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§i. Introduction. Three things might be done to help those who wish 

to understand Carlsson's work on Seqal's Burnside Ring Conjecture [8]. 

First, one might attempt a general exposition about Seqal's Burnside 

Ring Conjecture, both in its non-equivariant and in its equivariant 

forms. Secondly, one might explain the results which Gunawardena, Miller 

and myself have obtained by calculation for the case G = (Zp) n . (This 

is relevant because Carlsson uses these results.) Thirdly, one might 

attempt a general introduction to equivariant stable homotopy. 

In the lecture I gave in Aarhus, I tried to say something on all 

three topics, but for lack of time I was forced to omit an important 

part of what I had prepared. In this published text I shall omit the 

first and second topics, and try to do better justice to the third. 

In fact, when I ~ first saw [8] - apart from rejoicing - I thought, 

"Oh dear; now I shall have to work to understand the fundamentals of 

this subject". Since I more or less do understand them now (at least, 
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so far as they seem to be needed for Carlsson's work) it may save other 

topologists trouble if I try to pass on my understanding. 

I should stress that I do not claim any originality for what follows; 

everything I shall explain is or should be known to those who reckon to 

know about such things. (There is a possible exception in Theorems 5.4 

and 8.5, which are recent, and where my statements differ slightly from 

those in my incoming mail - which I shall acknowledge in due course.) 

My survey is arranged as follows. In §2 I shall review unstable 

equivariant homotopy theory. In §3 I discuss the G-suspension theorem. 

In §4 I discuss the G-Spanier-Whitehead category. In §5 I discuss certain 

theorems for reducing problems involving a group G to problems involv- 

ing a smaller group. In §6 I discuss theories graded over the represent- 

ation ring RO(G). In §7 I say very little about G-spectra. In §8 I 

discuss G-Spanier-Whitehead duality. 

I shall use the words "ordinary" and "classical" to refer to the 

non-equivariant case, G = 1 

I am very grateful to many correspondents, including G. Carlsson, 

T. tom Dieck, C. Kosniowski, L.G. Lewis, J.P. May, A. Ranicki and 

G. Seqal. I am particularly grateful to L.G. Lewis for tutorials on 

G-spectra and to J.P. May for many letters. 

§2. Unstable equivariant homotopy. This section must recall how the 

most elementary part of unstable homotopy theory carries over to the 

equivariant case. 

Let G be a finite group. (Ideally it is desirable to arrange 

the foundations of equivariant topology so as to cater for compact Lie 

groups, but for present purposes I will not bother.) A "G-space" is 

a space on which G acts; for definiteness we agree that groups norm- 

ally act on the left of spaces. Let X and Y be G-spaces; then a map 
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f: X ) Y is a G-map if 

f(gx) = g(fx) 

for all geG, x~X . 

Two G-maps are "G-homotopic" if they are homotopic through G-maps. 

Alternatively, we can define G-homotopy in terms of G-maps of cylinders; 

for this purpose, if X is a G-space, we make G act on I × X by 

g(t,x) : (t,gx) 

> G 

for all geG, t~I, xEX . 

With these definitions one can carry over a good deal of ordinary 

homotopy theory. Ordinary homotopy-theory often needs a base-point; 

at the corresponding places in G-homotopy theory, we suppose given a 

base-point fixed under G . We then define IX,Y] G in terms of G-maps 

and G-homotopies which preserve the base-point. 

There are a few simple cases in which problems over G can be 

reduced to problems over a subgroup H of G . Naturally, we leech 

onto them to use them in inductive proofs. The technical statement is 

that if H is a subgroup of G , then the "forgetful functor" from 

G-spaces to H-spaces has a left adjoint. More precisely, if i: H 

is the inclusion and Y is a G-space, we write i*Y for the H-space 

in which H acts on the same space Y via i Then we have the fol- 

lowing natural (I-I) correspondence. 

(2.1) H-Map (X, i'Y) ~ > G-Map (GXHX, Y) . 

Here X is supposed to be an H-space, and GXHX is the quotient 

of GxX in which (g,hx) is identified with (gh,x) In (2.]) we 

have no base-points; if we wish to have base-points, then the natural 

(i-i) correspondence is as follows. 



486 

(2.2) Ptd-H-map (X, i'Y) < > Ptd-G-Map ((GuP)AHX, Y) 

Here Gu P is the disjoint union of G and a base-point P fixed 

under G , and ^H is defined as x H was before. If we can take X 

in the form i*Z where Z is a G-space, then we have the following 

natural G-homeomorphism. 

(2.3) (G''P)AHi*Z < • (G/HuP)AZ 

It is given by 

(g,z) I ~ (g,gz) 

(g,g-lz) < ~ (g,z). 

The distinctive features of the equivariant theory begin with the 

study of fixed-point sets. Let X be a G-space, and let H be a sub- 

group of G ; then the fixed-point set X H is defined by 

X H = {x e X ] hx = x, V h e H} 

-i 
The action of g e G gives a homeomorphism from X H to X gHg ; in 

particular, X H admits operations from N(H)/H , where N(H) is the 

normaliser of H in G . Any G-map f: X > Y must carry X H into 

yH and preserve the action of N(H)/H ; we usually write fH: X H > yH 

for the map induced by f on the fixed-point set. If H c K , then 

X H ~ X K 

Many proofs in equivariant homotopy theory are done by induction 

up the fixed-point sets, beginning with the smallest, X G , and finish- 

ing with the largest, X 1 = X . A convenient class of G-spaces in which 

to do such proofs is the class of G-CW-complexes. We will come to these 

soon, but first we must mention cells and spheres. 

By a "representation of G", we shall mean a finite-dimensional 

real inner-product space V on which G acts (linearly, and preserv- 

ing the inner product). Such a representation V has a unit sphere 
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S(V) and a unit cell E(V) defined by II vii =1 and [I v[] £1 respect- 

ively. The usual homeomorphism between E(V) × E(W) and E(V~W) is 

equivariant and gives no more nuisance than usual. If we want to use 

base-points, we normally define S V to be the one-point compactificat- 

ion of V and put the base-point at infinity. In representation-theory 

we often write "n" to indicate the representation in which G acts 

trivially on R n ; so the new meaning of S n is S Rn , that is, the old 

S n with G acting trivially on it. 

The first theorem in ordinary homotopy theory is the theorem that 

~r(S n) : O for r < n . 

Proposition 2.4. If dim V H < dim W H for all H , then 

[S V, sW]G = 0 . 

The proof will become clear as soon as I have introduced the rele- 

vant ideas. 

In general, suppose that in the classical case we have some invar- 

iant like "dim", which assigns to each suitable space X a value dim (X) 

which may be an integer or ~ Then the analogue in the equiv- 

ariant case is to consider "dim X" as a function which assigns to each 

subgroup H c G the value dim (X H) (taking equal values on conjugate 

subgroups H). So the assumption of (2.4) should be thought of as 

"dim (S V) ~ dim (S W) - I" 

(with the obvious interpretation of inequality between functions of H). 

Similarly for the "Hurewicz dimension of X , Hur X" (defined to be the 

greatest n such that Zr(X ) = O for r < n ). For spheres we have 

Hur (S ~) = dim (S ~) 

The following result generalises (2.4). 



Proposition 2.5. 

488 

If dim (X H) -< Hur (yH) _ 1 

IX,Y] G = O . 

for all H , then 

Here it will be prudent to assume that X is a generalised CW- 

complex of some sort. 

On the usual definitions, G-CW-complexes are constructed just like 

CW-complexes; but instead of using cells of the form E n, S n-I one 

uses G-cells of the form 

(G/H) × E n, (G/H) × S n-I 

The usual reference for G-CW-complexes is the work of Matumoto [201. 

The G-complexes of Bredon [3,5] served the same purpose earlier (for 

G finite). There is also a thesis by Illman [16], although theses are 

not usually easily available. 

I thank J.P. May for pointing out two possible objections to the 

usual approach to G-CW-complexes. The first is that the definition of 

"G-cell" is not wide enough to accommodate the "cells" introduced above. 

