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The results of this paper were suggested by three integer-valued cobordism 
invariants (for complex-oriented manifolds) with striking number-theoretic prop- 
erties. It seems best to begin with these examples, before describing the general 
theory in which they are embedded. 

Example A. The Ramanujan numbers are integers ~, defined by the generating 
function 

Z z, q"=q I~ (1 _q,)24; 
n > l  n_>l 

the first few are given by z l = l ,  z2=- -23 '3 ,  "c3 =22"32"7, %= 2 .3 - 5 .7 .2 3 ,  T 7 
= --23 .7-13.23, ~11 =22.3.13.34.27.  

Proposition A. There is a cobordism invariant z: ql*~TZ (i.e. a homomorphism 
of ungraded groups, where ql* denotes the complex cobordism ring) such that 

1) ~(r  1))=~., 
2) r (M • N) = z (M). r (N). 

Here CIP(k) denotes 2 k-dimensional complex projective space. 

Note that the projective spaces do not generate the ring ~ over 7Z, 
although they do over ~ .  Hence the existence of such a ring homomorphism 
as z is nontrivial. 

In fact we can do better than this. If h* is a cohomology theory with a 
multiplicative structure, in which complex vector bundles are ofientable, then 
a standard construction in topology defines a ring homomorphism t-indh: 
q/*= q/*(p t ) ~  h* (p t), which we call the topological index of h*;we are motivat- 
ed by the example of h* =complex K-theory; the associated topological index 
is just the Todd genus. 

Theorem A. There is a cohomology theory h* with the properties described above, 
taking values in the category of Z(ll)-modules , whose associated topological index 

t-indh: ~//* --'~'~(11) 

satisfies t-ind(M) = z(M). 
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Example B. Let D be a square-free integer; for simplicity let us take D odd. 
We recall the definition of the quadratic symbol [Lang IV w 2; Serre VI w 1.3]" 

if p is a prime dividing D, we set ( D ) = 0 ;  otherwise, we set ( D ) = -  1 according 

to whether the congruence X2=-D modulo p has (or has not) a solution in 

the integers- For arbitrary n, we write ( n )  = pill. (D) .  

Proposition B. There is an integer-valued genus of complex-oriented manifolds 

~li* ~ Z such that pD(•P(n-- 1 ) ) = ( e l .  
g ~ x  

PD: 
\P /  

Theorem B. There exists a cohomology theory h* as above taking values in the 
category of • [D-1j-modules, whose index is the genus Po just described. 

In this case we can do even better: 

Theorem B Analytic. There exists a universal elliptic differential operator for 
almost-complex manifolds with 7Z/D Z-action whose index (on manifolds with trivial 
Z/DZ-action) is the genus Po (up to a factor dependent only on d imM);  cf. 
6.2.6. 

Example C. Let A be a fourth-power-free integer. We recall the definition of 
the b/quadratic symbol [Hasse p. 161]: Let V=Vo+ivl be an odd Gaussian 
integer; we interpret this to mean that Vo is odd, and vl is even, or thus that 

- 1  m o d 2 + 2 i .  If # is another Gaussian integer, we set (_.] 0 4 = if # and v 
/ k \ v /  

are not coprime; but if # is prime to v, we set (v )  " 4=t~, where ct is chosen 
iv12-1 

so that i " -  # 4 modulo v. Evidently 

Proposition C. There is an integer-valued genus p~ of complex-oriented manifolds 
such that 

A 
Pa(l~IP(n--1))= rodd;12=n ('~) 4 " 

Theorem C. Let A~ denote the localization of the integers obtained by inverting 
2A, as well as all primes congruent to 3 modulo 4. Then there is a cohomology 
theory h* as above, taking values in the category of A~-modules, whose topological 
index satisfies t-ind h~ (M) = p~ (M). 

The cohomology functors of Theorems A, B, C can be easily defined: if 
p: ~//* ~ Ap is any one of the genera defined above, then a theorem of Landweber 
implies that ~174 Ap is a eohomology theory. 
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Underlying these results is a basic fact. NI /  is not very rigid as a ring- 
spectrum. In fact, the complex K-functor can be continuously deformed as a 
multiplicative cohomology theory, as can be seen from Theorems 1 and 2 below; 
the parameter space can be the p-adic units or even the punctured unit disk 
in the complex plane. 

The main objective of this paper is to classify those cohomology theories 
which arise as deformations of complex K-theory. We call such theories ordinary; 
Theorem 1 attaches to each ordinary theory h* over ~p, an invariant inv(h)eZ* 
which characterizes the theory up to isomorphism. There is a global version 
of this theorem over Z but in some ways Theorem 2 is more interesting. 

Notation. ~p is the ring of p-adic integers, 7Z(p) the ring of rational numbers 
with denominators prime to p. We write W for the ring obtained by adjoining 
to ~p, all primitive n th roots of unity, where p,~n. 

Theorem 1. There is a family K*(--) of multiplicative cohomology theories, taking 
values in the category of ~p-modules, with the following properties 

1) K~(S")=~p when q - n m o d 2  
= 0  otherwise; the K* form a periodic cohomology theory. 

2) When ~ = 1 + p, K* is canonically equivalent to complex K-theory, completed 
at p. 

3) I f  c~, f ls~* are distinct, then K~, Kp are not isomorphic (as multiplicative 
theories) but 

4) K, (--) @ z ,  W and Kp ( - ) @ z ,  W are isomorphic as multiplicative theories 
(though not canonically). 

Finally, if h* is any ordinary cohomology theory satisfying 1), there is a 
unique, computable inv(h)e~* such that h* is isomorphic to K*, e=inv(h). 
For example, the invariant of the theory over the l l -adic integers defined by 
Example A is B - ~ + 11. B, where B is the unique solution of 

B 2 -  z(l l)  B+ l l  al=O 

which is an 11-adic unit; [cf. S 19, pp. 498-512]. 

The functors K* are obtained as above; we define a genus p~: q/* ~ p ,  
whose zeta-function (see w 1) is ~ p, (IE•(n - 1)) n -s = (1 - e p-S + pl - z~) - x. Then 
K*(X)- 

Note that if cceZ(~, i.e. e=a/b with a, b prime to p, then K*(X) actually 
takes values in the category of 2g(p)-modules. To state Theorem 2, let qO12 be 
a complex number in the punctured unit disc, 0 < I q I < 1; let 

oo 

E4(q)= 1 +240 ~ a3(n)q", E6(q)= 1--504 ~ a5(n) q" 
n = l  n = l  

be the normalized Eisenstein series, where ~r k (n)= ~ d k. 
din,d>= 1 

Theorem 2. There is a multiplicative genus pq: ~*  ~7Z[E4(q), E6(q) ] of almost- 
complex manifolds, and a corresponding cohomology theory K* (--) over a certain 
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localization of 2g I-E4, E6] (depending on q). Two values q, q' of the parameter 
give inequivalent functors as long as the modular invariants j(q), j(q') are different; 
where j(q) = q-  1 + 744 + 196, 844 q + .... 

The formal group law of K * ( - )  is the formal completion of the group 
law on the elliptic curve IE*/{q"lnsZ}; on adjoining q to the coefficient ring, 
all these theories become isomorphic to complex K-theory. 

The index p~ can be interpreted as the index of a certain formal family 
of differential operators parameterized by q. 

For  example, C above is essentially a special case of this theorem, with 
j (q )=  1728. Similarly, example A is essentially an elliptic cohomology theory 
for Fo(ll), cf. [S19, p. 504]. 

The paper  is in six sections, with an appendix [and a supplementary bibliog- 
raphy added recently.] 

w 1. Genera  and Formal  Group  Laws 
w 2. Ordinary K-Theories 
w 3. The Classification Theorem 
w 4. Classification of Some Formal  Group  Laws 
w 5. Ordinary K-Theories from Elliptic Curves 
w 6. Differential Operators  
Appendix: On Galois Phenomena 
Historical Remarks  

Section 1 is concerned with topological and algebraic preliminaries; Sects. 2 
and 3 contain the real results of this paper  (including the main theorem of 
w 3, which equates the category of ordinary K-theories to a certain category 
of formal groups) while Sects. 4 and 5 summarize results from the algebraic 
literature which provide the concrete examples. Section 6 sketches a formalism 
of universal elliptic operators, which is the K-theoretic analogue of Hirzebruch's 
multiplicative sequences, and the appendix is appended to explain the title. 

The results of this paper  give some indication of the incredible arithmetic 
richness of the cobordism ring. I want to draw attention to our complete igno- 
rance of any explanation for this richness. There seems to be a level of structure 
on differentiable manifolds which is as deep as that revealed for algebraic varie- 
ties by the Weil conjectures; but the nature of this structure is a mystery. 

