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$1. INTRODUCTION 

IN [I], Adams and Margolis prove the following theorem about modules over the mod 2 

Steenrod algebra: Let ICI be a module which is bounded below, then !M is a free module if and 

only if H(&f, ai) = 0, where {a,} is a collection of elements in the Steenrod algebra with 

(ai)’ = 0. 

In this paper we generalize this theorem to the modp Steenrod algebra. To do this there 

are several problems to be overcome. Firstly, a correct theorem must be formulated. This is 

done by finding elements a, in the Steenrod algebra with (ai)” = 0 and defining H(fif, ai) = 

Ker ai/Im(ai)P-‘. Secondly, the proof given in [l] does not seem to generalize to the mod p 

Steenrod algebra and hence we had to find a proof that did. Finally, the reduced power 

operations only generate a subalgebra of the modp Streenrod algebra and we had to extend 

our results from this subalgebra to the full Steenrod algebra. 

In Section 2 we state our results precisely and give the proofs in the following sections. 

$2. STATEMENTS OF RESULTS 

Let d denote the mod p Steenrod algebra (including p = 2). Let ‘d c & be the sub- 

algebra generated by the reduced power operations. Let P,(r) = @**...* r. O*.*.), with 

the r in the rth place, using Milnor’s notation [4]. Let P,” = P,(p?. It is easy to check that 

(Pt)p = 0 ifs < t. We can now state our first main theorem, which is the same as the theorem 

of Adams and Margolis when p = 2. 

THEOREM 2.1. Let M be a graded left ‘sI-module which is bounded below. Then M is a 

free ‘d-module if and only if H(M, P,? = 0 for all s -C t. 

Let p > 2. Let Qi E &’ be defined by Q, = p and Qi+, = [Yp’, Q]. Let E c & be the 

exterior algebra on the Qi’s. & is generated by the subalgebras ‘.& and E (see 141). Our 

second main theorem is the following one. 

THEOREM 2.2. Let M be a graded left sd-module which is bounded below. Then M is a free 

.&-module ij‘and only if M is a free ‘&-module and a free E-module if and only if H(M, P,“) = 0 

for all s < t and H(M, Qi) = 0, all i 2 0. 

*The first named author was partially supported by NSF Grant GP-29045 and the second named 
author was partially supported by NSF Grant GP-28682. 
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AS an application of our results, we note that the analogue of the main theorem of 

[6] concerning coalgebras over the modp Steenrod algebra is an immediate corollary of 

Theorem 2.1 or 2.2 and the proof given in [6]. 

Let A’ = A,’ be the subalgebra of & generated by P,‘, P,‘, . . . , Prtwl, and Pzto. Let 

A = A, be the subalgebra of & generated by A’ and P,‘. The structure of A’ and A is given by 

the following proposition. 

PROPOSITION 2.3. 

(a) lfr, < pfr then P,(r&P,(r,> = [(rl + rJ!/r, !r2!]Pr(rl + r,), 

(b) ifr, and r2 <p*, then [P,(r,), P,(r,)] = 0, 

(c) ifr <pf, then (P,(r))” = 0, 

(d) if r 5 p’, then [Pt(r), P,,‘] = 0, 

(e) if 1 5 r < pr, then [P,‘, P,(r)] = P,(r - l)Pz,O, 

and 

(f) (P13P = P,@’ - @ - l))(P,,O)@. 

Relation (f) forp odd will be proved in $6; the rest of Proposition 2.3 is an easy exercise 

in manipulation with Milnor matrices [4]. 

It follows immediately from Proposition 2.3 that A,’ M Zp[Pro, . . . , P,‘-‘, Pzto ]/(P1o)p, 

. . . , (P,‘-‘)p, (Pzto)I, and that the extension 0 +A” + A, is determined by relations (d), (e), 

and (f). Note that A.,//A,’ z Z,,[P,, ]/(Pt’)p. The algebra A1 has been studied by Liulevicius 

[2]. The following theorem is the main step in the proof of Theorem 2.1. 

THEOREM 2.4. Let M be a left A,-module which is bounded below. If M is free as a 

A,‘-module, then M is free as a At-module. 

D. W. Anderson (unpublished) has given a general method for proving theorems like 

2.4. This can be used to prove Theorem 2.4 for p = 2, but as yet we have not been able to use 

this method to prove 2.4 for odd primes. 