Certainly it would seem worthwhile to make our machinery accept "G- 

cells" of the form 

G×HE(V) , G×HS(V) 

where V is a representation of H . This doesn't affect the class 

of G-spaces considered, because any G-cell of the more general fo~m 

can be subdivided into G-ceils of the special form. 

The second objection may be seen from the following exa~nple. If 

H is a subgroup of G , we would like to say that a G-CW-complex "is" 

an H-CW-complex. Unfortunately, we can't display the G-cell G as a 

union of H-cells H without choosing coset representatives. This nuis- 

ance recurs with products; if X and Y are G-CW-complexes, then 

X × Y (with the CW-topology) is likely to come as a complex over the 

group G × G , and we want it as a complex over the diagonal subgroup 
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A 
G > G × G . 

For present purposes we seem to have a workable way out (though 

it only serves when G is discrete). We stipulate that the given struc- 

ture of CW-complex X includes characteristic maps 

En(~) X : ) X . a 

If X comes as a G-space, we ask for a commutative diagram of the fol- 

lowing form for each g c G and ~ . 

/Ca,g) 

En(a) 

E~(B) 

Xa 

×B 

X 

> X 

Clearly B will be unique (so that G will implicitly act on the set 

of indices a ) ; Z(a,g) will also be unique, and we ask that it be 

linear and preserve the inner product. (The last clause is actually 

redundant.) Then we can choose to organise our characteristic maps 

into G-orbits 

GXHE(V) ~ X , 

but no such choice is part of the given structure. If we want to insist 

on G-cells of the form G/H × E n , we can impose an axiom that B = a 

implies Z(a,g) = 1 If so, we get back to Bredon's G-complexes. 

In order to carry over the standard arguments about CW-complexes, 

one needs to be able to manipulate G-maps of G-cells. Let Y be a 

G-space; from (2.1) we get the following natural (i-i) correspondence. 

(2.6) G-Map ((G/H)×En,y) < ) Map (En,yH). 

If on the left we wish to prescribe the values of the G-map on 

(G/H)×S n-l, that corresponds on the right to prescribing the values of 

the map on S n-I So the standard arguments for CW-complexes carry 
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over to G-CW-complexes, using induction over the G-cells plus ordinary 

homotopy theory in fixed-point subspaces yH 

Since our object is to reduce to ordinary homotopy theory, we gen- 

erally carry out these arguments with G-cells (G/H)xE n rather than 

G×HE(V) , reducing to that case by subdivision if necessary. 

We will forgo a long discussion of those results on CW-complexes 

which carry over with little change. (For example, the inclusion of a 

G-subcomplex in a G-CW-complex has the G-homotopy-extension property.) 

The first result we do need to mention is the "theorem of J.H.C. 

Whitehead". Recall that in the ordinary case, a map f: X > Y between 

path-connected spaces is called an n-equivalence if 

f.: ~r(X) > ~r(Y) 

is iso for r < n and epi for r = n . (If the spaces are not path- 

connected we modify this definition in an obvious way; see [24 p404].) 

In the equivariant case, suppose given a function n which assigns to 

each subgroup H c G a value n(H) which may be an integer or ~ , 

subject to the condition n(gHg -I) : n(H) Then a G-map f: X > Y 

is an n-equivalence if fH X H yH : ~ is an ordinary n(H)-equivalence 

for each H . 

Proposition 2.7. 

be a G-map which is an n-equivalence. 

Let W be a G-CW-complex and let f: X 

Then the induced map 

is onto if 

it is a (i-i) 

f,: [W,X] G • [W,Y] G 

dim W H -< n(H) 

correspondence if 

dim W H -< n(H) -i 

for all H ; 

for all H . 

~Y 
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As with (2.4), one should think of the assumptions as "dim W ~ n" 

and "dim W ~ n-l", where dim W and n are functions of H . 

Results of this sort go back to Bredon [5 Chap. II §5]; see also 

Matumoto [20 §5], Illman [16 Chapter I §3] and Namboodiri [29 Corollary 

2.23. 

§3. The G-suspension theorem. This section must recall how the most 

elementary result of suspension theory carries over to the equivariant 

case. 

When we suspend in equivariant homotopy theory, we have available 

a variety of actions of G on the suspension coordinates we introduce. 

For an unreduced suspension, of G-spaces without base-point, it is reas- 

onable to take the join S(V)*X . For a reduced suspension, of G-spaces 

with base-point, it is natural to take the smash product S V ^ X . Here 

the action of G on a smash product X ^ Y is defined by 

g(x,y) = (gx,gy) , 

and similarly for the join. 

The relationship between smash and join is much as in the classical 

case. In fact, classical comparison maps, such as the ordinary quotient 

map 

X*Y ~ XASIAy , 

are commonly natural, and therefore equivariant. They can be proved 

to be G-equivalences by (2.7), provided the following conditions are 

satisfied. 

(a) The restriction of the comparison map to a fixed-point-set 

is another instance of the same comparison map, for example, 

xH,y H ~ ~ASIAy H 

(b) The comparison map is classically a weak equivalence. 
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(c) The G-spaces involved are G-CW-complexes. 

For this section we will use sVAx . By taking the smash product 

with the identity map of S V , we get a function 

sV: IX,Y] G > [sVAx, sVAy] G 

We wish to show that S V is a (I-i) correspondence under suitable 

conditions. We can follow the classical approach by introducing a fun- 

ction-space. Let ~V(z) be the space of pointed maps ~: S V ) Z ; 

we make G act on this function space by 

(g~) (s) = g(~(g-ls)) 

As in the classical case, it is sufficient to study the canonical map 

Y > ~V (sVAy) 

and prove that it is an n-equivalence for some suitable n . We choose 

our function n = n(H) so that it has the following properties. 

(3.1) For each subgroup H c G such that ~ > O we have 

n(H) -< 2 Hur(Y H) - 1 . 

(3.2) 

have 

For each pair of subgroups K c H c G such that V K > V H we 

n(H) -< Hur(yK) _ 1 . 

Theorem 3.3. Under these conditions, the map 

Y > ~V(sV^y) 

is an n-equivalence. It follows that the function 

sV: IX,Y] G > [sVAx, sVAy3 G 
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is onto if X is a G-CW-complex and dim (~) -< n (H) for each H ; 

it is a (i-i) correspondence if X is a G-CW-complex and 

dim (~) < n(H) - 1 for each H . 

The second sentence follows from the first by using (2.7), as in 

the ordinary case. 

For G = Z 2 the result is due to Bredon [4]. If I may count 

[4,6] as one paper, then this is the first paper in equivariant stable 

homotopy theory, and I think it may deserve more credit than it has 

received. To promote understanding of this subject, I recommend study 

of the special case G = Z 2 • 

It would have been good if the G-suspension theorem could have 

come next after [4,6]. The proof does contain ingredients which are 

additional to those well-known in the ordinary case, including, of 

course, the use of condition (3.2). The standard reference is Hauschild 

[14]; see also Namboodiri [29, Theorem 2.33. 

One use of the suspension theorem is to show that certain limits 

are attained. For this purpose we must decide what class of represent- 

ations to use when we suspend. For the moment we keep our options open; 

we suppose given some class of "allowable representations" of G , so 

that our class is closed under passage to sums and summands, and also 

under passage from any representation to an isomorphic one. We order 

the allowable representations, writing W > V if W ~ UeV for some 

U . Let X be a finite-dimensional G-CW-complex, and Y a G-space. 
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Theorem 3.4. 

for any allowable 

There exists an allowable W = W (X) 
o o 

W ~ W ° and any allowable V the map 

sV: [sWAx, sWAy] G > [sVAsWAx, sVAsWAy] G 

such that 

is a i-i) correspondence. Indeed, the map 

sV: [X ~ , sWAy] G • [sVAx ' , sVAsWAy] G 

is a I-i) correspondence for any subcomplex X' of sW^x or of any 

subdivision of sWAx . 

The final sentence about X' is intended to help with [8 p45]. 

The result will follow from Theorem 3.3, provided we can satisfy 

the following inequalities on the dimensions. 

(i) If for some H there is an allowable V with V H > 0 , 

then 

dim W H + dim X H ~ 2 dim W H - 2 

It is clear that if there is any allowable V with V H > 0 , then 

by putting sufficiently many copies of it into W we can increase 

dim w H till this inequality is satisfied; it then holds for all larger 

W . 