Acknowledgments. This paper was begun at The Tata Institute of Fundamental Research in Bombay; 
there are so many people there to thank that I cannot list them all, but if it were not for the 
interest and encouragement of G. Anada Swarup, S. Ramanan and M.S. Raghunathan, this paper 
would never have been written. I want to thank N.M. Katz and T. Honda for conversations on 
elliptic curves and formal groups, and Peter Landweber for telling of his exact functor theorem, 
which I needed to lift my results from char. p to char. 0; and I would like to thank D. Quillen 
for explaining to me the phenomena which underlie this paper. 

w 1. Genera and Formal Group Laws 

Let C denote a field of characteristic O; it will usually be C. Let A c C  be 
a subring, and let B be the quotient field of A. 
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1.1. Definition. An A-valued genus p is a ring-homomorphism p: q / * ~ A .  In 
general, we call a ring-homomorphism ql*--> R a genus provided R is torsion- 
free. Since q/* (~)zQ is generated by the projective spaces, p is determined by 
the elements pn=p(ff~lP(n))6A. Consequently p is completely specified by either 
of the generating functions 

Xn 
5(x)= Z p.-, 

n > l  n 
(the logarithm of p), 

= Z p . - ,  n-s 
n__>l 

(the zeta-function of p). 

The latter formula defines a formal Dirichlet series with coefficients in A. We 
will call ~p the Mellin transform of d o, and vice versa. 

1.2. Examples. Let A=;g ;  t: ~//*--.7/. is the Todd genus. Then t(tEIP(n))= 1, so 

and 

Xn 
f t (X)= ~ = - - l o g ( I - X ) ,  

n=> 1 /'/ 

~t(X)---- 2 n - - s =  I ~  (1--P-~)- l=((s)  
n ~> 1 p~primes 

is the classical Riemann ~-function. 
More generally, if y e ~ ,  we can define Hirzebruch's )~Tgenus for a K/ihler 

manifold M in terms of the Hodge cohomology: 

z,(M)= ~ (--1)'yqdimHP'q(M). 
p,q>=O 

The Atiyah-Singer index theorem shows this number to be a cobordism invar- 
iant; thus Zr: og, ~ A  is defined, when A is the ring generated over 2g by y. 
This genus is defined by the logarithm 

, [ l + y X \  
Ey(X) =(1 + y ) - i  log | - ~ - ~ .  

\ t - - ~ /  

1.2.1. Example. When y = + 1, we recover Hirzebruch's L-genus. 
The general significance of fo comes from the following: 

1.3. Theorem (Mi~Senko). The series Fp (X, Y) = f21 (~p (X) + ~p (Y)) e B EX, Y~ ac- 
tually lies in A IX, Y~. 

1.3.1. Example. Applying this to fy, we find 

X+ Y+(y-  1)XY 
Fy(X, Y ) -  

l + y X Y  Z[y] Ix, 
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X + Y  
When y = O, we get X + Y -  X Y; when y = 1, 1 - X ~ "  It follows that an A-genus 

p determines a formal group law F o over A. This is a formal series F(X, Y) 
such that 

1) F(X, Y)=F(Y, X), 
2) F(X, Y) = X + Y+ higher order terms, 
3) F(X, F(Y, Z))=F(F(X, Y), Z). 

The converse is also clear, for given F(X, Y) over A, we define F2(X , 0) to 
OF dX 

be the value of ~ -  at Y=0; then d~p(X) F2(X, 0) allows us to recover t~p. 

Thus Fp, Ep, (p, and p determine one another over rings such as A. In this 
language we can restate Quillen's fundamental theorem: 

1.4. Theorem (Quillen). There is a canonical 1-1 correspondence between formal 
groups over any ring R, any ring homomorphisms ql* ~ R. 

Thus a logarithm (or its Mellin transform, the (-function) is a simple way 
of defining a formal group law over a ring without torsion. 

Note that a formal group law on a ring R is nothing but a Hopf  R-algebra 
structure on R ~T~: define a diagonal A r by A F (T)=  F (T|  1, 1 | T). It is conve- 
nient to refer to a Hopf  R-algebra which is isomorphic to R ~T~ for some T 
as a formal group; when an explicit generator T has been chosen, we speak 
of a formal group law over R. 

The function ~e is very useful for constructing formal group laws, as can 
be seen from the following 

1.5. Theorem (Honda). Suppose p: q[* ~ Q is a genus whose (-function has an 
Euler product expansion 

(*) (o(s) = l-I ( 1 - - b l , . P - ~ - ' " - b . , p P " ( Z - ~ ) - ' - ' " )  -1, 
p~pr imes  

in which bije7Z. Then the formal group law defined by the Mellin transform ~p(X) 
is actually a formal group over 7Z; that is, Fp(X, Y)eZ~X,  Y~; and any formal 
group law over Z is isomorphic to some such law [14, p. 239]. 

Remark. There is a local variant of this result: If p: ~ *  ~ Q p  (where Qp is 
the p-adic field) is a genus with Euler expansion as above, such that b i , ~ p  
(or 7Z(p)) for all primes p, then Fp(X, r )e~p~X,  r~ (or 7Z(p) ~X, Y~). 

However, the result holds only (so far as I know) over the prime fields; 
the analogue for arbitrary fields of char. 0 may be false. 

1.5.1. Corollary. Any Euler product of the form (*), with bideZ, determines a 
formal group law and an integral genus of almost complex manifolds. 

Let us return to the examples of the Introduction. 

Example A. The function d ( q ) = q .  1-[ (1--qn)24 is a well-known automorphic 
n > l  

form; it is a so-called cusp form of weight 12. If we write 4~(s)= ~ z, n -~ for 
n_>l 
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its Mellin transform, then the theory of Hecke operators [Serre VII, 5.4-5] 
shows that ~(s) has an Euler product expansion 

�9 (s)= I-I (1-zvP-~+P11-2~) -1, 
peprimes 

which is of the form (*). 

Example B. In this example, the if-function of PD is 

which is of the form (,). Note  that ~D(s).((s) is the Dirichlet ~-function of the 
number-field Q(VD). 

Example C. The (-function of this genus is 

(a(s)= ~ (A] 6 . , a , _ 2 s  = l-[ (1-(A) -2s) -1 
aodd \ O" ]4  r~eoddGaussianprimes 4 I 

It can be shown (cf. Birch and Swinnerton-Dyer) that this (-function can be 
rewritten as 

(a(s)= 1-[ (1 +(Np--p)p-S+pl-2s) -1 
p•2A 

where Np is the number of integral solutions of the congruence y2.--xa--Ax 

modulo p. In fact ((s) ( ( 1 -  s) is the Weil (-function of the curve y2=  x a - A x. 
~(s) 

Remark. The combined theorems of Honda  and QuiUen provide an enormous 
supply of multiplicative genera with interesting arithmetic properties. In the 
next section we will show that among these genera, there are many with interest- 
ing topological properties. (See also IS 10, S 15].) 

w 2. Ordinary K-Theories 

2.1. Conventions. Cohomology theories treated in this paper are assumed to 
be multiplicative, i.e. to possess a natural product map h* ( X ) ( ~ h * ( Y ) - ~  h*(X 
x Y), such that h*(pt) is a ring with unit. We will usually refer to h~ as 

the ground ring of the theory. 
The following result is fundamental and very useful: 

2.2. Adam's Lemma. For a multiplicative cohomology theory h*, the following 
are equivalent: 

1) The inclusion $ 2 ~  r induces a surjection h* ( ~ I P ( ~ ) ) ~  h*(S2). 
2) h * ( ~ P ( ~ ) )  is a formal group over h*(p t). 
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3) For any complex vector bundle E, there exists a Thorn class u~6h*(T(E)). 
4) There exists a multiplicative natural transformation ~  h* ( - )  which 

preserves Thom classes. 

An element T6h* (CIP(oo)) whose image generates h*(S 2) as an h* (p t)-mod- 
ule is called an orientation for the theory h; it canonically determines a formal 
group law on h*(~P(oo)), a canonical Thorn class on each complex vector 
bundle, and a particular natural transformation t-ind h: q/* ( - )  --* h* ( - ) .  Apply- 
ing this to X = p t  yields a genus t-indh: ~ll*(pt)-+h*(pt). [If M is a complex- 
oriented manifold of dimension n, then there is a canonical "fundamental class" 
for the theory h*, i.e. a map h*(M)-*h* +n(p t); applying this map to l~h~ 
we obtain t-ind h(M)Ehn(p t). We call t-ind h the genus of the (oriented) theory h. 

2.3. Definition. Let p: q/*-~ A be a genus (where A is a ring without torsion) 
and let p be a prime number. We say that p is an ordinary prime for p if 
either 

i) p is invertible in A, i.e. p is trivial, or 
ii) p ( ~ ( p - -  1)) becomes a unit in A/pA. 
We say that p is ordinary if all primes are ordinary for p. Since any oriented 

cohomology theory determines a genus, we will call an oriented cohomology 
theory an ordinary K-theory if its genus is ordinary; we will see below that 
this property is independent of the choice of an orientation. 

2.3.1. Example. Complex K-theory, with its canonical orientation, determines 
the Todd genus t, and t(ClP(n))= 1 for all n, so classical K-theory is an ordinary 
K-theory. Note that H * ( -  ; O) is an ordinary K-theory for trivial reasons. 

2.4. Lemma. 1) I f  p: ~li*--* A is an ordinary genus, and c~: A ~ B is any ring 
homomorphism, then c~ p is ordinary. 

2) I f  p: ql* -* A is ordinary at p, and A is complete in the p-adic topology, 
then p(CIP(p-  1)) is a unit in A. 

