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§1. INTRODUCTION

In [1], Adams and Margolis prove the following theorem about modules over the mod 2
Steenrod algebra: Let M be a module which is bounded below, then M is a free module if and
only if H(M, a;) =0, where {a;} is a collection of elements in the Steenrod algebra with
(ai)z =0.

In this paper we generalize this theorem to the mod p Steenrod algebra. To do this there
are several problems to be overcome. Firstly, a correct theorem must be formulated. This is
done by finding elements g; in the Steenrod algebra with (¢,)” = 0 and defining H(M, a,)) =
Ker a,/Im(a;)” . Secondly, the proof given in [1] does not seem to generalize to the mod p
Steenrod algebra and hence we had to find a proof that did. Finally, the reduced power
operations only generate a subalgebra of the mod p Streenrod algebra and we had to extend
our results from this subalgebra to the full Steenrod algebra.

In Section 2 we state our results precisely and give the proofs in the following sections.

§2. STATEMENTS OF RESULTS

Let o/ denote the mod p Steenrod algebra (including p = 2). Let ‘of = o be the sub-
algebra generated by the reduced power operations. Let P,(r) = @@ --»7 %9 with
the r in the rth place, using Milnor’s notation [4]. Let P° = P,(p°). It is easy to check that
(P5)P = 0if s < ¢. We can now state our first main theorem, which is the same as the theorem
of Adams and Margolis when p = 2.

THEOREM 2.1. Let M be a graded left 'of-module which is bounded below. Then M is a
Jfree 'sf-module if and only if HM, P°) =0 for all s < t.

Let p > 2. Let Q; € o/ be defined by Q, = f and Q,,, = [#?, 0,]. Let E = &/ be the
exterior algebra on the Q;s. &/ is generated by the subalgebras ‘& and E (see [4]). Our
second main theorem is the following one.

THEOREM 2.2. Let M be a graded left of-module which is bounded below. Then M is a free
& -module if and only if M is a free 'sd-module and a free E-module if and only if H(M,P,5) = 0
forall s <tand HM, 0)=0,alli=0.

* The first named author was partially supported by NSF Grant GP-29045 and the second named
author was partially supported by NSF Grant GP-28682.
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As an application of our results, we note that the analogue of the main theorem of
[6] concerning coalgebras over the mod p Steenrod algebra is an immediate corollary of
Theorem 2.1 or 2.2 and the proof given in [6].

Let A" = A, be the subalgebra of o/ generated by P,°, P}, ..., P/"% and P, °. Let
A = A, be the subalgebra of & generated by A’ and P,’. The structure of A’ and A is given by
the following proposition.

ProrosiTiON 2.3.
(@) If ry < p', then P(r)P(ry) = [(ry + ro)!r e, 1P ry + 12),
(b) if ry and r, < pt, then [P,(r), P(r,)] =0,
(©) if r <p', then (P(r))’ =0,
(d) if r S p', then [P(r), P,,°] = 0,
) if l <r<p', then [P}, P(r)] = P(r — 1)P,°,
and
(€) PN =Pp' = (p ~ D)(P2P 1.

Relation (f) for p odd will be proved in §6; the rest of Proposition 2.3 is an easy exercise
in manipulation with Milnor matrices [4].

It follows immediately from Proposition 2.3 that A" = Z,[P,°, ..., P/~', P, °J/(P.°),
oo (PETHP, (Py,°)?, and that the extension 0 — A" — A, is determined by relations (d), (e),
and (f). Note that A,//A, = Z,[P, )/(P,*)?. The algebra A, has been studied by Liulevicius
[2]. The following theorem is the main step in the proof of Theorem 2.1.

THEOREM 2.4. Let M be a left A-module which is bounded below. If M is free as a
A/ -module, then M is free as a A module.

D. W. Anderson (unpublished) has given a general method for proving theorems like
2.4. This can be used to prove Theorem 2.4 for p = 2, but as yet we have not been able to use
this method to prove 2.4 for odd primes.

Let K be a finite dimensional Hopf algebra over a field. Let K’ be a Hopf subalgebra.
Assume K’ is (n — 1)-connected and that K is generated by K’ and z e K. Assume 9= 0,
and z771 # 0. The following theorem is the main step in the proof of Theorem 2.2.

THEOREM 2.5. Assume [z27'| < n. Let M be a K-module which is bounded below. If M is
Sfree as a K'-module and H(M, z) = 0, then M is free as a K-module.