(ii) If for some K c H there is any allowable V with 

V K > V H , then 

dim W H + dim X H s dim W K - 2 

It is clear that if there is any allowable V with V K > V H , 

then by putting sufficiently many copies of it into W we can increase 

dim W K - dim W H till this inequality is satisfied; it then holds for 

all larger W . 

Of course, we have to satisfy inequalities of type (i) for a finite 

number of subgroups H , and inequalities of type (ii) for a finite number 

of pairs K c H , but we can satisfy all these conditions if W is 
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sufficiently large. This proves Theorem 3.4. 

§4. The G-analogue of the Spanier-Whitehead category. This section 

must review how the original approach to stable homotopy theory carries 

over to the equivariant case. 

We wish to pass to a limit and consider stable classes of maps. 

TO take a "limit" of groups we must supply a system of groups and homo- 

morphisms, or equivalently, a flmctor defined on some suitable category. 

We take the objects 

of our category C to be all "allowable" representations V of G 

(see 53); we take the morphisms f: V > W in C to be the R-linear 

G-maps which preserve inner products. (Such maps f are necessarily 

mono. ) 

Suppose given two G-spaces X, Y with base-points. To each object 

V of C we associate the set 

[sVAx, sVAy] G 

For any morphism i: V > W in C , we first use i to identify 

W with U@V , where U is the orthogonal complement of the image 

i(V) under the inner product. We now associate to i the following 

composite function. 

S U 
[sVAx, sVAy] G -- ) [sUAsVAx, sUAsVAy] G 

[sWAx, sWAy] G 

(Notice that we can identify sUAs V with S U@V and so with S W .) 

We get a functor from C to sets. 

Next we must check that this functor is such that we can take its 

limit. First we need to see that if U and V are objects in C , 

then there is an object in C which receives morphisms from both. 

This is immediate: it is enough to take USV . Secondly we need to see 
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that if f,g: U > V are two ~orphisms in C , then there is a further 

morphism h:V > W such that our functor assigns equal values to 

hf,hg . It is easy to reduce to the case in which f is an automorph- 

ism of V and g = 1 . One can see by counter-examples that it is not 

sufficient to take h = 1 ; that is, the composite 

f-i^l ~ f^l 
sVAx > sVAx > sVAy > sVAy 

need not be G-homotopic to 

ion of V as the second factor in VSV . Clearly we have 

hf = (lSf)h . But l$f is homotopic through G-isomorphisms to 

for example by 

Cost -Sint 1 

Sint Cost~ 

For f$1 we see that 

However, we take h to be the inject- 

f$1 , 

] ] I i O Cost Sint (o-<t-<½z) • 

O f -Sint Cost~ 

(f$1)h and h induce the same function 

[sVAx, sVAy] G > EsVSVAx, sV~VAy7 G 

This completes the checks. 

We may therefore pass to the limit, and define 

{X,Y} G = Lim [sVAx, sVAy] G 
> 

VeC 

This definition is due to Seqal [23]. Some of my correspondents 

would prefer to see the category C replaced by an equivalent small 

category before the limit is taken. In the applications X is finite- 

dimensional, and the limit is equivalent to taking the common value of 

IS V ^ X, S V ^ y]G fox all sufficiently large V - which is perfectly 

safe, however many V there are. 

To continue, composition of G-maps X > Y ~ Z is compatible 

with suspension, so it is clear how to define composition of stable maps 
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and make the sets {X,Y} G into the holn-sets of a category. 

The analogues of (2.4), (2.5) are as follows. 

Proposition 4.1. If dim ~ < dim W H for all H , then 

{S V, sW} G = O . 

Proposition 4.2. If dim (X H) ~ Hur (yH) - 1 for all H , 

then {X,Y} G = 0 . 

In fact, in each case one has to take a limit of sets which are 

all trivial, by (2.4) or (2.5) as the case may be. 

The definition of {X,Y} G given above clearly follows that of 

Spanier and Whitehead for the classical case. Therefore one can only 

expect it to be useful when X is finite-dimensional. In this case 

we expect the following result. 

Proposition 4.3. If X is a finite-dimensional G-CW-complex, 

then the limit {X,Y} G is attained by [sWAx, sWAy] G for all suffici- 

ently large W . 

This follows immediately from Theorem 3.4. 

For later use, we also need to assure ourselves that our category 

is really "stable",by verifying that a suitable "external" suspension 

is a (1-1) correspondence. For this purpose, suppose given two 

G-spaces X, Y and an allowable representation U . For each object 

V of C we have a function 

carrying 

[sVAx, sVAy] G 

f to f A 1 
U 

SusPv [sVAxAS U, sVAyAsU]G 

This function commutes with the maps of 

our direct system, and defines a function 
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{X,Y} G {XAS u, YAsU} G 

11 II 
[sVAx, sVAyJ G Lim [sVAxAS U, sVAY^sU~ G ) 

VcC 

Lemma 4.4. 

function 

If X is a finite-dimensional G-CW-complex then this 

Susp 
{X,Y} G ~ {XAS U, YAsU} G 

is a (I-i) correspondence. 

In fact, the functions SusPv whose limit is taken are (i-i) cor- 

respondences for all sufficiently large V , by Theorem 3.4. 

So far we have not said that our sets {X,Y} G are groups. To 

introduce addition one needs a suspension coordinate on which G acts 

trivially. From now on we assume that trivial representations are 

allowable; in this case the sets {X,Y} G become additive groups, and 

in fact the hom-sets of a preadditive category. 

In the applications it is important to have suitable finiteness 

theorems. 

Theorem 4.5. Suppose X is a finite G-CW-complex and Y is a 

G-space for which each fixed-point-set yH is an (ordinary) CW-complex 

with finitely many cells of each dimension. Then {X,Y} G 

generated abelian group. 

The crucial point is that this limit is attained by 

[sWAx, sW^y] G 

for some W , according to (4.3). It is fairly clear how to prove that 

this group is finitely-generated, by combining the methods indicated 

in §2 with standard finiteness theorems in the classical case. 

is a finitely- 
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§5. Theorems on changing ~roups. In the unstable case, it is useful 

to have results such as (2.2) which allow one to reduce suitable problems 

involving G to problems involving a smaller group. In the stable 

case, there are more such theorems which are useful; in this section we 

will consider them. 

First suppose given a homomorphism 8:G 1 > G 2 . For any G 2- 

space X , e*X will mean the same space considered as a Gl-space, 

with G 1 acting via @ . In particular, if V is a representation 

of G 2 , then @*V is a representation of G 1 We assume that if V 

is an "allowable" representation of G 2 , then @*V is an "allowable" 

representation of G 1 . The operation 8*V commutes with suspension, 

in the sense that 

0*(S V ^ X) = S e*V ^ e*X . 

Therefore 8" gives a functor from the G2-Spanier-Whitehead category 

to the Gi-Spanier-Whitehead category. Here the objects of the "G- 

Spanier-Whitehead category" are the finite G-CW-complexes; the hom-sets 

are the sets {X,Y} G introduced in §4. 

Until further notice, all representations are allowable. 

I will state four results about 8* before pausing to discuss 

them. To analyse 0" , it is reasonable to factor ~ through an epi- 

morphism and a monomorphism, and tackle the factors separately. So 

first, let i:H ~ G be the inclusion of a subgroup H in the group 

G ; let X run over the H-Spanier-Whitehead category and let Y run 

over the G-Spanier-Whitehead category. 

Theorem 5.1. There is a natural (i-i) correspondence 

{X, i'Y} H • > {(G~ P) ^H X, y}G . 

Theorem 5.2. There is a natural (i-i) correspondence 
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{i'Y, x}H < > {Y, (Gu P) ^H X}G 

Secondly, let j:G > G be the projection of G on a quotient 

group G , and let N = Ker j (The case most useful for the applicat- 

ions is that in which N = G and G = 1 ; but there seems to be no 

harm in looking for a natural level of generality.) We let X run 

over finite G-CW-complexes in which the subgroup N c G acts freely 

away from the base-point; more precisely, we let X run over the full 

subcategory of the G-Spanier-Whitehead category determined by these 

N-free objects. We let Y run over the G-Spanier-Whitehead category. 