Proof. The first assertion is trivial, and the second is a corollary of Hensel's 
lemma. 

2.5. Definition. Let p: d//, (p t)-+ A be an ordinary genus. We define the associated 
graded genus p , :  og, (p t) ~ A I-t, t -  1], where t is an indeterminate of dimension 2, 
by p , ( M ) = p ( M ) t  - d i ~ M  on homogeneous elements. We define the associated 
K-theory to be K* (X)= 0g, (X)(~)pA* I-t, t-1],  given the induced total grading. 

Evidently K* ( - )  has a multiplicative structure, and has a canonical element 
satisfying the hypotheses of Adams' Lemma; so Kp is an ordinary K-theory 
if it is a eohomology theory at all. But this is a corollary of 

2.6. Landweber's Exactness Theorem. Given a prime p, let vp_ l , 
vp2 _ 1 . . . . .  vp._ 16ql* (p t) denote M ilnor generators for ~ (p t) |  ) of dimension 
2(p-1) ,  2(p2--1) . . . .  ,2(pn-1).  I f  A* is a graded ~ll*(pt)-algebra, then 
~ (X)(~u,(voA* is a cohomology theory if the following conditions are satisfied: 
For any prime p, 

O) p-multiplication: A* ~ A* is injective. 
1) Vp_ a-multiplication: A*/p A* --+ A*/p A* is injective. 
2) vv2_ a-multiplication: A*/(p, vp_ a) A ,  ~ A*/(p, vp_ 1) A ,  is injective, etc. 
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2.6.1. Corollary. I f  A* is a ql*(p t)-algebra without torsion such that either 
1) p is a unit in A*, or 
2) vp-1 is a unit in A*/pA*,  then the conditions hold. Since vp-1 can be 

taken to be I I ;P(p-1) ,  Kp is a cohomology theory. 

Remark. Landweber's theorem follows very elegantly from decomposition theory 
[every cobordism module M admits a filtration M o ~ M I ~ . . .  such that 
Mi/Mi + 1 = qt*(P t)/p, where p is a prime ideal, invariant under the Landweber- 
Novikov operators, and a classification theorem for such prime ideals: all are 
of the form (p, Vp_ 1, vp2_ 1 . . . .  , Vp,_ 1) for some prime p and integer n. 

We will sketch a quite different proof  of the corollary above in w 4. 

2.7. Examples. We can now prove Theorems A, B, C of the Introduction. All 
we need to do is compute the ordinary primes of z, Po, P~; we can make each 
genus ordinary by trivializing (i.e. inverting) the non-ordinary primes in Z. Now 
these three genera come from ~-functions with Euler products; for such genera, 
ordinariness is easy to check. 

2.7.1. Lemma. I f  p: q l * ( p t ) ~ Z  is defined by ~p(s)= I ]  ( 1 - b l , p p - S - . . . )  -1 
then p is ordinary at p iff p does not divide bl ,  p. p~primes 

Proof. By direct computation: p (ll?P(p - 1)) = bl,p. 

Remark. If y p ( s ) = ( 1 - b l , p p - ~ - . . . )  -1 is nontrivial only at the prime p, then 
explicit formulae of Hazewinkel can be used to compute the value of p on 
Milnor generators; thus p (vp_ 1) = b 1,p, 

p (v ,2_ 1) = b2 . ,  + b~,p. 1 - b~,-p 1 
P 

2.7.2. Corollary. A) The Ramanujan genus is ordinary at p=11,  for Zll 
=23 . 3 . 1 3 - 3 4 2 7 -  1 modulo 11.1 

B) Po is ordinary except when p lD. 
C) p~ is ordinary except when pl2A,  or when the number of solutions to 

y 2 - x a - A x  modulo p is divisible by p. This happens only if p=-3 mod4;  in that 
case there are no solutions. 

Example D. If y is a p-adic integer, then the Hirzebruch xy-genus is ordinary 
at p; but if - y  is (sufficiently close, in the p-adic metric, to) a primitive pth 
root  of unity, then Zy is not ordinary at p. 

In fact let ~b~(X)=l -  1 - e  -1 where (1 + Z )  ~ is the formal power 
1 - - - X '  

series in ;E defined by the binomial theorem (when ct is a p-adic integer, this 
series has p-adic integer coefficients.) It is easy to see (using the logarithms) 
that when e = - ( l + y )  -1, qS~ GIn(X, Y )=Fy(~ (X) ,  q~(Y)); i.e., if y is a p-adic 
integer, Fy is isomorphic to the multiplicative group. Since being ordinary at 

1 In fact the only known primes for which z is not ordinary are 2, 3, 5, 7, and 2411, cf. [S19, 
p. 723] 
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a prime is an isomorphism invariant of formal groups, and since the multiplica- 
rive group is ordinary at every prime, we are through. 

The second statement follows from the observation that Z_r(~;]P(n-1)) 
=q~,_~(y) is the cyclotomic polynomial y , - l + . . . + y +  1. For example, the 
prime 2 is not ordinary for the L-genus: a well-known fact in surgery theory 
[cf. also 56]. 

w 3. The Classification Theorem 

Let h* be an ordinary K-theory, and let B* be a (Z-torsion-free) h* (p t)-algebra. 
Then by Lemma 2.4 and Landweber's theorem, h*(-)@h,(pt)n* is also an ordi- 
nary K-theory. 

3.1. Definition. A normalization of h* is a graded isomorphism 
h* (p t) ~ h~ t) [t, t -  ~], with t of grade 2. Of course h* may not have a normaliza- 
tion, but we can always extend the ground ring by some B* (as above) to 
get a normalized theory without losing any generality; for example, we can 
take B* = h*(p t) [t, t-  1] with the induced grading. Note that a normalized theory 
is periodic of order 2, while an arbitrary ordinary K-theory need not be periodic 
at all. 

In this category we characterize the category of normalized K-theories. 

3.2. Definition. ~ is the category whose objects are normalized K-theories, 
over rings without torsion. If Ko, K1 e~ ,  a morphism q~" K*--* K* in X is 
a multiplicative transformation of graded cohomology theories. 

3.2.1. Example. Let Ko be classical complex K-theory, and let K 1 = H * ( - ) @  Q 
be rational cohomology, given the even-odd grading. The Chern character c h: 
K* ~ H* @ Q is a morphism in ~ .  

3.3. Definition. Let K* e ~ ,  with K* (p t) = A [t, t -  1]. By definition, K o is oriented, 
so there exists a canonical To such that K* (ll2lP(oo)= A [t, t-1] ~To~, with diago- 
nal Ao(To)=Fo(To| 1, 1 @ To), where Fo is a formal group law with coefficients 
in A[t, t-~]. We write F o for the formal group law on A induced by t~--~l; 
f o is precisely the formal group induced by the genus 

ql*(pt) t-indKo A[t, t -1] ~A.  

3.3.1. Example. If Ko is classical K-theory, its formal group law is the multiplica- 
tive group Fo(X, Y ) = X +  Y - X Y ;  if K1 =H* |  then FI(X, Y ) = X +  Y is the 
additive group. 

3.4. Main Theorem. The map 57I: j~f ~o~f# sending K o to its associated formal 
group law extends to give a (contravariant ) faithful functor. 

The image of this functor will be described below [3.4.8], giving a complete 
description of ~ .  The proof breaks into a succession of lemmas. 



Forms of K-Theory 411 

3.4.1. Lemma. Any morphism 4) in 3C can be canonically factored in the form 
4," q~' 

K* ~ K*, 1 ~ K*, in which 4)' induces the identity map from K ~ o,l(pt) to 

K~ t), and 4)" is an extension of scalars. 

* X K *  o Proof Define Ko, l( )=  o(X)(~rO(pt)Kl(pt), where K~ is a K~ 
via 4). 

3.4.2. Definition. A morphism 4): K~ ~ K *  will be called strict if 4)= 4)', i.e. 
if 4): K~176  is the identity. Similarly, a morphism r (A ~To~, Ao) 

(B WTI~ A 1) of Hopf algebras can be factored: 

(A~To~,Ao) *" ,(B~To~,Ao ) r ,(B~TI~,AO ' 

where ~O' is a morphism of formal groups over B. Then there is a unique formal 
power series t~ such that ~(T1)= Ip'(To). 

3.4.3. Lemma. Any morphism 4): K* ~ K~ in X induces a morphism ~o: FI-~_r o 
in ~ .  

Proof Since morphisms in ~ff and ~-fr have canonical factorizations as above 
it suffices to show that a strict morphism 4): K* ~ K* (i.e. 4): K ~ (p t) ~ K ~ (p t) = A 
is the identity) induces a morphism ~: F~ ~ Fo of formal group laws over A. 