In §3 we give some elementary properties of differentials of height g, in §4 we prove
Theorem 2.4, in §5 we prove Theorems 2.5, 2.1, and 2.2, and in §6 we prove 2.3(f).

§3. HOMOLOGY
Let k be a field, and let A = k[d]/(d9). If M is a left module over A4, define, for
I<i<g-—1,
H,(M, d') = Ker(d': M, —’Mn+i14|)/1m(dq—i3 Mo (g-p1a) = My).
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The following four propositions, which show that these homology groups are similar to the
usual ones, are all elementary and their proofs are left to the reader.

PROPOSITION 3.1. Let M be a left A-module which is bounded below. The following four
conditions are equiralent:

(a) M is a free A-module,

(b) H,(M,d)=0 foralln,

(©) H(M,d") =0 for some i and all n,
(d) H,M,d) =0 forall i and all n.

ProposITION 3.2. Let O — M’ — M — M” — 0 be a short exact sequence of left A-modules.
Then the following is a long exact sequence:

o H(M,dY - H(M, d) - H(M", dY)
- n+i|d|(M,r dq_l) _’Hn+i[d|(M, dq_i) -

ProposiTiON 3.3. Assume char k|q. Let f:M —> N be a map of left A-modules. Then
fw: H(M,d) > H(N,d) is an isomorphism for all n if and only if f,.: H(M, d*y = H,(N, d°)
is an isomorphism for all nand all i, 1 <i<q— 1.

§4. PROOF OF THEOREM 2.4

We first do the case p = 2. The proof for p odd is a generalization of this but is some-
what complicated due to certain technicalities, but the basic ideas already appear in the
proof for p = 2.

We first prove a combinatorial lemma and a corollary.

LemMa 4.1. Let {4,} be a collection of non-empty subsets of {0,1,...,t—1}. 4, =
I, < - <i,,. Then there is a non-empty subset I =i <---<i; of {0,1,...,t— 1} such

X

that I n A, # & all « and there is a B such that [ N Ag = iy = I,.
PRrOPOSITION 3.4. Let ‘A = A/d'4, 0 < i < q. Then
Torf, (‘A, M) = H,_ (M, d?") 5>0
and
Tors 4y, (4, M) = H,_(psriyayM, d"), s>0.

Proof. Put all 4, with |4, | =1 into /;. Assume we have constructed I, such that
I,n A, # & for all « with |4,| <n and that I, n 4y =i, =i, for some B, with
|4g, | < n. I satisfies this for n = 1. To show that we can construct 7, ,,. Consider all 4,
such that |4,| =n+1and [, 4,=. If i, >, , then find i, ¢ 45 and add to J, to
form I,’. Do this for all such A4,. Now consider all 4, such that I’ n 4, = ¢F and [4,| =
n+1. Let 4,=4,n{0,1,...,i, —1}={0,1,...,i, — 1}. By induction on 7, we can
find I and A satisfying the lemma. Let /,,; =1, U I and let B,,, = 8. This induction works
ifi, <t ie if [ # . If I, = and there exist 4, with |4, | =n+1, let I, be the
smallest i, in these 4, and some element from each of the other 4, which is not in this 4.
This can be done because of the equal cardinality.
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CoroLLARY 4.2. Let M' be a free A/-module with all elements of degree > 0. Assume
M’ =M, a Armodule. Let m," be a non-zero decomposable in M’ such that |m,’ | < |P,,°|.
Then there is a € A, such that AP'm’ #0e M'.

Proof. m'y = Zlm,, with |i;|>0. Assume 4, are nominals i, =P/ - P’ and
let 4, ={i,,,...,,}. Note P,,° does not appear as |m,"| < |P,,°|. Here m, are a A-base
for M'. Apply the lemma and let A =P/ --- P>, Then iP'm,' =P} --- PP XZ i,m,) =
P — )P - P%P, Piymy + P2 -+ PP N(P/M)? -+ my + other terms # 0 in M’ as all
terms with P,' in them contain (P,/)? for some ;.

