
Math. Z. 173, 29-34 (1980) Mathematische 
zeitschrift 

�9 by Springer-Verlag 1980 

A Cellular Construction of BP 
and Other Irreducible Spectra 

Stewart Priddy 

Department of Mathematics, Northwestern University, Evanston, Illinois 60201, U.S.A. 

In this note we construct and derive the basic properties of the Brown-Peterson 
spectrum BP by attaching cells to the sphere spectrum S o (localized at a prime 
p) so as to kill the odd-dimensional homotopy groups. This procedure is, of 
course, entirely analogous to the construction of the Eilenberg-MacLane spec- 
trum K(1g(p)) by killing the positive dimensional homotopy groups of S ~ One 
can thus view BP as lying "half-way" between S o and K(1g(p)). The advantage of 
our approach is that it avoids computations with Steenrod operations inherent 
in the original Postnikov tower construction [2]. Moreover, we obtain the 
homotopy and cohomology groups of BP immediately from the construction by 
a simple application of obstruction theory and the Adams spectral sequence. 

Pedagogically, we have found this approach useful in introducing BP to 
students who have mastered homotopy theory including the Adams spectral 
sequence, as for example from the texts of Moser-Tangora [5] or Switzer [9]. 

This paper consists of four sections the first of which gives the construction 
of our candidate X for the BP spectrum after making precise the notion of 
attaching cells "non-trivially". X-~BP follows easily from the fact that a self 
map of a complex with cells attached non-trivially is an equivalence iff it is an 
equivalence on the bottom cell. In w 2 we derive the main properties of X 
directly from the construction without assuming the existence of BP. The idea is 
to prove H* (X;Z/p) is free over A/(~), then use the Adams spectral sequence to 
simultaneously compute rc, X and show H*(X;1g/p) is monogenic. In w we 
analyze the individual spaces of our spectrum. They are found to be equivalent 
to certain spaces in Wilson's spectrum B P @ ) .  Finally in w we show that by 
attaching cells to kill the ( 4 k -  1) dimensional homotopy groups of S o we obtain 
an interesting spectrum which is equivalent to MSp through the 30-skeleton. 

Recollections. For convenience we recall the following properties of BP from 
[21: 

i) ~z, BP=/g(p)[vl,v2, ...], ]vll =2(/? I -  1) 

ii) H* (BP;/~/p)= A/([3), where A is the mod-p Steenrod algebra and (/~) is the 
two-sided ideal generated by the Bockstein. 
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Conventions. Throughout  this paper, we work in the category of p-local CW- 
complexes (spectra) with basepoint. All modules are finitely generated over 7Z(p), 
the integers localized at the prime p. 

w 1. Construction 

Definition. Given spaces A c Z ,  we say that Z is obtained from A by non-trivially 
attaching (n+l)-cells  if Z = A w U e ~  +1 for some set of attaching maps 
{ f j  S " ~ A }  such that ~ 

ker (@L*) c p. (@ n, S") 

where 

| 

is given by summation. Equivalently, if dim A <n,  one can require that every 
element of n,+ 1Z have trivial Hurewicz image m o d p  (this point is elucidated in 
the proof  of the theorem in w 2). 

Similarly one can attach stable cells non-trivially in the stable category of p- 
local CW-spectra. 

Construction. We can now define our candidate X for the BP spectrum. For  
n > 0, let X,  be obtained from S" by non-trivially attaching cells in dimensions n 
+2, n+ 4 , . . . , n+2k , . . ,  to kill the homotopy  groups in dimensions n + l ,  n 
+ 3,. . . ,  n + 2 k - 1 ,  . . . .  That  is, if (X,) k denotes the k-skeleton then (X,)" = (Xn) "+1 
= S" and assuming (X,)" + 2k-1 to be defined we attach (n + 2k)-cells non-trivially 
to obtain (X,) "+2k so that nn+Zk_l((Xn)n+2k)=o. 

Structure maps e, :Xo~Y2X.+~ are easy to define. By construction 
n,+2k_l~2X,+l=n,+2kX,+l=O, hence Hn+zk(Xn; gn+Zk_lQXn+l)=O and so by 
obstruction theory there exists a map ~,: X,---,~?X,+ 1 extending the identity 
map on S". Thus X = {X,, e,} is a spectrum. 

Presently in w 2, we shall show X has the desired properties without assuming 
BP exists. For  now, we show we have made the proper construction. 

Theorem. X is homotopy equivalent to BP. 

Definition. A space (spectrum) Z is called irreducible if it is obtained from a 
sphere (sphere spectrum) S N by successively attaching cells (stable cells) non- 
trivially. 

Proposition. Suppose Z is irreducible (and simply connected if Z is a space). Then 
g: Z ~ Z is a homotopy equivalence if gist, is a homotopy equivalence. 