Theorem 5.3. There is a natural (i-i) correspondence 

{X, j,y}G ~ > {X/N, Y}G . 

Theorem 5.4. There is a natural (i-i) correspondence 

{j'Y, x}G < > {Y, X/N} G 

Here X/N is of course the usual orbit space. 

I will discuss these four results before I proceed to necessary 

technical details. Theorem 5.1 is a simple analogue of (2.2), and is 

widely known. Given (5.1), (5.2) says that the forgetful functor from 

the G-stable world to the H-stable world has a right adjoint which 

coincides with its known left adjoint. I first heard this principle 

from L.G. Lewis; of course his "stable worlds" were worlds of spectra, 

which makes for a better theorem. In that form, the result is to 

,i • appear in [181. That work uses the name Wlrthmuller isomorphism", 

thus giving credit to Wirthmuller for the result from which the authors 

started; it was only slightly less general than theirs, but I accept 

that it is more illuminating to state the result in the form I have 

quoted from Lewis. 
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I turn to motivation for (5.3). In the Atiyah-Seqal theorem [2] 

one wishes to know that the ordinary K-theory of the classifying space 

BG coincides with the equivariant K-theory of the corresponding total 

space EG . In studying Segal's Burnside Ring Conjecture, one wishes 

similarly to know that the ordinary cohomotopy of BG coincides with 

the equivariant cohomotopy of EG . In suitable notation this reads 

EG~P 
{EG~P, s°}G~ . {--, S°} l 

G 

This is an instance of (5.3) (with N = G , G = i) except that (5.3) 

only gives the result for finite approximations to EG , BG ; the 

result for EG requires the analogue of (5.3) for spectra, unless you 

pass to limits from the result for finite approximations. Such results 

are probably widely known to those who have started work on Segal's 

conjecture; after (5.1), I regard (5.3) as the second easiest of the 

four. 

Theorem 5.4 is necessary to maintain symmetry, as well as being 

needed for applications later. I am grateful to L.G. Lewis and 

J.P. May for letters, to which I owe the case N = G , G = 1 (for 

the world of spectra). 

Theorems 5.3 and 5.4 are not as satisfactory as (5.1) and (5.2); 

(5.1) and (5.2) each give an honest pair of adjoint functors, but (5.3) 

and (5.4) do not. (In (5.3) and (5.4) X is restricted to be N-free, 

but j*Y cannot be N-free except in trivial cases.) One might like 

to see the statements of (5.3) and (5.4) improved in some way; I am 

open to suggestions. 

In the rest of this section I will begin by giving some necessary 

technical details to complete the statements of (5.1) - (5.4), and 

continue with the proofs. The reader should consider skipping to §6. 

The main technical detail concerns the sense in which (GuP) ^H X 

is functorial for stable H-maps of X rather than for unstable maps, 
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and similarly for X/N . The careful reader should not take this for 

granted. 

First suppose given a stable H-map ~: X 1 > X 2 Since repre- 

sentations of the form i*V are cofinal among representations of H , 

we may suppose given a representative H-map 

f: S i*v ^ X 1 ~ S i*v A X 2 • 

We now define the stable G-map 

1 A H ~: (GuP) AH Xl > (G''P) A H X 2 

to be the class of the following composite. 

-i £ 

S V ^ ((GuP) A H X I) > (GuP) ^H 

S v ^ ((GuP) A H X 2 ) < (GuP) ^H 

(S i*V ^ X I) 

A X2) 

Here the G-homeomorphism 

S v (G,,P) ^H (si*V A X) ~ A ((GuP) ^H X) 

is given by 

£(g, (s, x)) : (gs, (g, x)) 

Of course we have to check that the result depends only on ~ , and 

that (Gu P) AH X becomes a functor as stated. 

We now wish to copy this procedure for X/N ; the difficulty is 

that representations of the form j*W are not cofinal among represent- 

ations of G . We need the following crucial result. 

Proposition 5.5. If X is N-free away from the base-point, then 

{X, y}G as defined allowing suspensions of the form S j*W , only, 

agrees with {X, y}G as defined using all suspensions S V 
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Proof. Let me begin by fine-tuning some results I explained 

earlier. In the "theorem of J.H.C. Whitehead", Proposition 2.7, we do 

not really need the assumption that all the cells of W H are of 

~mension ~ n(H)-i ; it is sufficient if all G-cells of W of the form 

(G/H) × E TM have m ~ n(H)-I . The same applies to any deduction from 

(2.7), including the G-suspension theorem, Theorem 3.3. These remarks 

are due to U. Namboodiri [28,293. 

Our object is now to show that the map 

S V 
IS j*W A X, sJ*W ^ y]G ) IS V A S j*w ^ X, S V A S j*w ^ yl G 

is iso for all V if the representation W of G is sufficiently 

large (depending on X) Here S j*W . ^ X is also N-free away from the 

base-point. Therefore it can have cells (G/H) × E m only if 

N m H = 1 So it will be sufficient to impose a suitable bound on the 

dimension of (S j*w ^ X) H just for those subgroups H which satisfy 

N n H = 1 . We now wish to satisfy the following inequalities on the 

dimensions. 

(i) If H is a subgroup with N n H = i then 

dim (j'W) H + dim X H ~ 2 dim (j'W) H - 2 . 

We can satisfy this condition by putting sufficiently many copies 

of the trivial representation into W . 

(ii) If K c H is a pair of subgroups such that N n H = 1 

and ~ > ~ for some representation V , then 

dim (j'W) H + dim ~ ~ dim (j'W) K - 2 

If ~ > V H for some V then we must have K < H . If 

N n H = 1 then the images of K, H in G satisfy K < H . Therefore 

there is a representation U of G for which ~ > U ~ (for example, 

the permutation representation on the cosets of K). We can satisfy 

the condition by putting sufficiently many copies of U into W . 
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Of course, we have to satisfy inequalities of type (i) for a finite 

number of subgroups H , and inequalities of type (ii) for a finite 

number of pairs K c H , but we can satisfy all these conditions if 

W is sufficiently large. This proves (5.5). 

We can now return to the task of making X/N functorial for stable 

G-maps of X . According to (5.5), any stable G-map ~: X 1 > X 2 

has a representative of the form 

f: S j*W ^ X 1 > S j*W ^ X 2 

We now define the stable G-map ~: XI/N 

the following composite. 

S W ^ XI/N 

S W ^ X2/N 

> X2/N to be the class of 

> sj *W ^ X1 

N 

S j*W ^ X 2 

N 

(Here the G-homeomorphisms of spaces are the obvious ones.) We have 

to check that the result depends only on # , and that X/N becomes 

a functor as stated, but these points are trivial. 

This completes the technical details needed to explain (5.1)-(5.4). 

In what follows we will omit the symbols i*, j* which show 

which groups are supposed to be acting on a given space; it is always 

easy to work out which groups are supposed to be acting, and these sym- 

bols only complicate the notation. 

Proof of Theorem 5.1. The (i-i) correspondence is induced by 

the same two maps that serve in the unstable category. These are the 

H-map 
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X ~ (G~ P) AH X 

given by ~ (x) = (l,x) , and the G-map 

Y 
(G~P) ^H Y " ~ Y 

given by y (g,y) = gy . These maps make the following diagrams commute. 

sV~ 

S v ^ X • S V A ((G u P) AH X) 

(G, 'P)  ^H (sV ^ X) 

sVy 

S v ^ ((Gu P) ^H Y) > SV ^ Y 

(Gu P) ^H (sV ^ Y) 

It follows that ~ is natural, not only for unstable H-maps of X , 

but also for stable H-maps of X ; similarly, y is natural, not only 

for unstable G-maps of Y, but also for stable G-maps of Y . There- 

fore these maps induce natural transformations in the usual way. 

These two natural transformations are inverse because the composites 

y 
Y ~ (G u P) ^H Y > Y 

IAH~ Y 
(G W P) AH X ~ (Gu P) ^H (G U p) AH X > (G u P) ^H X 

are already identity maps unstably. 

Proof of Theorem 5.2. I have given the proof of (5.1) in the form 

above so that I can transcribe it by using arrow-reversing duality. 