This is essentially trivial: There is a commutative diagram 

K~(r 

K*(r 

Ao 

A1 

, K~ (r ~ K~(r 

where Ao(To)=Fo(To| l, l | To), AI(TO=FI(TI | I, I Q T O. (To, T1 are the 
appropriate orientation classes) and Fo, F1 are formal group laws on A [t, t-1].  
Define ~;' as the formal power series with coefficients in A[t, t -1]  such that 
6 ' ( T 0=  4)(To); then according to the diagram above, 

(4) @ r Ao(To)=(r @ r Fo(To | 1, 1 @ To)=Fo(4)(To) | 1, 1 | 4) (To)) 

=Vo(~'(T1) | 1, 1 | ~'(T1) ) 

while A a 4)(Yo)=A 1 t~t(T1)=t ~' AI(T1)= ~' FI(T 1 @ 1, 1 | T1). In other words, 
~' F1 (X, Y) = Fo (~;' (X), ~'(Y)), so ~': F1 ~ Fo is a morphism of formal group laws 
over A[t, t-~]. Setting t =  1 then gives a morphism ~;:/v ~ F o  of formal group 
laws over A. 

3.4.4. Example. If K o = K*(--), K t  = H*(-- ; O) as above, then the Chern charac- 
oh'"  oh" 

ter factors K ~ K | ~ , H | ~ ,  with ch' a strict morphism in ~ .  If Tu, 
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T K denote the canonical orientation classes, then c h(T~:)= 1--e-T~;  SO c~(X) 
= 1 -- e-X, which defines a morphism c h: Na ~ ~, ,  of the additive to the multipli- 
cative group over Q. 

3.4.5. Lemma. Let c~: K* ~ K* be a strict morphism J~f~; let A be the common 
groundring. There is a unit Z(c~)~A • such that (a(a'o)=Z((a)'.a~, where 
a'o~K2"(S 2") is the canonical generator (similarly for al) .  

Moreover if (0, ~9 are composable strict morphisms in X,  then Z(~" 
~) = z ( ~ )  z(4,) .  

Proof. ~) induces a map ~b: K*(p t )=A  [ t, t -1] ~ A [t, t -1] =K*(p  t), consequent- 
ly O(t )eK~(p t )=At ,  O ( t - 1 ) e K ; Z ( p t ) = A t - ~ ;  hence ~)(t)=Z(O)t, O(t -1) 
=;((qS) t -1 for some Z(q~), Z'(~b)eA. But since ~b(1)=~b(t. t-1)=l,  we find that 
Z(~b) Z'(~b)= 1, so Z(q~) is a unit. Then we just suspend. 

3.4.6. Lemma. I f  O ~ S  is a strict morphism, then qS(T)=z(~b ) T+higher order 
terms. In particular, ~0 is an invertible morphism of formal group laws. 

Proof. Consider the diagram 

K8 (r , K~(S 2) 

K~(r , K~(S2). 

Clearly q5 i*(To) = qS(ao) = z(qS) a l ,  i* ~b(T1)= i* (~(T1)= ~1 o1, where ~(X) 
= Y ?), xi .  

i>=1 

Since z(~b) = ~1 is a unit, ~ is an invertible formal series over A. 

3.4.7. Example. Let Le~U,, with L~ let a~A • be a unit, and let 
T~L*(CIP(~))  be the orientation. Then a T~L*(GP(m))  is also an orientation; 
we define a new object L , ~ f  r by giving K this new orientation. If F(X,  Y) 
is the formal group of L, then Fq(x,  Y)=a  - 1 F ( a X ,  aY) is the formal group 
of L,. The obvious morphism [a]: F " ~ F ,  [a ] (X)=aX ,  comes from a strict 
morphism [a]: L* ~ L * :  we simply send teL*(pt)  to at~L*(pt),  and extend this 
in the obvious way to a morphism of functors. 

3.4.8. Main Theorem (continued). I f  Ko, K l a n ,  with associated formal group 
Fo, F 1, then a morphism F t -* F o is in the image of ~ iff its strict component 
is an isomorphism. 

Corollary 1. Two (normalized) K-theories are equivalent as multiplicative cohomo- 
logy functors iff their formal group laws are isomorphic. 

Corollary 2. Let 4: K*--* K~ be a morphism in ~ .  Then the normalized K-Theory 
K ( r  (--)@r.(v0K1 (p t), whose orientation class is ~- I ( TK) is equivalent 
as an oriented multiplicative cohomology theory, to K*. 

Proof. We may assume that ~ is a strict morphism, thus ~ is an invertible 
power series, and ~-1 (TK) is an orientation class for K. Now the obvious map 
4': K~) --* K* takes the orientation class ~- I(TK ) to 4' (~-1 (TK))= ~'- I(~(T1)) = T1" 
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Proof of the Main Theorem. We will show first that if K3, K* are ordinary 
K-theories, and q$:/7a ~/70 is an isomorphism of their formal group laws, then 
~b lifts to an isomorphism ~b: K3 ~ K* of cohomology theories. 

We may assume X(~b)= 1, by replacing ~b:/7~ ~/70 with 

[Z(~) -  i ] ,  r  /71 ~ ~00 z(4~- ')], 

with [z(q$- 1)] as in the example above. The proof then follows from 

3.4.9. Main Lemma. For any f (T)=T+higher  order termseA~r~, there is a 
natural (ungraded) ring homomorphism [ f ] :  ~#*(- ) |  A ~ dll* (-- ) | A. In fact 
there is a natural action of the group Fo(A) of all formal power series such as 
the above on ql* (-- ) | A. 

Proof This is simply a reformulation of the theory of Landweber-Novikov opera- 
tions [16]. Let S* denote the algebra of Landweber-Novikov operations, and 
let S, denote the dual Hopf algebra: it is a polynomial algebra over 7/,, and 
there is a coaction map ~kx: uli*(X)~dll*(X)| Now if e: S , ~ Z  is an 
(ungraded) ring homomorphism, then the composition 

or o u * ( x ) @ z s ,  1| > > ( x )  @ z z  > ( x )  

is a ring homomorphism; and it is well-known [Milnor-Moore] that the set 
S,(2~) of ring homomorphisms has a natural group structure, making ~*(X) 
into a representation of S, (2g). Nothing changes if we replace 2g with an arbitrary 
ring A; if S,(A) denotes the group of ring homomorphisms from S,  to A, then 
u//, (X)@zA has a natural S, (A)-module structure. 

This correspondence is discussed further by Landweber [17] (and in [S 13]); 
here we simply sketch the definition of the operators [ f ] .  

Thus let f ( T ) =  T+higher order termssA ~T~ be given; by regarding T as 
the canonical orientation class, we regard f (T )  as an element of ~* (IElP(oo))| A. 
Then 

( I  f (Ti)e~ll*"~" ' x  i = l ~  T ttc too) . . .x lE~(oo))@A (ncopies) 
2g 

is defined, and is symmetric under permutations of the factors; by Borel's theo- 
rem, we recover an element of ull* (B U(n)). Now f ,  ~ f , _  1 under the map induced 
by BU(n--1)'-~ B U(n), since T - i f ( T ) =  1 at T=0;  hence these elements define 
a class foo e u//, (B U (oo)) | A. Clearly A f~ =f~ ~) f~ in the natural Hopf algebra 
structure on ql* ( B U ( oo ) ) @ A. 

Now the Thorn isomorphism induces a coalgebra isomorphism 

~p: dll*(BU(oo))| A ~ull*(~l[O| A=~ll*(pt)(~zS* | A; 

it is not hard to see that (p(foo)~S* | A, and is thus a multiplicative operation 
on ~//*(--)@zA, which we denote [ f ] .  From the construction it is clear that 
[ f ]  (T) =f(T),  where Teq/*(IE~(~)) | A. 
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3.4.10. Lemma. Let Po, Pl : ql* ~ A be genera defining F o, F1, and let f: F 1 ~ F o 
be an isomorphism as above. Then the diagram 

[ f ]  

A 

commutes. 

Proof Consider the composition P l [ f ] :  ~*  (IE~'(oo))~ A ITS. If A is the diago- 
nal on q/* (IElP(oe)), A' the induced diagonal on A IT]I, then evidently 

pl [ f ]  A =A'  Pl [ f ]  
consequently 

A' Pa [ f ] ( T ) = A '  p a f  (T)=pa A f ( T ) = p l f  F (T |  i, 1 | T ) = f  FI(T|  1, 1 | T) 

while 

Pl [ f ]  A(T)=p~ [ f ]  F(T|  1, 1 | T ) = F ' ( f ( T ) |  1, 1 | f (T)) .  

Hence F ' ( f ( X ) , f ( Y ) ) = f F x ( X ,  Y), so f:  F1--.F' is an isomorphism. But then 
F ' = F  o. Hence Pl [ f ]  induces Fo, and so equals Po. 

We can now prove the corollary to 3.4.8: Given normalized K-theories Ko, 
Kx and an isomorphism f : / v  1 -~ Fo, we will construct an isomorphism f* :  K* 
--*K*. We first reduce to the case in which f ( T ) =  T+higher  order terms; then 
there is a unique f *  making the diagram 

~ * ( X ) ( ~ A  m , ~ * ( X ) ( ~ z A  

K*(X) , K*(X) 

commutative: since Po, Pl are surjective, it suffices to see that I f ]  maps ker Po 
to kerp l ;  but kerpo consists of elements x v | 1 7 4  x~ql*(X), 
vEql* (p t), ae A ; evidently 

[ f ]  (x v | a-- x | Po (v) a) 

= I f ]  (x). [ f ]  (v) | a- -  I f ]  (x) | Po (v) a 

= I-f] (x). [ f ]  (v) | a-- [ f ]  (x) | p 1 ( [ fJ  (v)) a e ker p 1. 