Let K be a finite dimensional Hopf algebra over a field. Let K’ be a Hopf subalgebra. 

Assume K’ is (n - 1)-connected and that K is generated by K’ and z E K. Assume 9 = 0, 

and zqml # 0. The following theorem is the main step in the proof of Theorem 2.2. 

THEOREM 2.5. Assume /zqml 1 < n. Let M be a K-module which is bounded below. IfM is 

free as a K’-module and H(M, z) = 0, then M is free as a K-module. 

In 53 we give some elementary properties of differentials of height q, in &l we prove 

Theorem 2.4, in $5 we prove Theorems 2.5, 2.1, and 2.2, and in $6 we prove 2.3(f). 

$3. HOMOLOGY 

Let k be a field, and let A = k[dj/(d4). If M is a left module over A, define, for 

lli_<q-1, 

H,(M, d’) = Ker(d’: M,, + M,+iI,I)/Im(d’-‘: Mn--(q-i)/dl + M,). 
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The following four propositions, which show that these homology groups are similar to the 

usual ones, are all elementary and their proofs are left to the reader. 

PROPOSITION 3.1. Let M be a left A-module rbvhich is bounded below. The following four 

conditions are equicalent : 

(a) M is a free A-module, 

(b) H,(fif, d) = 0 for all n, 

(c) H,(il/l, d’) = 0 for some i and all n, 

(d) H,(izf, n’) = 0 for all i and all n. 

PROPOSITION 3.2. Let0 -+ M’ -+ M ---* .&f” -+ 0 be a short exact sequence of left A-modules. 

Then the follo\tmg is a long exact sequence: 

. . . -+ H&M’, d’) -+ H,(M, n’) + H,(M”, d’) 

+ H,+t,,JM’, d4-‘) + H,++,,(M, d4-i) -+..- 

PROPOSITION 3.3. Assume char k 14. Let f : A/I + N be a map of left A-modules. Then 

f * : H,(‘!f, d) --j H,(N, d) is an isomorphism for all n @“and only tff*: H,(M, d’) + H,(N, d’) 

is an isomorphism for all n and all i, 1 I i I q - 1. 

64. PROOF OF THEOREM 2.4 

We first do the case p = 2. The proof for p odd is a generalization of this but is some- 

what complicated due to certain technicalities, but the basic ideas already appear in the 

proof for p = 2. 

We first prove a combinatorial lemma and a corollary. 

LEhfhfA 4.1. Let {A,) be a collection of non-empty subsets of (0, 1, . . . , t - l}. A, = 

i,, < ‘.. < i,,. Then there is a non-empty subset I = i, < . .. < i, of (0, 1, . . . , t - 1) such 

that I n A, # 0 all Ty and there is a p such that I n A, = iB, = i,. 

PROPOSITION 3.4. Let ‘A = A/d’A, 0 < i < q. Then 

To&, $A, M) = H,-pr,d,(M, dp-‘) s > 0 

and 

To&+,, ,(‘A, M) = H,-(p,+i,ldl(M> d’), s 2 0. 

Proof Put all A, with IA, [ = 1 into Ii. Assume we have constructed 1, such that 

1, n A, # 0 for all u with IA, 1 I n and that 1. A A,” = iIn = iB,, for some p, with 

1 A,_ 1 I n. I1 satisfies this for n = 1. To show that we can construct I,+ 1. Consider all A, 

such that (A, 1 = n + 1 and 1, n A, = 0. If i,, > i,,, then find &, # A,” and add to Z,, to 

form 1,‘. Do this for all such A,. Now consider all A, such that 1”’ n A, = 0 and IA, I = 
n+l. Let A,=A,n{O,l,..., i,,,-l>c{O,l,,.., &,-I}. Byinductionon t, wecan 

find 1 and A, satisfying the lemma. Let I,,+ 1 = i,’ u f and let /I.+ i = /I. This induction works 

if in, < t, i.e. if I,, # 0. If I,, = 0 and there exist A, with IA, [ = n + 1, let I,+, be the 

smallest il, in these A, and some element from each of the other A, which is not in this A,. 

This can be done because of the equal cardinality. 
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COROLLARY 4.2. Let Al’ be a free A,‘-module rsith ail elements of degree 2 0. Assume 

I%J’ cl@, a &module. Let ml’ be a non-zero decomposable in .W such that lm,’ 1 -c lPzro I. 

