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 THE ADAMS SPECTRAL SEQUENCE AND THE TRIPLE TRANSFER

 By NORIHIKO MINAMI

 Dedicated to Professor Sh6ro Araki

 0. Introduction. Recently, we [Ml][M2] discovered some very strong re-

 strictions on the mod-p Hurewicz image of X'BEp A Xp, using BP-Adams oper-
 ations [N] [Ar2].

 In this paper, we apply this BP-Adams operation technique to the case of

 BV3, where V3 = (Z/2)3. Just as before [M1][M2], the calculation of BP*( A' P)

 by Johnson-Wilson-Yang [JW][JWY], based upon the affirmative solution of the

 Conner-Floyd conjecture [RW] [Mt], is used in an essential way. But the new

 ingredient here is the determination of PH*(BV3) (:= 2/2 OA. H*(BV3)) due to
 Kameko and others [K][ACH][B2]. (Of course, only those elements in BP*(BV3),

 whose Thom reduction image is contained in PH*(BV3), are relevant for our

 purpose.) Furthermore, Boardman [B2] gave a complete analysis of the composite

 PHn(BV3) ,-* 2/2 ?GL3(F2) PHn(BV3) - Ext'n+3 (Z/2, 2/2)

 and showed this latter map, defined by Singer [S], is an isomorphism. Notice that

 this composite is induced by the triple transfer

 BV3+ -- So,

 which is the stable adjoint to the composite

 Breg D-L

 BV3 - , B -8 *Q8So

 where reg: V3 -? V31 = Z8 is the regular representation, and D-L: BX8 -? Q8S0
 is the Dyer Lashof map. Anyway, this allows us to interpret our calculation in

 the context of the Adams spectral sequence [Adl][Wa].

 Now, the following is our main result.

 Manuscript received December 23, 1993; revised June 23, 1994.

 Research supported in part by a University of Alabama Research Grant.

 American Journal of Mathematics 117 (1995), 965-985.
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 966 NORIHIKO MINAMI

 THEOREM 0.1. Suppose an element in Ext3 n+3 (Z/2, 2/2) is a permanent cycle

 and detects an element of irs(S0) which factors through the triple transfer BV3+ -
 So. Then it is one of the following

 huht+uhs+t+u such that s > 2, t > 2, u < 6

 CU such that s = 2, t =1, u < 6

 hl+uhs+u-l such that s > 5, t = O, u < 5
 h2hs+u hl+uh +2 + 2hs+u such that s > 5, t = 0, u < 6

 h 2hs+u such that 3 < s < 49 t = O, u < 6

 h3 h2h2 such that s = 2, t = O, u < 5

 hoh2 such that s = 0, t > 3

 h 3

 COROLLARY 0.2. No element in the image of

 (Sqo0)7: Ext3n+3 (Z/2,92/2) 2 Ext327(n+3) (Z/2, Z/2)

 detects an element of s7(n+3) 3 (SO) whichfactors through the triple transferBV3 +

 So.

 These, together with our previous results [M1] [M2], tempt us to propose:

 NEW DOOMSDAY CONJECTURE. For each s, there exists some integer n(s) such

 that no element in the image of

 (,pO)n(s) (Exts4* (Z/p, Z/p) )C (Exts4pns* (Z/p, Z/P))

 is a nontrivial permanent cycle.

 Following a suggestion of Mark Mahowald, we can also formulate an anal-

 ogous speculation in terms of the root invariant:

 R.I. DOOMSDAY CONJECTURE. For each s, there exists some integer m(s) such

 that, for any element f C irs (SO) of Adams filtration s, its m(s)-fold iterated root
 invariant Rm(s)(f) has Adams filtration strictly higher than s.

 This paper is organized as follows: In ? 1, we use the Adams spectral sequence

 to show that those relevant elements in BP*( A3 P) have gigantic order. In ?2,
 we study the action of the BP-Adams operations on BP*( A3 P). This forces
 elements in the BP-Hurewicz image xrs( A3 P) -? BP*( A3 P) to have relatively
 low order. In ?3, we recall the results of Kameko [K], Ali-Crabb-Hubbuck [ACH],
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 THE ADAMS SPECTRAL SEQUENCE AND THE TRIPLE TRANSFER 967

 and Boardman [B 1, B2]; then these results allow us to apply our studies in ? 1
 and ?2 to prove Theorem 0.1, whose statement involves the third line elements
 in the Adams spectral sequence of the sphere and the triple transfer. Finally,

 in ?4, we pose the aforementioned conjectures, and discuss their background.
 Philosophically, this is the core of this paper.

 Acknowledgments. The main result in this paper was announced during

 the Cech centennial homotopy theory conference at Northeastern University in

 June 1993. The author would like to thank Mike Boardman, Mark Mahowald,

 Haynes Miller, Doug Ravenel, and Steve Wilson for their suggestions and con-

 stant encouragement. The referee's suggestions greatly helped us to improve our

 presentation of this paper. Also, the author would like to express his gratitude to

 mathematicians at the Massachusetts Institute of Technology for their hospitality

 during the author's visits to MIT during the summer of 1993. Neil Strickland

 offered the author significant help with Emacs. The author's visit to MIT would

 not have been made possible without the generous support of Dan and Nora Kan,

 to whom the author expresses his highest gratitude. The travel support to MIT

 was provided by Alabama EPSCoR.