First we shall need a stable H-map 
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(GuP) ^H X ) X • 

This comes as an unstable map; we set 

(h, x) = hx 

(g, x) = x O if g / H , 

where x 
o 

is the base-point. We shall also need a stable G-map 

Y 
(G u P) ^H Y ' 

and this we now construct. 

First choose an embedding G/H ~ W of G/H in a representat- 

ion W of G . For definiteness, we may take W to be a permutation 

representation, with the elements of G/H as an orthonormal base. Next 

choose an open equivariant tubular neighbourhood N of G/H in W ; 

for definiteness, we may take the discs of radius 1/2 around the points 

of G/H . Consider the quotient map of S W = Wu~ in which we identify 

to a point the complement of N ; we obtain a G-map 

: S w > S w A (G/H ~ P) 

This map B is fixed once for all and does not depend on Y . 

Given B , we define ¥ to be the following composite. 

~AI 
S W ^ Y > S W A (G/H ~ P) A y 

S w ^ ( (G ~ P) AH Y) 

Here the G-homeomorphism 

(GuP) A H Y > (G/Hu P) A y 

is defined by 
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(g, Y) = (g, gY) 

as in (2.3). 

The properties of the maps ~ and 7 are as follows. 

Lemma 5.6 (i) The following diagram is commutative. 

sV~ 

S v A ((G uP) A H X) ) S v A X 

(GuP) nH (SVA X) 

(ii) The following diagram is commutative. 

S W A S V ^ y ) S W A S V ^ (GuP) ^H Y 

I^6 

S w ^ ( ( G ~ P )  ^H (SV ^ ¥) )  

(iii) The composite 

Y ) (GuP) ^H Y > Y 

is the identity as a stable H-map. 

(iv) The composite 

Y 
(GuP) AH X ) (GuP) A H 

IAH~ 
(GuP) A H X ) (GuP) A H X 

is the identity as a stable G-map. 

In part (ii), the G-map sVy is obtained by suspending 

Y 
S W A Y ) sWm ((GuP) AH Y) 

according to the inclusion W > W • V . 

Assuming Lemma 5.6, we can complete the proof of Theorem 5.2 as 
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follows. The map ~ is clearly natural for unstable H-maps of X ; 

using (5.6) (i), we see that ~ is natural for stable H-maps of X , 

just as in the proof of (5.1). Similarly, the map y is natural for 

unstable G-maps of Y ; using (5.6) (ii), and taking a little more care 

that we are really following the definitions laid down in §4, we see 

that y is natural for stable G-maps of Y . Now we follow the stand- 

ard routine for adjoint functors. The transformation 

{Y, X} H 

carries a stable H-map 

to the composite 

Y 

The transformation 

> {Y, (GuP) ^H x}G 

f 
Y )X 

iAHf 
(GuP) ^H Y ) (G,,P) ^H X . 

{Y, (Gin P) ^H X}G ) {Y' x}H 

carries a stable G-map 

f 
> (G u P) ^H X 

to the composite 

f 
Y > (G u P) A H X > X • 

These transformations are inverse by (5.6) (iii), (iv). 

Proof of Lemma 5.6. It is straightforward to verify parts (i) 

and (ii) from the definitions. 

To prove part (iii), we introduce the map 

~: (G/H)u P > S ° 
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which carries g to the base-point if g ~ H , to the non-base-point 

if g { H . We check that the composite 

iA~ 
S V > S V ^ ((G/H)~ P) - > S V 

is H-homotopic to the identity, and that the diagram 

~^i 
((G/H)u P) ^ Y --~ Y 

/ 

( G ~  P) ^H Y 

i s  s t r i c t l y  c o m m u t a t i v e .  T he  r e s u l t  f o l l o w s  b y  c o m b i n i n g  t h e s e  f a c t s .  

To prove part (iv), we first note an associative law. Suppose 

H acts on the right of A A B by acting on the right of B . Then 

the identity map of A A B A C passes to the quotient to give an 

identification 

(A A B) A H C ~ > A A (B ^H C) 

Up to this identification, the map 

sW h (G/H~ P) ^ (GuP) ^H X 

S W A (G u P )  ^H ( G u l P )  A H X 

I I^ I AHOY. 
S W ^ (G ~P) ^H X 

which occurs in (iv) may be written as 

(G/H uP) ^ (GuP) 

1 A 6 A 1 x , where 

6 
(G u P) 

carries (gl' g2 ) to g2 if gl H = g2 H , to the base-point otherwise. 
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It is now sufficient to check that the composite 

S w A (G,,P) 

I ~^l 
sW A (G/H~P) A (GuP) 

i i^% 
s w ^ (G ~4 P) 

is equivariantly homotopic to the identity, where the word "equivariant" 

means that we preserve both the actions of G on the left of these 

spaces and the action of H on the right. 

In this composite, the map 8 A 1 may be regarded as the map of 

(S W x G)/(~ × G) which collapses to a point the complement of a tubular 

neighbourhood of G/H x G . To apply 1 A 6 we replace the relevant 

parts of this map by parts which map to the base-point; we thus obtain 

the map which collapses to a point the complement of a tubular neigh- 

bourhood of G , embedded via g I > (g H, g) Clearly this embedd- 

ing is homotopic to the zero cross-section by a linear homotopy 

g I ) (tgH, g) (o ~ t ~ i) In this way we obtain a homotopy with 

the required equivariance property. This completes the proof of 

Lemma 5.6, and so finishes the proof of Theorem 5.2. 

Proof of Theorem 5.3. In (5.3) and (5.4) we do not have an honest 

adjunction, and we can only expect to construct a natural transformat- 

ion in one direction. In (5.3), the transformation is induced by an 

unstable G-map, namely the quotient map 

q 
x > X/N . 

For spaces it is trivial that the induced map 
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fixed by N must factor through S W ^ X/N . 

representation of G .) 
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Is W ^ X/N, S W ^ Y]G q*) IS W ^ X, S w ^ y]G 

(i-i) correspondence, because every G-map of S W ^ X into a space 

(Here W is of course a 

Passing to limits, we see that 

Lira [S W ^ X/N, S W ^ Y]G q*~ Lira IS W ^ X, S w ^ y]G 
W ~ W 

is a (i-i) correspondence. The left-hand side is {X/N, Y}G , and 

the right-hand side is {X, y}G by Proposition 5.5. This proves Theorem 

5.3. 

Proof of Theorem 5.4. We shall construct for each finite G-CW- 

complex X on which N acts freely away from the base-point a stable 

G-map 

tr X £ {X/N, X} G 

with suitable properties. We shall then use this map to induce a natural 

trans formation 

{X, X/N} o ) {Y, X} s . 

The map tr x is a "transfer" corresponding to the "covering" 

X ) X/N . (I write "covering" because it fails to be an honest cover- 

ing at the base-point.) 

To construct tr X , we first replace X by an equivalent G-CW- 

complex if that is thought to ease the next step. We choose a G-ea~bed- 

din g 
(e,q) 

X ~V × X/N 

\ /  
X./N 
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of the quotient map q: X > X/N in the projection z of a trivial 

vector-bundle, whose fibre V is of course a representation of G . 

We also choose a G-invariant function e: X ) R which is continuous, 

zero at the base-point and positive elsewhere, so that as x runs over 

X the points (v, qx) ~ V × X/N with II v - e(x) II ~ e (x) make up 

a "tubular neighbourhood" N(X) of X , which is just like an ordinary 

tubular neighbourhood except that its radius tends to zero as x appro- 

aches the base-point. For example, one may choose 

1 
(x) = ~ Fin II e(nx) - e(x) II 

n£N 

We now perform the usual "Pontryagin-Thom" construction, and collapse 

the complement of the open tubular neighbourhood N(X) to the base- 

point. We obtain a G-map 

tr x : S V ^ (X/N) ~ S V A X • 

Here we get S V A X rather than (S V × X)/(~ × X) precisely because 

the radius of the tubular neighbourhood goes to zero at the base-point. 

Lemma ~.7. The class tr x ~ {X/N, X} G is independent of the 

choices made in its construction, and natural for unstable G-maps of 

X . 