Then there is a E. E AI’ such that dP’m,’ # 0 E M’. 

Proof. m‘, = Z&m,, with [&I > 0. Assume j., are nominals i., = P,‘=l . . .I’,‘=’ and 

let A, = {iz,, . . . , i,,}. Note Pz,’ does not appear as lml’ j < jPzto I. Here m, are a A,-base 

for M’. Apply the lemma and let i. = Pti’ . . . P,‘*. Then j.P,‘ml’ = Ptl . . . P,“P,‘(E &m,) = 

P,(2” - l)P,” . . . p i=pz,Oj_B ms + pyi2 . . . prispIr(plil)? . . . ms + other terms # 0 in M’ as all 

terms with P,’ in them contain (P,‘)’ for some j. 

Proof of 2.4 for p = 2. Let M be a A,-module which is free as a A,‘-module. CC’e must 

show M is Al-free. Embed M in its injective envelope (see [3]). That is, M c 1v with R 

a A,-module which is injective and the extension is essential; i.e. if ?i c R and iV # 0, then 

N n M # 0. We wish to show that M = l?? as injectives over A, are free [j]. Since l&7 is 

free, M is bounded below, and A, is finite dimensional, we see that IV is also bounded below. 

As A,‘-modules, M is free hence injective, hence fi = M @:tl’ as A,‘-modules with all 

three modules free over A,‘. Let m’ # 0 be an element of minimal dimension in M’. 

P,‘(m’) = ml @ m,‘. Note ITS ,’ # 0 or we would have (P,‘)‘m = P,‘m, E &J and (P,‘)*m = 

P,(2’ - l)P,,‘m # 0 E M’ as in’ must generate a free A,‘-module in M’. Further, 

P,(2’ - l)P2,0P,‘(nf’) = P,(2’ - l)P,,Om, @ P,(2’ - l)P,,“~f,’ 

(because P,(2’ - l)P,,O E A’). This must be in M as P,(2’ - l)PzroP,’ is the top class of A, 

and (some multiple of m’) E M by the essential extension property. Hence, nzl’ is A,‘-decom- 

posabie in M’. By Corollary 4.2, there is an element 1. E A,‘, 1;. / > 0, such that %P,*m,’ E M’ 

and is non-zero. Then E.P,‘P,‘ni = ;IP,‘nz, @%P,‘m,’ = i.P,(2’ - I)PzlOm’ = 0, a contradic- 

tion. Thus m’ did not exist and M = R. 

proof of 2.4 for p odd. Let M c R be the A,-injective envelope of M. As A,‘-modules, 

R = M @ M’ and we can write (P f)p-l * m = m, @m,‘, where 111’ is a lowest dimensional 

element of M’. m,’ # 0 as before and 

PJP’ - 1)(P2,0)p-‘(P,‘)p-1m’ = P,(p’ - l)(Pz,o)p-‘m, @ P,(p’ - 1)(P2,0)p-1(/~~1’) E M 

by the essential extension property. Hence m, ’ is decomposable and non-zero. The following 

combinatorial lemma is now needed. 

LEMMA 4.3. Let {A,} be a collection of weighted nonempty, subsets of (0, 1, . . . , t - l}, 

\cjtfl each i=, hatGzg a weighting I p - 1. A, = i,,“+, . . . , i,,“as. Then, there is a non-empty- 

weighted subset I = iI“‘, . . . , i,“’ of (0, 1, , . , t - 1) s&l that I u A, has an element of 

\ceight 2 p for all a and there is a p such that I u A, has only ip, = i, of weight 2 p and that 

has weight p. 

Proof. The proof of Lemma 4.1 generalizes almost directly. After forming Z,‘, consider 

those A, with IA, I = n + 1, I,’ u A, having weights I p - 1, and iz, = i,_. If such exist, in- 

crease the weight of i,_ in Z, and change A,,, . Then continue the proof as before. 

We now use the same argument as in the mod 2 case to see that there is a 1. E A’ such 

that ,IP,‘ml’ # 0 in &J’. However, since P,(p’ - (p - 1)) = aP,‘(P,’ . . Prf-‘P,,o)p-l with 
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a # 0, it may not be true that j.(P,L)pnz’ = 0. Thus, we must discuss the case when ,! = 

(P,‘)‘, 1 2 i I p - 2. Recall that ~1~’ = X&m,. If i., has f’,‘, . . . , Pttml with weight <p - 1 

or PIro with weight <p - 2, then we can multiply E. by an appropriate P,’ or Pzro so that 

P,‘i.P,‘m = 0 but P,ii.P,‘n71’ # 0. Hence, this modification finishes the proof unless ,$ = 
(P,O)P_ ‘(P,’ . . . P,r-1)p-1(P2to)p-2. However, then IL, j > j(P,‘)p-l j unless i =p - 2. 