 Notation and conventions.

 2/2{g} stands for 2/2 with g as its generator.

 H* stands for the mod-2 homology

 P = E'RP'

 xi C Hi(P) is the generator.

 BP* Z (2) [VI tt, p2 ]

 XA.* = P(61, 2, )whereI fn= 2n _ 1
 Ext"j* (Z/2, H* (BP)) Ext"j (Z/2, 2/2) = 2/2[uo, u I,

 where ui C Exty 2 -1 (Z/2,2 /2) is expressed as [ji+i] in the cobar complex, and
 corresponds to the usual (Hazewinkel [H] or Araki [Arl], whichever) generator

 vi c BP2i+l-2 (resp. p) when i > 1 (resp. i = 0). E(k) is the exterior quotient Hopf
 algebra of A*, generated by lI, ... ., k+ , whose notation is intended to suggest

 Ext`* (Z/2, H* (BP(k))) rv Ext"(*' (Z/2,92/2).

 1. The Adams spectral sequence of BP*( A3 P). For our purpose, we need
 to know BP*(BV3). But the canonical projection

 BV3 = (B2/2) x (B2/2) x (B2/2) -- (BE/2) A (BE/2) A (BE/2) = A3P
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 968 NORIHIKO MINAMI

 stably splits so that A3P constitutes the essential part of BV3: xi 0 xj 0 xk C
 H*(BV3+) 0 < i,j, k is contained in H*( A3 P) iff. 1 < i,j, k.

 Therefore, we are going to study BP*( A3 P), which still has a very compli-

 cated additive structure. Fortunately, as was noticed by [JWY][JW], the affirma-

 tive solution [RW][Mt] of the Connor-Floyd conjecture implies that its classical

 Adams spectral sequence collapses at its E2-term, and this allows us to use more

 tractable Ext *,K> (Z/2,H* (A3P)), instead of BP*( A3 P), to evaluate the BP*-
 order of those elements we are interested in. (Note that the multiplication by 2

 in BP*( A3 P) corresponds to the multiplication by uo C Extl (j) (Z/2,2/2) in

 ExtE*,*) (Z/2,H* (A3P)).) We begin with a summary of known results, which
 are necessary in our approach:

 PROPOSITION A. (a) The Adams spectral sequence

 Ext"j* (2/2,H* (BPAA3P)) =>BP*(A3P)

 collapses.

 (b) As Z/211u3]-modules,

 Ext'() Z2/29H* (A3P) =ExtE (Z/29 H* (A3P) :0 Z/21u3].

 (C) Extj$o*+odd (2/2,H* (A3P)) contains a sub Z/2[uo, ul, u2, u3]-module

 EJk,l,m> 12/2{X2k-1 80 X21-1 0 X2m-1 } (0 /21u3],

 where X2k-1 80 X21-1 0 X2m- 1 C EXtO0,2(k+1+m)-3 (Z/2, H* (A3P))

 (d) There is a canonical identification of the above 2/2[uo, ul, u2, u3]-sub-

 modules of Ext**3)?dd (Z/2, H* (A3P)) i: EDk,lm> I Z/2{ X2k-I 0 1 X211 } 0 X2Zn IZ,/[U3], -+ 3 u2u3l ExtE'3) (Z/2, H* (P))
 X2k- I 0 x21-1 O X2m-nI X2k- I x21-1 O X2m-I

 Proof. For (a)(b), see [JWY][JW]. (c) follows from (a)(b) and the solution of

 the Conner-Floyd conjecture [RW][Mt], which was also used in (a) [JWY].

 For (d), we first notice that 03 Ext"*)* (Z/2, H* (P)) is generated Z~/2[uo,ui ,U2,U3] E(3)
 by EJk,l,m> l 2/2{X2k- 1 0 X21- 1 0 X2m- 1 }, as a Z/2[uo, ul, U2, u3]-module. This is
 because such is the case for each tensor factor Ext"(3) (Z/2, H* (P)) [D]. So the
 claim would follow if we could canonically embed

 (8z/ 3 ,I,3 Ext*,* (Z/2,H* (P))
 nuo,u H,ut,U3] ET3) *

 in Ext*,,3) (2/2, H* (A3p)) , thanks to (c). Thus, it is enough to establish a short
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 THE ADAMS SPECTRAL SEQUENCE AND THE TRIPLE TRANSFER 969

 exact sequence

 o -- 4 3/2[(g3 U U2U3] Ext'$3) (Z/2,H* (P)) -+ Ext *+odd (Z/2,JH* (A3P))

 (K) -4 Tor~/2[UO,UI U2 U31 (Ext**)* (7/2,H* (P)),
 Trz/2[UOl ,U2u3] (ExtE')* (2/2, H* (P)) , Ext'<*) (2/2, H* (P A P)))) -O 0.