Proof. It is more or less clear that the choice of e affects 

the result only up to a G-homotopy, so it remains to discuss the depen- 

dence on V and on the embedding. We handle this together with the 

proof that tr x is natural for (unstable) G-maps. 

Suppose then that we are given a G-map f: X 1 > X 2 and embed- 

dings 
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(el,q I ) 
X 1 ) V 1 x XI/N 

Xl/'N 

yielding G-maps 

(e2,q 2 ) 
X 2 > V2 x X2/N 

X2/~ 

V 1 V 1 
tr I : S A XI/N > S A X 1 

V 2 V 2 
tr 2 : S ^ X2/N > S ^ X 2 

Then we can embed both embeddings in an embedding 

(e3,q 3) 
X 3 ) V 3 × X3/N 

\ 5  
X3/N 

in which X 3 is the mapping-cylinder of f and the injections 

X 1 > X 3 , X 2 > X 3 are the usual ones. For example, we can take 

V 3 = V 1 × V 2 and 

e 3 (t, x I) = 

e3(x 2 ) = 

(l-t) e l(x I) , te 2(fx I)) 

(O , e 2 (x 2) ) 

Performing the same construction on this embedding, we get the follow- 
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ing diagram. 

sV3 
A X 1 

S 

S BIV' tf 

V 3 
S 

V 3 
S 

/ 
^ XI/N 

sV3f 
V 3 

~S 

/ 
A X 3 

A X3/N 

sV3~ 

k 
V 3 

• S 

^ X 2 

A X2/N 

This proves Lemma 5.7. 

We now wish to show that tr x has suitable properties for suspen- 

sion, and of course our discussion is modelled on (5.6) (ii). Suppose 

given an embedding 

(e,, £,] 
X 1 > V × X I/N 

XI/N 

leading to the G-map 

S V tr I : A (Xl/N) > S V A X 1 

Suppose given also a representation W of G = G/N 

the map tr 2 for the space X 2 = S WAX 1 

We wish to obtain 

/.,emma 5.8. There is a choice of tr 2 which makes the following 

diagram G-homo topy- commut at i ve. 
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sWtrl sV S W 
S V A S W A X]/N ) A A X 1 

: / 
S W ^ X1 / 

S V ^ 
N 

As in (5.6) (ii), the G-map sWtrl is obtained by suspending 

tr I according to the inclusion V > V@W . 

Proof. Let us decompose S W into the hemisphere E (W) o given 

by II w [I -< 1 and the hemisphere E(W)~ given by II w II -> 1 . 

Let us choose a real-valued function q (w) on S W which is continuous, 

G-invariant, O at 

for example, we may take 

and positive elsewhere, and 1 on E (W) ; 
o 

n (w) - 

II w II 
on E (W)~ 

Then we can construct an embedding 

for X 2 = S W A X , 

(e2,q 2 ) 
X 2 • V x (X2/N) 

X2/N 

by taking 

e 2 (w, x) = ~ (w) e l(x) 

The map tr 2 is given by the corresponding collapsing map, and may be 

described as follows. For each point w e E(W) o we get a copy of 
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tr I : S V ^ (Xl/N) > S v A X 1 . 

Over E (W) ~ we get some map 

S v A E(W)~ A (XI/N) > S v A E(W)~ A X 1 , 

but these spaces are G-contractible and so it does not matter what the 

map is; our map tr 2 is G-homotopic to sWtrl . This proves Lermma 5.8. 

Corollary 5.9. tr x is natural for G-stable maps of X . 

Given (5.5), this follows formally from (5.7) and (5.8). The 

argument is the same as that for y in the proof of (5.2). 

We now wish to know how tr x behaves when X is an N-free G- 

sphere (G/H~ P) ^ S n . The condition for this G-sphere to be N-free 

is N n H = 1 ; that is, H maps isomorphically to a subgroup H of 

. With X = (G/H ~P) A S n we have X/N = (G/HuP) A S n 

We first consider the case n = O . We choose an embedding 

X = G/Hu P > V x (G/H~p) 

\ /  
G/H u P 

from which to construct tr X Since X is discrete, the tubular 

neighbourhood will consist of a set of discs centred at the points of 

G/H . 

Lemma 5.10. 

the diagram 

If el and ~2 are as in the proof of (5.2) then 

tr X 

sV~ (G/H~ P) ~ S v A (G/HuP) 

S V 
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is H-homotopy commutative. 

Recall that ~i is only an H-map and °'2 is only an H-map. 

Proof. tr X is given by the usual collapsing map. To apply 

sVe2 , we must change our map to the base-point on all discs except 

that centred on the coset H/H . The result maps S v x g ~ to the 

base-point unless g H is the coset H ; then we get a map of S V 

which is H-homotopic to the identity. After this homotopy we reach 

sV~ 1 . 

Corollary 5.11. If X = (G/Hu P) ^ S n then the diagram 

tr X 

sV ^ (G/HuP) ^ S n 

S V ^ S n 

> S V ^ (G/H u P) ^ S n 

is H-homotopy-cormnutative. 

Proof. Apply the trivial suspension S n to (5.10). 

Corollary 5.12. The natural transformation 

{Y, X/N} ~ > {Y, X} G 

induced by tr x is iso when X = (G/Hu P) ^ S n 
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Proof. Consider the following diagram. 

{Y, (G/H ~ P) ^ sn} ~ > {Y, (G/H ,, P) ^ sn} G 

{y, sn}H4 > {Y, sn} H 

Here the vertical arrows come from Theorem 5.2, and the lower horizontal 

isomorphism comes because H is isomorphic to H . Corollary 5.11 

shows that the diagram is commutative, and the result follows. 

Corollary 5.13. The natural transformation 

{Y, X/N} ~ ~ {Y, X} G 

induced by tr x is iso whenever X can be built up by the successive 

attachment of cones on G-spheres (G/Hu P) ^ S n with N n H = 1 

This follows from (5.12) by an obvious induction over the number 

of cones, using the five lemma. 

Unfortunately, not every finite G-CW-complex can be built up by 

the successive attachment of cones on G-spheres (think of a finite 

approximation to EGuP) ; this is one of the well-known snags of the 

subject. However, a single trivial suspension S 1 is sufficient to 

turn any finite G-CW-complex into one which can be constructed in this 

way. Thus the natural tranformation 
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{Y ^ sl x ^ sl}~ ' N > {Y A S I, X A SI} G 

is iso. 

(5.4 

However, the whole result commutes with S 
1 

, so this proves 

§6. Groups ~raded over the representation ring RO(G). In this section 

we will consider the question of theories graded over RO(G) 

Lately I've noticed authors writing sentences of the following 

general form. "Write ~cRO(G) in the form e=V-W ; then we define 

{X, y}G = {S V A X, S W A y}G ,, 

If you catch anyone writing a sentence like that, make a note that you 

do not trust his critical faculties. The sentence in quotes is not 

sufficient. It implies that it is possible to verify that the result 

obtained depends only on e and does not depend on the choice of V 

and W ; but it is not possible to verify this. Tn fact, suppose that 

is the class of a representation, and that at one point the author 

wishes to use a representation V , and suppose (as is likely) that 

at another point he wishes to use a different but isomorphic represent- 

! N , 

ation V Then he must choose an isomorphism V V to use in 

identifying {S v A •, y}G with {S v A X, y}G ; and he must say 

which, for if he chooses a different one it will change his identificat- 

ion by an invertible element of the coefficient ring {S ° , S°} G 

If he doesn't say which, then he doesn't know what he is doing and 

nor do we. 
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I will list three options suggested for overcoming this difficulty. 

(i) Retreat to a notation which displays V and W explicitly. 

(ii) Follow the classical precedent. A graded group such as 

nn(X) is not defined by allowing the use of any old vector space of 

dimension n ; it is defined by using the specific space R n which 

is under our control. This suggestion, then, involves an initial choice 

of preferred representatives. Presumably one begins by choosing one 

specific irreducible representation in each isomorphism class of irre- 

ducible representations. 