Finally, to complete the proof of 3.4.8, we must see that a strict morphism 
in Jg which induces the identity map of formal group laws is itself the identity. 
However, this is clear; suppose q~: K ~ K ~  is such a morphism. If /~o: 
q/* ( - )  -~ K* ( - )  is the canonical morphism defined by the orientation, then q~ #o 
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is a another morphism inducing the same orientation. Both #o, q~ #o~K*(1V1U); 
since this is isomorphic to K*(BU)  by the Thorn isomorphism and since #o, 
q~/t o have the same image in K~d(IEP(~)), we find that #o=q~#o. Since #o is 
surjective, q~ = 1. 

3.4.11. Remark. The main theorem can be considerably strengthened by studying 
unstable cobordism operations; these are now accessible through the results 
of Steve Wilson. 

To any normalized K-Theory  L*, we can associate a Z/2-graded theory 
L ~, with L ~ = L ~ when # = 0, L * = L-  1 when 4~ = + 1; a boundary map is defined 
by the composition 

L -1 (X, A) '~ , L-  2 (A) t-mult Lo (A). 

Such a 7//2-graded theory also has an associated formal group law. 

Theorem. The functor iVI : (Z/2-graded ordinary K-theories) ~ ~ (~ is fully faith- 
ful. 

The point is that in the category of ;g-graded ordinary K-theories, the only 
nontrivial morphisms are isomorphisms, but the example of the Adams opera- 
tions on 7~/2-graded complex K-theory shows that there are plenty of non- 
invertible morphisms in the 2g/2-graded category. Since I hope to study unstable 
operations elsewhere, with Wilson's help, I omit the proof [-See S 1, S 13]. 

w 4. Classification of Some Formal Group Laws 

The Main Theorem of the preceding section reduces the study of the category 
to the purely algebraic problem of classifying certain formal group laws. 

Quite a bit is known about this problem now, thanks to results of Cartier, 
Honda, and Hill, and this section is a summary of the simplest cases of their 
results. 

4.1.1. Definition. Let F be a formal group law over the ring R. We define formal 
series [n]e(T) inductively by [0Iv(T)=0,  [ n ] e ( T ) = F ( [ n - 1 I v ( T ) ,  T). Note that 
if R is torsion-free, then 

[n]r (T) = f ; ' (n f v( T)), 

with fF(T) the canonical logarithm of F. 

4.1.2. Lemma. I f  R is of characteristic p, then there exists a formal power series 
cp such that [p ly(X)= q)(XV). 

Proof Let F(T1, T 2 . . . .  , 7") be defined inductively by F(T1 . . . . .  7"-1, T,) 
=F(F(T1,  ..., 7._ O, 7"); then evidently F(T, .... T )=  [n]v(T), where Tis  repeat- 
ed n times. Now F(TI . . . . .  7") is symmetric in T1 . . . . .  T,, and thus can be rewrit- 
ten in the form F~ym(a I . . . .  , a,), where o- 1 . . . . .  o-, are the elementary symmetric 
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functions of  T1 . . . . .  T,. If  now T 1 . . . .  = T , ,  then oh = n T ,  o-2=�89  ) T 2, . . . ,  
o-, = T"; in part icular ,  if n = p, then o- 1 = 0, o- 2 - 0 ,  . . . ,  o-p_ 1 = 0, Cp-~ T p m o d u l o  p. 
Thus  over  a ring of char.  p, [pie(T) = Gym(0, 0, . . . ,  TP). 

4.1.3. Definition. Over  a ring of char.  p, a formal  g roup  law F has  height  one 
if [p]v(T)=uTP+higher order  terms, with u a unit  of  R. Over  an a rb i t ra ry  
ring R we say tha t  F has  height  one at  p if the induced formal  g roup  law 
has height one over  R/pR. 

4.1.4. Proposit ion.  Being of height one is an isomorphism invariant. 

Proof Suppose  f :  F -~ G is an i somorph i sm of fo rmal  g roups  over  R (of char.  p), 
with F of height one. Then  G(X, Y ) = f - ~  F( f (X ) , f (Y ) ) ;  it follows tha t  [p]~(X)  
= f -  1 [p]~(f(X)). Since f is an i somorph i sm,  we have  f ( X )  =fl  X +. . . ,  f -  1 (X) 
= f l - l X + . . . ;  hence if [p]F(X)=uXV, then [ p ] 6 ( X ) = f ( - l u X P +  .... Thus  G 
is also of  height  one. 

Example. If  F(X,  Y ) = X + Y - X Y  is the mult ipl icat ive formal  group,  then 
[hi  v (X) = 1 - (1 - X)". Consequent ly  

[p3  ~ ( x )  = 1 - (1 - x ~ )  m o d  p 

- X ~ m o d u l o  p, 

and F is of  height one. 
In  fact, a formal  g roup  of height one is the mos t  na tura l  general izat ion 

of the not ion  of mult ipl icat ive group.  

4.1.5. Proposition. There is a class ueq12(P-1)(pt) with the following property: 
a formal group F over R is of height one at p iff the classifying map p: ~J* ~ R 
sends u to a unit modulo p. 

Proof Let  [p]~u(X)=pX+.. .  + uX~+. . ,  be the series defined above  for the uni- 
versal fo rmal  g roup  law. Then  F is of  height one iff p(u) is a unit, rood p. 
Tha t  u is of d imens ion  2 ( p -  1) is immediate .  

4.1.6. L e m m a .  We may take u=ClP(p-1 ) .  

Proof An e lementary  formal  g roup  a rgumen t  shows tha t  the u defined above  
mus t  be a genera tor  for q / * @ z Z ( p )  in d imension  2 ( p - 1 ) .  It  is wel l -known 
that  I E ~ ( p -  1) is such a (Milnor) generator .  

4.1.7. Corollary.  A formal group law is of height one iff its genus is ordinary. 

4.2. Theorem.  1) Two formal group laws of height one over a complete discrete 
valuation ring R are isomorphic iff the induced laws over the residue field k 
are isomorphic. 

2) Two formal group laws of the same height over an algebraically closed 
field are isomorphic. 

3) I f  F is of height one over a field of char. p, then the ring End(F)  of 
endomorphisms of F is canonically isomorphic to ~p. 
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Proof (By references). 2) is a result of Lazard; see Fr6hlich [-p. 72]; for a proof  
of 3, see Fr6hlich, loc. cit. 1) is a result of Lubin-Tate [19]. The canonical 
isomorphism of 3) arises as follows: there is an obvious map 
2~n~--~ [n]v~End(F), which can easily be seen to be injective. Further End(F) 
is complete in the p-adic topology, so the map extends to an injection 
2~p ~ End(F); one then shows this map to be onto as well. 

4.2.1. Definition. Suppose F is a formal group over Fp of height one. If F(X, Y) 
= Z aij Xi Yj with aijE~:~p, then a~= aij; so F(X p, YP)=F(X, Y)P. Consequently 

i,j>O 

Y ( X )  = X p is an endomorphism (the Frobenius endomorphism) of F. Under  
the valuation on End(F) induced from the standard formal power series valua- 
tion, ~ has valuation one; hence there exists a unit u~2~p---End(F) such that 
u p = ~ .  

This unit is an isomorphism invariant for F over B? v. (If f is an invertible 
series over ~:~, then there is a canonical isomorphism of End(F) with End(FS), 
where FI(X, Y ) = f -  1 F(f(X), f(Y)) .  Thus we can compare ~ with the Frobenius 
endomorphism ~y  of FI ;  but ~ s ( X ) = f - 1  ~f (X)_=f - l ( f (X)p) .  However, since 
f has coefficients in IFp, f ( X )  p =f(XP);  so ~ = 

Example. The multiplicative group law has invariant ~ = 1, since [p] (X) = X p. 

4.2.2. Theorem [Cartier, Honda,  Hill]. Two formal group laws of height one 
over F v (~p) are isomorphic iff they have the same invariant. Further, any invariant 
can arise; if F,(X, Y) is the formal group law over 2~p defined by the ~-function 
~(s)=(1-~p-S+pl-2~)  -1, then ~ = u - l  +pu, where u(~) is the invariant E~* 
defined above. 

Proof Ell, 14]. In both references it is shown that ~- =ff(F~) satisfies the equa- 
tion ~ - 2 - a ~ - + p = 0  in End(F). That  this invariant classifies formal groups 
over ~p as well as lFp follows from 4.2, part 1: given F over Zv, we define 
its invariant to be that of the induced law over Fp. 

4.2.3. Corollary. A formal group law F of height one over ~p is specified by 
the invariant u, which is the unique p-adic unit such that 

f~71 (u p dF (X)) = X p modulo p. 

4.2.4. Let ~/U be the field obtained by adjoining to Q all primitive n th roots 
of unity, with p,Fn; let ~/~ be its p-adic completion. The ring W of integers 
of Y,P is a complete, discrete valuation ring, whose residue field is algebraically 
closed; W can be obtained from Zp by adjoining the n t~ roots of unity, p/~n. 