Proof. We inductively assume g:Zn-+Z" is an equivalence. Consider the com- 
mutative diagram derived fi'om the cofibration ~/S" ~ Z"-- ,  Z" + ~ 
(H.  : H . ( - ;  g{p))) 
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0=H.+,Z n ,Ho§ o+' ,H.(VS n) ,H.(Z o) ,H,(z "§ ,0 

gl ig2 3 ~-g4 g5 
I 

o=~.+~z" ,i-i.+~z "+~ ,H.(VS") , u ~  ~ ,I-Io(Z "+~) ,o 
oc 

where g~ is induced by g. Since Z is simply connected, it suffices to show g2 is an 
automorphism. By assumption g4 and hence gs is an automorphism (for g5 we 
use the well known fact that for a finitely generated module any epic en- 
domorphism is bijective). Thus g2 is bijective iff g3 is. Using the Hurewicz 
homomorphism we are reduced to showing g3 is an automorphism in ho- 
motopy. Consider the commutative diagram where g4 is bijective by assump- 
tion. 

~~ s") ~ ~*, ~.(z") 

ig3 ,~lg4 

Thus we have 

i 
0 , ker (@L*) , @ rc,S n , Im (@f~.) ,0 

] g3 ~]g4 
0 , ker(@f~,) i , @re, S" , Im(@f~,) ~ 0 

Tensoring with 7Zip and using the definition of irreducible we have i| 
Thus g3 | is bijective. By Nakayama's lemma g3 is bijective, which com- 
pletes the proof. 

Proof of the Theorem. Since ~2k_lX=~2k_l  B P = 0 = H  2k-1 BP=H2k-~X,  ob- 
struction theory gives maps g: X--+ BP, h: B P ~ X  extending the identity on S ~ 
By the proposition, hg: X - + X  is therefore an equivalence. Since H*(BP;  7Z/p) 
= A/(fi) is monogenic, g h: B P ~ B P is also an equivalence. 

w 2. Properties 

In this section we derive the main properties of the spectrum X directly from the 
construction of w 1. 

Theorem. i) rc,X =/~(p)Iv1,/)2 . . . .  ] ,  Ivil = 2(p i -  1), 

ii) H* (X; N/p) = A/(fi). 

First we observe that X is a ring spectrum with unit since by obstruction 
theory there exists maps X m A X,--~ X m+n extending the usual homeomorphism 
S m A S " ~  S m+n. 
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Lemma. H*(X; Z/p) is free over A/(fl). 

We give two proofs of this fact. The first uses the cohomology of the complex 
cobordism spectrum MU; the second is direct from the construction using the 
Nishida formula. 

First Proof. Since the cohomology of M U  is even dimensional, obstruction 
theory gives a map f:  M U + X  extending the identity on S ~ Let z: X--,K(TI(p)) 
classify l e H ~  Since H*(MU;7I/p)  is free over A/(fl) (see [1; II8.4]) the 
composite M U  I ~X ' ~K(;g(p)) induces a monomorphism in mod-p coho- 
mology. Since z is a map of ring spectra the Milnor-Moore theorem shows 
H* (X; ;g/p) is free over A/(fl). 

Second Proof. We shall show that evaluation on the unit A/(fi)-* H* (X; ;g/p) is 
injective. Let C~lerCZp_3 S~ be a generator and consider Y = S ~  

extending the unit map S ~  (% =~/if  p =2). By obstruction theory there are 
maps Op(Xzn)=(E~p+)A(Xzn)(P)-+Xzpn extending the ring structure maps 

(X2,)(P)~ Xzp . (the cohomology of Op(Xzn ) is even dimensional). Hence we may 
form the composite Dp(...(Dp Y)...) ~ Dp(...(DpX)...) ~ X and by naturality we 
are reduced to checking that Milnor's element pa, (Sq2& if p = 2) is non-zero on 
the bottom class of Dp(...(DpY)...). But this verification follows using the 
Nishida formula as in Proposition 3.4 of [6]. 

Proof of the Theorem. We shall prove i) and ii) simultaneously using the Adams 
spectral sequence 

E~"=Ext~t(H*(X;;g/p),~7/p) ~ rt,_sX. 

By the lemma, H*(X; ;g/p) is free over A/(fl) on even dimensional generators say 
{g~}. Thus H*(X;;g/p)=@[A/(f i)]  g~. According to Milnor [4], A/(~)=A | 7lip 

'2 E 
where E=E[Qo,  Q1 . . . .  ], (2o--fl, Qi+I--[~P' ,Qi] ,  ]Q/I=2p i - 1 .  Thus by change 
of rings and the standard formula for the cohomology of an exterior algebra we 
have 

E 2 = @ Ext~t(A/(fi), ;g/p). g~ = @ Ext)t(;g/p, ;g/p). g, 
y 

=@;g/p[vo ,v l ,v2 , . . . ] .gy  with ]vii = 2(p~- 1). 