Proof of 2.4 for p = 2. Let M be a A,-module which is free as a A,-module. We must
show M is Afree. Embed M in its injective envelope (see [3]). That is, M < M with M
a A,-module which is injective and the extension is essential; i.e. if ¥ = M and N 5 0, then
N M #0. We wish to show that M = M as injectives over A, are free [5]. Since M is
free, M is bounded below, and A, is finite dimenstonal, we see that M is also bounded below.
As A,/-modules, M is free hence injective, hence M=M @M as A,/-modules with all
three modules free over A,". Let m’ # 0 be an element of minimal dimension in M’.
Pi(m’)y=m, ®&m,’. Note m,' #0 or we would have (P/)’m’ =P 'm; e M and (P})’m" =
P2 ~ )P, °m' # 0 e M’ as m" must generate a free A,-module in M". Further,

Pr(zr - l)PZrOPzt(n’,) =P!(2t - l)PZro’ml ®Pr(2t - I)szomll
(because P,(2° — 1)P,,° € A"). This must be in M as P,2° — 1)P,,°P,' is the top class of A,
and (some multiple of m’) € M by the essential extension property. Hence, m,” is A,/-decom-
posable in M'. By Corollary 4.2, there is an element A € A/, |4| > 0, such that AP 'm," e M’
and is non-zero. Then AP'P/'m’' = AP'm, @ AP'm,’ = JP (2" — 1)P,,°m’ =0, a contradic-
tion. Thus m’ did not exist and M = M.

Proof of 2.4 for p odd. Let M = M be the A ~-injective envelope of M. As A, -modules,
M =M@®M’ and we can write (P,)? " 'm’ =m, ®m,’, where m’ is a lowest dimensional
element of M'. m," # 0 as before and

Pp' — (PO PP Im = Pp' — (P20 'my @ Pp' — (P20 () e M
by the essential extension property. Hence m,’ is decomposable and non-zero. The following
combinatorial lemma is now needed.

Lemma 4.3. Let {A,} be a collection of weighted nonempty, subsets of {0,1, ..., t — 1},
with each i, having a weighting <p — 1. A, =i, ", ..., I, "= Then, there is a non-empty-
weighted subset I=i*', ..., i/ of {0,1,...,¢— 1} such that I U A, has an element of
weight > p for all o and there is a B such that I U Ag has only iy, =i\ of weight > p and that
has weight p.

Proof. The proof of Lemma 4.1 generalizes almost directly. After forming /., consider
those 4, with |4,| =n+ 1,1, U 4, having weights < p — 1, and i,, = i, . If such exist, in-
crease the weight of #;,_in J, and change A4, . Then continue the proof as before.

We now use the same argument as in the mod 2 case to see that there is a L € A’ such
that APm," # 0 in M’. However, since P,(p' — (p — 1)) =aP (P} --- P/7'P,°)*"! with
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a # 0, it may not be true that A(P,)’m’ = 0. Thus, we must discuss the case when 1 =
(PO, I <i<p—2 Recall thatm,'=Zi,m, If i has P}, ..., P/~ ! with weight <p — |
or P,.° with weight < p — 2, then we can multiply 4 by an appropriate P,’ or P,,° so that
PP'm =0 but PP 'm,’ # 0. Hence, this modification finishes the proof unless Ay =
(POYP~H(P! - PITYPTYP,P 72 However, then |iz] > [(P)?"!| unless i=p—2.
Furthermore, if this i, appears in m,’, we can use the argument on 8’ to reach our contradic-
tion unless this 4, is the only term in the sum.

Thus, we need only show a contradiction if

@Y im = my @ (PP - PLTPTHPLP my.
Apply (P,°)P~2P," to both sides of this equation to see that
(PrO)P_le(Pt —-(p- 1))(})2‘0)17—1"1' = 2(Pt0Prl T th_IPZro)p_lnIﬂ‘

Since P(p' — (p—~ 1)) =aP (P} - P/71)?7!, we see that am’ =2my, a#0 as M’ is a
free A,/-module and m’ has minimal dimension.