Furthermore, if this i., appears in pi’, we can use the argument on /?’ to reach our contradic- 

tion unless this i., is the only term in the sum. 

Thus, we need only show a contradiction if 

(P,ylm = m1 @ (P,O)‘(P,’ . . . Plf-1)qP*,o)p-%7g. 

Apply (P,“)p-2P,’ to both sides of this equation to see that 

(P,O)p-‘P,(p’ - (p - l))(Pz,o)p-lm’ = 2(P,OP,’ . . . Ptf-1P*to)P-b7p. 

Since P,(p’ - (p - 1)) = aP,‘(Ptl .. . Prf-‘)P-‘, we see that any’ = 2m,, a # 0 as M’ is a 

free A,‘-module and t~i has minimal dimension. 

Write P,‘m’ = m, @ m2’. Then 

P,(p’ - (p - I))(P2ro)P--m’ = Ptf(P,f)p-lm’ = 

P,‘ml + i [(P,“)2(P,’ . . . P,‘_ ‘)‘- l(P, ,“>p- %z2 + 

(P,O)‘(P,’ . . . P,‘-‘)p-‘(P210)p--2m2’ + 2P,O(P,’ . f. P,‘-‘P2,0)p-‘m’]. 

Looking at the term in the summand M’, we see that 

(P,O)2(P,’ . . Pt~-l)p-1(Pz*O)p-2r~7*’ = 0. 

Furthermore, n7?’ # 0 or otherwise we would have /nl’ = 0. Since IP,,’ 1 > /m2’ 1 - jm’ I, 

we have (P,‘)*(P,’ . . . P,t-1)p-1m2’ = 0. Under these conditions we prove below that there 

is a >. E A’ such that /1.(P’)p-2m2’ # 0 E M’ and that 

I.(P,O)‘(P,’ . * * P,‘-‘)P-yP2ro)p-2 = 0. 

Applying %(Pl’)P-2 to the equation P,‘m’ = ml @ m2’, and looking at the component in M’, 

we obtain l(Pr*)P-lm’ = 0 = l.(Prr)P-2m2’ # 0; a contradiction. 

To construct such a L, let m2’ = D., m,, where I, are monomials in A’ and mJ are a 

A’-basis of M’. We need the following formulae which are easily proved. Let 

i., = (Ptil>ul * . . (Pti-)u., i, < . . . < i, 

Case 1. If i, > 0, then 

(prf)P-2]_z E b(pto)‘(p,’ . . ptil-1)P-1(pti1)ul-1(pIi2)UZ . . . (p,“)“S(p,>)P-2 mod (p10)3, 

where b $ O(p). 

Case2. Ifi,=O,s>1,andu,=p--l,then 

(P,‘)p-22., E bP,“(P,iz)“2 . . . (PtiS)u,(Pzto)P-* mod (P,‘)‘. 

Cnse3. Ifi,=O,s>l,andO<u,<p-1,then 

(prf)P-.?j_l = h(p,O)P-*-u1(p,l . . . priz-l)P-1(pIi2)UZ-l(piJ)u~ . . . 

(P,iS)uJ(P2to)P-” mod (Pto)p-l-ut. 
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Case4. Ifi, =O,s=O,andu,=p- 1,then 

(P,‘)p-2j.l = 6P,“(P2,0)p-’ mod (P,‘)‘. 

Case 5. If i, = 0, s = 0, and zli = p - 2, then (P,f)P-2j.3 = b(P2ro)P-2 mod P,‘. If case 5 

occurs in the sum m2’ = I;i,m,, choose E. = (P,‘)P-‘. If case 5 does not occur, and case 3 

with II‘ =p - 2 does, choose i. = (P,“)p-1Pti2. If case 5 and case 3 with z[i =p - 2 do not 

occur, and case 2 or 4 do, choose i. = (P,“)p-‘. If cases 2, 4, 5, and case 3 with 11, = p - 2 

do not occur, and case 3 with rli = p - 3 does, choose ;. = (Plo)p-2Pti’. If cases 2, 4, 5, and 

case 3 with pi 2 p - 3 do not occur, and case 1 does, choose i. = (P10)p-3PIi1. Finally, if only 

case 3 with II, <p - 3 occurs, choose i. = (P1’)uL+’ Piz, with the largest 21~ for the different 

case 3’s. This E. has the appropriate property and proves the theorem. 

