

Y

there exists a diagonal arrow making both triangles commute.

Proof. For every n ≥ 0 there is a homeomorphism of pairs
(

Dn × I, (Dn × {0}) ∪ (∂Dn × I)
)

−→
(

Dn × I,Dn × {0}
)

under which diagrams of the form (6.8) correspond to diagrams of the form

Dn × {0} //

��

X

f

��

Dn × I //

::

Y

and Proposition 4.4 implies that there always exists a diagonal arrow making the
diagram commute if and only if f is a fibration. �

Proposition 6.9. Let f : X → Y be a fibration, let n ≥ 1, and suppose that we
have the solid arrow diagram

∂Dn h
//

i

��

X

f

��

Dn
g

//

<<

Y

If F is the fiber of f over some point in the image of g and if πn−1F = 0, then
there exists a diagonal arrow making both triangles commute.

Proof. Proposition 6.6 implies that there is a map G : Dn → X such that Gi = h

and fG ≃ g relative to ∂Dn. Let H : Dn × I → Y be a homotopy from fG to g

relative to ∂Dn. We have a lift to X of the restriction ofH to (Dn×{0})∪(∂Dn×I)
defined as G◦prDn on Dn×{0} and h◦pr∂Dn on ∂Dn× I, and Lemma 6.7 implies
that we can lift the homotopy H to a homotopy H ′ : Dn × I → X such that the
restriction of H ′ to Dn × {0} is G ◦ prDn and the restriction of H ′ to ∂Dn × I is
h ◦pr∂Dn . Let G′ : Dn → X be defined by G′(d) = H ′(d, 1), and we have G′ ◦ i = h

and f ◦G′ = g. �

Proposition 6.10. If f : X → Y is both a fibration and a weak equivalence, then
for every n ≥ 0 and every solid arrow diagram

∂Dn h
//

i

��

X

f

��

Dn
g

//

<<

Y
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there exists a diagonal arrow making the diagram commute.

Proof. Since f is a weak equivalence, the set of path components of X maps onto
that of Y , and so an application of Proposition 4.4 with n = 0 implies that X

maps onto Y . That implies the case n = 0, and the cases n ≥ 1 follow from
Proposition 6.9. �

7. The lifting axiom

In this section we show that the lifting axiom M4 (see Definition 1.2) is satisfied
(see Theorem 7.1 and Theorem 7.2).

7.1. Cofibrations and trivial fibrations.

Theorem 7.1. If f : X → Y is both a fibration and a weak equivalence, then it
has the right lifting property with respect to all cofibrations.

Proof. Proposition 6.10 implies that f has the right lifting property with respect to
every element of I (see Definition 3.13). Since a cofibration is defined as a retract
of a relative cell complex, the result follows from Proposition 3.14. �

7.2. Trivial cofibrations and fibrations.

Theorem 7.2. If i : A → B is both a cofibration and a weak equivalence, then it
has the left lifting property with respect to all fibrations.

Proof. Proposition 4.9 implies that we can factor i : A → B as A
s
−→ W

t
−→ B where s

is a relative J-cell complex and t is a fibration (see Proposition 4.4). Proposition 5.3
implies that s is both a cofibration and a weak equivalence and t is a fibration. Since
s and i are weak equivalences, the “two out of three” property of weak equivalences
implies that t is also a weak equivalence, and so Theorem 7.1 implies that i has the
left lifting property with respect to t. The retract argument (see Proposition 2.3)
now implies that i is a retract of s, and so Proposition 4.8 implies that i has the
left lifting property with respect to all fibrations. �

Corollary 7.3. If i : A → B is both a relative CW-complex and a weak equivalence
and p : X → Y is a Serre fibration, then for every solid arrow diagram

A //

i

��

X

f

��

B //

>>

Y

there is a dotted arrow making the diagram commute.

Proof. Since every relative CW-complex is a relative cell complex, the map i is both
a cofibration (see Definition 1.4) and a weak equivalence, and since our fibrations are
Serre fibrations (see Definition 1.4), the result now follows from Theorem 7.2. �

8. The proof of Theorem 1.5

We must show that the five axioms of Definition 1.2 are satisfied by the weak
equivalences, cofibrations, and fibrations of Definition 1.4.

The limit axiom M1 is satisfied because we’ve assumed that our category of
spaces is complete and cocomplete.
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For the two out of three axiom M2, we first note that if any two of f , g, and gf

induce an isomorphism of the set of path components, then so does the third. If our
maps are f : X → Y and g : Y → Z, then if either f and g are weak equivalences
or g and gf are weak equivalences, then the two out of three property applied to
homomorphisms of homotopy groups implies that the third map also induces an
isomorphism of homotopy groups at an arbitrary choice of basepoint. If f and gf

are assumed to be weak equivalences, then we know that every choice of basepoint
in Y is in the same path component as a point in the image of f , and so (using the
change of basepoint isomorphism) it is sufficient to show that the homotopy groups
at a basepoint in the image of f are mapped isomorphically, and that follow from
the two out of three property of group homomorphisms.

For the retract axiom M3,

• a retract of a weak equivalence is a weak equivalence because a retract of a
group isomorphism (or of an isomorphism of the set of path components)
is an isomorphism,

• a retract of a cofibration is a cofibration because a retract of a retract of a
relative cell complex is a retract of a relative cell complex, and

• a retract of a fibration is a fibration because of Proposition 4.4 and Lemma 2.2.

For the lifting axiom M4, when i is a cofibration and p is both a fibration and a
weak equivalence, this is Theorem 7.1, and when i is both a cofibration and a weak
equivalence and p is a fibration, this is Theorem 7.2.

For the factorization axiom M5, the factorization into a cofibration followed by
a map that is both a fibration and a weak equivalence is Proposition 5.1, and the
factorization into a map that is both a cofibration and a weak equivalence followed
by a fibration is Proposition 5.3.
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