Also E 2 =Era by even dimensionality. Now we claim there is only one generator 
g~ and it is in dimension zero. Suppose g7 is a generator of minimal positive 
dimension 2n. Then g~eExt~ ;g/p),;g/p) represents a class in nz ,X 
which has non-zero Hurewicz image modp. Since ~2nX,~7"C2n Xzn w e  have 
hj(g~) +0  in 

~2nX2n  J ) 7[ 2n ~,(x2n, x 2 n  - 1) 

l 
H (X 2n';g/p) ~ H ~X2, X2n 1; 2,, , ~ ' 2,~ , ;g/P)" 

, ~ 2 n _ l ( X  2n-1)  
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However ~j(gr)=0 by exactness so ker O Cp.  7"(,2n(X2n, X 2n- 1) contradicting the 
irreducibility of X. Thus H*(X; Z/p)=A/(/~) and 7z,X =71(v ) [v i, v2,. . .]  since v 0 
corresponds to multiplication by p. Q.E.D. 

w 3. The Spaces X. 

In this section we identify the individual spaces X,  of the spectrum X of w 1. 
Using the techniques of Baas-Sullivan, Wilson [10] has constructed ~2- 

spectra BP@>={BP@>k} for 0<n<_oo such that BP(0)=K(Z(p) ) ,  BP(oo> 
= B P and re. BP (n> =~(p) [vl, v 2 . . . .  , vJ .  

Lemma. (Wilson [10; 5.1, 6.9]). i ) for  k<(p~+ ... + p +  1), H*(BP(n>2k; Z(p)) is a 
polynomial algebra on even dimensional classes. 

ii) for  k > ( p ' ~ - l + . . . + p + l ) ,  any map B P @ ) k ~ B P ( n ) k  which induces an 
isomorphism on Jz k is a homotopy equivalence. 

Proposition. I f  2(p "-~ + ... + p +  1) <2k_<_2(p"+ ... + p +  1) then X2k is homotopy 
equivalent to BP(n>2 k. 

Proof. By part i) of the lemma and obstruction theory there are maps 
f:  BP (n>2k---, X2k and g: X2k---~ BP(n)2k extending the identity on S 2k. Since 
X2k is i r reduciblefg is an equivalence. Similar lygf  is an equivalence by part ii) 
of the lemma. 

Example. For p=2 ,  we have X 2 - ~ B P ( 0 > 2 - ~ P  ~~ X4~-BP(1)4~-BSU,  
X6~-BP(1)6~-BSU[6 ,  ...]. The element v n first appears on the 2 "+~ sphere, i.e. 
X2 ,+ I~BP(n)2 ,+ I  while X 2 . . . .  2 - ~ B P ( n -  1)2,+1_2. 

w 4. Other Irreducible Ring Spectra 

In this section we consider the spectrum Y obtained from the sphere spectrum S o 
by killing rC4k_l, k > l .  This spectrum is related to the symplectic cobordism 
spectrum MSp; however, as in the case of MSp, our information about g is 
incomplete. Of course, X and Y are part of a family of irreducible ring spectra 
(one for each N > I )  obtained from S o by killing rC2Nk_l, k > l .  These spectra 
approximate S O as N---~oo and so one expects their properties to become 
progressively more intractable. 

Construction. The spaces Yn of the spectrum Y are obtained from S" by 
successively attaching cells non-trivially in dimensions n+4 ,  n+8 ,  ..., n +4k,  ... 
so as to kill the homotopy in dimensions n+3,  n+7 ,  ..., n + 4 k - 1 ,  . . . .  As in the 
case of X, obstruction theory allows us to define maps Yn~f2Y,+I,  
YmA Yn ~ Ym+, and so Y is a ring spectrum. 

Remark. Since ~7S4=Z | one can show Y ~ - B S p  for p =2 ,  3. 

Since H*(MSp; ;g/p) is zero in dimensions not divisible by 4, there is a map 
f:  MSp ~ Y extending the identity on S ~ 
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Lemma .  H*(Y;TZ/p) is free over A/(~) (over A ' = Z / 2 [ ~  4, ~ ,  . . . ]*  if p=2). 

Proof. Let  ~: Y-~ K(Z(p)) classify 1~ H~ Then arguing  as in the first p r o o f  of  the 
l e m m a  o f w  and using the fact that  H*(MSp; 7lip) is free over  A/(~) (over A' i f p  
= 2) we have the desired result.  

Corol lary.  Y is homotopy equivalent to BP for p >2.  

Hencefor th  we assume p = 2 .  N o w  using results  of  K o c h m a n  [3], Ray  [7], 
and  Segal [8]  we can compare  Y and MSp more  closely. 

Proposition. f: MSp --~ Y is a homotopy equivalence through dimension 30. 

Proof. MSp is i r reducible  th rough  the 28 skele ton and ~ ,k -1  MSp = 0  for k < 8 
[8, 3]. Hence  there is a m a p  g: y30__, MSpSO such tha t  g f  and  fg  are equiva-  
lences on the 30-skeleton. Q.E.D. 

It is interest ing to note  the re la ted  facts: ~31MSp#:O [7, 3] and  MSp 32 is 
not  i r reducible  [33. I f  x2sHS(MSp; Z/2) denotes  an i n d e c o m p o s a b l e  e lement  
over  A' then x~ represents  a non-zero  e lement  of  1r32MS p with non-ze ro  
Hurewicz  image  m o d  2. In  fact this is the first posi t ive d imens iona l  e lement  with 
non-zero  image  in ~,MSp---, ~,MO; its image  is (IRP2) 16 [8]. 
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