S5. PROOFS OF THE MAIN THEOREMS 

Before proving 2.1 and 2.2, we first prove Theorem 2.5 which is the main step in dedu- 
cing 2.2 from 2.1. 

Proof of Theorem 2.5. Recall we have K’ c K, with K’(n - 1)-connected and z E K with 

zq = 0 and ]zq-i 1 < n. Let &f be a K-module. Following the style of the proof of Theorem 

2.4, let M c ls;i, the K-injectiveenvelope. As K modules, iv = ILI @ IV’ with all three modules 

free over K’ and bounded below. Let m’ E M’ be anelement of minimal dimension. zq- ‘(m’) = 

ml @ml’. Let K‘ E K’ be the top dimentional element. Then r/zq-‘(&) E M and r/(f~ri’) = 0. 

Since !M’ is free over K’, ~ni’ is K’-decomposable in n/r’. Since lzq-l ( < n, nz,’ = 0. Hence 

zq-‘(m’) = ml andc(m,) = O.SinceH(~M,z) = O,m, = zq-‘(A),ni~M. Thus zq-l(t~z’ - fi)=O 

is R free over K, hence ff(m, i) = 0 and 171’ - ti = z(fii),ti, E M by dimensional reasons. 

Thus m’ E M, a contradiction. 

Proof of Theorem 2.1. This theorem was proved for p = 2 by Adams and Margolis [I]. 

We follow their proof with the following modifications for p odd. The results of their $2 

carry over as is; in particular a A,‘-module itl is free if and only if H(IM, P,‘) = 0 for all s 

and for P2,’ (this follows by induction from our Theorem 2.5). Most of their $3 goes over 

without change except for their Lemma 3.6 and its use in the proof of their Lemma 3.5. Let 

B be a Hopf subalgebra of ‘d such that P,*E B. Then A, c B. Assume n/r is a B-module such 

that ii/l is a free A,‘-module. Then we must show that H(M/P2,‘k1, P,‘) = 0 in order to 

complete the proof of their Lemma 3.5. By Theorem 2.4, ill is a free A,-module. Let 

E = Zp[P,,o]/(P2,0)p. Then A, is a free E-module and hence so is 1U. Hence M/P,,‘iCI is a 

free module over A,/A,E = Z,[P,‘, . . , P,‘-‘, P,‘]/{(P,“)p, . . . , (P,‘-l)p, (P,‘jp), where P,’ is 

the image of P,‘. Thus H(I\/I/P~(‘M, P,‘) = 0. 

Let ,A1 be the subalgebra of & generated by P,‘, . . . , Prrel, and E = E(Qo, Q,, . . .). 

The structure of ,A, is determined by Proposition 2.3 and the following relations (see [4]): 

[Plj, Qi] = 0 if i >j and [P,j, Qi] = Qi+tP,(pj -pi) if i <j. Note that 

]QiI=(2p-2)(p’-‘+p’-*+...+p+l)+l, 

and JP,‘] =pj(2p -2)@‘-’ +p’-’ + ... +p + 1). 
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In order to prove Theorem 2.2, we note that d//E = ‘d. Let M be an .&-module which is 

free over E and free over ‘d. By Proposition 2.2 of [l], it is enough to show that Z, OEIM 

is free over ‘d. By Theorem 2.1, it is enough to show that Z, OEM is free over ,A,//E = 

Z,[P O I E,‘.., P,‘-‘]/{(P,“)p, . , (P,‘-‘)pj. This follows immediately from the following pro- 

position. 

PROPOSITION 5.1. Let M be a ,A,-module ichich is bounded belobb*. If M is free ocer E and 

H(M, P,‘) = 0, j < t, then M is free ocer ,A,. 

Before proving 5.1, we prove t\vo lemmas, the first of which is analogous to Lemma 2.3 

of [I]. 