Write P’ = m, @ m,’. Then
Pp' = (p— )P0~ 'm" = PPy 'm’ =

a - - -2
Plm + 5 (POt Py~ Y(P, % 2m, +

(POXP! - PITYPTH PO Pmy + 2P (P - PITIP, 0P ).
Looking at the term in the summand M’, we see that
(POXPL - P HP P, 2, = 0.
Furthermore, m,’ # 0 or otherwise we would have m;” = 0. Since [P2,°| > |my | — |m! l,

we have (P,%)*(P,' --- P,'" 1" 1mn," = 0. Under these conditions we prove below that there
is a 4 e A’ such that J(P")? ?m," # 0 e M’ and that

}.(P,O)Z(P,l ...P!f‘l)P‘l(PZIO)p—Z =0.
Applying A(P,))?~? to the equation P'm’ = m, ® m,’, and looking at the component in M,
we obtain A(P,)* " 'm’ =0 = A(P,))’ *m,’ # 0; a contradiction.
To construct such a £, let m,” = Zi,m,, where 4, are monomials in A’ and m, are a
A'-basis of M'. We need the following formulae which are easily proved. Let
A= (P oo (Pys iy < oo <.
Case 1. 1fi; > 0, then
(PP ™20, = B(PLOY (P! -+ PP U (P 2y - (P (P,, 072 mod (P,Y)’,
where b & 0(p).
Case2. If iy, =0,5>1,and u, =p — 1, then
(P72, = bP (P -+ (P )*(P,,°)? "> mod (P,%).
Case 3. Ifi, =0,5s>1,and 0 <u, <p — 1, then
(Prx)p—fl(;.l = b(P,O)”-Z_"‘(P,l . Ptiz—l)p-I(Pti;)u;—l(Pb)ug .
(Pri,)u,(PZ'O)p~2 mod (Pto)p—l—u“
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Cased. If iy, =0,5=0,and u, =p — 1, then
(P5P~24, = bP°(P,,°)? 2 mod (P,%)%.

Case 5. If i, =0,5s =0,and 1, = p — 2, then (P,")* %2, = b(P,,°)?"2 mod P,°. If case 5
occurs in the sum m,” = X}, m,, choose i = (P.°)? ! If case 5 does not occur, and case 3
with u; = p — 2 does, choose 4 = (£,°)?"1P, 2 If case 5 and case 3 with 11, = p — 2 do not
occur, and case 2 or 4 do, choose 4 = (P,°)?~2. If cases 2, 4, 5, and case 3 withu, =p — 2
do not occur, and case 3 with u;, = p — 3 does, choose 4 = (P,°)? 2Pz, If cases 2, 4, 5, and
case 3 with u; > p — 3 do not occur, and case 1 does, choose 4 = (P,°)?~*P,’*. Finally, if only
case 3 with v, < p - 3 occurs, choose 4 = (P,°)*t*1Piz with the largest u, for the different
case 3’s. This 4 has the appropriate property and proves the theorem.

§5. PROOFS OF THE MAIN THEOREMS

Before proving 2.1 and 2.2, we first prove Theorem 2.5 which is the main step in dedu-
cing 2.2 from 2.1.

Proof of Theorem 2.5. Recall we have K’ < K, with K'(# — 1)-connected and z € K with
z=0and |z27!| <n. Let M be a K-module. Following the style of the proof of Theorem
2.4,let M = M, the K-injective envelope. As K modules, M = M @ M’ with all three modules
free over K’ and bounded below. Let m’ € M’ be anelement of minimal dimension. 29~ '(m") =
m, @m,’. Let " € K’ be the top dimentional element. Then x’z7 '(m") € M and &'(m,") = 0.
Since M’ is free over K’, m," is K'-decomposable in M’. Since |22~ !| < n, m," = 0. Hence
297 Y m’) = m, and z(m,) = 0.Since H(M,z) = 0,m, = z¢" (i), e M. Thus 27~ '(m’ — ) =0
is M free over K, hence H(M, z) = 0 and m’ — i1 = z(rm,), ™, € M by dimensional reasons.
Thus m’ € M, a contradiction.

Proof of Theorem 2.1. This theorem was proved for p = 2 by Adams and Margolis [1].
We follow their proof with the following modifications for p odd. The results of their §2
carry over as is; in particular a A,-module M is free if and only if H(M, P’y =0 for all s
and for P,,° (this follows by induction from our Theorem 2.5). Most of their §3 goes over
without change except for their Lemma 3.6 and its use in the proof of their Lemma 3.5. Let
B be a Hopf subalgebra of "o such that P,'e B. Then A, « B. Assume M is a B-module such
that M is a free A,-module. Then we must show that H(M/P,°M, P) =0 in order to
complete the proof of their Lemma 3.5. By Theorem 2.4, M is a free A-module. Let
E =Z,[P,,°)/(P,,°)". Then A, is a free E-module and hence so is M. Hence M/P,,°M is a
free module over A /AE =Z [P°, ..., P/ L PAY{(PLOY, ... (PP, (PP}, where P is
the image of P,". Thus H(M/P,,°M, P") = 0.