 But, (K) is an immediate consequence of the Ext-analogue of the Landweber's

 bordism Kuinneth theorem [L]: The point is that the cofiber sequence

 0p0 , p > T RP~ -*?PT-

 where i is induced by the inclusion Z/2 e - S1 and T is the cofiber of i (actually
 a Thom complex), induces the short exact sequence (here we use the notation

 P = ???IIRPO)

 0 -O Ext*7 ,*l (Z/2,H* (1-1CPoo))
 E(3) * ( '*( )

 ExtE$*) (Z/2, H* (P)) -? 0,

 where Ext'$3 (Z/2, H* (XCPO)) ? Ext"(* (Z/2, H* (E-1 T)) is a free Z/2l[uo,
 ul, u2, u3]-module. Actually, the usual Landweber's bordism Kuinneth theorem
 [L] [JW] is based on the fact that BP*(2- 1 CP ) and BP*(X- 1 T) '- BP*(ZCPOO)

 are both free over BP*, and the following short exact sequence

 0 -O BP* (E- l CP) -, BP* (- 1 T) -* BP*(P) -O o.

 Thus, we get (K) just as in [JW] (see also our discussion after Lemma 2.1). o

 For us to understand the order of those relevant elements in BP*( A3 P), we
 need to know the formula for the uo-action on

 ek,l,m>12/2{X2k- I 0 X21-1 0 X2m-1} 0 Z/2[U3 ],

 regarded as a Z/2[uo, ul, u2, u3]-submodules of ExtE*3*7dd (Z/29 H* (A3P)).
 For a technical reason, we can minimize our task by writing down the actions

 of ul and u2 simultaneously. To express such actions concisely, we let ujXrYSZt
 stand for the 2/2[U3]-module map

 X2k-1 0 X21-1 0 X2m-1 1> UjX2(k-r)-1 0 X2(l-s)-1 0 X2(m-t)-1
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 970 NORIHIKO MINAMI

 Now, the following is the action formula:

 LEMMA 1.1. The 7/2 [uo, u1, u2, u3]-module structure on

 E&k,l,m> 1 2/2{X2k- 1 0 X2l-1 0 X2m-1 } 0 Z/2[u3]

 is determined by the following equalities as 7/2[u3]-module self-maps on it:

 uo = U3 E XiyjZk
 ij,kCA,i+j+k=7

 ul = u3 E XiyjZk
 ij,kCA,i+j+k=6

 U2 = U3 E XiYyjZk
 ij,kCA,i+j+k=4

 where A = {O, 1,2,4}.

 Proof. As these actions of uo, ul, u2, and U3 clearly commute, they together

 define a Z/2 [uo, u1, u2, u3]-module structure. Also, we can see very easily

 Uo + UIX + u2X3 + U3X7 = 0

 (C) Uo +uIY+u2Y3 +U3Y7 = 0

 UO + UIZ + u2Z3 + U3Z7 = 0.

 Actually,

 UO+U IX+U2X3 +U3X7 = u3(X4Y2Z+X4YZ2 +X2 Y4Z+X2YZ4+XY4Z2 +XY2Z4)

 + u3X(X4Y2 + X4YZ + X4Z2 + X2Y4 + X2Y2Z2

 + X2Z4 + XY4Z + XYZ4 + y4Z2 + y2Z4)

 + u3X3(X4 + X2Y2 + X2 yZ + X2Z2 + XY2Z + XYZ2

 + y4 + y2z2 +Z4)

 + U3X7

 = 0,

 for example.

 Notice that (C) is nothing but the characterizing property of the Z/2I[uo, u1,
 u2, u3]-module structure on 0z/2[uu U2U] ExtE**) (Z/2, H* (P)) . This is because

 ExtE)*, (Z/2, H* (P)) is generated by {X2i }iCN with the relations {uox2k- +

 U1X2(k-1)-I + U2X2(k-3)-1 + U3X2(k-7)-1 }k>8 (i.e. uo + uIX + u2X3 + u3X7 = 0), as a
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 THE ADAMS SPECTRAL SEQUENCE AND THE TRIPLE TRANSFER 971

 Z/2[uo, ul,u2, u3]-module [D]. So, 08/2[uu ,U2,U3] Ext*j*)* (2/2, H* (P)) is gen-
 erated as a Z/2[uo,u1,u2,u3]-module by {X2k- I OX21-1 0X2m-1}k,l,m>1 subject to
 (C). Therefore, when we denote ((k,l,m> Z/2{X2k-1 80 X21-1 0 X2m-1 } 0(8 2/2IU3 ])

 by E&k,l,m> 1 2/2{X2k- 1 0 X21- 1 0 X2m- 1 0 2/2[U3 ] equipped with the proposed
 2/2[uo,u1,U2,u3]-module structure, we can define a 2/2[uo,u1,u2,u3]-module
 homomorphism

 h: 03/2 uouu2u3] Ext*<* * (7/2,H* (P))

 - (Ek,l,m> I1 /2{X2k-1 0 X21-1 0 X2m-1} 2/21U3 ])'

 so that h(X2k-1 0 X21-1 0 X2m- 1) = X2k-1 OX21-1 O X2m- 1 for any k, 1, m > 1.