LEMMA 5.2. Let Al be a Z,[P I/P p @ E( Q)-module Ivhich is bounded belolv where p (P 1 # 

2 1 Q I. IfH(M, P) = 0 and H(kf, Q) = 0, then H(M/QM, P) = 0. 

Proof. Since H(M, Q) = 0, Q: M/QM + QM is an isomorphism of degree IQ [. Thus, 

H,(M/QM, P ‘) = H,, ,a,( QM, P ‘). Also, 0 -+ QM + M -+ M/QM --f 0 is exact. By Proposi- 

tion 3.2 we get a long exact sequence ... + H,(QM, Pi) + H,(M, P’) -+ H,(M/QM, Pi) + 

H,+ilp,(QM, Ppei) -+ H,+i,p,(M, Ppmi) -+“‘. Since H,(M, P) = 0, we obtain 

H,(M/QM, Pi) z Hniilp,(QM, Pp-i). 

Combining isomorphisms, we get 

K(MIQf”l, P> = H~+,P, (QM, Pp-‘) = H,+,p,-,o,(M/QM, Pp-‘) 

“H,+IP,-IQ,+(~-u,P, Q ( hf, f’) = ffn+p,~,-&WQN 8. 
Since p ]P j - 2 1 Q I # 0 and ~M/Qicr is bounded below, H,(M/QM, P) = 0. 

LEMMA 5.3. Let M be n ,A,//E @ E(Q,, Q,+ ,, . . . , Qr+,)-module &ich is bounded 

belobi,. If H(M, P,‘) = 0 for j < t and H(M, Qi) = 0 for t 2 i I t + r, then M is a free module. 

Proof. Note that p jP,j 1 # 2 1 Qi (, if j < t and i 2 t. This lemma follows from Lemma 

5.2, induction, Theorem 2.1 of [I] and Proposition 2.2 of [I] (see the proof of Theorem 2.1 

of 111). 
Proof of 5.1. Let lA: c rAt be the subalgebra generated by P,‘, . . , Ptt-l, and E’ = 

E(Qo, Q,, . . , Q,+,) with r 2 t. In order to prove 5.1, it is enough to prove Proposition 

5.1’ which is the same as 5.1 with E replaced by E’ and IA\t replaced by lA: (for example, 

see the “Proof of Theorem 3.1 from Theorem 3.2” in [l]). Proposition 5.1’ now follows 

easily from Lemma 5.3 and theorem 2.5 by downward induction, because I Qi I < IP,’ 1 = 

I + the connectivity of lA://E’, if i < t. 

s. PROOF OF 2.3(f) 

The algebra A1 was studied by Liulevicius [2] and 2.3(f) for t = 1 was proved by him. 

Instead of calculating with Milnor matrices as it is easy to do to prove the other parts of 

Proposition 2.3, we work directly with -01*, the dual of the Steenrod algebra. 

Recall that in the dual basis to the monomial basis for zZ*, 9” ‘, ‘A ...) is dual to 

51r’<2r= . . - . Hence P,’ is dual to ctpt, P,(p’ - (p - 1)) is dual to ~tP’-(P-l), and P2,’ is dual to 
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tzt. By 2.3(a), (P,,“)p-’ = (p - l)!Pl,(p - 1) = - Pl,(p - 1) and so (P,,O)p-’ is dual to 

- s’*,p-‘_ 

P,(# _ (p _ l))(p,*O)P-1 = _GjAo ,*.., PI-b-l).O.....p-I,0 ,...) 

so P,(p’ - (p - l))(Pt,o)p-’ is dual to -~IPf-rP-lfjZtP-l. Recall also that 

I~(~,) = Cr=O 5*- ipi 0 5i. 

Let ‘4’ = (1 @ * *. 0 1 @ $)( 1 0 * a. @ II/) . . . (1 @ $)$ w h ere there are (p - 1) morphisms in 

the composition. ‘I’: cc* + (a*)p. To prove 2.3(f) we must prove the following proposition. 

PROPOSITION 6.1. 

(a) ‘y(_< P’-(P-l)eP-l 
t < ) = ctP’ @ ctP’ @ - . . @ ctP’ +- other terms. 

(b) ‘I’ (other monomials) = other terms. The following lemma is straightforward. 

LEMMA 6.2 

yr(&) = 1 
il+...+i,=r 

&*P'I @&/Z @ . . . rgJ SipP” 

where 

jl=t- i, = i2 f - f. +i,,jt=t-iI--i2=i3f~~~+ip,...,jp_,=iprjp=0. 