Let ;A, be the subalgebra of s/ generated by P,°, ..., P,'"}, and E = E(Q,, Qy, -..).
The structure of |A, is determined by Proposition 2.3 and the following relations (see [4]):
[PS,0,1=0ifi>jand [P/, Q] = Q;, . P{p’ — p") if i <j. Note that

[Qil=Qp=2)(p' ' +p "2+ +p+ 1D +1,
and |PJ | =pQp =2 4+ p T+ +p+ 1)
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In order to prove Theorem 2.2, we note that of//E = "of. Let M be an «&/-module which s
free over £ and free over “o/. By Proposition 2.2 of [1], it is enough to show that Z,® ; M
is free over ‘. By Theorem 2.1, it is enough to show that Z, ® ; M is free over |A,//E =
ZJIP e, .., PUTHROY, ..o, (PSTYP). This follows immediately from the following pro-
position.

PROPOSITION 5.1. Let M be a ;A,-module which is bounded below. If M is free over E and
H(M, P/)=0,j<t, then M is free over |A,.

Before proving 5.1, we prove two lemmas, the first of which is analogous to Lemma 2.3
of [1].

LEMMA 5.2. Let M be a Z [P )/P? ® E(Q)-module which is bounded below where p |P | #
210|. If HM, P) = 0 and H(M, Q) = 0, then H(M/QM, P) = 0.

Proof. Since HM, Q) =0, O: M/OM — QM is an isomorphism of degree |Q|. Thus,
HM/OM, PY= H,, 1oi(@M, PY). Also, 0 —» QM — M — M/QM — 0 is exact. By Proposi-
tion 3.2 we get a long exact sequence - -+ — H,(OM, PY) - H (M, Py -» H(M/QM, P') -
Hoviyp(QM, PP™ > H, 1 p (M, PP"%) > - Since H,(M, P) = 0, we obtain

Hn(M/Ql\[y P‘) = Hn+i|P|(QM) Pp"i).
Combining isomorphisms, we get
H,(M/QM, P) = H,,p(OM, PP = H i \pi-10(M/OM, prh
N Hosipi-101+0-01p (@M, P) & Hoyy pyp)-210/(M/QM, P).
Since p|P| —2|Q| # 0 and M/QM is bounded below, H,(M/QOM, P) =0.

LEMMA 5.3. Let M be a AJIE® E(Q,, Cis1»---» Qus)-module which is bounded
below. If HM, PJ)y =0 forj < tand HM, Q) =0 fort < i <t + r, then M is a free module.

Proof. Note that p|P/| #2|Q;|, if j < tand i > ¢. This lemma follows from Lemma
5.2, induction, Theorem 2.1 of [1] and Proposition 2.2 of {1] (see the proof of Theorem 2.1
of {1]).

Proof of 5.1. Let \A;” = (A, be the subalgebra generated by P,°, ..., P!, and E" =
E(Qy, Oy, .-, Or4,) with r > ¢. In order to prove 5.1, it is enough to prove Proposition
5.1" which is the same as 5.1 with F replaced by E£" and ,A, replaced by A,” (for example,
see the ““ Proof of Theorem 3.1 from Theorem 3.2” in [1]). Proposition 5.1" now follows
easily from Lemma 5.3 and theorem 2.5 by downward induction, because |Q;| < |P,°| =
1 + the connectivity of \A,//E", if i < 1.

§6. PROOF OF 2.3(f)

The algebra A, was studied by Liulevicius [2] and 2.3(f) for ¢ = 1 was proved by him.
Instead of calculating with Milnor matrices as it is easy to do to prove the other parts of
Proposition 2.3, we work directly with o7*, the dual of the Steenrod algebra.

Recall that in the dual basis to the monomial basis for &*, #“ " - is dual to
&"1&, 2 -+ Hence P,f is dual to £,7, P(p' — (p — 1)) is dual to £, ~®~1) and P,,° is dual to
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2e- By 2.3(a), (P2,°Y ' =(p— 1)!1Ps(p—1)= = P, (p—1) and so (P,,2)? ! is dual to
= C-Z:Pkl'
P;(P‘ —(p— 1))(_}32:0)?-1 = — @O pt= (=100, p=1,0,...)
so P(p"' — (p — D)(Py°)?~is dual to — &P ~®~1¢, p=1 Recall also that
”r/{‘ft) = z:=0 ét—ipi ® ‘fi'

LetY=(1®@ " @11 ®@ - @) - (1 ® )y where there are (p — 1) morphisms in
the composition. ¥: a* —(a*)?. To prove 2.3(f) we must prove the following proposition.