 On the other hand, in Proposition A (d), we constructed a 2/2l[uo, uI, u2, U3]-
 module homomorphism

 i EJ(k,l,m> 1 2/2{X2k- 1 0 X21-1 0 X2m-1 } 0 2/2[U3]

 3 8z2uol23 Ext'() (Z/2, H* (P))

 such that i(X2k-1 (8) X21-1 () X2m- 1) = X2k-1 0X21-1 () X2m- 1 for any k, 1, m > 1.
 Then, clearly,

 h o i: EJk,l,m>? I/2{X2k-1 0 X21-1 X2m-} 0() 2/21U3]

 (EJk,l,m> 12/2{X2k-1 (0) X21-1(8 X2m-l} 0 Z/2[U3])'

 is a Z/2l[uo, uI, U2, u3]-module isomorphism which induces the identity map on
 the underlying set. This immediately implies that the proposed Z/2[uo, Ul, U2, U3]-

 module structure on Ek,l,m> 1 2/2{X2k- 1 0 X21- 1 0 X2m- 1 } 0 7/21U3] is the right
 one. E

 Remark 1.2. Using the similar method, we can write down explicitly the
 /p[uo, ... ., un]-module structure of

 ?ZZ/p[uo ... Un] Ext(n) (Z/p, H* (P)),

 for any n and p. For this, see [M3].

 We now define Sq0: H*(BV3) -- H2*+3(BV3) by Sq0(xi 0 xj 0 Xk) = X2i+l (
 X2j+1 O(8 X2k+ 1
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 972 NORIHIKO MINAMI

 PROPOSITION 1.3. The order of any element in BP2u(*+3)-3(BV3), whose Thom
 reduction image is contained in (Sq0)UH*(BV3), is divisible by

 2[ 8 ] 2(2u3) if u > 3.

 Proof. We begin by introducing the usual lexicographical order among mono-

 mials in H*(BV3):

 Xa 0 Xb 0 XC - Xa' 0 Xb' 0 XC/

 ~~ a < a'; or a = a',b < b'; or a = a',b = b',c < c'.

 Then, we may assume that any element in (Sq0)UH*(BV3) is of the form

 xio 0 xjo 0 Xko + sum of monomials with higher order

 with 2u - 1 < io < jo < ko, by changing the order of the factors if necessary.

 Now, suppose that the Thom reduction of an element 9 C BP2u(*+3)-3)(BV3)
 is in (Sq0)uH*(BV3). Then, as Sq0 (H* (BV3)) C H2*+3( A3 P) and A3P is a stable

 summand of BV3, we may assume 0 C BP2u(*+3)-3)( A3 P) and it is enough to
 2u- 1

 show 2 8 ] i 0 for such 0. By Proposition A, what we have to show is

 [2u- I]

 [ 8 ] Uo (xi( 0 xjo 0 xko + sum of monomials with higher order)

 7 0 C Ek,l,m>lZ/2{X2k-1 0X21-1 0X2m-1} X0 Z/2[U3]

 But this is certainly so, for Lemma 1.1 implies the left-hand side is

 [28 1 ( sum of monomials
 u3 X. [2u-i 0x. A [2uI- OX 2[2U1 +

 lo-8l 8 J Jo-4l 8 J k0 8 a with higher order

 which is clearly nonzero, as 2u - 1 < io < jo < ko.

 2. Adams operations on BPodd( A3 P). Here we study the action of the

 BP-Adams operation 43 [N][Ad2] on BPodd( A3 P). For this purpose, we need
 to describe the 4)3 action on BP*(X A P) for general X, in the context of the

 Landweber bordism Kuinneth theorem [L]:

 0 -- BP* (P) 0 BP* (X) -- BP* (X A P) -- Tor (BP* (P) , BP* (X)) -+ 0.

 We now list necessary elementary results about the BP-Adams operation V3.
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 THE ADAMS SPECTRAL SEQUENCE AND THE TRIPLE TRANSFER 973

 LEMMA B. (a) b3: BP2k- 1 (P) - BP2k I(P) acts as the multiplication by 3k.
 (b) Let a3: CP' -- CP1 be the map induced by S1 S S', regarding

 CP?? = BS1. Then 03a3o3 BP21(CP') - BP21(CP') acts as the multiplication
 by 31.

 (c) Vb3 is a map of ring spectrum, and so commutes with the pairings: The
 diagram

 A

 BP*(p) 0 BP*(X) - BP* (P A X)

 I1+3X+b3 {1b3

 A

 BP*(P) 0 BP*(X) - BP,(P A X)

 commutes.

 (d) The diagram

 A

 BP* ((CPO`) 0 BP* (X) - BP*(CPO A X)

 {0 C3a3O0*X3 CO

 A

 BP*(CP`0) 0 BP*(X) - BP*(CP` A X)

 commutes.