COROLLARY 6.3. 

(a) Y(tJ = Z 1 6 -0. 0 5, @ 1 0 *** 0 1 + terms inCoking si, i # t. 

(b) Y({sJ = C 1 @ . . . @ (,P’ 0 1 @ * . . 0 t, @ . ’ . @ 1 + terms incolcing ti, i # t. 

(C) ifs # t or 21, Y(&) = terms incoluing 5i, i # t or ttpq with q > t. 

Hence, to prove Proposition 6.1, we need only consider monomials in 5, and tZt of the 

correct dimension, that is, ~r(si1)p’-pfs’1~2,p-1-s with 0 5 s 5 p - 1. 

The following lemma is well-known. 

LEMMA 6.4. Let v,(n) = the highest po\i*er of p which divides n. Let 

n=n,+ -. . + nk = C aipi, nj = C ujipi. 

Then vp((nl, . . . , nJ) = ~aji - ~ai)/p - I, where (n,, . . . , nk) = n !/nl ! . * * n, !. 

Proof of 6.1(a). By 6.3(b), Y(<,,p-l) = (1, . . . , l)<,“’ 0 . . * 0 etP* 0 rtpvl + terms 

involving~i,i#tor~ip~withq>t,where(l,...,l)=(p-1)!/1!~~-1!=(p-1)!--1. 

By 6.3(a), Y(StPc-(P-l)) = 1 0 * * * @I 1 0 (tp’-(p-l) + other terms. Hence 

y(c P’-(P-l) I [2rP-1) = - rtPt @ . . . @ t;,“’ + other terms. 

We now study Y(~t(s+1)P’-P-sf1~21P-l-S) with 1 _( s I p - 1. 

LEMMA 6.5. rfY(&tP-l- “> has more than s ones in a term and only rt’s in that term, then 

some exponent of 5, is > p*. 

Proof. This follows by dimensional reasons. If all exponents are I p’, then the dimen- 

sion of the term is 
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LEMMA 6.6. Giren an ordered (p - s)-trcple, (al. . up-J, with all Ui I p’, then the 

number of times terms of the form 

1 Q... @ s’,“’ @ ‘. . Q <,“’ @ . . . @ St ~“‘-‘@...&)l 

appear in the expansion of Y(i2 Jp-l-’ is = O(p) if 1 5 s I p - 1. 

Proof. By 6.3(b), the only possible tuple that can appear is (p’, pf, . . . , p’, p - s - 1) 

and this appears 
0 

f -times, but ‘p s O(p) if 1 I s <p - 1. 
s 0 s 

LEMMA 6.1. Given an ordered p-tuple, (n,, . , n,), \vith all nj 5 pf and felver than s 

p”s, then the number of times the term 5,“’ @ . . @ <,“p appears in the expansion of 

y(<l(s+lMt-P+s+1) 

is rO(p)if 1 <sip- 1. 

Proof. We must show v,((n,, . . . , n,)) 2 1, where 

n, + .. e+n,=(s+ l)p’-p+s+ 1. 

By Lemma 6.4, v,((n,, . . , tz,)) 2 1, unless Cj aji = ai for all i. Assume Cj aji = ai. We are 

given that aji = 0 if i > t, hence ai = 0 if i > t, and that Cj aj, = a, < s. Then 

?I 5 (S - 1)~’ + (p’ - 1) = sp’ - 1 < (s + 1)~’ -p + s + 1 = n, 

contradiction. 

Proof of6.1 (b). Consider 

y(S’t(S+l)P~-P+s+1~2fP-l-s) = y(~,(“+l)P~-P+s+l)y(gZrP-l-s) 

with 1 I s I p - 1. In order to obtain a term crp’ 0.. . 0 irp’ in the expansion, the number 

of ones in expansion of Y(~21p-1-s) must be IS by Lemma 6.5. If the number of onesin 

this expansion is s, then the ttPL @ . . @ ttP’ which appears would appear in a mutltiple ofp 

times by Lemma 6.6 because Y(<,(sfl)p’-p+s+l ) is commutative. If the number of ones is 

less than s, then the corresponding term in Y(~r(sfl)pL-p+S+l) is zero by Lemma 6.7. This 

proves 6.1 and hence 2.3(f). 

1. 
2. 

3. 
4. 
5. 

6. 
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