ProrosiTiON 6.1,

(@ W(—cFerher -y cPr@EP R - @& + other terms.

(b) Y (other monomials) = other terms. The following lemma is straightforward.

LEMMA 6.2
Ye)= 3 &P ®EM® @&,

Bt =t
where
Jim b=lp=ily et iy, Jy =t <l =l Sy T A e § S iy 0,
COROLLARY 6.3.
(@ Y¢E)=ZI® " ®&E®I® - @1 + terms involving &, i # .

b)) Y&)=ZI® " REPRI®R®E® - ® 1 + terms involeing &, 1 # 1.
(c) ifs+#tor2t, V(&) = terms involving &, 1 % t or EP7 withg > 1.

Hence, to prove Proposition 6.1, we need only consider monomials in &, and ¢,, of the
correct dimension, that is, £ FD# mp¥stly po1-s with0<s<p— 1.

The following lemma is well-known.
LEMMA 6.4. Let v,(n) = the highest power of p which divides n. Let
n=n +--+nm=Xap,n=Xa;p"
Then vy((ny, ..., m)) = (Ta;; — Za)lp — 1, where (ny, ..., n) =nln! - nl.
Proof of 6.1(a). By 6.3(b), W/ HN=(,...,DEF @ - @EF@ELP! +terms

involving ¢, i # t or & with ¢ > ¢, where (I,...,)=(p—=DYI! - 1'=(p—1)! ~1.
By 6.3(a), Y& PN = 1@ - ®@1® &P 4 other terms. Hence

YELF g P s _EP @ ® &P + other terms.
We now study "P(E,(S‘"UP‘-'P‘*ﬁléhp—1—5) with 1l <s<p—1.

LEMMA 6.5. If W(&,.° "1 7°) has more than s ones in a term and only &5 in that term, then
some exponent of &, is > p".

Proof. This follows by dimensional reasons. If all exponents are < p', then the dimen-
sion of the term is

S@E—s=Dp@ T+ Hp D <P =1 =P+t p D= |27
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LEMMA 6.6. Given an ordered (p — s)-tuple, (a,.....a,_)), with all a; < p’, then the
number of times terms of the form
1®,._®‘g’tal®...®§taz®...®g’zﬂp-:®...®1
appear in the expansion of W(Z,)? "' *is =0(p) if l <s<p- 1.
Proof. By 6.3(b), the only possible tuple that can appear is (p', p'...., p'p—s—1)

and this appears (e)-times, but (8) =0pifil<s<p-1
5 s

Lemma 6.7. Given an ordered p-tuple, (ny, ....n,), with all n; < p* and fewer than s
ps, then the number of times the term M ® -+ ® &, appears in the expansion of

\P(é‘(5+1)pg—p+s+l)

s=0pifl<s<p-—1.

Proof. We must show v,((n, ..., n,)) > 1, where

ntcdn,=G6+0Dp'—p+s+1.
By Lemma 6.4, v,((n,, ..., n,)) = 1, unless £; a;; = a; for all i. Assume Z; a;; =a;. We are
given that a;; = 0 if i > ¢, hence a; =0 if i > ¢, and that I, a;, = a, <s. Then
n<G-Dp+@P'-D=sp -1l <+ Dp—p+s+1=n,

contradiction.

Proof of 6.1(b). Consider

WG DR RS LTIy L (g T I e s (g, P )

with 1 <5 < p — . In order to obtain a term &, ® - - ® £,” in the expansion, the number
of ones in expansion of W(&,”7!7%) must be <s by Lemma 6.5. If the number of ones.in
this expansion is s, then the .7 ® - - ® ¢,7 which appears would appear in a mutltiple of p
times by Lemma 6.6 because W(&,** P 7P+s+ly is commutative. If the number of ones is

less than s, then the corresponding term in W(&,C* V7 "?+s*1) is zero by Lemma 6.7. This
proves 6.1 and hence 2.3(f).
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