 Proof (a)(b) This is well-known; see for instance [H].
 (c) This is also well-known: see [Ad2] or [W].
 (d) This follows from the following commutative diagram:

 (BP A X)A (BP A CP() - BP A(X A CP)

 (?P3A1)A(03A1)t Jj3A(IA1)

 (BP A X)A (BP A CP??) - BP A(X A CP)

 (1A1)A(1Aa3)j 1A(lAa3)

 (BPAX) A (BPA CPc) - BPA (XA CP),

 where the commutativity qf the upper diagram follows from the fact that VL 3 is a
 map of ring spectra. ol

 For our purpose, it is more convenient to express the above results in the
 following form:
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 974 NORIHIKO MINAMI

 LEMMA 2.1. We have the following commutative diagrams:

 EDkBP2k-1(P)0BP*(X) BP*(P)0BP*(X) BP*(PAX)

 (1) EDk3k+3} ?3 ?P3}

 EDkBP2k-1(P)0BP*(X) BP*(P)0BP*(X) BP*(PAX)

 BP*(P A X) ,, TorBp* (BP*P,BP*X) (>1-BP21(CP) 0 BP*(X)

 (2) 3} } ED1310gb3}

 BP*(P AX) ,, TorBp*(BP*P,BP*X) ED9BP21(CP) 0 BP*(X)

 Proof. (1) This follows from Lemma B(a)(c).

 (2) For this, just recall that the bordism Kuinneth formula is induced by the

 cofibration sequence associated with the canonical nontrivial map P -? CP?,
 which accompanies the homotopy commutative diagram:

 P , pOO

 a'3 P -+ OP~00

 P - 'CP.

 Then the claim is an immediate consequence of Lemma B(b)(d). E

 Now, we are ready to write down the 4)3 action on BPodd( A3 P) almost

 completely. For this, we recall the presentation of BPodd( A3 P) via the bordism

 Kuinneth theorem [L] [JW]: First, by putting X = P in the bordism Kuinneth theo-

 rem,

 BPeven(P A P) = BP*(P) ?BP* BP*(P)

 BPodd(P A P) = TorBp* (BP* (P), BP* (P)).

 Then, apply the bordism Kuinneth theorem of [L] again, by putting P A P in the

 above forms,

 o 0> 3 pBP*(P) - BPodd( A3 P)

 TorBp* (BP* (P), TorBp* (BP* (P) , BP* (P))) -* 0.

 (cf. [JW] and our proof of Prop. A (d).)
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 THE ADAMS SPECTRAL SEQUENCE AND THE TRIPLE TRANSFER 975

 COROLLARY 2.2. The following diagram is commutative:

 [0 3BP BP. (P)]2n3 - BP2n-3( A3 P) L TorBp. (BP*P, TorBp* (BP*P, BP. P))]2n-3

 x3l'1 )31 x31-1l

 [03. BP*(P)]2n-3 > BP2n3( A3 P) [TorBp (BP.P,TorBp* (BP.P,BP.P))]2n-3

 Proof. We just have to use Lemma 2.1 (1) (resp. (2)) repeatedly twice for the

 commutativity of the left (resp. right) hand side diagram. a

 We now recall the usual result in the elementary number theory [AA][MM]

 [H] [M 1]:

 LEMMA C. Write n = 2rm, with m odd. Then

 r+2 if r>I

 v2(3 n _1)= 1 ir-O

 Proof. This is well-known and quite easy to show: The key is to prove

 (1 + 2)2r -1 + 2r+2 (mod 2r+3)

 for all r > 1, by mathematical induction. o

 Now, Corollary 2.2 and Lemma C immediately imply the following:

 PROPOSITION 2.3. The order of any element in

 Ker (g,3 - 1) IBP4d_ 3(A3p)

 divides 2v2(d)+4

 Proof. Let x E Ker (f/3 - 1) IBPd_(A3P) * We first claim 2x 3 [ ?BP*

 BP*(P)]4d-3. But, this immediately follows from Corollary 2.2, as v2(32d1 - 1) =
 1 by Lemma C. Now, using Corollary 2.2 and Lemma C again, we see that the

 order of 2x divides 2v2(32d 1) = 2v2(d)+3. So the claim follows. o

 3. The main theorem and its proof. Our main result focuses upon the

 composite

 -rn(BV3) --+ PHn(BV3) --* 2/2 0GL3(W2) PHn(BV3) - Extj3,n+3 (Z/2, Z/2),

 where the last map, defined by [S], was shown to be an isomorphism by [B2][Wa].
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 976 NORIHIKO MINAMI

 To state known results related to this composite, We need different types of

 Steenrod operations which we now review. A general reference here is [My].

 (For simplicity, we consider only the 2 primary case):

 Let C2 be the cyclic group of order 2 generated by t. Then one of the

 definitions of the Steenrod operations on a topological space X, the one given

 as the cup-r products, begins with a map of augmented chain complexes of

 7/2[C2 ]-modules

 W 0 S*(X) >_ S*(X) 0 S*(X),

 where W is the standard free resolution of Z/2 over Z/2[C2] (Wi = Z/2[C2]{ei}
 d(ei+l) = (1 + t)ej for i > 0), S*(X) is the singular chain complex of X tensored
 with 2/2, and 2/2 acts on the source (resp. the target) through its action on W

 (resp. by interchanging the factors). Such a map is obtained by the method of the

 acyclic models, and induces a map of chain complexes

 0: W OZ/2[C2] (S*(X) 0 S*(X)) S*(X).