Corollary. Two formal group laws over W of height one are isomorphic. 

Proof Apply 4.2, parts 1 and 2. 

4.3. We can now prove Theorem 1 of the Introduction. 
According to Honda's  theorem (w 1) the if-function ~, (s) = (1 - e p-~ + p i - 2~)- 

defines a formal group law over ~p whenever e is a p-adic integer; by 2.7.1, 
this genus is ordinary if e is a p-adic unit. Then by Landweber's theorem, 
K* (X) = qZ* (X) @oa:~p [t, t -  1] is an ordinary, normalized K-theory. 
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We can now apply the main theorem of w 3; none of the resulting cohomology 
theories are isomorphic over ;~p, since the invariants of their formal group 
laws differ (4.2.2); when ~=  1 +p,  u =  1, so the associated K-theory has formal 
group law isomorphic to the multiplicative group, and the functor is equivalent 
to classical K-theory. When we extend the ground ring from ~p to IV,, all formal 
groups of height one become isomorphic (4.2.4) so all the ordinary normalized 
K-theories over W are isomorphic, by the main theorem. 

4.4. We end by sketching a "geometric" proof of Corollary 2.6.1. 
We first observe that W is faithfully fiat over Z~v); this means that if 0 ~ E' 

E --* E" ~ 0 is a sequence of 7Ztv)-modules which becomes exact upon tensoring 
with W, then Q ~ E ' ~  E ~ E " ~  0 was exact in the first place. This means that 
to show that Kp is a cohomology theory, where p is a ~p or 7Z(p)-valued genus, 
it suffices to show that Kp | W is a cohomology theory [cf. S 4]. 

Thus we restrict attention to W-valued genera; an ordinary such is a ring 
homomorphism q . /* (p t ) [ •P(p-1 )  -1]--* W, and we denote by AI(W) the set 
of all these homomorphisms;  it carries a natural topology. (If M e q / * |  W, a 
subbasic open set Du is the set of all peAl(W)  such that p(M) is a unit of 
W.) This is the smallest topology making the genera continuous; it is just the 
Zariski topology. 

Now recall (w that the group F(W) of formal power series 
{fe  W ~T~Lf(T) = u T+ higher order terms, u e W • }, with composition being the 
group operation, acts on A1 (W); (if p: q/* (p t)[ff~B?(p- 1)-1] ~ W and feF(W),  
then f (p)= [ f ] . p  is the translate of p by f )  According to 3.4.10, we can interpret 
this action as follows: a point of AI(W) is a formal group F of height one 
over W. If feF(W), then f sends F(X,Y)  to the formal group law 
f - 1  F(f(X), f(Y)) .  

4.2.4. Corollary, restated. The group F(W) acts transitively on the space A ~ (W). 

By the main theorem of w the points of AI(W) can be identified with 
ordinary K-theories; but it is most natural to view the ordinary K-theories 
as a sheaf 3U ofcohomoIogy theories over A1 (W), in an obvious sense; if peA1 (W) 
is a genus, then the stalk of this sheaf over p is just the theory K*. In general, 
if Du ...... M c A I ( W )  is the open set of genera p in AI(W) such that 
p(M1), ..., p(M,) are units in W, we define the module of sections of the sheaf 
o v e r  D M . . . . . .  M,~ to be q / * ( - ) [ f f ~ P ( p - 1 )  -1, M~ -1, ..., M~-I]. Since localization 
is an exact functor, X~--*Fo YI(X) is a cohomology theory for any open 
OcAI(M).  

There is a canonical lifting of the action of F(W) on AI (W ) defined above, 
to the sheaf Yf (X): if D ~ A 1 (W) is open, then f eE(W)  defines a map fo: f - 1  D 

D, and a map 

[f]~: r~_~ ~(x) - - ,  r~, ~ ( x )  

of modules of sections, satisfying the apparent axioms. 
The following is the most intuitive way I know of understanding Landweber's 

theorem: 

Proposition. An equivariant sheaf ~ (with respect to a group G acting transitively 
on a base X )  is locally trivial. 
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That is, X can be covered with open sets { Ui}, such that g I Ui is isomorphic 
to the sheaf of functions from U~ to a f ixed model E. Note that this is almost 
the definition of an (algebraic) vector bundle over X, with a G-action; but in 
that case one would require that E be a free W-module. Of course the analogous 
statement over a field is actually true: an equivariant sheaf over a space with 
a transitive group action actually is a vector bundle (under suitable finiteness 
conditions, which are also needed here). I have proved such a theorem elsewhere 
and will not give a proof of the above proposition here; but note that under 
the local triviality which is the conclusion of this theorem, the fact that formation 
of the theory Kp is an exact functor becomes a triviality. 

w 5. Examples of Ordinary K-Theories from the Theory of Elliptic Curves 

Let q s ~  be a complex number in the punctured unit disk, 0 < [ q l < l .  Let Fq 
= {q"[ n e2~} be the subgroup of C* generated by q. Then ~*/Fq = Eq is a compact 
complex-analytic manifold, diffeomorphic to the 2-torus, with a natural group 
structure. 

If Zo, z 1 are points on Eq sufficiently near the identity, then there is a conver- 
gent power series Fq(zl, z2)=~alj(q ) Zql zq2 with aij(q)sff~, such that Fq(zl, z2) is 
the sum of zl, z 2 in the group structure of Eq. Thus we have a family of formal 
group laws over ~,  depending continuously on the parameter q. 

2 k q" 
In fact we can do better. Let Ek(q)= 1 + (--1) k/2 ~ -  Z ak-1 (n) denote the 

~'k n>_0 

normalized Eisenstein series, where bk is a Bernoulli number, k ~ 4 is even and 
ak_a(n)= ~ d k-1. Let Aq denote the ring of integers of the field 

dln, d> l 

Q(E4(q) ,  E6 (q)). 

5.1. Theorem (Tate-Jacobi; for a proof, see Roquette). The group Eq determines 
a formal group law F~ with coefficients aij(q)eAq. I f  we adjoin q to the ring 
Aq, then we can construct an isomorphism of Fq with the multiplicative group. 
[See $3, $8 (w 8.8), or S l l . ]  

Remark. One can always find a formal group law associated to Eq whose coeffi- 
cients lie in the field Q(j(q)), where j is the elliptic modular function, but the 
law is not canonical. 

Sketch of the Construction. The first step is to construct a canonical embedding 
of Eq into the complex projective plane. Suppose teCE*-{1}; send it to the 
point Ix (t), y (t), 0] ~IEP(2) (in homogeneous coordinates) via the equations 

qk t ~~ qk 
x ( t )  -~- Z (1--qkt) 2 2k~=1 1--q k '  

k e Z  = 

(qk t)2 ~~176 qk 
y(t)= ( 1 - q  k k~Z t) 3 1 

t t 2 
Now x( t )=( l_ t )2  +Xo(t), y(t)=-(l_t)3 + yo(t), with Xo(t), yo(t)eZ[t, t-1]~q~, 

and Xo (t), Yo (t) ~ 0 as t --> 1. Thus as t ~ 1, [x(t), y(t), 0] ~ [1 - t, t, 0], so the 
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map defined above extends to give a map of 112" into IEP(2), sending 1 to 
[0, 1, 0]. Moreover, evidently x(qt)=x(t), y(q t )= y(t), so the map factors through 
Eq, and the resulting map Eq ~ 1121['(2) is an embedding. 

Now by Chow's lemma, Eq is an algebraic subvariety of II~IP(2), and it can 
be shown that Eq is embedded as the locus of solutions of the equation 

where 
y2 z + x yz--x3 +b(q) xzZ +c(q)z3, 

b (q) = 3 - 1 . 2 -  4. (1 - E 4 (q)) 

c (q) = 3-  3 .2-  6 (1 - 3 E 4 (q) + 2 E 6 (q)) 

can be shown to lie in Z~q~. Thus Eq becomes an algebraic variety defined 
over the ring Aq. 

x 
Now co = - -  defines a uniformizing parameter for Eq near the identity. If 

Y 
we expand it at 1 -  T, we obtain a formal series co(T)= T+higher  order terms, 
where co~Z~q, T~. Thus co defines a formal isomorphism co: 1~* (near 1)--*Eq 
(near [0, 1,0]) of algebraic group varieties; in other words, co: G,,--*Eq is a 
formal isomorphism, defined over 7Z ~q~. 

5.2. Remarks. Now Theorem 2 of the Introduction follows by applying the main 
theorem of w 3, as Theorem 1 was proved. It is necessary to have some idea 
of the "bad  primes" for the formal group Eq; these are primes at which Eq 
is singular (specifically where it has a cusp) or supersingular (i.e. has Hasse 
invariant zero). The first is easy to decide; the second is decided by a recent 
theorem of Deligne: The curve Eq is supersingular at p iff p divides Ep_ a (q), 
at least if p => 2 or 3; cf. Katz, or [S 2]. 

I should perhaps point out that an elliptic curve is ordinary at a prime 
p iff its formal group is of height one there; this suggested my "ordinary K- 
theory" terminology. 