(iii) "It may appear that {X,Y}~ is intended to be a function 

assigns to each ~ ~ RO(G) a group {X,Y}~ Indeed, for purposes which 

of planning strategy I like to think of it that way, and I hope you will 

do the same. But for purposes of rigourous proof, I suggest that 

{X,Y}~ is a functor, which assigns a group to each object of some 

godawful category, and assigns to each morphism in that category a dif- 

ferent way of identifying the groups in question". 

The merit of (i) is that it is manifestly honest. The drawback 

is that it does not succeed in justifying notation such as {X,Y}~ , 

which might be convenient. 

The drawback of (ii) is that it may involve unattractive technical- 

ities. Nevertheless, this is probably the best way if anyone seriously 

needs notation graded over RO(G) 

Mathematically, (iii) is indistinguishable from (i). Linguistic- 

ally, notation with very strong associations, which are totally differ- 

ent from its declared logical meaning, is misleading notation. I suggest 

we should use misleading notation only when we wish to mislead, for 

example, on April ist. Since mathematicians do not normally intend to 

deceive, misleading notation is especially dangerous to authors capable 

of self-deception. 

Now I will turn to the published record. Bredon's work [4,6] 
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involves homotopy groups which clearly need to be indexed over RO(G) 

for G = Z 2 , and it is rigourous by option (ii) because it starts from 

the two actions of Z 2 on the reals. Notation graded over RO(G) , 

and the difficulty above, goes back to [23 p60]. Those who read German 

already possessed the means of implementing option (ii), because the 

work of tom Dieck [9,101 explicitly says that you choose actual repre- 

sentations, not isomorphism classes. When those who read German started 

to want to use notation graded over RO(G) , they remembered this 

[25 p373]; but they forgot it as soon as they could. 

Next I point out that questions may arise which need checking from 

the definitions. I thank J.P. May for drawing my attention to the 

point which follows. 

Authors who write about generalised cohomology theories commonly 

assume that for each ~ e RO(G) and each X there is given a group 

H~(X) (So, whatever else they are doing, they are not following option 

(iii).) Such a cohomology theory should come provided with suspension 

isomorphisms 

v ~ ~+[v] o : (X) > (sVAx) 

where IV] is the class of V in RO(G) Clearly, ~+[V]+[W] is 

logically the same element of RO(G) as ~+[W]+[V] , and apart from an 

V W V~W 
axiom saying 0 o = ~ , we need an axiom about a diagram of the 

following form. 

~V 

~ (x) > fi~+[v] (sVAx) 

0 W H~+[V]+[W](sWAsVAx) 

oV ~ (~^I). 

H~+[W](sWAx) > ~+[W]+[V](sVAsWAx) 

T 
Here sWAs V > sVAs W is of course the switch map. In the ordinary 
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case this diagram only commutes up to a sign (-i) pq ; in the equivar- 

iant case, it has to commute up to an invertible element of the coeff- 

icient ring {S ° , S°} G , and we must be told which. For example, if 

W V V W 
V = W , then the composite o ~ is logically the same as ~ ~ , and 

the required element is the class of Y . 

the map 

Now T can be replaced by 

Let us write 

(+I) @ (-i): V @ V > V ¢ V . 

g(V) e {S °, S°} G for the element represented by 

(-i): Vu (~) > Vu(~) ; 

then the answer in this case must be g(V) It can be shown by example 

that this element may be different both from +i and from -i (take 

G = Z 2 and take V to be the non-trivial action on the reals). 

If any author on this subject had wished to inspire confidence, 

he should have faced this problem and not tried to skirt it. The answer 

I would like to see is 

s(p) <p,V> <p,W> 

P 

here the product runs over irreducibles p , and <p,V>, <p,W> are the 

multiplicities of p in V,W respectively. 

Of course, the correctness of such an answer, for some well-defined 

function H~ of ~ e RO(G) , can only be proved by checking from the 

definition. However, the inconsistency of certain other answers can be 

proved without. 

I now invite the reader to try to audit works such as [ ] and 

[ 3, and try to determine whether their statements are checked from 

definitions. In my opinion, uncritical use of RO(G)-gradings is likely 

to lead to treatments which cannot be accepted as satisfactory. 

The relevance of all this is as follows. Carlsson's preprint [83 

uses groups gra~ed over RO(G) It is suggested by Caruso and May that 
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it might be profitable to rewrite more of Carlsson's proof as an exercise 

in RO(G)-graded generalised homology and cohomology. Of course, Caruso 

and May provide a rigourous foundation for the small use of RO(G)- 

grading they propose. However, we must also consider RO(G)-gradings 

elsewhere in the subject. 

At this point I should perhaps point out one other thing well 

known to the experts, as follows. This is going to be a splendid sub- 

ject, but we need to cure it of a certain tendency to minor sloppiness. 

Question 6.1. Hey~ Wouldn't it be better to deal with that in 

private? 

Answer. I did try, but things seem to have gone too far. Only 

the other day one of my graduate students brought me his work, and when 

I checked the main reference, I found it was open to the objections I 

have explained; and this was from a source I had not previously regarded 

as suspect. (I wouldn't mind if the only results affected were either 

(a) so easy that anyone can prove them correctly, or (b) so dull that 

nobody would ever quote them. But as a defence of mathematical work, 

"de minimis non curat lex" is less popular than it might be.) 

Now, I earnestly desire that if there are going to be theorems in 

this subject, then this subject should fall in with the rest of topology, 

and get itself written so that innocent graduate students can tell, 

without extravagantly much work, what is rigourously proved and what 

is not. It was so in 1972, why not now? 

Question 6.2. But surely anyone can make a mistake? 

Answer. Yes, of course, anyone can make a mistake. And anyone 

can put it right, by publishing some correction or addition to his 

work. But you want to do it before twenty other people have followed 

you into the same pitfall. After seven years, the way things move now, 

your paper is up for the judgement of history. 
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Question 6.3. But isn't it dangerous to make such sweeping gener- 

alizations? You will have all manner of upright citizens pressing you 

to publish the statement that you intended no slur on their care, 

rigour or professional standards. 

Answer. (a) Everyone knows I don't mean [13] or [183. The pro- 

portion of papers in this subject which are wholly satisfactory is well 

above the proportion of righteous men for which the Lord would have 

spared Sodoal [303. (b) I've tried lectures which don't name names and 

I've tried drafts which do name names, and nothing will please everyone. 

I have consulted older and wiser men, and I am moved to preach a 

sermon to this subject. So, if such of my friends as have favourite 

pieces of minor sloppiness will please put them down and walk quietly 

away from them, I will begin. 

I earnestly desire that people should not copy out of previous 

papers without pausing to think whether the passages to be copied make 

sense. And when we write a sentence which implies that one checks A 

and B, then we shall take scrap paper and check A and B - from the 

definitions. And for those of us who have the care of graduate students, 

I recommend that we give them critical faculties first and their Ph.D.'s 

afterwards. Here ends my sermon. 

§7. G-spectra. In the classical case, the advantage of doing stable 

homotopy theory in a category of spectra are by now well understood. 

In this section we will consider very briefly the corresponding equiv- 

ariant theory. 

G-spectra were introduced by tom Dieck in [9,10]; the published 

account, [12], is less explicit. However, tom Dieck introduced G-spectra 

merely in order to obtain the associated generalised cohomology theories; 

he did not treat them as a category in which to do equivariant stable 

homotopy theory. 

A good category of G-spectra exists [18,19]. "Just as the non- 
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equivariant stable category is "Boardman's category", and is still 

Boardman's category no matter whose construction one actually quotes, 

so the equivariant stable category is that of Lewis and May". One can 

have confidence that the work of these authors will be careful, accurate 

and reliable, and we may hope that it will appear soon. 

I need to draw attention to only one snag, and to explain it I 

must make some preliminary remarks. 

For G-spaces X we have fixed-point subspaces ~ and we know 

what they do under suspension; we have 

(sV A x) H = (S VH) ^ X H 

Therefore, passage to fixed-point subspaces defines a functor, say T , 

from the G-Spanier-Whitehead category of §4 to the N(H)/H-Spanier- 

Whitehead category, where N(H) is the normaliser of H in G . 

Any good category of G-spectra must contain the G-Spanier- 

Whitehead category embedded in it as a full subcategory. In particular, 

the category of Lewis and May does so. Similarly, the category of 

N(H)/H-spectra must contain the N(H)/H-Spanier-Whitehead category. 