 Here S*(X) = HomZ/2 (S*(X), 2/2), and the Z/2[C2]-module structure of
 (S*(X) 0 S*(X)) is induced from the C2-action given by interchanging the factors.

 0 may be chosen to extend the square S*(X) 0 S*(X) -> S*(X) induced by the
 Alexander-Whitney map, and defines the Steenrod sqtuares {Sq'}i>o by

 Sq'([x]) = H(0)(en_i 0 x 0 x) E Hn+i(X, Z/2)

 for [x] E Hn(X, Z/2).

 Now, the Steenrod squares are also defined on the zohomology of the cocom-

 mutative Hopf algebras over 2/p, in particular, the Ext of the Steenrod algebras
 [Ll][My]: Let A be a cocommutative Hopf algebra over 2/2, e.g. the mod 2

 Steenrod algebra. Let B*(A) be the inhomogeneous bar resolution of A, and let
 C*(A*) = HomA (B*(A), Z/2) be the corresponding cobar complex for A*, the

 dual Hopf algebra of A. Recall that ExtA (Z/2.Z/2) = Hs(C*(A*)). Then there is
 an appropriate map of augmented chain complexes of C2-equivariant A-modules

 W 0 B*(A) -> B*(A) 0 B*(A),

 from which we get a map of augmented chain complexes of Z/2-modules

 0f: W OZ/2[C2] (C*(A*) 0 C*(A*)) - C*(A*).
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 Then, as before, the Steenrod squares {Sq'}i>o on the Ext are defined by

 Sq'([w]) = H(O)(eni 0 w 0 w) E ExtAn' (Z/2, 2/2)

 for [w] E ExtnA (Z/2, 2/2).
 Even though the Sq"s on Ext shares most properties with the Sq"s on H*(X),

 Sqo is not necessarily identity. In fact, when A is graded,

 Sq : ExtAs (Z/2, Z/2) - ExtsA (2/2, 2/2)

 [(1(21 .I(s] [(l21221 I(s

 in terms of the cobar complex [My].

 Recently, Kameko [K] defined

 Sqo: PH*(BVs) - PH2*+s(BVs)

 by xi, (0 xi2 (0 . xiis F-* X2iI+1 X2i2+1 0 ... 0x2is+1, and made full use of it in
 [K]. This usage of the same notation is more than accidental. Actually, Kameko's

 Sqo is shown to commute with the Sq0 on Exts,s+* of the mod 2 Steenrod algebra
 through the Singer homomorphism by [B2] for s = 3 and by [M3] for general s.

 Now we are ready to state a known result, where we suppose n can be

 uniquely written as

 n = (2s+t+u - 1) + (2t+u - 1) + (2U - 1) = 2s+t+u + 2t+u + 2u - 3

 for some s, t, u > 0 such that s = 0 only if u = 0. Actually, if n is not of this form,

 PHn(BV3) = 0 by the theorem of Wood [Wo] (formally Peterson's conjecture [P]),
 and the uniqueness of such an expression of n is not difficult to see [B1].

 PROPOSITION D. (a) [Wa]

 2 hu ht+u hs+t+u} if s > 2,t > 2

 2/2{cu = (hu+,hu,h +2)} ifs=2,t= 1

 2/2{h2hs+u} (D2/2{hl+uh S+u- } ifs> 5, t = 0

 3 n+3 77/) /{u~~ 3s4=
 Ext , (Z/2, Z/2) =/2{h2h2hS+} ifs=2,t=0

 2/2{hoh2} if s = O,t > 3

 2/2{h3} ifs=0,t=0
 0 if otherwise.
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 (b) [K][ACH][B2]

 {huht+uhs+t+u} if s > 2, t > 2

 w{cU} ifs=2,t=I

 w{h2hs+u} @ w{hl+uhS+U- } ifs > 5, t = O

 w{h2h4+u}Ei3A' ifs=4,t=O

 PHn(BV3)= {hU2h3+u} e ' if s = 3,t= O

 {h2 h2+u} if s = 2,t= 0

 w{hoh2} if s = O,t > 3

 wf{h3} if s=O,t=O
 0 if otherwise.

 Here w{hihjhk} is the GL3(TF2) representation inside PHn(BV3), generated by hihjhk
 (such a representation is said to be an h - orbit [B2]); 7r{cu} is the GL3(F2)

 representation inside PHn(BV3), generated by cu = (Sqo)uco, where co = X3 0 X3 0

 X2 + X3 0 X4 0 Xl + X5 0 X2 0 Xl + X6 0 XlI XI CPH8(BV3); A' and u' are some
 h-orbits (see [B2]for more details).

 (c) In (b), the GL3(TF2)-coinvariant of all the nontrivial representations is iso-

 morphic to 2/2, exceptfor A' and [', which have the trivial GL3(1F2)-coinvariant.