If the modular invariant j(E) of an elliptic curve E is rational, then results 
of Neron imply that the curve has an essentially unique defining relation with 
integral coefficients; thus the associated formal group law is itself defined over 
7Z and results of Cartier, Honda, and Hill connect that formal group law with 
the ~-function; this occurs in Example C. 

w 6. Differential Operators 

In this section we show that the genus PD of the Introduction can be interpreted 
as the index of a differential operator;  there is a similar interpretation for the 
genus pq constructed from the elliptic curves of the preceding section. 

[These interpretations are in no way explanations of the integrality properties 
of these genera; rather, they imply that certain differential operators, a priori 
rather mysterious, have some sort of topological significance. I don't  know what 
that might be.] 

We first describe the notion of a universal elliptic operator (for almost- 
complex manifolds). 
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6.1. Definition. Let T={zelEJ Jz l=l}  be the circle group, acting as usual on 
the complex plane 112: zeT, we~--~zwe02; we will denote this representation 
by L. 

An element e of the equivariant K-group Kr(L) (formed with compact sup- 
ports) is (provisionally) a universal elliptic operator for almost-complex mani- 
folds. In particular, the Thorn isomorphism (PL: Kr(P t) ~ Kr (L  ) sends 1 eKr(p t) 
to a class ~oL(1) which we call the universal Dolbeault operator. Our first object 
is to justify this terminology. 

6.1.1. Let U(n) denote the unitary group, acting in the usual way on L"; let 
T" denote a maximal torus. The Borel map 

Kv(.)(L" ) ~ K T . ( L  n) = KT(L)@K(pt) ... @K(poKT(L)  (n factors) 

is an injection onto the symmetric elements. Consequently ~ |  | c~ defines 
an element ~ | "e Kv(,) (L"). 

Now let M be a compact closed almost-complex manifold, of real dimension 
2 n. Then there exists a principal U(n)-bundle P over M, and an isomorphism 
of P x v(,)L" with the complex cotangent bundle of M, inducing a map 

Kv(.)(L") ~ Kv(.)(P x 12)= K(P x v(.)L")=K(T*M). 

Applying this to the element e| above, we obtain an element c~M~K*(TM ). 
Thus we can construct in a canonical way (the symbol of) an elliptic operator 
on any such M. In particular this construction constricts to ~oL(1) the standard 
Dolbeault complex of M. 

6.1.2. Definition. ~-ind(M) is the index of ~M; it is a well defined element of 
K (p t). 

Proposition. c~-ind: ql*(p t )~  K (p t) is a ring homomorphism. 

Proof That e-ind is a cobordism invariant follows from the index theorem. 
That the resulting map is a ring homomorphism is immediate. 

6.1.3. Corollary. Every eEKT(L ) determines a formal group law on K(p t)=2~. 

We are interested in modifying this construction, which yields rather simple 
formal group laws. 

6.1.4. Definition. Let I r ~ K r ( p t )  be the kernel of the natural map Kr(pt) 
K(p t). We write/~r(L) for the completion of KT(L ) in the Ir-adic topology. 

To any ~e/~r(L) we can associate an element e| of Kv~,)(L") as above; the 
bundling construction then associates to any closed compact almost-complex 
M, an element in K(TM). Note that no completion occurs in this last group. 

Consequently we can extend our definition, and regard elements o f / ( r ( L )  
as universal elliptic operators. To each class ee/ ( r (L) ,  we again associate a 
map c~-ind: ~//* (p t ) ~  K (p t)= 2~; this gives a much larger family of formal group 
laws. We can identify these laws with the help of 

6.1.5. Theorem (Atiyah-Segal). The natural map O: Kr(p t) --* K (B T)= K (IEP( oe )) 
becomes an isomorphism on Ir-adic completion. 
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Now a generator of K(ClP(m)) determines an orientation for complex K- 
theory; if X is the standard orientation class, then the units o f / ( r ( p t )  are 
put in 1-1 correspondence with orientations on K by the map e~---~0(e)X. 

6.1.6. Proposition. The formal group law determined by the orientation O(e)X 
agrees with the formal group law defined by the operator C~q0L(1)e/(T(L ). (C~ is 
a unit of/~r(P t).) 

Proof. The operator erpL(1) is also a Thom class; by Adams' lemma, these 
are in 1-1 correspondence with orientations. 

6.1.7. Corollary. Let 4: K * ~ K *  be a morphism in S .  Then t-indl(M) 
= q)L(X -1 ~- I(X))-- ind (M). 

Proof. Here ~': F1 ~ igr is the induced map of formal group laws, and ~'-1 is 
its formal inverse. Note that CpL(X -1 ~-l(X))e_Kr(L)@r(poKl(pt); we have 
extended the index map K(T*M)-- ,K(pt )  linearly to a map 
K(T* M)@K(p0 g l  (P t) "-+ Kj  (p t). By the preceding proposition, the formal group 
induced by q~z(X -1 ~-~(X)) is the same as that induced by the orientation 
~'-I(X) on K*(-)@K.(poK~(pt ). By Corollary2 to the main theorem, this 
theory is equivalent, as an oriented theory, to K T. Then the two formal group 
laws coincide, and so do the associated genera. 

6.2. An Application. In Example B of the Introduction, we introduced a cohomo- 
logy theory h* over the groundring Z[D-1] ,  whose associated formal group 

law has logarithm ~ \ n /  n and whose associated genus PD sends CIP(n-1)  
n->t 

to the quadratic symbol (~ ) .  We use the corollary above to construct a Z/D7Z- 

equivariant elliptic operator, whose index is the invariant Po. 
We will use K*-theory, which is the K-theory of the category of vector 

bundles with an action of the cyclic group 2g/D2g; we will apply this only to 
spaces with a trivial 2g/D2g-action, in which case K*(X)~-K*(X)|  
= K* (X)|  R (D), where R (D) is the representation ring of Z/DZ; we can identify 
it with 2g [co], where co is a primitive D th root of unity. X" 

Now the formal group law F z with logarithm #x(X)= ~ z(n) is actually 
defined over Z. We prove ,__> 1 n 

6.2.1. Proposition. There is a morphism 4: Fz~ll~m of formal groups over R(D); 
it becomes an isomorphism when D is inverted. 

Proof This is actually a result of Honda [-13, Theorem 4] but we have translated 
it over R(D). 

6.2.2. We construct a virtual character of the group Z/D7Z, which is central 
to the proposition above. 

Let D* denote the group of units in the ring Z/D2g; it is cyclic of order 
rp(D), where (p is Euler's function, and its elements can be identified with the 
mod D residue classes of integers which are relatively prime to D. The quadratic 
symbol determines a homomorphism )~: D* --+ { _+ 1}. 
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Let 9 denote the algebra of complex-valued functions on D*. If co is a primi- 
tive D th root  of unity, then we define a map T: a ~ a  by (Tf)(n)=co"f(n), for 
neD*, fEg. Clearly TD=I ,  so 9 becomes a representation of Z/D7Z. Now let 
8z: a ~ 9 be the map defined by ez(f)(n)=x(n)f(n),  neD*. Evidently ez 2 = 1, and 
ex commutes with T, so the representation _a splits into 9+, 9 - ,  which are the 
appropriate eigenspaces of ez" We are interested in the virtual representation 
_(3 z = [a+] -- [a_]  ER(D). 

6.2.3. Lemma. The character a z(n)=z(n ) T x, where we have extended Z to a func- 
tion from 7Z/D7Z to C, and T z satisfies Tx 2 = Z ( - 1 ) D .  

Proof. This amounts to evaluating a Gauss sum. The representation a decom- 
poses into one-dimensional representations; if b is the standard such representa- 
tion, in which 1E7Z,/DZ acts by co-multiplication, then 9 =  @ b | and 

(k, D) = 1, k modD 

evidently 9:~ = @ b | The trace of n~E/D~E on b is just co", so 9+ 
z(k) = + 1 ,kmodD 

(n)= ~ co,k; hence a_z(n ) = ~ z(k)co "k, and we can refer to Lang, [IV w 3]; 
z(k) = -+ 1 kmodD 

but beware typos. Thus 9z(n)=z(n)~z, zz=~x (k )co  k being a square root of 
Z(--1)D. 

6.2.4. Corollary. a z is an eigenfunction of the Adams operations; O" az = Z(n) Oz. 

6.2.5. Definition. ~(X)= 1--2_x(az)ER(D)WX ~. (Here AT(a)= ~ An(a) T n is the 
total A-operation on aER(D)). .~o 

Evidently ~ ( X ) = a z X + h i g h e r  order terms becomes invertible when D is 
inverted. (It suffices to observe that the map R (D) -+ 2~ [co] evaluating a character 
at I is an isomorphism; hence a x is sent to "rx, which is a square root  of D, 
invertible if D is.) 