We can now consider the following conditions on a hypothetical 

functor U from G-spectra (whatever they are) to N(H)/H-spectra 

(whatever they are). 

(7.1). U extends the functor T defined above. 

(7.2). U permits one to carry over to spectra the result (2.6) 

for spaces, say in the form of a (i-I) correspondence 

{(G/HuP) ^ S n, y}G ~ (u(Y)) 
n 

(whatever ~ is ) . 
n 

The snag is that these two conditions are inconsistent; you cannot 

have both and so you must choose. 
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Lewis and May attach great importance to (7.2). "Since the reduct- 

ion of equivariant problems to non-equivariant ones by passage to fixed- 

point spaces is probably the most basic tool in equivariant homotopy 

theory, it is clearly desirable" to carry over that tool from spaces to 

spectra. I freely concede the great mathematical interest of the objects 

U(Y) which Lewis and May construct and call fixed-point spectra. Lewis 

and May argue further that, to avoid confusion, it would be highly 

undesirable for anyone to try to attach the name "fixed-points" to a 

functor U satisfying (7.1). 

The relevance of this is as follows. Carlsson, in his preprint 

[83 p9, says that he will work in a category of G-spectra, and specific- 

ally in the category of [183. If so, then by [83 p44 he wants a functor 

U with the property (7.1) and he has little or no interest in (7.2). 

Now, this seems to me a most reasonable request; I see no reason on 

earth why Carlsson should not have a functor with the property (7.1), 

and in the first draft of this section I constructed him one. 

The reason I have cut this section since the first draft is that 

it now appears that most of Carlsson's proof can be done without G- 

spectra. 

§8. Equivariant S-duality. In this section we will study the equiv- 

ariant analogue of ordinary Spanier-Whitehead duality. 

In the classical case, there are two standard approaches. In the 

first, which was historically prior, you suppose given a finite complex 

X . You choose a good embedding of X in the sphere S n+l , and the 

complement gives the S-dual of X , up to a shift of n dimensions. 

In the second, one works not with embeddings, but with structure maps 
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X* ^ X ) S n . The standard reference is to Spanier's exercises 

[24 pp 462-4633. Both approaches carry over to the equivariant case. 

Of course, in the first, you embed in a sphere with G-action, and in the 

second, you map to a sphere with G-action. Both approaches have all 

the good properties a reasonable man would expect. 
11 

The standard reference is to Wirthmuller [26], who implements the 

second approach. [263 was a paper worth writing properly. It is written 

in RO (G) -graded notation; and at the time it was written, there was no 

adequate rigourization of RO(G)-graded notation in print so far as I 

know. Wirthmuller might have written one; alternatively, he might have 

used different notation. If he had done either, [263 could have been a 

splendid paper. As it is, I report that it can clearly be rewritten 

so as to become completely satisfactory. 

For the embedding method, I thank J.P. May for recommending a 

reference to Section 3 of [27]. 

I will begin by summarising some basic material on G-S-duality. 

Question 8.1. We need to begin with the duals of cells and spheres. 

What is the G-S-dual of (G/H) ~.P ? 

Answer. It is (G/H),, P again. For example, you can embed 

(G/H) ~ P in the sphere corresponding to the permutation representation 

of G on the elements of G/H ; then the complement is (up to G-equiv- 

alence) a wedge, indexed by G/H , of copies of the reduced permutation 

repre sen tation. 

If you wish to avoid the embedding method, I suggest that you rely 

on (5.1) and (5.2) for the following natural (i-i) correspondences. 

{(G/H,.P) ^ X, y}G 

~ {X, y}H 

• {X, (G/H~ P) ^ y}G 
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One has to remember that this answer needs modification when G 

is a compact Lie group. See [26 p 428]. 

Should we expect G-S-duality to have good behaviour Question 8.2. 

on cofiberings? 

Answer. Yes. Of course, both query and answer beg the question 

of what we mean by "good behaviour", but we mean, "the same behaviour 

as for G = i " 

With the method of embedding in spheres, it is almost clear that 

the dual of a Mayer-Vietoris diagram 

X n Y 

X 

X u Y 

is another Mayer-Vietoris diagram 

X* 

X* u Y* X* n Y* • 

Now take Y 

dual of a cofibre diagram 

(and therefore Y*) stably G-contractible; we see that the 

f i 
A > X .> X uf CA = B 

is another cofibre diagram 

X* CB*< 
ui, 

f* i* 
X* < B* . 

With the Spanier approach, it's one of the lemmas which have to be 

proved before the method works. See [26 p 429]. 

I thank J.P. May for pointing out that if you want a cofibering 
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to include all three relevant maps, then on a suitably precise definit- 

ion, the statement "the S-dual of a cofibering is a cofibering" is act- 

ually false if you worry about signs - there is a sign which won't go 

away. But this is just the same as in the classical case. 

Question 8.3. Should we expect G-S-duality to have good behaviour 

under the forgetful functor i* , under j* and under passage to fixed- 

point sets? 

Answer. Yes. Suppose given a homomorphism 8: G 1 > G , and 

suppose you can embed G-spaces X, X* in a G-sphere S . Then you can 

apply 8" and regard them as Gl-spaces @*X , @*X* embedded in the 

Gl-sphere 8"S . Similarly, you can pass to fixed-point sets and obtain 

, (X*) H embedded in S H 

With the Spanier approach, you start from a structure map 

X* ^ X > S and you can again apply 8* or pass to fixed-point sets. 

See [26 p 427, p 4313. 

We turn to more interesting results. First suppose that X is a 

finite G-CW-complex which is free (away from the base-point) over a 

normal subgroup N c G . 

Theorem 8.4. Then X admits a G-S-dual DGX with the following 

properties. 

(i) 

(ii) 

DGX is also N-free (away from the base-point). 

The duality is with respect to a "dimension" which is a 

representation of G/N . 

Proof. We first avoid the standard snag mentioned at the end of 

§5 by the same device used there; by passing to X ^ S 1 if necessary, 

we can assume that X is constructed by the successive attachment of 

cones on G-spheres (G/HuP) ^ S n with N n H = 1 . 

We now apply (8.2). By (8.1) the dual of (G/HuP) ^ S n with 
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respect to dimension n is (G/H uP) By (5.5), all the stable attach- 

ing maps required to build up DGX can be realised by maps of spaces 

at the price of suspension S j*w 

Let X and DGX be as in (8.4), that is, N-free and G-S-dual 

with respect to a dimension j*W . 

Theorem 8.5. Then X/N and (DGX)/N are G/N-dual with respect 

to dimension W . 

It seems that this was in doubt until recently. I owe the case 

N = G , G/N = 1 to letters from L.G. Lewis and J.P. May. 

Proof. 

category. 

in Y . 

Let G = G/N and let Y run over the G-Spanier-Whitehead 

Then we have the following (l-l) correspondences natural 

{Y ^ x/~, sW} ~ 

> {j*Y A X, sj*W} G 

x > {j'Y, DGX}G 

~ {Y, D~X} ~ 

N 

(5.3) 

(G-S-duality) 

(5.4) 

This characterises DGX as the G-S-dual of X/N with respect to dimen- 

N 
sion W . 

I next recall that A. Ranicki [ 213 has given an "unconventional" 

treatment of G-S-duality, in which the group G need not be finite, 

but the G-complexes must be G-free (away from the base-point). 

Theorem 8.6. If G is finite then the Ranicki dual of a G-free 

space X agrees with the conventional one. 
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Proof. Let Y run over the G-Spanier-Whitehead category; Y need 

not be G-free. Let X* be a Ranicki n-dual of X . In view of (5.5), 

the Ranicki n-dual X* is characterised by the first of the following 

two (I-i) correspondences which are natural in Y . 

{X*, y}G 

X A Y G/G 
< ~ {S n, ~ }  (Ranicki duality) 

G 

~ {S n, X ^ y}G (5.4) 

But this characterises X* and X as conventional n-duals. 

One of my correspondents suggests that the results presented above 

make it unnecessary for me (or Carlsson) to mention Ranicki duality. 

I take this point. 
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