 (d) Under the map

 PHn(BV3) ->3 2/2 OGL3(E)PHn(BV3) -a Ext3'n+3 (Z/2,2/2),

 an element in the list of (b) is mapped to the element in the list of (a) with the same

 name. Furthermore, this map commutes with the Squaring operations Sq0 's; i.e.
 i) Kameko 's [K] Sqo : PHn(BV3) -> PH2n+3 (BV3), which is induced byxi0xj0xk Z 4

 X2i+l 0 X2j+ l 0 X2k+ I (cf Corollary 1. 3), and ii) Sq0 defined in Ext 3* (Z/2, 2/2),
 using the cobar complex [Ll][Adl][My].

 (e) Kameko's Sq0 [K] acts as

 Sq0(hihjhk) = hi+lhj+lhk+l, Sq0(ci) = ci+l,
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 and its iterations induce isomorphisms

 (Sqo): w{hohth,+t} w4 {huht+,h,+t+,} if s > 2, t > 2

 (Sqo)U :w{co 71-{cu} ifs=2,t= 1

 (Sq)U :w{hoh2} - 2{hh+} ifs > 5, t = O

 (SqO)w+l: {hoh>2} - w{hl+uhs+u- I} ifs > 5,t = O

 (Sqo)u: w{hh4} - w{huh4+u} ifs = 4, t = O

 (Sqo)u: {hoh3} {huh3+u } ifs = 3, t = O

 (Sqo)U : w{hh2 } w{huh2+u} ifs = 2, t = 0

 (f) In (b), w{hihjhk}GL3(F2) = 2/2, and the GL3(F2)-invariant of the rest of the
 representations are trivial. As a special case, we have

 w,{h2h2+u}GL3(F2) = Z/2{h3+1 } = Z/2{(Sqo)U+l(h3)}.

 (g) Suppose hihjhk E Ext3n+3 (Z/2, 2/2) (or a linear combination of such) is
 the image of an element 0 E ws(BV3), then we may modify 0 (if necessary) so that

 its stable mod-2 Hurewicz image is invariant under the action of GL3(F2).

 Proof. For these claims from (a) to (f), see [B2] and the references there.

 For (g), we first recall from [B2] that, if s > 2,t > 2, U)fhuht+uhs+t+u} is
 the permutation module of dimension 21 corresponding to the upper triangular

 subgroup, and any h-orbit is a quotient module of this permutation representation.

 In particular, the nontrivial GL3(F2)-invariant elements in those h-orbits are the

 images of such an element in this 21 dimensional permutation representation

 under the quotient map. Now, notice that GL3(F2) has a subgroup H of order

 21. Actually, GL3(F2) PSL2(F7), which acts transitively on PI(F7), a finite set
 consisting of 8 elements. So we simply take H to be the isotropy subgroup under

 this action (through the isomorphism). Then, it is immediate that the element

 EgeH g*O E 7w(BV3) satisfies the desired property. a

 We now prove our main theorem. Of course, this would follow from Propo-

 sition 1.3, Proposition 2.3, and Proposition D: We may suppose u > 3. First, by
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 Proposition 1.3 and Proposition D (especially (e)(f)), we see if

 hu ht+u hs+t+u such that s > 2, t > 2

 |u CUsuch thats=2,t= 1

 | hl+uh 2+a-l such that s > 5 t = 0

 |hhs+uq hj+uh 2+u- +h 2hs+u such that s > 5, t =0

 h2Uhs+u such that 3 < s < 4 t =0

 )h43 = h2h2+u such that s =2, t = 0

 comes from the triple transfer, then

 2(2u-3)

 2(2u-3)

 2(2u-2) divides the order of the BP*-Hurewicz image of

 2(2u-3) an appropriate triple transfer lift.

 2(2u-3)

 2(2u-2)

 On the other hand, let us set d by

 n = (2s+t+u - 1) + (2t+U - 1) + (2u - 1) = 2s+t+u + 2t+u + 2u - 3

 = 4d-3,

 as in Proposition 2.3. Then we can easily see that v2(d) is given by

 u- 2 if t > 1

 u- I if s>2,t=0

 Thus, by Proposition 2.3, if

 ' huht+uhs+t+u such that s > 2,t > 2

 |u CUsuch that s =2,t =1

 | hl+uh52+a-l such that s > 5, t= 0

 h2hs+u hl+uhs2+u +h2hs+u such that s> 5 t =0

 [ h2hs+u such that 3 < s < 4, t 0

 h3+1 = h2h2+u such that s = 2, t = 0
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 2u+2

 2u+2
 comes from the triple transfer, then the order 2u+3

 of the BP*-Hurewicz image of the above 2u+3
 triple transfer lift divides l

 2u+3

 2u+3

 Therefore, combining these two arguments, we see if

 huht+uhs+t+u such that s > 29 t > 2

 Cu such that s = 2, t = 1

 hl+uh 2+a l such that s > 59 t = 0

 |hhs+u hl+uh2+ 1+h2hs+u such that s>5 t=O

 h2hs+u such that 3 < s < 4, t =O

 h3+l= h2h2+u such that s =2, t = O

 u~ ~~~~ 2u3u+

 2`3 < u+2

 2`3 < u +2

 2`2 < <u+3
 comes from the triple transfer, then l <u + 3

 2`3 < u +3

 2u2 <u+3

 Now the claim follows immediately.