We have to see that r maps F z to ~m; it is easier to show that ~o(X)=_a~-~(1 
- A _ x ( g x ) ) = X + . . .  maps F z to ~n,,z(X, Y ) = X + Y - % X Y ;  this statement is 
equivalent, due to the isomorphism [axJ (X) = ctzX, [_az]: ~,,.z ~ ~,," 

Thus it suffices to see that ~o takes the logarithm of (l},,,z to the logarithm 
of Fz, or equivalently, that it does so on the differentials. Now the logarithm 

. - 1  X n  d X  
of ff~m,z is ~ a z - - ,  SO its differential is - - .  We compute 

n>_ l n 1 - -a zX  

d~o(X) _ a x l d 2 - x ( a z  ) _  a;ldlog2_x(az)) .  
1 - - a  z ~ o ( X )  2 _ x ( a z )  - - 

Using Adams' original definition of the ~h', we have 

d Co(X) 
1 - a z ~o ( X )  

"~'OI; 1 ~ @n(a-z) xn-1  d X = 9 ;  1 Z 9 z ' ) ~ ( n )  x n - I  d X  
n>=l n>_l 

= Y z(n)X"-' dX=d~z(x). 
n>=l 
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6.2.6. Corollary. Let J~f~z/Dz• r(P t) be the unique element such that 2_~(%)= 1 
- g z  X, with X the standard generator. Then ~OL(~)~Kz/rje• ) is a universal 
7Z,/D2g-equivariant operator; its index on a closed almost-complex manifold of 
real dimension 2 n, with trivial 2g/D TZ-action is pc(M) a~x. 

We can give a similar construction for the genera pq: Jll*~A~ of w The 
function co(t), tslE was defined there; it is holomorphic in the unit disk around 
t = 1, with a simple zero there, and is periodic: co(q t)= co(t). Expanding about 
X =  1 - t ,  we obtain co= E c~ ~X~. 

n > l  

6.2.7. Proposition. The element (PL CO E-~ T (L) @z2g ~qIl defines a formal family of 
elliptic operators in an obvious sense; if M is almost-complex, and closed, then 
q~L co-ind (M) = pq (M). 

Remark. One expects the con(q) to be closely related to the theory of modular 
forms. 

Appendix: On Galois Phenomena 

I want to explain briefly how the phenomena in Theorem 1 are rather reasonable 
from the point of view of Galois theory. To simplify the exposition, I will discuss 
cohomology theories taking values in the category of k-algebras, where k is 
a field of characteristic p. (Of course any cohomology has such a "mod p reduc- 
tion" defined by smashing with a Moore space, aside from incidental difficulties 
when p = 2.) 

Definition A1. Let h*, h* be multiplicative cohomology theories in k-vector 
spaces. We say that h* (resp. h*) is a form of h~ (resp. h*) if there is an isomorph- 

ism ~: h*@kk- ~ 'h~@kk- of cohomology theories, where k-is the algebraic 

closure of k. (We say that ho is a nontrivial form of h 1 if the two theories 
aren't isomorphic over k). Given h over k, we write Forms(h) for the set of 
k-isomorphism classes of forms of h. 

Theorem. There is an injective map Forms(h)~ H 1 (Gal(/(/K); A(h)). 

The target of i is just the first cohomology of the Galois group of the closure 
of k, with coefficients in a certain (in general nonabelian) group A(h) with a 
Gal (k'/k)-action. 

Definition A2. Let h be a cohomology theory over a field k; let A(h) denote 
the group of k--algebra of automorphisms of the cohomology theory h@k- (we 

k 

don't require that they preserve gradings). If geA(h), and aeGal(k/k), we define 
g~ to be the composition 

h@k E~t| ' h @ k k  g ' h@kE1| h@kk. 

Thus A(h) has a natural Gal(k-/k)-structure. 
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The map i is defined as follows. Let hi be a form of h; there then exists 

an identification e: h@gk- " , h l @ k ~  The map is: Gal(k/k)--*A(h) defined 

by i~(a)=c~-l-e" satisfies i~,(a'c)=i~,('c)(i~,(a)) ~, i.e. it lies in the set 
Z~(Gal(~/k);A(h)) of cocycles. The set Hl(Gal(k/k); A(h)) is the quotient of 
this set under the equivalence relation c~7-1c7 ", for TEA(h). Thus i, maps 
to the trivial class in H ~ iff there exists an automorphism 7 of h@kk- such 
that a7: h@kf--~hl@kk is defined over k; in that case, h~-hl over k, and 
the result follows. 

To classify the forms of a given theory, we need to know A(h). 

Example H. Let h=H*( - - ; l ip )  be ordinary cohomology, k-=Fp be the union 
of the finite fields of char. p. 

Let F be an indeterminate; the ring k((F)) is a formal power series ring, 
except that F doesn't commute with k; if 2~k, then 2PF=F ~. It can be shown 
(cf. Atiyah-Hirzebruch) that A(H) is the group of units of the ring k((F)). The 
powers of the maximal ideal in k((F)) give a family of normal subgroups of 
/t(H), such that the quotient of one subgroup in the filtration by the next is 
either a copy of k, or k*; the galois group Gal(k-/k) acts in the apparent way 
on k((F)). It follows by induction that H ~ (Gal(k-/k); A(H))= {0}; ordinary coho- 
mology has no nontrivial forms. 

It's easier to prove this by obstruction theory. 

Example U. Let h* = 0//* ( -  ; Fp). Then A(q/) = F(k) is the group of formal series 
ai T *, with a~k, a t =~0; the group operation is composition. The filtration 

i=>l 

of power series by order gives a filtration of F(k), whose quotients are as above: 
either copies of k or k*. Thus complex cobordism has no nontrivial forms. 

Example K. Let h * = K * ( - ; F p ) .  Then the automorphism group A(K)~Z*,  the 
p-adic units; if c ~ * ,  the induced map on K 2" is a - "  O ~, where O ~ is the p-adic 
limit of usual Adams operations, cf. Atiyah-Tall [5]. Now Gal(k-/k)=2~ acts 
trivially on this group; there are no new automorphisms if we go to Fp. Moreover 
A(K) is abelian, so H~(Gal(k/k);-4(K))=Homr ;~*)=~*. Thus, a priori, 
there are lots of possible forms of K-theory. 

Corollary to Theorem 1. All the possible forms of mod p K-theory actually exist. 

Remark. When studying Galois cohomology in general, it is always easy to 
see that an invariant analogous to i gives an injective map from the forms 
to some H~; in many cases the map is actually a bijection, but it takes some 
construction techniques to prove this. These techniques are lacking for spectra, 
but the examples of this paper suggest that they might exist [cf. S 17]. 

Historical Remarks 

This paper was written in 1973, but it has had to wait for the discovery of 
a geometric interpretation [by Ed Witten, with the aid of Peter Landweber, 
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Serge Ochianine, the Chudnovsky brothers, Doug Ravenel, Larry Smith, and 
Bob Stong, cf. [$9]] to find an audience. In this supplementary bibliography 
I have tried to compile a sampling of references for relevant work that has 
appeared in the meantime. 

The original motivation for this paper came from classical questions about 
integrality properties of characteristic classes of smooth manifolds; since that 
subject has been greatly deepened by the discovery that many classical cobord- 
ism invariants are but the constant terms of new invariants (of physical interest, 
e.g. the index of a Dirac operator on loopspaces) taking values in rings of 
modular forms, it may be worth making some remarks of a general nature. 
Thorn showed that a cobordism class is in some sense determined by characteris- 
tic numbers, which are geometric invariants of a type (roughly, integrals of 
curvature tensors) familiar to differential geometers. In particular the (Chern 
- Hurewicz - T h o m  - Boardman) monomorphism 

~, (MU) --+ H ,  (MU, 7Z) 

defines an isomorphism of the complex cobordism ring with an algebra of Chern 
numbers (which, as an algebra of symmetric functions, is relatively well - under- 
stood) after tensoring with the rational numbers. In the dual language of algebra- 
ic geometry we can reformulate the fact locally: the induced map 

Proj H ,  (MU, Z) ---> Proj ~, MU 

of schemes over SpecZ is an isomorphism above the generic point, but otherwise 
has quite complicated behavior. Integrality theorems are interesting precisely 
because of the (arithmetic) difficulty of understanding this map over the finite 
primes, e.g. in terms of differential geometry. The most compelling interpretation 
of these integrality theorems comes from formulae expressing the indices of 
differential operators as characteristic numbers; by providing us with new classes 
of interesting differential operators (suggested by analysis on the free loopspace), 
elliptic cohomology has revitalized this classical subject. 

It would probably also help to make some historical remarks. This paper 
was written after Deligne had reduced the Ramanujan - Petersson conjectures 
to those of Weil, but before he proved the latter. It is also a product of the 
days when the existence of a product in singularity cobordism was a controver- 
sial subject, and it was roughly contemporary with the revolution in the theory 
of foliations which introduced topologists to notions of continuous variation 
in homotopy theory. Nowadays we know much more about homotopy theory 
IS 16, S 21]; in particular we know that the stable homotopy category has infinite 
Krull dimension, in a certain sense IS 5], and can thus support 'modular' behav- 
ior of arbitrary depth. [Thus elliptic cohomology gets us down to codimension 
two IS 14].] Fifteen years ago this idea was perhaps less easy to believe; this 
paper was written in the hope that its simple constructions, based on nothing 
more complicated than Landweber's exact functor theorem, would convince 
its readers that homotopy theory might be at least as deep as arithmetic. In 
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the end, the editors of journals to which this paper was submitted did the 
author the favor of forgetting that he might have been capable of so regrettable 
a lapse [S 18]. 
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