 Remark 3.1. Even before the appearance of our [Ml], Mahowald conjec-

 tured that the higher h3's are not permanent cycles, as early as the summer of
 1988 (during the Toda's conference, Kinosaki, Japan). So the special case of

 our Theorem 3.1 can be regarded as a supporting evidence of this conjecture of

 Mahowald.

 4. Speculations. The following was made by Joel Cohen, named by Michael

 Barratt, and appears in Algebraic Topology, Proceedings of Symposia in Pure Math-

 ematics, XXII, page 199, Conjecture 73 (we thank the referee for supplying this

 information):
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 DOOMSDAY CONJECTURE. Fix a prime number p, and consider the Adams spec-

 tral sequence of the stable homotopy groups of the sphere at p. Then ES,* is finite

 for each s.

 But the doomsday conjecture was doomed: Mark Mahowald's qj family [Ma2]

 was the first counter-example. Soon after that, Ralph Cohen's hobj family [C] was
 added to the list.

 Now, to fix the situation, we are tempted to propose the following in view

 of Corollary 3.2 and our previous results [MO][M1][M2]:

 NEW DOOMSDAY CONJECTURE. For each s, there exists some integer n(s) such

 that no element in the image of

 (pO )n(s) (Exts' (2/p, 2/p)) (C Exts pn (7i/p, 7/p))

 is a permanent cycle. Here P0 = Sqo, when p = 2.

 Notice that, unlike the case of the classical doomsday conjecture, neither Mark

 Mahowald's rqj family [Ma2] nor Ralph Cohen's hobj family [C] are counter-
 examples of this new doomsday conjecture. But this conjecture is extremely

 difficult to attack whether it is right or wrong, as its first nontrivial unsolved case

 corresponds to the Kervaire invariant one problem. On the other hand, recall that

 many known differentials in the (classical) Adams spectral sequence are conse-

 quences of either the Hopf invariant one differentials or the Toda's differentials

 strengthened significantly by Ravenel [RO]), both of which represent the new

 doomsday phenomena. Therefore, it might be the case that most of the differ-

 entials of the classical Adams spectral sequence are consequences of this N.D.

 (which stands for New Doomsday) phenomenon. Of course, this might be true,

 even if the new doomsday conjecture does not hold.

 Recently, Mark Mahowald suggested us to relate the N.D. philosophy with

 the root invariant [Mal][MR]. Mahowald's suggestion was based on the fact that

 Sqo becomes quite frequently the (algebraic) root invariant [Ka][Mg][J][MR],
 which we now summarize. Roughly speaking, the connection between Sqo and
 the root invariant is given as follows: Recall the map

 0 'W ?Z/2[C2] (C*(A*) 0 C*(A*)) - C*(A*),

 considered at the beginning of ?3. This is clearly a reminiscence of the extended
 power map

 EC2, AC2 (So A So) S,

 induced by the H?-ring structure of the sphere. The precise connection between
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 these two points of view was clarified by [Ka][Mg]. In this way, Sqi's on Ext,

 defined as the algebraic cup-r construction, are related to the geometric cup-r

 construction given by the extended power map. But unlike the Ext situation, the

 geometric cup product ae Ur Ce C 7r2n+r(S?) for ae c -rs(S0) and its stable analogue
 (see [J]) are defined only when a Ui ai contains 0 for any 0 < i < r. Then the
 Jones' key observation [J] claims that the first nontrivial geometric stable cup-r

 product is none other than the root invariant. (To be precise, both are well-defined

 only as cosets.)

 Now the following iteration of the root invariant is very suggestive:

 R R R R 2 R R
 2 1 v _ _ 03 = 7 -04 -05 ?

 R

 where a R-? b indicates that the root invariant of a contains b. Notice that the

 corresponding Adams spectral sequence E2-term elements are connected by Sqo
 as follows

 Sqo Sqo Sqo

 h q0 h2q0 h h3 4 h_4 5,

 but Sqo does not connect between h3 and h3. Of course, the Adams filtration jumps
 by 1 here and the right map is Sql. But a more fundamental reason is that h4 is not

 a permanent cycle because of the Hopf invariant-I differential, which we regard

 as an example of N.D. phenomena. Furthermore, N.D. philosophy predicts that

 the higher Kervaire invariant elements O1's do not exist, which in turn suggests

 that some iteration of the root invariant of 04 to have Adams filtration strictly

 higher than 2. In this way, we are led to speculate the following:

 R.I. DOOMSDAY CONJECTURE. For each s, there exists some integer m(s) such

 that, for any element of the stable homotopy groups of the sphere f c F* (SO) with

 Adamsfiltration s, its m(s)-fold iterated root invariant Rm(s) (f) has Adamsfiltration

 strictly higher than s.

 A nice thing about this formulation is that it is stated solely in terms of

 permanent cycles. We thank Mark Mahowald for his substantial help with the

 Mahowald invariant (alias root invariant).

 DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF ALABAMA, Box 870350,

 TUSCALOOSA, AL 35487-0350

 Electronic mail: NORIHIKO@UA1VM.UA.EDU
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